1 /* Target-dependent code for Renesas M32R, for GDB. 2 3 Copyright (C) 1996-2015 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "frame.h" 22 #include "frame-unwind.h" 23 #include "frame-base.h" 24 #include "symtab.h" 25 #include "gdbtypes.h" 26 #include "gdbcmd.h" 27 #include "gdbcore.h" 28 #include "value.h" 29 #include "inferior.h" 30 #include "symfile.h" 31 #include "objfiles.h" 32 #include "osabi.h" 33 #include "language.h" 34 #include "arch-utils.h" 35 #include "regcache.h" 36 #include "trad-frame.h" 37 #include "dis-asm.h" 38 #include "objfiles.h" 39 40 #include "m32r-tdep.h" 41 42 /* Local functions */ 43 44 extern void _initialize_m32r_tdep (void); 45 46 static CORE_ADDR 47 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) 48 { 49 /* Align to the size of an instruction (so that they can safely be 50 pushed onto the stack. */ 51 return sp & ~3; 52 } 53 54 55 /* Breakpoints 56 57 The little endian mode of M32R is unique. In most of architectures, 58 two 16-bit instructions, A and B, are placed as the following: 59 60 Big endian: 61 A0 A1 B0 B1 62 63 Little endian: 64 A1 A0 B1 B0 65 66 In M32R, they are placed like this: 67 68 Big endian: 69 A0 A1 B0 B1 70 71 Little endian: 72 B1 B0 A1 A0 73 74 This is because M32R always fetches instructions in 32-bit. 75 76 The following functions take care of this behavior. */ 77 78 static int 79 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch, 80 struct bp_target_info *bp_tgt) 81 { 82 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address; 83 int val; 84 gdb_byte buf[4]; 85 gdb_byte contents_cache[4]; 86 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */ 87 88 /* Save the memory contents. */ 89 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4); 90 if (val != 0) 91 return val; /* return error */ 92 93 memcpy (bp_tgt->shadow_contents, contents_cache, 4); 94 bp_tgt->placed_size = bp_tgt->shadow_len = 4; 95 96 /* Determine appropriate breakpoint contents and size for this address. */ 97 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 98 { 99 if ((addr & 3) == 0) 100 { 101 buf[0] = bp_entry[0]; 102 buf[1] = bp_entry[1]; 103 buf[2] = contents_cache[2] & 0x7f; 104 buf[3] = contents_cache[3]; 105 } 106 else 107 { 108 buf[0] = contents_cache[0]; 109 buf[1] = contents_cache[1]; 110 buf[2] = bp_entry[0]; 111 buf[3] = bp_entry[1]; 112 } 113 } 114 else /* little-endian */ 115 { 116 if ((addr & 3) == 0) 117 { 118 buf[0] = contents_cache[0]; 119 buf[1] = contents_cache[1] & 0x7f; 120 buf[2] = bp_entry[1]; 121 buf[3] = bp_entry[0]; 122 } 123 else 124 { 125 buf[0] = bp_entry[1]; 126 buf[1] = bp_entry[0]; 127 buf[2] = contents_cache[2]; 128 buf[3] = contents_cache[3]; 129 } 130 } 131 132 /* Write the breakpoint. */ 133 val = target_write_memory (addr & 0xfffffffc, buf, 4); 134 return val; 135 } 136 137 static int 138 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch, 139 struct bp_target_info *bp_tgt) 140 { 141 CORE_ADDR addr = bp_tgt->placed_address; 142 int val; 143 gdb_byte buf[4]; 144 gdb_byte *contents_cache = bp_tgt->shadow_contents; 145 146 buf[0] = contents_cache[0]; 147 buf[1] = contents_cache[1]; 148 buf[2] = contents_cache[2]; 149 buf[3] = contents_cache[3]; 150 151 /* Remove parallel bit. */ 152 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 153 { 154 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0) 155 buf[2] &= 0x7f; 156 } 157 else /* little-endian */ 158 { 159 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0) 160 buf[1] &= 0x7f; 161 } 162 163 /* Write contents. */ 164 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4); 165 return val; 166 } 167 168 static const gdb_byte * 169 m32r_breakpoint_from_pc (struct gdbarch *gdbarch, 170 CORE_ADDR *pcptr, int *lenptr) 171 { 172 static gdb_byte be_bp_entry[] = { 173 0x10, 0xf1, 0x70, 0x00 174 }; /* dpt -> nop */ 175 static gdb_byte