1 /* Target-dependent code for Renesas M32R, for GDB. 2 3 Copyright (C) 1996-2023 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "frame.h" 22 #include "frame-unwind.h" 23 #include "frame-base.h" 24 #include "symtab.h" 25 #include "gdbtypes.h" 26 #include "gdbcmd.h" 27 #include "gdbcore.h" 28 #include "value.h" 29 #include "inferior.h" 30 #include "symfile.h" 31 #include "objfiles.h" 32 #include "osabi.h" 33 #include "language.h" 34 #include "arch-utils.h" 35 #include "regcache.h" 36 #include "trad-frame.h" 37 #include "dis-asm.h" 38 #include "m32r-tdep.h" 39 #include <algorithm> 40 41 /* The size of the argument registers (r0 - r3) in bytes. */ 42 #define M32R_ARG_REGISTER_SIZE 4 43 44 /* Local functions */ 45 46 static CORE_ADDR 47 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) 48 { 49 /* Align to the size of an instruction (so that they can safely be 50 pushed onto the stack. */ 51 return sp & ~3; 52 } 53 54 55 /* Breakpoints 56 57 The little endian mode of M32R is unique. In most of architectures, 58 two 16-bit instructions, A and B, are placed as the following: 59 60 Big endian: 61 A0 A1 B0 B1 62 63 Little endian: 64 A1 A0 B1 B0 65 66 In M32R, they are placed like this: 67 68 Big endian: 69 A0 A1 B0 B1 70 71 Little endian: 72 B1 B0 A1 A0 73 74 This is because M32R always fetches instructions in 32-bit. 75 76 The following functions take care of this behavior. */ 77 78 static int 79 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch, 80 struct bp_target_info *bp_tgt) 81 { 82 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address; 83 int val; 84 gdb_byte buf[4]; 85 gdb_byte contents_cache[4]; 86 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */ 87 88 /* Save the memory contents. */ 89 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4); 90 if (val != 0) 91 return val; /* return error */ 92 93 memcpy (bp_tgt->shadow_contents, contents_cache, 4); 94 bp_tgt->shadow_len = 4; 95 96 /* Determine appropriate breakpoint contents and size for this address. */ 97 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 98 { 99 if ((addr & 3) == 0) 100 { 101 buf[0] = bp_entry[0]; 102 buf[1] = bp_entry[1]; 103 buf[2] = contents_cache[2] & 0x7f; 104 buf[3] = contents_cache[3]; 105 } 106 else 107 { 108 buf[0] = contents_cache[0]; 109 buf[1] = contents_cache[1]; 110 buf[2] = bp_entry[0]; 111 buf[3] = bp_entry[1]; 112 } 113 } 114 else /* little-endian */ 115 { 116 if ((addr & 3) == 0) 117 { 118 buf[0] = contents_cache[0]; 119 buf[1] = contents_cache[1] & 0x7f; 120 buf[2] = bp_entry[1]; 121 buf[3] = bp_entry[0]; 122 } 123 else 124 { 125 buf[0] = bp_entry[1]; 126 buf[1] = bp_entry[0]; 127 buf[2] = contents_cache[2]; 128 buf[3] = contents_cache[3]; 129 } 130 } 131 132 /* Write the breakpoint. */ 133 val = target_write_memory (addr & 0xfffffffc, buf, 4); 134 return val; 135 } 136 137 static int 138 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch, 139 struct bp_target_info *bp_tgt) 140 { 141 CORE_ADDR addr = bp_tgt->placed_address; 142 int val; 143 gdb_byte buf[4]; 144 gdb_byte *contents_cache = bp_tgt->shadow_contents; 145 146 buf[0] = contents_cache[0]; 147 buf[1] = contents_cache[1]; 148 buf[2] = contents_cache[2]; 149 buf[3] = contents_cache[3]; 150 151 /* Remove parallel bit. */ 152 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 153 { 154 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0) 155 buf[2] &= 0x7f; 156 } 157 else /* little-endian */ 158 { 159 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0) 160 buf[1] &= 0x7f; 161 } 162 163 /* Write contents. */ 164 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4); 165 return val; 166 } 167 168 /* Implement the breakpoint_kind_from_pc gdbarch