xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/m32r-tdep.c (revision 3117ece4fc4a4ca4489ba793710b60b0d26bab6c)
1 /* Target-dependent code for Renesas M32R, for GDB.
2 
3    Copyright (C) 1996-2023 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "inferior.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "osabi.h"
33 #include "language.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "dis-asm.h"
38 #include "m32r-tdep.h"
39 #include <algorithm>
40 
41 /* The size of the argument registers (r0 - r3) in bytes.  */
42 #define M32R_ARG_REGISTER_SIZE 4
43 
44 /* Local functions */
45 
46 static CORE_ADDR
47 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
48 {
49   /* Align to the size of an instruction (so that they can safely be
50      pushed onto the stack.  */
51   return sp & ~3;
52 }
53 
54 
55 /* Breakpoints
56 
57    The little endian mode of M32R is unique.  In most of architectures,
58    two 16-bit instructions, A and B, are placed as the following:
59 
60    Big endian:
61    A0 A1 B0 B1
62 
63    Little endian:
64    A1 A0 B1 B0
65 
66    In M32R, they are placed like this:
67 
68    Big endian:
69    A0 A1 B0 B1
70 
71    Little endian:
72    B1 B0 A1 A0
73 
74    This is because M32R always fetches instructions in 32-bit.
75 
76    The following functions take care of this behavior.  */
77 
78 static int
79 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
80 			       struct bp_target_info *bp_tgt)
81 {
82   CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
83   int val;
84   gdb_byte buf[4];
85   gdb_byte contents_cache[4];
86   gdb_byte bp_entry[] = { 0x10, 0xf1 };	/* dpt */
87 
88   /* Save the memory contents.  */
89   val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
90   if (val != 0)
91     return val;			/* return error */
92 
93   memcpy (bp_tgt->shadow_contents, contents_cache, 4);
94   bp_tgt->shadow_len = 4;
95 
96   /* Determine appropriate breakpoint contents and size for this address.  */
97   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
98     {
99       if ((addr & 3) == 0)
100 	{
101 	  buf[0] = bp_entry[0];
102 	  buf[1] = bp_entry[1];
103 	  buf[2] = contents_cache[2] & 0x7f;
104 	  buf[3] = contents_cache[3];
105 	}
106       else
107 	{
108 	  buf[0] = contents_cache[0];
109 	  buf[1] = contents_cache[1];
110 	  buf[2] = bp_entry[0];
111 	  buf[3] = bp_entry[1];
112 	}
113     }
114   else				/* little-endian */
115     {
116       if ((addr & 3) == 0)
117 	{
118 	  buf[0] = contents_cache[0];
119 	  buf[1] = contents_cache[1] & 0x7f;
120 	  buf[2] = bp_entry[1];
121 	  buf[3] = bp_entry[0];
122 	}
123       else
124 	{
125 	  buf[0] = bp_entry[1];
126 	  buf[1] = bp_entry[0];
127 	  buf[2] = contents_cache[2];
128 	  buf[3] = contents_cache[3];
129 	}
130     }
131 
132   /* Write the breakpoint.  */
133   val = target_write_memory (addr & 0xfffffffc, buf, 4);
134   return val;
135 }
136 
137 static int
138 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
139 			       struct bp_target_info *bp_tgt)
140 {
141   CORE_ADDR addr = bp_tgt->placed_address;
142   int val;
143   gdb_byte buf[4];
144   gdb_byte *contents_cache = bp_tgt->shadow_contents;
145 
146   buf[0] = contents_cache[0];
147   buf[1] = contents_cache[1];
148   buf[2] = contents_cache[2];
149   buf[3] = contents_cache[3];
150 
151   /* Remove parallel bit.  */
152   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
153     {
154       if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
155 	buf[2] &= 0x7f;
156     }
157   else				/* little-endian */
158     {
159       if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
160 	buf[1] &= 0x7f;
161     }
162 
163   /* Write contents.  */
164   val = target_write_raw_memory (addr & 0xfffffffc, buf, 4);
165   return val;
166 }
167 
168 /* Implement the breakpoint_kind_from_pc gdbarch method.  */
169 
170 static int
171 m32r_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