le_bp_entry[] = { 176 0x00, 0x70, 0xf1, 0x10 177 }; /* dpt -> nop */ 178 gdb_byte *bp; 179 180 /* Determine appropriate breakpoint. */ 181 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 182 { 183 if ((*pcptr & 3) == 0) 184 { 185 bp = be_bp_entry; 186 *lenptr = 4; 187 } 188 else 189 { 190 bp = be_bp_entry; 191 *lenptr = 2; 192 } 193 } 194 else 195 { 196 if ((*pcptr & 3) == 0) 197 { 198 bp = le_bp_entry; 199 *lenptr = 4; 200 } 201 else 202 { 203 bp = le_bp_entry + 2; 204 *lenptr = 2; 205 } 206 } 207 208 return bp; 209 } 210 211 212 char *m32r_register_names[] = { 213 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 214 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", 215 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch", 216 "evb" 217 }; 218 219 static const char * 220 m32r_register_name (struct gdbarch *gdbarch, int reg_nr) 221 { 222 if (reg_nr < 0) 223 return NULL; 224 if (reg_nr >= M32R_NUM_REGS) 225 return NULL; 226 return m32r_register_names[reg_nr]; 227 } 228 229 230 /* Return the GDB type object for the "standard" data type 231 of data in register N. */ 232 233 static struct type * 234 m32r_register_type (struct gdbarch *gdbarch, int reg_nr) 235 { 236 if (reg_nr == M32R_PC_REGNUM) 237 return builtin_type (gdbarch)->builtin_func_ptr; 238 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM) 239 return builtin_type (gdbarch)->builtin_data_ptr; 240 else 241 return builtin_type (gdbarch)->builtin_int32; 242 } 243 244 245 /* Write into appropriate registers a function return value 246 of type TYPE, given in virtual format. 247 248 Things always get returned in RET1_REGNUM, RET2_REGNUM. */ 249 250 static void 251 m32r_store_return_value (struct type *type, struct regcache *regcache, 252 const void *valbuf) 253 { 254 struct gdbarch *gdbarch = get_regcache_arch (regcache); 255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 256 CORE_ADDR regval; 257 int len = TYPE_LENGTH (type); 258 259 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order); 260 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval); 261 262 if (len > 4) 263 { 264 regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4, 265 len - 4, byte_order); 266 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval); 267 } 268 } 269 270 /* This is required by skip_prologue. The results of decoding a prologue 271 should be cached because this thrashing is getting nuts. */ 272 273 static int 274 decode_prologue (struct gdbarch *gdbarch, 275 CORE_ADDR start_pc, CORE_ADDR scan_limit, 276 CORE_ADDR *pl_endptr, unsigned long *framelength) 277 { 278 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 279 unsigned long framesize; 280 int insn; 281 int op1; 282 CORE_ADDR after_prologue = 0; 283 CORE_ADDR after_push = 0; 284 CORE_ADDR after_stack_adjust = 0; 285 CORE_ADDR current_pc; 286 LONGEST return_value; 287 288 framesize = 0; 289 after_prologue = 0; 290 291 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) 292 { 293 /* Check if current pc's location is readable. */ 294 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value)) 295 return -1; 296 297 insn = read_memory_unsigned_integer (current_pc, 2, byte_order); 298 299 if (insn == 0x0000) 300 break; 301 302 /* If this is a 32 bit instruction, we dont want to examine its 303 immediate data as though it were an instruction. */ 304 if (current_pc & 0x02) 305 { 306 /* Decode this instruction further. */ 307 insn &= 0x7fff; 308 } 309 else 310 { 311 if (insn & 0x8000) 312 { 313 if (current_pc == scan_limit) 314 scan_limit += 2; /* extend the search */ 315 316 current_pc += 2; /* skip the immediate data */ 317 318 /* Check if current pc's location is readable. */ 319 if (!safe_read_memory_integer (current_pc, 2, byte_order, 320 &return_value)) 321 return -1; 322 323 if (insn == 0x8faf) /* add3 sp, sp, xxxx */ 324 /* add 16 bit sign-extended