xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/m32r-linux-tdep.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /* Target-dependent code for GNU/Linux m32r.
2 
3    Copyright (C) 2004-2019 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "frame.h"
23 #include "value.h"
24 #include "regcache.h"
25 #include "inferior.h"
26 #include "osabi.h"
27 #include "reggroups.h"
28 #include "regset.h"
29 
30 #include "glibc-tdep.h"
31 #include "solib-svr4.h"
32 #include "symtab.h"
33 
34 #include "trad-frame.h"
35 #include "frame-unwind.h"
36 
37 #include "m32r-tdep.h"
38 #include "linux-tdep.h"
39 
40 
41 
42 /* Recognizing signal handler frames.  */
43 
44 /* GNU/Linux has two flavors of signals.  Normal signal handlers, and
45    "realtime" (RT) signals.  The RT signals can provide additional
46    information to the signal handler if the SA_SIGINFO flag is set
47    when establishing a signal handler using `sigaction'.  It is not
48    unlikely that future versions of GNU/Linux will support SA_SIGINFO
49    for normal signals too.  */
50 
51 /* When the m32r Linux kernel calls a signal handler and the
52    SA_RESTORER flag isn't set, the return address points to a bit of
53    code on the stack.  This function returns whether the PC appears to
54    be within this bit of code.
55 
56    The instruction sequence for normal signals is
57        ldi    r7, #__NR_sigreturn
58        trap   #2
59    or 0x67 0x77 0x10 0xf2.
60 
61    Checking for the code sequence should be somewhat reliable, because
62    the effect is to call the system call sigreturn.  This is unlikely
63    to occur anywhere other than in a signal trampoline.
64 
65    It kind of sucks that we have to read memory from the process in
66    order to identify a signal trampoline, but there doesn't seem to be
67    any other way.  Therefore we only do the memory reads if no
68    function name could be identified, which should be the case since
69    the code is on the stack.
70 
71    Detection of signal trampolines for handlers that set the
72    SA_RESTORER flag is in general not possible.  Unfortunately this is
73    what the GNU C Library has been doing for quite some time now.
74    However, as of version 2.1.2, the GNU C Library uses signal
75    trampolines (named __restore and __restore_rt) that are identical
76    to the ones used by the kernel.  Therefore, these trampolines are
77    supported too.  */
78 
79 static const gdb_byte linux_sigtramp_code[] = {
80   0x67, 0x77, 0x10, 0xf2,
81 };
82 
83 /* If PC is in a sigtramp routine, return the address of the start of
84    the routine.  Otherwise, return 0.  */
85 
86 static CORE_ADDR
87 m32r_linux_sigtramp_start (CORE_ADDR pc, struct frame_info *this_frame)
88 {
89   gdb_byte buf[4];
90 
91   /* We only recognize a signal trampoline if PC is at the start of
92      one of the instructions.  We optimize for finding the PC at the
93      start of the instruction sequence, as will be the case when the
94      trampoline is not the first frame on the stack.  We assume that
95      in the case where the PC is not at the start of the instruction
96      sequence, there will be a few trailing readable bytes on the
97      stack.  */
98 
99   if (pc % 2 != 0)
100     {
101       if (!safe_frame_unwind_memory (this_frame, pc, buf, 2))
102 	return 0;
103 
104       if (memcmp (buf, linux_sigtramp_code, 2) == 0)
105 	pc -= 2;
106       else
107 	return 0;
108     }
109 
110   if (!safe_frame_unwind_memory (this_frame, pc, buf, 4))
111     return 0;
112 
113   if (memcmp (buf, linux_sigtramp_code, 4) != 0)
114     return 0;
115 
116   return pc;
117 }
118 
119 /* This function does the same for RT signals.  Here the instruction
120    sequence is
121        ldi    r7, #__NR_rt_sigreturn
122        trap   #2
123    or 0x97 0xf0 0x00 0xad 0x10 0xf2 0xf0 0x00.
