xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/m32c-tdep.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2 
3    Copyright (C) 2004-2019 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "elf-bfd.h"
22 #include "elf/m32c.h"
23 #include "gdb/sim-m32c.h"
24 #include "dis-asm.h"
25 #include "gdbtypes.h"
26 #include "regcache.h"
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "dwarf2-frame.h"
31 #include "dwarf2expr.h"
32 #include "symtab.h"
33 #include "gdbcore.h"
34 #include "value.h"
35 #include "reggroups.h"
36 #include "prologue-value.h"
37 #include "target.h"
38 #include "objfiles.h"
39 
40 
41 /* The m32c tdep structure.  */
42 
43 static struct reggroup *m32c_dma_reggroup;
44 
45 struct m32c_reg;
46 
47 /* The type of a function that moves the value of REG between CACHE or
48    BUF --- in either direction.  */
49 typedef enum register_status (m32c_write_reg_t) (struct m32c_reg *reg,
50 						 struct regcache *cache,
51 						 const gdb_byte *buf);
52 
53 typedef enum register_status (m32c_read_reg_t) (struct m32c_reg *reg,
54 						readable_regcache *cache,
55 						gdb_byte *buf);
56 
57 struct m32c_reg
58 {
59   /* The name of this register.  */
60   const char *name;
61 
62   /* Its type.  */
63   struct type *type;
64 
65   /* The architecture this register belongs to.  */
66   struct gdbarch *arch;
67 
68   /* Its GDB register number.  */
69   int num;
70 
71   /* Its sim register number.  */
72   int sim_num;
73 
74   /* Its DWARF register number, or -1 if it doesn't have one.  */
75   int dwarf_num;
76 
77   /* Register group memberships.  */
78   unsigned int general_p : 1;
79   unsigned int dma_p : 1;
80   unsigned int system_p : 1;
81   unsigned int save_restore_p : 1;
82 
83   /* Functions to read its value from a regcache, and write its value
84      to a regcache.  */
85   m32c_read_reg_t *read;
86   m32c_write_reg_t *write;
87 
88   /* Data for READ and WRITE functions.  The exact meaning depends on
89      the specific functions selected; see the comments for those
90      functions.  */
91   struct m32c_reg *rx, *ry;
92   int n;
93 };
94 
95 
96 /* An overestimate of the number of raw and pseudoregisters we will
97    have.  The exact answer depends on the variant of the architecture
98    at hand, but we can use this to declare statically allocated
99    arrays, and bump it up when needed.  */
100 #define M32C_MAX_NUM_REGS (75)
101 
102 /* The largest assigned DWARF register number.  */
103 #define M32C_MAX_DWARF_REGNUM (40)
104 
105 
106 struct gdbarch_tdep
107 {
108   /* All the registers for this variant, indexed by GDB register
109      number, and the number of registers present.  */
110   struct m32c_reg regs[M32C_MAX_NUM_REGS];
111 
112   /* The number of valid registers.  */
113   int num_regs;
114 
115   /* Interesting registers.  These are pointers into REGS.  */
116   struct m32c_reg *pc, *flg;
117   struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
118   struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
119   struct m32c_reg *sb, *fb, *sp;
120 
121   /* A table indexed by DWARF register numbers, pointing into
122      REGS.  */
123   struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
124 
125   /* Types for this architecture.  We can't use the builtin_type_foo
126      types, because they're not initialized when building a gdbarch
127      structure.  */
128   struct type *voyd, *ptr_voyd, *func_voyd;
129   struct type *uint8, *uint16;
130   struct type *int8, *int16, *int32, *int64;
131 
132   /* The types for data address and code address registers.  */
133   struct type *data_addr_reg_type, *code_addr_reg_type;
134 
135   /* The number of bytes a return address pushed by a 'jsr' instruction
136      occupies on the stack.  */
137   int ret_addr_bytes;
138 
139   /* The number of bytes an address register occupies on the stack
140      when saved by an 'enter' or 'pushm' instruction.  */
141   int push_addr_bytes;
142 };
143 
144 
145 /* Types.  */
146 
147 static void
148 make_types (struct gdbarch *arch)
149 {
150   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
151   unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
152   int data_addr_reg_bits, code_addr_reg_bits;
153   char type_name[50];
154 
155 #if 0
156   /* This is used to clip CORE_ADDR values, so this value is
157      appropriate both on the m32c, where pointers are 32 bits long,
158      and on the m16c, where pointers are sixteen bits long, but there
159      may be code above the 64k boundary.  */
160   set_gdbarch_addr_bit (arch, 24);
161 #else
162   /* GCC uses 32 bits for addrs in the dwarf info, even though
163      only 16/24 bits are used.  Setting addr_bit to 24 causes
164      errors in reading the dwarf addresses.  */
165   set_gdbarch_addr_bit (arch, 32);
166 #endif
167 
168   set_gdbarch_int_bit (arch, 16);
169   switch (mach)
170     {
171     case bfd_mach_m16c:
172       data_addr_reg_bits = 16;
173       code_addr_reg_bits = 24;
174       set_gdbarch_ptr_bit (arch, 16);
175       tdep->ret_addr_bytes = 3;
176       tdep->push_addr_bytes = 2;
177       break;
178 
179     case bfd_mach_m32c:
180       data_addr_reg_bits = 24;
181       code_addr_reg_bits = 24;
182       set_gdbarch_ptr_bit (arch, 32);
183       tdep->ret_addr_bytes = 4;
184       tdep->push_addr_bytes = 4;
185       break;
186 
187     default:
188       gdb_assert_not_reached ("unexpected mach");
189     }
190 
191   /* The builtin_type_mumble variables are sometimes uninitialized when
192      this is called, so we avoid using them.  */
193   tdep->voyd = arch_type (arch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
194   tdep->ptr_voyd
195     = arch_pointer_type (arch, gdbarch_ptr_bit (arch), NULL, tdep->voyd);
196   tdep->func_voyd = lookup_function_type (tdep->voyd);
197 
198   xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
199 	     gdbarch_bfd_arch_info (arch)->printable_name);
200   tdep->data_addr_reg_type
201     = arch_pointer_type (arch, data_addr_reg_bits, type_name, tdep->voyd);
202 
203   xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
204 	     gdbarch_bfd_arch_info (arch)->printable_name);
205   tdep->code_addr_reg_type
206     = arch_pointer_type (arch, code_addr_reg_bits, type_name, tdep->func_voyd);
207 
208   tdep->uint8  = arch_integer_type (arch,  8, 1, "uint8_t");
209   tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
210   tdep->int8   = arch_integer_type (arch,  8, 0, "int8_t");
211   tdep->int16  = arch_integer_type (arch, 16, 0, "int16_t");
212   tdep->int32  = arch_integer_type (arch, 32, 0, "int32_t");
213   tdep->int64  = arch_integer_type (arch, 64, 0, "int64_t");
214 }
215 
216 
217 
218 /* Register set.  */
219 
220 static const char *
221 m32c_register_name (struct gdbarch *gdbarch, int num)
222 {
223   return gdbarch_tdep (gdbarch)->regs[num].name;
224 }
225 
226 
227 static struct type *
228 m32c_register_type (struct gdbarch *arch, int reg_nr)
229 {
230   return gdbarch_tdep (arch)->regs[reg_nr].type;
231 }
232 
233 
234 static int
235 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
236 {
237   return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
238 }
239 
240 
241 static int
242 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
243 {
244   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245   if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
246       && tdep->dwarf_regs[reg_nr])
247     return tdep->dwarf_regs[reg_nr]->num;
248   else
249     /* The DWARF CFI code expects to see -1 for invalid register
250        numbers.  */
251     return -1;
252 }
253 
254 
255 static int
256 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
257 			  struct reggroup *group)
258 {
259   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
260   struct m32c_reg *reg = &tdep->regs[regnum];
261 
262   /* The anonymous raw registers aren't in any groups.  */
263   if (! reg->name)
264     return 0;
265 
266   if (group == all_reggroup)
267     return 1;
268 
269   if (group == general_reggroup
270       && reg->general_p)
271     return 1;
272 
273   if (group == m32c_dma_reggroup
274       && reg->dma_p)
275     return 1;
276 
277   if (group == system_reggroup
278       && reg->system_p)
279     return 1;
280 
281   /* Since the m32c DWARF register numbers refer to cooked registers, not
282      raw registers, and frame_pop depends on the save and restore groups
283      containing registers the DWARF CFI will actually mention, our save
284      and restore groups are cooked registers, not raw registers.  (This is
285      why we can't use the default reggroup function.)  */
286   if ((group == save_reggroup
287        || group == restore_reggroup)
288       && reg->save_restore_p)
289     return 1;
290 
291   return 0;
292 }
293 
294 
295 /* Register move functions.  We declare them here using
296    m32c_{read,write}_reg_t to check the types.  */
297 static m32c_read_reg_t m32c_raw_read;
298 static m32c_read_reg_t m32c_banked_read;
299 static m32c_read_reg_t m32c_sb_read;
300 static m32c_read_reg_t m32c_part_read;
301 static m32c_read_reg_t m32c_cat_read;
302 static m32c_read_reg_t m32c_r3r2r1r0_read;
303 
304 static m32c_write_reg_t m32c_raw_write;
305 static m32c_write_reg_t m32c_banked_write;
306 static m32c_write_reg_t m32c_sb_write;
307 static m32c_write_reg_t m32c_part_write;
308 static m32c_write_reg_t m32c_cat_write;
309 static m32c_write_reg_t m32c_r3r2r1r0_write;
310 
311 /* Copy the value of the raw register REG from CACHE to BUF.  */
312 static enum register_status
313 m32c_raw_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
314 {
315   return cache->raw_read (reg->num, buf);
316 }
317 
318 
319 /* Copy the value of the raw register REG from BUF to CACHE.  */
320 static enum register_status
321 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache,
322 		const gdb_byte *buf)
323 {
324   cache->raw_write (reg->num, buf);
325 
326   return REG_VALID;
327 }
328 
329 
330 /* Return the value of the 'flg' register in CACHE.  */
331 static int
332 m32c_read_flg (readable_regcache *cache)
333 {
334   struct gdbarch_tdep *tdep = gdbarch_tdep (cache->arch ());
335   ULONGEST flg;
336 
337   cache->raw_read (tdep->flg->num, &flg);
338   return flg & 0xffff;
339 }
340 
341 
342 /* Evaluate the real register number of a banked register.  */
343 static struct m32c_reg *
344 m32c_banked_register (struct m32c_reg *reg, readable_regcache *cache)
345 {
346   return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
347 }
348 
349 
350 /* Move the value of a banked register from CACHE to BUF.
