xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/m32r-tdep.c (revision ccd9df534e375a4366c5b55f23782053c7a98d82)
1 /* Target-dependent code for Renesas M32R, for GDB.
2 
3    Copyright (C) 1996-2020 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "inferior.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "osabi.h"
33 #include "language.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "dis-asm.h"
38 #include "m32r-tdep.h"
39 #include <algorithm>
40 
41 /* The size of the argument registers (r0 - r3) in bytes.  */
42 #define M32R_ARG_REGISTER_SIZE 4
43 
44 /* Local functions */
45 
46 static CORE_ADDR
47 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
48 {
49   /* Align to the size of an instruction (so that they can safely be
50      pushed onto the stack.  */
51   return sp & ~3;
52 }
53 
54 
55 /* Breakpoints
56 
57    The little endian mode of M32R is unique.  In most of architectures,
58    two 16-bit instructions, A and B, are placed as the following:
59 
60    Big endian:
61    A0 A1 B0 B1
62 
63    Little endian:
64    A1 A0 B1 B0
65 
66    In M32R, they are placed like this:
67 
68    Big endian:
69    A0 A1 B0 B1
70 
71    Little endian:
72    B1 B0 A1 A0
73 
74    This is because M32R always fetches instructions in 32-bit.
75 
76    The following functions take care of this behavior.  */
77 
78 static int
79 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
80 			       struct bp_target_info *bp_tgt)
81 {
82   CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
83   int val;
84   gdb_byte buf[4];
85   gdb_byte contents_cache[4];
86   gdb_byte bp_entry[] = { 0x10, 0xf1 };	/* dpt */
87 
88   /* Save the memory contents.  */
89   val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
90   if (val != 0)
91     return val;			/* return error */
92 
93   memcpy (bp_tgt->shadow_contents, contents_cache, 4);
94   bp_tgt->shadow_len = 4;
95 
96   /* Determine appropriate breakpoint contents and size for this address.  */
97   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
98     {
99       if ((addr & 3) == 0)
100 	{
101 	  buf[0] = bp_entry[0];
102 	  buf[1] = bp_entry[1];
103 	  buf[2] = contents_cache[2] & 0x7f;
104 	  buf[3] = contents_cache[3];
105 	}
106       else
107 	{
108 	  buf[0] = contents_cache[0];
109 	  buf[1] = contents_cache[1];
110 	  buf[2] = bp_entry[0];
111 	  buf[3] = bp_entry[1];
112 	}
113     }
114   else				/* little-endian */
115     {
116       if ((addr & 3) == 0)
117 	{
118 	  buf[0] = contents_cache[0];
119 	  buf[1] = contents_cache[1] & 0x7f;
120 	  buf[2] = bp_entry[1];
121 	  buf[3] = bp_entry[0];
122 	}
123       else
124 	{
125 	  buf[0] = bp_entry[1];
126 	  buf[1] = bp_entry[0];
127 	  buf[2] = contents_cache[2];
128 	  buf[3] = contents_cache[3];
129 	}
130     }
131 
132   /* Write the breakpoint.  */
133   val = target_write_memory (addr & 0xfffffffc, buf, 4);
134   return val;
135 }
136 
137 static int
138 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
139 			       struct bp_target_info *bp_tgt)
140 {
141   CORE_ADDR addr = bp_tgt->placed_address;
142   int val;
143   gdb_byte buf[4];
144   gdb_byte *contents_cache = bp_tgt->shadow_contents;
145 
146   buf[0] = contents_cache[0];
147   buf[1] = contents_cache[1];
148   buf[2] = contents_cache[2];
149   buf[3] = contents_cache[3];
150 
151   /* Remove parallel bit.  */
152   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
153     {
154       if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
155 	buf[2] &= 0x7f;
156     }
157   else				/* little-endian */
158     {
159       if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
160 	buf[1] &= 0x7f;
161     }
162 
163   /* Write contents.  */
164   val = target_write_raw_memory (addr & 0xfffffffc, buf, 4);
165   return val;
166 }
167 
168 /* Implement the breakpoint_kind_from_pc gdbarch method.  */
169 
170 static int
171 m32r_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
