xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/m32c-tdep.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2 
3    Copyright (C) 2004-2017 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "elf-bfd.h"
22 #include "elf/m32c.h"
23 #include "gdb/sim-m32c.h"
24 #include "dis-asm.h"
25 #include "gdbtypes.h"
26 #include "regcache.h"
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "dwarf2-frame.h"
31 #include "dwarf2expr.h"
32 #include "symtab.h"
33 #include "gdbcore.h"
34 #include "value.h"
35 #include "reggroups.h"
36 #include "prologue-value.h"
37 #include "target.h"
38 #include "objfiles.h"
39 
40 
41 /* The m32c tdep structure.  */
42 
43 static struct reggroup *m32c_dma_reggroup;
44 
45 struct m32c_reg;
46 
47 /* The type of a function that moves the value of REG between CACHE or
48    BUF --- in either direction.  */
49 typedef enum register_status (m32c_write_reg_t) (struct m32c_reg *reg,
50 						 struct regcache *cache,
51 						 const gdb_byte *buf);
52 
53 typedef enum register_status (m32c_read_reg_t) (struct m32c_reg *reg,
54 						struct regcache *cache,
55 						gdb_byte *buf);
56 
57 struct m32c_reg
58 {
59   /* The name of this register.  */
60   const char *name;
61 
62   /* Its type.  */
63   struct type *type;
64 
65   /* The architecture this register belongs to.  */
66   struct gdbarch *arch;
67 
68   /* Its GDB register number.  */
69   int num;
70 
71   /* Its sim register number.  */
72   int sim_num;
73 
74   /* Its DWARF register number, or -1 if it doesn't have one.  */
75   int dwarf_num;
76 
77   /* Register group memberships.  */
78   unsigned int general_p : 1;
79   unsigned int dma_p : 1;
80   unsigned int system_p : 1;
81   unsigned int save_restore_p : 1;
82 
83   /* Functions to read its value from a regcache, and write its value
84      to a regcache.  */
85   m32c_read_reg_t *read;
86   m32c_write_reg_t *write;
87 
88   /* Data for READ and WRITE functions.  The exact meaning depends on
89      the specific functions selected; see the comments for those
90      functions.  */
91   struct m32c_reg *rx, *ry;
92   int n;
93 };
94 
95 
96 /* An overestimate of the number of raw and pseudoregisters we will
97    have.  The exact answer depends on the variant of the architecture
98    at hand, but we can use this to declare statically allocated
99    arrays, and bump it up when needed.  */
100 #define M32C_MAX_NUM_REGS (75)
101 
102 /* The largest assigned DWARF register number.  */
103 #define M32C_MAX_DWARF_REGNUM (40)
104 
105 
106 struct gdbarch_tdep
107 {
108   /* All the registers for this variant, indexed by GDB register
109      number, and the number of registers present.  */
110   struct m32c_reg regs[M32C_MAX_NUM_REGS];
111 
112   /* The number of valid registers.  */
113   int num_regs;
114 
115   /* Interesting registers.  These are pointers into REGS.  */
116   struct m32c_reg *pc, *flg;
117   struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
118   struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
119   struct m32c_reg *sb, *fb, *sp;
120 
121   /* A table indexed by DWARF register numbers, pointing into
122      REGS.  */
123   struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
124 
125   /* Types for this architecture.  We can't use the builtin_type_foo
126      types, because they're not initialized when building a gdbarch
127      structure.  */
128   struct type *voyd, *ptr_voyd, *func_voyd;
129   struct type *uint8, *uint16;
130   struct type *int8, *int16, *int32, *int64;
131 
132   /* The types for data address and code address registers.  */
133   struct type *data_addr_reg_type, *code_addr_reg_type;
134 
135   /* The number of bytes a return address pushed by a 'jsr' instruction
136      occupies on the stack.  */
137   int ret_addr_bytes;
138 
139   /* The number of bytes an address register occupies on the stack
140      when saved by an 'enter' or 'pushm' instruction.  */
141   int push_addr_bytes;
142 };
143 
144 
145 /* Types.  */
146 
147 static void
148 make_types (struct gdbarch *arch)
149 {
150   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
151   unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
152   int data_addr_reg_bits, code_addr_reg_bits;
153   char type_name[50];
154 
155 #if 0
156   /* This is used to clip CORE_ADDR values, so this value is
157      appropriate both on the m32c, where pointers are 32 bits long,
158      and on the m16c, where pointers are sixteen bits long, but there
159      may be code above the 64k boundary.  */
160   set_gdbarch_addr_bit (arch, 24);
161 #else
162   /* GCC uses 32 bits for addrs in the dwarf info, even though
163      only 16/24 bits are used.  Setting addr_bit to 24 causes
164      errors in reading the dwarf addresses.  */
165   set_gdbarch_addr_bit (arch, 32);
166 #endif
167 
168   set_gdbarch_int_bit (arch, 16);
169   switch (mach)
170     {
171     case bfd_mach_m16c:
172       data_addr_reg_bits = 16;
173       code_addr_reg_bits = 24;
174       set_gdbarch_ptr_bit (arch, 16);
175       tdep->ret_addr_bytes = 3;
176       tdep->push_addr_bytes = 2;
177       break;
178 
179     case bfd_mach_m32c:
180       data_addr_reg_bits = 24;
181       code_addr_reg_bits = 24;
182       set_gdbarch_ptr_bit (arch, 32);
183       tdep->ret_addr_bytes = 4;
184       tdep->push_addr_bytes = 4;
185       break;
186 
187     default:
188       gdb_assert_not_reached ("unexpected mach");
189     }
190 
191   /* The builtin_type_mumble variables are sometimes uninitialized when
192      this is called, so we avoid using them.  */
193   tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
194   tdep->ptr_voyd
195     = arch_pointer_type (arch, gdbarch_ptr_bit (arch), NULL, tdep->voyd);
196   tdep->func_voyd = lookup_function_type (tdep->voyd);
197 
198   xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
199 	     gdbarch_bfd_arch_info (arch)->printable_name);
200   tdep->data_addr_reg_type
201     = arch_pointer_type (arch, data_addr_reg_bits, type_name, tdep->voyd);
202 
203   xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
204 	     gdbarch_bfd_arch_info (arch)->printable_name);
205   tdep->code_addr_reg_type
206     = arch_pointer_type (arch, code_addr_reg_bits, type_name, tdep->func_voyd);
207 
208   tdep->uint8  = arch_integer_type (arch,  8, 1, "uint8_t");
209   tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
210   tdep->int8   = arch_integer_type (arch,  8, 0, "int8_t");
211   tdep->int16  = arch_integer_type (arch, 16, 0, "int16_t");
212   tdep->int32  = arch_integer_type (arch, 32, 0, "int32_t");
213   tdep->int64  = arch_integer_type (arch, 64, 0, "int64_t");
214 }
215 
216 
217 
218 /* Register set.  */
219 
220 static const char *
221 m32c_register_name (struct gdbarch *gdbarch, int num)
222 {
223   return gdbarch_tdep (gdbarch)->regs[num].name;
224 }
225 
226 
227 static struct type *
228 m32c_register_type (struct gdbarch *arch, int reg_nr)
229 {
230   return gdbarch_tdep (arch)->regs[reg_nr].type;
231 }
232 
233 
234 static int
235 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
236 {
237   return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
238 }
239 
240 
241 static int
242 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
243 {
244   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245   if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
246       && tdep->dwarf_regs[reg_nr])
247     return tdep->dwarf_regs[reg_nr]->num;
248   else
249     /* The DWARF CFI code expects to see -1 for invalid register
250        numbers.  */
251     return -1;
252 }
253 
254 
255 static int
256 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
257 			  struct reggroup *group)
258 {
259   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
260   struct m32c_reg *reg = &tdep->regs[regnum];
261 
262   /* The anonymous raw registers aren't in any groups.  */
263   if (! reg->name)
264     return 0;
265 
266   if (group == all_reggroup)
267     return 1;
268 
269   if (group == general_reggroup
270       && reg->general_p)
271     return 1;
272 
273   if (group == m32c_dma_reggroup
274       && reg->dma_p)
275     return 1;
276 
277   if (group == system_reggroup
278       && reg->system_p)
279     return 1;
280 
281   /* Since the m32c DWARF register numbers refer to cooked registers, not
282      raw registers, and frame_pop depends on the save and restore groups
283      containing registers the DWARF CFI will actually mention, our save
284      and restore groups are cooked registers, not raw registers.  (This is
285      why we can't use the default reggroup function.)  */
286   if ((group == save_reggroup
287        || group == restore_reggroup)
288       && reg->save_restore_p)
289     return 1;
290 
291   return 0;
292 }
293 
294 
295 /* Register move functions.  We declare them here using
296    m32c_{read,write}_reg_t to check the types.  */
297 static m32c_read_reg_t m32c_raw_read;
298 static m32c_read_reg_t m32c_banked_read;
299 static m32c_read_reg_t m32c_sb_read;
300 static m32c_read_reg_t m32c_part_read;
301 static m32c_read_reg_t m32c_cat_read;
302 static m32c_read_reg_t m32c_r3r2r1r0_read;
303 
304 static m32c_write_reg_t m32c_raw_write;
305 static m32c_write_reg_t m32c_banked_write;
306 static m32c_write_reg_t m32c_sb_write;
307 static m32c_write_reg_t m32c_part_write;
308 static m32c_write_reg_t m32c_cat_write;
309 static m32c_write_reg_t m32c_r3r2r1r0_write;
310 
311 /* Copy the value of the raw register REG from CACHE to BUF.  */
312 static enum register_status
313 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
314 {
315   return regcache_raw_read (cache, reg->num, buf);
316 }
317 
318 
319 /* Copy the value of the raw register REG from BUF to CACHE.  */
320 static enum register_status
321 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache,
322 		const gdb_byte *buf)
323 {
324   regcache_raw_write (cache, reg->num, buf);
325 
326   return REG_VALID;
327 }
328 
329 
330 /* Return the value of the 'flg' register in CACHE.  */
331 static int
332 m32c_read_flg (struct regcache *cache)
333 {
334   struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
335   ULONGEST flg;
336   regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
337   return flg & 0xffff;
338 }
339 
340 
341 /* Evaluate the real register number of a banked register.  */
342 static struct m32c_reg *
343 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
344 {
345   return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
346 }
347 
348 
349 /* Move the value of a banked register from CACHE to BUF.
350    If the value of the 'flg' register in CACHE has any of the bits
351    masked in REG->n set, then read REG->ry.  Otherwise, read
352    REG->rx.  */
353 static enum register_status
354 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
355 {
356   struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
357   return regcache_raw_read (cache, bank_reg->num, buf);
358 }
359 
360 
361 /* Move the value of a banked register from BUF to CACHE.
