xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/macroexp.c (revision 901e7e84758515fbf39dfc064cb0b45ab146d8b0)
1 /* C preprocessor macro expansion for GDB.
2    Copyright (C) 2002-2020 Free Software Foundation, Inc.
3    Contributed by Red Hat, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "macrotab.h"
23 #include "macroexp.h"
24 #include "macroscope.h"
25 #include "c-lang.h"
26 
27 
28 
29 /* A resizeable, substringable string type.  */
30 
31 
32 /* A string type that we can resize, quickly append to, and use to
33    refer to substrings of other strings.  */
34 struct macro_buffer
35 {
36   /* An array of characters.  The first LEN bytes are the real text,
37      but there are SIZE bytes allocated to the array.  If SIZE is
38      zero, then this doesn't point to a malloc'ed block.  If SHARED is
39      non-zero, then this buffer is actually a pointer into some larger
40      string, and we shouldn't append characters to it, etc.  Because
41      of sharing, we can't assume in general that the text is
42      null-terminated.  */
43   char *text;
44 
45   /* The number of characters in the string.  */
46   int len;
47 
48   /* The number of characters allocated to the string.  If SHARED is
49      non-zero, this is meaningless; in this case, we set it to zero so
50      that any "do we have room to append something?" tests will fail,
51      so we don't always have to check SHARED before using this field.  */
52   int size;
53 
54   /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
55      block).  Non-zero if TEXT is actually pointing into the middle of
56      some other block, or to a string literal, and we shouldn't
57      reallocate it.  */
58   bool shared;
59 
60   /* For detecting token splicing.
61 
62      This is the index in TEXT of the first character of the token
63      that abuts the end of TEXT.  If TEXT contains no tokens, then we
64      set this equal to LEN.  If TEXT ends in whitespace, then there is
65      no token abutting the end of TEXT (it's just whitespace), and
66      again, we set this equal to LEN.  We set this to -1 if we don't
67      know the nature of TEXT.  */
68   int last_token = -1;
69 
70   /* If this buffer is holding the result from get_token, then this
71      is non-zero if it is an identifier token, zero otherwise.  */
72   int is_identifier = 0;
73 
74 
75   macro_buffer ()
76     : text (NULL),
77       len (0),
78       size (0),
79       shared (false)
80   {
81   }
82 
83   /* Set the macro buffer to the empty string, guessing that its
84      final contents will fit in N bytes.  (It'll get resized if it
85      doesn't, so the guess doesn't have to be right.)  Allocate the
86      initial storage with xmalloc.  */
87   explicit macro_buffer (int n)
88     : len (0),
89       size (n),
90       shared (false)
91   {
92     if (n > 0)
93       text = (char *) xmalloc (n);
94     else
95       text = NULL;
96   }
97 
98   /* Set the macro buffer to refer to the LEN bytes at ADDR, as a
99      shared substring.  */
100   macro_buffer (const char *addr, int len)
101   {
102     set_shared (addr, len);
103   }
104 
105   /* Set the macro buffer to refer to the LEN bytes at ADDR, as a
106      shared substring.  */
107   void set_shared (const char *addr, int len_)
108   {
109     text = (char *) addr;
110     len = len_;
111     size = 0;
112     shared = true;
113   }
114 
115   macro_buffer& operator= (const macro_buffer &src)
116   {
117     gdb_assert (src.shared);
118     gdb_assert (shared);
119     set_shared (src.text, src.len);
120     last_token = src.last_token;
121     is_identifier = src.is_identifier;
122     return *this;
123   }
124 
125   ~macro_buffer ()
126   {
127     if (! shared && size)
128       xfree (text);
129   }
130 
131   /* Release the text of the buffer to the caller.  */
132   gdb::unique_xmalloc_ptr<char> release ()
133   {
134     gdb_assert (! shared);
135     gdb_assert (size);
136     char *result = text;
137     text = NULL;
138     return gdb::unique_xmalloc_ptr<char> (result);
139   }
140 
141   /* Resize the buffer to be at least N bytes long.  Raise an error if
142      the buffer shouldn't be resized.  */
143   void resize_buffer (int n)
144   {
145     /* We shouldn't be trying to resize shared strings.  */
146     gdb_assert (! shared);
147 
148     if (size == 0)
149       size = n;
150     else
151       while (size <= n)
152 	size *= 2;
153 
154     text = (char *) xrealloc (text, size);
155   }
156 
157   /* Append the character C to the buffer.  */
158   void appendc (int c)
159   {
160     int new_len = len + 1;
161 
162     if (new_len > size)
163       resize_buffer (new_len);
164 
165     text[len] = c;
166     len = new_len;
167   }
168 
169   /* Append the COUNT bytes at ADDR to the buffer.  */
170   void appendmem (const char *addr, int count)
171   {
172     int new_len = len + count;
173 
174     if (new_len > size)
175       resize_buffer (new_len);
176 
177     memcpy (text + len, addr, count);
178     len = new_len;
179   }
180 };
181 
182 
183 
184 /* Recognizing preprocessor tokens.  */
185 
186 
187 int
188 macro_is_whitespace (int c)
189 {
190   return (c == ' '
191           || c == '\t'
192           || c == '\n'
193           || c == '\v'
194           || c == '\f');
195 }
196 
197 
198 int
199 macro_is_digit (int c)
200 {
201   return ('0' <= c && c <= '9');
202 }
203 
204 
205 int
206 macro_is_identifier_nondigit (int c)
207 {
208   return (c == '_'
209           || ('a' <= c && c <= 'z')
210           || ('A' <= c && c <= 'Z'));
211 }
212 
213 
214 static void
215 set_token (struct macro_buffer *tok, char *start, char *end)
216 {
217   tok->set_shared (start, end - start);
218   tok->last_token = 0;
219 
220   /* Presumed; get_identifier may overwrite this.  */
221   tok->is_identifier = 0;
222 }
223 
224 
225 static int
226 get_comment (struct macro_buffer *tok, char *p, char *end)
227 {
228   if (p + 2 > end)
229     return 0;
230   else if (p[0] == '/'
231            && p[1] == '*')
232     {
233       char *tok_start = p;
234 
235       p += 2;
236 
237       for (; p < end; p++)
238         if (p + 2 <= end
239             && p[0] == '*'
240             && p[1] == '/')
241           {
242             p += 2;
243             set_token (tok, tok_start, p);
244             return 1;
245           }
246 
247       error (_("Unterminated comment in macro expansion."));
248     }
249   else if (p[0] == '/'
250            && p[1] == '/')
251     {
252       char *tok_start = p;
253 
254       p += 2;
255       for (; p < end; p++)
256         if (*p == '\n')
257           break;
258 
259       set_token (tok, tok_start, p);
260       return 1;
261     }
262   else
263     return 0;
264 }
265 
266 
267 static int
268 get_identifier (struct macro_buffer *tok, char *p, char *end)
269 {
270   if (p < end
271       && macro_is_identifier_nondigit (*p))
272     {
273       char *tok_start = p;
274 
275       while (p < end
276              && (macro_is_identifier_nondigit (*p)
277                  || macro_is_digit (*p)))
278         p++;
279 
280       set_token (tok, tok_start, p);
281       tok->is_identifier = 1;
282       return 1;
283     }
284   else
285     return 0;
286 }
287 
288 
289 static int
290 get_pp_number (struct macro_buffer *tok, char *p, char *end)
291 {
292   if (p < end
293       && (macro_is_digit (*p)
294           || (*p == '.'