172 {
173   if ((*pcptr & 3) == 0)
174     return 4;
175   else
176     return 2;
177 }
178 
179 /* Implement the sw_breakpoint_from_kind gdbarch method.  */
180 
181 static const gdb_byte *
182 m32r_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
183 {
184   static gdb_byte be_bp_entry[] = {
185     0x10, 0xf1, 0x70, 0x00
186   };	/* dpt -> nop */
187   static gdb_byte le_bp_entry[] = {
188     0x00, 0x70, 0xf1, 0x10
189   };	/* dpt -> nop */
190 
191   *size = kind;
192 
193   /* Determine appropriate breakpoint.  */
194   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
195     return be_bp_entry;
196   else
197     {
198       if (kind == 4)
199 	return le_bp_entry;
200       else
201 	return le_bp_entry + 2;
202     }
203 }
204 
205 static const char *m32r_register_names[] = {
206   "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
207   "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
208   "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
209   "evb"
210 };
211 
212 static const char *
213 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
214 {
215   if (reg_nr < 0)
216     return NULL;
217   if (reg_nr >= M32R_NUM_REGS)
218     return NULL;
219   return m32r_register_names[reg_nr];
220 }
221 
222 
223 /* Return the GDB type object for the "standard" data type
224    of data in register N.  */
225 
226 static struct type *
227 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
228 {
229   if (reg_nr == M32R_PC_REGNUM)
230     return builtin_type (gdbarch)->builtin_func_ptr;
231   else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
232     return builtin_type (gdbarch)->builtin_data_ptr;
233   else
234     return builtin_type (gdbarch)->builtin_int32;
235 }
236 
237 
238 /* Write into appropriate registers a function return value
239    of type TYPE, given in virtual format.
240 
241    Things always get returned in RET1_REGNUM, RET2_REGNUM.  */
242 
243 static void
244 m32r_store_return_value (struct type *type, struct regcache *regcache,
245 			 const gdb_byte *valbuf)
246 {
247   struct gdbarch *gdbarch = regcache->arch ();
248   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
249   CORE_ADDR regval;
250   int len = TYPE_LENGTH (type);
251 
252   regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
253   regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
254 
255   if (len > 4)
256     {
257       regval = extract_unsigned_integer (valbuf + 4,
258 					 len - 4, byte_order);
259       regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
260     }
261 }
262 
263 /* This is required by skip_prologue.  The results of decoding a prologue
264    should be cached because this thrashing is getting nuts.  */
265 
266 static int
267 decode_prologue (struct gdbarch *gdbarch,
268 		 CORE_ADDR start_pc, CORE_ADDR scan_limit,
269 		 CORE_ADDR *pl_endptr, unsigned long *framelength)
270 {
271   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272   unsigned long framesize;
273   int insn;
274   int op1;
275   CORE_ADDR after_prologue = 0;
276   CORE_ADDR after_push = 0;
277   CORE_ADDR after_stack_adjust = 0;
278   CORE_ADDR current_pc;
279   LONGEST return_value;
280 
281   framesize = 0;
282   after_prologue = 0;
283 
284   for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
285     {
286       /* Check if current pc's location is readable.  */
287       if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
288 	return -1;
289 
290       insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
291 
292       if (insn == 0x0000)
293 	break;
294 
295       /* If this is a 32 bit instruction, we dont want to examine its
296          immediate data as though it were an instruction.  */
297       if (current_pc & 0x02)
298 	{
299 	  /* Decode this instruction further.  */
300 	  insn &= 0x7fff;
301 	}
302       else
303 	{
304 	  if (insn & 0x8000)
305 	    {
306 	      if (current_pc == scan_limit)