362    If the value of the 'flg' register in CACHE has any of the bits
363    masked in REG->n set, then write REG->ry.  Otherwise, write
364    REG->rx.  */
365 static enum register_status
366 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache,
367 		   const gdb_byte *buf)
368 {
369   struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
370   regcache_raw_write (cache, bank_reg->num, buf);
371 
372   return REG_VALID;
373 }
374 
375 
376 /* Move the value of SB from CACHE to BUF.  On bfd_mach_m32c, SB is a
377    banked register; on bfd_mach_m16c, it's not.  */
378 static enum register_status
379 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
380 {
381   if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
382     return m32c_raw_read (reg->rx, cache, buf);
383   else
384     return m32c_banked_read (reg, cache, buf);
385 }
386 
387 
388 /* Move the value of SB from BUF to CACHE.  On bfd_mach_m32c, SB is a
389    banked register; on bfd_mach_m16c, it's not.  */
390 static enum register_status
391 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, const gdb_byte *buf)
392 {
393   if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
394     m32c_raw_write (reg->rx, cache, buf);
395   else
396     m32c_banked_write (reg, cache, buf);
397 
398   return REG_VALID;
399 }
400 
401 
402 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
403    and *LEN_P to the offset and length, in bytes, of the part REG
404    occupies in its underlying register.  The offset is from the
405    lower-addressed end, regardless of the architecture's endianness.
406    (The M32C family is always little-endian, but let's keep those
407    assumptions out of here.)  */
408 static void
409 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
410 {
411   /* The length of the containing register, of which REG is one part.  */
412   int containing_len = TYPE_LENGTH (reg->rx->type);
413 
414   /* The length of one "element" in our imaginary array.  */
415   int elt_len = TYPE_LENGTH (reg->type);
416 
417   /* The offset of REG's "element" from the least significant end of
418      the containing register.  */
419   int elt_offset = reg->n * elt_len;
420 
421   /* If we extend off the end, trim the length of the element.  */
422   if (elt_offset + elt_len > containing_len)
423     {
424       elt_len = containing_len - elt_offset;
425       /* We shouldn't be declaring partial registers that go off the
426 	 end of their containing registers.  */
427       gdb_assert (elt_len > 0);
428     }
429 
430   /* Flip the offset around if we're big-endian.  */
431   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
432     elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
433 
434   *offset_p = elt_offset;
435   *len_p = elt_len;
436 }
437 
438 
439 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
440    to BUF.  Treating the value of the register REG->rx as an array of
441    REG->type values, where higher indices refer to more significant
442    bits, read the value of the REG->n'th element.  */
443 static enum register_status
444 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
445 {
446   int offset, len;
447 
448   memset (buf, 0, TYPE_LENGTH (reg->type));
449   m32c_find_part (reg, &offset, &len);
450   return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
451 }
452 
453 
454 /* Move the value of a banked register from BUF to CACHE.
455    Treating the value of the register REG->rx as an array of REG->type
456    values, where higher indices refer to more significant bits, write
457    the value of the REG->n'th element.  */
458 static enum register_status
459 m32c_part_write (struct m32c_reg *reg, struct regcache *cache,
460 		 const gdb_byte *buf)
461 {
462   int offset, len;
463 
464   m32c_find_part (reg, &offset, &len);
465   regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
466 
467   return REG_VALID;
468 }
469 
470 
471 /* Move the value of REG from CACHE to BUF.  REG's value is the
472    concatenation of the values of the registers REG->rx and REG->ry,
473    with REG->rx contributing the more significant bits.  */
474 static enum register_status
475 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
476 {
477   int high_bytes = TYPE_LENGTH (reg->rx->type);
478   int low_bytes  = TYPE_LENGTH (reg->ry->type);
479   enum register_status status;
480 
481   gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
482 
483   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
484     {
485       status = regcache_cooked_read (cache, reg->rx->num, buf);
486       if (status == REG_VALID)
487 	status = regcache_cooked_read (cache, reg->ry->num, buf + high_bytes);
488     }
489   else
490     {
491       status = regcache_cooked_read (cache, reg->rx->num, buf + low_bytes);
492       if (status == REG_VALID)
493 	status = regcache_cooked_read (cache, reg->ry->num, buf);
494     }
495 
496   return status;
497 }
498 
499 
500 /* Move the value of REG from CACHE to BUF.  REG's value is the
501    concatenation of the values of the registers REG->rx and REG->ry,
502    with REG->rx contributing the more significant bits.  */
503 static enum register_status
504 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache,
505 		const gdb_byte *buf)
506 {
507   int high_bytes = TYPE_LENGTH (reg->rx->type);
508   int low_bytes  = TYPE_LENGTH (reg->ry->type);
509 
510   gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
511 
512   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
513     {
514       regcache_cooked_write (cache, reg->rx->num, buf);
515       regcache_cooked_write (cache, reg->ry->num, buf + high_bytes);
516     }
517   else
518     {
519       regcache_cooked_write (cache, reg->rx->num, buf + low_bytes);
520       regcache_cooked_write (cache, reg->ry->num, buf);
521     }
522 
523   return REG_VALID;
524 }
525 
526 
527 /* Copy the value of the raw register REG from CACHE to BUF.  REG is
528    the concatenation (from most significant to least) of r3, r2, r1,
529    and r0.  */
530 static enum register_status
531 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
532 {
533   struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
534   int len = TYPE_LENGTH (tdep->r0->type);
535   enum register_status status;
536 
537   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
538     {
539       status = regcache_cooked_read (cache, tdep->r0->num, buf + len * 3);
540       if (status == REG_VALID)
541 	status = regcache_cooked_read (cache, tdep->r1->num, buf + len * 2);
542       if (status == REG_VALID)
543 	status = regcache_cooked_read (cache, tdep->r2->num, buf + len * 1);
544       if (status == REG_VALID)
545 	status = regcache_cooked_read (cache, tdep->r3->num, buf);
546     }
547   else
548     {
549       status = regcache_cooked_read (cache, tdep->r0->num, buf);
550       if (status == REG_VALID)
551 	status = regcache_cooked_read (cache, tdep->r1->num, buf + len * 1);
552       if (status == REG_VALID)
553 	status = regcache_cooked_read (cache, tdep->r2->num, buf + len * 2);
554       if (status == REG_VALID)
555 	status = regcache_cooked_read (cache, tdep->r3->num, buf + len * 3);
556     }
557 
558   return status;
559 }
560 
561 
562 /* Copy the value of the raw register REG from BUF to CACHE.  REG is
563    the concatenation (from most significant to least) of r3, r2, r1,
564    and r0.  */
565 static enum register_status
566 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache,
567 		     const gdb_byte *buf)
568 {
569   struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
570   int len = TYPE_LENGTH (tdep->r0->type);
571 
572   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
573     {
574       regcache_cooked_write (cache, tdep->r0->num, buf + len * 3);
575       regcache_cooked_write (cache, tdep->r1->num, buf + len * 2);
576       regcache_cooked_write (cache, tdep->r2->num, buf + len * 1);
577       regcache_cooked_write (cache, tdep->r3->num, buf);
578     }
579   else
580     {
581       regcache_cooked_write (cache, tdep->r0->num, buf);
582       regcache_cooked_write (cache, tdep->r1->num, buf + len * 1);
583       regcache_cooked_write (cache, tdep->r2->num, buf + len * 2);
584       regcache_cooked_write (cache, tdep->r3->num, buf + len * 3);
585     }
586 
587   return REG_VALID;
588 }
589 
590 
591 static enum register_status
592 m32c_pseudo_register_read (struct gdbarch *arch,
593 			   struct regcache *cache,
594 			   int cookednum,
595 			   gdb_byte *buf)
596 {
597   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
598   struct m32c_reg *reg;
599 
600   gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
601   gdb_assert (arch == get_regcache_arch (cache));
602   gdb_assert (arch == tdep->regs[cookednum].arch);
603   reg = &tdep->regs[cookednum];
604 
605   return reg->read (reg, cache, buf);
606 }
607 
608 
609 static void
610 m32c_pseudo_register_write (struct gdbarch *arch,
611 			    struct regcache *cache,
612 			    int cookednum,
613 			    const gdb_byte *buf)
614 {
615   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
616   struct m32c_reg *reg;
617 
618   gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
619   gdb_assert (arch == get_regcache_arch (cache));
620   gdb_assert (arch == tdep->regs[cookednum].arch);
621   reg = &tdep->regs[cookednum];
622 
623   reg->write (reg, cache, buf);
624 }
625 
626 
627 /* Add a register with the given fields to the end of ARCH's table.
628    Return a pointer to the newly added register.  */
629 static struct m32c_reg *
630 add_reg (struct gdbarch *arch,
631 	 const char *name,
632 	 struct type *type,
633 	 int sim_num,
634 	 m32c_read_reg_t *read,
635 	 m32c_write_reg_t *write,
636 	 struct m32c_reg *rx,
637 	 struct m32c_reg *ry,
638 	 int n)
639 {
640   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
641   struct m32c_reg *r = &tdep->regs[tdep->num_regs];
642 
643   gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
644 
645   r->name           = name;
646   r->type           = type;
647   r->arch           = arch;
648   r->num            = tdep->num_regs;
649   r->sim_num        = sim_num;
650   r->dwarf_num      = -1;
651   r->general_p      = 0;
652   r->dma_p          = 0;
653   r->system_p       = 0;
654   r->save_restore_p = 0;
655   r->read           = read;
656   r->write          = write;
657   r->rx             = rx;
658   r->ry             = ry;
659   r->n              = n;
660 
661   tdep->num_regs++;
662 
663   return r;
664 }
665 
666 
667 /* Record NUM as REG's DWARF register number.  */
668 static void
669 set_dwarf_regnum (struct m32c_reg *reg, int num)
670 {
671   gdb_assert (num < M32C_MAX_NUM_REGS);
672 
673   /* Update the reg->DWARF mapping.  Only count the first number
674      assigned to this register.  */
675   if (reg->dwarf_num == -1)
676     reg->dwarf_num = num;
677 
678   /* Update the DWARF->reg mapping.  */
679   gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
680 }
681 
682 
683 /* Mark REG as a general-purpose register, and return it.  */
684 static struct m32c_reg *
685 mark_general (struct m32c_reg *reg)
686 {
687   reg->general_p = 1;
688   return reg;
689 }
690 
691 
692 /* Mark REG as a DMA register, and return it.  */
693 static struct m32c_reg *
694 mark_dma (struct m32c_reg *reg)
695 {
696   reg->dma_p = 1;
697   return reg;
698 }
699 
700 
701 /* Mark REG as a SYSTEM register, and return it.  */
702 static struct m32c_reg *
703 mark_system (struct m32c_reg *reg)
704 {
705   reg->system_p = 1;
706   return reg;
707 }
708 
709 
710 /* Mark REG as a save-restore register, and return it.  */
711 static struct m32c_reg *
712 mark_save_restore (struct m32c_reg *reg)
713 {
714   reg->save_restore_p = 1;
715   return reg;
716 }
717 
718 
719 #define FLAGBIT_B	0x0010
720 #define FLAGBIT_U	0x0080
721 
722 /* Handy macros for declaring registers.  These all evaluate to
723    pointers to the register declared.  Macros that define two
724    registers evaluate to a pointer to the first.  */
725 
726 /* A raw register named NAME, with type TYPE and sim number SIM_NUM.  */
727 #define R(name, type, sim_num)					\
728   (add_reg (arch, (name), (type), (sim_num),			\
729 	    m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
730 
731 /* The simulator register number for a raw register named NAME.  */
732 #define SIM(name) (m32c_sim_reg_ ## name)
733 
734 /* A raw unsigned 16-bit data register named NAME.
