xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/m68k-tdep.c (revision d16b7486a53dcb8072b60ec6fcb4373a2d0c27b7)
1 /* Target-dependent code for the Motorola 68000 series.
2 
3    Copyright (C) 1990-2020 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "dwarf2/frame.h"
22 #include "frame.h"
23 #include "frame-base.h"
24 #include "frame-unwind.h"
25 #include "gdbtypes.h"
26 #include "symtab.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "arch-utils.h"
32 #include "osabi.h"
33 #include "dis-asm.h"
34 #include "target-descriptions.h"
35 #include "floatformat.h"
36 #include "target-float.h"
37 
38 #include "m68k-tdep.h"
39 
40 
41 #define P_LINKL_FP	0x480e
42 #define P_LINKW_FP	0x4e56
43 #define P_PEA_FP	0x4856
44 #define P_MOVEAL_SP_FP	0x2c4f
45 #define P_ADDAW_SP	0xdefc
46 #define P_ADDAL_SP	0xdffc
47 #define P_SUBQW_SP	0x514f
48 #define P_SUBQL_SP	0x518f
49 #define P_LEA_SP_SP	0x4fef
50 #define P_LEA_PC_A5	0x4bfb0170
51 #define P_FMOVEMX_SP	0xf227
52 #define P_MOVEL_SP	0x2f00
53 #define P_MOVEML_SP	0x48e7
54 
55 /* Offset from SP to first arg on stack at first instruction of a function.  */
56 #define SP_ARG0 (1 * 4)
57 
58 #if !defined (BPT_VECTOR)
59 #define BPT_VECTOR 0xf
60 #endif
61 
62 constexpr gdb_byte m68k_break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
63 
64 typedef BP_MANIPULATION (m68k_break_insn) m68k_breakpoint;
65 
66 
67 /* Construct types for ISA-specific registers.  */
68 static struct type *
69 m68k_ps_type (struct gdbarch *gdbarch)
70 {
71   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
72 
73   if (!tdep->m68k_ps_type)
74     {
75       struct type *type;
76 
77       type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 32);
78       append_flags_type_flag (type, 0, "C");
79       append_flags_type_flag (type, 1, "V");
80       append_flags_type_flag (type, 2, "Z");
81       append_flags_type_flag (type, 3, "N");
82       append_flags_type_flag (type, 4, "X");
83       append_flags_type_flag (type, 8, "I0");
84       append_flags_type_flag (type, 9, "I1");
85       append_flags_type_flag (type, 10, "I2");
86       append_flags_type_flag (type, 12, "M");
87       append_flags_type_flag (type, 13, "S");
88       append_flags_type_flag (type, 14, "T0");
89       append_flags_type_flag (type, 15, "T1");
90 
91       tdep->m68k_ps_type = type;
92     }
93 
94   return tdep->m68k_ps_type;
95 }
96 
97 static struct type *
98 m68881_ext_type (struct gdbarch *gdbarch)
99 {
100   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
101 
102   if (!tdep->m68881_ext_type)
103     tdep->m68881_ext_type
104       = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
105 			 floatformats_m68881_ext);
106 
107   return tdep->m68881_ext_type;
108 }
109 
110 /* Return the GDB type object for the "standard" data type of data in
111    register N.  This should be int for D0-D7, SR, FPCONTROL and
112    FPSTATUS, long double for FP0-FP7, and void pointer for all others
113    (A0-A7, PC, FPIADDR).  Note, for registers which contain
114    addresses return pointer to void, not pointer to char, because we
115    don't want to attempt to print the string after printing the
116    address.  */
117 
118 static struct type *
119 m68k_register_type (struct gdbarch *gdbarch, int regnum)
120 {
121   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 
123   if (tdep->fpregs_present)
124     {
125       if (regnum >= gdbarch_fp0_regnum (gdbarch)
126 	  && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
127 	{
128 	  if (tdep->flavour == m68k_coldfire_flavour)
129 	    return builtin_type (gdbarch)->builtin_double;
130 	  else
131 	    return m68881_ext_type (gdbarch);
132 	}
133 
134       if (regnum == M68K_FPI_REGNUM)
135 	return builtin_type (gdbarch)->builtin_func_ptr;
136 
137       if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
138 	return builtin_type (gdbarch)->builtin_int32;
139     }
140   else
141     {
142       if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
143 	return builtin_type (gdbarch)->builtin_int0;
144     }
145 
146   if (regnum == gdbarch_pc_regnum (gdbarch))
147     return builtin_type (gdbarch)->builtin_func_ptr;
148 
149   if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
150     return builtin_type (gdbarch)->builtin_data_ptr;
151 
152   if (regnum == M68K_PS_REGNUM)
153     return m68k_ps_type (gdbarch);
154 
155   return builtin_type (gdbarch)->builtin_int32;
156 }
157 