307 		scan_limit += 2;	/* extend the search */
308 
309 	      current_pc += 2;	/* skip the immediate data */
310 
311 	      /* Check if current pc's location is readable.  */
312 	      if (!safe_read_memory_integer (current_pc, 2, byte_order,
313 					     &return_value))
314 		return -1;
315 
316 	      if (insn == 0x8faf)	/* add3 sp, sp, xxxx */
317 		/* add 16 bit sign-extended offset */
318 		{
319 		  framesize +=
320 		    -((short) read_memory_unsigned_integer (current_pc,
321 							    2, byte_order));
322 		}
323 	      else
324 		{
325 		  if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
326 		      && safe_read_memory_integer (current_pc + 2,
327 						   2, byte_order,
328 						   &return_value)
329 		      && read_memory_unsigned_integer (current_pc + 2,
330 						       2, byte_order)
331 			 == 0x0f24)
332 		    {
333 		      /* Subtract 24 bit sign-extended negative-offset.  */
334 		      insn = read_memory_unsigned_integer (current_pc - 2,
335 							   4, byte_order);
336 		      if (insn & 0x00800000)	/* sign extend */
337 			insn |= 0xff000000;	/* negative */
338 		      else
339 			insn &= 0x00ffffff;	/* positive */
340 		      framesize += insn;
341 		    }
342 		}
343 	      after_push = current_pc + 2;
344 	      continue;
345 	    }
346 	}
347       op1 = insn & 0xf000;	/* Isolate just the first nibble.  */
348 
349       if ((insn & 0xf0ff) == 0x207f)
350 	{			/* st reg, @-sp */
351 	  framesize += 4;
352 	  after_prologue = 0;
353 	  continue;
354 	}
355       if ((insn >> 8) == 0x4f)	/* addi sp, xx */
356 	/* Add 8 bit sign-extended offset.  */
357 	{
358 	  int stack_adjust = (signed char) (insn & 0xff);
359 
360 	  /* there are probably two of these stack adjustments:
361 	     1) A negative one in the prologue, and
362 	     2) A positive one in the epilogue.
363 	     We are only interested in the first one.  */
364 
365 	  if (stack_adjust < 0)
366 	    {
367 	      framesize -= stack_adjust;
368 	      after_prologue = 0;
369 	      /* A frameless function may have no "mv fp, sp".
370 	         In that case, this is the end of the prologue.  */
371 	      after_stack_adjust = current_pc + 2;
372 	    }
373 	  continue;
374 	}
375       if (insn == 0x1d8f)
376 	{			/* mv fp, sp */
377 	  after_prologue = current_pc + 2;
378 	  break;		/* end of stack adjustments */
379 	}
380 
381       /* Nop looks like a branch, continue explicitly.  */
382       if (insn == 0x7000)
383 	{
384 	  after_prologue = current_pc + 2;
385 	  continue;		/* nop occurs between pushes.  */
386 	}
387       /* End of prolog if any of these are trap instructions.  */
388       if ((insn & 0xfff0) == 0x10f0)
389 	{
390 	  after_prologue = current_pc;
391 	  break;
392 	}
393       /* End of prolog if any of these are branch instructions.  */
394       if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
395 	{
396 	  after_prologue = current_pc;
397 	  continue;
398 	}
399       /* Some of the branch instructions are mixed with other types.  */
400       if (op1 == 0x1000)
401 	{
402 	  int subop = insn & 0x0ff0;
403 	  if ((subop == 0x0ec0) || (subop == 0x0fc0))
404 	    {
405 	      after_prologue = current_pc;
406 	      continue;		/* jmp , jl */
407 	    }
408 	}
409     }
410 
411   if (framelength)
412     *framelength = framesize;
413 
414   if (current_pc >= scan_limit)
415     {
416       if (pl_endptr)
417 	{
418 	  if (after_stack_adjust != 0)
419 	    /* We did not find a "mv fp,sp", but we DID find
420 	       a stack_adjust.  Is it safe to use that as the
421 	       end of the prologue?  I just don't know.  */
422 	    {
423 	      *pl_endptr = after_stack_adjust;
424 	    }
425 	  else if (after_push != 0)
426 	    /* We did not find a "mv fp,sp", but we DID find
427 	       a push.  Is it safe to use that as the
428 	       end of the prologue?  I just don't know.  */
429 	    {
430 	      *pl_endptr = after_push;