735    NAME should be an identifier, not a string.  */
736 #define R16U(name)						\
737   (R(#name, tdep->uint16, SIM (name)))
738 
739 /* A raw data address register named NAME.
740    NAME should be an identifier, not a string.  */
741 #define RA(name)						\
742   (R(#name, tdep->data_addr_reg_type, SIM (name)))
743 
744 /* A raw code address register named NAME.  NAME should
745    be an identifier, not a string.  */
746 #define RC(name)						\
747   (R(#name, tdep->code_addr_reg_type, SIM (name)))
748 
749 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
750    NAME should be an identifier, not a string.  */
751 #define RP(name, type)				\
752   (R(#name "0", (type), SIM (name ## 0)),	\
753    R(#name "1", (type), SIM (name ## 1)) - 1)
754 
755 /* A raw banked general-purpose data register named NAME.
756    NAME should be an identifier, not a string.  */
757 #define RBD(name)						\
758   (R(NULL, tdep->int16, SIM (name ## _bank0)),		\
759    R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
760 
761 /* A raw banked data address register named NAME.
762    NAME should be an identifier, not a string.  */
763 #define RBA(name)						\
764   (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)),	\
765    R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
766 
767 /* A cooked register named NAME referring to a raw banked register
768    from the bank selected by the current value of FLG.  RAW_PAIR
769    should be a pointer to the first register in the banked pair.
770    NAME must be an identifier, not a string.  */
771 #define CB(name, raw_pair)				\
772   (add_reg (arch, #name, (raw_pair)->type, 0,		\
773 	    m32c_banked_read, m32c_banked_write,	\
774             (raw_pair), (raw_pair + 1), FLAGBIT_B))
775 
776 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
777    access the top and bottom halves of the register pointed to by
778    NAME.  NAME should be an identifier.  */
779 #define CHL(name, type)							\
780   (add_reg (arch, #name "h", (type), 0,					\
781 	    m32c_part_read, m32c_part_write, name, NULL, 1),		\
782    add_reg (arch, #name "l", (type), 0,					\
783 	    m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
784 
785 /* A register constructed by concatenating the two registers HIGH and
786    LOW, whose name is HIGHLOW and whose type is TYPE.  */
787 #define CCAT(high, low, type)					\
788   (add_reg (arch, #high #low, (type), 0,			\
789 	    m32c_cat_read, m32c_cat_write, (high), (low), 0))
790 
791 /* Abbreviations for marking register group membership.  */
792 #define G(reg)   (mark_general (reg))
793 #define S(reg)   (mark_system  (reg))
794 #define DMA(reg) (mark_dma     (reg))
795 
796 
797 /* Construct the register set for ARCH.  */
798 static void
799 make_regs (struct gdbarch *arch)
800 {
801   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
802   int mach = gdbarch_bfd_arch_info (arch)->mach;
803   int num_raw_regs;
804   int num_cooked_regs;
805 
806   struct m32c_reg *r0;
807   struct m32c_reg *r1;
808   struct m32c_reg *r2;
809   struct m32c_reg *r3;
810   struct m32c_reg *a0;
811   struct m32c_reg *a1;
812   struct m32c_reg *fb;
813   struct m32c_reg *sb;
814   struct m32c_reg *sp;
815   struct m32c_reg *r0hl;
816   struct m32c_reg *r1hl;
817   struct m32c_reg *r2r0;
818   struct m32c_reg *r3r1;
819   struct m32c_reg *r3r1r2r0;
820   struct m32c_reg *r3r2r1r0;
821   struct m32c_reg *a1a0;
822 
823   struct m32c_reg *raw_r0_pair = RBD (r0);
824   struct m32c_reg *raw_r1_pair = RBD (r1);
825   struct m32c_reg *raw_r2_pair = RBD (r2);
826   struct m32c_reg *raw_r3_pair = RBD (r3);
827   struct m32c_reg *raw_a0_pair = RBA (a0);
828   struct m32c_reg *raw_a1_pair = RBA (a1);
829   struct m32c_reg *raw_fb_pair = RBA (fb);
830 
831   /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
832      We always declare both raw registers, and deal with the distinction
833      in the pseudoregister.  */
834   struct m32c_reg *raw_sb_pair = RBA (sb);
835 
836   struct m32c_reg *usp         = S (RA (usp));
837   struct m32c_reg *isp         = S (RA (isp));
838   struct m32c_reg *intb        = S (RC (intb));
839   struct m32c_reg *pc          = G (RC (pc));
840   struct m32c_reg *flg         = G (R16U (flg));
841 
842   if (mach == bfd_mach_m32c)
843     {
844       struct m32c_reg *svf     = S (R16U (svf));
845       struct m32c_reg *svp     = S (RC (svp));
846       struct m32c_reg *vct     = S (RC (vct));
847 
848       struct m32c_reg *dmd01   = DMA (RP (dmd, tdep->uint8));
849       struct m32c_reg *dct01   = DMA (RP (dct, tdep->uint16));
850       struct m32c_reg *drc01   = DMA (RP (drc, tdep->uint16));
851       struct m32c_reg *dma01   = DMA (RP (dma, tdep->data_addr_reg_type));
852       struct m32c_reg *dsa01   = DMA (RP (dsa, tdep->data_addr_reg_type));
853       struct m32c_reg *dra01   = DMA (RP (dra, tdep->data_addr_reg_type));
854     }
855 
856   num_raw_regs = tdep->num_regs;
857 
858   r0 	      = G (CB (r0, raw_r0_pair));
859   r1 	      = G (CB (r1, raw_r1_pair));
860   r2          = G (CB (r2, raw_r2_pair));
861   r3          = G (CB (r3, raw_r3_pair));
862   a0          = G (CB (a0, raw_a0_pair));
863   a1          = G (CB (a1, raw_a1_pair));
864   fb          = G (CB (fb, raw_fb_pair));
865 
866   /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
867      Specify custom read/write functions that do the right thing.  */
868   sb          = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
869 			    m32c_sb_read, m32c_sb_write,
870 			    raw_sb_pair, raw_sb_pair + 1, 0));
871 
872   /* The current sp is either usp or isp, depending on the value of
873      the FLG register's U bit.  */
874   sp          = G (add_reg (arch, "sp", usp->type, 0,
875 			    m32c_banked_read, m32c_banked_write,
876 			    isp, usp, FLAGBIT_U));
877 
878   r0hl        = CHL (r0, tdep->int8);
879   r1hl        = CHL (r1, tdep->int8);
880   CHL (r2, tdep->int8);
881   CHL (r3, tdep->int8);
882   CHL (intb, tdep->int16);
883 
884   r2r0        = CCAT (r2,   r0,   tdep->int32);
885   r3r1        = CCAT (r3,   r1,   tdep->int32);
886   r3r1r2r0    = CCAT (r3r1, r2r0, tdep->int64);
887 
888   r3r2r1r0
889     = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
890 	       m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
891 
892   if (mach == bfd_mach_m16c)
893     a1a0 = CCAT (a1, a0, tdep->int32);
894   else
895     a1a0 = NULL;
896 
897   num_cooked_regs = tdep->num_regs - num_raw_regs;
898 
899   tdep->pc   	 = pc;
900   tdep->flg  	 = flg;
901   tdep->r0   	 = r0;
902   tdep->r1   	 = r1;
903   tdep->r2   	 = r2;
904   tdep->r3   	 = r3;
905   tdep->r2r0 	 = r2r0;
906   tdep->r3r2r1r0 = r3r2r1r0;
907   tdep->r3r1r2r0 = r3r1r2r0;
908   tdep->a0       = a0;
909   tdep->a1       = a1;
910   tdep->sb       = sb;
911   tdep->fb   	 = fb;
912   tdep->sp   	 = sp;
913 
914   /* Set up the DWARF register table.  */
915   memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
916   set_dwarf_regnum (r0hl + 1, 0x01);
917   set_dwarf_regnum (r0hl + 0, 0x02);
918   set_dwarf_regnum (r1hl + 1, 0x03);
919   set_dwarf_regnum (r1hl + 0, 0x04);
920   set_dwarf_regnum (r0,       0x05);
921   set_dwarf_regnum (r1,       0x06);
922   set_dwarf_regnum (r2,       0x07);
923   set_dwarf_regnum (r3,       0x08);
924   set_dwarf_regnum (a0,       0x09);
925   set_dwarf_regnum (a1,       0x0a);
926   set_dwarf_regnum (fb,       0x0b);
927   set_dwarf_regnum (sp,       0x0c);
928   set_dwarf_regnum (pc,       0x0d); /* GCC's invention */
929   set_dwarf_regnum (sb,       0x13);
930   set_dwarf_regnum (r2r0,     0x15);
931   set_dwarf_regnum (r3r1,     0x16);
932   if (a1a0)
933     set_dwarf_regnum (a1a0,   0x17);
934 
935   /* Enumerate the save/restore register group.
936 
937      The regcache_save and regcache_restore functions apply their read
938      function to each register in this group.
939 
940      Since frame_pop supplies frame_unwind_register as its read
941      function, the registers meaningful to the Dwarf unwinder need to
942      be in this group.
943 
944      On the other hand, when we make inferior calls, save_inferior_status
945      and restore_inferior_status use them to preserve the current register
946      values across the inferior call.  For this, you'd kind of like to
947      preserve all the raw registers, to protect the interrupted code from
948      any sort of bank switching the callee might have done.  But we handle
949      those cases so badly anyway --- for example, it matters whether we
950      restore FLG before or after we restore the general-purpose registers,
951      but there's no way to express that --- that it isn't worth worrying
952      about.
953 
954      We omit control registers like inthl: if you call a function that
955      changes those, it's probably because you wanted that change to be
956      visible to the interrupted code.  */
957   mark_save_restore (r0);
958   mark_save_restore (r1);
959   mark_save_restore (r2);
960   mark_save_restore (r3);
961   mark_save_restore (a0);
962   mark_save_restore (a1);
963   mark_save_restore (sb);
964   mark_save_restore (fb);
965   mark_save_restore (sp);
966   mark_save_restore (pc);
967   mark_save_restore (flg);
968 
969   set_gdbarch_num_regs (arch, num_raw_regs);
970   set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
971   set_gdbarch_pc_regnum (arch, pc->num);
972   set_gdbarch_sp_regnum (arch, sp->num);
973   set_gdbarch_register_name (arch, m32c_register_name);
974   set_gdbarch_register_type (arch, m32c_register_type);
975   set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
976   set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
977   set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
978   set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
979   set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
980   set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
981 
982   reggroup_add (arch, general_reggroup);
983   reggroup_add (arch, all_reggroup);
984   reggroup_add (arch, save_reggroup);
985   reggroup_add (arch, restore_reggroup);
986   reggroup_add (arch, system_reggroup);
987   reggroup_add (arch, m32c_dma_reggroup);
988 }
989 
990 
991 
992 /* Breakpoints.  */
993 constexpr gdb_byte m32c_break_insn[] = { 0x00 };	/* brk */
994 
995 typedef BP_MANIPULATION (m32c_break_insn) m32c_breakpoint;
996 
997 
998 /* Prologue analysis.  */
999 
1000 enum m32c_prologue_kind
1001 {
1002   /* This function uses a frame pointer.  */
1003   prologue_with_frame_ptr,
1004 
1005   /* This function has no frame pointer.  */
1006   prologue_sans_frame_ptr,
1007 
1008   /* This function sets up the stack, so its frame is the first
1009      frame on the stack.  */
1010   prologue_first_frame
1011 };
1012 
1013 struct m32c_prologue
1014 {
1015   /* For consistency with the DWARF 2 .debug_frame info generated by
1016      GCC, a frame's CFA is the address immediately after the saved
1017      return address.  */
1018 
1019   /* The architecture for which we generated this prologue info.  */
1020   struct gdbarch *arch;
1021 
1022   enum m32c_prologue_kind kind;
1023 
1024   /* If KIND is prologue_with_frame_ptr, this is the offset from the
1025      CFA to where the frame pointer points.  This is always zero or
1026      negative.  */
1027   LONGEST frame_ptr_offset;
1028 
1029   /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1030      the stack pointer --- always zero or negative.