295 	      && p + 2 <= end
296 	      && macro_is_digit (p[1]))))
297     {
298       char *tok_start = p;
299 
300       while (p < end)
301         {
302 	  if (p + 2 <= end
303 	      && strchr ("eEpP", *p)
304 	      && (p[1] == '+' || p[1] == '-'))
305             p += 2;
306           else if (macro_is_digit (*p)
307 		   || macro_is_identifier_nondigit (*p)
308 		   || *p == '.')
309             p++;
310           else
311             break;
312         }
313 
314       set_token (tok, tok_start, p);
315       return 1;
316     }
317   else
318     return 0;
319 }
320 
321 
322 
323 /* If the text starting at P going up to (but not including) END
324    starts with a character constant, set *TOK to point to that
325    character constant, and return 1.  Otherwise, return zero.
326    Signal an error if it contains a malformed or incomplete character
327    constant.  */
328 static int
329 get_character_constant (struct macro_buffer *tok, char *p, char *end)
330 {
331   /* ISO/IEC 9899:1999 (E)  Section 6.4.4.4  paragraph 1
332      But of course, what really matters is that we handle it the same
333      way GDB's C/C++ lexer does.  So we call parse_escape in utils.c
334      to handle escape sequences.  */
335   if ((p + 1 <= end && *p == '\'')
336       || (p + 2 <= end
337 	  && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
338 	  && p[1] == '\''))
339     {
340       char *tok_start = p;
341       int char_count = 0;
342 
343       if (*p == '\'')
344         p++;
345       else if (*p == 'L' || *p == 'u' || *p == 'U')
346         p += 2;
347       else
348         gdb_assert_not_reached ("unexpected character constant");
349 
350       for (;;)
351         {
352           if (p >= end)
353             error (_("Unmatched single quote."));
354           else if (*p == '\'')
355             {
356               if (!char_count)
357                 error (_("A character constant must contain at least one "
358                        "character."));
359               p++;
360               break;
361             }
362           else if (*p == '\\')
363             {
364 	      const char *s, *o;
365 
366 	      s = o = ++p;
367 	      char_count += c_parse_escape (&s, NULL);
368 	      p += s - o;
369             }
370           else
371 	    {
372 	      p++;
373 	      char_count++;
374 	    }
375         }
376 
377       set_token (tok, tok_start, p);
378       return 1;
379     }
380   else
381     return 0;
382 }
383 
384 
385 /* If the text starting at P going up to (but not including) END
386    starts with a string literal, set *TOK to point to that string
387    literal, and return 1.  Otherwise, return zero.  Signal an error if
388    it contains a malformed or incomplete string literal.  */
389 static int
390 get_string_literal (struct macro_buffer *tok, char *p, char *end)
391 {
392   if ((p + 1 <= end
393        && *p == '"')
394       || (p + 2 <= end
395           && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
396           && p[1] == '"'))
397     {
398       char *tok_start = p;
399 
400       if (*p == '"')
401         p++;
402       else if (*p == 'L' || *p == 'u' || *p == 'U')
403         p += 2;
404       else
405         gdb_assert_not_reached ("unexpected string literal");
406 
407       for (;;)
408         {
409           if (p >= end)
410             error (_("Unterminated string in expression."));
411           else if (*p == '"')
412             {
413               p++;
414               break;
415             }
416           else if (*p == '\n')
417             error (_("Newline characters may not appear in string "
418                    "constants."));
419           else if (*p == '\\')
420             {
421 	      const char *s, *o;
422 
423 	      s = o = ++p;
424 	      c_parse_escape (&s, NULL);
425 	      p += s - o;
426             }
427           else
428             p++;
429         }
430 
431       set_token (tok, tok_start, p);
432       return 1;
433     }
434   else
435     return 0;
436 }
437 
438 
439 static int
440 get_punctuator (struct macro_buffer *tok, char *p, char *end)
441 {
442   /* Here, speed is much less important than correctness and clarity.  */
443 
444   /* ISO/IEC 9899:1999 (E)  Section 6.4.6  Paragraph 1.
