1 /* C preprocessor macro expansion for GDB. 2 Copyright (C) 2002-2016 Free Software Foundation, Inc. 3 Contributed by Red Hat, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "gdb_obstack.h" 22 #include "bcache.h" 23 #include "macrotab.h" 24 #include "macroexp.h" 25 #include "c-lang.h" 26 27 28 29 /* A resizeable, substringable string type. */ 30 31 32 /* A string type that we can resize, quickly append to, and use to 33 refer to substrings of other strings. */ 34 struct macro_buffer 35 { 36 /* An array of characters. The first LEN bytes are the real text, 37 but there are SIZE bytes allocated to the array. If SIZE is 38 zero, then this doesn't point to a malloc'ed block. If SHARED is 39 non-zero, then this buffer is actually a pointer into some larger 40 string, and we shouldn't append characters to it, etc. Because 41 of sharing, we can't assume in general that the text is 42 null-terminated. */ 43 char *text; 44 45 /* The number of characters in the string. */ 46 int len; 47 48 /* The number of characters allocated to the string. If SHARED is 49 non-zero, this is meaningless; in this case, we set it to zero so 50 that any "do we have room to append something?" tests will fail, 51 so we don't always have to check SHARED before using this field. */ 52 int size; 53 54 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc 55 block). Non-zero if TEXT is actually pointing into the middle of 56 some other block, and we shouldn't reallocate it. */ 57 int shared; 58 59 /* For detecting token splicing. 60 61 This is the index in TEXT of the first character of the token 62 that abuts the end of TEXT. If TEXT contains no tokens, then we 63 set this equal to LEN. If TEXT ends in whitespace, then there is 64 no token abutting the end of TEXT (it's just whitespace), and 65 again, we set this equal to LEN. We set this to -1 if we don't 66 know the nature of TEXT. */ 67 int last_token; 68 69 /* If this buffer is holding the result from get_token, then this 70 is non-zero if it is an identifier token, zero otherwise. */ 71 int is_identifier; 72 }; 73 74 75 /* Set the macro buffer *B to the empty string, guessing that its 76 final contents will fit in N bytes. (It'll get resized if it 77 doesn't, so the guess doesn't have to be right.) Allocate the 78 initial storage with xmalloc. */ 79 static void 80 init_buffer (struct macro_buffer *b, int n) 81 { 82 b->size = n; 83 if (n > 0) 84 b->text = (char *) xmalloc (n); 85 else 86 b->text = NULL; 87 b->len = 0; 88 b->shared = 0; 89 b->last_token = -1; 90 } 91 92 93 /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a 94 shared substring. */ 95 static void 96 init_shared_buffer (struct macro_buffer *buf, char *addr, int len) 97 { 98 buf->text = addr; 99 buf->len = len; 100 buf->shared = 1; 101 buf->size = 0; 102 buf->last_token = -1; 103 } 104 105 106 /* Free the text of the buffer B. Raise an error if B is shared. */ 107 static void 108 free_buffer (struct macro_buffer *b) 109 { 110 gdb_assert (! b->shared); 111 if (b->size) 112 xfree (b->text); 113 } 114 115 /* Like free_buffer, but return the text as an xstrdup()d string. 116 This only exists to try to make the API relatively clean. */ 117 118 static char * 119 free_buffer_return_text (struct macro_buffer *b) 120 { 121 gdb_assert (! b->shared); 122 gdb_assert (b->size); 123 /* Nothing to do. */ 124 return b->text; 125 } 126 127 /* A cleanup function for macro buffers. */ 128 static void 129 cleanup_macro_buffer (void *untyped_buf) 130 { 131 free_buffer ((struct macro_buffer *) untyped_buf); 132 } 133 134 135 /* Resize the buffer B to be at least N bytes long. Raise an error if 136 B shouldn't be resized. */ 137 static void 138 resize_buffer (struct macro_buffer *b, int n) 139 { 140 /* We shouldn't be trying to resize shared strings. */ 141 gdb_assert (! b->shared); 142 143 if (b->size == 0) 144 b->size = n; 145 else 146 while (b->size <= n) 147 b->size *= 2; 148 149 b->text = (char *) xrealloc (b->text, b->size); 150 } 151 152 153 /* Append the character C to the buffer B. */ 154 static void 155 appendc (struct macro_buffer *b, int c) 156 { 157 int new_len = b->len + 1; 158 159 if (new_len > b->size) 160 resize_buffer (b, new_len); 161 162 b->text[b->len] = c; 163 b->len = new_len; 164 } 165 166 167 /* Append the LEN bytes at ADDR to the buffer B. */ 168 static void 169 appendmem (struct macro_buffer *b, char *addr, int len) 170 { 171 int new_len = b->len + len; 172 173 if (new_len > b->size) 174 resize_buffer (b, new_len); 175 176 memcpy (b->text + b->len, addr, len); 177 b->len = new_len; 178 } 179 180 181 182 /* Recognizing preprocessor tokens. */ 183 184 185 int 186 macro_is_whitespace (int c) 187 { 188 return (c == ' ' 189 || c == '\t' 190 || c == '\n' 191 || c == '\v' 192 || c == '\f'); 193 } 194 195 196 int 197 macro_is_digit (int c) 198 { 199 return ('0' <= c && c <= '9'); 200 } 201 202 203 int 204 macro_is_identifier_nondigit (int c) 205 { 206 return (c == '_' 207 || ('a' <= c && c <= 'z') 208 || ('A' <= c && c <= 'Z')); 209 } 210 211 212 static void 213 set_token (struct macro_buffer *tok, char *start, char *end) 214 { 215 init_shared_buffer (tok, start, end - start); 216 tok->last_token = 0; 217 218 /* Presumed; get_identifier may