1 /* Target-dependent code for Renesas M32R, for GDB. 2 3 Copyright (C) 1996-2019 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "frame.h" 22 #include "frame-unwind.h" 23 #include "frame-base.h" 24 #include "symtab.h" 25 #include "gdbtypes.h" 26 #include "gdbcmd.h" 27 #include "gdbcore.h" 28 #include "value.h" 29 #include "inferior.h" 30 #include "symfile.h" 31 #include "objfiles.h" 32 #include "osabi.h" 33 #include "language.h" 34 #include "arch-utils.h" 35 #include "regcache.h" 36 #include "trad-frame.h" 37 #include "dis-asm.h" 38 #include "m32r-tdep.h" 39 #include <algorithm> 40 41 /* The size of the argument registers (r0 - r3) in bytes. */ 42 #define M32R_ARG_REGISTER_SIZE 4 43 44 /* Local functions */ 45 46 static CORE_ADDR 47 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) 48 { 49 /* Align to the size of an instruction (so that they can safely be 50 pushed onto the stack. */ 51 return sp & ~3; 52 } 53 54 55 /* Breakpoints 56 57 The little endian mode of M32R is unique. In most of architectures, 58 two 16-bit instructions, A and B, are placed as the following: 59 60 Big endian: 61 A0 A1 B0 B1 62 63 Little endian: 64 A1 A0 B1 B0 65 66 In M32R, they are placed like this: 67 68 Big endian: 69 A0 A1 B0 B1 70 71 Little endian: 72 B1 B0 A1 A0 73 74 This is because M32R always fetches instructions in 32-bit. 75 76 The following functions take care of this behavior. */ 77 78 static int 79 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch, 80 struct bp_target_info *bp_tgt) 81 { 82 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address; 83 int val; 84 gdb_byte buf[4]; 85 gdb_byte contents_cache[4]; 86 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */ 87 88 /* Save the memory contents. */ 89 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4); 90 if (val != 0) 91 return val; /* return error */ 92 93 memcpy (bp_tgt->shadow_contents, contents_cache, 4); 94 bp_tgt->shadow_len = 4; 95 96 /* Determine appropriate breakpoint contents and size for this address. */ 97 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 98 { 99 if ((addr & 3) == 0) 100 { 101 buf[0] = bp_entry[0]; 102 buf[1] = bp_entry[1]; 103 buf[2] = contents_cache[2] & 0x7f; 104 buf[3] = contents_cache[3]; 105 } 106 else 107 { 108 buf[0] = contents_cache[0]; 109 buf[1] = contents_cache[1]; 110 buf[2] = bp_entry[0]; 111 buf[3] = bp_entry[1]; 112 } 113 } 114 else /* little-endian */ 115 { 116 if ((addr & 3) == 0) 117 { 118 buf[0] = contents_cache[0]; 119 buf[1] = contents_cache[1] & 0x7f; 120 buf[2] = bp_entry[1]; 121 buf[3] = bp_entry[0]; 122 } 123 else 124 { 125 buf[0] = bp_entry[1]; 126 buf[1] = bp_entry[0]; 127 buf[2] = contents_cache[2]; 128 buf[3] = contents_cache[3]; 129 } 130 } 131 132 /* Write the breakpoint. */ 133 val = target_write_memory (addr & 0xfffffffc, buf, 4); 134 return val; 135 } 136 137 static int 138 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch, 139 struct bp_target_info *bp_tgt) 140 { 141 CORE_ADDR addr = bp_tgt->placed_address; 142 int val; 143 gdb_byte buf[4]; 144 gdb_byte *contents_cache = bp_tgt->shadow_contents; 145 146 buf[0] = contents_cache[0]; 147 buf[1] = contents_cache[1]; 148 buf[2] = contents_cache[2]; 149 buf[3] = contents_cache[3]; 150 151 /* Remove parallel bit. */ 152 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 153 { 154 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0) 155 buf[2] &= 0x7f; 156 } 157 else /* little-endian */ 158 { 159 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0) 160 buf[1] &= 0x7f; 161 } 162 163 /* Write contents. */ 164 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4); 165 return val; 166 } 167 168 /* Implement the breakpoint_kind_from_pc gdbarch method. */ 169 170 static int 171 m32r_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) 172 { 173 if ((*pcptr & 3) == 0) 174 return 4; 175 else 176 