431 	    }
432 	  else
433 	    /* We reached the end of the loop without finding the end
434 	       of the prologue.  No way to win -- we should report
435 	       failure.  The way we do that is to return the original
436 	       start_pc.  GDB will set a breakpoint at the start of
437 	       the function (etc.)  */
438 	    *pl_endptr = start_pc;
439 	}
440       return 0;
441     }
442 
443   if (after_prologue == 0)
444     after_prologue = current_pc;
445 
446   if (pl_endptr)
447     *pl_endptr = after_prologue;
448 
449   return 0;
450 }				/*  decode_prologue */
451 
452 /* Function: skip_prologue
453    Find end of function prologue.  */
454 
455 #define DEFAULT_SEARCH_LIMIT 128
456 
457 static CORE_ADDR
458 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
459 {
460   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
461   CORE_ADDR func_addr, func_end;
462   struct symtab_and_line sal;
463   LONGEST return_value;
464 
465   /* See what the symbol table says.  */
466 
467   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
468     {
469       sal = find_pc_line (func_addr, 0);
470 
471       if (sal.line != 0 && sal.end <= func_end)
472 	{
473 	  func_end = sal.end;
474 	}
475       else
476 	/* Either there's no line info, or the line after the prologue is after
477 	   the end of the function.  In this case, there probably isn't a
478 	   prologue.  */
479 	{
480 	  func_end = std::min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
481 	}
482     }
483   else
484     func_end = pc + DEFAULT_SEARCH_LIMIT;
485 
486   /* If pc's location is not readable, just quit.  */
487   if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
488     return pc;
489 
490   /* Find the end of prologue.  */
491   if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
492     return pc;
493 
494   return sal.end;
495 }
496 
497 struct m32r_unwind_cache
498 {
499   /* The previous frame's inner most stack address.  Used as this
500      frame ID's stack_addr.  */
501   CORE_ADDR prev_sp;
502   /* The frame's base, optionally used by the high-level debug info.  */
503   CORE_ADDR base;
504   int size;
505   /* How far the SP and r13 (FP) have been offset from the start of
506      the stack frame (as defined by the previous frame's stack
507      pointer).  */
508   LONGEST sp_offset;
509   LONGEST r13_offset;
510   int uses_frame;
511   /* Table indicating the location of each and every register.  */
512   struct trad_frame_saved_reg *saved_regs;
513 };
514 
515 /* Put here the code to store, into fi->saved_regs, the addresses of
516    the saved registers of frame described by FRAME_INFO.  This
517    includes special registers such as pc and fp saved in special ways
518    in the stack frame.  sp is even more special: the address we return
519    for it IS the sp for the next frame.  */
520 
521 static struct m32r_unwind_cache *
522 m32r_frame_unwind_cache (struct frame_info *this_frame,
523 			 void **this_prologue_cache)
524 {
525   CORE_ADDR pc, scan_limit;
526   ULONGEST prev_sp;
527   ULONGEST this_base;
528   unsigned long op;
529   int i;
530   struct m32r_unwind_cache *info;
531 
532 
533   if ((*this_prologue_cache))
534     return (struct m32r_unwind_cache *) (*this_prologue_cache);
535 
536   info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
537   (*this_prologue_cache) = info;
538   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
539 
540   info->size = 0;
541   info->sp_offset = 0;
542   info->uses_frame = 0;
543 
544   scan_limit = get_frame_pc (this_frame);
545   for (pc = get_frame_func (this_frame);
546        pc > 0 && pc < scan_limit; pc += 2)
547     {
548       if ((pc & 2) == 0)
549 	{
550 	  op = get_frame_memory_unsigned (this_frame, pc, 4);
551 	  if ((op & 0x80000000) == 0x80000000)
552 	    {
553 	      /* 32-bit instruction */
554 	      if ((op & 0xffff0000) == 0x8faf0000)
555 		{