overwrite this. */ 219 tok->is_identifier = 0; 220 } 221 222 223 static int 224 get_comment (struct macro_buffer *tok, char *p, char *end) 225 { 226 if (p + 2 > end) 227 return 0; 228 else if (p[0] == '/' 229 && p[1] == '*') 230 { 231 char *tok_start = p; 232 233 p += 2; 234 235 for (; p < end; p++) 236 if (p + 2 <= end 237 && p[0] == '*' 238 && p[1] == '/') 239 { 240 p += 2; 241 set_token (tok, tok_start, p); 242 return 1; 243 } 244 245 error (_("Unterminated comment in macro expansion.")); 246 } 247 else if (p[0] == '/' 248 && p[1] == '/') 249 { 250 char *tok_start = p; 251 252 p += 2; 253 for (; p < end; p++) 254 if (*p == '\n') 255 break; 256 257 set_token (tok, tok_start, p); 258 return 1; 259 } 260 else 261 return 0; 262 } 263 264 265 static int 266 get_identifier (struct macro_buffer *tok, char *p, char *end) 267 { 268 if (p < end 269 && macro_is_identifier_nondigit (*p)) 270 { 271 char *tok_start = p; 272 273 while (p < end 274 && (macro_is_identifier_nondigit (*p) 275 || macro_is_digit (*p))) 276 p++; 277 278 set_token (tok, tok_start, p); 279 tok->is_identifier = 1; 280 return 1; 281 } 282 else 283 return 0; 284 } 285 286 287 static int 288 get_pp_number (struct macro_buffer *tok, char *p, char *end) 289 { 290 if (p < end 291 && (macro_is_digit (*p) 292 || (*p == '.' 293 && p + 2 <= end 294 && macro_is_digit (p[1])))) 295 { 296 char *tok_start = p; 297 298 while (p < end) 299 { 300 if (p + 2 <= end 301 && strchr ("eEpP", *p) 302 && (p[1] == '+' || p[1] == '-')) 303 p += 2; 304 else if (macro_is_digit (*p) 305 || macro_is_identifier_nondigit (*p) 306 || *p == '.') 307 p++; 308 else 309 break; 310 } 311 312 set_token (tok, tok_start, p); 313 return 1; 314 } 315 else 316 return 0; 317 } 318 319 320 321 /* If the text starting at P going up to (but not including) END 322 starts with a character constant, set *TOK to point to that 323 character constant, and return 1. Otherwise, return zero. 324 Signal an error if it contains a malformed or incomplete character 325 constant. */ 326 static int 327 get_character_constant (struct macro_buffer *tok, char *p, char *end) 328 { 329 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1 330 But of course, what really matters is that we handle it the same 331 way GDB's C/C++ lexer does. So we call parse_escape in utils.c 332 to handle escape sequences. */ 333 if ((p + 1 <= end && *p == '\'') 334 || (p + 2 <= end 335 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U') 336 && p[1] == '\'')) 337 { 338 char *tok_start = p; 339 int char_count = 0; 340 341 if (*p == '\'') 342 p++; 343 else if (*p == 'L' || *p == 'u' || *p == 'U') 344 p += 2; 345 else 346 gdb_assert_not_reached ("unexpected character constant"); 347 348 for (;;) 349 { 350 if (p >= end) 351 error (_("Unmatched single quote.")); 352 else if (*p == '\'') 353 { 354 if (!char_count) 355 error (_("A character constant must contain at least one " 356 "character.")); 357 p++; 358 break; 359 } 360 else if (*p == '\\') 361 { 362 const char *s, *o; 363 364 s = o = ++p; 365 char_count += c_parse_escape (&s, NULL); 366 p += s - o; 367 } 368 else 369 { 370 p++; 371 char_count++; 372 } 373 } 374 375 set_token (tok, tok_start, p); 376 return 1; 377 } 378 else 379 return 0; 380 } 381 382 383 /* If the text starting at P going up to (but not including) END 384 starts with a string literal, set *TOK to point to that string 385 literal, and return 1. Otherwise, return zero. Signal an error if 386 it contains a malformed or incomplete string literal. */ 387 static int 388 get_string_literal (struct macro_buffer *tok, char *p, char *end) 389 { 390 if ((p + 1 <= end 391 && *p == '"') 392 || (p + 2 <= end 393 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U') 394 && p[1] == '"')) 395 { 396 char *tok_start = p; 397 398 if (*p == '"') 399 p++; 400 else if (*p == 'L' || *p == 'u' || *p == 'U') 401 p += 2; 402 else 403 gdb_assert_not_reached ("unexpected string literal"); 404 405 for (;;) 406 { 407 if (p >= end) 408 error (_("Unterminated string in expression.")); 409 else if (*p == '"') 410 { 411 p++; 412 break; 413 } 414 else if (*p == '\n') 415 error (_("Newline characters may not appear in string " 416 "constants.")); 417 else if (*p == '\\') 418 { 419 const char *s, *o; 420 421 s = o = ++p; 422 c_parse_escape (&s, NULL); 423 p += s - o; 424 } 425 else 426 p++; 427 } 428 429 set_token (tok, tok_start, p); 430 return 1; 431 } 432 else 433 return 0; 434 } 435 436 437 static int 438 get_punctuator (struct macro_buffer *tok, char *p, char *end) 439 { 440 /* Here, speed is much less important than correctness and clarity. */ 441 442 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1. 443 Note that this table is ordered in a special way. A punctuator 444 which is a prefix of another punctuator must appear after its 445 "extension". Otherwise, the wrong token will be returned. */ 446 static const char * const punctuators[] = { 447 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~", 448 "...", ".", 449 "->", "--", "-=", "-", 450 "++", "+=", "+", 451 "*=", "*", 452 "!