return 2; 177 } 178 179 /* Implement the sw_breakpoint_from_kind gdbarch method. */ 180 181 static const gdb_byte * 182 m32r_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) 183 { 184 static gdb_byte be_bp_entry[] = { 185 0x10, 0xf1, 0x70, 0x00 186 }; /* dpt -> nop */ 187 static gdb_byte le_bp_entry[] = { 188 0x00, 0x70, 0xf1, 0x10 189 }; /* dpt -> nop */ 190 191 *size = kind; 192 193 /* Determine appropriate breakpoint. */ 194 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 195 return be_bp_entry; 196 else 197 { 198 if (kind == 4) 199 return le_bp_entry; 200 else 201 return le_bp_entry + 2; 202 } 203 } 204 205 static const char *m32r_register_names[] = { 206 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 207 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", 208 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch", 209 "evb" 210 }; 211 212 static const char * 213 m32r_register_name (struct gdbarch *gdbarch, int reg_nr) 214 { 215 if (reg_nr < 0) 216 return NULL; 217 if (reg_nr >= M32R_NUM_REGS) 218 return NULL; 219 return m32r_register_names[reg_nr]; 220 } 221 222 223 /* Return the GDB type object for the "standard" data type 224 of data in register N. */ 225 226 static struct type * 227 m32r_register_type (struct gdbarch *gdbarch, int reg_nr) 228 { 229 if (reg_nr == M32R_PC_REGNUM) 230 return builtin_type (gdbarch)->builtin_func_ptr; 231 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM) 232 return builtin_type (gdbarch)->builtin_data_ptr; 233 else 234 return builtin_type (gdbarch)->builtin_int32; 235 } 236 237 238 /* Write into appropriate registers a function return value 239 of type TYPE, given in virtual format. 240 241 Things always get returned in RET1_REGNUM, RET2_REGNUM. */ 242 243 static void 244 m32r_store_return_value (struct type *type, struct regcache *regcache, 245 const gdb_byte *valbuf) 246 { 247 struct gdbarch *gdbarch = regcache->arch (); 248 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 249 CORE_ADDR regval; 250 int len = TYPE_LENGTH (type); 251 252 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order); 253 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval); 254 255 if (len > 4) 256 { 257 regval = extract_unsigned_integer (valbuf + 4, 258 len - 4, byte_order); 259 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval); 260 } 261 } 262 263 /* This is required by skip_prologue. The results of decoding a prologue 264 should be cached because this thrashing is getting nuts. */ 265 266 static int 267 decode_prologue (struct gdbarch *gdbarch, 268 CORE_ADDR start_pc, CORE_ADDR scan_limit, 269 CORE_ADDR *pl_endptr, unsigned long *framelength) 270 { 271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 272 unsigned long framesize; 273 int insn; 274 int op1; 275 CORE_ADDR after_prologue = 0; 276 CORE_ADDR after_push = 0; 277 CORE_ADDR after_stack_adjust = 0; 278 CORE_ADDR current_pc; 279 LONGEST return_value; 280 281 framesize = 0; 282 after_prologue = 0; 283 284 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) 285 { 286 /* Check if current pc's location is readable. */ 287 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value)) 288 return -1; 289 290 insn = read_memory_unsigned_integer (current_pc, 2, byte_order); 291 292 if (insn == 0x0000) 293 break; 294 295 /* If this is a 32 bit instruction, we dont want to examine its 296 immediate data as though it were an instruction. */ 297 if (current_pc & 0x02) 298 { 299 /* Decode this instruction further. */ 300 insn &= 0x7fff; 301 } 302 else 303 { 304 if (insn & 0x8000) 305 { 306 if (current_pc == scan_limit) 307 scan_limit += 2; /* extend the search */ 308 309 current_pc += 2; /* skip the immediate data */ 310 311 /* Check if current pc's location is readable. */ 312 if (!safe_read_memory_integer (current_pc, 2, byte_order, 313 &return_value)) 314 return -1; 315 