351    If the value of the 'flg' register in CACHE has any of the bits
352    masked in REG->n set, then read REG->ry.  Otherwise, read
353    REG->rx.  */
354 static enum register_status
355 m32c_banked_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
356 {
357   struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
358   return cache->raw_read (bank_reg->num, buf);
359 }
360 
361 
362 /* Move the value of a banked register from BUF to CACHE.
363    If the value of the 'flg' register in CACHE has any of the bits
364    masked in REG->n set, then write REG->ry.  Otherwise, write
365    REG->rx.  */
366 static enum register_status
367 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache,
368 		   const gdb_byte *buf)
369 {
370   struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
371   cache->raw_write (bank_reg->num, buf);
372 
373   return REG_VALID;
374 }
375 
376 
377 /* Move the value of SB from CACHE to BUF.  On bfd_mach_m32c, SB is a
378    banked register; on bfd_mach_m16c, it's not.  */
379 static enum register_status
380 m32c_sb_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
381 {
382   if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
383     return m32c_raw_read (reg->rx, cache, buf);
384   else
385     return m32c_banked_read (reg, cache, buf);
386 }
387 
388 
389 /* Move the value of SB from BUF to CACHE.  On bfd_mach_m32c, SB is a
390    banked register; on bfd_mach_m16c, it's not.  */
391 static enum register_status
392 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, const gdb_byte *buf)
393 {
394   if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
395     m32c_raw_write (reg->rx, cache, buf);
396   else
397     m32c_banked_write (reg, cache, buf);
398 
399   return REG_VALID;
400 }
401 
402 
403 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
404    and *LEN_P to the offset and length, in bytes, of the part REG
405    occupies in its underlying register.  The offset is from the
406    lower-addressed end, regardless of the architecture's endianness.
407    (The M32C family is always little-endian, but let's keep those
408    assumptions out of here.)  */
409 static void
410 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
411 {
412   /* The length of the containing register, of which REG is one part.  */
413   int containing_len = TYPE_LENGTH (reg->rx->type);
414 
415   /* The length of one "element" in our imaginary array.  */
416   int elt_len = TYPE_LENGTH (reg->type);
417 
418   /* The offset of REG's "element" from the least significant end of
419      the containing register.  */
420   int elt_offset = reg->n * elt_len;
421 
422   /* If we extend off the end, trim the length of the element.  */
423   if (elt_offset + elt_len > containing_len)
424     {
425       elt_len = containing_len - elt_offset;
426       /* We shouldn't be declaring partial registers that go off the
427 	 end of their containing registers.  */
428       gdb_assert (elt_len > 0);
429     }
430 
431   /* Flip the offset around if we're big-endian.  */
432   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
433     elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
434 
435   *offset_p = elt_offset;
436   *len_p = elt_len;
437 }
438 
439 
440 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
441    to BUF.  Treating the value of the register REG->rx as an array of
442    REG->type values, where higher indices refer to more significant
443    bits, read the value of the REG->n'th element.  */
444 static enum register_status
445 m32c_part_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
446 {
447   int offset, len;
448 
449   memset (buf, 0, TYPE_LENGTH (reg->type));
450   m32c_find_part (reg, &offset, &len);
451   return cache->cooked_read_part (reg->rx->num, offset, len, buf);
452 }
453 
454 
455 /* Move the value of a banked register from BUF to CACHE.
456    Treating the value of the register REG->rx as an array of REG->type
457    values, where higher indices refer to more significant bits, write
458    the value of the REG->n'th element.  */
459 static enum register_status
460 m32c_part_write (struct m32c_reg *reg, struct regcache *cache,
461 		 const gdb_byte *buf)
462 {
463   int offset, len;
464 
465   m32c_find_part (reg, &offset, &len);
466   cache->cooked_write_part (reg->rx->num, offset, len, buf);
467 
468   return REG_VALID;
469 }
470 
471 
472 /* Move the value of REG from CACHE to BUF.  REG's value is the
473    concatenation of the values of the registers REG->rx and REG->ry,
474    with REG->rx contributing the more significant bits.  */
475 static enum register_status
476 m32c_cat_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
477 {
478   int high_bytes = TYPE_LENGTH (reg->rx->type);
479   int low_bytes  = TYPE_LENGTH (reg->ry->type);
480   enum register_status status;
481 
482   gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
483 
484   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
485     {
486       status = cache->cooked_read (reg->rx->num, buf);
487       if (status == REG_VALID)
488 	status = cache->cooked_read (reg->ry->num, buf + high_bytes);
489     }
490   else
491     {
492       status = cache->cooked_read (reg->rx->num, buf + low_bytes);
493       if (status == REG_VALID)
494 	status = cache->cooked_read (reg->ry->num, buf);
495     }
496   return status;
497 }
498 
499 
500 /* Move the value of REG from CACHE to BUF.  REG's value is the
501    concatenation of the values of the registers REG->rx and REG->ry,
502    with REG->rx contributing the more significant bits.  */
503 static enum register_status
504 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache,
505 		const gdb_byte *buf)
506 {
507   int high_bytes = TYPE_LENGTH (reg->rx->type);
508   int low_bytes  = TYPE_LENGTH (reg->ry->type);
509 
510   gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
511 
512   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
513     {
514       cache->cooked_write (reg->rx->num, buf);
515       cache->cooked_write (reg->ry->num, buf + high_bytes);
516     }
517   else
518     {
519       cache->cooked_write (reg->rx->num, buf + low_bytes);
520       cache->cooked_write (reg->ry->num, buf);
521     }
522 
523   return REG_VALID;
524 }
525 
526 
527 /* Copy the value of the raw register REG from CACHE to BUF.  REG is
528    the concatenation (from most significant to least) of r3, r2, r1,
529    and r0.  */
530 static enum register_status
531 m32c_r3r2r1r0_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
532 {
533   struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
534   int len = TYPE_LENGTH (tdep->r0->type);
535   enum register_status status;
536 
537   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
538     {
539       status = cache->cooked_read (tdep->r0->num, buf + len * 3);
540       if (status == REG_VALID)
541 	status = cache->cooked_read (tdep->r1->num, buf + len * 2);
542       if (status == REG_VALID)
543 	status = cache->cooked_read (tdep->r2->num, buf + len * 1);
544       if (status == REG_VALID)
545 	status = cache->cooked_read (tdep->r3->num, buf);
546     }
547   else
548     {
549       status = cache->cooked_read (tdep->r0->num, buf);
550       if (status == REG_VALID)
551 	status = cache->cooked_read (tdep->r1->num, buf + len * 1);
552       if (status == REG_VALID)
553 	status = cache->cooked_read (tdep->r2->num, buf + len * 2);
554       if (status == REG_VALID)
555 	status = cache->cooked_read (tdep->r3->num, buf + len * 3);
556     }
557 
558   return status;
559 }
560 
561 
562 /* Copy the value of the raw register REG from BUF to CACHE.  REG is
563    the concatenation (from most significant to least) of r3, r2, r1,
564    and r0.  */
565 static enum register_status
566 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache,
567 		     const gdb_byte *buf)
568 {
569   struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
570   int len = TYPE_LENGTH (tdep->r0->type);
571 
572   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
573     {
574       cache->cooked_write (tdep->r0->num, buf + len * 3);
575       cache->cooked_write (tdep->r1->num, buf + len * 2);
576       cache->cooked_write (tdep->r2->num, buf + len * 1);
577       cache->cooked_write (tdep->r3->num, buf);
578     }
579   else
580     {
581       cache->cooked_write (tdep->r0->num, buf);
582       cache->cooked_write (tdep->r1->num, buf + len * 1);
583       cache->cooked_write (tdep->r2->num, buf + len * 2);
584       cache->cooked_write (tdep->r3->num, buf + len * 3);
585     }
586 
587   return REG_VALID;
588 }
589 
590 
591 static enum register_status
592 m32c_pseudo_register_read (struct gdbarch *arch,
593 			   readable_regcache *cache,
594 			   int cookednum,
595 			   gdb_byte *buf)
596 {
597   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
598   struct m32c_reg *reg;
599 
600   gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
601   gdb_assert (arch == cache->arch ());
602   gdb_assert (arch == tdep->regs[cookednum].arch);
603   reg = &tdep->regs[cookednum];
604 
605   return reg->read (reg, cache, buf);
606 }
607 
608 
609 static void
610 m32c_pseudo_register_write (struct gdbarch *arch,
611 			    struct regcache *cache,
612 			    int cookednum,
613 			    const gdb_byte *buf)
614 {
615   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
616   struct m32c_reg *reg;
617 
618   gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
619   gdb_assert (arch == cache->arch ());
620   gdb_assert (arch == tdep->regs[cookednum].arch);
621   reg = &tdep->regs[cookednum];
622 
623   reg->write (reg, cache, buf);
624 }
625 
626 
627 /* Add a register with the given fields to the end of ARCH's table.