556 		  /* add3 sp,sp,xxxx */
557 		  short n = op & 0xffff;
558 		  info->sp_offset += n;
559 		}
560 	      else if (((op >> 8) == 0xe4)
561 		       && get_frame_memory_unsigned (this_frame, pc + 2,
562 						     2) == 0x0f24)
563 		{
564 		  /* ld24 r4, xxxxxx; sub sp, r4 */
565 		  unsigned long n = op & 0xffffff;
566 		  info->sp_offset += n;
567 		  pc += 2;	/* skip sub instruction */
568 		}
569 
570 	      if (pc == scan_limit)
571 		scan_limit += 2;	/* extend the search */
572 	      pc += 2;		/* skip the immediate data */
573 	      continue;
574 	    }
575 	}
576 
577       /* 16-bit instructions */
578       op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
579       if ((op & 0xf0ff) == 0x207f)
580 	{
581 	  /* st rn, @-sp */
582 	  int regno = ((op >> 8) & 0xf);
583 	  info->sp_offset -= 4;
584 	  info->saved_regs[regno].addr = info->sp_offset;
585 	}
586       else if ((op & 0xff00) == 0x4f00)
587 	{
588 	  /* addi sp, xx */
589 	  int n = (signed char) (op & 0xff);
590 	  info->sp_offset += n;
591 	}
592       else if (op == 0x1d8f)
593 	{
594 	  /* mv fp, sp */
595 	  info->uses_frame = 1;
596 	  info->r13_offset = info->sp_offset;
597 	  break;		/* end of stack adjustments */
598 	}
599       else if ((op & 0xfff0) == 0x10f0)
600 	{
601 	  /* End of prologue if this is a trap instruction.  */
602 	  break;		/* End of stack adjustments.  */
603 	}
604     }
605 
606   info->size = -info->sp_offset;
607 
608   /* Compute the previous frame's stack pointer (which is also the
609      frame's ID's stack address), and this frame's base pointer.  */
610   if (info->uses_frame)
611     {
612       /* The SP was moved to the FP.  This indicates that a new frame
613          was created.  Get THIS frame's FP value by unwinding it from
614          the next frame.  */
615       this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
616       /* The FP points at the last saved register.  Adjust the FP back
617          to before the first saved register giving the SP.  */
618       prev_sp = this_base + info->size;
619     }
620   else
621     {
622       /* Assume that the FP is this frame's SP but with that pushed
623          stack space added back.  */
624       this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
625       prev_sp = this_base + info->size;
626     }
627 
628   /* Convert that SP/BASE into real addresses.  */
629   info->prev_sp = prev_sp;
630   info->base = this_base;
631 
632   /* Adjust all the saved registers so that they contain addresses and
633      not offsets.  */
634   for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
635     if (trad_frame_addr_p (info->saved_regs, i))
636       info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
637 
638   /* The call instruction moves the caller's PC in the callee's LR.
639      Since this is an unwind, do the reverse.  Copy the location of LR
640      into PC (the address / regnum) so that a request for PC will be
641      converted into a request for the LR.  */
642   info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
643 
644   /* The previous frame's SP needed to be computed.  Save the computed
645      value.  */
646   trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
647 
648   return info;
649 }
650 
651 static CORE_ADDR
652 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
653 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
654 		      struct value **args, CORE_ADDR sp,
655 		      function_call_return_method return_method,
656 		      CORE_ADDR struct_addr)
657 {
658   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
659   int stack_offset, stack_alloc;
660   int argreg = ARG1_REGNUM;
661   int argnum;
662   struct type *type;
663   enum type_code typecode;
664   CORE_ADDR regval;
665   gdb_byte *val;
666   gdb_byte valbuf[M32R_ARG_REGISTER_SIZE];
667   int len;
668 
669   /* First force sp to a 4-byte alignment.  */
670   sp = sp & ~3;