=", "!", 453 "&&", "&=", "&", 454 "/=", "/", 455 "%>", "%:%:", "%:", "%=", "%", 456 "^=", "^", 457 "##", "#", 458 ":>", ":", 459 "||", "|=", "|", 460 "<<=", "<<", "<=", "<:", "<%", "<", 461 ">>=", ">>", ">=", ">", 462 "==", "=", 463 0 464 }; 465 466 int i; 467 468 if (p + 1 <= end) 469 { 470 for (i = 0; punctuators[i]; i++) 471 { 472 const char *punctuator = punctuators[i]; 473 474 if (p[0] == punctuator[0]) 475 { 476 int len = strlen (punctuator); 477 478 if (p + len <= end 479 && ! memcmp (p, punctuator, len)) 480 { 481 set_token (tok, p, p + len); 482 return 1; 483 } 484 } 485 } 486 } 487 488 return 0; 489 } 490 491 492 /* Peel the next preprocessor token off of SRC, and put it in TOK. 493 Mutate TOK to refer to the first token in SRC, and mutate SRC to 494 refer to the text after that token. SRC must be a shared buffer; 495 the resulting TOK will be shared, pointing into the same string SRC 496 does. Initialize TOK's last_token field. Return non-zero if we 497 succeed, or 0 if we didn't find any more tokens in SRC. */ 498 static int 499 get_token (struct macro_buffer *tok, 500 struct macro_buffer *src) 501 { 502 char *p = src->text; 503 char *end = p + src->len; 504 505 gdb_assert (src->shared); 506 507 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4: 508 509 preprocessing-token: 510 header-name 511 identifier 512 pp-number 513 character-constant 514 string-literal 515 punctuator 516 each non-white-space character that cannot be one of the above 517 518 We don't have to deal with header-name tokens, since those can 519 only occur after a #include, which we will never see. */ 520 521 while (p < end) 522 if (macro_is_whitespace (*p)) 523 p++; 524 else if (get_comment (tok, p, end)) 525 p += tok->len; 526 else if (get_pp_number (tok, p, end) 527 || get_character_constant (tok, p, end) 528 || get_string_literal (tok, p, end) 529 /* Note: the grammar in the standard seems to be 530 ambiguous: L'x' can be either a wide character 531 constant, or an identifier followed by a normal 532 character constant. By trying `get_identifier' after 533 we try get_character_constant and get_string_literal, 534 we give the wide character syntax precedence. Now, 535 since GDB doesn't handle wide character constants 536 anyway, is this the right thing to do? */ 537 || get_identifier (tok, p, end) 538 || get_punctuator (tok, p, end)) 539 { 540 /* How many characters did we consume, including whitespace? */ 541 int consumed = p - src->text + tok->len; 542 543 src->text += consumed; 544 src->len -= consumed; 545 return 1; 546 } 547 else 548 { 549 /* We have found a "non-whitespace character that cannot be 550 one of the above." Make a token out of it. */ 551 int consumed; 552 553 set_token (tok, p, p + 1); 554 consumed = p - src->text + tok->len; 555 src->text += consumed; 556 src->len -= consumed; 557 return 1; 558 } 559 560 return 0; 561 } 562 563 564 565 /* Appending token strings, with and without splicing */ 566 567 568 /* Append the macro buffer SRC to the end of DEST, and ensure that 569 doing so doesn't splice the token at the end of SRC with the token 570 at the beginning of DEST. SRC and DEST must have their last_token 571 fields set. Upon return, DEST's last_token field is set correctly. 572 573 For example: 574 575 If DEST is "(" and SRC is "y", then we can return with 576 DEST set to "(y" --- we've simply appended the two buffers. 577 578 However, if DEST is "x" and SRC is "y", then we must not return 579 with DEST set to "xy" --- that would splice the two tokens "x" and 580 "y" together to make a single token "xy". However, it would be 581 fine to return with DEST set to "x y". Similarly, "<" and "<" must 582 yield "< <", not "<<", etc. */ 583 static void 584 append_tokens_without_splicing (struct macro_buffer *dest, 585 struct macro_buffer *src) 586 { 587 int original_dest_len = dest->len; 588 struct macro_buffer dest_tail, new_token; 589 590 gdb_assert (src->last_token != -1); 591 gdb_assert (dest->last_token != -1); 592 593 /* First, just try appending the two, and call get_token to see if 594 we got a splice. */ 595 appendmem (dest, src->text, src->len); 596 597 /* If DEST originally had no token abutting its end, then we can't 598 have spliced anything, so we're done. */ 599 if (dest->last_token == original_dest_len) 600 { 601 dest->last_token = original_dest_len + src->last_token; 602 return; 603 } 604 605 /* Set DEST_TAIL to point to the last token in DEST, followed by 606 all the stuff we just appended. */ 607 init_shared_buffer (&dest_tail, 608 dest->text + dest->last_token, 609 dest->len - dest->last_token); 610 611 /* Re-parse DEST's last token. We know that DEST used to contain 612 at least one token, so if it doesn't contain any after the 613 append, then we must have spliced "/" and "*" or "/" and "/" to 614 make a comment start. (Just for the record, I got this right 615 the first time. This is not a bug fix.) */ 616 if (get_token (&new_token, &dest_tail) 617 && (new_token.text + new_token.len 618 == dest->text + original_dest_len)) 619 { 620 /* No splice, so we're done. */ 621 dest->last_token = original_dest_len + src->last_token; 622 return; 623 } 624 625 /* Okay, a simple append caused a splice. Let's chop dest back to 626 its original length and try again, but separate the texts with a 627 space. */ 628 dest->len = original_dest_len; 629 appendc (dest, ' '); 630 appendmem (dest, src->text, src->len); 631 632 init_shared_buffer (&dest_tail, 633 dest->text + dest->last_token, 634 dest->len - dest->last_token); 635 636 /* Try to re-parse DEST's last token, as above. */ 637 if (get_token (&new_token, &dest_tail) 638 && (new_token.text + new_token.len 639 == dest->text + original_dest_len)) 640 { 641 /* No splice, so we're done. */ 642 dest->last_token = original_dest_len + 1 + src->last_token; 643 return; 644 } 645 646 /* As far as I know, there's no case where inserting a space isn't 647 enough to prevent a splice. */ 648 internal_error (__FILE__, __LINE__, 649 _("unable to avoid splicing tokens during macro expansion")); 650 } 651 652 /* Stringify an argument, and insert it into DEST. ARG is the text to 653 stringify; it is LEN bytes long. */ 654 655 static void 656 stringify (struct macro_buffer *dest, const char *arg, int len) 657 { 658 /* Trim initial whitespace from ARG. */ 659 while (len > 0 && macro_is_whitespace (*arg)) 660 { 661 ++arg; 662 --len; 663 } 664 665 /* Trim trailing whitespace from ARG. */ 666 while (len > 0 && macro_is_whitespace (arg[len - 1])) 667 --len; 668 669 /* Insert the string. */ 670 appendc (dest, '"'); 671 while (len > 0) 672 { 673 /* We could try to handle strange cases here, like control 674 characters, but there doesn't seem to be much point. */ 675 if (macro_is_whitespace (*arg)) 676 { 677 /* Replace a sequence of whitespace with a single space. */ 678 appendc (dest, ' '); 679 while (len > 1 && macro_is_whitespace (arg[1])) 680 { 681 ++arg; 682 --len; 683 } 684 } 685 else if (*arg == '\\' || *arg == '"') 686 { 687 appendc (dest, '\\'); 688 appendc (dest, *arg); 689 } 690 else 691 appendc (dest, *arg); 692 ++arg; 693 --len; 694 } 695 appendc (dest, '"'); 696 dest->last_token = dest->len; 697 } 698 699 /* See macroexp.h. */ 700 701 char * 702 macro_stringify (const char *str) 703 { 704 struct macro_buffer buffer; 705 int len = strlen (str); 706 707 init_buffer (&buffer, len); 708 stringify (&buffer, str, len); 709 appendc (&buffer, '\0'); 710 711 return free_buffer_return_text (&buffer); 712 } 713 714 715 /* Expanding macros! */ 716 717 718 /* A singly-linked list of the names of the macros we are currently 719 expanding --- for detecting expansion loops. */ 720 struct macro_name_list { 721 const char *name; 722 struct macro_name_list *next; 723 }; 724 725 726 /* Return non-zero if we are currently expanding the macro named NAME, 727 according to LIST; otherwise, return zero. 728 729 You know, it would be possible to get rid of all the NO_LOOP 730 arguments to these functions by simply generating a new lookup 731 function and baton which refuses to find the definition for a 732 particular macro, and otherwise delegates the decision to another 733 function/baton pair. But that makes the linked list of excluded 734 macros chained through untyped baton pointers, which will make it 735 harder to debug. :( */ 736 static int 737 currently_rescanning (struct macro_name_list *list, const char *name) 738 { 739 for (; list; list = list->next) 740 if (strcmp (name, list->name) == 0) 741 return 1; 742 743 return 0; 744 } 745 746 747 /* Gather the arguments to a macro expansion. 748 749 NAME is the name of the macro being invoked. (It's only used for 750 printing error messages.) 751 752 Assume that SRC is the text of the macro invocation immediately 753 following the macro name. For example, if we're processing the 754 text foo(bar, baz), then NAME would be foo and SRC will be (bar, 755 baz). 756 757 If SRC doesn't start with an open paren ( token at all, return 758 zero, leave SRC unchanged, and don't set *ARGC_P to anything. 759 760 If SRC doesn't contain a properly terminated argument list, then 761 raise an error. 762 763 For a variadic macro, NARGS holds the number of formal arguments to 764 the macro. For a GNU-style variadic macro, this should be the 765 number of named arguments. For a non-variadic macro, NARGS should 766 be -1. 767 768 Otherwise, return a pointer to the first element of an array of 769 macro buffers referring to the argument texts, and set *ARGC_P to 770 the number of arguments we found --- the number of elements in the 771 array. The macro buffers share their text with SRC, and their 772 last_token fields are initialized. The array is allocated with 773 xmalloc, and the caller is responsible for freeing it. 774 775 NOTE WELL: if SRC starts with a open paren ( token followed 776 immediately by a close paren ) token (e.g., the invocation looks 777 like "foo()"), we treat that as one argument, which happens to be 778 the empty list of tokens. The caller should keep in mind that such 779 a sequence of tokens is a valid way to invoke one-parameter 780 function-like macros, but also a valid way to invoke zero-parameter 781 function-like macros. Eeew. 782 783 Consume the tokens from SRC; after this call, SRC contains the text 784 following the invocation. */ 785 786 static struct macro_buffer * 787 gather_arguments (const char *name, struct macro_buffer *src, 788 int nargs, int *argc_p) 789 { 790 struct macro_buffer tok; 791 int args_len, args_size; 792 struct macro_buffer *args = NULL; 793 struct cleanup *back_to = make_cleanup (free_current_contents, &args); 794 795 /* Does SRC start with an opening paren token? Read from a copy of 796 SRC, so SRC itself is unaffected if we don't find an opening 797 paren. */ 798 { 799 struct macro_buffer temp; 800 801 init_shared_buffer (&temp, src->text, src->len); 802 803 if (! get_token (&tok, &temp) 804 || tok.len != 1 805 || tok.text[0] != '(') 806 { 807 discard_cleanups (back_to); 808 return 0; 809 } 810 } 811 812 /* Consume SRC's opening paren. */ 813 get_token (&tok, src); 814 815 args_len = 0; 816 args_size = 6; 817 args = XNEWVEC (struct macro_buffer, args_size); 818 819 for (;;) 820 { 821 struct macro_buffer *arg; 822 int depth; 823 824 /* Make sure we have room for the next argument. */ 825 if (args_len >= args_size) 826 { 827 args_size *= 2; 828 args = XRESIZEVEC (struct macro_buffer, args, args_size); 829 } 830 831 /* Initialize the next argument. */ 832 arg = &args[args_len++]; 833 set_token (arg, src->text, src->text); 834 835 /* Gather the argument's tokens. */ 836 depth = 0; 837 for (;;) 838 { 839 if (! get_token (&tok, src)) 840 error (_("Malformed argument list for macro `%s'."), name); 841 842 /* Is tok an opening paren? */ 843 if (tok.len == 1 && tok.text[0] == '(') 844 depth++; 845 846 /* Is tok is a closing paren? */ 847 else if (tok.len == 1 && tok.text[0] == ')') 848 { 849 /* If it's a closing paren at the top level, then that's 850 the end of the argument list. */ 851 if (depth == 0) 852 { 853 /* In the varargs case, the last argument may be 854 missing. Add an empty argument in this case. */ 855 if (nargs != -1 && args_len == nargs - 1) 856 { 857 /* Make sure we have room for the argument. */ 858 if (args_len >= args_size) 859 { 860 args_size++; 861 args = XRESIZEVEC (struct macro_buffer, args, 862 args_size); 863 } 864 arg = &args[args_len++]; 865 set_token (arg, src->text, src->text); 866 } 867 868 discard_cleanups (back_to); 869 *argc_p = args_len; 870 return args; 871 } 872 873 depth--; 874 } 875 876 /* If tok is a comma at top level, then that's the end of 877 the current argument. However, if we are handling a 878 variadic macro and we are computing the last argument, we 879 want to include the comma and remaining tokens. */ 880 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0 881 && (nargs == -1 || args_len < nargs)) 882 break; 883 884 /* Extend the current argument to enclose this token. If 885 this is the current argument's first token, leave out any 886 leading whitespace, just for aesthetics. */ 887 if (arg->len == 0) 888 { 889 arg->text = tok.text; 890 arg->len = tok.len; 891 arg->last_token = 0; 892 } 893 else 894 { 895 arg->len = (tok.text + tok.len) - arg->text; 896 arg->last_token = tok.text - arg->text; 897 } 898 } 899 } 900 } 901 902 903 /* The `expand' and `substitute_args' functions both invoke `scan' 904 recursively, so we need a forward declaration somewhere. */ 905 static void scan (struct macro_buffer *dest, 906 struct macro_buffer *src, 907 struct macro_name_list *no_loop, 908 macro_lookup_ftype *lookup_func, 909 void *lookup_baton); 910 911 912 /* A helper function for substitute_args. 913 914 ARGV is a vector of all the arguments; ARGC is the number of 915 arguments. IS_VARARGS is true if the macro being substituted is a 916 varargs macro; in this case VA_ARG_NAME is the name of the 917 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is 918 false. 919 920 If the token TOK is the name of a parameter, return the parameter's 921 index. If TOK is not an argument, return -1. */ 922 923 static int 924 find_parameter (const struct macro_buffer *tok, 925 int is_varargs, const struct macro_buffer *va_arg_name, 926 int argc, const char * const *argv) 927 { 928 int i; 929 930 if (! tok->is_identifier) 931 return -1; 932 933 for (i = 0; i < argc; ++i) 934 if (tok->len == strlen (argv[i]) 935 && !memcmp (tok->text, argv[i], tok->len)) 936 return i; 937 938 if (is_varargs && tok->len == va_arg_name->len 939 && ! memcmp (tok->text, va_arg_name->text, tok->len)) 940 return argc - 1; 941 942 return -1; 943 } 944 945 /* Given the macro definition DEF, being invoked with the actual 946 arguments given by ARGC and ARGV, substitute the arguments into the 947 replacement list, and store the result in DEST. 948 949 IS_VARARGS should be true if DEF is a varargs macro. In this case, 950 VA_ARG_NAME should be the name of the "variable" argument -- either 951 __VA_ARGS__ for c99-style varargs, or the final argument name, for 952 GNU-style varargs. If IS_VARARGS is false, this parameter is 953 ignored. 