445      Note that this table is ordered in a special way.  A punctuator
446      which is a prefix of another punctuator must appear after its
447      "extension".  Otherwise, the wrong token will be returned.  */
448   static const char * const punctuators[] = {
449     "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
450     "...", ".",
451     "->", "--", "-=", "-",
452     "++", "+=", "+",
453     "*=", "*",
454     "!=", "!",
455     "&&", "&=", "&",
456     "/=", "/",
457     "%>", "%:%:", "%:", "%=", "%",
458     "^=", "^",
459     "##", "#",
460     ":>", ":",
461     "||", "|=", "|",
462     "<<=", "<<", "<=", "<:", "<%", "<",
463     ">>=", ">>", ">=", ">",
464     "==", "=",
465     0
466   };
467 
468   int i;
469 
470   if (p + 1 <= end)
471     {
472       for (i = 0; punctuators[i]; i++)
473         {
474           const char *punctuator = punctuators[i];
475 
476           if (p[0] == punctuator[0])
477             {
478               int len = strlen (punctuator);
479 
480               if (p + len <= end
481                   && ! memcmp (p, punctuator, len))
482                 {
483                   set_token (tok, p, p + len);
484                   return 1;
485                 }
486             }
487         }
488     }
489 
490   return 0;
491 }
492 
493 
494 /* Peel the next preprocessor token off of SRC, and put it in TOK.
495    Mutate TOK to refer to the first token in SRC, and mutate SRC to
496    refer to the text after that token.  SRC must be a shared buffer;
497    the resulting TOK will be shared, pointing into the same string SRC
498    does.  Initialize TOK's last_token field.  Return non-zero if we
499    succeed, or 0 if we didn't find any more tokens in SRC.  */
500 static int
501 get_token (struct macro_buffer *tok,
502            struct macro_buffer *src)
503 {
504   char *p = src->text;
505   char *end = p + src->len;
506 
507   gdb_assert (src->shared);
508 
509   /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
510 
511      preprocessing-token:
512          header-name
513          identifier
514          pp-number
515          character-constant
516          string-literal
517          punctuator
518          each non-white-space character that cannot be one of the above
519 
520      We don't have to deal with header-name tokens, since those can
521      only occur after a #include, which we will never see.  */
522 
523   while (p < end)
524     if (macro_is_whitespace (*p))
525       p++;
526     else if (get_comment (tok, p, end))
527       p += tok->len;
528     else if (get_pp_number (tok, p, end)
529              || get_character_constant (tok, p, end)
530              || get_string_literal (tok, p, end)
531              /* Note: the grammar in the standard seems to be
532                 ambiguous: L'x' can be either a wide character
533                 constant, or an identifier followed by a normal
534                 character constant.  By trying `get_identifier' after
535                 we try get_character_constant and get_string_literal,
536                 we give the wide character syntax precedence.  Now,
537                 since GDB doesn't handle wide character constants
538                 anyway, is this the right thing to do?  */
539              || get_identifier (tok, p, end)
540              || get_punctuator (tok, p, end))
541       {
542         /* How many characters did we consume, including whitespace?  */
543         int consumed = p - src->text + tok->len;
544 
545         src->text += consumed;
546         src->len -= consumed;
547         return 1;
548       }
549     else
550       {
551         /* We have found a "non-whitespace character that cannot be
552            one of the above."  Make a token out of it.  */
553         int consumed;
554 
555         set_token (tok, p, p + 1);
556         consumed = p - src->text + tok->len;
557         src->text += consumed;
558         src->len -= consumed;
559         return 1;
560       }
561 
562   return 0;
563 }
564 
565 
566 
567 /* Appending token strings, with and without splicing  */
568 
569 
570 /* Append the macro buffer SRC to the end of DEST, and ensure that
571    doing so doesn't splice the token at the end of SRC with the token
572    at the beginning of DEST.  SRC and DEST must have their last_token
573    fields set.  Upon return, DEST's last_token field is set correctly.
574 
575    For example:
576 
577    If DEST is "(" and SRC is "y", then we can return with
578    DEST set to "(y" --- we've simply appended the two buffers.
579 
580    However, if DEST is "x" and SRC is "y", then we must not return
581    with DEST set to "xy" --- that would splice the two tokens "x" and
582    "y" together to make a single token "xy".  However, it would be
583    fine to return with DEST set to "x y".  Similarly, "<" and "<" must
584    yield "< <", not "<<", etc.  */
585 static void
586 append_tokens_without_splicing (struct macro_buffer *dest,
587                                 struct macro_buffer *src)
588 {
589   int original_dest_len = dest->len;
590   struct macro_buffer dest_tail, new_token;
591 
592   gdb_assert (src->last_token != -1);
593   gdb_assert (dest->last_token != -1);
594 
595   /* First, just try appending the two, and call get_token to see if
596      we got a splice.  */
597   dest->appendmem (src->text, src->len);
598 
599   /* If DEST originally had no token abutting its end, then we can't
600      have spliced anything, so we're done.  */
601   if (dest->last_token == original_dest_len)
602     {
603       dest->last_token = original_dest_len + src->last_token;
604       return;
605     }
606 
607   /* Set DEST_TAIL to point to the last token in DEST, followed by
608      all the stuff we just appended.  */
609   dest_tail.set_shared (dest->text + dest->last_token,
610 			dest->len - dest->last_token);