124 
125    The effect is to call the system call rt_sigreturn.  */
126 
127 static const gdb_byte linux_rt_sigtramp_code[] = {
128   0x97, 0xf0, 0x00, 0xad, 0x10, 0xf2, 0xf0, 0x00,
129 };
130 
131 /* If PC is in a RT sigtramp routine, return the address of the start
132    of the routine.  Otherwise, return 0.  */
133 
134 static CORE_ADDR
135 m32r_linux_rt_sigtramp_start (CORE_ADDR pc, struct frame_info *this_frame)
136 {
137   gdb_byte buf[4];
138 
139   /* We only recognize a signal trampoline if PC is at the start of
140      one of the instructions.  We optimize for finding the PC at the
141      start of the instruction sequence, as will be the case when the
142      trampoline is not the first frame on the stack.  We assume that
143      in the case where the PC is not at the start of the instruction
144      sequence, there will be a few trailing readable bytes on the
145      stack.  */
146 
147   if (pc % 2 != 0)
148     return 0;
149 
150   if (!safe_frame_unwind_memory (this_frame, pc, buf, 4))
151     return 0;
152 
153   if (memcmp (buf, linux_rt_sigtramp_code, 4) == 0)
154     {
155       if (!safe_frame_unwind_memory (this_frame, pc + 4, buf, 4))
156 	return 0;
157 
158       if (memcmp (buf, linux_rt_sigtramp_code + 4, 4) == 0)
159 	return pc;
160     }
161   else if (memcmp (buf, linux_rt_sigtramp_code + 4, 4) == 0)
162     {
163       if (!safe_frame_unwind_memory (this_frame, pc - 4, buf, 4))
164 	return 0;
165 
166       if (memcmp (buf, linux_rt_sigtramp_code, 4) == 0)
167 	return pc - 4;
168     }
169 
170   return 0;
171 }
172 
173 static int
174 m32r_linux_pc_in_sigtramp (CORE_ADDR pc, const char *name,
175 			   struct frame_info *this_frame)
176 {
177   /* If we have NAME, we can optimize the search.  The trampolines are
178      named __restore and __restore_rt.  However, they aren't dynamically
179      exported from the shared C library, so the trampoline may appear to
180      be part of the preceding function.  This should always be sigaction,
181      __sigaction, or __libc_sigaction (all aliases to the same function).  */
182   if (name == NULL || strstr (name, "sigaction") != NULL)
183     return (m32r_linux_sigtramp_start (pc, this_frame) != 0
184 	    || m32r_linux_rt_sigtramp_start (pc, this_frame) != 0);
185 
186   return (strcmp ("__restore", name) == 0
187 	  || strcmp ("__restore_rt", name) == 0);
188 }
189 
190 /* From <asm/sigcontext.h>.  */
191 static int m32r_linux_sc_reg_offset[] = {
192   4 * 4,			/* r0 */
193   5 * 4,			/* r1 */
194   6 * 4,			/* r2 */
195   7 * 4,			/* r3 */
196   0 * 4,			/* r4 */
197   1 * 4,			/* r5 */
198   2 * 4,			/* r6 */
199   8 * 4,			/* r7 */
200   9 * 4,			/* r8 */
201   10 * 4,			/* r9 */
202   11 * 4,			/* r10 */
203   12 * 4,			/* r11 */
204   13 * 4,			/* r12 */
205   21 * 4,			/* fp */
206   22 * 4,			/* lr */
207   -1 * 4,			/* sp */
208   16 * 4,			/* psw */
209   -1 * 4,			/* cbr */
210   23 * 4,			/* spi */
211   20 * 4,			/* spu */
212   19 * 4,			/* bpc */
213   17 * 4,			/* pc */
214   15 * 4,			/* accl */
215   14 * 4			/* acch */
216 };
217 
218 struct m32r_frame_cache
219 {
220   CORE_ADDR base, pc;
221   struct trad_frame_saved_reg *saved_regs;
222 };
223 
224 static struct m32r_frame_cache *
225 m32r_linux_sigtramp_frame_cache (struct frame_info *this_frame,
226 				 void **this_cache)
227 {
228   struct m32r_frame_cache *cache;
229   CORE_ADDR sigcontext_addr, addr;
230   int regnum;
231 
232   if ((*this_cache) != NULL)
233     return (struct m32r_frame_cache *) (*this_cache);
234   cache = FRAME_OBSTACK_ZALLOC (struct m32r_frame_cache);
235   (*this_cache) = cache;