1031 
1032      Calling this a "size" is a bit misleading, but given that the
1033      stack grows downwards, using offsets for everything keeps one
1034      from going completely sign-crazy: you never change anything's
1035      sign for an ADD instruction; always change the second operand's
1036      sign for a SUB instruction; and everything takes care of
1037      itself.
1038 
1039      Functions that use alloca don't have a constant frame size.  But
1040      they always have frame pointers, so we must use that to find the
1041      CFA (and perhaps to unwind the stack pointer).  */
1042   LONGEST frame_size;
1043 
1044   /* The address of the first instruction at which the frame has been
1045      set up and the arguments are where the debug info says they are
1046      --- as best as we can tell.  */
1047   CORE_ADDR prologue_end;
1048 
1049   /* reg_offset[R] is the offset from the CFA at which register R is
1050      saved, or 1 if register R has not been saved.  (Real values are
1051      always zero or negative.)  */
1052   LONGEST reg_offset[M32C_MAX_NUM_REGS];
1053 };
1054 
1055 
1056 /* The longest I've seen, anyway.  */
1057 #define M32C_MAX_INSN_LEN (9)
1058 
1059 /* Processor state, for the prologue analyzer.  */
1060 struct m32c_pv_state
1061 {
1062   struct gdbarch *arch;
1063   pv_t r0, r1, r2, r3;
1064   pv_t a0, a1;
1065   pv_t sb, fb, sp;
1066   pv_t pc;
1067   struct pv_area *stack;
1068 
1069   /* Bytes from the current PC, the address they were read from,
1070      and the address of the next unconsumed byte.  */
1071   gdb_byte insn[M32C_MAX_INSN_LEN];
1072   CORE_ADDR scan_pc, next_addr;
1073 };
1074 
1075 
1076 /* Push VALUE on STATE's stack, occupying SIZE bytes.  Return zero if
1077    all went well, or non-zero if simulating the action would trash our
1078    state.  */
1079 static int
1080 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1081 {
1082   if (pv_area_store_would_trash (state->stack, state->sp))
1083     return 1;
1084 
1085   state->sp = pv_add_constant (state->sp, -size);
1086   pv_area_store (state->stack, state->sp, size, value);
1087 
1088   return 0;
1089 }
1090 
1091 
1092 enum srcdest_kind
1093 {
1094   srcdest_reg,
1095   srcdest_partial_reg,
1096   srcdest_mem
1097 };
1098 
1099 /* A source or destination location for an m16c or m32c
1100    instruction.  */
1101 struct srcdest
1102 {
1103   /* If srcdest_reg, the location is a register pointed to by REG.
1104      If srcdest_partial_reg, the location is part of a register pointed
1105      to by REG.  We don't try to handle this too well.
1106      If srcdest_mem, the location is memory whose address is ADDR.  */
1107   enum srcdest_kind kind;
1108   pv_t *reg, addr;
1109 };
1110 
1111 
1112 /* Return the SIZE-byte value at LOC in STATE.  */
1113 static pv_t
1114 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1115 {
1116   if (loc.kind == srcdest_mem)
1117     return pv_area_fetch (state->stack, loc.addr, size);
1118   else if (loc.kind == srcdest_partial_reg)
1119     return pv_unknown ();
1120   else
1121     return *loc.reg;
1122 }
1123 
1124 
1125 /* Write VALUE, a SIZE-byte value, to LOC in STATE.  Return zero if
1126    all went well, or non-zero if simulating the store would trash our
1127    state.  */
1128 static int
1129 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1130 		    pv_t value, int size)
1131 {
1132   if (loc.kind == srcdest_mem)
1133     {
1134       if (pv_area_store_would_trash (state->stack, loc.addr))
1135 	return 1;
1136       pv_area_store (state->stack, loc.addr, size, value);
1137     }
1138   else if (loc.kind == srcdest_partial_reg)
1139     *loc.reg = pv_unknown ();
1140   else
1141     *loc.reg = value;
1142 
1143   return 0;
1144 }
1145 
1146 
1147 static int
1148 m32c_sign_ext (int v, int bits)
1149 {
1150   int mask = 1 << (bits - 1);
1151   return (v ^ mask) - mask;
1152 }
1153 
1154 static unsigned int
1155 m32c_next_byte (struct m32c_pv_state *st)
1156 {
1157   gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1158   return st->insn[st->next_addr++ - st->scan_pc];
1159 }
1160 
1161 static int
1162 m32c_udisp8 (struct m32c_pv_state *st)
1163 {
1164   return m32c_next_byte (st);
1165 }
1166 
1167 
1168 static int
1169 m32c_sdisp8 (struct m32c_pv_state *st)
1170 {
1171   return m32c_sign_ext (m32c_next_byte (st), 8);
1172 }
1173 
1174 
1175 static int
1176 m32c_udisp16 (struct m32c_pv_state *st)
1177 {
1178   int low  = m32c_next_byte (st);
1179   int high = m32c_next_byte (st);
1180 
1181   return low + (high << 8);
1182 }
1183 
1184 
1185 static int
1186 m32c_sdisp16 (struct m32c_pv_state *st)
1187 {
1188   int low  = m32c_next_byte (st);
1189   int high = m32c_next_byte (st);
1190 
1191   return m32c_sign_ext (low + (high << 8), 16);
1192 }
1193 
1194 
1195 static int
1196 m32c_udisp24 (struct m32c_pv_state *st)
1197 {
1198   int low  = m32c_next_byte (st);
1199   int mid  = m32c_next_byte (st);
1200   int high = m32c_next_byte (st);
1201 
1202   return low + (mid << 8) + (high << 16);
1203 }
1204 
1205 
1206 /* Extract the 'source' field from an m32c MOV.size:G-format instruction.  */
1207 static int
1208 m32c_get_src23 (unsigned char *i)
1209 {
1210   return (((i[0] & 0x70) >> 2)
1211 	  | ((i[1] & 0x30) >> 4));
1212 }
1213 
1214 
1215 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction.  */
1216 static int
1217 m32c_get_dest23 (unsigned char *i)
1218 {
1219   return (((i[0] & 0x0e) << 1)
1220 	  | ((i[1] & 0xc0) >> 6));
1221 }
1222 
1223 
1224 static struct srcdest
1225 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1226 		      int code, int size)
1227 {
1228   struct srcdest sd;
1229 
1230   if (code < 6)
1231     sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1232   else
1233     sd.kind = srcdest_mem;
1234 
1235   sd.addr = pv_unknown ();
1236   sd.reg = 0;
1237 
1238   switch (code)
1239     {
1240     case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1241     case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1242     case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1243     case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1244 
1245     case 0x4: sd.reg = &st->a0; break;
1246     case 0x5: sd.reg = &st->a1; break;
1247 
1248     case 0x6: sd.addr = st->a0; break;
1249     case 0x7: sd.addr = st->a1; break;
1250 
1251     case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1252     case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1253     case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1254     case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1255 
1256     case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1257     case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1258     case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1259     case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1260 
1261     default:
1262       gdb_assert_not_reached ("unexpected srcdest4");
1263     }
1264 
1265   return sd;
1266 }
1267 
1268 
1269 static struct srcdest
1270 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1271 {
1272   struct srcdest sd;
1273 
1274   sd.addr = pv_unknown ();
1275   sd.reg = 0;
1276 
1277   switch (code)
1278     {
1279     case 0x12:
1280     case 0x13:
1281     case 0x10:
1282     case 0x11:
1283       sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1284       break;
1285 
1286     case 0x02:
1287     case 0x03:
1288       sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1289       break;
1290 
1291     default:
1292       sd.kind = srcdest_mem;
1293       break;
1294 
1295     }
1296 
1297   switch (code)
1298     {
1299     case 0x12: sd.reg = &st->r0; break;
1300     case 0x13: sd.reg = &st->r1; break;
1301     case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1302     case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1303     case 0x02: sd.reg = &st->a0; break;
1304     case 0x03: sd.reg = &st->a1; break;
1305 
1306     case 0x00: sd.addr = st->a0; break;
1307     case 0x01: sd.addr = st->a1; break;
1308     case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1309     case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1310     case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1311     case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1312     case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1313     case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1314     case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1315     case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1316     case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1317     case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1318     case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1319     case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1320     default:
1321       gdb_assert_not_reached ("unexpected sd23");
1322     }
1323 
1324   if (ind)
1325     {
1326       sd.addr = m32c_srcdest_fetch (st, sd, 4);
1327       sd.kind = srcdest_mem;
1328     }
1329 
1330   return sd;
1331 }
1332 
1333 
1334 /* The r16c and r32c machines have instructions with similar
1335    semantics, but completely different machine language encodings.  So
1336    we break out the semantics into their own functions, and leave
1337    machine-specific decoding in m32c_analyze_prologue.
1338 
1339    The following functions all expect their arguments already decoded,
1340    and they all return zero if analysis should continue past this
1341    instruction, or non-zero if analysis should stop.  */
1342 
1343 
1344 /* Simulate an 'enter SIZE' instruction in STATE.  */
1345 static int
1346 m32c_pv_enter (struct m32c_pv_state *state, int size)
1347 {
1348   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1349 
1350   /* If simulating this store would require us to forget
1351      everything we know about the stack frame in the name of
1352      accuracy, it would be better to just quit now.  */
1353   if (pv_area_store_would_trash (state->stack, state->sp))
1354     return 1;
1355 
1356   if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1357     return 1;
1358   state->fb = state->sp;
1359   state->sp = pv_add_constant (state->sp, -size);
1360 
1361   return 0;
1362 }
1363 
1364 
1365 static int
1366 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1367 		   int bit, int src, int size)
1368 {
1369   if (bit & src)
1370     {
1371       if (m32c_pv_push (state, reg, size))
1372 	return 1;
1373     }
1374 
1375   return 0;
1376 }
1377 
1378 
1379 /* Simulate a 'pushm SRC' instruction in STATE.  */
1380 static int
1381 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1382 {
1383   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1384 
1385   /* The bits in SRC indicating which registers to save are:
1386      r0 r1 r2 r3 a0 a1 sb fb */
1387   return
1388     (   m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1389      || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1390      || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1391      || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1392      || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1393      || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1394      || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1395      || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1396 }
1397 
1398 /* Return non-zero if VALUE is the first incoming argument register.  */
1399 
1400 static int
1401 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1402 {
1403   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1404   return (value.kind == pvk_register
1405           && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1406 	      ? (value.reg == tdep->r1->num)
1407 	      : (value.reg == tdep->r0->num))
1408           && value.k == 0);
1409 }
1410 
1411 /* Return non-zero if VALUE is an incoming argument register.  */
1412 
1413 static int
1414 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1415 {
1416   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1417   return (value.kind == pvk_register
1418           && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1419 	      ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1420 	      : (value.reg == tdep->r0->num))
1421           && value.k == 0);
1422 }
1423 
1424 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1425    argument register to its stack slot in STATE.  Such instructions
1426    should be included in the prologue, if possible.