671 
672   /* Set the return address.  For the m32r, the return breakpoint is
673      always at BP_ADDR.  */
674   regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
675 
676   /* If STRUCT_RETURN is true, then the struct return address (in
677      STRUCT_ADDR) will consume the first argument-passing register.
678      Both adjust the register count and store that value.  */
679   if (return_method == return_method_struct)
680     {
681       regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
682       argreg++;
683     }
684 
685   /* Now make sure there's space on the stack.  */
686   for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
687     stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
688   sp -= stack_alloc;		/* Make room on stack for args.  */
689 
690   for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
691     {
692       type = value_type (args[argnum]);
693       typecode = type->code ();
694       len = TYPE_LENGTH (type);
695 
696       memset (valbuf, 0, sizeof (valbuf));
697 
698       /* Passes structures that do not fit in 2 registers by reference.  */
699       if (len > 8
700 	  && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
701 	{
702 	  store_unsigned_integer (valbuf, 4, byte_order,
703 				  value_address (args[argnum]));
704 	  typecode = TYPE_CODE_PTR;
705 	  len = 4;
706 	  val = valbuf;
707 	}
708       else if (len < 4)
709 	{
710 	  /* Value gets right-justified in the register or stack word.  */
711 	  memcpy (valbuf + (register_size (gdbarch, argreg) - len),
712 		  (gdb_byte *) value_contents (args[argnum]), len);
713 	  val = valbuf;
714 	}
715       else
716 	val = (gdb_byte *) value_contents (args[argnum]);
717 
718       while (len > 0)
719 	{
720 	  if (argreg > ARGN_REGNUM)
721 	    {
722 	      /* Must go on the stack.  */
723 	      write_memory (sp + stack_offset, val, 4);
724 	      stack_offset += 4;
725 	    }
726 	  else if (argreg <= ARGN_REGNUM)
727 	    {
728 	      /* There's room in a register.  */
729 	      regval =
730 		extract_unsigned_integer (val,
731 					  register_size (gdbarch, argreg),
732 					  byte_order);
733 	      regcache_cooked_write_unsigned (regcache, argreg++, regval);
734 	    }
735 
736 	  /* Store the value 4 bytes at a time.  This means that things
737 	     larger than 4 bytes may go partly in registers and partly
738 	     on the stack.  */
739 	  len -= register_size (gdbarch, argreg);
740 	  val += register_size (gdbarch, argreg);
741 	}
742     }
743 
744   /* Finally, update the SP register.  */
745   regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
746 
747   return sp;
748 }
749 
750 
751 /* Given a return value in `regbuf' with a type `valtype',
752    extract and copy its value into `valbuf'.  */
753 
754 static void
755 m32r_extract_return_value (struct type *type, struct regcache *regcache,
756 			   gdb_byte *dst)
757 {
758   struct gdbarch *gdbarch = regcache->arch ();
759   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
760   int len = TYPE_LENGTH (type);
761   ULONGEST tmp;
762 
763   /* By using store_unsigned_integer we avoid having to do
764      anything special for small big-endian values.  */
765   regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
766   store_unsigned_integer (dst, (len > 4 ? len - 4 : len), byte_order, tmp);
767 
768   /* Ignore return values more than 8 bytes in size because the m32r
769      returns anything more than 8 bytes in the stack.  */
770   if (len > 4)
771     {
772       regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
773       store_unsigned_integer (dst + len - 4, 4, byte_order, tmp);
774     }
775 }
776 
777 static enum return_value_convention
778 m32r_return_value (struct gdbarch *gdbarch, struct value *function,
779 		   struct type *valtype, struct regcache *regcache,
780 		   gdb_byte *readbuf, const gdb_byte *writebuf)
781 {
782   if (TYPE_LENGTH (valtype) > 8)
783     return RETURN_VALUE_STRUCT_CONVENTION;
784   else
785     {
786       if (readbuf != NULL)
787 	m32r_extract_return_value (valtype, regcache, readbuf);
788       if (writebuf != NULL)
789 	m32r_store_return_value (valtype, regcache, writebuf);
790       return RETURN_VALUE_REGISTER_CONVENTION;
791     }
792 }
793 