158 static const char *m68k_register_names[] = {
159     "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
160     "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
161     "ps", "pc",
162     "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
163     "fpcontrol", "fpstatus", "fpiaddr"
164   };
165 
166 /* Function: m68k_register_name
167    Returns the name of the standard m68k register regnum.  */
168 
169 static const char *
170 m68k_register_name (struct gdbarch *gdbarch, int regnum)
171 {
172   if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
173     internal_error (__FILE__, __LINE__,
174 		    _("m68k_register_name: illegal register number %d"),
175 		    regnum);
176   else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
177 	   && gdbarch_tdep (gdbarch)->fpregs_present == 0)
178     return "";
179   else
180     return m68k_register_names[regnum];
181 }
182 
183 /* Return nonzero if a value of type TYPE stored in register REGNUM
184    needs any special handling.  */
185 
186 static int
187 m68k_convert_register_p (struct gdbarch *gdbarch,
188 			 int regnum, struct type *type)
189 {
190   if (!gdbarch_tdep (gdbarch)->fpregs_present)
191     return 0;
192   return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
193 	  /* We only support floating-point values.  */
194 	  && type->code () == TYPE_CODE_FLT
195 	  && type != register_type (gdbarch, M68K_FP0_REGNUM));
196 }
197 
198 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
199    return its contents in TO.  */
200 
201 static int
202 m68k_register_to_value (struct frame_info *frame, int regnum,
203 			struct type *type, gdb_byte *to,
204 			int *optimizedp, int *unavailablep)
205 {
206   struct gdbarch *gdbarch = get_frame_arch (frame);
207   gdb_byte from[M68K_MAX_REGISTER_SIZE];
208   struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
209 
210   gdb_assert (type->code () == TYPE_CODE_FLT);
211 
212   /* Convert to TYPE.  */
213   if (!get_frame_register_bytes (frame, regnum, 0,
214 				 register_size (gdbarch, regnum),
215 				 from, optimizedp, unavailablep))
216     return 0;
217 
218   target_float_convert (from, fpreg_type, to, type);
219   *optimizedp = *unavailablep = 0;
220   return 1;
221 }
222 
223 /* Write the contents FROM of a value of type TYPE into register
224    REGNUM in frame FRAME.  */
225 
226 static void
227 m68k_value_to_register (struct frame_info *frame, int regnum,
228 			struct type *type, const gdb_byte *from)
229 {
230   gdb_byte to[M68K_MAX_REGISTER_SIZE];
231   struct type *fpreg_type = register_type (get_frame_arch (frame),
232 					   M68K_FP0_REGNUM);
233 
234   /* We only support floating-point values.  */
235   if (type->code () != TYPE_CODE_FLT)
236     {
237       warning (_("Cannot convert non-floating-point type "
238 	       "to floating-point register value."));
239       return;
240     }
241 
242   /* Convert from TYPE.  */
243   target_float_convert (from, type, to, fpreg_type);
244   put_frame_register (frame, regnum, to);
245 }
246 
247 
248 /* There is a fair number of calling conventions that are in somewhat
249    wide use.  The 68000/08/10 don't support an FPU, not even as a
250    coprocessor.  All function return values are stored in %d0/%d1.
251    Structures are returned in a static buffer, a pointer to which is
252    returned in %d0.  This means that functions returning a structure
253    are not re-entrant.  To avoid this problem some systems use a
254    convention where the caller passes a pointer to a buffer in %a1
255    where the return values is to be stored.  This convention is the
256    default, and is implemented in the function m68k_return_value.
257 
258    The 68020/030/040/060 do support an FPU, either as a coprocessor
259    (68881/2) or built-in (68040/68060).  That's why System V release 4
260    (SVR4) introduces a new calling convention specified by the SVR4
261    psABI.  Integer values are returned in %d0/%d1, pointer return
262    values in %a0 and floating values in %fp0.  When calling functions
263    returning a structure the caller should pass a pointer to a buffer
264    for the return value in %a0.  This convention is implemented in the
265    function m68k_svr4_return_value, and by appropriately setting the
266    struct_value_regnum member of `struct gdbarch_tdep'.
267 
268    GNU/Linux returns values in the same way as SVR4 does, but uses %a1
269    for passing the structure return value buffer.