611 
612   /* Re-parse DEST's last token.  We know that DEST used to contain
613      at least one token, so if it doesn't contain any after the
614      append, then we must have spliced "/" and "*" or "/" and "/" to
615      make a comment start.  (Just for the record, I got this right
616      the first time.  This is not a bug fix.)  */
617   if (get_token (&new_token, &dest_tail)
618       && (new_token.text + new_token.len
619           == dest->text + original_dest_len))
620     {
621       /* No splice, so we're done.  */
622       dest->last_token = original_dest_len + src->last_token;
623       return;
624     }
625 
626   /* Okay, a simple append caused a splice.  Let's chop dest back to
627      its original length and try again, but separate the texts with a
628      space.  */
629   dest->len = original_dest_len;
630   dest->appendc (' ');
631   dest->appendmem (src->text, src->len);
632 
633   dest_tail.set_shared (dest->text + dest->last_token,
634 			dest->len - dest->last_token);
635 
636   /* Try to re-parse DEST's last token, as above.  */
637   if (get_token (&new_token, &dest_tail)
638       && (new_token.text + new_token.len
639           == dest->text + original_dest_len))
640     {
641       /* No splice, so we're done.  */
642       dest->last_token = original_dest_len + 1 + src->last_token;
643       return;
644     }
645 
646   /* As far as I know, there's no case where inserting a space isn't
647      enough to prevent a splice.  */
648   internal_error (__FILE__, __LINE__,
649                   _("unable to avoid splicing tokens during macro expansion"));
650 }
651 
652 /* Stringify an argument, and insert it into DEST.  ARG is the text to
653    stringify; it is LEN bytes long.  */
654 
655 static void
656 stringify (struct macro_buffer *dest, const char *arg, int len)
657 {
658   /* Trim initial whitespace from ARG.  */
659   while (len > 0 && macro_is_whitespace (*arg))
660     {
661       ++arg;
662       --len;
663     }
664 
665   /* Trim trailing whitespace from ARG.  */
666   while (len > 0 && macro_is_whitespace (arg[len - 1]))
667     --len;
668 
669   /* Insert the string.  */
670   dest->appendc ('"');
671   while (len > 0)
672     {
673       /* We could try to handle strange cases here, like control
674 	 characters, but there doesn't seem to be much point.  */
675       if (macro_is_whitespace (*arg))
676 	{
677 	  /* Replace a sequence of whitespace with a single space.  */
678 	  dest->appendc (' ');
679 	  while (len > 1 && macro_is_whitespace (arg[1]))
680 	    {
681 	      ++arg;
682 	      --len;
683 	    }
684 	}
685       else if (*arg == '\\' || *arg == '"')
686 	{
687 	  dest->appendc ('\\');
688 	  dest->appendc (*arg);
689 	}
690       else
691 	dest->appendc (*arg);
692       ++arg;
693       --len;
694     }
695   dest->appendc ('"');
696   dest->last_token = dest->len;
697 }
698 
699 /* See macroexp.h.  */
700 
701 gdb::unique_xmalloc_ptr<char>
702 macro_stringify (const char *str)
703 {
704   int len = strlen (str);
705   struct macro_buffer buffer (len);
706 
707   stringify (&buffer, str, len);
708   buffer.appendc ('\0');
709 
710   return buffer.release ();
711 }
712 
713 
714 /* Expanding macros!  */
715 
716 
717 /* A singly-linked list of the names of the macros we are currently
718    expanding --- for detecting expansion loops.  */
719 struct macro_name_list {
720   const char *name;
721   struct macro_name_list *next;
722 };
723 
724 
725 /* Return non-zero if we are currently expanding the macro named NAME,
726    according to LIST; otherwise, return zero.
727 
728    You know, it would be possible to get rid of all the NO_LOOP
729    arguments to these functions by simply generating a new lookup
730    function and baton which refuses to find the definition for a
731    particular macro, and otherwise delegates the decision to another
732    function/baton pair.  But that makes the linked list of excluded
733    macros chained through untyped baton pointers, which will make it
734    harder to debug.  :(  */
735 static int
736 currently_rescanning (struct macro_name_list *list, const char *name)
737 {
738   for (; list; list = list->next)
739     if (strcmp (name, list->name) == 0)
740       return 1;
741 
742   return 0;
743 }
744 
745 
746 /* Gather the arguments to a macro expansion.
747 
748    NAME is the name of the macro being invoked.  (It's only used for
749    printing error messages.)
750 
751    Assume that SRC is the text of the macro invocation immediately
752    following the macro name.  For example, if we're processing the
753    text foo(bar, baz), then NAME would be foo and SRC will be (bar,
754    baz).
755 
756    If SRC doesn't start with an open paren ( token at all, return
757    false, leave SRC unchanged, and don't set *ARGS_PTR to anything.
758 
759    If SRC doesn't contain a properly terminated argument list, then
760    raise an error.
761 
762    For a variadic macro, NARGS holds the number of formal arguments to
763    the macro.  For a GNU-style variadic macro, this should be the
764    number of named arguments.  For a non-variadic macro, NARGS should
765    be -1.
766 
767    Otherwise, return true and set *ARGS_PTR to a vector of macro
768    buffers referring to the argument texts.  The macro buffers share
769    their text with SRC, and their last_token fields are initialized.
770 
771    NOTE WELL: if SRC starts with a open paren ( token followed
772    immediately by a close paren ) token (e.g., the invocation looks
773    like "foo()"), we treat that as one argument, which happens to be
774    the empty list of tokens.  The caller should keep in mind that such
775    a sequence of tokens is a valid way to invoke one-parameter
776    function-like macros, but also a valid way to invoke zero-parameter
777    function-like macros.  Eeew.