offset */ 325 { 326 framesize += 327 -((short) read_memory_unsigned_integer (current_pc, 328 2, byte_order)); 329 } 330 else 331 { 332 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */ 333 && safe_read_memory_integer (current_pc + 2, 334 2, byte_order, 335 &return_value) 336 && read_memory_unsigned_integer (current_pc + 2, 337 2, byte_order) 338 == 0x0f24) 339 { 340 /* Subtract 24 bit sign-extended negative-offset. */ 341 insn = read_memory_unsigned_integer (current_pc - 2, 342 4, byte_order); 343 if (insn & 0x00800000) /* sign extend */ 344 insn |= 0xff000000; /* negative */ 345 else 346 insn &= 0x00ffffff; /* positive */ 347 framesize += insn; 348 } 349 } 350 after_push = current_pc + 2; 351 continue; 352 } 353 } 354 op1 = insn & 0xf000; /* Isolate just the first nibble. */ 355 356 if ((insn & 0xf0ff) == 0x207f) 357 { /* st reg, @-sp */ 358 int regno; 359 framesize += 4; 360 regno = ((insn >> 8) & 0xf); 361 after_prologue = 0; 362 continue; 363 } 364 if ((insn >> 8) == 0x4f) /* addi sp, xx */ 365 /* Add 8 bit sign-extended offset. */ 366 { 367 int stack_adjust = (signed char) (insn & 0xff); 368 369 /* there are probably two of these stack adjustments: 370 1) A negative one in the prologue, and 371 2) A positive one in the epilogue. 372 We are only interested in the first one. */ 373 374 if (stack_adjust < 0) 375 { 376 framesize -= stack_adjust; 377 after_prologue = 0; 378 /* A frameless function may have no "mv fp, sp". 379 In that case, this is the end of the prologue. */ 380 after_stack_adjust = current_pc + 2; 381 } 382 continue; 383 } 384 if (insn == 0x1d8f) 385 { /* mv fp, sp */ 386 after_prologue = current_pc + 2; 387 break; /* end of stack adjustments */ 388 } 389 390 /* Nop looks like a branch, continue explicitly. */ 391 if (insn == 0x7000) 392 { 393 after_prologue = current_pc + 2; 394 continue; /* nop occurs between pushes. */ 395 } 396 /* End of prolog if any of these are trap instructions. */ 397 if ((insn & 0xfff0) == 0x10f0) 398 { 399 after_prologue = current_pc; 400 break; 401 } 402 /* End of prolog if any of these are branch instructions. */ 403 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000)) 404 { 405 after_prologue = current_pc; 406 continue; 407 } 408 /* Some of the branch instructions are mixed with other types. */ 409 if (op1 == 0x1000) 410 { 411 int subop = insn & 0x0ff0; 412 if ((subop == 0x0ec0) || (subop == 0x0fc0)) 413 { 414 after_prologue = current_pc; 415 continue; /* jmp , jl */ 416 } 417 } 418 } 419 420 if (framelength) 421 *framelength = framesize; 422 423 if (current_pc >= scan_limit) 424 { 425 if (pl_endptr) 426 { 427 if (after_stack_adjust != 0) 428 /* We did not find a "mv fp,sp", but we DID find 429 a stack_adjust. Is it safe to use that as the 430 end of the prologue? I just don't know. */ 431 { 432 *pl_endptr = after_stack_adjust; 433 } 434 else if (after_push != 0) 435 /* We did not find a "mv fp,sp", but we DID find 436 a push. Is it safe to use that as the 437 end of the prologue? I just don't know. */ 438 { 439 *pl_endptr = after_push; 440 } 441 else 442 /* We reached the end of the loop without finding the end 443 of the prologue. No way to win -- we should report 444 failure. The way we do that is to return the original 445 start_pc. GDB will set a breakpoint at the start of 446 the function (etc.) */ 447 *pl_endptr = start_pc; 448 } 449 return 0; 450 } 451 452 if (after_prologue == 0) 453 after_prologue = current_pc; 454 455 if (pl_endptr) 456 *pl_endptr = after_prologue; 457 458 return 0; 459 } /* decode_prologue */ 460 461 /* Function: skip_prologue 462 Find end of function prologue. */ 463 464 #define DEFAULT_SEARCH_LIMIT 128 465 466 static CORE_ADDR 467 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 468 { 469 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 470 CORE_ADDR func_addr, func_end; 471 struct