270 
271    GCC can also generate code where small structures are returned in
272    %d0/%d1 instead of in memory by using -freg-struct-return.  This is
273    the default on NetBSD a.out, OpenBSD and GNU/Linux and several
274    embedded systems.  This convention is implemented by setting the
275    struct_return member of `struct gdbarch_tdep' to reg_struct_return.  */
276 
277 /* Read a function return value of TYPE from REGCACHE, and copy that
278    into VALBUF.  */
279 
280 static void
281 m68k_extract_return_value (struct type *type, struct regcache *regcache,
282 			   gdb_byte *valbuf)
283 {
284   int len = TYPE_LENGTH (type);
285   gdb_byte buf[M68K_MAX_REGISTER_SIZE];
286 
287   if (len <= 4)
288     {
289       regcache->raw_read (M68K_D0_REGNUM, buf);
290       memcpy (valbuf, buf + (4 - len), len);
291     }
292   else if (len <= 8)
293     {
294       regcache->raw_read (M68K_D0_REGNUM, buf);
295       memcpy (valbuf, buf + (8 - len), len - 4);
296       regcache->raw_read (M68K_D1_REGNUM, valbuf + (len - 4));
297     }
298   else
299     internal_error (__FILE__, __LINE__,
300 		    _("Cannot extract return value of %d bytes long."), len);
301 }
302 
303 static void
304 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
305 				gdb_byte *valbuf)
306 {
307   gdb_byte buf[M68K_MAX_REGISTER_SIZE];
308   struct gdbarch *gdbarch = regcache->arch ();
309   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
310 
311   if (tdep->float_return && type->code () == TYPE_CODE_FLT)
312     {
313       struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
314       regcache->raw_read (M68K_FP0_REGNUM, buf);
315       target_float_convert (buf, fpreg_type, valbuf, type);
316     }
317   else if (type->code () == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
318     regcache->raw_read (M68K_A0_REGNUM, valbuf);
319   else
320     m68k_extract_return_value (type, regcache, valbuf);
321 }
322 
323 /* Write a function return value of TYPE from VALBUF into REGCACHE.  */
324 
325 static void
326 m68k_store_return_value (struct type *type, struct regcache *regcache,
327 			 const gdb_byte *valbuf)
328 {
329   int len = TYPE_LENGTH (type);
330 
331   if (len <= 4)
332     regcache->raw_write_part (M68K_D0_REGNUM, 4 - len, len, valbuf);
333   else if (len <= 8)
334     {
335       regcache->raw_write_part (M68K_D0_REGNUM, 8 - len, len - 4, valbuf);
336       regcache->raw_write (M68K_D1_REGNUM, valbuf + (len - 4));
337     }
338   else
339     internal_error (__FILE__, __LINE__,
340 		    _("Cannot store return value of %d bytes long."), len);
341 }
342 
343 static void
344 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
345 			      const gdb_byte *valbuf)
346 {
347   struct gdbarch *gdbarch = regcache->arch ();
348   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349 
350   if (tdep->float_return && type->code () == TYPE_CODE_FLT)
351     {
352       struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
353       gdb_byte buf[M68K_MAX_REGISTER_SIZE];
354       target_float_convert (valbuf, type, buf, fpreg_type);
355       regcache->raw_write (M68K_FP0_REGNUM, buf);
356     }
357   else if (type->code () == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
358     {
359       regcache->raw_write (M68K_A0_REGNUM, valbuf);
360       regcache->raw_write (M68K_D0_REGNUM, valbuf);
361     }
362   else
363     m68k_store_return_value (type, regcache, valbuf);
364 }
365 
366 /* Return non-zero if TYPE, which is assumed to be a structure, union or
367    complex type, should be returned in registers for architecture
368    GDBARCH.  */
369 
370 static int
371 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
372 {
373   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374   enum type_code code = type->code ();
375   int len = TYPE_LENGTH (type);
376 
377   gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
378 	      || code == TYPE_CODE_COMPLEX);
379 
380   if (tdep->struct_return == pcc_struct_return)
381     return 0;
382 
383   return (len == 1 || len == 2 || len == 4 || len == 8);
384 }
385 
386 /* Determine, for architecture GDBARCH, how a return value of TYPE
387    should be returned.  If it is supposed to be returned in registers,
388    and READBUF is non-zero, read the appropriate value from REGCACHE,
389    and copy it into READBUF.  If WRITEBUF is non-zero, write the value
390    from WRITEBUF into REGCACHE.  */
391 
392 static enum return_value_convention
393 m68k_return_value (struct gdbarch *gdbarch, struct value *function,
394 		   struct type *type, struct regcache *regcache,
395 		   gdb_byte *readbuf, const gdb_byte *writebuf)
396 {
397   enum type_code code = type->code ();
398 
399   /* GCC returns a `long double' in memory too.  */
400   if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
401 	|| code == TYPE_CODE_COMPLEX)
402        && !m68k_reg_struct_return_p (gdbarch, type))
403       || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
404     {
405       /* The default on m68k is to return structures in static memory.
406          Consequently a function must return the address where we can
407          find the return value.  */
408 
409       if (readbuf)
410 	{
411 	  ULONGEST addr;
412 
413 	  regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
414 	  read_memory (addr, readbuf, TYPE_LENGTH (type));
415 	}
416 
417       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
418     }
419 
420   if (readbuf)
421     m68k_extract_return_value (type, regcache, readbuf);
422   if (writebuf)
423     m68k_store_return_value (type, regcache, writebuf);
424 
425   return RETURN_VALUE_REGISTER_CONVENTION;
426 }
427 
428 static enum return_value_convention
429 m68k_svr4_return_value (struct gdbarch *gdbarch, struct value *function,
430 			struct type *type, struct regcache *regcache,
431 			gdb_byte *readbuf, const gdb_byte *writebuf)
432 {
433   enum type_code code = type->code ();
434 
435   if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
436        || code == TYPE_CODE_COMPLEX)
437       && !m68k_reg_struct_return_p (gdbarch, type))
438     {
439       /* The System V ABI says that:
440 
441 	 "A function returning a structure or union also sets %a0 to
442 	 the value it finds in %a0.  Thus when the caller receives
443 	 control again, the address of the returned object resides in
444 	 register %a0."