954 955 If it is necessary to expand macro invocations in one of the 956 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro 957 definitions, and don't expand invocations of the macros listed in 958 NO_LOOP. */ 959 960 static void 961 substitute_args (struct macro_buffer *dest, 962 struct macro_definition *def, 963 int is_varargs, const struct macro_buffer *va_arg_name, 964 int argc, struct macro_buffer *argv, 965 struct macro_name_list *no_loop, 966 macro_lookup_ftype *lookup_func, 967 void *lookup_baton) 968 { 969 /* A macro buffer for the macro's replacement list. */ 970 struct macro_buffer replacement_list; 971 /* The token we are currently considering. */ 972 struct macro_buffer tok; 973 /* The replacement list's pointer from just before TOK was lexed. */ 974 char *original_rl_start; 975 /* We have a single lookahead token to handle token splicing. */ 976 struct macro_buffer lookahead; 977 /* The lookahead token might not be valid. */ 978 int lookahead_valid; 979 /* The replacement list's pointer from just before LOOKAHEAD was 980 lexed. */ 981 char *lookahead_rl_start; 982 983 init_shared_buffer (&replacement_list, (char *) def->replacement, 984 strlen (def->replacement)); 985 986 gdb_assert (dest->len == 0); 987 dest->last_token = 0; 988 989 original_rl_start = replacement_list.text; 990 if (! get_token (&tok, &replacement_list)) 991 return; 992 lookahead_rl_start = replacement_list.text; 993 lookahead_valid = get_token (&lookahead, &replacement_list); 994 995 for (;;) 996 { 997 /* Just for aesthetics. If we skipped some whitespace, copy 998 that to DEST. */ 999 if (tok.text > original_rl_start) 1000 { 1001 appendmem (dest, original_rl_start, tok.text - original_rl_start); 1002 dest->last_token = dest->len; 1003 } 1004 1005 /* Is this token the stringification operator? */ 1006 if (tok.len == 1 1007 && tok.text[0] == '#') 1008 { 1009 int arg; 1010 1011 if (!lookahead_valid) 1012 error (_("Stringification operator requires an argument.")); 1013 1014 arg = find_parameter (&lookahead, is_varargs, va_arg_name, 1015 def->argc, def->argv); 1016 if (arg == -1) 1017 error (_("Argument to stringification operator must name " 1018 "a macro parameter.")); 1019 1020 stringify (dest, argv[arg].text, argv[arg].len); 1021 1022 /* Read one token and let the loop iteration code handle the 1023 rest. */ 1024 lookahead_rl_start = replacement_list.text; 1025 lookahead_valid = get_token (&lookahead, &replacement_list); 1026 } 1027 /* Is this token the splicing operator? */ 1028 else if (tok.len == 2 1029 && tok.text[0] == '#' 1030 && tok.text[1] == '#') 1031 error (_("Stray splicing operator")); 1032 /* Is the next token the splicing operator? */ 1033 else if (lookahead_valid 1034 && lookahead.len == 2 1035 && lookahead.text[0] == '#' 1036 && lookahead.text[1] == '#') 1037 { 1038 int finished = 0; 1039 int prev_was_comma = 0; 1040 1041 /* Note that GCC warns if the result of splicing is not a 1042 token. In the debugger there doesn't seem to be much 1043 benefit from doing this. */ 1044 1045 /* Insert the first token. */ 1046 if (tok.len == 1 && tok.text[0] == ',') 1047 prev_was_comma = 1; 1048 else 1049 { 1050 int arg = find_parameter (&tok, is_varargs, va_arg_name, 1051 def->argc, def->argv); 1052 1053 if (arg != -1) 1054 appendmem (dest, argv[arg].text, argv[arg].len); 1055 else 1056 appendmem (dest, tok.text, tok.len); 1057 } 1058 1059 /* Apply a possible sequence of ## operators. */ 1060 for (;;) 1061 { 1062 if (! get_token (&tok, &replacement_list)) 1063 error (_("Splicing operator at end of macro")); 1064 1065 /* Handle a comma before a ##. If we are handling 1066 varargs, and the token on the right hand side is the 1067 varargs marker, and the final argument is empty or 1068 missing, then drop the comma. This is a GNU 1069 extension. There is one ambiguous case here, 1070 involving pedantic behavior with an empty argument, 1071 but we settle that in favor of GNU-style (GCC uses an 1072 option). If we aren't dealing with varargs, we 1073 simply insert the comma. */ 1074 if (prev_was_comma) 1075 { 1076 if (! (is_varargs 1077 && tok.len == va_arg_name->len 1078 && !memcmp (tok.text, va_arg_name->text, tok.len) 1079 && argv[argc - 1].len == 0)) 1080 appendmem (dest, ",", 1); 1081 prev_was_comma = 0; 1082 } 1083 1084 /* Insert the token. If it is a parameter, insert the 1085 argument. If it is a comma, treat it specially. */ 1086 if (tok.len == 1 && tok.text[0] == ',') 1087 prev_was_comma = 1; 1088 else 1089 { 1090 int arg = find_parameter (&tok, is_varargs, va_arg_name, 1091 def->argc, def->argv); 1092 1093 if (arg != -1) 1094 appendmem (dest, argv[arg].text, argv[arg].len); 1095 else 1096 appendmem (dest, tok.text, tok.len); 1097 } 1098 1099 /* Now read another token. If it is another splice, we 1100 loop. */ 1101 original_rl_start = replacement_list.text; 1102 if (! get_token (&tok, &replacement_list)) 1103 { 1104 finished = 1; 1105 break; 1106 } 1107 1108 if (! (tok.len == 2 1109 && tok.text[0] == '#' 1110 && tok.text[1] == '#')) 1111 break; 1112 } 1113 1114 if (prev_was_comma) 1115 { 1116 /* We saw a comma. Insert it now. */ 1117 appendmem (dest, ",", 1); 1118 } 1119 1120 dest->last_token = dest->len; 1121 if (finished) 1122 lookahead_valid = 0; 1123 else 1124 { 1125 /* Set up for the loop iterator. */ 1126 lookahead = tok; 1127 lookahead_rl_start = original_rl_start; 1128 lookahead_valid = 1; 1129 } 1130 } 1131 else 1132 { 1133 /* Is this token an identifier? */ 1134 int substituted = 0; 1135 int arg = find_parameter (&tok, is_varargs, va_arg_name, 1136 def->argc, def->argv); 1137 1138 if (arg != -1) 1139 { 1140 struct macro_buffer arg_src; 1141 1142 /* Expand any macro invocations in the argument text, 1143 and append the result to dest. Remember that scan 1144 mutates its source, so we need to scan a new buffer 1145 referring to the argument's text, not the argument 1146 itself. */ 1147 init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len); 