1 /* Target-dependent code for Renesas M32R, for GDB. 2 3 Copyright (C) 1996-2016 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "frame.h" 22 #include "frame-unwind.h" 23 #include "frame-base.h" 24 #include "symtab.h" 25 #include "gdbtypes.h" 26 #include "gdbcmd.h" 27 #include "gdbcore.h" 28 #include "value.h" 29 #include "inferior.h" 30 #include "symfile.h" 31 #include "objfiles.h" 32 #include "osabi.h" 33 #include "language.h" 34 #include "arch-utils.h" 35 #include "regcache.h" 36 #include "trad-frame.h" 37 #include "dis-asm.h" 38 #include "objfiles.h" 39 40 #include "m32r-tdep.h" 41 42 /* Local functions */ 43 44 extern void _initialize_m32r_tdep (void); 45 46 static CORE_ADDR 47 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) 48 { 49 /* Align to the size of an instruction (so that they can safely be 50 pushed onto the stack. */ 51 return sp & ~3; 52 } 53 54 55 /* Breakpoints 56 57 The little endian mode of M32R is unique. In most of architectures, 58 two 16-bit instructions, A and B, are placed as the following: 59 60 Big endian: 61 A0 A1 B0 B1 62 63 Little endian: 64 A1 A0 B1 B0 65 66 In M32R, they are placed like this: 67 68 Big endian: 69 A0 A1 B0 B1 70 71 Little endian: 72 B1 B0 A1 A0 73 74 This is because M32R always fetches instructions in 32-bit. 75 76 The following functions take care of this behavior. */ 77 78 static int 79 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch, 80 struct bp_target_info *bp_tgt) 81 { 82 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address; 83 int val; 84 gdb_byte buf[4]; 85 gdb_byte contents_cache[4]; 86 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */ 87 88 /* Save the memory contents. */ 89 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4); 90 if (val != 0) 91 return val; /* return error */ 92 93 memcpy (bp_tgt->shadow_contents, contents_cache, 4); 94 bp_tgt->placed_size = bp_tgt->shadow_len = 4; 95 96 /* Determine appropriate breakpoint contents and size for this address. */ 97 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 98 { 99 if ((addr & 3) == 0) 100 { 101 buf[0] = bp_entry[0]; 102 buf[1] = bp_entry[1]; 103 buf[2] = contents_cache[2] & 0x7f; 104 buf[3] = contents_cache[3]; 105 } 106 else 107 { 108 buf[0] = contents_cache[0]; 109 buf[1] = contents_cache[1]; 110 buf[2] = bp_entry[0]; 111 buf[3] = bp_entry[1]; 112 } 113 } 114 else /* little-endian */ 115 { 116 if ((addr & 3) == 0) 117 { 118 buf[0] = contents_cache[0]; 119 buf[1] = contents_cache[1] & 0x7f; 120 buf[2] = bp_entry[1]; 121 buf[3] = bp_entry[0]; 122 } 123 else 124 { 125 buf[0] = bp_entry[1]; 126 buf[1] = bp_entry[0]; 127 buf[2] = contents_cache[2]; 128 buf[3] = contents_cache[3]; 129 } 130 } 131 132 /* Write the breakpoint. */ 133 val = target_write_memory (addr & 0xfffffffc, buf, 4); 134 return val; 135 } 136 137 static int 138 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch, 139 struct bp_target_info *bp_tgt) 140 { 141 CORE_ADDR addr = bp_tgt->placed_address; 142 int val; 143 gdb_byte buf[4]; 144 gdb_byte *contents_cache = bp_tgt->shadow_contents; 145 146 buf[0] = contents_cache[0]; 147 buf[1] = contents_cache[1]; 148 buf[2] = contents_cache[2]; 149 buf[3] = contents_cache[3]; 150 151 /* Remove parallel bit. */ 152 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 153 { 154 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0) 155 buf[2] &= 0x7f; 156 } 157 else /* little-endian */ 158 { 159 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0) 160 buf[1] &= 0x7f; 161 } 162 163 /* Write contents. */ 164 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4); 165 return val; 166 } 167 168 static const gdb_byte * 169 m32r_breakpoint_from_pc (struct gdbarch *gdbarch, 170 CORE_ADDR *pcptr, int *lenptr) 171 { 172 static gdb_byte be_bp_entry[] = { 173 0x10, 0xf1, 0x70, 0x00 174 }; /* dpt -> nop */ 175 static