316 if (insn == 0x8faf) /* add3 sp, sp, xxxx */ 317 /* add 16 bit sign-extended offset */ 318 { 319 framesize += 320 -((short) read_memory_unsigned_integer (current_pc, 321 2, byte_order)); 322 } 323 else 324 { 325 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */ 326 && safe_read_memory_integer (current_pc + 2, 327 2, byte_order, 328 &return_value) 329 && read_memory_unsigned_integer (current_pc + 2, 330 2, byte_order) 331 == 0x0f24) 332 { 333 /* Subtract 24 bit sign-extended negative-offset. */ 334 insn = read_memory_unsigned_integer (current_pc - 2, 335 4, byte_order); 336 if (insn & 0x00800000) /* sign extend */ 337 insn |= 0xff000000; /* negative */ 338 else 339 insn &= 0x00ffffff; /* positive */ 340 framesize += insn; 341 } 342 } 343 after_push = current_pc + 2; 344 continue; 345 } 346 } 347 op1 = insn & 0xf000; /* Isolate just the first nibble. */ 348 349 if ((insn & 0xf0ff) == 0x207f) 350 { /* st reg, @-sp */ 351 framesize += 4; 352 after_prologue = 0; 353 continue; 354 } 355 if ((insn >> 8) == 0x4f) /* addi sp, xx */ 356 /* Add 8 bit sign-extended offset. */ 357 { 358 int stack_adjust = (signed char) (insn & 0xff); 359 360 /* there are probably two of these stack adjustments: 361 1) A negative one in the prologue, and 362 2) A positive one in the epilogue. 363 We are only interested in the first one. */ 364 365 if (stack_adjust < 0) 366 { 367 framesize -= stack_adjust; 368 after_prologue = 0; 369 /* A frameless function may have no "mv fp, sp". 370 In that case, this is the end of the prologue. */ 371 after_stack_adjust = current_pc + 2; 372 } 373 continue; 374 } 375 if (insn == 0x1d8f) 376 { /* mv fp, sp */ 377 after_prologue = current_pc + 2; 378 break; /* end of stack adjustments */ 379 } 380 381 /* Nop looks like a branch, continue explicitly. */ 382 if (insn == 0x7000) 383 { 384 after_prologue = current_pc + 2; 385 continue; /* nop occurs between pushes. */ 386 } 387 /* End of prolog if any of these are trap instructions. */ 388 if ((insn & 0xfff0) == 0x10f0) 389 { 390 after_prologue = current_pc; 391 break; 392 } 393 /* End of prolog if any of these are branch instructions. */ 394 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000)) 395 { 396 after_prologue = current_pc; 397 continue; 398 } 399 /* Some of the branch instructions are mixed with other types. */ 400 if (op1 == 0x1000) 401 { 402 int subop = insn & 0x0ff0; 403 if ((subop == 0x0ec0) || (subop == 0x0fc0)) 404 { 405 after_prologue = current_pc; 406 continue; /* jmp , jl */ 407 } 408 } 409 } 410 411 if (framelength) 412 *framelength = framesize; 413 414 if (current_pc >= scan_limit) 415 { 416 if (pl_endptr) 417 { 418 if (after_stack_adjust != 0) 419 /* We did not find a "mv fp,sp", but we DID find 420 a stack_adjust. Is it safe to use that as the 421 end of the prologue? I just don't know. */ 422 { 423 *pl_endptr = after_stack_adjust; 424 } 425 else if (after_push != 0) 426 /* We did not find a "mv fp,sp", but we DID find 427 a push. Is it safe to use that as the 428 end of the prologue? I just don't know. */ 429 { 430 *pl_endptr = after_push; 431 } 432 else 433 /* We reached the end of the loop without finding the end 434 of the prologue. No way to win -- we should report 435 failure. The way we do that is to return the original 436 start_pc. GDB will set a breakpoint at the start of 437 the function (etc.) */ 438 *pl_endptr = start_pc; 439 } 440 return 0; 441 } 442 443 if (after_prologue == 0) 444 after_prologue = current_pc; 445 446 if (pl_endptr) 447 *pl_endptr = after_prologue; 448 449 return 0; 450 } /* decode_prologue */ 451 452 /* Function: skip_prologue 453 Find end of function prologue. */ 454 455 #define DEFAULT_SEARCH_LIMIT 128 456 457 static CORE_ADDR 458 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 459 { 460 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 461 CORE_ADDR