1148 scan (dest, &arg_src, no_loop, lookup_func, lookup_baton); 1149 substituted = 1; 1150 } 1151 1152 /* If it wasn't a parameter, then just copy it across. */ 1153 if (! substituted) 1154 append_tokens_without_splicing (dest, &tok); 1155 } 1156 1157 if (! lookahead_valid) 1158 break; 1159 1160 tok = lookahead; 1161 original_rl_start = lookahead_rl_start; 1162 1163 lookahead_rl_start = replacement_list.text; 1164 lookahead_valid = get_token (&lookahead, &replacement_list); 1165 } 1166 } 1167 1168 1169 /* Expand a call to a macro named ID, whose definition is DEF. Append 1170 its expansion to DEST. SRC is the input text following the ID 1171 token. We are currently rescanning the expansions of the macros 1172 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and 1173 LOOKUP_BATON to find definitions for any nested macro references. 1174 1175 Return 1 if we decided to expand it, zero otherwise. (If it's a 1176 function-like macro name that isn't followed by an argument list, 1177 we don't expand it.) If we return zero, leave SRC unchanged. */ 1178 static int 1179 expand (const char *id, 1180 struct macro_definition *def, 1181 struct macro_buffer *dest, 1182 struct macro_buffer *src, 1183 struct macro_name_list *no_loop, 1184 macro_lookup_ftype *lookup_func, 1185 void *lookup_baton) 1186 { 1187 struct macro_name_list new_no_loop; 1188 1189 /* Create a new node to be added to the front of the no-expand list. 1190 This list is appropriate for re-scanning replacement lists, but 1191 it is *not* appropriate for scanning macro arguments; invocations 1192 of the macro whose arguments we are gathering *do* get expanded 1193 there. */ 1194 new_no_loop.name = id; 1195 new_no_loop.next = no_loop; 1196 1197 /* What kind of macro are we expanding? */ 1198 if (def->kind == macro_object_like) 1199 { 1200 struct macro_buffer replacement_list; 1201 1202 init_shared_buffer (&replacement_list, (char *) def->replacement, 1203 strlen (def->replacement)); 1204 1205 scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton); 1206 return 1; 1207 } 1208 else if (def->kind == macro_function_like) 1209 { 1210 struct cleanup *back_to = make_cleanup (null_cleanup, 0); 1211 int argc = 0; 1212 struct macro_buffer *argv = NULL; 1213 struct macro_buffer substituted; 1214 struct macro_buffer substituted_src; 1215 struct macro_buffer va_arg_name = {0}; 1216 int is_varargs = 0; 1217 1218 if (def->argc >= 1) 1219 { 1220 if (strcmp (def->argv[def->argc - 1], "...") == 0) 1221 { 1222 /* In C99-style varargs, substitution is done using 1223 __VA_ARGS__. */ 1224 init_shared_buffer (&va_arg_name, "__VA_ARGS__", 1225 strlen ("__VA_ARGS__")); 1226 is_varargs = 1; 1227 } 1228 else 1229 { 1230 int len = strlen (def->argv[def->argc - 1]); 1231 1232 if (len > 3 1233 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0) 1234 { 1235 /* In GNU-style varargs, the name of the 1236 substitution parameter is the name of the formal 1237 argument without the "...". */ 1238 init_shared_buffer (&va_arg_name, 1239 (char *) def->argv[def->argc - 1], 1240 len - 3); 1241 is_varargs = 1; 1242 } 1243 } 1244 } 1245 1246 make_cleanup (free_current_contents, &argv); 1247 argv = gather_arguments (id, src, is_varargs ? def->argc : -1, 1248 &argc); 1249 1250 /* If we couldn't find any argument list, then we don't expand 1251 this macro. */ 1252 if (! argv) 1253 { 1254 do_cleanups (back_to); 1255 return 0; 1256 } 1257 1258 /* Check that we're passing an acceptable number of arguments for 1259 this macro. */ 1260 if (argc != def->argc) 1261 { 1262 if (is_varargs && argc >= def->argc - 1) 1263 { 1264 /* Ok. */ 1265 } 1266 /* Remember that a sequence of tokens like "foo()" is a 1267 valid invocation of a macro expecting either zero or one 1268 arguments. */ 1269 else if (! (argc == 1 1270 && argv[0].len == 0 1271 && def->argc == 0)) 1272 error (_("Wrong number of arguments to macro `%s' " 1273 "(expected %d, got %d)."), 1274 id, def->argc, argc); 1275 } 1276 1277 /* Note that we don't expand macro invocations in the arguments 1278 yet --- we let subst_args take care of that. Parameters that 1279 appear as operands of the stringifying operator "#" or the 1280 splicing operator "##" don't get macro references expanded, 1281 so we can't really tell whether it's appropriate to macro- 1282 expand an argument until we see how it's being used. */ 1283 init_buffer (&substituted, 0); 1284 make_cleanup (cleanup_macro_buffer, &substituted); 1285 substitute_args (&substituted, def, is_varargs, &va_arg_name, 1286 argc, argv, no_loop, lookup_func, lookup_baton); 1287 1288 /* Now `substituted' is the macro's replacement list, with all 1289 argument values substituted into it properly. Re-scan it for 1290 macro references, but don't expand invocations of this macro. 1291 1292 We create a new buffer, `substituted_src', which points into 1293 `substituted', and scan that. We can't scan `substituted' 1294 itself, since the tokenization process moves the buffer's 1295 text pointer around, and we still need to be able to find 1296 `substituted's original text buffer after scanning it so we 1297 can free it. */ 1298 init_shared_buffer (&substituted_src, substituted.text, substituted.len); 1299 scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton); 1300 1301 do_cleanups (back_to); 1302 1303 return 1; 1304 } 1305 else 1306 internal_error (__FILE__, __LINE__, _("bad macro definition kind")); 1307 } 1308 1309 1310 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST 1311 constitute a macro invokation not forbidden in NO_LOOP, append its 1312 expansion to DEST and return non-zero. Otherwise, return zero, and 1313 leave DEST unchanged. 