628    Return a pointer to the newly added register.  */
629 static struct m32c_reg *
630 add_reg (struct gdbarch *arch,
631 	 const char *name,
632 	 struct type *type,
633 	 int sim_num,
634 	 m32c_read_reg_t *read,
635 	 m32c_write_reg_t *write,
636 	 struct m32c_reg *rx,
637 	 struct m32c_reg *ry,
638 	 int n)
639 {
640   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
641   struct m32c_reg *r = &tdep->regs[tdep->num_regs];
642 
643   gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
644 
645   r->name           = name;
646   r->type           = type;
647   r->arch           = arch;
648   r->num            = tdep->num_regs;
649   r->sim_num        = sim_num;
650   r->dwarf_num      = -1;
651   r->general_p      = 0;
652   r->dma_p          = 0;
653   r->system_p       = 0;
654   r->save_restore_p = 0;
655   r->read           = read;
656   r->write          = write;
657   r->rx             = rx;
658   r->ry             = ry;
659   r->n              = n;
660 
661   tdep->num_regs++;
662 
663   return r;
664 }
665 
666 
667 /* Record NUM as REG's DWARF register number.  */
668 static void
669 set_dwarf_regnum (struct m32c_reg *reg, int num)
670 {
671   gdb_assert (num < M32C_MAX_NUM_REGS);
672 
673   /* Update the reg->DWARF mapping.  Only count the first number
674      assigned to this register.  */
675   if (reg->dwarf_num == -1)
676     reg->dwarf_num = num;
677 
678   /* Update the DWARF->reg mapping.  */
679   gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
680 }
681 
682 
683 /* Mark REG as a general-purpose register, and return it.  */
684 static struct m32c_reg *
685 mark_general (struct m32c_reg *reg)
686 {
687   reg->general_p = 1;
688   return reg;
689 }
690 
691 
692 /* Mark REG as a DMA register.  */
693 static void
694 mark_dma (struct m32c_reg *reg)
695 {
696   reg->dma_p = 1;
697 }
698 
699 
700 /* Mark REG as a SYSTEM register, and return it.  */
701 static struct m32c_reg *
702 mark_system (struct m32c_reg *reg)
703 {
704   reg->system_p = 1;
705   return reg;
706 }
707 
708 
709 /* Mark REG as a save-restore register, and return it.  */
710 static struct m32c_reg *
711 mark_save_restore (struct m32c_reg *reg)
712 {
713   reg->save_restore_p = 1;
714   return reg;
715 }
716 
717 
718 #define FLAGBIT_B	0x0010
719 #define FLAGBIT_U	0x0080
720 
721 /* Handy macros for declaring registers.  These all evaluate to
722    pointers to the register declared.  Macros that define two
723    registers evaluate to a pointer to the first.  */
724 
725 /* A raw register named NAME, with type TYPE and sim number SIM_NUM.  */
726 #define R(name, type, sim_num)					\
727   (add_reg (arch, (name), (type), (sim_num),			\
728 	    m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
729 
730 /* The simulator register number for a raw register named NAME.  */
731 #define SIM(name) (m32c_sim_reg_ ## name)
732 
733 /* A raw unsigned 16-bit data register named NAME.
734    NAME should be an identifier, not a string.  */
735 #define R16U(name)						\
736   (R(#name, tdep->uint16, SIM (name)))
737 
738 /* A raw data address register named NAME.
739    NAME should be an identifier, not a string.  */
740 #define RA(name)						\
741   (R(#name, tdep->data_addr_reg_type, SIM (name)))
742 
743 /* A raw code address register named NAME.  NAME should
744    be an identifier, not a string.  */
745 #define RC(name)						\
746   (R(#name, tdep->code_addr_reg_type, SIM (name)))
747 
748 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
749    NAME should be an identifier, not a string.  */
750 #define RP(name, type)				\
751   (R(#name "0", (type), SIM (name ## 0)),	\
752    R(#name "1", (type), SIM (name ## 1)) - 1)
753 
754 /* A raw banked general-purpose data register named NAME.
755    NAME should be an identifier, not a string.  */
756 #define RBD(name)						\
757   (R(NULL, tdep->int16, SIM (name ## _bank0)),		\
758    R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
759 
760 /* A raw banked data address register named NAME.
761    NAME should be an identifier, not a string.  */
762 #define RBA(name)						\
763   (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)),	\
764    R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
765 
766 /* A cooked register named NAME referring to a raw banked register
767    from the bank selected by the current value of FLG.  RAW_PAIR
768    should be a pointer to the first register in the banked pair.
769    NAME must be an identifier, not a string.  */
770 #define CB(name, raw_pair)				\
771   (add_reg (arch, #name, (raw_pair)->type, 0,		\
772 	    m32c_banked_read, m32c_banked_write,	\
773             (raw_pair), (raw_pair + 1), FLAGBIT_B))
774 
775 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
776    access the top and bottom halves of the register pointed to by
777    NAME.  NAME should be an identifier.  */
778 #define CHL(name, type)							\
779   (add_reg (arch, #name "h", (type), 0,					\
780 	    m32c_part_read, m32c_part_write, name, NULL, 1),		\
781    add_reg (arch, #name "l", (type), 0,					\
782 	    m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
783 
784 /* A register constructed by concatenating the two registers HIGH and
785    LOW, whose name is HIGHLOW and whose type is TYPE.  */
786 #define CCAT(high, low, type)					\
787   (add_reg (arch, #high #low, (type), 0,			\
788 	    m32c_cat_read, m32c_cat_write, (high), (low), 0))
789 
790 /* Abbreviations for marking register group membership.  */
791 #define G(reg)   (mark_general (reg))
792 #define S(reg)   (mark_system  (reg))
793 #define DMA(reg) (mark_dma     (reg))
794 
795 
796 /* Construct the register set for ARCH.  */
797 static void
798 make_regs (struct gdbarch *arch)
799 {
800   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
801   int mach = gdbarch_bfd_arch_info (arch)->mach;
802   int num_raw_regs;
803   int num_cooked_regs;
804 
805   struct m32c_reg *r0;
806   struct m32c_reg *r1;
807   struct m32c_reg *r2;
808   struct m32c_reg *r3;
809   struct m32c_reg *a0;
810   struct m32c_reg *a1;
811   struct m32c_reg *fb;
812   struct m32c_reg *sb;
813   struct m32c_reg *sp;
814   struct m32c_reg *r0hl;
815   struct m32c_reg *r1hl;
816   struct m32c_reg *r2r0;
817   struct m32c_reg *r3r1;
818   struct m32c_reg *r3r1r2r0;
819   struct m32c_reg *r3r2r1r0;
820   struct m32c_reg *a1a0;
821 
822   struct m32c_reg *raw_r0_pair = RBD (r0);
823   struct m32c_reg *raw_r1_pair = RBD (r1);
824   struct m32c_reg *raw_r2_pair = RBD (r2);
825   struct m32c_reg *raw_r3_pair = RBD (r3);
826   struct m32c_reg *raw_a0_pair = RBA (a0);
827   struct m32c_reg *raw_a1_pair = RBA (a1);
828   struct m32c_reg *raw_fb_pair = RBA (fb);
829 
830   /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
831      We always declare both raw registers, and deal with the distinction
832      in the pseudoregister.  */
833   struct m32c_reg *raw_sb_pair = RBA (sb);
834 
835   struct m32c_reg *usp         = S (RA (usp));
836   struct m32c_reg *isp         = S (RA (isp));
837   struct m32c_reg *intb        = S (RC (intb));
838   struct m32c_reg *pc          = G (RC (pc));
839   struct m32c_reg *flg         = G (R16U (flg));
840 
841   if (mach == bfd_mach_m32c)
842     {
843       S (R16U (svf));
844       S (RC (svp));
845       S (RC (vct));
846 
847       DMA (RP (dmd, tdep->uint8));
848       DMA (RP (dct, tdep->uint16));
849       DMA (RP (drc, tdep->uint16));
850       DMA (RP (dma, tdep->data_addr_reg_type));
851       DMA (RP (dsa, tdep->data_addr_reg_type));
852       DMA (RP (dra, tdep->data_addr_reg_type));
853     }
854 
855   num_raw_regs = tdep->num_regs;
856 
857   r0 	      = G (CB (r0, raw_r0_pair));
858   r1 	      = G (CB (r1, raw_r1_pair));
859   r2          = G (CB (r2, raw_r2_pair));
860   r3          = G (CB (r3, raw_r3_pair));
861   a0          = G (CB (a0, raw_a0_pair));
862   a1          = G (CB (a1, raw_a1_pair));
863   fb          = G (CB (fb, raw_fb_pair));
864 
865   /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
866      Specify custom read/write functions that do the right thing.  */
867   sb          = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
868 			    m32c_sb_read, m32c_sb_write,
869 			    raw_sb_pair, raw_sb_pair + 1, 0));
870 
871   /* The current sp is either usp or isp, depending on the value of
872      the FLG register's U bit.  */
873   sp          = G (add_reg (arch, "sp", usp->type, 0,
874 			    m32c_banked_read, m32c_banked_write,
875 			    isp, usp, FLAGBIT_U));
876 
877   r0hl        = CHL (r0, tdep->int8);
878   r1hl        = CHL (r1, tdep->int8);
879   CHL (r2, tdep->int8);
880   CHL (r3, tdep->int8);
881   CHL (intb, tdep->int16);
882 
883   r2r0        = CCAT (r2,   r0,   tdep->int32);
884   r3r1        = CCAT (r3,   r1,   tdep->int32);
885   r3r1r2r0    = CCAT (r3r1, r2r0, tdep->int64);
886 
887   r3r2r1r0
888     = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
889 	       m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
890 
891   if (mach == bfd_mach_m16c)
892     a1a0 = CCAT (a1, a0, tdep->int32);
893   else
894     a1a0 = NULL;
895 
896   num_cooked_regs = tdep->num_regs - num_raw_regs;
897 
898   tdep->pc   	 = pc;
899   tdep->flg  	 = flg;
900   tdep->r0   	 = r0;
901   tdep->r1   	 = r1;
902   tdep->r2   	 = r2;
903   tdep->r3   	 = r3;
904   tdep->r2r0 	 = r2r0;
905   tdep->r3r2r1r0 = r3r2r1r0;
906   tdep->r3r1r2r0 = r3r1r2r0;
907   tdep->a0       = a0;
908   tdep->a1       = a1;
909   tdep->sb       = sb;
910   tdep->fb   	 = fb;
911   tdep->sp   	 = sp;
912 
913   /* Set up the DWARF register table.  */
914   memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
915   set_dwarf_regnum (r0hl + 1, 0x01);
916   set_dwarf_regnum (r0hl + 0, 0x02);
917   set_dwarf_regnum (r1hl + 1, 0x03);
918   set_dwarf_regnum (r1hl + 0, 0x04);
919   set_dwarf_regnum (r0,       0x05);
920   set_dwarf_regnum (r1,       0x06);
921   set_dwarf_regnum (r2,       0x07);
922   set_dwarf_regnum (r3,       0x08);
923   set_dwarf_regnum (a0,       0x09);
924   set_dwarf_regnum (a1,       0x0a);
925   set_dwarf_regnum (fb,       0x0b);
926   set_dwarf_regnum (sp,       0x0c);
927   set_dwarf_regnum (pc,       0x0d); /* GCC's invention */
928   set_dwarf_regnum (sb,       0x13);
929   set_dwarf_regnum (r2r0,     0x15);
930   set_dwarf_regnum (r3r1,     0x16);
931   if (a1a0)
932     set_dwarf_regnum (a1a0,   0x17);
933 
934   /* Enumerate the save/restore register group.