gdb_byte le_bp_entry[] = { 176 0x00, 0x70, 0xf1, 0x10 177 }; /* dpt -> nop */ 178 gdb_byte *bp; 179 180 /* Determine appropriate breakpoint. */ 181 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 182 { 183 if ((*pcptr & 3) == 0) 184 { 185 bp = be_bp_entry; 186 *lenptr = 4; 187 } 188 else 189 { 190 bp = be_bp_entry; 191 *lenptr = 2; 192 } 193 } 194 else 195 { 196 if ((*pcptr & 3) == 0) 197 { 198 bp = le_bp_entry; 199 *lenptr = 4; 200 } 201 else 202 { 203 bp = le_bp_entry + 2; 204 *lenptr = 2; 205 } 206 } 207 208 return bp; 209 } 210 211 212 char *m32r_register_names[] = { 213 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 214 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", 215 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch", 216 "evb" 217 }; 218 219 static const char * 220 m32r_register_name (struct gdbarch *gdbarch, int reg_nr) 221 { 222 if (reg_nr < 0) 223 return NULL; 224 if (reg_nr >= M32R_NUM_REGS) 225 return NULL; 226 return m32r_register_names[reg_nr]; 227 } 228 229 230 /* Return the GDB type object for the "standard" data type 231 of data in register N. */ 232 233 static struct type * 234 m32r_register_type (struct gdbarch *gdbarch, int reg_nr) 235 { 236 if (reg_nr == M32R_PC_REGNUM) 237 return builtin_type (gdbarch)->builtin_func_ptr; 238 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM) 239 return builtin_type (gdbarch)->builtin_data_ptr; 240 else 241 return builtin_type (gdbarch)->builtin_int32; 242 } 243 244 245 /* Write into appropriate registers a function return value 246 of type TYPE, given in virtual format. 247 248 Things always get returned in RET1_REGNUM, RET2_REGNUM. */ 249 250 static void 251 m32r_store_return_value (struct type *type, struct regcache *regcache, 252 const gdb_byte *valbuf) 253 { 254 struct gdbarch *gdbarch = get_regcache_arch (regcache); 255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 256 CORE_ADDR regval; 257 int len = TYPE_LENGTH (type); 258 259 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order); 260 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval); 261 262 if (len > 4) 263 { 264 regval = extract_unsigned_integer (valbuf + 4, 265 len - 4, byte_order); 266 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval); 267 } 268 } 269 270 /* This is required by skip_prologue. The results of decoding a prologue 271 should be cached because this thrashing is getting nuts. */ 272 273 static int 274 decode_prologue (struct gdbarch *gdbarch, 275 CORE_ADDR start_pc, CORE_ADDR scan_limit, 276 CORE_ADDR *pl_endptr, unsigned long *framelength) 277 { 278 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 279 unsigned long framesize; 280 int insn; 281 int op1; 282 CORE_ADDR after_prologue = 0; 283 CORE_ADDR after_push = 0; 284 CORE_ADDR after_stack_adjust = 0; 285 CORE_ADDR current_pc; 286 LONGEST return_value; 287 288 framesize = 0; 289 after_prologue = 0; 290 291 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) 292 { 293 /* Check if current pc's location is readable. */ 294 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value)) 295 return -1; 296 297 insn = read_memory_unsigned_integer (current_pc, 2, byte_order); 298 299 if (insn == 0x0000) 300 break; 301 302 /* If this is a 32 bit instruction, we dont want to examine its 303 immediate data as though it were an instruction. */ 304 if (current_pc & 0x02) 305 { 306 /* Decode this instruction further. */ 307 insn &= 0x7fff; 308 } 309 else 310 { 311 if (insn & 0x8000) 312 { 313 if (current_pc == scan_limit) 314 scan_limit += 2; /* extend the search */ 315 316 current_pc += 2; /* skip the immediate data */ 317 318 /* Check if current pc's location is readable. */ 319 if (!safe_read_memory_integer (current_pc, 2, byte_order, 320 &return_value)) 321 return -1; 322 323 if (insn == 0x8faf) /* add3 sp, sp, xxxx */ 324 /* add 16 bit sign-extended