172 {
173   if ((*pcptr & 3) == 0)
174     return 4;
175   else
176     return 2;
177 }
178 
179 /* Implement the sw_breakpoint_from_kind gdbarch method.  */
180 
181 static const gdb_byte *
182 m32r_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
183 {
184   static gdb_byte be_bp_entry[] = {
185     0x10, 0xf1, 0x70, 0x00
186   };	/* dpt -> nop */
187   static gdb_byte le_bp_entry[] = {
188     0x00, 0x70, 0xf1, 0x10
189   };	/* dpt -> nop */
190 
191   *size = kind;
192 
193   /* Determine appropriate breakpoint.  */
194   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
195     return be_bp_entry;
196   else
197     {
198       if (kind == 4)
199 	return le_bp_entry;
200       else
201 	return le_bp_entry + 2;
202     }
203 }
204 
205 static const char * const m32r_register_names[] = {
206   "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
207   "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
208   "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
209   "evb"
210 };
211 
212 static const char *
213 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
214 {
215   gdb_static_assert (ARRAY_SIZE (m32r_register_names) == M32R_NUM_REGS);
216   return m32r_register_names[reg_nr];
217 }
218 
219 
220 /* Return the GDB type object for the "standard" data type
221    of data in register N.  */
222 
223 static struct type *
224 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
225 {
226   if (reg_nr == M32R_PC_REGNUM)
227     return builtin_type (gdbarch)->builtin_func_ptr;
228   else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
229     return builtin_type (gdbarch)->builtin_data_ptr;
230   else
231     return builtin_type (gdbarch)->builtin_int32;
232 }
233 
234 
235 /* Write into appropriate registers a function return value
236    of type TYPE, given in virtual format.
237 
238    Things always get returned in RET1_REGNUM, RET2_REGNUM.  */
239 
240 static void
241 m32r_store_return_value (struct type *type, struct regcache *regcache,
242 			 const gdb_byte *valbuf)
243 {
244   struct gdbarch *gdbarch = regcache->arch ();
245   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
246   CORE_ADDR regval;
247   int len = type->length ();
248 
249   regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
250   regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
251 
252   if (len > 4)
253     {
254       regval = extract_unsigned_integer (valbuf + 4,
255 					 len - 4, byte_order);
256       regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
257     }
258 }
259 
260 /* This is required by skip_prologue.  The results of decoding a prologue
261    should be cached because this thrashing is getting nuts.  */
262 
263 static int
264 decode_prologue (struct gdbarch *gdbarch,
265 		 CORE_ADDR start_pc, CORE_ADDR scan_limit,
266 		 CORE_ADDR *pl_endptr, unsigned long *framelength)
267 {
268   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
269   unsigned long framesize;
270   int insn;
271   int op1;
272   CORE_ADDR after_prologue = 0;
273   CORE_ADDR after_push = 0;
274   CORE_ADDR after_stack_adjust = 0;
275   CORE_ADDR current_pc;
276   LONGEST return_value;
277 
278   framesize = 0;
279   after_prologue = 0;
280 
281   for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
282     {
283       /* Check if current pc's location is readable.  */
284       if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
285 	return -1;
286 
287       insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
288 
289       if (insn == 0x0000)
290 	break;
291 
292       /* If this is a 32 bit instruction, we dont want to examine its
293 	 immediate data as though it were an instruction.  */
294       if (current_pc & 0x02)
295 	{
296 	  /* Decode this instruction further.  */
297 	  insn &= 0x7fff;
298 	}
299       else
300 	{
301 	  if (insn & 0x8000)
302 	    {
303 	      if (current_pc == scan_limit)