778 
779    Consume the tokens from SRC; after this call, SRC contains the text
780    following the invocation.  */
781 
782 static bool
783 gather_arguments (const char *name, struct macro_buffer *src, int nargs,
784 		  std::vector<struct macro_buffer> *args_ptr)
785 {
786   struct macro_buffer tok;
787   std::vector<struct macro_buffer> args;
788 
789   /* Does SRC start with an opening paren token?  Read from a copy of
790      SRC, so SRC itself is unaffected if we don't find an opening
791      paren.  */
792   {
793     struct macro_buffer temp (src->text, src->len);
794 
795     if (! get_token (&tok, &temp)
796         || tok.len != 1
797         || tok.text[0] != '(')
798       return false;
799   }
800 
801   /* Consume SRC's opening paren.  */
802   get_token (&tok, src);
803 
804   for (;;)
805     {
806       struct macro_buffer *arg;
807       int depth;
808 
809       /* Initialize the next argument.  */
810       args.emplace_back ();
811       arg = &args.back ();
812       set_token (arg, src->text, src->text);
813 
814       /* Gather the argument's tokens.  */
815       depth = 0;
816       for (;;)
817         {
818           if (! get_token (&tok, src))
819             error (_("Malformed argument list for macro `%s'."), name);
820 
821           /* Is tok an opening paren?  */
822           if (tok.len == 1 && tok.text[0] == '(')
823             depth++;
824 
825           /* Is tok is a closing paren?  */
826           else if (tok.len == 1 && tok.text[0] == ')')
827             {
828               /* If it's a closing paren at the top level, then that's
829                  the end of the argument list.  */
830               if (depth == 0)
831                 {
832 		  /* In the varargs case, the last argument may be
833 		     missing.  Add an empty argument in this case.  */
834 		  if (nargs != -1 && args.size () == nargs - 1)
835 		    {
836 		      args.emplace_back ();
837 		      arg = &args.back ();
838 		      set_token (arg, src->text, src->text);
839 		    }
840 
841 		  *args_ptr = std::move (args);
842 		  return true;
843                 }
844 
845               depth--;
846             }
847 
848           /* If tok is a comma at top level, then that's the end of
849              the current argument.  However, if we are handling a
850              variadic macro and we are computing the last argument, we
851              want to include the comma and remaining tokens.  */
852           else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
853 		   && (nargs == -1 || args.size () < nargs))
854             break;
855 
856           /* Extend the current argument to enclose this token.  If
857              this is the current argument's first token, leave out any
858              leading whitespace, just for aesthetics.  */
859           if (arg->len == 0)
860             {
861               arg->text = tok.text;
862               arg->len = tok.len;
863               arg->last_token = 0;
864             }
865           else
866             {
867               arg->len = (tok.text + tok.len) - arg->text;
868               arg->last_token = tok.text - arg->text;
869             }
870         }
871     }
872 }
873 
874 
875 /* The `expand' and `substitute_args' functions both invoke `scan'
876    recursively, so we need a forward declaration somewhere.  */
877 static void scan (struct macro_buffer *dest,
878                   struct macro_buffer *src,
879                   struct macro_name_list *no_loop,
880 		  const macro_scope &scope);
881 
882 /* A helper function for substitute_args.
883 
884    ARGV is a vector of all the arguments; ARGC is the number of
885    arguments.  IS_VARARGS is true if the macro being substituted is a
886    varargs macro; in this case VA_ARG_NAME is the name of the
887    "variable" argument.  VA_ARG_NAME is ignored if IS_VARARGS is
888    false.
889 
890    If the token TOK is the name of a parameter, return the parameter's
891    index.  If TOK is not an argument, return -1.  */
892 
893 static int
894 find_parameter (const struct macro_buffer *tok,
895 		int is_varargs, const struct macro_buffer *va_arg_name,
896 		int argc, const char * const *argv)
897 {
898   int i;
899 
900   if (! tok->is_identifier)
901     return -1;
902 
903   for (i = 0; i < argc; ++i)
904     if (tok->len == strlen (argv[i])
905 	&& !memcmp (tok->text, argv[i], tok->len))
906       return i;
907 
908   if (is_varargs && tok->len == va_arg_name->len
909       && ! memcmp (tok->text, va_arg_name->text, tok->len))
910     return argc - 1;
911 
912   return -1;
913 }
914 
915 /* Helper function for substitute_args that gets the next token and
916    updates the passed-in state variables.  */
917 
918 static void
919 get_next_token_for_substitution (struct macro_buffer *replacement_list,
920 				 struct macro_buffer *token,
921 				 char **start,
922 				 struct macro_buffer *lookahead,
923 				 char **lookahead_start,
924 				 int *lookahead_valid,
925 				 bool *keep_going)
926 {
927   if (!*lookahead_valid)
928     *keep_going = false;
929   else
930     {
931       *keep_going = true;
932       *token = *lookahead;
933       *start = *lookahead_start;
934       *lookahead_start = replacement_list->text;
935       *lookahead_valid = get_token (lookahead, replacement_list);
936     }
937 }
938 
939 /* Given the macro definition DEF, being invoked with the actual
940    arguments given by ARGV, substitute the arguments into the
941    replacement list, and store the result in DEST.
942 
943    IS_VARARGS should be true if DEF is a varargs macro.  In this case,
944    VA_ARG_NAME should be the name of the "variable" argument -- either
945    __VA_ARGS__ for c99-style varargs, or the final argument name, for
946    GNU-style varargs.  If IS_VARARGS is false, this parameter is
947    ignored.