offset */ 325 { 326 framesize += 327 -((short) read_memory_unsigned_integer (current_pc, 328 2, byte_order)); 329 } 330 else 331 { 332 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */ 333 && safe_read_memory_integer (current_pc + 2, 334 2, byte_order, 335 &return_value) 336 && read_memory_unsigned_integer (current_pc + 2, 337 2, byte_order) 338 == 0x0f24) 339 { 340 /* Subtract 24 bit sign-extended negative-offset. */ 341 insn = read_memory_unsigned_integer (current_pc - 2, 342 4, byte_order); 343 if (insn & 0x00800000) /* sign extend */ 344 insn |= 0xff000000; /* negative */ 345 else 346 insn &= 0x00ffffff; /* positive */ 347 framesize += insn; 348 } 349 } 350 after_push = current_pc + 2; 351 continue; 352 } 353 } 354 op1 = insn & 0xf000; /* Isolate just the first nibble. */ 355 356 if ((insn & 0xf0ff) == 0x207f) 357 { /* st reg, @-sp */ 358 framesize += 4; 359 after_prologue = 0; 360 continue; 361 } 362 if ((insn >> 8) == 0x4f) /* addi sp, xx */ 363 /* Add 8 bit sign-extended offset. */ 364 { 365 int stack_adjust = (signed char) (insn & 0xff); 366 367 /* there are probably two of these stack adjustments: 368 1) A negative one in the prologue, and 369 2) A positive one in the epilogue. 370 We are only interested in the first one. */ 371 372 if (stack_adjust < 0) 373 { 374 framesize -= stack_adjust; 375 after_prologue = 0; 376 /* A frameless function may have no "mv fp, sp". 377 In that case, this is the end of the prologue. */ 378 after_stack_adjust = current_pc + 2; 379 } 380 continue; 381 } 382 if (insn == 0x1d8f) 383 { /* mv fp, sp */ 384 after_prologue = current_pc + 2; 385 break; /* end of stack adjustments */ 386 } 387 388 /* Nop looks like a branch, continue explicitly. */ 389 if (insn == 0x7000) 390 { 391 after_prologue = current_pc + 2; 392 continue; /* nop occurs between pushes. */ 393 } 394 /* End of prolog if any of these are trap instructions. */ 395 if ((insn & 0xfff0) == 0x10f0) 396 { 397 after_prologue = current_pc; 398 break; 399 } 400 /* End of prolog if any of these are branch instructions. */ 401 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000)) 402 { 403 after_prologue = current_pc; 404 continue; 405 } 406 /* Some of the branch instructions are mixed with other types. */ 407 if (op1 == 0x1000) 408 { 409 int subop = insn & 0x0ff0; 410 if ((subop == 0x0ec0) || (subop == 0x0fc0)) 411 { 412 after_prologue = current_pc; 413 continue; /* jmp , jl */ 414 } 415 } 416 } 417 418 if (framelength) 419 *framelength = framesize; 420 421 if (current_pc >= scan_limit) 422 { 423 if (pl_endptr) 424 { 425 if (after_stack_adjust != 0) 426 /* We did not find a "mv fp,sp", but we DID find 427 a stack_adjust. Is it safe to use that as the 428 end of the prologue? I just don't know. */ 429 { 430 *pl_endptr = after_stack_adjust; 431 } 432 else if (after_push != 0) 433 /* We did not find a "mv fp,sp", but we DID find 434 a push. Is it safe to use that as the 435 end of the prologue? I just don't know. */ 436 { 437 *pl_endptr = after_push; 438 } 439 else 440 /* We reached the end of the loop without finding the end 441 of the prologue. No way to win -- we should report 442 failure. The way we do that is to return the original 443 start_pc. GDB will set a breakpoint at the start of 444 the function (etc.) */ 445 *pl_endptr = start_pc; 446 } 447 return 0; 448 } 449 450 if (after_prologue == 0) 451 after_prologue = current_pc; 452 453 if (pl_endptr) 454 *pl_endptr = after_prologue; 455 456 return 0; 457 } /* decode_prologue */ 458 459 /* Function: skip_prologue 460 Find end of function prologue. */ 461 462 #define DEFAULT_SEARCH_LIMIT 128 463 464 static CORE_ADDR 465 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 466 { 467 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 468 CORE_ADDR func_addr, func_end; 469 struct symtab_and_line sal; 470 LONGEST