1427 
1428    The store is a spill if:
1429    - the value being stored is the original value of an argument register;
1430    - the value has not already been stored somewhere in STACK; and
1431    - LOC is a stack slot (e.g., a memory location whose address is
1432      relative to the original value of the SP).  */
1433 
1434 static int
1435 m32c_is_arg_spill (struct m32c_pv_state *st,
1436 		   struct srcdest loc,
1437 		   pv_t value)
1438 {
1439   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1440 
1441   return (m32c_is_arg_reg (st, value)
1442 	  && loc.kind == srcdest_mem
1443           && pv_is_register (loc.addr, tdep->sp->num)
1444           && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1445 }
1446 
1447 /* Return non-zero if a store of VALUE to LOC is probably
1448    copying the struct return address into an address register
1449    for immediate use.  This is basically a "spill" into the
1450    address register, instead of onto the stack.
1451 
1452    The prerequisites are:
1453    - value being stored is original value of the FIRST arg register;
1454    - value has not already been stored on stack; and
1455    - LOC is an address register (a0 or a1).  */
1456 
1457 static int
1458 m32c_is_struct_return (struct m32c_pv_state *st,
1459 		       struct srcdest loc,
1460 		       pv_t value)
1461 {
1462   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1463 
1464   return (m32c_is_1st_arg_reg (st, value)
1465 	  && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1466 	  && loc.kind == srcdest_reg
1467 	  && (pv_is_register (*loc.reg, tdep->a0->num)
1468 	      || pv_is_register (*loc.reg, tdep->a1->num)));
1469 }
1470 
1471 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1472    was a register save:
1473    - all the named registers should have their original values, and
1474    - the stack pointer should be at a constant offset from the
1475      original stack pointer.  */
1476 static int
1477 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1478 {
1479   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1480   /* The bits in SRC indicating which registers to save are:
1481      r0 r1 r2 r3 a0 a1 sb fb */
1482   return
1483     (pv_is_register (st->sp, tdep->sp->num)
1484      && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1485      && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1486      && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1487      && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1488      && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1489      && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1490      && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1491      && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1492 }
1493 
1494 
1495 /* Function for finding saved registers in a 'struct pv_area'; we pass
1496    this to pv_area_scan.
1497 
1498    If VALUE is a saved register, ADDR says it was saved at a constant
1499    offset from the frame base, and SIZE indicates that the whole
1500    register was saved, record its offset in RESULT_UNTYPED.  */
1501 static void
1502 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1503 {
1504   struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1505   struct gdbarch *arch = prologue->arch;
1506   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1507 
1508   /* Is this the unchanged value of some register being saved on the
1509      stack?  */
1510   if (value.kind == pvk_register
1511       && value.k == 0
1512       && pv_is_register (addr, tdep->sp->num))
1513     {
1514       /* Some registers require special handling: they're saved as a
1515 	 larger value than the register itself.  */
1516       CORE_ADDR saved_size = register_size (arch, value.reg);
1517 
1518       if (value.reg == tdep->pc->num)
1519 	saved_size = tdep->ret_addr_bytes;
1520       else if (register_type (arch, value.reg)
1521 	       == tdep->data_addr_reg_type)
1522 	saved_size = tdep->push_addr_bytes;
1523 
1524       if (size == saved_size)
1525 	{
1526 	  /* Find which end of the saved value corresponds to our
1527 	     register.  */
1528 	  if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1529 	    prologue->reg_offset[value.reg]
1530 	      = (addr.k + saved_size - register_size (arch, value.reg));
1531 	  else
1532 	    prologue->reg_offset[value.reg] = addr.k;
1533 	}
1534     }
1535 }
1536 
1537 
1538 /* Analyze the function prologue for ARCH at START, going no further
1539    than LIMIT, and place a description of what we found in
1540    PROLOGUE.  */
1541 static void
1542 m32c_analyze_prologue (struct gdbarch *arch,
1543 		       CORE_ADDR start, CORE_ADDR limit,
1544 		       struct m32c_prologue *prologue)
1545 {
1546   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1547   unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1548   CORE_ADDR after_last_frame_related_insn;
1549   struct cleanup *back_to;
1550   struct m32c_pv_state st;
1551 
1552   st.arch = arch;
1553   st.r0 = pv_register (tdep->r0->num, 0);
1554   st.r1 = pv_register (tdep->r1->num, 0);
1555   st.r2 = pv_register (tdep->r2->num, 0);
1556   st.r3 = pv_register (tdep->r3->num, 0);
1557   st.a0 = pv_register (tdep->a0->num, 0);
1558   st.a1 = pv_register (tdep->a1->num, 0);
1559   st.sb = pv_register (tdep->sb->num, 0);
1560   st.fb = pv_register (tdep->fb->num, 0);
1561   st.sp = pv_register (tdep->sp->num, 0);
1562   st.pc = pv_register (tdep->pc->num, 0);
1563   st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
1564   back_to = make_cleanup_free_pv_area (st.stack);
1565 
1566   /* Record that the call instruction has saved the return address on
1567      the stack.  */
1568   m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1569 
1570   memset (prologue, 0, sizeof (*prologue));
1571   prologue->arch = arch;
1572   {
1573     int i;
1574     for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1575       prologue->reg_offset[i] = 1;
1576   }
1577 
1578   st.scan_pc = after_last_frame_related_insn = start;
1579 
1580   while (st.scan_pc < limit)
1581     {
1582       pv_t pre_insn_fb = st.fb;
1583       pv_t pre_insn_sp = st.sp;
1584 
1585       /* In theory we could get in trouble by trying to read ahead
1586 	 here, when we only know we're expecting one byte.  In
1587 	 practice I doubt anyone will care, and it makes the rest of
1588 	 the code easier.  */
1589       if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1590 	/* If we can't fetch the instruction from memory, stop here
1591 	   and hope for the best.  */
1592 	break;
1593       st.next_addr = st.scan_pc;
1594 
1595       /* The assembly instructions are written as they appear in the
1596 	 section of the processor manuals that describe the
1597 	 instruction encodings.
1598 
1599 	 When a single assembly language instruction has several
1600 	 different machine-language encodings, the manual
1601 	 distinguishes them by a number in parens, before the
1602 	 mnemonic.  Those numbers are included, as well.
1603 
1604 	 The srcdest decoding instructions have the same names as the
1605 	 analogous functions in the simulator.  */
1606       if (mach == bfd_mach_m16c)
1607 	{
1608 	  /* (1) ENTER #imm8 */
1609 	  if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1610 	    {
1611 	      if (m32c_pv_enter (&st, st.insn[2]))
1612 		break;
1613 	      st.next_addr += 3;
1614 	    }
1615 	  /* (1) PUSHM src */
1616 	  else if (st.insn[0] == 0xec)
1617 	    {
1618 	      int src = st.insn[1];
1619 	      if (m32c_pv_pushm (&st, src))
1620 		break;
1621 	      st.next_addr += 2;
1622 
1623 	      if (m32c_pushm_is_reg_save (&st, src))
1624 		after_last_frame_related_insn = st.next_addr;
1625 	    }
1626 
1627 	  /* (6) MOV.size:G src, dest */
1628 	  else if ((st.insn[0] & 0xfe) == 0x72)
1629 	    {
1630 	      int size = (st.insn[0] & 0x01) ? 2 : 1;
1631 	      struct srcdest src;
1632 	      struct srcdest dest;
1633 	      pv_t src_value;
1634 	      st.next_addr += 2;
1635 
1636 	      src
1637 		= m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1638 	      dest
1639 		= m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1640 	      src_value = m32c_srcdest_fetch (&st, src, size);
1641 
1642 	      if (m32c_is_arg_spill (&st, dest, src_value))
1643 		after_last_frame_related_insn = st.next_addr;
1644 	      else if (m32c_is_struct_return (&st, dest, src_value))
1645 		after_last_frame_related_insn = st.next_addr;
1646 
1647 	      if (m32c_srcdest_store (&st, dest, src_value, size))
1648 		break;
1649 	    }
1650 
1651 	  /* (1) LDC #IMM16, sp */
1652 	  else if (st.insn[0] == 0xeb
1653 		   && st.insn[1] == 0x50)
1654 	    {
1655 	      st.next_addr += 2;
1656 	      st.sp = pv_constant (m32c_udisp16 (&st));
1657 	    }
1658 
1659 	  else
1660 	    /* We've hit some instruction we don't know how to simulate.
1661 	       Strictly speaking, we should set every value we're
1662 	       tracking to "unknown".  But we'll be optimistic, assume
1663 	       that we have enough information already, and stop
1664 	       analysis here.  */
1665 	    break;
1666 	}
1667       else
1668 	{
1669 	  int src_indirect = 0;
1670 	  int dest_indirect = 0;
1671 	  int i = 0;
1672 
1673 	  gdb_assert (mach == bfd_mach_m32c);
1674 
1675 	  /* Check for prefix bytes indicating indirect addressing.  */
1676 	  if (st.insn[0] == 0x41)
1677 	    {
1678 	      src_indirect = 1;
1679 	      i++;
1680 	    }
1681 	  else if (st.insn[0] == 0x09)
1682 	    {
1683 	      dest_indirect = 1;
1684 	      i++;
1685 	    }
1686 	  else if (st.insn[0] == 0x49)
1687 	    {
1688 	      src_indirect = dest_indirect = 1;
1689 	      i++;
1690 	    }
1691 
1692 	  /* (1) ENTER #imm8 */
1693 	  if (st.insn[i] == 0xec)
1694 	    {
1695 	      if (m32c_pv_enter (&st, st.insn[i + 1]))
1696 		break;
1697 	      st.next_addr += 2;
1698 	    }
1699 
1700 	  /* (1) PUSHM src */
1701 	  else if (st.insn[i] == 0x8f)
1702 	    {
1703 	      int src = st.insn[i + 1];
1704 	      if (m32c_pv_pushm (&st, src))
1705 		break;
1706 	      st.next_addr += 2;
1707 
1708 	      if (m32c_pushm_is_reg_save (&st, src))
1709 		after_last_frame_related_insn = st.next_addr;
1710 	    }
1711 
1712 	  /* (7) MOV.size:G src, dest */
1713 	  else if ((st.insn[i] & 0x80) == 0x80
1714 		   && (st.insn[i + 1] & 0x0f) == 0x0b
1715 		   && m32c_get_src23 (&st.insn[i]) < 20
1716 		   && m32c_get_dest23 (&st.insn[i]) < 20)
1717 	    {
1718 	      struct srcdest src;
1719 	      struct srcdest dest;
1720 	      pv_t src_value;
1721 	      int bw = st.insn[i] & 0x01;
1722 	      int size = bw ? 2 : 1;
1723 	      st.next_addr += 2;
1724 
1725 	      src
1726 		= m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1727 				    size, src_indirect);
1728 	      dest
1729 		= m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1730 				    size, dest_indirect);
1731 	      src_value = m32c_srcdest_fetch (&st, src, size);
1732 
1733 	      if (m32c_is_arg_spill (&st, dest, src_value))
1734 		after_last_frame_related_insn = st.next_addr;
1735 
1736 	      if (m32c_srcdest_store (&st, dest, src_value, size))
1737 		break;
1738 	    }
1739 	  /* (2) LDC #IMM24, sp */
1740 	  else if (st.insn[i] == 0xd5
1741 		   && st.insn[i + 1] == 0x29)
1742 	    {
1743 	      st.next_addr += 2;
1744 	      st.sp = pv_constant (m32c_udisp24 (&st));
1745 	    }
1746 	  else
1747 	    /* We've hit some instruction we don't know how to simulate.