method. */ 169 170 static int 171 m32r_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) 172 { 173 if ((*pcptr & 3) == 0) 174 return 4; 175 else 176 return 2; 177 } 178 179 /* Implement the sw_breakpoint_from_kind gdbarch method. */ 180 181 static const gdb_byte * 182 m32r_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) 183 { 184 static gdb_byte be_bp_entry[] = { 185 0x10, 0xf1, 0x70, 0x00 186 }; /* dpt -> nop */ 187 static gdb_byte le_bp_entry[] = { 188 0x00, 0x70, 0xf1, 0x10 189 }; /* dpt -> nop */ 190 191 *size = kind; 192 193 /* Determine appropriate breakpoint. */ 194 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 195 return be_bp_entry; 196 else 197 { 198 if (kind == 4) 199 return le_bp_entry; 200 else 201 return le_bp_entry + 2; 202 } 203 } 204 205 static const char * const m32r_register_names[] = { 206 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 207 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", 208 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch", 209 "evb" 210 }; 211 212 static const char * 213 m32r_register_name (struct gdbarch *gdbarch, int reg_nr) 214 { 215 gdb_static_assert (ARRAY_SIZE (m32r_register_names) == M32R_NUM_REGS); 216 return m32r_register_names[reg_nr]; 217 } 218 219 220 /* Return the GDB type object for the "standard" data type 221 of data in register N. */ 222 223 static struct type * 224 m32r_register_type (struct gdbarch *gdbarch, int reg_nr) 225 { 226 if (reg_nr == M32R_PC_REGNUM) 227 return builtin_type (gdbarch)->builtin_func_ptr; 228 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM) 229 return builtin_type (gdbarch)->builtin_data_ptr; 230 else 231 return builtin_type (gdbarch)->builtin_int32; 232 } 233 234 235 /* Write into appropriate registers a function return value 236 of type TYPE, given in virtual format. 237 238 Things always get returned in RET1_REGNUM, RET2_REGNUM. */ 239 240 static void 241 m32r_store_return_value (struct type *type, struct regcache *regcache, 242 const gdb_byte *valbuf) 243 { 244 struct gdbarch *gdbarch = regcache->arch (); 245 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 246 CORE_ADDR regval; 247 int len = type->length (); 248 249 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order); 250 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval); 251 252 if (len > 4) 253 { 254 regval = extract_unsigned_integer (valbuf + 4, 255 len - 4, byte_order); 256 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval); 257 } 258 } 259 260 /* This is required by skip_prologue. The results of decoding a prologue 261 should be cached because this thrashing is getting nuts. */ 262 263 static int 264 decode_prologue (struct gdbarch *gdbarch, 265 CORE_ADDR start_pc, CORE_ADDR scan_limit, 266 CORE_ADDR *pl_endptr, unsigned long *framelength) 267 { 268 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 269 unsigned long framesize; 270 int insn; 271 int op1; 272 CORE_ADDR after_prologue = 0; 273 CORE_ADDR after_push = 0; 274 CORE_ADDR after_stack_adjust = 0; 275 CORE_ADDR current_pc; 276 LONGEST return_value; 277 278 framesize = 0; 279 after_prologue = 0; 280 281 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) 282 { 283 /* Check if current pc's location is readable. */ 284 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value)) 285 return -1; 286 287 insn = read_memory_unsigned_integer (current_pc, 2, byte_order); 288 289 if (insn == 0x0000) 290 break; 291 292 /* If this is a 32 bit instruction, we dont want to examine its 293 immediate data as though it were an instruction. */ 294 if (current_pc & 0x02) 295 { 296 /* Decode this instruction further. */ 297 insn &= 0x7fff; 298 } 299 else 300 { 301 if (insn & 0x8000) 302 { 303 if (current_pc == scan_limit) 304 scan_limit += 2; /* extend the search */ 305 306 current_pc += 2; /* skip the immediate data */ 307 308 /* Check if current pc's location is readable. */ 309 if (!safe_read_memory_integer (current_pc, 2, byte_order, 310 &return_value)) 311 return -1; 312 313 if (insn == 0x8faf) /* add3 sp, sp, xxxx */ 314 /* add 16 bit sign-extended offset */ 315 { 316 framesize += 317 -((short) read_memory_unsigned_integer (current_pc, 318 2, byte_order)); 319 } 320 else 321 { 322 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */ 323 && safe_read_memory_integer (current_pc + 2, 324 2, byte_order, 325 &return_value) 326 && read_memory_unsigned_integer (current_pc + 2, 327 2, byte_order) 328 == 0x0f24) 329 { 330 /* Subtract 24 bit sign-extended negative-offset. */ 331 insn = read_memory_unsigned_integer (current_pc - 2, 332 4, byte_order); 333 if (insn & 0x00800000) /* sign extend */ 334 insn |= 0xff000000; /* negative */ 335 else 336 insn &= 0x00ffffff; /* positive */ 337 framesize += insn; 338 } 339 } 340 after_push = current_pc + 2; 341 continue; 342 } 343 } 344 op1 = insn & 0xf000; /* Isolate just the first nibble. */ 345 346 if ((insn & 0xf0ff) == 0x207f) 347 { /* st reg, @-sp */ 348 framesize += 4; 349 after_prologue = 0; 350 continue; 351 } 352 if ((insn >> 8) == 0x4f) /* addi sp, xx */ 353 /* Add 8 bit sign-extended offset. */ 354 { 355 int stack_adjust = (signed char) (insn & 0xff); 356 357 /* there are probably two of these stack adjustments: 358 1) A negative one in the prologue, and 359 2) A positive one in the epilogue. 360 We are only interested in the first one. */ 361 362 if (stack_adjust < 0) 363 { 364 framesize -= stack_adjust; 365 after_prologue = 0; 366 /* A frameless function may have no "mv fp, sp". 367 In that case, this is the end of the prologue. */ 368 after_stack_adjust = current_pc + 2; 369 } 370 continue; 371 } 372 if (insn == 0x1d8f) 373 { /* mv fp, sp */ 374 after_prologue = current_pc + 2; 375 break; /* end of stack adjustments */ 376 } 377 378 /* Nop looks like a branch, continue explicitly. */ 379 if (insn == 0x7000) 380 { 381 after_prologue = current_pc + 2; 382 continue; /* nop occurs between pushes. */ 383 } 384 /* End of prolog if any of these are trap instructions. */ 385 if ((insn & 0xfff0) == 0x10f0) 386 { 387 after_prologue = current_pc; 388 break; 389 } 390 /* End of prolog if any of these are branch instructions. */ 391 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000)) 392 { 393 after_prologue = current_pc; 394 continue; 395 } 396 /* Some of the branch instructions are mixed with other types. */ 397 if (op1 == 0x1000) 398 { 399 int subop = insn & 0x0ff0; 400 if ((subop == 0x0ec0) || (subop == 0x0fc0)) 401 { 402 after_prologue = current_pc; 403 continue; /* jmp , jl */ 404 } 405 } 406 } 407 408 if (framelength) 409 *framelength = framesize; 410 411 if (current_pc >= scan_limit) 412 { 413 if (pl_endptr) 414 { 415 if (after_stack_adjust != 0) 416 /* We did not find a "mv fp,sp", but we DID find 417 a stack_adjust. Is it safe to use that as the 418 end of the prologue? I just don't know. */ 419 { 420 *pl_endptr = after_stack_adjust; 421 } 422 else if (after_push != 0) 423 /* We did not find a "mv fp,sp", but we DID find 424 a push. Is it safe to use that as the 425 end of the prologue? I just don't know. */ 426 { 427 *pl_endptr = after_push; 428 } 429 else 430 /* We reached the end of the loop without finding the end 431 of the prologue. No way to win -- we should report 432 failure. The way we do that is to return the original 433 start_pc. GDB will set a breakpoint at the start of 434 the function (etc.) */ 435 *pl_endptr = start_pc; 436 } 437 