func_addr, func_end; 462 struct symtab_and_line sal; 463 LONGEST return_value; 464 465 /* See what the symbol table says. */ 466 467 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 468 { 469 sal = find_pc_line (func_addr, 0); 470 471 if (sal.line != 0 && sal.end <= func_end) 472 { 473 func_end = sal.end; 474 } 475 else 476 /* Either there's no line info, or the line after the prologue is after 477 the end of the function. In this case, there probably isn't a 478 prologue. */ 479 { 480 func_end = std::min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); 481 } 482 } 483 else 484 func_end = pc + DEFAULT_SEARCH_LIMIT; 485 486 /* If pc's location is not readable, just quit. */ 487 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value)) 488 return pc; 489 490 /* Find the end of prologue. */ 491 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0) 492 return pc; 493 494 return sal.end; 495 } 496 497 struct m32r_unwind_cache 498 { 499 /* The previous frame's inner most stack address. Used as this 500 frame ID's stack_addr. */ 501 CORE_ADDR prev_sp; 502 /* The frame's base, optionally used by the high-level debug info. */ 503 CORE_ADDR base; 504 int size; 505 /* How far the SP and r13 (FP) have been offset from the start of 506 the stack frame (as defined by the previous frame's stack 507 pointer). */ 508 LONGEST sp_offset; 509 LONGEST r13_offset; 510 int uses_frame; 511 /* Table indicating the location of each and every register. */ 512 struct trad_frame_saved_reg *saved_regs; 513 }; 514 515 /* Put here the code to store, into fi->saved_regs, the addresses of 516 the saved registers of frame described by FRAME_INFO. This 517 includes special registers such as pc and fp saved in special ways 518 in the stack frame. sp is even more special: the address we return 519 for it IS the sp for the next frame. */ 520 521 static struct m32r_unwind_cache * 522 m32r_frame_unwind_cache (struct frame_info *this_frame, 523 void **this_prologue_cache) 524 { 525 CORE_ADDR pc, scan_limit; 526 ULONGEST prev_sp; 527 ULONGEST this_base; 528 unsigned long op; 529 int i; 530 struct m32r_unwind_cache *info; 531 532 533 if ((*this_prologue_cache)) 534 return (struct m32r_unwind_cache *) (*this_prologue_cache); 535 536 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache); 537 (*this_prologue_cache) = info; 538 info->saved_regs = trad_frame_alloc_saved_regs (this_frame); 539 540 info->size = 0; 541 info->sp_offset = 0; 542 info->uses_frame = 0; 543 544 scan_limit = get_frame_pc (this_frame); 545 for (pc = get_frame_func (this_frame); 546 pc > 0 && pc < scan_limit; pc += 2) 547 { 548 if ((pc & 2) == 0) 549 { 550 op = get_frame_memory_unsigned (this_frame, pc, 4); 551 if ((op & 0x80000000) == 0x80000000) 552 { 553 /* 32-bit instruction */ 554 if ((op & 0xffff0000) == 0x8faf0000) 555 { 556 /* add3 sp,sp,xxxx */ 557 short n = op & 0xffff; 558 info->sp_offset += n; 559 } 560 else if (((op >> 8) == 0xe4) 561 && get_frame_memory_unsigned (this_frame, pc + 2, 562 2) == 0x0f24) 563 { 564 /* ld24 r4, xxxxxx; sub sp, r4 */ 565 unsigned long n = op & 0xffffff; 566 info->sp_offset += n; 567 pc += 2; /* skip sub instruction */ 568 } 569 570 if (pc == scan_limit) 571 scan_limit += 2; /* extend the search */ 572 pc += 2; /* skip the immediate data */ 573 continue; 574 } 575 } 576 577 /* 16-bit instructions */ 578 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff; 579 if ((op & 0xf0ff) == 0x207f) 580 { 581 /* st rn, @-sp */ 582 int regno = ((op >> 8) & 0xf); 583 info->sp_offset -= 4; 584 info->saved_regs[regno].addr = info->sp_offset; 585 } 586 else if ((op & 0xff00) == 0x4f00) 587 { 588 /* addi sp, xx */ 589 int n = (signed char) (op & 0xff); 590 info->sp_offset += n; 591 } 592 else if (op == 0x1d8f) 593 { 594 /* mv fp, sp */ 595 info->uses_frame = 1; 596 info->r13_offset = info->sp_offset; 597 break; /* end of stack