return_value; 471 472 /* See what the symbol table says. */ 473 474 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 475 { 476 sal = find_pc_line (func_addr, 0); 477 478 if (sal.line != 0 && sal.end <= func_end) 479 { 480 func_end = sal.end; 481 } 482 else 483 /* Either there's no line info, or the line after the prologue is after 484 the end of the function. In this case, there probably isn't a 485 prologue. */ 486 { 487 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); 488 } 489 } 490 else 491 func_end = pc + DEFAULT_SEARCH_LIMIT; 492 493 /* If pc's location is not readable, just quit. */ 494 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value)) 495 return pc; 496 497 /* Find the end of prologue. */ 498 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0) 499 return pc; 500 501 return sal.end; 502 } 503 504 struct m32r_unwind_cache 505 { 506 /* The previous frame's inner most stack address. Used as this 507 frame ID's stack_addr. */ 508 CORE_ADDR prev_sp; 509 /* The frame's base, optionally used by the high-level debug info. */ 510 CORE_ADDR base; 511 int size; 512 /* How far the SP and r13 (FP) have been offset from the start of 513 the stack frame (as defined by the previous frame's stack 514 pointer). */ 515 LONGEST sp_offset; 516 LONGEST r13_offset; 517 int uses_frame; 518 /* Table indicating the location of each and every register. */ 519 struct trad_frame_saved_reg *saved_regs; 520 }; 521 522 /* Put here the code to store, into fi->saved_regs, the addresses of 523 the saved registers of frame described by FRAME_INFO. This 524 includes special registers such as pc and fp saved in special ways 525 in the stack frame. sp is even more special: the address we return 526 for it IS the sp for the next frame. */ 527 528 static struct m32r_unwind_cache * 529 m32r_frame_unwind_cache (struct frame_info *this_frame, 530 void **this_prologue_cache) 531 { 532 CORE_ADDR pc, scan_limit; 533 ULONGEST prev_sp; 534 ULONGEST this_base; 535 unsigned long op; 536 int i; 537 struct m32r_unwind_cache *info; 538 539 540 if ((*this_prologue_cache)) 541 return (struct m32r_unwind_cache *) (*this_prologue_cache); 542 543 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache); 544 (*this_prologue_cache) = info; 545 info->saved_regs = trad_frame_alloc_saved_regs (this_frame); 546 547 info->size = 0; 548 info->sp_offset = 0; 549 info->uses_frame = 0; 550 551 scan_limit = get_frame_pc (this_frame); 552 for (pc = get_frame_func (this_frame); 553 pc > 0 && pc < scan_limit; pc += 2) 554 { 555 if ((pc & 2) == 0) 556 { 557 op = get_frame_memory_unsigned (this_frame, pc, 4); 558 if ((op & 0x80000000) == 0x80000000) 559 { 560 /* 32-bit instruction */ 561 if ((op & 0xffff0000) == 0x8faf0000) 562 { 563 /* add3 sp,sp,xxxx */ 564 short n = op & 0xffff; 565 info->sp_offset += n; 566 } 567 else if (((op >> 8) == 0xe4) 568 && get_frame_memory_unsigned (this_frame, pc + 2, 569 2) == 0x0f24) 570 { 571 /* ld24 r4, xxxxxx; sub sp, r4 */ 572 unsigned long n = op & 0xffffff; 573 info->sp_offset += n; 574 pc += 2; /* skip sub instruction */ 575 } 576 577 if (pc == scan_limit) 578 scan_limit += 2; /* extend the search */ 579 pc += 2; /* skip the immediate data */ 580 continue; 581 } 582 } 583 584 /* 16-bit instructions */ 585 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff; 586 if ((op & 0xf0ff) == 0x207f) 587 { 588 /* st rn, @-sp */ 589 int regno = ((op >> 8) & 0xf); 590 info->sp_offset -= 4; 591 info->saved_regs[regno].addr = info->sp_offset; 592 } 593 else if ((op & 0xff00) == 0x4f00) 594 { 595 /* addi sp, xx */ 596 int n = (signed char) (op & 0xff); 597 info->sp_offset += n; 598 } 599 else if (op == 0x1d8f) 600 { 601 /* mv fp, sp */ 602 info->uses_frame = 1; 603 info->r13_offset = info->sp_offset; 604 break; /* end of stack adjustments */ 605 } 606 else if ((op & 0xfff0) == 0x10f0) 607 { 608 /* End of prologue if this is a trap instruction. */ 609 break; /* End of stack adjustments. */ 610 } 611 } 612 613 info->size = -info->sp_offset; 614 615 /* Compute the previous frame's stack pointer (which is also the 616 frame's ID's stack address), and this frame's base pointer. */ 617 if (info->uses_frame) 618 { 619 /* The SP was moved to the FP. This indicates that a new frame 620 was created. Get THIS frame's FP value by unwinding it from 621 the next frame. */ 622 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM); 623 /* The FP points at the last saved register. Adjust the FP back 624 to before the first saved register giving the SP. */ 625 prev_sp = this_base + info->size; 626 } 627 else 628 { 629 /* Assume that the FP is this frame's SP but with that pushed 630 stack space added back. */ 631 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); 632 prev_sp = this_base + info->size; 633 } 634 635 /* Convert that SP/BASE into real addresses. */ 636 info->prev_sp = prev_sp; 637 info->base = this_base; 638 639 /* Adjust all the saved registers so that they contain addresses and 640 not offsets. */ 641 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++) 642 if (trad_frame_addr_p (info->saved_regs, i)) 643 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr); 644 645 /* The call instruction moves the caller's PC in the callee's LR. 646 Since this is an unwind, do the reverse. Copy the location of LR 647 into PC (the address / regnum) so that a request for PC will be 648 converted into a request for the LR. */ 649 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM]; 650 651 /* The previous frame's SP needed to be computed. Save the computed 652 value. */ 653 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp); 654 655 return info; 656 } 657 658 static CORE_ADDR 659 m32r_read_pc (struct regcache *regcache) 660 { 661 ULONGEST pc; 662 regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc); 663 return pc; 664 } 665 666 static CORE_ADDR 667 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) 668 { 669 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM); 670 } 671 672 673 static CORE_ADDR 674 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 675 struct regcache *regcache, CORE_ADDR bp_addr, int nargs, 676 struct value **args, CORE_ADDR sp, int struct_return, 677 CORE_ADDR struct_addr) 678 { 679 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 680 int stack_offset, stack_alloc; 681 int argreg = ARG1_REGNUM; 682 int argnum; 683 struct type *type; 684 enum type_code typecode; 685 CORE_ADDR regval; 686 gdb_byte *val; 687 gdb_byte valbuf[MAX_REGISTER_SIZE]; 688 int len; 689 690 /* First force sp to a 4-byte alignment. */ 691 sp = sp & ~3; 692 693 /* Set the return address. For the m32r, the return breakpoint is 694 always at BP_ADDR. */ 695 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr); 696 697 /* If STRUCT_RETURN is true, then the struct return address (in 698 STRUCT_ADDR) will consume the first argument-passing register. 699 Both adjust the register count and store that value. */ 700 if (struct_return) 701 { 702 regcache_cooked_write_unsigned (regcache, argreg, struct_addr); 703 argreg++; 704 } 705 706 /* Now make sure there's space on the stack. */ 707 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) 708 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3); 709 sp -= stack_alloc; /* Make room on stack for args. */ 710 711 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) 712 { 713 type = value_type (args[argnum]); 714 typecode = TYPE_CODE (type); 715 len = TYPE_LENGTH (type); 716 717 memset (valbuf, 0, sizeof (valbuf)); 718 719 /* Passes structures that do not fit in 2 registers by reference. */ 720 if (len > 8 721 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) 722 { 723 store_unsigned_integer (valbuf, 