return 0; 438 } 439 440 if (after_prologue == 0) 441 after_prologue = current_pc; 442 443 if (pl_endptr) 444 *pl_endptr = after_prologue; 445 446 return 0; 447 } /* decode_prologue */ 448 449 /* Function: skip_prologue 450 Find end of function prologue. */ 451 452 #define DEFAULT_SEARCH_LIMIT 128 453 454 static CORE_ADDR 455 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 456 { 457 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 458 CORE_ADDR func_addr, func_end; 459 struct symtab_and_line sal; 460 LONGEST return_value; 461 462 /* See what the symbol table says. */ 463 464 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 465 { 466 sal = find_pc_line (func_addr, 0); 467 468 if (sal.line != 0 && sal.end <= func_end) 469 { 470 func_end = sal.end; 471 } 472 else 473 /* Either there's no line info, or the line after the prologue is after 474 the end of the function. In this case, there probably isn't a 475 prologue. */ 476 { 477 func_end = std::min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); 478 } 479 } 480 else 481 func_end = pc + DEFAULT_SEARCH_LIMIT; 482 483 /* If pc's location is not readable, just quit. */ 484 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value)) 485 return pc; 486 487 /* Find the end of prologue. */ 488 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0) 489 return pc; 490 491 return sal.end; 492 } 493 494 struct m32r_unwind_cache 495 { 496 /* The previous frame's inner most stack address. Used as this 497 frame ID's stack_addr. */ 498 CORE_ADDR prev_sp; 499 /* The frame's base, optionally used by the high-level debug info. */ 500 CORE_ADDR base; 501 int size; 502 /* How far the SP and r13 (FP) have been offset from the start of 503 the stack frame (as defined by the previous frame's stack 504 pointer). */ 505 LONGEST sp_offset; 506 LONGEST r13_offset; 507 int uses_frame; 508 /* Table indicating the location of each and every register. */ 509 trad_frame_saved_reg *saved_regs; 510 }; 511 512 /* Put here the code to store, into fi->saved_regs, the addresses of 513 the saved registers of frame described by FRAME_INFO. This 514 includes special registers such as pc and fp saved in special ways 515 in the stack frame. sp is even more special: the address we return 516 for it IS the sp for the next frame. */ 517 518 static struct m32r_unwind_cache * 519 m32r_frame_unwind_cache (frame_info_ptr this_frame, 520 void **this_prologue_cache) 521 { 522 CORE_ADDR pc, scan_limit; 523 ULONGEST prev_sp; 524 ULONGEST this_base; 525 unsigned long op; 526 int i; 527 struct m32r_unwind_cache *info; 528 529 530 if ((*this_prologue_cache)) 531 return (struct m32r_unwind_cache *) (*this_prologue_cache); 532 533 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache); 534 (*this_prologue_cache) = info; 535 info->saved_regs = trad_frame_alloc_saved_regs (this_frame); 536 537 info->size = 0; 538 info->sp_offset = 0; 539 info->uses_frame = 0; 540 541 scan_limit = get_frame_pc (this_frame); 542 for (pc = get_frame_func (this_frame); 543 pc > 0 && pc < scan_limit; pc += 2) 544 { 545 if ((pc & 2) == 0) 546 { 547 op = get_frame_memory_unsigned (this_frame, pc, 4); 548 if ((op & 0x80000000) == 0x80000000) 549 { 550 /* 32-bit instruction */ 551 if ((op & 0xffff0000) == 0x8faf0000) 552 { 553 /* add3 sp,sp,xxxx */ 554 short n = op & 0xffff; 555 info->sp_offset += n; 556 } 557 else if (((op >> 8) == 0xe4) 558 && get_frame_memory_unsigned (this_frame, pc + 2, 559 2) == 0x0f24) 560 { 561 /* ld24 r4, xxxxxx; sub sp, r4 */ 562 unsigned long n = op & 0xffffff; 563 info->sp_offset += n; 564 pc += 2; /* skip sub instruction */ 565 } 566 567 if (pc == scan_limit) 568 scan_limit += 2; /* extend the search */ 569 pc += 