1748 	       Strictly speaking, we should set every value we're
1749 	       tracking to "unknown".  But we'll be optimistic, assume
1750 	       that we have enough information already, and stop
1751 	       analysis here.  */
1752 	    break;
1753 	}
1754 
1755       /* If this instruction changed the FB or decreased the SP (i.e.,
1756          allocated more stack space), then this may be a good place to
1757          declare the prologue finished.  However, there are some
1758          exceptions:
1759 
1760          - If the instruction just changed the FB back to its original
1761            value, then that's probably a restore instruction.  The
1762            prologue should definitely end before that.
1763 
1764          - If the instruction increased the value of the SP (that is,
1765            shrunk the frame), then it's probably part of a frame
1766            teardown sequence, and the prologue should end before
1767            that.  */
1768 
1769       if (! pv_is_identical (st.fb, pre_insn_fb))
1770         {
1771           if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1772             after_last_frame_related_insn = st.next_addr;
1773         }
1774       else if (! pv_is_identical (st.sp, pre_insn_sp))
1775         {
1776           /* The comparison of the constants looks odd, there, because
1777              .k is unsigned.  All it really means is that the SP is
1778              lower than it was before the instruction.  */
1779           if (   pv_is_register (pre_insn_sp, tdep->sp->num)
1780               && pv_is_register (st.sp,       tdep->sp->num)
1781               && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1782             after_last_frame_related_insn = st.next_addr;
1783         }
1784 
1785       st.scan_pc = st.next_addr;
1786     }
1787 
1788   /* Did we load a constant value into the stack pointer?  */
1789   if (pv_is_constant (st.sp))
1790     prologue->kind = prologue_first_frame;
1791 
1792   /* Alternatively, did we initialize the frame pointer?  Remember
1793      that the CFA is the address after the return address.  */
1794   if (pv_is_register (st.fb, tdep->sp->num))
1795     {
1796       prologue->kind = prologue_with_frame_ptr;
1797       prologue->frame_ptr_offset = st.fb.k;
1798     }
1799 
1800   /* Is the frame size a known constant?  Remember that frame_size is
1801      actually the offset from the CFA to the SP (i.e., a negative
1802      value).  */
1803   else if (pv_is_register (st.sp, tdep->sp->num))
1804     {
1805       prologue->kind = prologue_sans_frame_ptr;
1806       prologue->frame_size = st.sp.k;
1807     }
1808 
1809   /* We haven't been able to make sense of this function's frame.  Treat
1810      it as the first frame.  */
1811   else
1812     prologue->kind = prologue_first_frame;
1813 
1814   /* Record where all the registers were saved.  */
1815   pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1816 
1817   prologue->prologue_end = after_last_frame_related_insn;
1818 
1819   do_cleanups (back_to);
1820 }
1821 
1822 
1823 static CORE_ADDR
1824 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1825 {
1826   const char *name;
1827   CORE_ADDR func_addr, func_end, sal_end;
1828   struct m32c_prologue p;
1829 
1830   /* Try to find the extent of the function that contains IP.  */
1831   if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1832     return ip;
1833 
1834   /* Find end by prologue analysis.  */
1835   m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1836   /* Find end by line info.  */
1837   sal_end = skip_prologue_using_sal (gdbarch, ip);
1838   /* Return whichever is lower.  */
1839   if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1840     return sal_end;
1841   else
1842     return p.prologue_end;
1843 }
1844 
1845 
1846 
1847 /* Stack unwinding.  */
1848 
1849 static struct m32c_prologue *
1850 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1851 			     void **this_prologue_cache)
1852 {
1853   if (! *this_prologue_cache)
1854     {
1855       CORE_ADDR func_start = get_frame_func (this_frame);
1856       CORE_ADDR stop_addr = get_frame_pc (this_frame);
1857 
1858       /* If we couldn't find any function containing the PC, then
1859          just initialize the prologue cache, but don't do anything.  */
1860       if (! func_start)
1861         stop_addr = func_start;
1862 
1863       *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1864       m32c_analyze_prologue (get_frame_arch (this_frame),
1865 			     func_start, stop_addr,
1866 			     (struct m32c_prologue *) *this_prologue_cache);
1867     }
1868 
1869   return (struct m32c_prologue *) *this_prologue_cache;
1870 }
1871 
1872 
1873 static CORE_ADDR
1874 m32c_frame_base (struct frame_info *this_frame,
1875                 void **this_prologue_cache)
1876 {
1877   struct m32c_prologue *p
1878     = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1879   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1880 
1881   /* In functions that use alloca, the distance between the stack
1882      pointer and the frame base varies dynamically, so we can't use
1883      the SP plus static information like prologue analysis to find the
1884      frame base.  However, such functions must have a frame pointer,
1885      to be able to restore the SP on exit.  So whenever we do have a
1886      frame pointer, use that to find the base.  */
1887   switch (p->kind)
1888     {
1889     case prologue_with_frame_ptr:
1890       {
1891 	CORE_ADDR fb
1892 	  = get_frame_register_unsigned (this_frame, tdep->fb->num);
1893 	return fb - p->frame_ptr_offset;
1894       }
1895 
1896     case prologue_sans_frame_ptr:
1897       {
1898 	CORE_ADDR sp
1899 	  = get_frame_register_unsigned (this_frame, tdep->sp->num);
1900 	return sp - p->frame_size;
1901       }
1902 
1903     case prologue_first_frame:
1904       return 0;
1905 
1906     default:
1907       gdb_assert_not_reached ("unexpected prologue kind");
1908     }
1909 }
1910 
1911 
1912 static void
1913 m32c_this_id (struct frame_info *this_frame,
1914 	      void **this_prologue_cache,
1915 	      struct frame_id *this_id)
1916 {
1917   CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1918 
1919   if (base)
1920     *this_id = frame_id_build (base, get_frame_func (this_frame));
1921   /* Otherwise, leave it unset, and that will terminate the backtrace.  */
1922 }
1923 
1924 
1925 static struct value *
1926 m32c_prev_register (struct frame_info *this_frame,
1927 		    void **this_prologue_cache, int regnum)
1928 {
1929   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1930   struct m32c_prologue *p
1931     = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1932   CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1933 
1934   if (regnum == tdep->sp->num)
1935     return frame_unwind_got_constant (this_frame, regnum, frame_base);
1936 
1937   /* If prologue analysis says we saved this register somewhere,
1938      return a description of the stack slot holding it.  */
1939   if (p->reg_offset[regnum] != 1)
1940     return frame_unwind_got_memory (this_frame, regnum,
1941                                     frame_base + p->reg_offset[regnum]);
1942 
1943   /* Otherwise, presume we haven't changed the value of this
1944      register, and get it from the next frame.  */
1945   return frame_unwind_got_register (this_frame, regnum, regnum);
1946 }
1947 
1948 
1949 static const struct frame_unwind m32c_unwind = {
1950   NORMAL_FRAME,
1951   default_frame_unwind_stop_reason,
1952   m32c_this_id,
1953   m32c_prev_register,
1954   NULL,
1955   default_frame_sniffer
1956 };
1957 
1958 
1959 static CORE_ADDR
1960 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1961 {
1962   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1963   return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1964 }
1965 
1966 
1967 static CORE_ADDR
1968 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1969 {
1970   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1971   return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1972 }
1973 
1974 
1975 /* Inferior calls.  */
1976 
1977 /* The calling conventions, according to GCC:
1978 
1979    r8c, m16c
1980    ---------
1981    First arg may be passed in r1l or r1 if it (1) fits (QImode or
1982    HImode), (2) is named, and (3) is an integer or pointer type (no
1983    structs, floats, etc).  Otherwise, it's passed on the stack.
1984 
1985    Second arg may be passed in r2, same restrictions (but not QImode),
1986    even if the first arg is passed on the stack.
1987 
1988    Third and further args are passed on the stack.  No padding is
1989    used, stack "alignment" is 8 bits.