948 
949    If it is necessary to expand macro invocations in one of the
950    arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
951    definitions, and don't expand invocations of the macros listed in
952    NO_LOOP.  */
953 
954 static void
955 substitute_args (struct macro_buffer *dest,
956                  struct macro_definition *def,
957 		 int is_varargs, const struct macro_buffer *va_arg_name,
958 		 const std::vector<struct macro_buffer> &argv,
959                  struct macro_name_list *no_loop,
960 		 const macro_scope &scope)
961 {
962   /* The token we are currently considering.  */
963   struct macro_buffer tok;
964   /* The replacement list's pointer from just before TOK was lexed.  */
965   char *original_rl_start;
966   /* We have a single lookahead token to handle token splicing.  */
967   struct macro_buffer lookahead;
968   /* The lookahead token might not be valid.  */
969   int lookahead_valid;
970   /* The replacement list's pointer from just before LOOKAHEAD was
971      lexed.  */
972   char *lookahead_rl_start;
973 
974   /* A macro buffer for the macro's replacement list.  */
975   struct macro_buffer replacement_list (def->replacement,
976 					strlen (def->replacement));
977 
978   gdb_assert (dest->len == 0);
979   dest->last_token = 0;
980 
981   original_rl_start = replacement_list.text;
982   if (! get_token (&tok, &replacement_list))
983     return;
984   lookahead_rl_start = replacement_list.text;
985   lookahead_valid = get_token (&lookahead, &replacement_list);
986 
987   /* __VA_OPT__ state variable.  The states are:
988      0 - nothing happening
989      1 - saw __VA_OPT__
990      >= 2 in __VA_OPT__, the value encodes the parenthesis depth.  */
991   unsigned vaopt_state = 0;
992 
993   for (bool keep_going = true;
994        keep_going;
995        get_next_token_for_substitution (&replacement_list,
996 					&tok,
997 					&original_rl_start,
998 					&lookahead,
999 					&lookahead_rl_start,
1000 					&lookahead_valid,
1001 					&keep_going))
1002     {
1003       bool token_is_vaopt = (tok.len == 10
1004 			     && strncmp (tok.text, "__VA_OPT__", 10) == 0);
1005 
1006       if (vaopt_state > 0)
1007 	{
1008 	  if (token_is_vaopt)
1009 	    error (_("__VA_OPT__ cannot appear inside __VA_OPT__"));
1010 	  else if (tok.len == 1 && tok.text[0] == '(')
1011 	    {
1012 	      ++vaopt_state;
1013 	      /* We just entered __VA_OPT__, so don't emit this
1014 		 token.  */
1015 	      continue;
1016 	    }
1017 	  else if (vaopt_state == 1)
1018 	    error (_("__VA_OPT__ must be followed by an open parenthesis"));
1019 	  else if (tok.len == 1 && tok.text[0] == ')')
1020 	    {
1021 	      --vaopt_state;
1022 	      if (vaopt_state == 1)
1023 		{
1024 		  /* Done with __VA_OPT__.  */
1025 		  vaopt_state = 0;
1026 		  /* Don't emit.  */
1027 		  continue;
1028 		}
1029 	    }
1030 
1031 	  /* If __VA_ARGS__ is empty, then drop the contents of
1032 	     __VA_OPT__.  */
1033 	  if (argv.back ().len == 0)
1034 	    continue;
1035 	}
1036       else if (token_is_vaopt)
1037 	{
1038 	  if (!is_varargs)
1039 	    error (_("__VA_OPT__ is only valid in a variadic macro"));
1040 	  vaopt_state = 1;
1041 	  /* Don't emit this token.  */
1042 	  continue;
1043 	}
1044 
1045       /* Just for aesthetics.  If we skipped some whitespace, copy
1046          that to DEST.  */
1047       if (tok.text > original_rl_start)
1048         {
1049           dest->appendmem (original_rl_start, tok.text - original_rl_start);
1050           dest->last_token = dest->len;
1051         }
1052 
1053       /* Is this token the stringification operator?  */
1054       if (tok.len == 1
1055           && tok.text[0] == '#')
1056 	{
1057 	  int arg;
1058 
1059 	  if (!lookahead_valid)
1060 	    error (_("Stringification operator requires an argument."));
1061 
1062 	  arg = find_parameter (&lookahead, is_varargs, va_arg_name,
1063 				def->argc, def->argv);
1064 	  if (arg == -1)
1065 	    error (_("Argument to stringification operator must name "
1066 		     "a macro parameter."));
1067 
1068 	  stringify (dest, argv[arg].text, argv[arg].len);
1069 
1070 	  /* Read one token and let the loop iteration code handle the
1071 	     rest.  */
1072 	  lookahead_rl_start = replacement_list.text;
1073 	  lookahead_valid = get_token (&lookahead, &replacement_list);
1074 	}
1075       /* Is this token the splicing operator?  */
1076       else if (tok.len == 2
1077 	       && tok.text[0] == '#'
1078 	       && tok.text[1] == '#')
1079 	error (_("Stray splicing operator"));
1080       /* Is the next token the splicing operator?  */
1081       else if (lookahead_valid
1082 	       && lookahead.len == 2
1083 	       && lookahead.text[0] == '#'
1084 	       && lookahead.text[1] == '#')
1085 	{
1086 	  int finished = 0;
1087 	  int prev_was_comma = 0;
1088 
1089 	  /* Note that GCC warns if the result of splicing is not a
1090 	     token.  In the debugger there doesn't seem to be much
1091 	     benefit from doing this.  */
1092 
1093 	  /* Insert the first token.  */
1094 	  if (tok.len == 1 && tok.text[0] == ',')
1095 	    prev_was_comma = 1;
1096 	  else
1097 	    {
1098 	      int arg = find_parameter (&tok, is_varargs, va_arg_name,
1099 					def->argc, def->argv);
1100 
1101 	      if (arg != -1)
1102 		dest->appendmem (argv[arg].text, argv[arg].len);
1103 	      else
1104 		dest->appendmem (tok.text, tok.len);
1105 	    }
1106 
1107 	  /* Apply a possible sequence of ## operators.  */
1108 	  for (;;)
1109 	    {
1110 	      if (! get_token (&tok, &replacement_list))
1111 		error (_("Splicing operator at end of macro"));
1112 
1113 	      /* Handle a comma before a ##.  If we are handling
1114 		 varargs, and the token on the right hand side is the
1115 		 varargs marker, and the final argument is empty or
1116 		 missing, then drop the comma.  This is a GNU
1117 		 extension.  There is one ambiguous case here,
1118 		 involving pedantic behavior with an empty argument,
1119 		 but we settle that in favor of GNU-style (GCC uses an
1120 		 option).  If we aren't dealing with varargs, we
1121 		 simply insert the comma.  */
1122 	      if (prev_was_comma)
1123 		{
1124 		  if (! (is_varargs
1125 			 && tok.len == va_arg_name->len
1126 			 && !memcmp (tok.text, va_arg_name->text, tok.len)
1127 			 && argv.back ().len == 0))
1128 		    dest->appendmem (",", 1);
1129 		  prev_was_comma = 0;
1130 		}
1131 
1132 	      /* Insert the token.  If it is a parameter, insert the
1133 		 argument.  If it is a comma, treat it specially.  */