935 
936      The regcache_save and regcache_restore functions apply their read
937      function to each register in this group.
938 
939      Since frame_pop supplies frame_unwind_register as its read
940      function, the registers meaningful to the Dwarf unwinder need to
941      be in this group.
942 
943      On the other hand, when we make inferior calls, save_inferior_status
944      and restore_inferior_status use them to preserve the current register
945      values across the inferior call.  For this, you'd kind of like to
946      preserve all the raw registers, to protect the interrupted code from
947      any sort of bank switching the callee might have done.  But we handle
948      those cases so badly anyway --- for example, it matters whether we
949      restore FLG before or after we restore the general-purpose registers,
950      but there's no way to express that --- that it isn't worth worrying
951      about.
952 
953      We omit control registers like inthl: if you call a function that
954      changes those, it's probably because you wanted that change to be
955      visible to the interrupted code.  */
956   mark_save_restore (r0);
957   mark_save_restore (r1);
958   mark_save_restore (r2);
959   mark_save_restore (r3);
960   mark_save_restore (a0);
961   mark_save_restore (a1);
962   mark_save_restore (sb);
963   mark_save_restore (fb);
964   mark_save_restore (sp);
965   mark_save_restore (pc);
966   mark_save_restore (flg);
967 
968   set_gdbarch_num_regs (arch, num_raw_regs);
969   set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
970   set_gdbarch_pc_regnum (arch, pc->num);
971   set_gdbarch_sp_regnum (arch, sp->num);
972   set_gdbarch_register_name (arch, m32c_register_name);
973   set_gdbarch_register_type (arch, m32c_register_type);
974   set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
975   set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
976   set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
977   set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
978   set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
979   set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
980 
981   reggroup_add (arch, general_reggroup);
982   reggroup_add (arch, all_reggroup);
983   reggroup_add (arch, save_reggroup);
984   reggroup_add (arch, restore_reggroup);
985   reggroup_add (arch, system_reggroup);
986   reggroup_add (arch, m32c_dma_reggroup);
987 }
988 
989 
990 
991 /* Breakpoints.  */
992 constexpr gdb_byte m32c_break_insn[] = { 0x00 };	/* brk */
993 
994 typedef BP_MANIPULATION (m32c_break_insn) m32c_breakpoint;
995 
996 
997 /* Prologue analysis.  */
998 
999 enum m32c_prologue_kind
1000 {
1001   /* This function uses a frame pointer.  */
1002   prologue_with_frame_ptr,
1003 
1004   /* This function has no frame pointer.  */
1005   prologue_sans_frame_ptr,
1006 
1007   /* This function sets up the stack, so its frame is the first
1008      frame on the stack.  */
1009   prologue_first_frame
1010 };
1011 
1012 struct m32c_prologue
1013 {
1014   /* For consistency with the DWARF 2 .debug_frame info generated by
1015      GCC, a frame's CFA is the address immediately after the saved
1016      return address.  */
1017 
1018   /* The architecture for which we generated this prologue info.  */
1019   struct gdbarch *arch;
1020 
1021   enum m32c_prologue_kind kind;
1022 
1023   /* If KIND is prologue_with_frame_ptr, this is the offset from the
1024      CFA to where the frame pointer points.  This is always zero or
1025      negative.  */
1026   LONGEST frame_ptr_offset;
1027 
1028   /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1029      the stack pointer --- always zero or negative.
1030 
1031      Calling this a "size" is a bit misleading, but given that the
1032      stack grows downwards, using offsets for everything keeps one
1033      from going completely sign-crazy: you never change anything's
1034      sign for an ADD instruction; always change the second operand's
1035      sign for a SUB instruction; and everything takes care of
1036      itself.
1037 
1038      Functions that use alloca don't have a constant frame size.  But
1039      they always have frame pointers, so we must use that to find the
1040      CFA (and perhaps to unwind the stack pointer).  */
1041   LONGEST frame_size;
1042 
1043   /* The address of the first instruction at which the frame has been
1044      set up and the arguments are where the debug info says they are
1045      --- as best as we can tell.  */
1046   CORE_ADDR prologue_end;
1047 
1048   /* reg_offset[R] is the offset from the CFA at which register R is
1049      saved, or 1 if register R has not been saved.  (Real values are
1050      always zero or negative.)  */
1051   LONGEST reg_offset[M32C_MAX_NUM_REGS];
1052 };
1053 
1054 
1055 /* The longest I've seen, anyway.  */
1056 #define M32C_MAX_INSN_LEN (9)
1057 
1058 /* Processor state, for the prologue analyzer.  */
1059 struct m32c_pv_state
1060 {
1061   struct gdbarch *arch;
1062   pv_t r0, r1, r2, r3;
1063   pv_t a0, a1;
1064   pv_t sb, fb, sp;
1065   pv_t pc;
1066   struct pv_area *stack;
1067 
1068   /* Bytes from the current PC, the address they were read from,
1069      and the address of the next unconsumed byte.  */
1070   gdb_byte insn[M32C_MAX_INSN_LEN];
1071   CORE_ADDR scan_pc, next_addr;
1072 };
1073 
1074 
1075 /* Push VALUE on STATE's stack, occupying SIZE bytes.  Return zero if
1076    all went well, or non-zero if simulating the action would trash our
1077    state.  */
1078 static int
1079 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1080 {
1081   if (state->stack->store_would_trash (state->sp))
1082     return 1;
1083 
1084   state->sp = pv_add_constant (state->sp, -size);
1085   state->stack->store (state->sp, size, value);
1086 
1087   return 0;
1088 }
1089 
1090 
1091 enum srcdest_kind
1092 {
1093   srcdest_reg,
1094   srcdest_partial_reg,
1095   srcdest_mem
1096 };
1097 
1098 /* A source or destination location for an m16c or m32c
1099    instruction.  */
1100 struct srcdest
1101 {
1102   /* If srcdest_reg, the location is a register pointed to by REG.
1103      If srcdest_partial_reg, the location is part of a register pointed
1104      to by REG.  We don't try to handle this too well.
1105      If srcdest_mem, the location is memory whose address is ADDR.  */
1106   enum srcdest_kind kind;
1107   pv_t *reg, addr;
1108 };
1109 
1110 
1111 /* Return the SIZE-byte value at LOC in STATE.  */
1112 static pv_t
1113 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1114 {
1115   if (loc.kind == srcdest_mem)
1116     return state->stack->fetch (loc.addr, size);
1117   else if (loc.kind == srcdest_partial_reg)
1118     return pv_unknown ();
1119   else
1120     return *loc.reg;
1121 }
1122 
1123 
1124 /* Write VALUE, a SIZE-byte value, to LOC in STATE.  Return zero if
1125    all went well, or non-zero if simulating the store would trash our
1126    state.  */
1127 static int
1128 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1129 		    pv_t value, int size)
1130 {
1131   if (loc.kind == srcdest_mem)
1132     {
1133       if (state->stack->store_would_trash (loc.addr))
1134 	return 1;
1135       state->stack->store (loc.addr, size, value);
1136     }
1137   else if (loc.kind == srcdest_partial_reg)
1138     *loc.reg = pv_unknown ();
1139   else
1140     *loc.reg = value;
1141 
1142   return 0;
1143 }
1144 
1145 
1146 static int
1147 m32c_sign_ext (int v, int bits)
1148 {
1149   int mask = 1 << (bits - 1);
1150   return (v ^ mask) - mask;
1151 }
1152 
1153 static unsigned int
1154 m32c_next_byte (struct m32c_pv_state *st)
1155 {
1156   gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1157   return st->insn[st->next_addr++ - st->scan_pc];
1158 }
1159 
1160 static int
1161 m32c_udisp8 (struct m32c_pv_state *st)
1162 {
1163   return m32c_next_byte (st);
1164 }
1165 
1166 
1167 static int
1168 m32c_sdisp8 (struct m32c_pv_state *st)
1169 {
1170   return m32c_sign_ext (m32c_next_byte (st), 8);
1171 }
1172 
1173 
1174 static int
1175 m32c_udisp16 (struct m32c_pv_state *st)
1176 {
1177   int low  = m32c_next_byte (st);
1178   int high = m32c_next_byte (st);
1179 
1180   return low + (high << 8);
1181 }
1182 
1183 
1184 static int
1185 m32c_sdisp16 (struct m32c_pv_state *st)
1186 {
1187   int low  = m32c_next_byte (st);
1188   int high = m32c_next_byte (st);
1189 
1190   return m32c_sign_ext (low + (high << 8), 16);
1191 }
1192 
1193 
1194 static int
1195 m32c_udisp24 (struct m32c_pv_state *st)
1196 {
1197   int low  = m32c_next_byte (st);
1198   int mid  = m32c_next_byte (st);
1199   int high = m32c_next_byte (st);
1200 
1201   return low + (mid << 8) + (high << 16);
1202 }
1203 
1204 
1205 /* Extract the 'source' field from an m32c MOV.size:G-format instruction.  */
1206 static int
1207 m32c_get_src23 (unsigned char *i)
1208 {
1209   return (((i[0] & 0x70) >> 2)
1210 	  | ((i[1] & 0x30) >> 4));
1211 }
1212 
1213 
1214 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction.  */
1215 static int
1216 m32c_get_dest23 (unsigned char *i)
1217 {
1218   return (((i[0] & 0x0e) << 1)
1219 	  | ((i[1] & 0xc0) >> 6));
1220 }
1221 
1222 
1223 static struct srcdest
1224 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1225 		      int code, int size)
1226 {
1227   struct srcdest sd;
1228 
1229   if (code < 6)
1230     sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1231   else
1232     sd.kind = srcdest_mem;
1233 
1234   sd.addr = pv_unknown ();
1235   sd.reg = 0;
1236 
1237   switch (code)
1238     {
1239     case 0x0: sd.reg = &st->r0; break;
1240     case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1241     case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1242     case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1243 
1244     case 0x4: sd.reg = &st->a0; break;
1245     case 0x5: sd.reg = &st->a1; break;
1246 
1247     case 0x6: sd.addr = st->a0; break;
1248     case 0x7: sd.addr = st->a1; break;
1249 
1250     case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1251     case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1252     case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1253     case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1254 
1255     case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1256     case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1257     case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1258     case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1259 
1260     default:
1261       gdb_assert_not_reached ("unexpected srcdest4");
1262     }
1263 
1264   return sd;
1265 }
1266 
1267 
1268 static struct srcdest
1269 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1270 {
1271   struct srcdest sd;
1272 
1273   sd.addr = pv_unknown ();
1274   sd.reg = 0;
1275 
1276   switch (code)
1277     {
1278     case 0x12:
1279     case 0x13:
1280     case 0x10:
1281     case 0x11:
1282       sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1283       break;
1284 
1285     case 0x02:
1286     case 0x03:
1287       sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1288       break;
1289 
1290     default:
1291       sd.kind = srcdest_mem;
1292       break;
1293 
1294     }
1295 
1296   switch (code)
1297     {
1298     case 0x12: sd.reg = &st->r0; break;
1299     case 0x13: sd.reg = &st->r1; break;
1300     case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1301     case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1302     case 0x02: sd.reg = &st->a0; break;
1303     case 0x03: sd.reg = &st->a1; break;
1304 
1305     case 0x00: sd.addr = st->a0; break;
1306     case 0x01: sd.addr = st->a1; break;
1307     case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1308     case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1309     case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1310     case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1311     case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1312     case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1313     case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1314     case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1315     case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1316     case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1317     case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1318     case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1319     default:
1320       gdb_assert_not_reached ("unexpected sd23");
1321     }
1322 
1323   if (ind)
1324     {
1325       sd.addr = m32c_srcdest_fetch (st, sd, 4);
1326       sd.kind = srcdest_mem;
1327     }
1328 
1329   return sd;
1330 }
1331 
1332 
1333 /* The r16c and r32c machines have instructions with similar
1334    semantics, but completely different machine language encodings.  So
1335    we break out the semantics into their own functions, and leave
1336    machine-specific decoding in m32c_analyze_prologue.