445 
446 	 So the ABI guarantees that we can always find the return
447 	 value just after the function has returned.  */
448 
449       if (readbuf)
450 	{
451 	  ULONGEST addr;
452 
453 	  regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
454 	  read_memory (addr, readbuf, TYPE_LENGTH (type));
455 	}
456 
457       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
458     }
459 
460   /* This special case is for structures consisting of a single
461      `float' or `double' member.  These structures are returned in
462      %fp0.  For these structures, we call ourselves recursively,
463      changing TYPE into the type of the first member of the structure.
464      Since that should work for all structures that have only one
465      member, we don't bother to check the member's type here.  */
466   if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
467     {
468       type = check_typedef (type->field (0).type ());
469       return m68k_svr4_return_value (gdbarch, function, type, regcache,
470 				     readbuf, writebuf);
471     }
472 
473   if (readbuf)
474     m68k_svr4_extract_return_value (type, regcache, readbuf);
475   if (writebuf)
476     m68k_svr4_store_return_value (type, regcache, writebuf);
477 
478   return RETURN_VALUE_REGISTER_CONVENTION;
479 }
480 
481 
482 /* Always align the frame to a 4-byte boundary.  This is required on
483    coldfire and harmless on the rest.  */
484 
485 static CORE_ADDR
486 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
487 {
488   /* Align the stack to four bytes.  */
489   return sp & ~3;
490 }
491 
492 static CORE_ADDR
493 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
494 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
495 		      struct value **args, CORE_ADDR sp,
496 		      function_call_return_method return_method,
497 		      CORE_ADDR struct_addr)
498 {
499   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
500   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
501   gdb_byte buf[4];
502   int i;
503 
504   /* Push arguments in reverse order.  */
505   for (i = nargs - 1; i >= 0; i--)
506     {
507       struct type *value_type = value_enclosing_type (args[i]);
508       int len = TYPE_LENGTH (value_type);
509       int container_len = (len + 3) & ~3;
510       int offset;
511 
512       /* Non-scalars bigger than 4 bytes are left aligned, others are
513 	 right aligned.  */
514       if ((value_type->code () == TYPE_CODE_STRUCT
515 	   || value_type->code () == TYPE_CODE_UNION
516 	   || value_type->code () == TYPE_CODE_ARRAY)
517 	  && len > 4)
518 	offset = 0;
519       else
520 	offset = container_len - len;
521       sp -= container_len;
522       write_memory (sp + offset, value_contents_all (args[i]), len);
523     }
524 
525   /* Store struct value address.  */
526   if (return_method == return_method_struct)
527     {
528       store_unsigned_integer (buf, 4, byte_order, struct_addr);
529       regcache->cooked_write (tdep->struct_value_regnum, buf);
530     }
531 
532   /* Store return address.  */
533   sp -= 4;
534   store_unsigned_integer (buf, 4, byte_order, bp_addr);
535   write_memory (sp, buf, 4);
536 
537   /* Finally, update the stack pointer...  */
538   store_unsigned_integer (buf, 4, byte_order, sp);
539   regcache->cooked_write (M68K_SP_REGNUM, buf);
540 
541   /* ...and fake a frame pointer.  */
542   regcache->cooked_write (M68K_FP_REGNUM, buf);
543 
544   /* DWARF2/GCC uses the stack address *before* the function call as a
545      frame's CFA.  */
546   return sp + 8;
547 }
548 
549 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum.  */
550 
551 static int
552 m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
553 {
554   if (num < 8)
555     /* d0..7 */
556     return (num - 0) + M68K_D0_REGNUM;
557   else if (num < 16)
558     /* a0..7 */
559     return (num - 8) + M68K_A0_REGNUM;
560   else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
561     /* fp0..7 */
562     return (num - 16) + M68K_FP0_REGNUM;
563   else if (num == 25)
564     /* pc */
565     return M68K_PC_REGNUM;
566   else
567     return -1;
568 }
569 
570 
571 struct m68k_frame_cache
572 {
573   /* Base address.  */
574   CORE_ADDR base;
575   CORE_ADDR sp_offset;
576   CORE_ADDR pc;
577 
578   /* Saved registers.  */
579   CORE_ADDR saved_regs[M68K_NUM_REGS];
580   CORE_ADDR saved_sp;
581 
582   /* Stack space reserved for local variables.  */
583   long locals;
584 };
585 
586 /* Allocate and initialize a frame cache.  */
587 
588 static struct m68k_frame_cache *
589 m68k_alloc_frame_cache (void)
590 {
591   struct m68k_frame_cache *cache;
592   int i;
593 
594   cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
595 
596   /* Base address.  */
597   cache->base = 0;
598   cache->sp_offset = -4;
599   cache->pc = 0;
600 
601   /* Saved registers.  We initialize these to -1 since zero is a valid
602      offset (that's where %fp is supposed to be stored).  */
603   for (i = 0; i < M68K_NUM_REGS; i++)
604     cache->saved_regs[i] = -1;
605 
606   /* Frameless until proven otherwise.  */
607   cache->locals = -1;
608 
609   return cache;
610 }
611 
612 /* Check whether PC points at a code that sets up a new stack frame.