1134 	      if (tok.len == 1 && tok.text[0] == ',')
1135 		prev_was_comma = 1;
1136 	      else
1137 		{
1138 		  int arg = find_parameter (&tok, is_varargs, va_arg_name,
1139 					    def->argc, def->argv);
1140 
1141 		  if (arg != -1)
1142 		    dest->appendmem (argv[arg].text, argv[arg].len);
1143 		  else
1144 		    dest->appendmem (tok.text, tok.len);
1145 		}
1146 
1147 	      /* Now read another token.  If it is another splice, we
1148 		 loop.  */
1149 	      original_rl_start = replacement_list.text;
1150 	      if (! get_token (&tok, &replacement_list))
1151 		{
1152 		  finished = 1;
1153 		  break;
1154 		}
1155 
1156 	      if (! (tok.len == 2
1157 		     && tok.text[0] == '#'
1158 		     && tok.text[1] == '#'))
1159 		break;
1160 	    }
1161 
1162 	  if (prev_was_comma)
1163 	    {
1164 	      /* We saw a comma.  Insert it now.  */
1165 	      dest->appendmem (",", 1);
1166 	    }
1167 
1168           dest->last_token = dest->len;
1169 	  if (finished)
1170 	    lookahead_valid = 0;
1171 	  else
1172 	    {
1173 	      /* Set up for the loop iterator.  */
1174 	      lookahead = tok;
1175 	      lookahead_rl_start = original_rl_start;
1176 	      lookahead_valid = 1;
1177 	    }
1178 	}
1179       else
1180 	{
1181 	  /* Is this token an identifier?  */
1182 	  int substituted = 0;
1183 	  int arg = find_parameter (&tok, is_varargs, va_arg_name,
1184 				    def->argc, def->argv);
1185 
1186 	  if (arg != -1)
1187 	    {
1188 	      /* Expand any macro invocations in the argument text,
1189 		 and append the result to dest.  Remember that scan
1190 		 mutates its source, so we need to scan a new buffer
1191 		 referring to the argument's text, not the argument
1192 		 itself.  */
1193 	      struct macro_buffer arg_src (argv[arg].text, argv[arg].len);
1194 	      scan (dest, &arg_src, no_loop, scope);
1195 	      substituted = 1;
1196 	    }
1197 
1198 	  /* If it wasn't a parameter, then just copy it across.  */
1199 	  if (! substituted)
1200 	    append_tokens_without_splicing (dest, &tok);
1201 	}
1202     }
1203 
1204   if (vaopt_state > 0)
1205     error (_("Unterminated __VA_OPT__"));
1206 }
1207 
1208 
1209 /* Expand a call to a macro named ID, whose definition is DEF.  Append
1210    its expansion to DEST.  SRC is the input text following the ID
1211    token.  We are currently rescanning the expansions of the macros
1212    named in NO_LOOP; don't re-expand them.  Use LOOKUP_FUNC and
1213    LOOKUP_BATON to find definitions for any nested macro references.
1214 
1215    Return 1 if we decided to expand it, zero otherwise.  (If it's a
1216    function-like macro name that isn't followed by an argument list,
1217    we don't expand it.)  If we return zero, leave SRC unchanged.  */
1218 static int
1219 expand (const char *id,
1220         struct macro_definition *def,
1221         struct macro_buffer *dest,
1222         struct macro_buffer *src,
1223         struct macro_name_list *no_loop,
1224 	const macro_scope &scope)
1225 {
1226   struct macro_name_list new_no_loop;
1227 
1228   /* Create a new node to be added to the front of the no-expand list.
1229      This list is appropriate for re-scanning replacement lists, but
1230      it is *not* appropriate for scanning macro arguments; invocations
1231      of the macro whose arguments we are gathering *do* get expanded
1232      there.  */
1233   new_no_loop.name = id;
1234   new_no_loop.next = no_loop;
1235 
1236   /* What kind of macro are we expanding?  */
1237   if (def->kind == macro_object_like)
1238     {
1239       struct macro_buffer replacement_list (def->replacement,
1240 					    strlen (def->replacement));
1241 
1242       scan (dest, &replacement_list, &new_no_loop, scope);
1243       return 1;
1244     }
1245   else if (def->kind == macro_function_like)
1246     {
1247       struct macro_buffer va_arg_name;
1248       int is_varargs = 0;
1249 
1250       if (def->argc >= 1)
1251 	{
1252 	  if (strcmp (def->argv[def->argc - 1], "...") == 0)
1253 	    {
1254 	      /* In C99-style varargs, substitution is done using
1255 		 __VA_ARGS__.  */
1256 	      va_arg_name.set_shared ("__VA_ARGS__", strlen ("__VA_ARGS__"));
1257 	      is_varargs = 1;
1258 	    }
1259 	  else
1260 	    {
1261 	      int len = strlen (def->argv[def->argc - 1]);
1262 
1263 	      if (len > 3
1264 		  && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1265 		{
1266 		  /* In GNU-style varargs, the name of the
1267 		     substitution parameter is the name of the formal
1268 		     argument without the "...".  */
1269 		  va_arg_name.set_shared (def->argv[def->argc - 1], len - 3);
1270 		  is_varargs = 1;
1271 		}
1272 	    }
1273 	}
1274 
1275       std::vector<struct macro_buffer> argv;
1276       /* If we couldn't find any argument list, then we don't expand
1277          this macro.  */
1278       if (!gather_arguments (id, src, is_varargs ? def->argc : -1,
1279 			     &argv))
1280 	return 0;
1281 
1282       /* Check that we're passing an acceptable number of arguments for
1283          this macro.  */
1284       if (argv.size () != def->argc)
1285         {
1286 	  if (is_varargs && argv.size () >= def->argc - 1)
1287 	    {
1288 	      /* Ok.  */
1289 	    }
1290           /* Remember that a sequence of tokens like "foo()" is a
1291              valid invocation of a macro expecting either zero or one
1292              arguments.  */
1293           else if (! (argv.size () == 1
1294 		      && argv[0].len == 0
1295 		      && def->argc == 0))
1296             error (_("Wrong number of arguments to macro `%s' "
1297                    "(expected %d, got %d)."),
1298                    id, def->argc, int (argv.size ()));
1299         }
1300 
1301       /* Note that we don't expand macro invocations in the arguments
1302          yet --- we let subst_args take care of that.  Parameters that
1303          appear as operands of the stringifying operator "#" or the
1304          splicing operator "##" don't get macro references expanded,
1305          so we can't really tell whether it's appropriate to macro-
1306          expand an argument until we see how it's being used.  */
1307       struct macro_buffer substituted (0);
1308       substitute_args (&substituted, def, is_varargs, &va_arg_name,
1309 		       argv, no_loop, scope);
1310 
1311       /* Now `substituted' is the macro's replacement list, with all
1312          argument values substituted into it properly.  Re-scan it for
1313          macro references, but don't expand invocations of this macro.