symtab_and_line sal; 472 LONGEST return_value; 473 474 /* See what the symbol table says. */ 475 476 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 477 { 478 sal = find_pc_line (func_addr, 0); 479 480 if (sal.line != 0 && sal.end <= func_end) 481 { 482 func_end = sal.end; 483 } 484 else 485 /* Either there's no line info, or the line after the prologue is after 486 the end of the function. In this case, there probably isn't a 487 prologue. */ 488 { 489 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); 490 } 491 } 492 else 493 func_end = pc + DEFAULT_SEARCH_LIMIT; 494 495 /* If pc's location is not readable, just quit. */ 496 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value)) 497 return pc; 498 499 /* Find the end of prologue. */ 500 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0) 501 return pc; 502 503 return sal.end; 504 } 505 506 struct m32r_unwind_cache 507 { 508 /* The previous frame's inner most stack address. Used as this 509 frame ID's stack_addr. */ 510 CORE_ADDR prev_sp; 511 /* The frame's base, optionally used by the high-level debug info. */ 512 CORE_ADDR base; 513 int size; 514 /* How far the SP and r13 (FP) have been offset from the start of 515 the stack frame (as defined by the previous frame's stack 516 pointer). */ 517 LONGEST sp_offset; 518 LONGEST r13_offset; 519 int uses_frame; 520 /* Table indicating the location of each and every register. */ 521 struct trad_frame_saved_reg *saved_regs; 522 }; 523 524 /* Put here the code to store, into fi->saved_regs, the addresses of 525 the saved registers of frame described by FRAME_INFO. This 526 includes special registers such as pc and fp saved in special ways 527 in the stack frame. sp is even more special: the address we return 528 for it IS the sp for the next frame. */ 529 530 static struct m32r_unwind_cache * 531 m32r_frame_unwind_cache (struct frame_info *this_frame, 532 void **this_prologue_cache) 533 { 534 CORE_ADDR pc, scan_limit; 535 ULONGEST prev_sp; 536 ULONGEST this_base; 537 unsigned long op; 538 int i; 539 struct m32r_unwind_cache *info; 540 541 542 if ((*this_prologue_cache)) 543 return (*this_prologue_cache); 544 545 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache); 546 (*this_prologue_cache) = info; 547 info->saved_regs = trad_frame_alloc_saved_regs (this_frame); 548 549 info->size = 0; 550 info->sp_offset = 0; 551 info->uses_frame = 0; 552 553 scan_limit = get_frame_pc (this_frame); 554 for (pc = get_frame_func (this_frame); 555 pc > 0 && pc < scan_limit; pc += 2) 556 { 557 if ((pc & 2) == 0) 558 { 559 op = get_frame_memory_unsigned (this_frame, pc, 4); 560 if ((op & 0x80000000) == 0x80000000) 561 { 562 /* 32-bit instruction */ 563 if ((op & 0xffff0000) == 0x8faf0000) 564 { 565 /* add3 sp,sp,xxxx */ 566 short n = op & 0xffff; 567 info->sp_offset += n; 568 } 569 else if (((op >> 8) == 0xe4) 570 && get_frame_memory_unsigned (this_frame, pc + 2, 571 2) == 0x0f24) 572 { 573 /* ld24 r4, xxxxxx; sub sp, r4 */ 574 unsigned long n = op & 0xffffff; 575 info->sp_offset += n; 576 pc += 2; /* skip sub instruction */ 577 } 578 579 if (pc == scan_limit) 580 scan_limit += 2; /* extend the search */ 581 pc += 2; /* skip the immediate data */ 582 continue; 583 } 584 } 585 586 /* 16-bit instructions */ 587 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff; 588 if ((op & 0xf0ff) == 0x207f) 589 { 590 /* st rn, @-sp */ 591 int regno = ((op >> 8) & 0xf); 592 info->sp_offset -= 4; 593 info->saved_regs[regno].addr = info->sp_offset; 594 } 595 else if ((op & 0xff00) == 0x4f00) 596 { 597 /* addi sp, xx */ 598 int n = (signed char) (op & 0xff); 599 info->sp_offset += n; 600 } 601 else if (op == 0x1d8f) 602 { 603 /* mv fp, sp */ 604 info->uses_frame = 1; 605 info->r13_offset = info->sp_offset; 606 break; /* end of stack adjustments */ 607 } 608 else if ((op & 0xfff0) == 0x10f0) 609 { 