613    If so, it updates CACHE and returns the address of the first
614    instruction after the sequence that sets removes the "hidden"
615    argument from the stack or CURRENT_PC, whichever is smaller.
616    Otherwise, return PC.  */
617 
618 static CORE_ADDR
619 m68k_analyze_frame_setup (struct gdbarch *gdbarch,
620 			  CORE_ADDR pc, CORE_ADDR current_pc,
621 			  struct m68k_frame_cache *cache)
622 {
623   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
624   int op;
625 
626   if (pc >= current_pc)
627     return current_pc;
628 
629   op = read_memory_unsigned_integer (pc, 2, byte_order);
630 
631   if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
632     {
633       cache->saved_regs[M68K_FP_REGNUM] = 0;
634       cache->sp_offset += 4;
635       if (op == P_LINKW_FP)
636 	{
637 	  /* link.w %fp, #-N */
638 	  /* link.w %fp, #0; adda.l #-N, %sp */
639 	  cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
640 
641 	  if (pc + 4 < current_pc && cache->locals == 0)
642 	    {
643 	      op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
644 	      if (op == P_ADDAL_SP)
645 		{
646 		  cache->locals = read_memory_integer (pc + 6, 4, byte_order);
647 		  return pc + 10;
648 		}
649 	    }
650 
651 	  return pc + 4;
652 	}
653       else if (op == P_LINKL_FP)
654 	{
655 	  /* link.l %fp, #-N */
656 	  cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
657 	  return pc + 6;
658 	}
659       else
660 	{
661 	  /* pea (%fp); movea.l %sp, %fp */
662 	  cache->locals = 0;
663 
664 	  if (pc + 2 < current_pc)
665 	    {
666 	      op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
667 
668 	      if (op == P_MOVEAL_SP_FP)
669 		{
670 		  /* move.l %sp, %fp */
671 		  return pc + 4;
672 		}
673 	    }
674 
675 	  return pc + 2;
676 	}
677     }
678   else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
679     {
680       /* subq.[wl] #N,%sp */
681       /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
682       cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
683       if (pc + 2 < current_pc)
684 	{
685 	  op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
686 	  if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
687 	    {
688 	      cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
689 	      return pc + 4;
690 	    }
691 	}
692       return pc + 2;
693     }
694   else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
695     {
696       /* adda.w #-N,%sp */
697       /* lea (-N,%sp),%sp */
698       cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
699       return pc + 4;
700     }
701   else if (op == P_ADDAL_SP)
702     {
703       /* adda.l #-N,%sp */
704       cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
705       return pc + 6;
706     }
707 
708   return pc;
709 }
710 
711 /* Check whether PC points at code that saves registers on the stack.
712    If so, it updates CACHE and returns the address of the first
713    instruction after the register saves or CURRENT_PC, whichever is
714    smaller.  Otherwise, return PC.  */
715 
716 static CORE_ADDR
717 m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
718 			     CORE_ADDR current_pc,
719 			     struct m68k_frame_cache *cache)
720 {
721   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
722 
723   if (cache->locals >= 0)
724     {
725       CORE_ADDR offset;
726       int op;
727       int i, mask, regno;
728 
729       offset = -4 - cache->locals;
730       while (pc < current_pc)
731 	{
732 	  op = read_memory_unsigned_integer (pc, 2, byte_order);
733 	  if (op == P_FMOVEMX_SP
734 	      && gdbarch_tdep (gdbarch)->fpregs_present)
735 	    {
736 	      /* fmovem.x REGS,-(%sp) */
737 	      op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
738 	      if ((op & 0xff00) == 0xe000)
739 		{
740 		  mask = op & 0xff;
741 		  for (i = 0; i < 16; i++, mask >>= 1)
742 		    {
743 		      if (mask & 1)
744 			{
745 			  cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
746 			  offset -= 12;
747 			}
748 		    }
749 		  pc += 4;
750 		}
751 	      else
752 		break;
753 	    }
754 	  else if ((op & 0177760) == P_MOVEL_SP)
755 	    {
756 	      /* move.l %R,-(%sp) */
757 	      regno = op & 017;
758 	      cache->saved_regs[regno] = offset;
759 	      offset -= 4;
760 	      pc += 2;
761 	    }
762 	  else if (op == P_MOVEML_SP)
763 	    {
764 	      /* movem.l REGS,-(%sp) */
765 	      mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
766 	      for (i = 0; i < 16; i++, mask >>= 1)
767 		{
768 		  if (mask & 1)
769 		    {
770 		      cache->saved_regs[15 - i] = offset;
771 		      offset -= 4;
772 		    }
773 		}
774 	      pc += 4;
775 	    }
776 	  else
777 	    break;
778 	}
779     }
780 
781   return pc;
782 }
783 
784 
785 /* Do a full analysis of the prologue at PC and update CACHE
786    accordingly.  Bail out early if CURRENT_PC is reached.  Return the
787    address where the analysis stopped.