1314 
1315          We create a new buffer, `substituted_src', which points into
1316          `substituted', and scan that.  We can't scan `substituted'
1317          itself, since the tokenization process moves the buffer's
1318          text pointer around, and we still need to be able to find
1319          `substituted's original text buffer after scanning it so we
1320          can free it.  */
1321       struct macro_buffer substituted_src (substituted.text, substituted.len);
1322       scan (dest, &substituted_src, &new_no_loop, scope);
1323 
1324       return 1;
1325     }
1326   else
1327     internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1328 }
1329 
1330 
1331 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1332    constitute a macro invocation not forbidden in NO_LOOP, append its
1333    expansion to DEST and return non-zero.  Otherwise, return zero, and
1334    leave DEST unchanged.
1335 
1336    SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1337    SRC_FIRST must be a string built by get_token.  */
1338 static int
1339 maybe_expand (struct macro_buffer *dest,
1340               struct macro_buffer *src_first,
1341               struct macro_buffer *src_rest,
1342               struct macro_name_list *no_loop,
1343 	      const macro_scope &scope)
1344 {
1345   gdb_assert (src_first->shared);
1346   gdb_assert (src_rest->shared);
1347   gdb_assert (! dest->shared);
1348 
1349   /* Is this token an identifier?  */
1350   if (src_first->is_identifier)
1351     {
1352       /* Make a null-terminated copy of it, since that's what our
1353          lookup function expects.  */
1354       std::string id (src_first->text, src_first->len);
1355 
1356       /* If we're currently re-scanning the result of expanding
1357          this macro, don't expand it again.  */
1358       if (! currently_rescanning (no_loop, id.c_str ()))
1359         {
1360           /* Does this identifier have a macro definition in scope?  */
1361           macro_definition *def = standard_macro_lookup (id.c_str (), scope);
1362 
1363           if (def && expand (id.c_str (), def, dest, src_rest, no_loop, scope))
1364 	    return 1;
1365         }
1366     }
1367 
1368   return 0;
1369 }
1370 
1371 
1372 /* Expand macro references in SRC, appending the results to DEST.
1373    Assume we are re-scanning the result of expanding the macros named
1374    in NO_LOOP, and don't try to re-expand references to them.
1375 
1376    SRC must be a shared buffer; DEST must not be one.  */
1377 static void
1378 scan (struct macro_buffer *dest,
1379       struct macro_buffer *src,
1380       struct macro_name_list *no_loop,
1381       const macro_scope &scope)
1382 {
1383   gdb_assert (src->shared);
1384   gdb_assert (! dest->shared);
1385 
1386   for (;;)
1387     {
1388       struct macro_buffer tok;
1389       char *original_src_start = src->text;
1390 
1391       /* Find the next token in SRC.  */
1392       if (! get_token (&tok, src))
1393         break;
1394 
1395       /* Just for aesthetics.  If we skipped some whitespace, copy
1396          that to DEST.  */
1397       if (tok.text > original_src_start)
1398         {
1399           dest->appendmem (original_src_start, tok.text - original_src_start);
1400           dest->last_token = dest->len;
1401         }
1402 
1403       if (! maybe_expand (dest, &tok, src, no_loop, scope))
1404         /* We didn't end up expanding tok as a macro reference, so
1405            simply append it to dest.  */
1406         append_tokens_without_splicing (dest, &tok);
1407     }
1408 
1409   /* Just for aesthetics.  If there was any trailing whitespace in
1410      src, copy it to dest.  */
1411   if (src->len)
1412     {
1413       dest->appendmem (src->text, src->len);
1414       dest->last_token = dest->len;
1415     }
1416 }
1417 
1418 
1419 gdb::unique_xmalloc_ptr<char>
1420 macro_expand (const char *source, const macro_scope &scope)
1421 {
1422   struct macro_buffer src (source, strlen (source));
1423 
1424   struct macro_buffer dest (0);
1425   dest.last_token = 0;
1426 
1427   scan (&dest, &src, 0, scope);
1428 
1429   dest.appendc ('\0');
1430 
1431   return dest.release ();
1432 }
1433 
1434 
1435 gdb::unique_xmalloc_ptr<char>
1436 macro_expand_once (const char *source, const macro_scope &scope)
1437 {
1438   error (_("Expand-once not implemented yet."));
1439 }
1440 
1441 gdb::unique_xmalloc_ptr<char>
1442 macro_expand_next (const char **lexptr, const macro_scope &scope)
1443 {
1444   struct macro_buffer tok;
1445 
1446   /* Set up SRC to refer to the input text, pointed to by *lexptr.  */
1447   struct macro_buffer src (*lexptr, strlen (*lexptr));
1448 
1449   /* Set up DEST to receive the expansion, if there is one.  */
1450   struct macro_buffer dest (0);
1451   dest.last_token = 0;
1452 
1453   /* Get the text's first preprocessing token.  */
1454   if (! get_token (&tok, &src))
1455     return nullptr;
1456 
1457   /* If it's a macro invocation, expand it.  */
1458   if (maybe_expand (&dest, &tok, &src, 0, scope))
1459     {
1460       /* It was a macro invocation!  Package up the expansion as a
1461          null-terminated string and return it.  Set *lexptr to the
1462          start of the next token in the input.  */
1463       dest.appendc ('\0');
1464       *lexptr = src.text;
1465       return dest.release ();
1466     }
1467   else
1468     {
1469       /* It wasn't a macro invocation.  */
1470       return nullptr;
1471     }
1472 }
1473