304 		scan_limit += 2;	/* extend the search */
305 
306 	      current_pc += 2;	/* skip the immediate data */
307 
308 	      /* Check if current pc's location is readable.  */
309 	      if (!safe_read_memory_integer (current_pc, 2, byte_order,
310 					     &return_value))
311 		return -1;
312 
313 	      if (insn == 0x8faf)	/* add3 sp, sp, xxxx */
314 		/* add 16 bit sign-extended offset */
315 		{
316 		  framesize +=
317 		    -((short) read_memory_unsigned_integer (current_pc,
318 							    2, byte_order));
319 		}
320 	      else
321 		{
322 		  if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
323 		      && safe_read_memory_integer (current_pc + 2,
324 						   2, byte_order,
325 						   &return_value)
326 		      && read_memory_unsigned_integer (current_pc + 2,
327 						       2, byte_order)
328 			 == 0x0f24)
329 		    {
330 		      /* Subtract 24 bit sign-extended negative-offset.  */
331 		      insn = read_memory_unsigned_integer (current_pc - 2,
332 							   4, byte_order);
333 		      if (insn & 0x00800000)	/* sign extend */
334 			insn |= 0xff000000;	/* negative */
335 		      else
336 			insn &= 0x00ffffff;	/* positive */
337 		      framesize += insn;
338 		    }
339 		}
340 	      after_push = current_pc + 2;
341 	      continue;
342 	    }
343 	}
344       op1 = insn & 0xf000;	/* Isolate just the first nibble.  */
345 
346       if ((insn & 0xf0ff) == 0x207f)
347 	{			/* st reg, @-sp */
348 	  framesize += 4;
349 	  after_prologue = 0;
350 	  continue;
351 	}
352       if ((insn >> 8) == 0x4f)	/* addi sp, xx */
353 	/* Add 8 bit sign-extended offset.  */
354 	{
355 	  int stack_adjust = (signed char) (insn & 0xff);
356 
357 	  /* there are probably two of these stack adjustments:
358 	     1) A negative one in the prologue, and
359 	     2) A positive one in the epilogue.
360 	     We are only interested in the first one.  */
361 
362 	  if (stack_adjust < 0)
363 	    {
364 	      framesize -= stack_adjust;
365 	      after_prologue = 0;
366 	      /* A frameless function may have no "mv fp, sp".
367 		 In that case, this is the end of the prologue.  */
368 	      after_stack_adjust = current_pc + 2;
369 	    }
370 	  continue;
371 	}
372       if (insn == 0x1d8f)
373 	{			/* mv fp, sp */
374 	  after_prologue = current_pc + 2;
375 	  break;		/* end of stack adjustments */
376 	}
377 
378       /* Nop looks like a branch, continue explicitly.  */
379       if (insn == 0x7000)
380 	{
381 	  after_prologue = current_pc + 2;
382 	  continue;		/* nop occurs between pushes.  */
383 	}
384       /* End of prolog if any of these are trap instructions.  */
385       if ((insn & 0xfff0) == 0x10f0)
386 	{
387 	  after_prologue = current_pc;
388 	  break;
389 	}
390       /* End of prolog if any of these are branch instructions.  */
391       if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
392 	{
393 	  after_prologue = current_pc;
394 	  continue;
395 	}
396       /* Some of the branch instructions are mixed with other types.  */
397       if (op1 == 0x1000)
398 	{
399 	  int subop = insn & 0x0ff0;
400 	  if ((subop == 0x0ec0) || (subop == 0x0fc0))
401 	    {
402 	      after_prologue = current_pc;
403 	      continue;		/* jmp , jl */
404 	    }
405 	}
406     }
407 
408   if (framelength)
409     *framelength = framesize;
410 
411   if (current_pc >= scan_limit)
412     {
413       if (pl_endptr)
414 	{
415 	  if (after_stack_adjust != 0)
416 	    /* We did not find a "mv fp,sp", but we DID find
417 	       a stack_adjust.  Is it safe to use that as the
418 	       end of the prologue?  I just don't know.  */
419 	    {
420 	      *pl_endptr = after_stack_adjust;
421 	    }
422 	  else if (after_push != 0)
423 	    /* We did not find a "mv fp,sp", but we DID find
424 	       a push.  Is it safe to use that as the
425 	       end of the prologue?  I just don't know.  */
426 	    {
427 	      *pl_endptr = after_push;
