xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/m32r-tdep.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /* Target-dependent code for Renesas M32R, for GDB.
2 
3    Copyright (C) 1996-2015 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "inferior.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "osabi.h"
33 #include "language.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 
40 #include "m32r-tdep.h"
41 
42 /* Local functions */
43 
44 extern void _initialize_m32r_tdep (void);
45 
46 static CORE_ADDR
47 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
48 {
49   /* Align to the size of an instruction (so that they can safely be
50      pushed onto the stack.  */
51   return sp & ~3;
52 }
53 
54 
55 /* Breakpoints
56 
57    The little endian mode of M32R is unique.  In most of architectures,
58    two 16-bit instructions, A and B, are placed as the following:
59 
60    Big endian:
61    A0 A1 B0 B1
62 
63    Little endian:
64    A1 A0 B1 B0
65 
66    In M32R, they are placed like this:
67 
68    Big endian:
69    A0 A1 B0 B1
70 
71    Little endian:
72    B1 B0 A1 A0
73 
74    This is because M32R always fetches instructions in 32-bit.
75 
76    The following functions take care of this behavior.  */
77 
78 static int
79 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
80 			       struct bp_target_info *bp_tgt)
81 {
82   CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
83   int val;
84   gdb_byte buf[4];
85   gdb_byte contents_cache[4];
86   gdb_byte bp_entry[] = { 0x10, 0xf1 };	/* dpt */
87 
88   /* Save the memory contents.  */
89   val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
90   if (val != 0)
91     return val;			/* return error */
92 
93   memcpy (bp_tgt->shadow_contents, contents_cache, 4);
94   bp_tgt->placed_size = bp_tgt->shadow_len = 4;
95 
96   /* Determine appropriate breakpoint contents and size for this address.  */
97   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
98     {
99       if ((addr & 3) == 0)
100 	{
101 	  buf[0] = bp_entry[0];
102 	  buf[1] = bp_entry[1];
103 	  buf[2] = contents_cache[2] & 0x7f;
104 	  buf[3] = contents_cache[3];
105 	}
106       else
107 	{
108 	  buf[0] = contents_cache[0];
109 	  buf[1] = contents_cache[1];
110 	  buf[2] = bp_entry[0];
111 	  buf[3] = bp_entry[1];
112 	}
113     }
114   else				/* little-endian */
115     {
116       if ((addr & 3) == 0)
117 	{
118 	  buf[0] = contents_cache[0];
119 	  buf[1] = contents_cache[1] & 0x7f;
120 	  buf[2] = bp_entry[1];
121 	  buf[3] = bp_entry[0];
122 	}
123       else
124 	{
125 	  buf[0] = bp_entry[1];
126 	  buf[1] = bp_entry[0];
127 	  buf[2] = contents_cache[2];
128 	  buf[3] = contents_cache[3];
129 	}
130     }
131 
132   /* Write the breakpoint.  */
133   val = target_write_memory (addr & 0xfffffffc, buf, 4);
134   return val;
135 }
136 
137 static int
138 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
139 			       struct bp_target_info *bp_tgt)
140 {
141   CORE_ADDR addr = bp_tgt->placed_address;
142   int val;
143   gdb_byte buf[4];
144   gdb_byte *contents_cache = bp_tgt->shadow_contents;
145 
146   buf[0] = contents_cache[0];
147   buf[1] = contents_cache[1];
148   buf[2] = contents_cache[2];
149   buf[3] = contents_cache[3];
150 
151   /* Remove parallel bit.  */
152   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
153     {
154       if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
155 	buf[2] &= 0x7f;
156     }
157   else				/* little-endian */
158     {
159       if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
160 	buf[1] &= 0x7f;
161     }
162 
163   /* Write contents.  */
164   val = target_write_raw_memory (addr & 0xfffffffc, buf, 4);
165   return val;
166 }
167 
168 static const gdb_byte *
169 m32r_breakpoint_from_pc (struct gdbarch *gdbarch,
170 			 CORE_ADDR *pcptr, int *lenptr)
171 {
172   static gdb_byte be_bp_entry[] = {
173     0x10, 0xf1, 0x70, 0x00
174   };	/* dpt -> nop */
175   static gdb_byte le_bp_entry[] = {