1337 
1338    The following functions all expect their arguments already decoded,
1339    and they all return zero if analysis should continue past this
1340    instruction, or non-zero if analysis should stop.  */
1341 
1342 
1343 /* Simulate an 'enter SIZE' instruction in STATE.  */
1344 static int
1345 m32c_pv_enter (struct m32c_pv_state *state, int size)
1346 {
1347   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1348 
1349   /* If simulating this store would require us to forget
1350      everything we know about the stack frame in the name of
1351      accuracy, it would be better to just quit now.  */
1352   if (state->stack->store_would_trash (state->sp))
1353     return 1;
1354 
1355   if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1356     return 1;
1357   state->fb = state->sp;
1358   state->sp = pv_add_constant (state->sp, -size);
1359 
1360   return 0;
1361 }
1362 
1363 
1364 static int
1365 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1366 		   int bit, int src, int size)
1367 {
1368   if (bit & src)
1369     {
1370       if (m32c_pv_push (state, reg, size))
1371 	return 1;
1372     }
1373 
1374   return 0;
1375 }
1376 
1377 
1378 /* Simulate a 'pushm SRC' instruction in STATE.  */
1379 static int
1380 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1381 {
1382   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1383 
1384   /* The bits in SRC indicating which registers to save are:
1385      r0 r1 r2 r3 a0 a1 sb fb */
1386   return
1387     (   m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1388      || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1389      || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1390      || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1391      || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1392      || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1393      || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1394      || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1395 }
1396 
1397 /* Return non-zero if VALUE is the first incoming argument register.  */
1398 
1399 static int
1400 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1401 {
1402   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1403   return (value.kind == pvk_register
1404           && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1405 	      ? (value.reg == tdep->r1->num)
1406 	      : (value.reg == tdep->r0->num))
1407           && value.k == 0);
1408 }
1409 
1410 /* Return non-zero if VALUE is an incoming argument register.  */
1411 
1412 static int
1413 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1414 {
1415   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1416   return (value.kind == pvk_register
1417           && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1418 	      ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1419 	      : (value.reg == tdep->r0->num))
1420           && value.k == 0);
1421 }
1422 
1423 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1424    argument register to its stack slot in STATE.  Such instructions
1425    should be included in the prologue, if possible.
1426 
1427    The store is a spill if:
1428    - the value being stored is the original value of an argument register;
1429    - the value has not already been stored somewhere in STACK; and
1430    - LOC is a stack slot (e.g., a memory location whose address is
1431      relative to the original value of the SP).  */
1432 
1433 static int
1434 m32c_is_arg_spill (struct m32c_pv_state *st,
1435 		   struct srcdest loc,
1436 		   pv_t value)
1437 {
1438   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1439 
1440   return (m32c_is_arg_reg (st, value)
1441 	  && loc.kind == srcdest_mem
1442           && pv_is_register (loc.addr, tdep->sp->num)
1443           && ! st->stack->find_reg (st->arch, value.reg, 0));
1444 }
1445 
1446 /* Return non-zero if a store of VALUE to LOC is probably
1447    copying the struct return address into an address register
1448    for immediate use.  This is basically a "spill" into the
1449    address register, instead of onto the stack.
1450 
1451    The prerequisites are:
1452    - value being stored is original value of the FIRST arg register;
1453    - value has not already been stored on stack; and
1454    - LOC is an address register (a0 or a1).  */
1455 
1456 static int
1457 m32c_is_struct_return (struct m32c_pv_state *st,
1458 		       struct srcdest loc,
1459 		       pv_t value)
1460 {
1461   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1462 
1463   return (m32c_is_1st_arg_reg (st, value)
1464 	  && !st->stack->find_reg (st->arch, value.reg, 0)
1465 	  && loc.kind == srcdest_reg
1466 	  && (pv_is_register (*loc.reg, tdep->a0->num)
1467 	      || pv_is_register (*loc.reg, tdep->a1->num)));
1468 }
1469 
1470 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1471    was a register save:
1472    - all the named registers should have their original values, and
1473    - the stack pointer should be at a constant offset from the
1474      original stack pointer.  */
1475 static int
1476 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1477 {
1478   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1479   /* The bits in SRC indicating which registers to save are:
1480      r0 r1 r2 r3 a0 a1 sb fb */
1481   return
1482     (pv_is_register (st->sp, tdep->sp->num)
1483      && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1484      && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1485      && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1486      && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1487      && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1488      && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1489      && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1490      && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1491 }
1492 
1493 
1494 /* Function for finding saved registers in a 'struct pv_area'; we pass
1495    this to pv_area::scan.
1496 
1497    If VALUE is a saved register, ADDR says it was saved at a constant
1498    offset from the frame base, and SIZE indicates that the whole
1499    register was saved, record its offset in RESULT_UNTYPED.  */
1500 static void
1501 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1502 {
1503   struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1504   struct gdbarch *arch = prologue->arch;
1505   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1506 
1507   /* Is this the unchanged value of some register being saved on the
1508      stack?  */
1509   if (value.kind == pvk_register
1510       && value.k == 0
1511       && pv_is_register (addr, tdep->sp->num))
1512     {
1513       /* Some registers require special handling: they're saved as a
1514 	 larger value than the register itself.  */
1515       CORE_ADDR saved_size = register_size (arch, value.reg);
1516 
1517       if (value.reg == tdep->pc->num)
1518 	saved_size = tdep->ret_addr_bytes;
1519       else if (register_type (arch, value.reg)
1520 	       == tdep->data_addr_reg_type)
1521 	saved_size = tdep->push_addr_bytes;
1522 
1523       if (size == saved_size)
1524 	{
1525 	  /* Find which end of the saved value corresponds to our
1526 	     register.  */
1527 	  if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1528 	    prologue->reg_offset[value.reg]
1529 	      = (addr.k + saved_size - register_size (arch, value.reg));
1530 	  else
1531 	    prologue->reg_offset[value.reg] = addr.k;
1532 	}
1533     }
1534 }
1535 
1536 
1537 /* Analyze the function prologue for ARCH at START, going no further
1538    than LIMIT, and place a description of what we found in
1539    PROLOGUE.  */
1540 static void
1541 m32c_analyze_prologue (struct gdbarch *arch,
1542 		       CORE_ADDR start, CORE_ADDR limit,
1543 		       struct m32c_prologue *prologue)
1544 {
1545   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1546   unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1547   CORE_ADDR after_last_frame_related_insn;
1548   struct m32c_pv_state st;
1549 
1550   st.arch = arch;
1551   st.r0 = pv_register (tdep->r0->num, 0);
1552   st.r1 = pv_register (tdep->r1->num, 0);
1553   st.r2 = pv_register (tdep->r2->num, 0);
1554   st.r3 = pv_register (tdep->r3->num, 0);
1555   st.a0 = pv_register (tdep->a0->num, 0);
1556   st.a1 = pv_register (tdep->a1->num, 0);
1557   st.sb = pv_register (tdep->sb->num, 0);
1558   st.fb = pv_register (tdep->fb->num, 0);
1559   st.sp = pv_register (tdep->sp->num, 0);
1560   st.pc = pv_register (tdep->pc->num, 0);
1561   pv_area stack (tdep->sp->num, gdbarch_addr_bit (arch));
1562   st.stack = &stack;
1563 
1564   /* Record that the call instruction has saved the return address on
1565      the stack.  */
1566   m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1567 
1568   memset (prologue, 0, sizeof (*prologue));
1569   prologue->arch = arch;
1570   {
1571     int i;
1572     for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1573       prologue->reg_offset[i] = 1;
1574   }
1575 
1576   st.scan_pc = after_last_frame_related_insn = start;
1577 
1578   while (st.scan_pc < limit)
1579     {
1580       pv_t pre_insn_fb = st.fb;
1581       pv_t pre_insn_sp = st.sp;
1582 
1583       /* In theory we could get in trouble by trying to read ahead
1584 	 here, when we only know we're expecting one byte.  In
1585 	 practice I doubt anyone will care, and it makes the rest of
1586 	 the code easier.  */
1587       if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1588 	/* If we can't fetch the instruction from memory, stop here
1589 	   and hope for the best.  */
1590 	break;
1591       st.next_addr = st.scan_pc;
1592 
1593       /* The assembly instructions are written as they appear in the
1594 	 section of the processor manuals that describe the
1595 	 instruction encodings.