788 
789    We handle all cases that can be generated by gcc.
790 
791    For allocating a stack frame:
792 
793    link.w %a6,#-N
794    link.l %a6,#-N
795    pea (%fp); move.l %sp,%fp
796    link.w %a6,#0; add.l #-N,%sp
797    subq.l #N,%sp
798    subq.w #N,%sp
799    subq.w #8,%sp; subq.w #N-8,%sp
800    add.w #-N,%sp
801    lea (-N,%sp),%sp
802    add.l #-N,%sp
803 
804    For saving registers:
805 
806    fmovem.x REGS,-(%sp)
807    move.l R1,-(%sp)
808    move.l R1,-(%sp); move.l R2,-(%sp)
809    movem.l REGS,-(%sp)
810 
811    For setting up the PIC register:
812 
813    lea (%pc,N),%a5
814 
815    */
816 
817 static CORE_ADDR
818 m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
819 		       CORE_ADDR current_pc, struct m68k_frame_cache *cache)
820 {
821   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
822   unsigned int op;
823 
824   pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
825   pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
826   if (pc >= current_pc)
827     return current_pc;
828 
829   /* Check for GOT setup.  */
830   op = read_memory_unsigned_integer (pc, 4, byte_order);
831   if (op == P_LEA_PC_A5)
832     {
833       /* lea (%pc,N),%a5 */
834       return pc + 8;
835     }
836 
837   return pc;
838 }
839 
840 /* Return PC of first real instruction.  */
841 
842 static CORE_ADDR
843 m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
844 {
845   struct m68k_frame_cache cache;
846   CORE_ADDR pc;
847 
848   cache.locals = -1;
849   pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
850   if (cache.locals < 0)
851     return start_pc;
852   return pc;
853 }
854 
855 static CORE_ADDR
856 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
857 {
858   gdb_byte buf[8];
859 
860   frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
861   return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
862 }
863 
864 /* Normal frames.  */
865 
866 static struct m68k_frame_cache *
867 m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
868 {
869   struct gdbarch *gdbarch = get_frame_arch (this_frame);
870   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871   struct m68k_frame_cache *cache;
872   gdb_byte buf[4];
873   int i;
874 
875   if (*this_cache)
876     return (struct m68k_frame_cache *) *this_cache;
877 
878   cache = m68k_alloc_frame_cache ();
879   *this_cache = cache;
880 
881   /* In principle, for normal frames, %fp holds the frame pointer,
882      which holds the base address for the current stack frame.
883      However, for functions that don't need it, the frame pointer is
884      optional.  For these "frameless" functions the frame pointer is
885      actually the frame pointer of the calling frame.  Signal
886      trampolines are just a special case of a "frameless" function.
887      They (usually) share their frame pointer with the frame that was
888      in progress when the signal occurred.  */
889 
890   get_frame_register (this_frame, M68K_FP_REGNUM, buf);
891   cache->base = extract_unsigned_integer (buf, 4, byte_order);
892   if (cache->base == 0)
893     return cache;
894 
895   /* For normal frames, %pc is stored at 4(%fp).  */
896   cache->saved_regs[M68K_PC_REGNUM] = 4;
897 
898   cache->pc = get_frame_func (this_frame);
899   if (cache->pc != 0)
900     m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
901 			   get_frame_pc (this_frame), cache);
902 
903   if (cache->locals < 0)
904     {
905       /* We didn't find a valid frame, which means that CACHE->base
906 	 currently holds the frame pointer for our calling frame.  If
907 	 we're at the start of a function, or somewhere half-way its
908 	 prologue, the function's frame probably hasn't been fully
909 	 setup yet.  Try to reconstruct the base address for the stack
910 	 frame by looking at the stack pointer.  For truly "frameless"
911 	 functions this might work too.  */
912 
913       get_frame_register (this_frame, M68K_SP_REGNUM, buf);
914       cache->base = extract_unsigned_integer (buf, 4, byte_order)
915 		    + cache->sp_offset;
916     }
917 
918   /* Now that we have the base address for the stack frame we can
919      calculate the value of %sp in the calling frame.  */
920   cache->saved_sp = cache->base + 8;
921 
922   /* Adjust all the saved registers such that they contain addresses
923      instead of offsets.  */
924   for (i = 0; i < M68K_NUM_REGS; i++)
925     if (cache->saved_regs[i] != -1)
926       cache->saved_regs[i] += cache->base;
927 
928   return cache;
929 }
930 
931 static void
932 m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
933 		    struct frame_id *this_id)
934 {
935   struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
936 
937   /* This marks the outermost frame.  */
938   if (cache->base == 0)
939     return;
940 
941   /* See the end of m68k_push_dummy_call.  */
942   *this_id = frame_id_build (cache->base + 8, cache->pc);
943 }
944 
945 static struct value *
946 m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
947 			  int regnum)
948 {
949   struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
950 
951   gdb_assert (regnum >= 0);
952 
953   if (regnum == M68K_SP_REGNUM && cache->saved_sp)
954     return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
955 
956   if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
957     return frame_unwind_got_memory (this_frame, regnum,
958 				    cache->saved_regs[regnum]);
959 
960   return frame_unwind_got_register (this_frame, regnum, regnum);
961 }
962 
963 static const struct frame_unwind m68k_frame_unwind =
964 {
965   NORMAL_FRAME,
966   default_frame_unwind_stop_reason,
967   m68k_frame_this_id,
968   m68k_frame_prev_register,
969   NULL,
970   default_frame_sniffer
971 };
972 
973 static CORE_ADDR
974 m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
975 {
976   struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
977 
978   return cache->base;
979 }
980 
981 static const struct frame_base m68k_frame_base =
982 {
983   &m68k_frame_unwind,
984   m68k_frame_base_address,
985   m68k_frame_base_address,
986   m68k_frame_base_address
987 };
988 
989 static struct frame_id
990 m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
991 {
992   CORE_ADDR fp;
993 
994   fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
995 
996   /* See the end of m68k_push_dummy_call.  */
997   return frame_id_build (fp + 8, get_frame_pc (this_frame));
998 }
999 
1000 
1001 /* Figure out where the longjmp will land.  Slurp the args out of the stack.