176     0x00, 0x70, 0xf1, 0x10
177   };	/* dpt -> nop */
178   gdb_byte *bp;
179 
180   /* Determine appropriate breakpoint.  */
181   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
182     {
183       if ((*pcptr & 3) == 0)
184 	{
185 	  bp = be_bp_entry;
186 	  *lenptr = 4;
187 	}
188       else
189 	{
190 	  bp = be_bp_entry;
191 	  *lenptr = 2;
192 	}
193     }
194   else
195     {
196       if ((*pcptr & 3) == 0)
197 	{
198 	  bp = le_bp_entry;
199 	  *lenptr = 4;
200 	}
201       else
202 	{
203 	  bp = le_bp_entry + 2;
204 	  *lenptr = 2;
205 	}
206     }
207 
208   return bp;
209 }
210 
211 
212 char *m32r_register_names[] = {
213   "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
214   "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
215   "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
216   "evb"
217 };
218 
219 static const char *
220 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
221 {
222   if (reg_nr < 0)
223     return NULL;
224   if (reg_nr >= M32R_NUM_REGS)
225     return NULL;
226   return m32r_register_names[reg_nr];
227 }
228 
229 
230 /* Return the GDB type object for the "standard" data type
231    of data in register N.  */
232 
233 static struct type *
234 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
235 {
236   if (reg_nr == M32R_PC_REGNUM)
237     return builtin_type (gdbarch)->builtin_func_ptr;
238   else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
239     return builtin_type (gdbarch)->builtin_data_ptr;
240   else
241     return builtin_type (gdbarch)->builtin_int32;
242 }
243 
244 
245 /* Write into appropriate registers a function return value
246    of type TYPE, given in virtual format.
247 
248    Things always get returned in RET1_REGNUM, RET2_REGNUM.  */
249 
250 static void
251 m32r_store_return_value (struct type *type, struct regcache *regcache,
252 			 const void *valbuf)
253 {
254   struct gdbarch *gdbarch = get_regcache_arch (regcache);
255   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
256   CORE_ADDR regval;
257   int len = TYPE_LENGTH (type);
258 
259   regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
260   regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
261 
262   if (len > 4)
263     {
264       regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4,
265 					 len - 4, byte_order);
266       regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
267     }
268 }
269 
270 /* This is required by skip_prologue.  The results of decoding a prologue
271    should be cached because this thrashing is getting nuts.  */
272 
273 static int
274 decode_prologue (struct gdbarch *gdbarch,
275 		 CORE_ADDR start_pc, CORE_ADDR scan_limit,
276 		 CORE_ADDR *pl_endptr, unsigned long *framelength)
277 {
278   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
279   unsigned long framesize;
280   int insn;
281   int op1;
282   CORE_ADDR after_prologue = 0;
283   CORE_ADDR after_push = 0;
284   CORE_ADDR after_stack_adjust = 0;
285   CORE_ADDR current_pc;
286   LONGEST return_value;
287 
288   framesize = 0;
289   after_prologue = 0;
290 
291   for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
292     {
293       /* Check if current pc's location is readable.  */
294       if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
295 	return -1;
296 
297       insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
298 
299       if (insn == 0x0000)
300 	break;
301 
302       /* If this is a 32 bit instruction, we dont want to examine its
303          immediate data as though it were an instruction.  */
304       if (current_pc & 0x02)
305 	{
306 	  /* Decode this instruction further.  */
307 	  insn &= 0x7fff;
308 	}
309       else
310 	{
311 	  if (insn & 0x8000)
312 	    {
313 	      if (current_pc == scan_limit)
314 		scan_limit += 2;	/* extend the search */
315 
316 	      current_pc += 2;	/* skip the immediate data */
317 
318 	      /* Check if current pc's location is readable.  */