1596 
1597 	 When a single assembly language instruction has several
1598 	 different machine-language encodings, the manual
1599 	 distinguishes them by a number in parens, before the
1600 	 mnemonic.  Those numbers are included, as well.
1601 
1602 	 The srcdest decoding instructions have the same names as the
1603 	 analogous functions in the simulator.  */
1604       if (mach == bfd_mach_m16c)
1605 	{
1606 	  /* (1) ENTER #imm8 */
1607 	  if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1608 	    {
1609 	      if (m32c_pv_enter (&st, st.insn[2]))
1610 		break;
1611 	      st.next_addr += 3;
1612 	    }
1613 	  /* (1) PUSHM src */
1614 	  else if (st.insn[0] == 0xec)
1615 	    {
1616 	      int src = st.insn[1];
1617 	      if (m32c_pv_pushm (&st, src))
1618 		break;
1619 	      st.next_addr += 2;
1620 
1621 	      if (m32c_pushm_is_reg_save (&st, src))
1622 		after_last_frame_related_insn = st.next_addr;
1623 	    }
1624 
1625 	  /* (6) MOV.size:G src, dest */
1626 	  else if ((st.insn[0] & 0xfe) == 0x72)
1627 	    {
1628 	      int size = (st.insn[0] & 0x01) ? 2 : 1;
1629 	      struct srcdest src;
1630 	      struct srcdest dest;
1631 	      pv_t src_value;
1632 	      st.next_addr += 2;
1633 
1634 	      src
1635 		= m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1636 	      dest
1637 		= m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1638 	      src_value = m32c_srcdest_fetch (&st, src, size);
1639 
1640 	      if (m32c_is_arg_spill (&st, dest, src_value))
1641 		after_last_frame_related_insn = st.next_addr;
1642 	      else if (m32c_is_struct_return (&st, dest, src_value))
1643 		after_last_frame_related_insn = st.next_addr;
1644 
1645 	      if (m32c_srcdest_store (&st, dest, src_value, size))
1646 		break;
1647 	    }
1648 
1649 	  /* (1) LDC #IMM16, sp */
1650 	  else if (st.insn[0] == 0xeb
1651 		   && st.insn[1] == 0x50)
1652 	    {
1653 	      st.next_addr += 2;
1654 	      st.sp = pv_constant (m32c_udisp16 (&st));
1655 	    }
1656 
1657 	  else
1658 	    /* We've hit some instruction we don't know how to simulate.
1659 	       Strictly speaking, we should set every value we're
1660 	       tracking to "unknown".  But we'll be optimistic, assume
1661 	       that we have enough information already, and stop
1662 	       analysis here.  */
1663 	    break;
1664 	}
1665       else
1666 	{
1667 	  int src_indirect = 0;
1668 	  int dest_indirect = 0;
1669 	  int i = 0;
1670 
1671 	  gdb_assert (mach == bfd_mach_m32c);
1672 
1673 	  /* Check for prefix bytes indicating indirect addressing.  */
1674 	  if (st.insn[0] == 0x41)
1675 	    {
1676 	      src_indirect = 1;
1677 	      i++;
1678 	    }
1679 	  else if (st.insn[0] == 0x09)
1680 	    {
1681 	      dest_indirect = 1;
1682 	      i++;
1683 	    }
1684 	  else if (st.insn[0] == 0x49)
1685 	    {
1686 	      src_indirect = dest_indirect = 1;
1687 	      i++;
1688 	    }
1689 
1690 	  /* (1) ENTER #imm8 */
1691 	  if (st.insn[i] == 0xec)
1692 	    {
1693 	      if (m32c_pv_enter (&st, st.insn[i + 1]))
1694 		break;
1695 	      st.next_addr += 2;
1696 	    }
1697 
1698 	  /* (1) PUSHM src */
1699 	  else if (st.insn[i] == 0x8f)
1700 	    {
1701 	      int src = st.insn[i + 1];
1702 	      if (m32c_pv_pushm (&st, src))
1703 		break;
1704 	      st.next_addr += 2;
1705 
1706 	      if (m32c_pushm_is_reg_save (&st, src))
1707 		after_last_frame_related_insn = st.next_addr;
1708 	    }
1709 
1710 	  /* (7) MOV.size:G src, dest */
1711 	  else if ((st.insn[i] & 0x80) == 0x80
1712 		   && (st.insn[i + 1] & 0x0f) == 0x0b
1713 		   && m32c_get_src23 (&st.insn[i]) < 20
1714 		   && m32c_get_dest23 (&st.insn[i]) < 20)
1715 	    {
1716 	      struct srcdest src;
1717 	      struct srcdest dest;
1718 	      pv_t src_value;
1719 	      int bw = st.insn[i] & 0x01;
1720 	      int size = bw ? 2 : 1;
1721 	      st.next_addr += 2;
1722 
1723 	      src
1724 		= m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1725 				    size, src_indirect);
1726 	      dest
1727 		= m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1728 				    size, dest_indirect);
1729 	      src_value = m32c_srcdest_fetch (&st, src, size);
1730 
1731 	      if (m32c_is_arg_spill (&st, dest, src_value))
1732 		after_last_frame_related_insn = st.next_addr;
1733 
1734 	      if (m32c_srcdest_store (&st, dest, src_value, size))
1735 		break;
1736 	    }
1737 	  /* (2) LDC #IMM24, sp */
1738 	  else if (st.insn[i] == 0xd5
1739 		   && st.insn[i + 1] == 0x29)
1740 	    {
1741 	      st.next_addr += 2;
1742 	      st.sp = pv_constant (m32c_udisp24 (&st));
1743 	    }
1744 	  else
1745 	    /* We've hit some instruction we don't know how to simulate.
1746 	       Strictly speaking, we should set every value we're
1747 	       tracking to "unknown".  But we'll be optimistic, assume
1748 	       that we have enough information already, and stop
1749 	       analysis here.  */
1750 	    break;
1751 	}
1752 
1753       /* If this instruction changed the FB or decreased the SP (i.e.,
1754          allocated more stack space), then this may be a good place to
1755          declare the prologue finished.  However, there are some
1756          exceptions:
1757 
1758          - If the instruction just changed the FB back to its original
1759            value, then that's probably a restore instruction.  The
1760            prologue should definitely end before that.