4, byte_order, 724 value_address (args[argnum])); 725 typecode = TYPE_CODE_PTR; 726 len = 4; 727 val = valbuf; 728 } 729 else if (len < 4) 730 { 731 /* Value gets right-justified in the register or stack word. */ 732 memcpy (valbuf + (register_size (gdbarch, argreg) - len), 733 (gdb_byte *) value_contents (args[argnum]), len); 734 val = valbuf; 735 } 736 else 737 val = (gdb_byte *) value_contents (args[argnum]); 738 739 while (len > 0) 740 { 741 if (argreg > ARGN_REGNUM) 742 { 743 /* Must go on the stack. */ 744 write_memory (sp + stack_offset, val, 4); 745 stack_offset += 4; 746 } 747 else if (argreg <= ARGN_REGNUM) 748 { 749 /* There's room in a register. */ 750 regval = 751 extract_unsigned_integer (val, 752 register_size (gdbarch, argreg), 753 byte_order); 754 regcache_cooked_write_unsigned (regcache, argreg++, regval); 755 } 756 757 /* Store the value 4 bytes at a time. This means that things 758 larger than 4 bytes may go partly in registers and partly 759 on the stack. */ 760 len -= register_size (gdbarch, argreg); 761 val += register_size (gdbarch, argreg); 762 } 763 } 764 765 /* Finally, update the SP register. */ 766 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp); 767 768 return sp; 769 } 770 771 772 /* Given a return value in `regbuf' with a type `valtype', 773 extract and copy its value into `valbuf'. */ 774 775 static void 776 m32r_extract_return_value (struct type *type, struct regcache *regcache, 777 gdb_byte *dst) 778 { 779 struct gdbarch *gdbarch = get_regcache_arch (regcache); 780 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 781 int len = TYPE_LENGTH (type); 782 ULONGEST tmp; 783 784 /* By using store_unsigned_integer we avoid having to do 785 anything special for small big-endian values. */ 786 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp); 787 store_unsigned_integer (dst, (len > 4 ? len - 4 : len), byte_order, tmp); 788 789 /* Ignore return values more than 8 bytes in size because the m32r 790 returns anything more than 8 bytes in the stack. */ 791 if (len > 4) 792 { 793 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp); 794 store_unsigned_integer (dst + len - 4, 4, byte_order, tmp); 795 } 796 } 797 798 static enum return_value_convention 799 m32r_return_value (struct gdbarch *gdbarch, struct value *function, 800 struct type *valtype, struct regcache *regcache, 801 gdb_byte *readbuf, const gdb_byte *writebuf) 802 { 803 if (TYPE_LENGTH (valtype) > 8) 804 return RETURN_VALUE_STRUCT_CONVENTION; 805 else 806 { 807 if (readbuf != NULL) 808 m32r_extract_return_value (valtype, regcache, readbuf); 809 if (writebuf != NULL) 810 m32r_store_return_value (valtype, regcache, writebuf); 811 return RETURN_VALUE_REGISTER_CONVENTION; 812 } 813 } 814 815 816 817 static CORE_ADDR 818 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 819 { 820 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM); 821 } 822 823 /* Given a GDB frame, determine the address of the calling function's 824 frame. This will be used to create a new GDB frame struct. */ 825 826 static void 827 m32r_frame_this_id (struct frame_info *this_frame, 828 void **this_prologue_cache, struct frame_id *this_id) 829 { 830 struct m32r_unwind_cache *info 831 = m32r_frame_unwind_cache (this_frame, this_prologue_cache); 832 CORE_ADDR base; 833 CORE_ADDR func; 834 struct bound_minimal_symbol msym_stack; 835 struct frame_id id; 836 837 /* The FUNC is easy. */ 838 func = get_frame_func (this_frame); 839 840 /* Check if the stack is empty. */ 841 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL); 842 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack)) 843 return; 844 845 /* Hopefully the prologue analysis either correctly determined the 846 frame's base (which is the SP from the previous frame), or set 847 that base to "NULL". */ 848 base = info->prev_sp; 849 if (base == 0) 850 