610 /* End of prologue if this is a trap instruction. */ 611 break; /* End of stack adjustments. */ 612 } 613 } 614 615 info->size = -info->sp_offset; 616 617 /* Compute the previous frame's stack pointer (which is also the 618 frame's ID's stack address), and this frame's base pointer. */ 619 if (info->uses_frame) 620 { 621 /* The SP was moved to the FP. This indicates that a new frame 622 was created. Get THIS frame's FP value by unwinding it from 623 the next frame. */ 624 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM); 625 /* The FP points at the last saved register. Adjust the FP back 626 to before the first saved register giving the SP. */ 627 prev_sp = this_base + info->size; 628 } 629 else 630 { 631 /* Assume that the FP is this frame's SP but with that pushed 632 stack space added back. */ 633 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); 634 prev_sp = this_base + info->size; 635 } 636 637 /* Convert that SP/BASE into real addresses. */ 638 info->prev_sp = prev_sp; 639 info->base = this_base; 640 641 /* Adjust all the saved registers so that they contain addresses and 642 not offsets. */ 643 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++) 644 if (trad_frame_addr_p (info->saved_regs, i)) 645 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr); 646 647 /* The call instruction moves the caller's PC in the callee's LR. 648 Since this is an unwind, do the reverse. Copy the location of LR 649 into PC (the address / regnum) so that a request for PC will be 650 converted into a request for the LR. */ 651 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM]; 652 653 /* The previous frame's SP needed to be computed. Save the computed 654 value. */ 655 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp); 656 657 return info; 658 } 659 660 static CORE_ADDR 661 m32r_read_pc (struct regcache *regcache) 662 { 663 ULONGEST pc; 664 regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc); 665 return pc; 666 } 667 668 static CORE_ADDR 669 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) 670 { 671 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM); 672 } 673 674 675 static CORE_ADDR 676 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 677 struct regcache *regcache, CORE_ADDR bp_addr, int nargs, 678 struct value **args, CORE_ADDR sp, int struct_return, 679 CORE_ADDR struct_addr) 680 { 681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 682 int stack_offset, stack_alloc; 683 int argreg = ARG1_REGNUM; 684 int argnum; 685 struct type *type; 686 enum type_code typecode; 687 CORE_ADDR regval; 688 gdb_byte *val; 689 gdb_byte valbuf[MAX_REGISTER_SIZE]; 690 int len; 691 692 /* First force sp to a 4-byte alignment. */ 693 sp = sp & ~3; 694 695 /* Set the return address. For the m32r, the return breakpoint is 696 always at BP_ADDR. */ 697 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr); 698 699 /* If STRUCT_RETURN is true, then the struct return address (in 700 STRUCT_ADDR) will consume the first argument-passing register. 701 Both adjust the register count and store that value. */ 702 if (struct_return) 703 { 704 regcache_cooked_write_unsigned (regcache, argreg, struct_addr); 705 argreg++; 706 } 707 708 /* Now make sure there's space on the stack. */ 709 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) 710 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3); 711 sp -= stack_alloc; /* Make room on stack for args. */ 712 713 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) 714 { 715 type = value_type (args[argnum]); 716 typecode = TYPE_CODE (type); 717 len = TYPE_LENGTH (type); 718 719 memset (valbuf, 0, sizeof (valbuf)); 720 721 /* Passes structures that do not fit in 2 registers by reference. */ 722 if (len > 8 723 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) 724 { 725 store_unsigned_integer (valbuf, 4, byte_order, 