1002    We expect the first arg to be a pointer to the jmp_buf structure from which
1003    we extract the pc (JB_PC) that we will land at.  The pc is copied into PC.
1004    This routine returns true on success.  */
1005 
1006 static int
1007 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1008 {
1009   gdb_byte *buf;
1010   CORE_ADDR sp, jb_addr;
1011   struct gdbarch *gdbarch = get_frame_arch (frame);
1012   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1013   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1014 
1015   if (tdep->jb_pc < 0)
1016     {
1017       internal_error (__FILE__, __LINE__,
1018 		      _("m68k_get_longjmp_target: not implemented"));
1019       return 0;
1020     }
1021 
1022   buf = (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1023   sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
1024 
1025   if (target_read_memory (sp + SP_ARG0,	/* Offset of first arg on stack.  */
1026 			  buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1027     return 0;
1028 
1029   jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1030 					     / TARGET_CHAR_BIT, byte_order);
1031 
1032   if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1033 			  gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1034 			  byte_order)
1035     return 0;
1036 
1037   *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1038 					 / TARGET_CHAR_BIT, byte_order);
1039   return 1;
1040 }
1041 
1042 
1043 /* This is the implementation of gdbarch method
1044    return_in_first_hidden_param_p.  */
1045 
1046 static int
1047 m68k_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1048 				     struct type *type)
1049 {
1050   return 0;
1051 }
1052 
1053 /* System V Release 4 (SVR4).  */
1054 
1055 void
1056 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1057 {
1058   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1059 
1060   /* SVR4 uses a different calling convention.  */
1061   set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1062 
1063   /* SVR4 uses %a0 instead of %a1.  */
1064   tdep->struct_value_regnum = M68K_A0_REGNUM;
1065 }
1066 
1067 
1068 /* Function: m68k_gdbarch_init
1069    Initializer function for the m68k gdbarch vector.
1070    Called by gdbarch.  Sets up the gdbarch vector(s) for this target.  */
1071 
1072 static struct gdbarch *
1073 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1074 {
1075   struct gdbarch_tdep *tdep = NULL;
1076   struct gdbarch *gdbarch;
1077   struct gdbarch_list *best_arch;
1078   struct tdesc_arch_data *tdesc_data = NULL;
1079   int i;
1080   enum m68k_flavour flavour = m68k_no_flavour;
1081   int has_fp = 1;
1082   const struct floatformat **long_double_format = floatformats_m68881_ext;
1083 
1084   /* Check any target description for validity.  */
1085   if (tdesc_has_registers (info.target_desc))
1086     {
1087       const struct tdesc_feature *feature;
1088       int valid_p;
1089 
1090       feature = tdesc_find_feature (info.target_desc,
1091 				    "org.gnu.gdb.m68k.core");
1092 
1093       if (feature == NULL)
1094 	{
1095 	  feature = tdesc_find_feature (info.target_desc,
1096 					"org.gnu.gdb.coldfire.core");
1097 	  if (feature != NULL)
1098 	    flavour = m68k_coldfire_flavour;
1099 	}
1100 
1101       if (feature == NULL)
1102 	{
1103 	  feature = tdesc_find_feature (info.target_desc,
1104 					"org.gnu.gdb.fido.core");
1105 	  if (feature != NULL)
1106 	    flavour = m68k_fido_flavour;
1107 	}
1108 
1109       if (feature == NULL)
1110 	return NULL;
1111 
1112       tdesc_data = tdesc_data_alloc ();
1113 
1114       valid_p = 1;
1115       for (i = 0; i <= M68K_PC_REGNUM; i++)
1116 	valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1117 					    m68k_register_names[i]);
1118 
1119       if (!valid_p)
1120 	{
1121 	  tdesc_data_cleanup (tdesc_data);
1122 	  return NULL;
1123 	}
1124 
1125       feature = tdesc_find_feature (info.target_desc,
1126 				    "org.gnu.gdb.coldfire.fp");
1127       if (feature != NULL)
1128 	{
1129 	  valid_p = 1;
1130 	  for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1131 	    valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1132 						m68k_register_names[i]);
1133 	  if (!valid_p)
1134 	    {
1135 	      tdesc_data_cleanup (tdesc_data);
1136 	      return NULL;
1137 	    }
1138 	}
1139       else
1140 	has_fp = 0;
1141     }
1142 
1143   /* The mechanism for returning floating values from function
1144      and the type of long double depend on whether we're
1145      on ColdFire or standard m68k.  */
1146 
1147   if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1148     {
1149       const bfd_arch_info_type *coldfire_arch =
1150 	bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1151 
1152       if (coldfire_arch
1153 	  && ((*info.bfd_arch_info->compatible)