return; 851 852 id = frame_id_build (base, func); 853 (*this_id) = id; 854 } 855 856 static struct value * 857 m32r_frame_prev_register (struct frame_info *this_frame, 858 void **this_prologue_cache, int regnum) 859 { 860 struct m32r_unwind_cache *info 861 = m32r_frame_unwind_cache (this_frame, this_prologue_cache); 862 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); 863 } 864 865 static const struct frame_unwind m32r_frame_unwind = { 866 NORMAL_FRAME, 867 default_frame_unwind_stop_reason, 868 m32r_frame_this_id, 869 m32r_frame_prev_register, 870 NULL, 871 default_frame_sniffer 872 }; 873 874 static CORE_ADDR 875 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache) 876 { 877 struct m32r_unwind_cache *info 878 = m32r_frame_unwind_cache (this_frame, this_cache); 879 return info->base; 880 } 881 882 static const struct frame_base m32r_frame_base = { 883 &m32r_frame_unwind, 884 m32r_frame_base_address, 885 m32r_frame_base_address, 886 m32r_frame_base_address 887 }; 888 889 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy 890 frame. The frame ID's base needs to match the TOS value saved by 891 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ 892 893 static struct frame_id 894 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) 895 { 896 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); 897 return frame_id_build (sp, get_frame_pc (this_frame)); 898 } 899 900 901 static gdbarch_init_ftype m32r_gdbarch_init; 902 903 static struct gdbarch * 904 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 905 { 906 struct gdbarch *gdbarch; 907 struct gdbarch_tdep *tdep; 908 909 /* If there is already a candidate, use it. */ 910 arches = gdbarch_list_lookup_by_info (arches, &info); 911 if (arches != NULL) 912 return arches->gdbarch; 913 914 /* Allocate space for the new architecture. */ 915 tdep = XNEW (struct gdbarch_tdep); 916 gdbarch = gdbarch_alloc (&info, tdep); 917 918 set_gdbarch_read_pc (gdbarch, m32r_read_pc); 919 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp); 920 921 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS); 922 set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM); 923 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM); 924 set_gdbarch_register_name (gdbarch, m32r_register_name); 925 set_gdbarch_register_type (gdbarch, m32r_register_type); 926 927 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call); 928 set_gdbarch_return_value (gdbarch, m32r_return_value); 929 930 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue); 931 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 932 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc); 933 set_gdbarch_memory_insert_breakpoint (gdbarch, 934 m32r_memory_insert_breakpoint); 935 set_gdbarch_memory_remove_breakpoint (gdbarch, 936 m32r_memory_remove_breakpoint); 937 938 set_gdbarch_frame_align (gdbarch, m32r_frame_align); 939 940 frame_base_set_default (gdbarch, &m32r_frame_base); 941 942 /* Methods for saving / extracting a dummy frame's ID. The ID's 943 stack address must match the SP value returned by 944 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ 945 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id); 946 947 /* Return the unwound PC value. */ 948 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc); 949 950 set_gdbarch_print_insn (gdbarch, print_insn_m32r); 951 952 /* Hook in ABI-specific overrides, if they have been registered. */ 953 gdbarch_init_osabi (info, gdbarch); 954 955 /* Hook in the default unwinders. */ 956 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind); 957 958 /* Support simple overlay manager. */ 959 set_gdbarch_overlay_update (gdbarch, simple_overlay_update); 960 961 return gdbarch; 962 } 963 964 void 965 _initialize_m32r_tdep (void) 966 { 967 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init); 968 } 969