1990 
1991    m32cm, m32c
1992    -----------
1993 
1994    First arg may be passed in r0l or r0, same restrictions as above.
1995 
1996    Second and further args are passed on the stack.  Padding is used
1997    after QImode parameters (i.e. lower-addressed byte is the value,
1998    higher-addressed byte is the padding), stack "alignment" is 16
1999    bits.  */
2000 
2001 
2002 /* Return true if TYPE is a type that can be passed in registers.  (We
2003    ignore the size, and pay attention only to the type code;
2004    acceptable sizes depends on which register is being considered to
2005    hold it.)  */
2006 static int
2007 m32c_reg_arg_type (struct type *type)
2008 {
2009   enum type_code code = TYPE_CODE (type);
2010 
2011   return (code == TYPE_CODE_INT
2012 	  || code == TYPE_CODE_ENUM
2013 	  || code == TYPE_CODE_PTR
2014 	  || TYPE_IS_REFERENCE (type)
2015 	  || code == TYPE_CODE_BOOL
2016 	  || code == TYPE_CODE_CHAR);
2017 }
2018 
2019 
2020 static CORE_ADDR
2021 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2022 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2023 		      struct value **args, CORE_ADDR sp, int struct_return,
2024 		      CORE_ADDR struct_addr)
2025 {
2026   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2027   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2028   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2029   CORE_ADDR cfa;
2030   int i;
2031 
2032   /* The number of arguments given in this function's prototype, or
2033      zero if it has a non-prototyped function type.  The m32c ABI
2034      passes arguments mentioned in the prototype differently from
2035      those in the ellipsis of a varargs function, or from those passed
2036      to a non-prototyped function.  */
2037   int num_prototyped_args = 0;
2038 
2039   {
2040     struct type *func_type = value_type (function);
2041 
2042     /* Dereference function pointer types.  */
2043     if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2044       func_type = TYPE_TARGET_TYPE (func_type);
2045 
2046     gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2047 		TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2048 
2049 #if 0
2050     /* The ABI description in gcc/config/m32c/m32c.abi says that
2051        we need to handle prototyped and non-prototyped functions
2052        separately, but the code in GCC doesn't actually do so.  */
2053     if (TYPE_PROTOTYPED (func_type))
2054 #endif
2055       num_prototyped_args = TYPE_NFIELDS (func_type);
2056   }
2057 
2058   /* First, if the function returns an aggregate by value, push a
2059      pointer to a buffer for it.  This doesn't affect the way
2060      subsequent arguments are allocated to registers.  */
2061   if (struct_return)
2062     {
2063       int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2064       sp -= ptr_len;
2065       write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2066     }
2067 
2068   /* Push the arguments.  */
2069   for (i = nargs - 1; i >= 0; i--)
2070     {
2071       struct value *arg = args[i];
2072       const gdb_byte *arg_bits = value_contents (arg);
2073       struct type *arg_type = value_type (arg);
2074       ULONGEST arg_size = TYPE_LENGTH (arg_type);
2075 
2076       /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)?  */
2077       if (i == 0
2078 	  && arg_size <= 2
2079 	  && i < num_prototyped_args
2080 	  && m32c_reg_arg_type (arg_type))
2081 	{
2082 	  /* Extract and re-store as an integer as a terse way to make
2083 	     sure it ends up in the least significant end of r1.  (GDB
2084 	     should avoid assuming endianness, even on uni-endian
2085 	     processors.)  */
2086 	  ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2087 						 byte_order);
2088 	  struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2089 	  regcache_cooked_write_unsigned (regcache, reg->num, u);
2090 	}
2091 
2092       /* Can it go in r2?  */
2093       else if (mach == bfd_mach_m16c
2094 	       && i == 1
2095 	       && arg_size == 2
2096 	       && i < num_prototyped_args
2097 	       && m32c_reg_arg_type (arg_type))
2098 	regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2099 
2100       /* Everything else goes on the stack.  */
2101       else
2102 	{
2103 	  sp -= arg_size;
2104 
2105 	  /* Align the stack.  */
2106 	  if (mach == bfd_mach_m32c)
2107 	    sp &= ~1;
2108 
2109 	  write_memory (sp, arg_bits, arg_size);
2110 	}
2111     }
2112 
2113   /* This is the CFA we use to identify the dummy frame.  */
2114   cfa = sp;
2115 
2116   /* Push the return address.  */
2117   sp -= tdep->ret_addr_bytes;
2118   write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2119 				 bp_addr);
2120 
2121   /* Update the stack pointer.  */
2122   regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2123 
2124   /* We need to borrow an odd trick from the i386 target here.
2125 
2126      The value we return from this function gets used as the stack
2127      address (the CFA) for the dummy frame's ID.  The obvious thing is
2128      to return the new TOS.  However, that points at the return
2129      address, saved on the stack, which is inconsistent with the CFA's
2130      described by GCC's DWARF 2 .debug_frame information: DWARF 2
2131      .debug_frame info uses the address immediately after the saved
2132      return address.  So you end up with a dummy frame whose CFA
2133      points at the return address, but the frame for the function
2134      being called has a CFA pointing after the return address: the
2135      younger CFA is *greater than* the older CFA.  The sanity checks
2136      in frame.c don't like that.
2137 
2138      So we try to be consistent with the CFA's used by DWARF 2.
2139      Having a dummy frame and a real frame with the *same* CFA is
2140      tolerable.  */
2141   return cfa;
2142 }
2143 
2144 
2145 static struct frame_id
2146 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2147 {
2148   /* This needs to return a frame ID whose PC is the return address
2149      passed to m32c_push_dummy_call, and whose stack_addr is the SP
2150      m32c_push_dummy_call returned.
2151 
2152      m32c_unwind_sp gives us the CFA, which is the value the SP had
2153      before the return address was pushed.  */
2154   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2155   CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2156   return frame_id_build (sp, get_frame_pc (this_frame));
2157 }
2158 
2159 
2160 
2161 /* Return values.  */
2162 
2163 /* Return value conventions, according to GCC:
2164 
2165    r8c, m16c
2166    ---------
2167 
2168    QImode in r0l
2169    HImode in r0
2170    SImode in r2r0
2171    near pointer in r0
2172    far pointer in r2r0
2173 
2174    Aggregate values (regardless of size) are returned by pushing a
2175    pointer to a temporary area on the stack after the args are pushed.
2176    The function fills in this area with the value.  Note that this
2177    pointer on the stack does not affect how register arguments, if any,
2178    are configured.
2179 
2180    m32cm, m32c
2181    -----------
2182    Same.  */
2183 
2184 /* Return non-zero if values of type TYPE are returned by storing them
2185    in a buffer whose address is passed on the stack, ahead of the
2186    other arguments.  */
2187 static int
2188 m32c_return_by_passed_buf (struct type *type)
2189 {
2190   enum type_code code = TYPE_CODE (type);
2191 
2192   return (code == TYPE_CODE_STRUCT
2193 	  || code == TYPE_CODE_UNION);
2194 }
2195 
2196 static enum return_value_convention
2197 m32c_return_value (struct gdbarch *gdbarch,
2198 		   struct value *function,
2199 		   struct type *valtype,
2200 		   struct regcache *regcache,
2201 		   gdb_byte *readbuf,
2202 		   const gdb_byte *writebuf)
2203 {
2204   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2205   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2206   enum return_value_convention conv;
2207   ULONGEST valtype_len = TYPE_LENGTH (valtype);
2208 
2209   if (m32c_return_by_passed_buf (valtype))
2210     conv = RETURN_VALUE_STRUCT_CONVENTION;
2211   else
2212     conv = RETURN_VALUE_REGISTER_CONVENTION;
2213 
2214   if (readbuf)
2215     {
2216       /* We should never be called to find values being returned by
2217 	 RETURN_VALUE_STRUCT_CONVENTION.  Those can't be located,
2218 	 unless we made the call ourselves.  */
2219       gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2220 
2221       gdb_assert (valtype_len <= 8);
2222 
2223       /* Anything that fits in r0 is returned there.  */
2224       if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2225 	{
2226 	  ULONGEST u;
2227 	  regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2228 	  store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2229 	}
2230       else
2231 	{
2232 	  /* Everything else is passed in mem0, using as many bytes as
2233 	     needed.  This is not what the Renesas tools do, but it's
2234 	     what GCC does at the moment.  */
2235 	  struct bound_minimal_symbol mem0
2236 	    = lookup_minimal_symbol ("mem0", NULL, NULL);
2237 
2238 	  if (! mem0.minsym)
2239 	    error (_("The return value is stored in memory at 'mem0', "
2240 		     "but GDB cannot find\n"
2241 		     "its address."));
2242 	  read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2243 	}
2244     }
2245 
2246   if (writebuf)
2247     {
2248       /* We should never be called to store values to be returned
2249 	 using RETURN_VALUE_STRUCT_CONVENTION.  We have no way of
2250 	 finding the buffer, unless we made the call ourselves.  */
2251       gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2252 
2253       gdb_assert (valtype_len <= 8);
2254 
2255       /* Anything that fits in r0 is returned there.  */
2256       if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2257 	{
2258 	  ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2259 						 byte_order);
2260 	  regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2261 	}
2262       else
2263 	{
2264 	  /* Everything else is passed in mem0, using as many bytes as
2265 	     needed.  This is not what the Renesas tools do, but it's
2266 	     what GCC does at the moment.  */
2267 	  struct bound_minimal_symbol mem0
2268 	    = lookup_minimal_symbol ("mem0", NULL, NULL);
2269 
2270 	  if (! mem0.minsym)
2271 	    error (_("The return value is stored in memory at 'mem0', "
2272 		     "but GDB cannot find\n"
2273 		     " its address."));
2274 	  write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2275 	}
2276     }
2277 
2278   return conv;
2279 }
2280 
2281 
2282 
2283 /* Trampolines.  */
2284 
2285 /* The m16c and m32c use a trampoline function for indirect function
2286    calls.  An indirect call looks like this:
2287 
2288 	     ... push arguments ...
2289 	     ... push target function address ...
2290 	     jsr.a m32c_jsri16
2291 
2292    The code for m32c_jsri16 looks like this:
2293 
2294      m32c_jsri16:
2295 
2296              # Save return address.
2297 	     pop.w	m32c_jsri_ret
2298 	     pop.b	m32c_jsri_ret+2
2299 
2300              # Store target function address.
2301 	     pop.w	m32c_jsri_addr
2302 
2303 	     # Re-push return address.
2304 	     push.b	m32c_jsri_ret+2
2305 	     push.w	m32c_jsri_ret
2306 
2307 	     # Call the target function.
2308 	     jmpi.a	m32c_jsri_addr
2309 
2310    Without further information, GDB will treat calls to m32c_jsri16
2311    like calls to any other function.  Since m32c_jsri16 doesn't have
2312    debugging information, that normally means that GDB sets a step-
2313    resume breakpoint and lets the program continue --- which is not
2314    what the user wanted.  (Giving the trampoline debugging info
2315    doesn't help: the user expects the program to stop in the function
2316    their program is calling, not in some trampoline code they've never
2317    seen before.)
2318 
2319    The gdbarch_skip_trampoline_code method tells GDB how to step
2320    through such trampoline functions transparently to the user.  When
2321    given the address of a trampoline function's first instruction,
2322    gdbarch_skip_trampoline_code should return the address of the first
2323    instruction of the function really being called.  If GDB decides it
2324    wants to step into that function, it will set a breakpoint there
2325    and silently continue to it.
2326 
2327    We recognize the trampoline by name, and extract the target address
2328    directly from the stack.  This isn't great, but recognizing by its
2329    code sequence seems more fragile.  */
2330 
2331 static CORE_ADDR
2332 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2333 {
2334   struct gdbarch *gdbarch = get_frame_arch (frame);
2335   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2336   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2337 
2338   /* It would be nicer to simply look up the addresses of known
2339      trampolines once, and then compare stop_pc with them.  However,
2340      we'd need to ensure that that cached address got invalidated when
2341      someone loaded a new executable, and I'm not quite sure of the
2342      best way to do that.  find_pc_partial_function does do some
2343      caching, so we'll see how this goes.  */
2344   const char *name;
2345   CORE_ADDR start, end;
2346 
2347   if (find_pc_partial_function (stop_pc, &name, &start, &end))
2348     {
2349       /* Are we stopped at the beginning of the trampoline function?  */
2350       if (strcmp (name, "m32c_jsri16") == 0
2351 	  && stop_pc == start)
2352 	{
2353 	  /* Get the stack pointer.  The return address is at the top,
2354 	     and the target function's address is just below that.  We
2355 	     know it's a two-byte address, since the trampoline is
2356 	     m32c_jsri*16*.  */
2357 	  CORE_ADDR sp = get_frame_sp (get_current_frame ());
2358 	  CORE_ADDR target
2359 	    = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2360 					    2, byte_order);
2361 
2362 	  /* What we have now is the address of a jump instruction.
2363 	     What we need is the destination of that jump.
2364 	     The opcode is 1 byte, and the destination is the next 3 bytes.  */
2365 
2366 	  target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2367 	  return target;
2368 	}
2369     }
2370 
2371   return 0;
2372 }
2373 
2374 
2375 /* Address/pointer conversions.  */
2376 
2377 /* On the m16c, there is a 24-bit address space, but only a very few
2378    instructions can generate addresses larger than 0xffff: jumps,
2379    jumps to subroutines, and the lde/std (load/store extended)
2380    instructions.