726 value_address (args[argnum])); 727 typecode = TYPE_CODE_PTR; 728 len = 4; 729 val = valbuf; 730 } 731 else if (len < 4) 732 { 733 /* Value gets right-justified in the register or stack word. */ 734 memcpy (valbuf + (register_size (gdbarch, argreg) - len), 735 (gdb_byte *) value_contents (args[argnum]), len); 736 val = valbuf; 737 } 738 else 739 val = (gdb_byte *) value_contents (args[argnum]); 740 741 while (len > 0) 742 { 743 if (argreg > ARGN_REGNUM) 744 { 745 /* Must go on the stack. */ 746 write_memory (sp + stack_offset, val, 4); 747 stack_offset += 4; 748 } 749 else if (argreg <= ARGN_REGNUM) 750 { 751 /* There's room in a register. */ 752 regval = 753 extract_unsigned_integer (val, 754 register_size (gdbarch, argreg), 755 byte_order); 756 regcache_cooked_write_unsigned (regcache, argreg++, regval); 757 } 758 759 /* Store the value 4 bytes at a time. This means that things 760 larger than 4 bytes may go partly in registers and partly 761 on the stack. */ 762 len -= register_size (gdbarch, argreg); 763 val += register_size (gdbarch, argreg); 764 } 765 } 766 767 /* Finally, update the SP register. */ 768 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp); 769 770 return sp; 771 } 772 773 774 /* Given a return value in `regbuf' with a type `valtype', 775 extract and copy its value into `valbuf'. */ 776 777 static void 778 m32r_extract_return_value (struct type *type, struct regcache *regcache, 779 void *dst) 780 { 781 struct gdbarch *gdbarch = get_regcache_arch (regcache); 782 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 783 bfd_byte *valbuf = dst; 784 int len = TYPE_LENGTH (type); 785 ULONGEST tmp; 786 787 /* By using store_unsigned_integer we avoid having to do 788 anything special for small big-endian values. */ 789 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp); 790 store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp); 791 792 /* Ignore return values more than 8 bytes in size because the m32r 793 returns anything more than 8 bytes in the stack. */ 794 if (len > 4) 795 { 796 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp); 797 store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp); 798 } 799 } 800 801 static enum return_value_convention 802 m32r_return_value (struct gdbarch *gdbarch, struct value *function, 803 struct type *valtype, struct regcache *regcache, 804 gdb_byte *readbuf, const gdb_byte *writebuf) 805 { 806 if (TYPE_LENGTH (valtype) > 8) 807 return RETURN_VALUE_STRUCT_CONVENTION; 808 else 809 { 810 if (readbuf != NULL) 811 m32r_extract_return_value (valtype, regcache, readbuf); 812 if (writebuf != NULL) 813 m32r_store_return_value (valtype, regcache, writebuf); 814 return RETURN_VALUE_REGISTER_CONVENTION; 815 } 816 } 817 818 819 820 static CORE_ADDR 821 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 822 { 823 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM); 824 } 825 826 /* Given a GDB frame, determine the address of the calling function's 827 frame. This will be used to create a new GDB frame struct. */ 828 829 static void 830 m32r_frame_this_id (struct frame_info *this_frame, 831 void **this_prologue_cache, struct frame_id *this_id) 832 { 833 struct m32r_unwind_cache *info 834 = m32r_frame_unwind_cache (this_frame, this_prologue_cache); 835 CORE_ADDR base; 836 CORE_ADDR func; 837 struct bound_minimal_symbol msym_stack; 838 struct frame_id id; 839 840 /* The FUNC is easy. */ 841 func = get_frame_func (this_frame); 842 843 /* Check if the stack is empty. */ 844 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL); 845 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack)) 846 return; 847 848 /* Hopefully the prologue analysis either correctly determined the 849 frame's base (which is the SP from the previous frame), or set 850 that base to "NULL". */ 851 base = info->prev_sp; 852 if (base == 