428 	    }
429 	  else
430 	    /* We reached the end of the loop without finding the end
431 	       of the prologue.  No way to win -- we should report
432 	       failure.  The way we do that is to return the original
433 	       start_pc.  GDB will set a breakpoint at the start of
434 	       the function (etc.)  */
435 	    *pl_endptr = start_pc;
436 	}
437       return 0;
438     }
439 
440   if (after_prologue == 0)
441     after_prologue = current_pc;
442 
443   if (pl_endptr)
444     *pl_endptr = after_prologue;
445 
446   return 0;
447 }				/*  decode_prologue */
448 
449 /* Function: skip_prologue
450    Find end of function prologue.  */
451 
452 #define DEFAULT_SEARCH_LIMIT 128
453 
454 static CORE_ADDR
455 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
456 {
457   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
458   CORE_ADDR func_addr, func_end;
459   struct symtab_and_line sal;
460   LONGEST return_value;
461 
462   /* See what the symbol table says.  */
463 
464   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
465     {
466       sal = find_pc_line (func_addr, 0);
467 
468       if (sal.line != 0 && sal.end <= func_end)
469 	{
470 	  func_end = sal.end;
471 	}
472       else
473 	/* Either there's no line info, or the line after the prologue is after
474 	   the end of the function.  In this case, there probably isn't a
475 	   prologue.  */
476 	{
477 	  func_end = std::min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
478 	}
479     }
480   else
481     func_end = pc + DEFAULT_SEARCH_LIMIT;
482 
483   /* If pc's location is not readable, just quit.  */
484   if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
485     return pc;
486 
487   /* Find the end of prologue.  */
488   if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
489     return pc;
490 
491   return sal.end;
492 }
493 
494 struct m32r_unwind_cache
495 {
496   /* The previous frame's inner most stack address.  Used as this
497      frame ID's stack_addr.  */
498   CORE_ADDR prev_sp;
499   /* The frame's base, optionally used by the high-level debug info.  */
500   CORE_ADDR base;
501   int size;
502   /* How far the SP and r13 (FP) have been offset from the start of
503      the stack frame (as defined by the previous frame's stack
504      pointer).  */
505   LONGEST sp_offset;
506   LONGEST r13_offset;
507   int uses_frame;
508   /* Table indicating the location of each and every register.  */
509   trad_frame_saved_reg *saved_regs;
510 };
511 
512 /* Put here the code to store, into fi->saved_regs, the addresses of
513    the saved registers of frame described by FRAME_INFO.  This
514    includes special registers such as pc and fp saved in special ways
515    in the stack frame.  sp is even more special: the address we return
516    for it IS the sp for the next frame.  */
517 
518 static struct m32r_unwind_cache *
519 m32r_frame_unwind_cache (frame_info_ptr this_frame,
520 			 void **this_prologue_cache)
521 {
522   CORE_ADDR pc, scan_limit;
523   ULONGEST prev_sp;
524   ULONGEST this_base;
525   unsigned long op;
526   int i;
527   struct m32r_unwind_cache *info;
528 
529 
530   if ((*this_prologue_cache))
531     return (struct m32r_unwind_cache *) (*this_prologue_cache);
532 
533   info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
534   (*this_prologue_cache) = info;
535   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
536 
537   info->size = 0;
538   info->sp_offset = 0;
539   info->uses_frame = 0;
540 
541   scan_limit = get_frame_pc (this_frame);
542   for (pc = get_frame_func (this_frame);
543        pc > 0 && pc < scan_limit; pc += 2)
544     {
545       if ((pc & 2) == 0)
546 	{
547 	  op = get_frame_memory_unsigned (this_frame, pc, 4);
548 	  if ((op & 0x80000000) == 0x80000000)
549 	    {
550 	      /* 32-bit instruction */
551 	      if ((op & 0xffff0000) == 0x8faf0000)
552 		{
553 		  /* add3 sp,sp,xxxx */