236   cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
237 
238   cache->base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
239   sigcontext_addr = cache->base + 4;
240 
241   cache->pc = get_frame_pc (this_frame);
242   addr = m32r_linux_sigtramp_start (cache->pc, this_frame);
243   if (addr == 0)
244     {
245       /* If this is a RT signal trampoline, adjust SIGCONTEXT_ADDR
246          accordingly.  */
247       addr = m32r_linux_rt_sigtramp_start (cache->pc, this_frame);
248       if (addr)
249 	sigcontext_addr += 128;
250       else
251 	addr = get_frame_func (this_frame);
252     }
253   cache->pc = addr;
254 
255   cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
256 
257   for (regnum = 0; regnum < sizeof (m32r_linux_sc_reg_offset) / 4; regnum++)
258     {
259       if (m32r_linux_sc_reg_offset[regnum] >= 0)
260 	cache->saved_regs[regnum].addr =
261 	  sigcontext_addr + m32r_linux_sc_reg_offset[regnum];
262     }
263 
264   return cache;
265 }
266 
267 static void
268 m32r_linux_sigtramp_frame_this_id (struct frame_info *this_frame,
269 				   void **this_cache,
270 				   struct frame_id *this_id)
271 {
272   struct m32r_frame_cache *cache =
273     m32r_linux_sigtramp_frame_cache (this_frame, this_cache);
274 
275   (*this_id) = frame_id_build (cache->base, cache->pc);
276 }
277 
278 static struct value *
279 m32r_linux_sigtramp_frame_prev_register (struct frame_info *this_frame,
280 					 void **this_cache, int regnum)
281 {
282   struct m32r_frame_cache *cache =
283     m32r_linux_sigtramp_frame_cache (this_frame, this_cache);
284 
285   return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
286 }
287 
288 static int
289 m32r_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
290 				   struct frame_info *this_frame,
291 				   void **this_cache)
292 {
293   CORE_ADDR pc = get_frame_pc (this_frame);
294   const char *name;
295 
296   find_pc_partial_function (pc, &name, NULL, NULL);
297   if (m32r_linux_pc_in_sigtramp (pc, name, this_frame))
298     return 1;
299 
300   return 0;
301 }
302 
303 static const struct frame_unwind m32r_linux_sigtramp_frame_unwind = {
304   SIGTRAMP_FRAME,
305   default_frame_unwind_stop_reason,
306   m32r_linux_sigtramp_frame_this_id,
307   m32r_linux_sigtramp_frame_prev_register,
308   NULL,
309   m32r_linux_sigtramp_frame_sniffer
310 };
311 
312 /* Mapping between the registers in `struct pt_regs'
313    format and GDB's register array layout.  */
314 
315 static int m32r_pt_regs_offset[] = {
316   4 * 4,			/* r0 */
317   4 * 5,			/* r1 */
318   4 * 6,			/* r2 */
319   4 * 7,			/* r3 */
320   4 * 0,			/* r4 */
321   4 * 1,			/* r5 */
322   4 * 2,			/* r6 */
323   4 * 8,			/* r7 */
324   4 * 9,			/* r8 */
325   4 * 10,			/* r9 */
326   4 * 11,			/* r10 */
327   4 * 12,			/* r11 */
328   4 * 13,			/* r12 */
329   4 * 24,			/* fp */
330   4 * 25,			/* lr */
331   4 * 23,			/* sp */
332   4 * 19,			/* psw */
333   4 * 19,			/* cbr */
334   4 * 26,			/* spi */
335   4 * 23,			/* spu */
336   4 * 22,			/* bpc */
337   4 * 20,			/* pc */
338   4 * 16,			/* accl */
339   4 * 15			/* acch */
340 };
341 
342 #define PSW_OFFSET (4 * 19)
343 #define BBPSW_OFFSET (4 * 21)
344 #define SPU_OFFSET (4 * 23)
345 #define SPI_OFFSET (4 * 26)
346 
347 #define M32R_LINUX_GREGS_SIZE (4 * 28)
348 
349 static void
350 m32r_linux_supply_gregset (const struct regset *regset,
351 			   struct regcache *regcache, int regnum,
352 			   const void *gregs, size_t size)
353 {
354   const gdb_byte *regs = (const gdb_byte *) gregs;
355   enum bfd_endian byte_order =
356     gdbarch_byte_order (regcache->arch ());