319 	      if (!safe_read_memory_integer (current_pc, 2, byte_order,
320 					     &return_value))
321 		return -1;
322 
323 	      if (insn == 0x8faf)	/* add3 sp, sp, xxxx */
324 		/* add 16 bit sign-extended offset */
325 		{
326 		  framesize +=
327 		    -((short) read_memory_unsigned_integer (current_pc,
328 							    2, byte_order));
329 		}
330 	      else
331 		{
332 		  if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
333 		      && safe_read_memory_integer (current_pc + 2,
334 						   2, byte_order,
335 						   &return_value)
336 		      && read_memory_unsigned_integer (current_pc + 2,
337 						       2, byte_order)
338 			 == 0x0f24)
339 		    {
340 		      /* Subtract 24 bit sign-extended negative-offset.  */
341 		      insn = read_memory_unsigned_integer (current_pc - 2,
342 							   4, byte_order);
343 		      if (insn & 0x00800000)	/* sign extend */
344 			insn |= 0xff000000;	/* negative */
345 		      else
346 			insn &= 0x00ffffff;	/* positive */
347 		      framesize += insn;
348 		    }
349 		}
350 	      after_push = current_pc + 2;
351 	      continue;
352 	    }
353 	}
354       op1 = insn & 0xf000;	/* Isolate just the first nibble.  */
355 
356       if ((insn & 0xf0ff) == 0x207f)
357 	{			/* st reg, @-sp */
358 	  int regno;
359 	  framesize += 4;
360 	  regno = ((insn >> 8) & 0xf);
361 	  after_prologue = 0;
362 	  continue;
363 	}
364       if ((insn >> 8) == 0x4f)	/* addi sp, xx */
365 	/* Add 8 bit sign-extended offset.  */
366 	{
367 	  int stack_adjust = (signed char) (insn & 0xff);
368 
369 	  /* there are probably two of these stack adjustments:
370 	     1) A negative one in the prologue, and
371 	     2) A positive one in the epilogue.
372 	     We are only interested in the first one.  */
373 
374 	  if (stack_adjust < 0)
375 	    {
376 	      framesize -= stack_adjust;
377 	      after_prologue = 0;
378 	      /* A frameless function may have no "mv fp, sp".
379 	         In that case, this is the end of the prologue.  */
380 	      after_stack_adjust = current_pc + 2;
381 	    }
382 	  continue;
383 	}
384       if (insn == 0x1d8f)
385 	{			/* mv fp, sp */
386 	  after_prologue = current_pc + 2;
387 	  break;		/* end of stack adjustments */
388 	}
389 
390       /* Nop looks like a branch, continue explicitly.  */
391       if (insn == 0x7000)
392 	{
393 	  after_prologue = current_pc + 2;
394 	  continue;		/* nop occurs between pushes.  */
395 	}
396       /* End of prolog if any of these are trap instructions.  */
397       if ((insn & 0xfff0) == 0x10f0)
398 	{
399 	  after_prologue = current_pc;
400 	  break;
401 	}
402       /* End of prolog if any of these are branch instructions.  */
403       if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
404 	{
405 	  after_prologue = current_pc;
406 	  continue;
407 	}
408       /* Some of the branch instructions are mixed with other types.  */
409       if (op1 == 0x1000)
410 	{
411 	  int subop = insn & 0x0ff0;
412 	  if ((subop == 0x0ec0) || (subop == 0x0fc0))
413 	    {
414 	      after_prologue = current_pc;
415 	      continue;		/* jmp , jl */
416 	    }
417 	}
418     }
419 
420   if (framelength)
421     *framelength = framesize;
422 
423   if (current_pc >= scan_limit)
424     {
425       if (pl_endptr)
426 	{
427 	  if (after_stack_adjust != 0)
428 	    /* We did not find a "mv fp,sp", but we DID find
429 	       a stack_adjust.  Is it safe to use that as the
430 	       end of the prologue?  I just don't know.  */
431 	    {
432 	      *pl_endptr = after_stack_adjust;
433 	    }
434 	  else if (after_push != 0)
435 	    /* We did not find a "mv fp,sp", but we DID find
436 	       a push.  Is it safe to use that as the
437 	       end of the prologue?  I just don't know.  */
438 	    {
439 	      *pl_endptr = after_push;
440 	    }
441 	  else
442 	    /* We reached the end of the loop without finding the end
443 	       of the prologue.  No way to win -- we should report