1761 
1762          - If the instruction increased the value of the SP (that is,
1763            shrunk the frame), then it's probably part of a frame
1764            teardown sequence, and the prologue should end before
1765            that.  */
1766 
1767       if (! pv_is_identical (st.fb, pre_insn_fb))
1768         {
1769           if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1770             after_last_frame_related_insn = st.next_addr;
1771         }
1772       else if (! pv_is_identical (st.sp, pre_insn_sp))
1773         {
1774           /* The comparison of the constants looks odd, there, because
1775              .k is unsigned.  All it really means is that the SP is
1776              lower than it was before the instruction.  */
1777           if (   pv_is_register (pre_insn_sp, tdep->sp->num)
1778               && pv_is_register (st.sp,       tdep->sp->num)
1779               && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1780             after_last_frame_related_insn = st.next_addr;
1781         }
1782 
1783       st.scan_pc = st.next_addr;
1784     }
1785 
1786   /* Did we load a constant value into the stack pointer?  */
1787   if (pv_is_constant (st.sp))
1788     prologue->kind = prologue_first_frame;
1789 
1790   /* Alternatively, did we initialize the frame pointer?  Remember
1791      that the CFA is the address after the return address.  */
1792   if (pv_is_register (st.fb, tdep->sp->num))
1793     {
1794       prologue->kind = prologue_with_frame_ptr;
1795       prologue->frame_ptr_offset = st.fb.k;
1796     }
1797 
1798   /* Is the frame size a known constant?  Remember that frame_size is
1799      actually the offset from the CFA to the SP (i.e., a negative
1800      value).  */
1801   else if (pv_is_register (st.sp, tdep->sp->num))
1802     {
1803       prologue->kind = prologue_sans_frame_ptr;
1804       prologue->frame_size = st.sp.k;
1805     }
1806 
1807   /* We haven't been able to make sense of this function's frame.  Treat
1808      it as the first frame.  */
1809   else
1810     prologue->kind = prologue_first_frame;
1811 
1812   /* Record where all the registers were saved.  */
1813   st.stack->scan (check_for_saved, (void *) prologue);
1814 
1815   prologue->prologue_end = after_last_frame_related_insn;
1816 }
1817 
1818 
1819 static CORE_ADDR
1820 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1821 {
1822   const char *name;
1823   CORE_ADDR func_addr, func_end, sal_end;
1824   struct m32c_prologue p;
1825 
1826   /* Try to find the extent of the function that contains IP.  */
1827   if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1828     return ip;
1829 
1830   /* Find end by prologue analysis.  */
1831   m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1832   /* Find end by line info.  */
1833   sal_end = skip_prologue_using_sal (gdbarch, ip);
1834   /* Return whichever is lower.  */
1835   if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1836     return sal_end;
1837   else
1838     return p.prologue_end;
1839 }
1840 
1841 
1842 
1843 /* Stack unwinding.  */
1844 
1845 static struct m32c_prologue *
1846 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1847 			     void **this_prologue_cache)
1848 {
1849   if (! *this_prologue_cache)
1850     {
1851       CORE_ADDR func_start = get_frame_func (this_frame);
1852       CORE_ADDR stop_addr = get_frame_pc (this_frame);
1853 
1854       /* If we couldn't find any function containing the PC, then
1855          just initialize the prologue cache, but don't do anything.  */
1856       if (! func_start)
1857         stop_addr = func_start;
1858 
1859       *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1860       m32c_analyze_prologue (get_frame_arch (this_frame),
1861 			     func_start, stop_addr,
1862 			     (struct m32c_prologue *) *this_prologue_cache);
1863     }
1864 
1865   return (struct m32c_prologue *) *this_prologue_cache;
1866 }
1867 
1868 
1869 static CORE_ADDR
1870 m32c_frame_base (struct frame_info *this_frame,
1871                 void **this_prologue_cache)
1872 {
1873   struct m32c_prologue *p
1874     = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1875   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1876 
1877   /* In functions that use alloca, the distance between the stack
1878      pointer and the frame base varies dynamically, so we can't use
1879      the SP plus static information like prologue analysis to find the
1880      frame base.  However, such functions must have a frame pointer,
1881      to be able to restore the SP on exit.  So whenever we do have a
1882      frame pointer, use that to find the base.  */
1883   switch (p->kind)
1884     {
1885     case prologue_with_frame_ptr:
1886       {
1887 	CORE_ADDR fb
1888 	  = get_frame_register_unsigned (this_frame, tdep->fb->num);
1889 	return fb - p->frame_ptr_offset;
1890       }
1891 
1892     case prologue_sans_frame_ptr:
1893       {
1894 	CORE_ADDR sp
1895 	  = get_frame_register_unsigned (this_frame, tdep->sp->num);
1896 	return sp - p->frame_size;
1897       }
1898 
1899     case prologue_first_frame:
1900       return 0;
1901 
1902     default:
1903       gdb_assert_not_reached ("unexpected prologue kind");
1904     }
1905 }
1906 
1907 
1908 static void
1909 m32c_this_id (struct frame_info *this_frame,
1910 	      void **this_prologue_cache,
1911 	      struct frame_id *this_id)
1912 {
1913   CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1914 
1915   if (base)
1916     *this_id = frame_id_build (base, get_frame_func (this_frame));
1917   /* Otherwise, leave it unset, and that will terminate the backtrace.  */
1918 }
1919 
1920 
1921 static struct value *
1922 m32c_prev_register (struct frame_info *this_frame,
1923 		    void **this_prologue_cache, int regnum)
1924 {
1925   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1926   struct m32c_prologue *p
1927     = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1928   CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1929 
1930   if (regnum == tdep->sp->num)
1931     return frame_unwind_got_constant (this_frame, regnum, frame_base);
1932 
1933   /* If prologue analysis says we saved this register somewhere,
1934      return a description of the stack slot holding it.  */
1935   if (p->reg_offset[regnum] != 1)
1936     return frame_unwind_got_memory (this_frame, regnum,
1937                                     frame_base + p->reg_offset[regnum]);
1938 
1939   /* Otherwise, presume we haven't changed the value of this
1940      register, and get it from the next frame.  */
1941   return frame_unwind_got_register (this_frame, regnum, regnum);
1942 }
1943 
1944 
1945 static const struct frame_unwind m32c_unwind = {
1946   NORMAL_FRAME,
1947   default_frame_unwind_stop_reason,
1948   m32c_this_id,
1949   m32c_prev_register,
1950   NULL,
1951   default_frame_sniffer
1952 };
1953 
1954 
1955 static CORE_ADDR
1956 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1957 {
1958   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1959   return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1960 }
1961 
1962 
1963 static CORE_ADDR
1964 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1965 {
1966   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1967   return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1968 }
1969 
1970 
1971 /* Inferior calls.  */
1972 
1973 /* The calling conventions, according to GCC:
1974 
1975    r8c, m16c
1976    ---------
1977    First arg may be passed in r1l or r1 if it (1) fits (QImode or
1978    HImode), (2) is named, and (3) is an integer or pointer type (no
1979    structs, floats, etc).  Otherwise, it's passed on the stack.
1980 
1981    Second arg may be passed in r2, same restrictions (but not QImode),
1982    even if the first arg is passed on the stack.
1983 
1984    Third and further args are passed on the stack.  No padding is
1985    used, stack "alignment" is 8 bits.
1986 
1987    m32cm, m32c
1988    -----------
1989 
1990    First arg may be passed in r0l or r0, same restrictions as above.
1991 
1992    Second and further args are passed on the stack.  Padding is used
1993    after QImode parameters (i.e. lower-addressed byte is the value,
1994    higher-addressed byte is the padding), stack "alignment" is 16
1995    bits.  */
1996 
1997 
1998 /* Return true if TYPE is a type that can be passed in registers.  (We
1999    ignore the size, and pay attention only to the type code;
2000    acceptable sizes depends on which register is being considered to
2001    hold it.)  */
2002 static int
2003 m32c_reg_arg_type (struct type *type)
2004 {
2005   enum type_code code = TYPE_CODE (type);
2006 
2007   return (code == TYPE_CODE_INT
2008 	  || code == TYPE_CODE_ENUM
2009 	  || code == TYPE_CODE_PTR
2010 	  || TYPE_IS_REFERENCE (type)
2011 	  || code == TYPE_CODE_BOOL
2012 	  || code == TYPE_CODE_CHAR);
2013 }
2014 
2015 
2016 static CORE_ADDR
2017 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2018 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2019 		      struct value **args, CORE_ADDR sp,
2020 		      function_call_return_method return_method,
2021 		      CORE_ADDR struct_addr)
2022 {
2023   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2024   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2025   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2026   CORE_ADDR cfa;
2027   int i;
2028 
2029   /* The number of arguments given in this function's prototype, or
2030      zero if it has a non-prototyped function type.  The m32c ABI
2031      passes arguments mentioned in the prototype differently from
2032      those in the ellipsis of a varargs function, or from those passed
2033      to a non-prototyped function.  */
2034   int num_prototyped_args = 0;
2035 
2036   {
2037     struct type *func_type = value_type (function);
2038 
2039     /* Dereference function pointer types.  */
2040     if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2041       func_type = TYPE_TARGET_TYPE (func_type);
2042 
2043     gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2044 		TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2045 
2046 #if 0
2047     /* The ABI description in gcc/config/m32c/m32c.abi says that
2048        we need to handle prototyped and non-prototyped functions
2049        separately, but the code in GCC doesn't actually do so.  */
2050     if (TYPE_PROTOTYPED (func_type))
2051 #endif
2052       num_prototyped_args = TYPE_NFIELDS (func_type);
2053   }
2054 
2055   /* First, if the function returns an aggregate by value, push a
2056      pointer to a buffer for it.  This doesn't affect the way
2057      subsequent arguments are allocated to registers.  */
2058   if (return_method == return_method_struct)
2059     {
2060       int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2061       sp -= ptr_len;
2062       write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2063     }
2064 
2065   /* Push the arguments.  */
2066   for (i = nargs - 1; i >= 0; i--)
2067     {
2068       struct value *arg = args[i];
2069       const gdb_byte *arg_bits = value_contents (arg);
2070       struct type *arg_type = value_type (arg);
2071       ULONGEST arg_size = TYPE_LENGTH (arg_type);
2072 
2073       /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)?  */
2074       if (i == 0
2075 	  && arg_size <= 2
2076 	  && i < num_prototyped_args
2077 	  && m32c_reg_arg_type (arg_type))
2078 	{
2079 	  /* Extract and re-store as an integer as a terse way to make
2080 	     sure it ends up in the least significant end of r1.  (GDB
2081 	     should avoid assuming endianness, even on uni-endian
2082 	     processors.)  */
2083 	  ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2084 						 byte_order);
2085 	  struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2086 	  regcache_cooked_write_unsigned (regcache, reg->num, u);
2087 	}
2088 
2089       /* Can it go in r2?  */
2090       else if (mach == bfd_mach_m16c
2091 	       && i == 1
2092 	       && arg_size == 2
2093 	       && i < num_prototyped_args
2094 	       && m32c_reg_arg_type (arg_type))
2095 	regcache->cooked_write (tdep->r2->num, arg_bits);
2096 
2097       /* Everything else goes on the stack.  */
2098       else
2099 	{
2100 	  sp -= arg_size;
2101 
2102 	  /* Align the stack.  */
2103 	  if (mach == bfd_mach_m32c)
2104 	    sp &= ~1;
2105 
2106 	  write_memory (sp, arg_bits, arg_size);
2107 	}
2108     }
2109 
2110   /* This is the CFA we use to identify the dummy frame.  */
2111   cfa = sp;
2112 
2113   /* Push the return address.  */
2114   sp -= tdep->ret_addr_bytes;
2115   write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2116 				 bp_addr);
2117 
2118   /* Update the stack pointer.  */
2119   regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2120 
2121   /* We need to borrow an odd trick from the i386 target here.
2122 
2123      The value we return from this function gets used as the stack
2124      address (the CFA) for the dummy frame's ID.  The obvious thing is
2125      to return the new TOS.  However, that points at the return
2126      address, saved on the stack, which is inconsistent with the CFA's
2127      described by GCC's DWARF 2 .debug_frame information: DWARF 2
2128      .debug_frame info uses the address immediately after the saved
2129      return address.  So you end up with a dummy frame whose CFA
2130      points at the return address, but the frame for the function
2131      being called has a CFA pointing after the return address: the
2132      younger CFA is *greater than* the older CFA.  The sanity checks
2133      in frame.c don't like that.
2134 
2135      So we try to be consistent with the CFA's used by DWARF 2.
2136      Having a dummy frame and a real frame with the *same* CFA is
2137      tolerable.  */
2138   return cfa;
2139 }
2140 
2141 
2142 static struct frame_id
2143 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2144 {
2145   /* This needs to return a frame ID whose PC is the return address
2146      passed to m32c_push_dummy_call, and whose stack_addr is the SP
2147      m32c_push_dummy_call returned.