adjustments */ 598 } 599 else if ((op & 0xfff0) == 0x10f0) 600 { 601 /* End of prologue if this is a trap instruction. */ 602 break; /* End of stack adjustments. */ 603 } 604 } 605 606 info->size = -info->sp_offset; 607 608 /* Compute the previous frame's stack pointer (which is also the 609 frame's ID's stack address), and this frame's base pointer. */ 610 if (info->uses_frame) 611 { 612 /* The SP was moved to the FP. This indicates that a new frame 613 was created. Get THIS frame's FP value by unwinding it from 614 the next frame. */ 615 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM); 616 /* The FP points at the last saved register. Adjust the FP back 617 to before the first saved register giving the SP. */ 618 prev_sp = this_base + info->size; 619 } 620 else 621 { 622 /* Assume that the FP is this frame's SP but with that pushed 623 stack space added back. */ 624 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); 625 prev_sp = this_base + info->size; 626 } 627 628 /* Convert that SP/BASE into real addresses. */ 629 info->prev_sp = prev_sp; 630 info->base = this_base; 631 632 /* Adjust all the saved registers so that they contain addresses and 633 not offsets. */ 634 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++) 635 if (trad_frame_addr_p (info->saved_regs, i)) 636 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr); 637 638 /* The call instruction moves the caller's PC in the callee's LR. 639 Since this is an unwind, do the reverse. Copy the location of LR 640 into PC (the address / regnum) so that a request for PC will be 641 converted into a request for the LR. */ 642 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM]; 643 644 /* The previous frame's SP needed to be computed. Save the computed 645 value. */ 646 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp); 647 648 return info; 649 } 650 651 static CORE_ADDR 652 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) 653 { 654 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM); 655 } 656 657 658 static CORE_ADDR 659 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 660 struct regcache *regcache, CORE_ADDR bp_addr, int nargs, 661 struct value **args, CORE_ADDR sp, 662 function_call_return_method return_method, 663 CORE_ADDR struct_addr) 664 { 665 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 666 int stack_offset, stack_alloc; 667 int argreg = ARG1_REGNUM; 668 int argnum; 669 struct type *type; 670 enum type_code typecode; 671 CORE_ADDR regval; 672 gdb_byte *val; 673 gdb_byte valbuf[M32R_ARG_REGISTER_SIZE]; 674 int len; 675 676 /* First force sp to a 4-byte alignment. */ 677 sp = sp & ~3; 678 679 /* Set the return address. For the m32r, the return breakpoint is 680 always at BP_ADDR. */ 681 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr); 682 683 /* If STRUCT_RETURN is true, then the struct return address (in 684 STRUCT_ADDR) will consume the first argument-passing register. 685 Both adjust the register count and store that value. */ 686 if (return_method == return_method_struct) 687 { 688 regcache_cooked_write_unsigned (regcache, argreg, struct_addr); 689 argreg++; 690 } 691 692 /* Now make sure there's space on the stack. */ 693 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) 694 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3); 695 sp -= stack_alloc; /* Make room on stack for args. */ 696 697 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) 698 { 699 type = value_type (args[argnum]); 700 typecode = TYPE_CODE (type); 701 len = TYPE_LENGTH (type); 702 703 memset (valbuf, 0, sizeof (valbuf)); 704 705 /* Passes structures that do not fit in 2 registers by reference. */ 706 if (len > 8 707 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) 708 { 709 store_unsigned_integer (valbuf, 4, byte_order, 710 value_address (args[argnum])); 711 typecode = TYPE_CODE_PTR; 712 len = 4; 713 val = valbuf; 714 } 715 else if (len < 4) 716 { 717 /* Value gets right-justified in the register or stack word. */ 718 memcpy (valbuf + (register_size (gdbarch, argreg) - len), 719 (gdb_byte *) value_contents (args[argnum]), len); 720 val = valbuf; 721 } 722 else 723 val = (gdb_byte *) value_contents (args[argnum]); 724 725 while (len > 0) 726 { 727 if (argreg > ARGN_REGNUM) 728 { 729 /* Must go on the stack. */ 730 write_memory (sp + stack_offset, val, 4); 731 stack_offset += 4; 732 } 733 else if (argreg <= ARGN_REGNUM) 734 { 735 /* There's room in a register. */ 736 regval = 737 extract_unsigned_integer (val, 738 register_size (gdbarch, argreg), 739 byte_order); 740 regcache_cooked_write_unsigned (regcache, argreg++, regval); 741 } 742 743 /* Store the value 4 bytes at a time. This means that things 744 larger than 4 bytes may go partly in registers and partly 745 on the stack. */ 746 len -= register_size (gdbarch, argreg); 747 val += register_size (gdbarch, argreg); 748 } 749 } 750 751 /* Finally, update the SP register. */ 752 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp); 753 754 return sp; 755 } 756 757 758 /* Given a return value in `regbuf' with a type `valtype', 759 extract and copy its value into `valbuf'. */ 760 761 static void 762 m32r_extract_return_value (struct type *type, struct regcache *regcache, 763 gdb_byte *dst) 764 { 765 struct gdbarch *gdbarch = regcache->arch (); 766 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 767 int len = TYPE_LENGTH (type); 768 ULONGEST tmp; 769 770 /* By using store_unsigned_integer we avoid having to do 771 anything special for small big-endian values. */ 772 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp); 773 store_unsigned_integer (dst, (len > 4 ? len - 4 : len), byte_order, tmp); 774 775 /* Ignore return values more than 8 bytes in size because the m32r 776 returns anything more than 8 bytes in the stack. */ 777 if (len > 4) 778 { 779 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp); 780 store_unsigned_integer (dst + len - 4, 4, byte_order, tmp); 781 } 782 } 783 784 static enum return_value_convention 785 m32r_return_value (struct gdbarch *gdbarch, struct value *function, 786 struct type *valtype, struct regcache *regcache, 787 gdb_byte *readbuf, const gdb_byte *writebuf) 788 { 789 if (TYPE_LENGTH (valtype) > 8) 790 return RETURN_VALUE_STRUCT_CONVENTION; 791 else 792 { 793 if (readbuf != NULL) 794 m32r_extract_return_value (valtype, regcache, readbuf); 795 if (writebuf != NULL) 796 m32r_store_return_value (valtype, regcache, writebuf); 797 return RETURN_VALUE_REGISTER_CONVENTION; 798 } 799 } 800 801 802 803 static CORE_ADDR 804 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 805 { 806 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM); 807 } 808 809 /* Given a GDB frame, determine the address of the calling function's 810 frame. This will be used to create a new GDB frame struct. */ 811 812 static void 813 m32r_frame_this_id (struct frame_info *this_frame, 814 void **this_prologue_cache, struct frame_id *this_id) 815 { 816 struct m32r_unwind_cache *info 817 = m32r_frame_unwind_cache (this_frame, this_prologue_cache); 818 CORE_ADDR base; 819 CORE_ADDR func; 820 struct bound_minimal_symbol msym_stack; 821 struct frame_id id; 822 823 /* The FUNC is easy. */ 824 func = get_frame_func (this_frame); 825 826 /* Check if the stack is empty. */ 827 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL); 828 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack)) 829 return; 830 831 /* Hopefully the prologue analysis either correctly determined the 832 frame's base (which is the SP from the previous frame), or set 833 that base to "NULL". */ 834 base = info->prev_sp; 835 if (base == 0) 836 return; 837 838 id = frame_id_build (base, func); 839 (*this_id) = id; 840 } 841 