444 	       failure.  The way we do that is to return the original
445 	       start_pc.  GDB will set a breakpoint at the start of
446 	       the function (etc.)  */
447 	    *pl_endptr = start_pc;
448 	}
449       return 0;
450     }
451 
452   if (after_prologue == 0)
453     after_prologue = current_pc;
454 
455   if (pl_endptr)
456     *pl_endptr = after_prologue;
457 
458   return 0;
459 }				/*  decode_prologue */
460 
461 /* Function: skip_prologue
462    Find end of function prologue.  */
463 
464 #define DEFAULT_SEARCH_LIMIT 128
465 
466 static CORE_ADDR
467 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
468 {
469   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
470   CORE_ADDR func_addr, func_end;
471   struct symtab_and_line sal;
472   LONGEST return_value;
473 
474   /* See what the symbol table says.  */
475 
476   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
477     {
478       sal = find_pc_line (func_addr, 0);
479 
480       if (sal.line != 0 && sal.end <= func_end)
481 	{
482 	  func_end = sal.end;
483 	}
484       else
485 	/* Either there's no line info, or the line after the prologue is after
486 	   the end of the function.  In this case, there probably isn't a
487 	   prologue.  */
488 	{
489 	  func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
490 	}
491     }
492   else
493     func_end = pc + DEFAULT_SEARCH_LIMIT;
494 
495   /* If pc's location is not readable, just quit.  */
496   if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
497     return pc;
498 
499   /* Find the end of prologue.  */
500   if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
501     return pc;
502 
503   return sal.end;
504 }
505 
506 struct m32r_unwind_cache
507 {
508   /* The previous frame's inner most stack address.  Used as this
509      frame ID's stack_addr.  */
510   CORE_ADDR prev_sp;
511   /* The frame's base, optionally used by the high-level debug info.  */
512   CORE_ADDR base;
513   int size;
514   /* How far the SP and r13 (FP) have been offset from the start of
515      the stack frame (as defined by the previous frame's stack
516      pointer).  */
517   LONGEST sp_offset;
518   LONGEST r13_offset;
519   int uses_frame;
520   /* Table indicating the location of each and every register.  */
521   struct trad_frame_saved_reg *saved_regs;
522 };
523 
524 /* Put here the code to store, into fi->saved_regs, the addresses of
525    the saved registers of frame described by FRAME_INFO.  This
526    includes special registers such as pc and fp saved in special ways
527    in the stack frame.  sp is even more special: the address we return
528    for it IS the sp for the next frame.  */
529 
530 static struct m32r_unwind_cache *
531 m32r_frame_unwind_cache (struct frame_info *this_frame,
532 			 void **this_prologue_cache)
533 {
534   CORE_ADDR pc, scan_limit;
535   ULONGEST prev_sp;
536   ULONGEST this_base;
537   unsigned long op;
538   int i;
539   struct m32r_unwind_cache *info;
540 
541 
542   if ((*this_prologue_cache))
543     return (*this_prologue_cache);
544 
545   info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
546   (*this_prologue_cache) = info;
547   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
548 
549   info->size = 0;
550   info->sp_offset = 0;
551   info->uses_frame = 0;
552 
553   scan_limit = get_frame_pc (this_frame);
554   for (pc = get_frame_func (this_frame);
555        pc > 0 && pc < scan_limit; pc += 2)
556     {
557       if ((pc & 2) == 0)
558 	{
559 	  op = get_frame_memory_unsigned (this_frame, pc, 4);
560 	  if ((op & 0x80000000) == 0x80000000)
561 	    {
562 	      /* 32-bit instruction */
563 	      if ((op & 0xffff0000) == 0x8faf0000)
564 		{
565 		  /* add3 sp,sp,xxxx */
566 		  short n = op & 0xffff;
567 		  info->sp_offset += n;
568 		}
569 	      else if (((op >> 8) == 0xe4)
570 		       && get_frame_memory_unsigned (this_frame, pc + 2,
571 						     2) == 0x0f24)
572 		{
573 		  /* ld24 r4, xxxxxx; sub sp, r4 */