2; /* skip the immediate data */ 570 continue; 571 } 572 } 573 574 /* 16-bit instructions */ 575 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff; 576 if ((op & 0xf0ff) == 0x207f) 577 { 578 /* st rn, @-sp */ 579 int regno = ((op >> 8) & 0xf); 580 info->sp_offset -= 4; 581 info->saved_regs[regno].set_addr (info->sp_offset); 582 } 583 else if ((op & 0xff00) == 0x4f00) 584 { 585 /* addi sp, xx */ 586 int n = (signed char) (op & 0xff); 587 info->sp_offset += n; 588 } 589 else if (op == 0x1d8f) 590 { 591 /* mv fp, sp */ 592 info->uses_frame = 1; 593 info->r13_offset = info->sp_offset; 594 break; /* end of stack adjustments */ 595 } 596 else if ((op & 0xfff0) == 0x10f0) 597 { 598 /* End of prologue if this is a trap instruction. */ 599 break; /* End of stack adjustments. */ 600 } 601 } 602 603 info->size = -info->sp_offset; 604 605 /* Compute the previous frame's stack pointer (which is also the 606 frame's ID's stack address), and this frame's base pointer. */ 607 if (info->uses_frame) 608 { 609 /* The SP was moved to the FP. This indicates that a new frame 610 was created. Get THIS frame's FP value by unwinding it from 611 the next frame. */ 612 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM); 613 /* The FP points at the last saved register. Adjust the FP back 614 to before the first saved register giving the SP. */ 615 prev_sp = this_base + info->size; 616 } 617 else 618 { 619 /* Assume that the FP is this frame's SP but with that pushed 620 stack space added back. */ 621 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); 622 prev_sp = this_base + info->size; 623 } 624 625 /* Convert that SP/BASE into real addresses. */ 626 info->prev_sp = prev_sp; 627 info->base = this_base; 628 629 /* Adjust all the saved registers so that they contain addresses and 630 not offsets. */ 631 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++) 632 if (info->saved_regs[i].is_addr ()) 633 info->saved_regs[i].set_addr (info->prev_sp 634 + info->saved_regs[i].addr ()); 635 636 /* The call instruction moves the caller's PC in the callee's LR. 637 Since this is an unwind, do the reverse. Copy the location of LR 638 into PC (the address / regnum) so that a request for PC will be 639 converted into a request for the LR. */ 640 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM]; 641 642 /* The previous frame's SP needed to be computed. Save the computed 643 value. */ 644 info->saved_regs[M32R_SP_REGNUM].set_value (prev_sp); 645 646 return info; 647 } 648 649 static CORE_ADDR 650 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 651 struct regcache *regcache, CORE_ADDR bp_addr, int nargs, 652 struct value **args, CORE_ADDR sp, 653 function_call_return_method return_method, 654 CORE_ADDR struct_addr) 655 { 656 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 657 int stack_offset, stack_alloc; 658 int argreg = ARG1_REGNUM; 659 int argnum; 660 struct type *type; 661 enum type_code typecode; 662 CORE_ADDR regval; 663 gdb_byte *val; 664 gdb_byte valbuf[M32R_ARG_REGISTER_SIZE]; 665 int len; 666 667 /* First force sp to a 4-byte alignment. */ 668 sp = sp & ~3; 669 670 /* Set the return address. For the m32r, the return breakpoint is 671 always at BP_ADDR. */ 672 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr); 673 674 /* If STRUCT_RETURN is true, then the struct return address (in 675 STRUCT_ADDR) will consume the first argument-passing register. 