1154 	      (info.bfd_arch_info, coldfire_arch)))
1155 	flavour = m68k_coldfire_flavour;
1156     }
1157 
1158   /* If there is already a candidate, use it.  */
1159   for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1160        best_arch != NULL;
1161        best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1162     {
1163       if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1164 	continue;
1165 
1166       if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1167 	continue;
1168 
1169       break;
1170     }
1171 
1172   if (best_arch != NULL)
1173     {
1174       if (tdesc_data != NULL)
1175 	tdesc_data_cleanup (tdesc_data);
1176       return best_arch->gdbarch;
1177     }
1178 
1179   tdep = XCNEW (struct gdbarch_tdep);
1180   gdbarch = gdbarch_alloc (&info, tdep);
1181   tdep->fpregs_present = has_fp;
1182   tdep->flavour = flavour;
1183 
1184   if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1185     long_double_format = floatformats_ieee_double;
1186   set_gdbarch_long_double_format (gdbarch, long_double_format);
1187   set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1188 
1189   set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1190   set_gdbarch_breakpoint_kind_from_pc (gdbarch, m68k_breakpoint::kind_from_pc);
1191   set_gdbarch_sw_breakpoint_from_kind (gdbarch, m68k_breakpoint::bp_from_kind);
1192 
1193   /* Stack grows down.  */
1194   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1195   set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1196 
1197   set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1198   if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1199     set_gdbarch_decr_pc_after_break (gdbarch, 2);
1200 
1201   set_gdbarch_frame_args_skip (gdbarch, 8);
1202   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1203 
1204   set_gdbarch_register_type (gdbarch, m68k_register_type);
1205   set_gdbarch_register_name (gdbarch, m68k_register_name);
1206   set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1207   set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1208   set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1209   set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1210   set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1211   set_gdbarch_register_to_value (gdbarch,  m68k_register_to_value);
1212   set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1213 
1214   if (has_fp)
1215     set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1216 
1217   /* Try to figure out if the arch uses floating registers to return
1218      floating point values from functions.  */
1219   if (has_fp)
1220     {
1221       /* On ColdFire, floating point values are returned in D0.  */
1222       if (flavour == m68k_coldfire_flavour)
1223 	tdep->float_return = 0;
1224       else
1225 	tdep->float_return = 1;
1226     }
1227   else
1228     {
1229       /* No floating registers, so can't use them for returning values.  */
1230       tdep->float_return = 0;
1231     }
1232 
1233   /* Function call & return.  */
1234   set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1235   set_gdbarch_return_value (gdbarch, m68k_return_value);
1236   set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1237 					      m68k_return_in_first_hidden_param_p);
1238 
1239 #if defined JB_PC && defined JB_ELEMENT_SIZE
1240   tdep->jb_pc = JB_PC;
1241   tdep->jb_elt_size = JB_ELEMENT_SIZE;
1242 #else
1243   tdep->jb_pc = -1;
1244 #endif
1245   tdep->struct_value_regnum = M68K_A1_REGNUM;
1246   tdep->struct_return = reg_struct_return;
1247 
1248   /* Frame unwinder.  */
1249   set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
1250   set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1251 
1252   /* Hook in the DWARF CFI frame unwinder.  */
1253   dwarf2_append_unwinders (gdbarch);
1254 
1255   frame_base_set_default (gdbarch, &m68k_frame_base);
1256 
1257   /* Hook in ABI-specific overrides, if they have been registered.  */
1258   gdbarch_init_osabi (info, gdbarch);
1259 
1260   /* Now we have tuned the configuration, set a few final things,
1261      based on what the OS ABI has told us.  */
1262 
1263   if (tdep->jb_pc >= 0)
1264     set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1265 
1266   frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
1267 
1268   if (tdesc_data)
1269     tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1270 
1271   return gdbarch;
1272 }
1273 
1274 
1275 static void
1276 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1277 {
1278   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1279 
1280   if (tdep == NULL)
1281     return;
1282 }
1283 
1284 void _initialize_m68k_tdep ();
1285 void
1286 _initialize_m68k_tdep ()
1287 {
1288   gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1289 }
1290