574 		  unsigned long n = op & 0xffffff;
575 		  info->sp_offset += n;
576 		  pc += 2;	/* skip sub instruction */
577 		}
578 
579 	      if (pc == scan_limit)
580 		scan_limit += 2;	/* extend the search */
581 	      pc += 2;		/* skip the immediate data */
582 	      continue;
583 	    }
584 	}
585 
586       /* 16-bit instructions */
587       op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
588       if ((op & 0xf0ff) == 0x207f)
589 	{
590 	  /* st rn, @-sp */
591 	  int regno = ((op >> 8) & 0xf);
592 	  info->sp_offset -= 4;
593 	  info->saved_regs[regno].addr = info->sp_offset;
594 	}
595       else if ((op & 0xff00) == 0x4f00)
596 	{
597 	  /* addi sp, xx */
598 	  int n = (signed char) (op & 0xff);
599 	  info->sp_offset += n;
600 	}
601       else if (op == 0x1d8f)
602 	{
603 	  /* mv fp, sp */
604 	  info->uses_frame = 1;
605 	  info->r13_offset = info->sp_offset;
606 	  break;		/* end of stack adjustments */
607 	}
608       else if ((op & 0xfff0) == 0x10f0)
609 	{
610 	  /* End of prologue if this is a trap instruction.  */
611 	  break;		/* End of stack adjustments.  */
612 	}
613     }
614 
615   info->size = -info->sp_offset;
616 
617   /* Compute the previous frame's stack pointer (which is also the
618      frame's ID's stack address), and this frame's base pointer.  */
619   if (info->uses_frame)
620     {
621       /* The SP was moved to the FP.  This indicates that a new frame
622          was created.  Get THIS frame's FP value by unwinding it from
623          the next frame.  */
624       this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
625       /* The FP points at the last saved register.  Adjust the FP back
626          to before the first saved register giving the SP.  */
627       prev_sp = this_base + info->size;
628     }
629   else
630     {
631       /* Assume that the FP is this frame's SP but with that pushed
632          stack space added back.  */
633       this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
634       prev_sp = this_base + info->size;
635     }
636 
637   /* Convert that SP/BASE into real addresses.  */
638   info->prev_sp = prev_sp;
639   info->base = this_base;
640 
641   /* Adjust all the saved registers so that they contain addresses and
642      not offsets.  */
643   for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
644     if (trad_frame_addr_p (info->saved_regs, i))
645       info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
646 
647   /* The call instruction moves the caller's PC in the callee's LR.
648      Since this is an unwind, do the reverse.  Copy the location of LR
649      into PC (the address / regnum) so that a request for PC will be
650      converted into a request for the LR.  */
651   info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
652 
653   /* The previous frame's SP needed to be computed.  Save the computed
654      value.  */
655   trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
656 
657   return info;
658 }
659 
660 static CORE_ADDR
661 m32r_read_pc (struct regcache *regcache)
662 {
663   ULONGEST pc;
664   regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
665   return pc;
666 }
667 
668 static CORE_ADDR
669 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
670 {
671   return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
672 }
673 
674 
675 static CORE_ADDR
676 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
677 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
678 		      struct value **args, CORE_ADDR sp, int struct_return,
679 		      CORE_ADDR struct_addr)
680 {
681   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
682   int stack_offset, stack_alloc;
683   int argreg = ARG1_REGNUM;
684   int argnum;
685   struct type *type;
686   enum type_code typecode;
687   CORE_ADDR regval;
688   gdb_byte *val;
689   gdb_byte valbuf[MAX_REGISTER_SIZE];
690   int len;
691 
692   /* First force sp to a 4-byte alignment.  */
693   sp = sp & ~3;