2381 
2382    Since GCC can only support one size of pointer, we can't have
2383    distinct 'near' and 'far' pointer types; we have to pick one size
2384    for everything.  If we wanted to use 24-bit pointers, then GCC
2385    would have to use lde and ste for all memory references, which
2386    would be terrible for performance and code size.  So the GNU
2387    toolchain uses 16-bit pointers for everything, and gives up the
2388    ability to have pointers point outside the first 64k of memory.
2389 
2390    However, as a special hack, we let the linker place functions at
2391    addresses above 0xffff, as long as it also places a trampoline in
2392    the low 64k for every function whose address is taken.  Each
2393    trampoline consists of a single jmp.a instruction that jumps to the
2394    function's real entry point.  Pointers to functions can be 16 bits
2395    long, even though the functions themselves are at higher addresses:
2396    the pointers refer to the trampolines, not the functions.
2397 
2398    This complicates things for GDB, however: given the address of a
2399    function (from debug info or linker symbols, say) which could be
2400    anywhere in the 24-bit address space, how can we find an
2401    appropriate 16-bit value to use as a pointer to it?
2402 
2403    If the linker has not generated a trampoline for the function,
2404    we're out of luck.  Well, I guess we could malloc some space and
2405    write a jmp.a instruction to it, but I'm not going to get into that
2406    at the moment.
2407 
2408    If the linker has generated a trampoline for the function, then it
2409    also emitted a symbol for the trampoline: if the function's linker
2410    symbol is named NAME, then the function's trampoline's linker
2411    symbol is named NAME.plt.
2412 
2413    So, given a code address:
2414    - We try to find a linker symbol at that address.
2415    - If we find such a symbol named NAME, we look for a linker symbol
2416      named NAME.plt.
2417    - If we find such a symbol, we assume it is a trampoline, and use
2418      its address as the pointer value.
2419 
2420    And, given a function pointer:
2421    - We try to find a linker symbol at that address named NAME.plt.
2422    - If we find such a symbol, we look for a linker symbol named NAME.
2423    - If we find that, we provide that as the function's address.
2424    - If any of the above steps fail, we return the original address
2425      unchanged; it might really be a function in the low 64k.
2426 
2427    See?  You *knew* there was a reason you wanted to be a computer
2428    programmer!  :)  */
2429 
2430 static void
2431 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2432 			      struct type *type, gdb_byte *buf, CORE_ADDR addr)
2433 {
2434   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2435   enum type_code target_code;
2436   gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2437 
2438   target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2439 
2440   if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2441     {
2442       const char *func_name;
2443       char *tramp_name;
2444       struct bound_minimal_symbol tramp_msym;
2445 
2446       /* Try to find a linker symbol at this address.  */
2447       struct bound_minimal_symbol func_msym
2448 	= lookup_minimal_symbol_by_pc (addr);
2449 
2450       if (! func_msym.minsym)
2451         error (_("Cannot convert code address %s to function pointer:\n"
2452                "couldn't find a symbol at that address, to find trampoline."),
2453                paddress (gdbarch, addr));
2454 
2455       func_name = MSYMBOL_LINKAGE_NAME (func_msym.minsym);
2456       tramp_name = (char *) xmalloc (strlen (func_name) + 5);
2457       strcpy (tramp_name, func_name);
2458       strcat (tramp_name, ".plt");
2459 
2460       /* Try to find a linker symbol for the trampoline.  */
2461       tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2462 
2463       /* We've either got another copy of the name now, or don't need
2464          the name any more.  */
2465       xfree (tramp_name);
2466 
2467       if (! tramp_msym.minsym)
2468 	{
2469 	  CORE_ADDR ptrval;
2470 
2471 	  /* No PLT entry found.  Mask off the upper bits of the address
2472 	     to make a pointer.  As noted in the warning to the user
2473 	     below, this value might be useful if converted back into
2474 	     an address by GDB, but will otherwise, almost certainly,
2475 	     be garbage.
2476 
2477 	     Using this masked result does seem to be useful
2478 	     in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2479 	     PASSes.  These results appear to be correct as well.
2480 
2481 	     We print a warning here so that the user can make a
2482 	     determination about whether the result is useful or not.  */
2483 	  ptrval = addr & 0xffff;
2484 
2485 	  warning (_("Cannot convert code address %s to function pointer:\n"
2486 		   "couldn't find trampoline named '%s.plt'.\n"
2487 		   "Returning pointer value %s instead; this may produce\n"
2488 		   "a useful result if converted back into an address by GDB,\n"
2489 		   "but will most likely not be useful otherwise.\n"),
2490 		   paddress (gdbarch, addr), func_name,
2491 		   paddress (gdbarch, ptrval));
2492 
2493 	  addr = ptrval;
2494 
2495 	}
2496       else
2497 	{
2498 	  /* The trampoline's address is our pointer.  */
2499 	  addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2500 	}
2501     }
2502 
2503   store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2504 }
2505 
2506 
2507 static CORE_ADDR
2508 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2509 			      struct type *type, const gdb_byte *buf)
2510 {
2511   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2512   CORE_ADDR ptr;
2513   enum type_code target_code;
2514 
2515   gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2516 
2517   ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2518 
2519   target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2520 
2521   if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2522     {
2523       /* See if there is a minimal symbol at that address whose name is
2524          "NAME.plt".  */
2525       struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2526 
2527       if (ptr_msym.minsym)
2528         {
2529           const char *ptr_msym_name = MSYMBOL_LINKAGE_NAME (ptr_msym.minsym);
2530           int len = strlen (ptr_msym_name);
2531 
2532           if (len > 4
2533               && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2534             {
2535 	      struct bound_minimal_symbol func_msym;
2536               /* We have a .plt symbol; try to find the symbol for the
2537                  corresponding function.
2538 
2539                  Since the trampoline contains a jump instruction, we
2540                  could also just extract the jump's target address.  I
2541                  don't see much advantage one way or the other.  */
2542               char *func_name = (char *) xmalloc (len - 4 + 1);
2543               memcpy (func_name, ptr_msym_name, len - 4);
2544               func_name[len - 4] = '\0';
2545               func_msym
2546                 = lookup_minimal_symbol (func_name, NULL, NULL);
2547 
2548               /* If we do have such a symbol, return its value as the
2549                  function's true address.  */
2550               if (func_msym.minsym)
2551                 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2552             }
2553         }
2554       else
2555 	{
2556 	  int aspace;
2557 
2558 	  for (aspace = 1; aspace <= 15; aspace++)
2559 	    {
2560 	      ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2561 
2562 	      if (ptr_msym.minsym)
2563 		ptr |= aspace << 16;
2564 	    }
2565 	}
2566     }
2567 
2568   return ptr;
2569 }
2570 
2571 static void
2572 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2573 			    int *frame_regnum,
2574 			    LONGEST *frame_offset)
2575 {
2576   const char *name;
2577   CORE_ADDR func_addr, func_end;
2578   struct m32c_prologue p;
2579 
2580   struct regcache *regcache = get_current_regcache ();
2581   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2582 
2583   if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2584     internal_error (__FILE__, __LINE__,
2585 		    _("No virtual frame pointer available"));
2586 
2587   m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2588   switch (p.kind)
2589     {
2590     case prologue_with_frame_ptr:
2591       *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2592       *frame_offset = p.frame_ptr_offset;
2593       break;
2594     case prologue_sans_frame_ptr:
2595       *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2596       *frame_offset = p.frame_size;
2597       break;
2598     default:
2599       *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2600       *frame_offset = 0;
2601       break;
2602     }
2603   /* Sanity check */
2604   if (*frame_regnum > gdbarch_num_regs (gdbarch))
2605     internal_error (__FILE__, __LINE__,
2606 		    _("No virtual frame pointer available"));
2607 }
2608 
2609 
2610 /* Initialization.  */
2611 
2612 static struct gdbarch *
2613 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2614 {
2615   struct gdbarch *gdbarch;
2616   struct gdbarch_tdep *tdep;
2617   unsigned long mach = info.bfd_arch_info->mach;
2618 
2619   /* Find a candidate among the list of architectures we've created
2620      already.  */
2621   for (arches = gdbarch_list_lookup_by_info (arches, &info);
2622        arches != NULL;
2623        arches = gdbarch_list_lookup_by_info (arches->next, &info))
2624     return arches->gdbarch;
2625 
2626   tdep = XCNEW (struct gdbarch_tdep);
2627   gdbarch = gdbarch_alloc (&info, tdep);
2628 
2629   /* Essential types.  */
2630   make_types (gdbarch);
2631 
2632   /* Address/pointer conversions.  */
2633   if (mach == bfd_mach_m16c)
2634     {
2635       set_gdbarch_address_to_pointer (gdbarch, m32c_m16c_address_to_pointer);
2636       set_gdbarch_pointer_to_address (gdbarch, m32c_m16c_pointer_to_address);
2637     }
2638 
2639   /* Register set.  */
2640   make_regs (gdbarch);
2641 
2642   /* Disassembly.  */
2643   set_gdbarch_print_insn (gdbarch, print_insn_m32c);
2644 
2645   /* Breakpoints.  */
2646   set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32c_breakpoint::kind_from_pc);
2647   set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32c_breakpoint::bp_from_kind);
2648 
2649   /* Prologue analysis and unwinding.  */
2650   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2651   set_gdbarch_skip_prologue (gdbarch, m32c_skip_prologue);
2652   set_gdbarch_unwind_pc (gdbarch, m32c_unwind_pc);
2653   set_gdbarch_unwind_sp (gdbarch, m32c_unwind_sp);
2654 #if 0
2655   /* I'm dropping the dwarf2 sniffer because it has a few problems.
2656      They may be in the dwarf2 cfi code in GDB, or they may be in
2657      the debug info emitted by the upstream toolchain.  I don't
2658      know which, but I do know that the prologue analyzer works better.
2659      MVS 04/13/06  */
2660   dwarf2_append_sniffers (gdbarch);
2661 #endif
2662   frame_unwind_append_unwinder (gdbarch, &m32c_unwind);
2663 
2664   /* Inferior calls.  */
2665   set_gdbarch_push_dummy_call (gdbarch, m32c_push_dummy_call);
2666   set_gdbarch_return_value (gdbarch, m32c_return_value);
2667   set_gdbarch_dummy_id (gdbarch, m32c_dummy_id);
2668 
2669   /* Trampolines.  */
2670   set_gdbarch_skip_trampoline_code (gdbarch, m32c_skip_trampoline_code);
2671 
2672   set_gdbarch_virtual_frame_pointer (gdbarch, m32c_virtual_frame_pointer);
2673 
2674   /* m32c function boundary addresses are not necessarily even.
2675      Therefore, the `vbit', which indicates a pointer to a virtual
2676      member function, is stored in the delta field, rather than as
2677      the low bit of a function pointer address.
2678 
2679      In order to verify this, see the definition of
2680      TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2681      definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h.  */
2682   set_gdbarch_vbit_in_delta (gdbarch, 1);
2683 
2684   return gdbarch;
2685 }
2686 
2687 /* Provide a prototype to silence -Wmissing-prototypes.  */
2688 extern initialize_file_ftype _initialize_m32c_tdep;
2689 
2690 void
2691 _initialize_m32c_tdep (void)
2692 {
2693   register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2694 
2695   m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2696 }
2697