842 static struct value * 843 m32r_frame_prev_register (struct frame_info *this_frame, 844 void **this_prologue_cache, int regnum) 845 { 846 struct m32r_unwind_cache *info 847 = m32r_frame_unwind_cache (this_frame, this_prologue_cache); 848 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); 849 } 850 851 static const struct frame_unwind m32r_frame_unwind = { 852 NORMAL_FRAME, 853 default_frame_unwind_stop_reason, 854 m32r_frame_this_id, 855 m32r_frame_prev_register, 856 NULL, 857 default_frame_sniffer 858 }; 859 860 static CORE_ADDR 861 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache) 862 { 863 struct m32r_unwind_cache *info 864 = m32r_frame_unwind_cache (this_frame, this_cache); 865 return info->base; 866 } 867 868 static const struct frame_base m32r_frame_base = { 869 &m32r_frame_unwind, 870 m32r_frame_base_address, 871 m32r_frame_base_address, 872 m32r_frame_base_address 873 }; 874 875 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy 876 frame. The frame ID's base needs to match the TOS value saved by 877 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ 878 879 static struct frame_id 880 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) 881 { 882 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); 883 return frame_id_build (sp, get_frame_pc (this_frame)); 884 } 885 886 887 static gdbarch_init_ftype m32r_gdbarch_init; 888 889 static struct gdbarch * 890 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 891 { 892 struct gdbarch *gdbarch; 893 struct gdbarch_tdep *tdep; 894 895 /* If there is already a candidate, use it. */ 896 arches = gdbarch_list_lookup_by_info (arches, &info); 897 if (arches != NULL) 898 return arches->gdbarch; 899 900 /* Allocate space for the new architecture. */ 901 tdep = XCNEW (struct gdbarch_tdep); 902 gdbarch = gdbarch_alloc (&info, tdep); 903 904 set_gdbarch_wchar_bit (gdbarch, 16); 905 set_gdbarch_wchar_signed (gdbarch, 0); 906 907 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp); 908 909 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS); 910 set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM); 911 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM); 912 set_gdbarch_register_name (gdbarch, m32r_register_name); 913 set_gdbarch_register_type (gdbarch, m32r_register_type); 914 915 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call); 916 set_gdbarch_return_value (gdbarch, m32r_return_value); 917 918 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue); 919 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 920 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32r_breakpoint_kind_from_pc); 921 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32r_sw_breakpoint_from_kind); 922 set_gdbarch_memory_insert_breakpoint (gdbarch, 923 m32r_memory_insert_breakpoint); 924 set_gdbarch_memory_remove_breakpoint (gdbarch, 925 m32r_memory_remove_breakpoint); 926 927 set_gdbarch_frame_align (gdbarch, m32r_frame_align); 928 929 frame_base_set_default (gdbarch, &m32r_frame_base); 930 931 /* Methods for saving / extracting a dummy frame's ID. The ID's 932 stack address must match the SP value returned by 933 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ 934 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id); 935 936 /* Return the unwound PC value. */ 937 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc); 938 939 /* Hook in ABI-specific overrides, if they have been registered. */ 940 gdbarch_init_osabi (info, gdbarch); 941 942 /* Hook in the default unwinders. */ 943 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind); 944 945 /* Support simple overlay manager. */ 946 set_gdbarch_overlay_update (gdbarch, simple_overlay_update); 947 948 return gdbarch; 949 } 950 951 void 952 _initialize_m32r_tdep (void) 953 { 954 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init); 955 } 956