694 
695   /* Set the return address.  For the m32r, the return breakpoint is
696      always at BP_ADDR.  */
697   regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
698 
699   /* If STRUCT_RETURN is true, then the struct return address (in
700      STRUCT_ADDR) will consume the first argument-passing register.
701      Both adjust the register count and store that value.  */
702   if (struct_return)
703     {
704       regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
705       argreg++;
706     }
707 
708   /* Now make sure there's space on the stack.  */
709   for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
710     stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
711   sp -= stack_alloc;		/* Make room on stack for args.  */
712 
713   for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
714     {
715       type = value_type (args[argnum]);
716       typecode = TYPE_CODE (type);
717       len = TYPE_LENGTH (type);
718 
719       memset (valbuf, 0, sizeof (valbuf));
720 
721       /* Passes structures that do not fit in 2 registers by reference.  */
722       if (len > 8
723 	  && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
724 	{
725 	  store_unsigned_integer (valbuf, 4, byte_order,
726 				  value_address (args[argnum]));
727 	  typecode = TYPE_CODE_PTR;
728 	  len = 4;
729 	  val = valbuf;
730 	}
731       else if (len < 4)
732 	{
733 	  /* Value gets right-justified in the register or stack word.  */
734 	  memcpy (valbuf + (register_size (gdbarch, argreg) - len),
735 		  (gdb_byte *) value_contents (args[argnum]), len);
736 	  val = valbuf;
737 	}
738       else
739 	val = (gdb_byte *) value_contents (args[argnum]);
740 
741       while (len > 0)
742 	{
743 	  if (argreg > ARGN_REGNUM)
744 	    {
745 	      /* Must go on the stack.  */
746 	      write_memory (sp + stack_offset, val, 4);
747 	      stack_offset += 4;
748 	    }
749 	  else if (argreg <= ARGN_REGNUM)
750 	    {
751 	      /* There's room in a register.  */
752 	      regval =
753 		extract_unsigned_integer (val,
754 					  register_size (gdbarch, argreg),
755 					  byte_order);
756 	      regcache_cooked_write_unsigned (regcache, argreg++, regval);
757 	    }
758 
759 	  /* Store the value 4 bytes at a time.  This means that things
760 	     larger than 4 bytes may go partly in registers and partly
761 	     on the stack.  */
762 	  len -= register_size (gdbarch, argreg);
763 	  val += register_size (gdbarch, argreg);
764 	}
765     }
766 
767   /* Finally, update the SP register.  */
768   regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
769 
770   return sp;
771 }
772 
773 
774 /* Given a return value in `regbuf' with a type `valtype',
775    extract and copy its value into `valbuf'.  */
776 
777 static void
778 m32r_extract_return_value (struct type *type, struct regcache *regcache,
779 			   void *dst)
780 {
781   struct gdbarch *gdbarch = get_regcache_arch (regcache);
782   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
783   bfd_byte *valbuf = dst;
784   int len = TYPE_LENGTH (type);
785   ULONGEST tmp;
786 
787   /* By using store_unsigned_integer we avoid having to do
788      anything special for small big-endian values.  */
789   regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
790   store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp);
791 
792   /* Ignore return values more than 8 bytes in size because the m32r
793      returns anything more than 8 bytes in the stack.  */
794   if (len > 4)
795     {
796       regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
797       store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp);
798     }
799 }
800 
801 static enum return_value_convention
802 m32r_return_value (struct gdbarch *gdbarch, struct value *function,
803 		   struct type *valtype, struct regcache *regcache,
804 		   gdb_byte *readbuf, const gdb_byte *writebuf)
805 {
806   if (TYPE_LENGTH (valtype) > 8)
807     return RETURN_VALUE_STRUCT_CONVENTION;
808   else
809     {
810       if (readbuf != NULL)
811 	m32r_extract_return_value (valtype, regcache, readbuf);
812       if (writebuf != NULL)
813 	m32r_store_return_value (valtype, regcache, writebuf);
814       return RETURN_VALUE_REGISTER_CONVENTION;
815     }
816 }
817 
818 
819 
820 static CORE_ADDR
821 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
822 {
823   return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
824 }
825 
826 /* Given a GDB frame, determine the address of the calling function's
827    frame.  This will be used to create a new GDB frame struct.  */
828 
829 static void
830 m32r_frame_this_id (struct frame_info *this_frame,
831 		    void **this_prologue_cache, struct frame_id *this_id)
832 {