554 		  short n = op & 0xffff;
555 		  info->sp_offset += n;
556 		}
557 	      else if (((op >> 8) == 0xe4)
558 		       && get_frame_memory_unsigned (this_frame, pc + 2,
559 						     2) == 0x0f24)
560 		{
561 		  /* ld24 r4, xxxxxx; sub sp, r4 */
562 		  unsigned long n = op & 0xffffff;
563 		  info->sp_offset += n;
564 		  pc += 2;	/* skip sub instruction */
565 		}
566 
567 	      if (pc == scan_limit)
568 		scan_limit += 2;	/* extend the search */
569 	      pc += 2;		/* skip the immediate data */
570 	      continue;
571 	    }
572 	}
573 
574       /* 16-bit instructions */
575       op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
576       if ((op & 0xf0ff) == 0x207f)
577 	{
578 	  /* st rn, @-sp */
579 	  int regno = ((op >> 8) & 0xf);
580 	  info->sp_offset -= 4;
581 	  info->saved_regs[regno].set_addr (info->sp_offset);
582 	}
583       else if ((op & 0xff00) == 0x4f00)
584 	{
585 	  /* addi sp, xx */
586 	  int n = (signed char) (op & 0xff);
587 	  info->sp_offset += n;
588 	}
589       else if (op == 0x1d8f)
590 	{
591 	  /* mv fp, sp */
592 	  info->uses_frame = 1;
593 	  info->r13_offset = info->sp_offset;
594 	  break;		/* end of stack adjustments */
595 	}
596       else if ((op & 0xfff0) == 0x10f0)
597 	{
598 	  /* End of prologue if this is a trap instruction.  */
599 	  break;		/* End of stack adjustments.  */
600 	}
601     }
602 
603   info->size = -info->sp_offset;
604 
605   /* Compute the previous frame's stack pointer (which is also the
606      frame's ID's stack address), and this frame's base pointer.  */
607   if (info->uses_frame)
608     {
609       /* The SP was moved to the FP.  This indicates that a new frame
610 	 was created.  Get THIS frame's FP value by unwinding it from
611 	 the next frame.  */
612       this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
613       /* The FP points at the last saved register.  Adjust the FP back
614 	 to before the first saved register giving the SP.  */
615       prev_sp = this_base + info->size;
616     }
617   else
618     {
619       /* Assume that the FP is this frame's SP but with that pushed
620 	 stack space added back.  */
621       this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
622       prev_sp = this_base + info->size;
623     }
624 
625   /* Convert that SP/BASE into real addresses.  */
626   info->prev_sp = prev_sp;
627   info->base = this_base;
628 
629   /* Adjust all the saved registers so that they contain addresses and
630      not offsets.  */
631   for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
632     if (info->saved_regs[i].is_addr ())
633       info->saved_regs[i].set_addr (info->prev_sp
634 				    + info->saved_regs[i].addr ());
635 
636   /* The call instruction moves the caller's PC in the callee's LR.
637      Since this is an unwind, do the reverse.  Copy the location of LR
638      into PC (the address / regnum) so that a request for PC will be
639      converted into a request for the LR.  */
640   info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
641 
642   /* The previous frame's SP needed to be computed.  Save the computed
643      value.  */
644   info->saved_regs[M32R_SP_REGNUM].set_value (prev_sp);
645 
646   return info;
647 }
648 
649 static CORE_ADDR
650 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
651 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
652 		      struct value **args, CORE_ADDR sp,
653 		      function_call_return_method return_method,
654 		      CORE_ADDR struct_addr)
655 {
656   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
657   int stack_offset, stack_alloc;
658   int argreg = ARG1_REGNUM;
659   int argnum;
660   struct type *type;
661   enum type_code typecode;
662   CORE_ADDR regval;
663   gdb_byte *val;
664   gdb_byte valbuf[M32R_ARG_REGISTER_SIZE];
665   int len;
666 
667   /* First force sp to a 4-byte alignment.  */
668   sp = sp & ~3;