676 Both adjust the register count and store that value. */ 677 if (return_method == return_method_struct) 678 { 679 regcache_cooked_write_unsigned (regcache, argreg, struct_addr); 680 argreg++; 681 } 682 683 /* Now make sure there's space on the stack. */ 684 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) 685 stack_alloc += ((value_type (args[argnum])->length () + 3) & ~3); 686 sp -= stack_alloc; /* Make room on stack for args. */ 687 688 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) 689 { 690 type = value_type (args[argnum]); 691 typecode = type->code (); 692 len = type->length (); 693 694 memset (valbuf, 0, sizeof (valbuf)); 695 696 /* Passes structures that do not fit in 2 registers by reference. */ 697 if (len > 8 698 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) 699 { 700 store_unsigned_integer (valbuf, 4, byte_order, 701 value_address (args[argnum])); 702 typecode = TYPE_CODE_PTR; 703 len = 4; 704 val = valbuf; 705 } 706 else if (len < 4) 707 { 708 /* Value gets right-justified in the register or stack word. */ 709 memcpy (valbuf + (register_size (gdbarch, argreg) - len), 710 (gdb_byte *) value_contents (args[argnum]).data (), len); 711 val = valbuf; 712 } 713 else 714 val = (gdb_byte *) value_contents (args[argnum]).data (); 715 716 while (len > 0) 717 { 718 if (argreg > ARGN_REGNUM) 719 { 720 /* Must go on the stack. */ 721 write_memory (sp + stack_offset, val, 4); 722 stack_offset += 4; 723 } 724 else if (argreg <= ARGN_REGNUM) 725 { 726 /* There's room in a register. */ 727 regval = 728 extract_unsigned_integer (val, 729 register_size (gdbarch, argreg), 730 byte_order); 731 regcache_cooked_write_unsigned (regcache, argreg++, regval); 732 } 733 734 /* Store the value 4 bytes at a time. This means that things 735 larger than 4 bytes may go partly in registers and partly 736 on the stack. */ 737 len -= register_size (gdbarch, argreg); 738 val += register_size (gdbarch, argreg); 739 } 740 } 741 742 /* Finally, update the SP register. */ 743 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp); 744 745 return sp; 746 } 747 748 749 /* Given a return value in `regbuf' with a type `valtype', 750 extract and copy its value into `valbuf'. */ 751 752 static void 753 m32r_extract_return_value (struct type *type, struct regcache *regcache, 754 gdb_byte *dst) 755 { 756 struct gdbarch *gdbarch = regcache->arch (); 757 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 758 int len = type->length (); 759 ULONGEST tmp; 760 761 /* By using store_unsigned_integer we avoid having to do 762 anything special for small big-endian values. */ 763 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp); 764 store_unsigned_integer (dst, (len > 4 ? len - 4 : len), byte_order, tmp); 765 766 /* Ignore return values more than 8 bytes in size because the m32r 767 returns anything more than 8 bytes in the stack. */ 768 if (len > 4) 769 { 770 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp); 771 store_unsigned_integer (dst + len - 4, 4, byte_order, tmp); 772 } 773 } 774 775 static enum return_value_convention 776 m32r_return_value (struct gdbarch *gdbarch, struct value *function, 777 struct type *valtype, struct regcache *regcache, 778 gdb_byte *readbuf, const gdb_byte *writebuf) 779 { 780 if (valtype->length () > 8) 781 return RETURN_VALUE_STRUCT_CONVENTION; 782 else 783 { 784 if (readbuf != NULL) 785 m32r_extract_return_value (valtype, regcache, readbuf); 786 if (writebuf != NULL) 787 m32r_store_return_value (valtype, regcache, writebuf); 788 return RETURN_VALUE_REGISTER_CONVENTION; 789 } 790 } 791 792 /* Given a GDB frame, determine the address of the calling function's 793 frame. This will be used to create a new GDB frame struct. */ 794 795 static void 796 m32r_frame_this_id (frame_info_ptr this_frame, 797 void **this_prologue_cache, struct frame_id *this_id) 798 { 799 struct m32r_unwind_cache *info 800 = m32r_frame_unwind_cache (this_frame, this_prologue_cache); 801 CORE_ADDR base; 802 CORE_ADDR