833   struct m32r_unwind_cache *info
834     = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
835   CORE_ADDR base;
836   CORE_ADDR func;
837   struct bound_minimal_symbol msym_stack;
838   struct frame_id id;
839 
840   /* The FUNC is easy.  */
841   func = get_frame_func (this_frame);
842 
843   /* Check if the stack is empty.  */
844   msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
845   if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
846     return;
847 
848   /* Hopefully the prologue analysis either correctly determined the
849      frame's base (which is the SP from the previous frame), or set
850      that base to "NULL".  */
851   base = info->prev_sp;
852   if (base == 0)
853     return;
854 
855   id = frame_id_build (base, func);
856   (*this_id) = id;
857 }
858 
859 static struct value *
860 m32r_frame_prev_register (struct frame_info *this_frame,
861 			  void **this_prologue_cache, int regnum)
862 {
863   struct m32r_unwind_cache *info
864     = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
865   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
866 }
867 
868 static const struct frame_unwind m32r_frame_unwind = {
869   NORMAL_FRAME,
870   default_frame_unwind_stop_reason,
871   m32r_frame_this_id,
872   m32r_frame_prev_register,
873   NULL,
874   default_frame_sniffer
875 };
876 
877 static CORE_ADDR
878 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
879 {
880   struct m32r_unwind_cache *info
881     = m32r_frame_unwind_cache (this_frame, this_cache);
882   return info->base;
883 }
884 
885 static const struct frame_base m32r_frame_base = {
886   &m32r_frame_unwind,
887   m32r_frame_base_address,
888   m32r_frame_base_address,
889   m32r_frame_base_address
890 };
891 
892 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
893    frame.  The frame ID's base needs to match the TOS value saved by
894    save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint.  */
895 
896 static struct frame_id
897 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
898 {
899   CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
900   return frame_id_build (sp, get_frame_pc (this_frame));
901 }
902 
903 
904 static gdbarch_init_ftype m32r_gdbarch_init;
905 
906 static struct gdbarch *
907 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
908 {
909   struct gdbarch *gdbarch;
910   struct gdbarch_tdep *tdep;
911 
912   /* If there is already a candidate, use it.  */
913   arches = gdbarch_list_lookup_by_info (arches, &info);
914   if (arches != NULL)
915     return arches->gdbarch;
916 
917   /* Allocate space for the new architecture.  */
918   tdep = XNEW (struct gdbarch_tdep);
919   gdbarch = gdbarch_alloc (&info, tdep);
920 
921   set_gdbarch_read_pc (gdbarch, m32r_read_pc);
922   set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
923 
924   set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
925   set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM);
926   set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
927   set_gdbarch_register_name (gdbarch, m32r_register_name);
928   set_gdbarch_register_type (gdbarch, m32r_register_type);
929 
930   set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
931   set_gdbarch_return_value (gdbarch, m32r_return_value);
932 
933   set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
934   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
935   set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
936   set_gdbarch_memory_insert_breakpoint (gdbarch,
937 					m32r_memory_insert_breakpoint);
938   set_gdbarch_memory_remove_breakpoint (gdbarch,
939 					m32r_memory_remove_breakpoint);
940 
941   set_gdbarch_frame_align (gdbarch, m32r_frame_align);
942 
943   frame_base_set_default (gdbarch, &m32r_frame_base);
944 
945   /* Methods for saving / extracting a dummy frame's ID.  The ID's
946      stack address must match the SP value returned by
947      PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos.  */
948   set_gdbarch_dummy_id (gdbarch, m32r_dummy_id);
949 
950   /* Return the unwound PC value.  */
951   set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
952 
953   set_gdbarch_print_insn (gdbarch, print_insn_m32r);
954 
955   /* Hook in ABI-specific overrides, if they have been registered.  */
956   gdbarch_init_osabi (info, gdbarch);
957 
958   /* Hook in the default unwinders.  */
959   frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
960 
961   /* Support simple overlay manager.  */
962   set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
963 
964   return gdbarch;
965 }
966 
967 void
968 _initialize_m32r_tdep (void)
969 {
970   register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
971 }
972