794 /* Given a GDB frame, determine the address of the calling function's
795    frame.  This will be used to create a new GDB frame struct.  */
796 
797 static void
798 m32r_frame_this_id (struct frame_info *this_frame,
799 		    void **this_prologue_cache, struct frame_id *this_id)
800 {
801   struct m32r_unwind_cache *info
802     = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
803   CORE_ADDR base;
804   CORE_ADDR func;
805   struct bound_minimal_symbol msym_stack;
806   struct frame_id id;
807 
808   /* The FUNC is easy.  */
809   func = get_frame_func (this_frame);
810 
811   /* Check if the stack is empty.  */
812   msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
813   if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
814     return;
815 
816   /* Hopefully the prologue analysis either correctly determined the
817      frame's base (which is the SP from the previous frame), or set
818      that base to "NULL".  */
819   base = info->prev_sp;
820   if (base == 0)
821     return;
822 
823   id = frame_id_build (base, func);
824   (*this_id) = id;
825 }
826 
827 static struct value *
828 m32r_frame_prev_register (struct frame_info *this_frame,
829 			  void **this_prologue_cache, int regnum)
830 {
831   struct m32r_unwind_cache *info
832     = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
833   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
834 }
835 
836 static const struct frame_unwind m32r_frame_unwind = {
837   NORMAL_FRAME,
838   default_frame_unwind_stop_reason,
839   m32r_frame_this_id,
840   m32r_frame_prev_register,
841   NULL,
842   default_frame_sniffer
843 };
844 
845 static CORE_ADDR
846 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
847 {
848   struct m32r_unwind_cache *info
849     = m32r_frame_unwind_cache (this_frame, this_cache);
850   return info->base;
851 }
852 
853 static const struct frame_base m32r_frame_base = {
854   &m32r_frame_unwind,
855   m32r_frame_base_address,
856   m32r_frame_base_address,
857   m32r_frame_base_address
858 };
859 
860 static gdbarch_init_ftype m32r_gdbarch_init;
861 
862 static struct gdbarch *
863 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
864 {
865   struct gdbarch *gdbarch;
866   struct gdbarch_tdep *tdep;
867 
868   /* If there is already a candidate, use it.  */
869   arches = gdbarch_list_lookup_by_info (arches, &info);
870   if (arches != NULL)
871     return arches->gdbarch;
872 
873   /* Allocate space for the new architecture.  */
874   tdep = XCNEW (struct gdbarch_tdep);
875   gdbarch = gdbarch_alloc (&info, tdep);
876 
877   set_gdbarch_wchar_bit (gdbarch, 16);
878   set_gdbarch_wchar_signed (gdbarch, 0);
879 
880   set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
881   set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM);
882   set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
883   set_gdbarch_register_name (gdbarch, m32r_register_name);
884   set_gdbarch_register_type (gdbarch, m32r_register_type);
885 
886   set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
887   set_gdbarch_return_value (gdbarch, m32r_return_value);
888 
889   set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
890   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
891   set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32r_breakpoint_kind_from_pc);
892   set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32r_sw_breakpoint_from_kind);
893   set_gdbarch_memory_insert_breakpoint (gdbarch,
894 					m32r_memory_insert_breakpoint);
895   set_gdbarch_memory_remove_breakpoint (gdbarch,
896 					m32r_memory_remove_breakpoint);
897 
898   set_gdbarch_frame_align (gdbarch, m32r_frame_align);
899 
900   frame_base_set_default (gdbarch, &m32r_frame_base);
901 
902   /* Hook in ABI-specific overrides, if they have been registered.  */
903   gdbarch_init_osabi (info, gdbarch);
904 
905   /* Hook in the default unwinders.  */
906   frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
907 
908   /* Support simple overlay manager.  */
909   set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
910 
911   return gdbarch;
912 }
913 
914 void _initialize_m32r_tdep ();
915 void
916 _initialize_m32r_tdep ()
917 {
918   register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
919 }
920