0) 853 return; 854 855 id = frame_id_build (base, func); 856 (*this_id) = id; 857 } 858 859 static struct value * 860 m32r_frame_prev_register (struct frame_info *this_frame, 861 void **this_prologue_cache, int regnum) 862 { 863 struct m32r_unwind_cache *info 864 = m32r_frame_unwind_cache (this_frame, this_prologue_cache); 865 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); 866 } 867 868 static const struct frame_unwind m32r_frame_unwind = { 869 NORMAL_FRAME, 870 default_frame_unwind_stop_reason, 871 m32r_frame_this_id, 872 m32r_frame_prev_register, 873 NULL, 874 default_frame_sniffer 875 }; 876 877 static CORE_ADDR 878 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache) 879 { 880 struct m32r_unwind_cache *info 881 = m32r_frame_unwind_cache (this_frame, this_cache); 882 return info->base; 883 } 884 885 static const struct frame_base m32r_frame_base = { 886 &m32r_frame_unwind, 887 m32r_frame_base_address, 888 m32r_frame_base_address, 889 m32r_frame_base_address 890 }; 891 892 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy 893 frame. The frame ID's base needs to match the TOS value saved by 894 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ 895 896 static struct frame_id 897 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) 898 { 899 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); 900 return frame_id_build (sp, get_frame_pc (this_frame)); 901 } 902 903 904 static gdbarch_init_ftype m32r_gdbarch_init; 905 906 static struct gdbarch * 907 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 908 { 909 struct gdbarch *gdbarch; 910 struct gdbarch_tdep *tdep; 911 912 /* If there is already a candidate, use it. */ 913 arches = gdbarch_list_lookup_by_info (arches, &info); 914 if (arches != NULL) 915 return arches->gdbarch; 916 917 /* Allocate space for the new architecture. */ 918 tdep = XNEW (struct gdbarch_tdep); 919 gdbarch = gdbarch_alloc (&info, tdep); 920 921 set_gdbarch_read_pc (gdbarch, m32r_read_pc); 922 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp); 923 924 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS); 925 set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM); 926 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM); 927 set_gdbarch_register_name (gdbarch, m32r_register_name); 928 set_gdbarch_register_type (gdbarch, m32r_register_type); 929 930 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call); 931 set_gdbarch_return_value (gdbarch, m32r_return_value); 932 933 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue); 934 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 935 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc); 936 set_gdbarch_memory_insert_breakpoint (gdbarch, 937 m32r_memory_insert_breakpoint); 938 set_gdbarch_memory_remove_breakpoint (gdbarch, 939 m32r_memory_remove_breakpoint); 940 941 set_gdbarch_frame_align (gdbarch, m32r_frame_align); 942 943 frame_base_set_default (gdbarch, &m32r_frame_base); 944 945 /* Methods for saving / extracting a dummy frame's ID. The ID's 946 stack address must match the SP value returned by 947 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ 948 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id); 949 950 /* Return the unwound PC value. */ 951 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc); 952 953 set_gdbarch_print_insn (gdbarch, print_insn_m32r); 954 955 /* Hook in ABI-specific overrides, if they have been registered. */ 956 gdbarch_init_osabi (info, gdbarch); 957 958 /* Hook in the default unwinders. */ 959 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind); 960 961 /* Support simple overlay manager. */ 962 set_gdbarch_overlay_update (gdbarch, simple_overlay_update); 963 964 return gdbarch; 965 } 966 967 void 968 _initialize_m32r_tdep (void) 969 { 970 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init); 971 } 972