func; 803 struct bound_minimal_symbol msym_stack; 804 struct frame_id id; 805 806 /* The FUNC is easy. */ 807 func = get_frame_func (this_frame); 808 809 /* Check if the stack is empty. */ 810 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL); 811 if (msym_stack.minsym && info->base == msym_stack.value_address ()) 812 return; 813 814 /* Hopefully the prologue analysis either correctly determined the 815 frame's base (which is the SP from the previous frame), or set 816 that base to "NULL". */ 817 base = info->prev_sp; 818 if (base == 0) 819 return; 820 821 id = frame_id_build (base, func); 822 (*this_id) = id; 823 } 824 825 static struct value * 826 m32r_frame_prev_register (frame_info_ptr this_frame, 827 void **this_prologue_cache, int regnum) 828 { 829 struct m32r_unwind_cache *info 830 = m32r_frame_unwind_cache (this_frame, this_prologue_cache); 831 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); 832 } 833 834 static const struct frame_unwind m32r_frame_unwind = { 835 "m32r prologue", 836 NORMAL_FRAME, 837 default_frame_unwind_stop_reason, 838 m32r_frame_this_id, 839 m32r_frame_prev_register, 840 NULL, 841 default_frame_sniffer 842 }; 843 844 static CORE_ADDR 845 m32r_frame_base_address (frame_info_ptr this_frame, void **this_cache) 846 { 847 struct m32r_unwind_cache *info 848 = m32r_frame_unwind_cache (this_frame, this_cache); 849 return info->base; 850 } 851 852 static const struct frame_base m32r_frame_base = { 853 &m32r_frame_unwind, 854 m32r_frame_base_address, 855 m32r_frame_base_address, 856 m32r_frame_base_address 857 }; 858 859 static gdbarch_init_ftype m32r_gdbarch_init; 860 861 static struct gdbarch * 862 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 863 { 864 struct gdbarch *gdbarch; 865 866 /* If there is already a candidate, use it. */ 867 arches = gdbarch_list_lookup_by_info (arches, &info); 868 if (arches != NULL) 869 return arches->gdbarch; 870 871 /* Allocate space for the new architecture. */ 872 m32r_gdbarch_tdep *tdep = new m32r_gdbarch_tdep; 873 gdbarch = gdbarch_alloc (&info, tdep); 874 875 set_gdbarch_wchar_bit (gdbarch, 16); 876 set_gdbarch_wchar_signed (gdbarch, 0); 877 878 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS); 879 set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM); 880 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM); 881 set_gdbarch_register_name (gdbarch, m32r_register_name); 882 set_gdbarch_register_type (gdbarch, m32r_register_type); 883 884 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call); 885 set_gdbarch_return_value (gdbarch, m32r_return_value); 886 887 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue); 888 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 889 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32r_breakpoint_kind_from_pc); 890 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32r_sw_breakpoint_from_kind); 891 set_gdbarch_memory_insert_breakpoint (gdbarch, 892 m32r_memory_insert_breakpoint); 893 set_gdbarch_memory_remove_breakpoint (gdbarch, 894 m32r_memory_remove_breakpoint); 895 896 set_gdbarch_frame_align (gdbarch, m32r_frame_align); 897 898 frame_base_set_default (gdbarch, &m32r_frame_base); 899 900 /* Hook in ABI-specific overrides, if they have been registered. */ 901 gdbarch_init_osabi (info, gdbarch); 902 903 /* Hook in the default unwinders. */ 904 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind); 905 906 /* Support simple overlay manager. */ 907 set_gdbarch_overlay_update (gdbarch, simple_overlay_update); 908 909 return gdbarch; 910 } 911 912 void _initialize_m32r_tdep (); 913 void 914 _initialize_m32r_tdep () 915 { 916 gdbarch_register (bfd_arch_m32r, m32r_gdbarch_init); 917 } 918