1314 1315 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one. 1316 SRC_FIRST must be a string built by get_token. */ 1317 static int 1318 maybe_expand (struct macro_buffer *dest, 1319 struct macro_buffer *src_first, 1320 struct macro_buffer *src_rest, 1321 struct macro_name_list *no_loop, 1322 macro_lookup_ftype *lookup_func, 1323 void *lookup_baton) 1324 { 1325 gdb_assert (src_first->shared); 1326 gdb_assert (src_rest->shared); 1327 gdb_assert (! dest->shared); 1328 1329 /* Is this token an identifier? */ 1330 if (src_first->is_identifier) 1331 { 1332 /* Make a null-terminated copy of it, since that's what our 1333 lookup function expects. */ 1334 char *id = (char *) xmalloc (src_first->len + 1); 1335 struct cleanup *back_to = make_cleanup (xfree, id); 1336 1337 memcpy (id, src_first->text, src_first->len); 1338 id[src_first->len] = 0; 1339 1340 /* If we're currently re-scanning the result of expanding 1341 this macro, don't expand it again. */ 1342 if (! currently_rescanning (no_loop, id)) 1343 { 1344 /* Does this identifier have a macro definition in scope? */ 1345 struct macro_definition *def = lookup_func (id, lookup_baton); 1346 1347 if (def && expand (id, def, dest, src_rest, no_loop, 1348 lookup_func, lookup_baton)) 1349 { 1350 do_cleanups (back_to); 1351 return 1; 1352 } 1353 } 1354 1355 do_cleanups (back_to); 1356 } 1357 1358 return 0; 1359 } 1360 1361 1362 /* Expand macro references in SRC, appending the results to DEST. 1363 Assume we are re-scanning the result of expanding the macros named 1364 in NO_LOOP, and don't try to re-expand references to them. 1365 1366 SRC must be a shared buffer; DEST must not be one. */ 1367 static void 1368 scan (struct macro_buffer *dest, 1369 struct macro_buffer *src, 1370 struct macro_name_list *no_loop, 1371 macro_lookup_ftype *lookup_func, 1372 void *lookup_baton) 1373 { 1374 gdb_assert (src->shared); 1375 gdb_assert (! dest->shared); 1376 1377 for (;;) 1378 { 1379 struct macro_buffer tok; 1380 char *original_src_start = src->text; 1381 1382 /* Find the next token in SRC. */ 1383 if (! get_token (&tok, src)) 1384 break; 1385 1386 /* Just for aesthetics. If we skipped some whitespace, copy 1387 that to DEST. */ 1388 if (tok.text > original_src_start) 1389 { 1390 appendmem (dest, original_src_start, tok.text - original_src_start); 1391 dest->last_token = dest->len; 1392 } 1393 1394 if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton)) 1395 /* We didn't end up expanding tok as a macro reference, so 1396 simply append it to dest. */ 1397 append_tokens_without_splicing (dest, &tok); 1398 } 1399 1400 /* Just for aesthetics. If there was any trailing whitespace in 1401 src, copy it to dest. */ 1402 if (src->len) 1403 { 1404 appendmem (dest, src->text, src->len); 1405 dest->last_token = dest->len; 1406 } 1407 } 1408 1409 1410 char * 1411 macro_expand (const char *source, 1412 macro_lookup_ftype *lookup_func, 1413 void *lookup_func_baton) 1414 { 1415 struct macro_buffer src, dest; 1416 struct cleanup *back_to; 1417 1418 init_shared_buffer (&src, (char *) source, strlen (source)); 1419 1420 init_buffer (&dest, 0); 1421 dest.last_token = 0; 1422 back_to = make_cleanup (cleanup_macro_buffer, &dest); 1423 1424 scan (&dest, &src, 0, lookup_func, lookup_func_baton); 1425 1426 appendc (&dest, '\0'); 1427 1428 discard_cleanups (back_to); 1429 return dest.text; 1430 } 1431 1432 1433 char * 1434 macro_expand_once (const char *source, 1435 macro_lookup_ftype *lookup_func, 1436 void *lookup_func_baton) 1437 { 1438 error (_("Expand-once not implemented yet.")); 1439 } 1440 1441 1442 char * 1443 macro_expand_next (const char **lexptr, 1444 macro_lookup_ftype *lookup_func, 1445 void *lookup_baton) 1446 { 1447 struct macro_buffer src, dest, tok; 1448 struct cleanup *back_to; 1449 1450 /* Set up SRC to refer to the input text, pointed to by *lexptr. */ 1451 init_shared_buffer (&src, (char *) *lexptr, strlen (*lexptr)); 1452 1453 /* Set up DEST to receive the expansion, if there is one. */ 1454 init_buffer (&dest, 0); 1455 dest.last_token = 0; 1456 back_to = make_cleanup (cleanup_macro_buffer, &dest); 1457 1458 /* Get the text's first preprocessing token. */ 1459 if (! get_token (&tok, &src)) 1460 { 1461 do_cleanups (back_to); 1462 return 0; 1463 } 1464 1465 /* If it's a macro invocation, expand it. */ 1466 if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton)) 1467 { 1468 /* It was a macro invocation! Package up the expansion as a 1469 null-terminated string and return it. Set *lexptr to the 1470 start of the next token in the input. */ 1471 appendc (&dest, '\0'); 1472 discard_cleanups (back_to); 1473 *lexptr = src.text; 1474 return dest.text; 1475 } 1476 else 1477 { 1478 /* It wasn't a macro invocation. */ 1479 do_cleanups (back_to); 1480 return 0; 1481 } 1482 } 1483