357   ULONGEST psw, bbpsw;
358   gdb_byte buf[4];
359   const gdb_byte *p;
360   int i;
361 
362   psw = extract_unsigned_integer (regs + PSW_OFFSET, 4, byte_order);
363   bbpsw = extract_unsigned_integer (regs + BBPSW_OFFSET, 4, byte_order);
364   psw = ((0x00c1 & bbpsw) << 8) | ((0xc100 & psw) >> 8);
365 
366   for (i = 0; i < ARRAY_SIZE (m32r_pt_regs_offset); i++)
367     {
368       if (regnum != -1 && regnum != i)
369 	continue;
370 
371       switch (i)
372 	{
373 	case PSW_REGNUM:
374 	  store_unsigned_integer (buf, 4, byte_order, psw);
375 	  p = buf;
376 	  break;
377 	case CBR_REGNUM:
378 	  store_unsigned_integer (buf, 4, byte_order, psw & 1);
379 	  p = buf;
380 	  break;
381 	case M32R_SP_REGNUM:
382 	  p = regs + ((psw & 0x80) ? SPU_OFFSET : SPI_OFFSET);
383 	  break;
384 	default:
385 	  p = regs + m32r_pt_regs_offset[i];
386 	}
387 
388       regcache->raw_supply (i, p);
389     }
390 }
391 
392 static void
393 m32r_linux_collect_gregset (const struct regset *regset,
394 			    const struct regcache *regcache,
395 			    int regnum, void *gregs, size_t size)
396 {
397   gdb_byte *regs = (gdb_byte *) gregs;
398   int i;
399   enum bfd_endian byte_order =
400     gdbarch_byte_order (regcache->arch ());
401   ULONGEST psw;
402   gdb_byte buf[4];
403 
404   regcache->raw_collect (PSW_REGNUM, buf);
405   psw = extract_unsigned_integer (buf, 4, byte_order);
406 
407   for (i = 0; i < ARRAY_SIZE (m32r_pt_regs_offset); i++)
408     {
409       if (regnum != -1 && regnum != i)
410 	continue;
411 
412       switch (i)
413 	{
414 	case PSW_REGNUM:
415 	  store_unsigned_integer (regs + PSW_OFFSET, 4, byte_order,
416 				  (psw & 0xc1) << 8);
417 	  store_unsigned_integer (regs + BBPSW_OFFSET, 4, byte_order,
418 				  (psw >> 8) & 0xc1);
419 	  break;
420 	case CBR_REGNUM:
421 	  break;
422 	case M32R_SP_REGNUM:
423 	  regcache->raw_collect
424 	    (i, regs + ((psw & 0x80) ? SPU_OFFSET : SPI_OFFSET));
425 	  break;
426 	default:
427 	  regcache->raw_collect (i, regs + m32r_pt_regs_offset[i]);
428 	}
429     }
430 }
431 
432 static const struct regset m32r_linux_gregset = {
433   NULL,
434   m32r_linux_supply_gregset, m32r_linux_collect_gregset
435 };
436 
437 static void
438 m32r_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
439 					 iterate_over_regset_sections_cb *cb,
440 					 void *cb_data,
441 					 const struct regcache *regcache)
442 {
443   cb (".reg", M32R_LINUX_GREGS_SIZE, M32R_LINUX_GREGS_SIZE, &m32r_linux_gregset,
444       NULL, cb_data);
445 }
446 
447 static void
448 m32r_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
449 {
450 
451   linux_init_abi (info, gdbarch);
452 
453   /* Since EVB register is not available for native debug, we reduce
454      the number of registers.  */
455   set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS - 1);
456 
457   frame_unwind_append_unwinder (gdbarch, &m32r_linux_sigtramp_frame_unwind);
458 
459   /* GNU/Linux uses SVR4-style shared libraries.  */
460   set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
461   set_solib_svr4_fetch_link_map_offsets
462     (gdbarch, svr4_ilp32_fetch_link_map_offsets);
463 
464   /* Core file support.  */
465   set_gdbarch_iterate_over_regset_sections
466     (gdbarch, m32r_linux_iterate_over_regset_sections);
467 
468   /* Enable TLS support.  */
469   set_gdbarch_fetch_tls_load_module_address (gdbarch,
470                                              svr4_fetch_objfile_link_map);
471 }
472 
473 void
474 _initialize_m32r_linux_tdep (void)
475 {
476   gdbarch_register_osabi (bfd_arch_m32r, 0, GDB_OSABI_LINUX,
477 			  m32r_linux_init_abi);
478 }
479