669 
670   /* Set the return address.  For the m32r, the return breakpoint is
671      always at BP_ADDR.  */
672   regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
673 
674   /* If STRUCT_RETURN is true, then the struct return address (in
675      STRUCT_ADDR) will consume the first argument-passing register.
676      Both adjust the register count and store that value.  */
677   if (return_method == return_method_struct)
678     {
679       regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
680       argreg++;
681     }
682 
683   /* Now make sure there's space on the stack.  */
684   for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
685     stack_alloc += ((value_type (args[argnum])->length () + 3) & ~3);
686   sp -= stack_alloc;		/* Make room on stack for args.  */
687 
688   for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
689     {
690       type = value_type (args[argnum]);
691       typecode = type->code ();
692       len = type->length ();
693 
694       memset (valbuf, 0, sizeof (valbuf));
695 
696       /* Passes structures that do not fit in 2 registers by reference.  */
697       if (len > 8
698 	  && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
699 	{
700 	  store_unsigned_integer (valbuf, 4, byte_order,
701 				  value_address (args[argnum]));
702 	  typecode = TYPE_CODE_PTR;
703 	  len = 4;
704 	  val = valbuf;
705 	}
706       else if (len < 4)
707 	{
708 	  /* Value gets right-justified in the register or stack word.  */
709 	  memcpy (valbuf + (register_size (gdbarch, argreg) - len),
710 		  (gdb_byte *) value_contents (args[argnum]).data (), len);
711 	  val = valbuf;
712 	}
713       else
714 	val = (gdb_byte *) value_contents (args[argnum]).data ();
715 
716       while (len > 0)
717 	{
718 	  if (argreg > ARGN_REGNUM)
719 	    {
720 	      /* Must go on the stack.  */
721 	      write_memory (sp + stack_offset, val, 4);
722 	      stack_offset += 4;
723 	    }
724 	  else if (argreg <= ARGN_REGNUM)
725 	    {
726 	      /* There's room in a register.  */
727 	      regval =
728 		extract_unsigned_integer (val,
729 					  register_size (gdbarch, argreg),
730 					  byte_order);
731 	      regcache_cooked_write_unsigned (regcache, argreg++, regval);
732 	    }
733 
734 	  /* Store the value 4 bytes at a time.  This means that things
735 	     larger than 4 bytes may go partly in registers and partly
736 	     on the stack.  */
737 	  len -= register_size (gdbarch, argreg);
738 	  val += register_size (gdbarch, argreg);
739 	}
740     }
741 
742   /* Finally, update the SP register.  */
743   regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
744 
745   return sp;
746 }
747 
748 
749 /* Given a return value in `regbuf' with a type `valtype',
750    extract and copy its value into `valbuf'.  */
751 
752 static void
753 m32r_extract_return_value (struct type *type, struct regcache *regcache,
754 			   gdb_byte *dst)
755 {
756   struct gdbarch *gdbarch = regcache->arch ();
757   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
758   int len = type->length ();
759   ULONGEST tmp;
760 
761   /* By using store_unsigned_integer we avoid having to do
762      anything special for small big-endian values.  */
763   regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
764   store_unsigned_integer (dst, (len > 4 ? len - 4 : len), byte_order, tmp);
765 
766   /* Ignore return values more than 8 bytes in size because the m32r
767      returns anything more than 8 bytes in the stack.  */
768   if (len > 4)
769     {
770       regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
771       store_unsigned_integer (dst + len - 4, 4, byte_order, tmp);
772     }
773 }
774 
775 static enum return_value_convention
776 m32r_return_value (struct gdbarch *gdbarch, struct value *function,
777 		   struct type *valtype, struct regcache *regcache,
778 		   gdb_byte *readbuf, const gdb_byte *writebuf)
779 {
780   if (valtype->length () > 8)
781     return RETURN_VALUE_STRUCT_CONVENTION;
782   else
783     {
784       if (readbuf != NULL)
785 	m32r_extract_return_value (valtype, regcache, readbuf);
786       if (writebuf != NULL)
787 	m32r_store_return_value (valtype, regcache, writebuf);
788       return RETURN_VALUE_REGISTER_CONVENTION;
789     }
790 }
791 
792 /* Given a GDB frame, determine the address of the calling function's
793    frame.  This will be used to create a new GDB frame struct.  */
794 
795 static void
796 m32r_frame_this_id (frame_info_ptr this_frame,
797 		    void **this_prologue_cache, struct frame_id *this_id)
798 {
799   struct m32r_unwind_cache *info
800     = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
801   CORE_ADDR base;
802   CORE_ADDR func;
803   struct bound_minimal_symbol msym_stack;
804   struct frame_id id;
805 
806   /* The FUNC is easy.  */
807   func = get_frame_func (this_frame);
808 
809   /* Check if the stack is empty.  */
810   msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
811   if (msym_stack.minsym && info->base == msym_stack.value_address ())
812     return;
813 
814   /* Hopefully the prologue analysis either correctly determined the
815      frame's base (which is the SP from the previous frame), or set
816      that base to "NULL".  */
817   base = info->prev_sp;
818   if (base == 0)
819     return;
820 
821   id = frame_id_build (base, func);
822   (*this_id) = id;
823 }
824 
825 static struct value *
826 m32r_frame_prev_register (frame_info_ptr this_frame,
827 			  void **this_prologue_cache, int regnum)
828 {
829   struct m32r_unwind_cache *info
830     = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
831   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
832 }
833 
834 static const struct frame_unwind m32r_frame_unwind = {
835   "m32r prologue",
836   NORMAL_FRAME,
837   default_frame_unwind_stop_reason,
838   m32r_frame_this_id,
839   m32r_frame_prev_register,
840   NULL,
841   default_frame_sniffer
842 };
843 
844 static CORE_ADDR
845 m32r_frame_base_address (frame_info_ptr this_frame, void **this_cache)
846 {
847   struct m32r_unwind_cache *info
848     = m32r_frame_unwind_cache (this_frame, this_cache);
849   return info->base;
850 }
851 
852 static const struct frame_base m32r_frame_base = {
853   &m32r_frame_unwind,
854   m32r_frame_base_address,
855   m32r_frame_base_address,
856   m32r_frame_base_address
857 };
858 
859 static gdbarch_init_ftype m32r_gdbarch_init;
860 
861 static struct gdbarch *
862 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
863 {
864   struct gdbarch *gdbarch;
865 
866   /* If there is already a candidate, use it.  */
867   arches = gdbarch_list_lookup_by_info (arches, &info);
868   if (arches != NULL)
869     return arches->gdbarch;
870 
871   /* Allocate space for the new architecture.  */
872   m32r_gdbarch_tdep *tdep = new m32r_gdbarch_tdep;
873   gdbarch = gdbarch_alloc (&info, tdep);
874 
875   set_gdbarch_wchar_bit (gdbarch, 16);
876   set_gdbarch_wchar_signed (gdbarch, 0);
877 
878   set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
879   set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM);
880   set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
881   set_gdbarch_register_name (gdbarch, m32r_register_name);
882   set_gdbarch_register_type (gdbarch, m32r_register_type);
883 
884   set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
885   set_gdbarch_return_value (gdbarch, m32r_return_value);
886 
887   set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
888   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
889   set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32r_breakpoint_kind_from_pc);
890   set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32r_sw_breakpoint_from_kind);
891   set_gdbarch_memory_insert_breakpoint (gdbarch,
892 					m32r_memory_insert_breakpoint);
893   set_gdbarch_memory_remove_breakpoint (gdbarch,
894 					m32r_memory_remove_breakpoint);
895 
896   set_gdbarch_frame_align (gdbarch, m32r_frame_align);
897 
898   frame_base_set_default (gdbarch, &m32r_frame_base);
899 
900   /* Hook in ABI-specific overrides, if they have been registered.  */
901   gdbarch_init_osabi (info, gdbarch);
902 
903   /* Hook in the default unwinders.  */
904   frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
905 
906   /* Support simple overlay manager.  */
907   set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
908 
909   return gdbarch;
910 }
911 
912 void _initialize_m32r_tdep ();
913 void
914 _initialize_m32r_tdep ()
915 {
916   gdbarch_register (bfd_arch_m32r, m32r_gdbarch_init);
917 }
918