2148 
2149      m32c_unwind_sp gives us the CFA, which is the value the SP had
2150      before the return address was pushed.  */
2151   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2152   CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2153   return frame_id_build (sp, get_frame_pc (this_frame));
2154 }
2155 
2156 
2157 
2158 /* Return values.  */
2159 
2160 /* Return value conventions, according to GCC:
2161 
2162    r8c, m16c
2163    ---------
2164 
2165    QImode in r0l
2166    HImode in r0
2167    SImode in r2r0
2168    near pointer in r0
2169    far pointer in r2r0
2170 
2171    Aggregate values (regardless of size) are returned by pushing a
2172    pointer to a temporary area on the stack after the args are pushed.
2173    The function fills in this area with the value.  Note that this
2174    pointer on the stack does not affect how register arguments, if any,
2175    are configured.
2176 
2177    m32cm, m32c
2178    -----------
2179    Same.  */
2180 
2181 /* Return non-zero if values of type TYPE are returned by storing them
2182    in a buffer whose address is passed on the stack, ahead of the
2183    other arguments.  */
2184 static int
2185 m32c_return_by_passed_buf (struct type *type)
2186 {
2187   enum type_code code = TYPE_CODE (type);
2188 
2189   return (code == TYPE_CODE_STRUCT
2190 	  || code == TYPE_CODE_UNION);
2191 }
2192 
2193 static enum return_value_convention
2194 m32c_return_value (struct gdbarch *gdbarch,
2195 		   struct value *function,
2196 		   struct type *valtype,
2197 		   struct regcache *regcache,
2198 		   gdb_byte *readbuf,
2199 		   const gdb_byte *writebuf)
2200 {
2201   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2202   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2203   enum return_value_convention conv;
2204   ULONGEST valtype_len = TYPE_LENGTH (valtype);
2205 
2206   if (m32c_return_by_passed_buf (valtype))
2207     conv = RETURN_VALUE_STRUCT_CONVENTION;
2208   else
2209     conv = RETURN_VALUE_REGISTER_CONVENTION;
2210 
2211   if (readbuf)
2212     {
2213       /* We should never be called to find values being returned by
2214 	 RETURN_VALUE_STRUCT_CONVENTION.  Those can't be located,
2215 	 unless we made the call ourselves.  */
2216       gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2217 
2218       gdb_assert (valtype_len <= 8);
2219 
2220       /* Anything that fits in r0 is returned there.  */
2221       if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2222 	{
2223 	  ULONGEST u;
2224 	  regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2225 	  store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2226 	}
2227       else
2228 	{
2229 	  /* Everything else is passed in mem0, using as many bytes as
2230 	     needed.  This is not what the Renesas tools do, but it's
2231 	     what GCC does at the moment.  */
2232 	  struct bound_minimal_symbol mem0
2233 	    = lookup_minimal_symbol ("mem0", NULL, NULL);
2234 
2235 	  if (! mem0.minsym)
2236 	    error (_("The return value is stored in memory at 'mem0', "
2237 		     "but GDB cannot find\n"
2238 		     "its address."));
2239 	  read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2240 	}
2241     }
2242 
2243   if (writebuf)
2244     {
2245       /* We should never be called to store values to be returned
2246 	 using RETURN_VALUE_STRUCT_CONVENTION.  We have no way of
2247 	 finding the buffer, unless we made the call ourselves.  */
2248       gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2249 
2250       gdb_assert (valtype_len <= 8);
2251 
2252       /* Anything that fits in r0 is returned there.  */
2253       if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2254 	{
2255 	  ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2256 						 byte_order);
2257 	  regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2258 	}
2259       else
2260 	{
2261 	  /* Everything else is passed in mem0, using as many bytes as
2262 	     needed.  This is not what the Renesas tools do, but it's
2263 	     what GCC does at the moment.  */
2264 	  struct bound_minimal_symbol mem0
2265 	    = lookup_minimal_symbol ("mem0", NULL, NULL);
2266 
2267 	  if (! mem0.minsym)
2268 	    error (_("The return value is stored in memory at 'mem0', "
2269 		     "but GDB cannot find\n"
2270 		     " its address."));
2271 	  write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2272 	}
2273     }
2274 
2275   return conv;
2276 }
2277 
2278 
2279 
2280 /* Trampolines.  */
2281 
2282 /* The m16c and m32c use a trampoline function for indirect function
2283    calls.  An indirect call looks like this:
2284 
2285 	     ... push arguments ...
2286 	     ... push target function address ...
2287 	     jsr.a m32c_jsri16
2288 
2289    The code for m32c_jsri16 looks like this:
2290 
2291      m32c_jsri16:
2292 
2293              # Save return address.
2294 	     pop.w	m32c_jsri_ret
2295 	     pop.b	m32c_jsri_ret+2
2296 
2297              # Store target function address.
2298 	     pop.w	m32c_jsri_addr
2299 
2300 	     # Re-push return address.
2301 	     push.b	m32c_jsri_ret+2
2302 	     push.w	m32c_jsri_ret
2303 
2304 	     # Call the target function.
2305 	     jmpi.a	m32c_jsri_addr
2306 
2307    Without further information, GDB will treat calls to m32c_jsri16
2308    like calls to any other function.  Since m32c_jsri16 doesn't have
2309    debugging information, that normally means that GDB sets a step-
2310    resume breakpoint and lets the program continue --- which is not
2311    what the user wanted.  (Giving the trampoline debugging info
2312    doesn't help: the user expects the program to stop in the function
2313    their program is calling, not in some trampoline code they've never
2314    seen before.)
2315 
2316    The gdbarch_skip_trampoline_code method tells GDB how to step
2317    through such trampoline functions transparently to the user.  When
2318    given the address of a trampoline function's first instruction,
2319    gdbarch_skip_trampoline_code should return the address of the first
2320    instruction of the function really being called.  If GDB decides it
2321    wants to step into that function, it will set a breakpoint there
2322    and silently continue to it.
2323 
2324    We recognize the trampoline by name, and extract the target address
2325    directly from the stack.  This isn't great, but recognizing by its
2326    code sequence seems more fragile.  */
2327 
2328 static CORE_ADDR
2329 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2330 {
2331   struct gdbarch *gdbarch = get_frame_arch (frame);
2332   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2333   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2334 
2335   /* It would be nicer to simply look up the addresses of known
2336      trampolines once, and then compare stop_pc with them.  However,
2337      we'd need to ensure that that cached address got invalidated when
2338      someone loaded a new executable, and I'm not quite sure of the
2339      best way to do that.  find_pc_partial_function does do some
2340      caching, so we'll see how this goes.  */
2341   const char *name;
2342   CORE_ADDR start, end;
2343 
2344   if (find_pc_partial_function (stop_pc, &name, &start, &end))
2345     {
2346       /* Are we stopped at the beginning of the trampoline function?  */
2347       if (strcmp (name, "m32c_jsri16") == 0
2348 	  && stop_pc == start)
2349 	{
2350 	  /* Get the stack pointer.  The return address is at the top,
2351 	     and the target function's address is just below that.  We
2352 	     know it's a two-byte address, since the trampoline is
2353 	     m32c_jsri*16*.  */
2354 	  CORE_ADDR sp = get_frame_sp (get_current_frame ());
2355 	  CORE_ADDR target
2356 	    = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2357 					    2, byte_order);
2358 
2359 	  /* What we have now is the address of a jump instruction.
2360 	     What we need is the destination of that jump.
2361 	     The opcode is 1 byte, and the destination is the next 3 bytes.  */
2362 
2363 	  target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2364 	  return target;
2365 	}
2366     }
2367 
2368   return 0;
2369 }
2370 
2371 
2372 /* Address/pointer conversions.  */
2373 
2374 /* On the m16c, there is a 24-bit address space, but only a very few
2375    instructions can generate addresses larger than 0xffff: jumps,
2376    jumps to subroutines, and the lde/std (load/store extended)
2377    instructions.
2378 
2379    Since GCC can only support one size of pointer, we can't have
2380    distinct 'near' and 'far' pointer types; we have to pick one size
2381    for everything.  If we wanted to use 24-bit pointers, then GCC
2382    would have to use lde and ste for all memory references, which
2383    would be terrible for performance and code size.  So the GNU
2384    toolchain uses 16-bit pointers for everything, and gives up the
2385    ability to have pointers point outside the first 64k of memory.
2386 
2387    However, as a special hack, we let the linker place functions at
2388    addresses above 0xffff, as long as it also places a trampoline in
2389    the low 64k for every function whose address is taken.  Each
2390    trampoline consists of a single jmp.a instruction that jumps to the
2391    function's real entry point.  Pointers to functions can be 16 bits
2392    long, even though the functions themselves are at higher addresses:
2393    the pointers refer to the trampolines, not the functions.
2394 
2395    This complicates things for GDB, however: given the address of a
2396    function (from debug info or linker symbols, say) which could be
2397    anywhere in the 24-bit address space, how can we find an
2398    appropriate 16-bit value to use as a pointer to it?
2399 
2400    If the linker has not generated a trampoline for the function,
2401    we're out of luck.  Well, I guess we could malloc some space and
2402    write a jmp.a instruction to it, but I'm not going to get into that
2403    at the moment.
2404 
2405    If the linker has generated a trampoline for the function, then it
2406    also emitted a symbol for the trampoline: if the function's linker
2407    symbol is named NAME, then the function's trampoline's linker
2408    symbol is named NAME.plt.
2409 
2410    So, given a code address:
2411    - We try to find a linker symbol at that address.
2412    - If we find such a symbol named NAME, we look for a linker symbol
2413      named NAME.plt.
2414    - If we find such a symbol, we assume it is a trampoline, and use
2415      its address as the pointer value.
2416 
2417    And, given a function pointer:
2418    - We try to find a linker symbol at that address named NAME.plt.
2419    - If we find such a symbol, we look for a linker symbol named NAME.
2420    - If we find that, we provide that as the function's address.
2421    - If any of the above steps fail, we return the original address
2422      unchanged; it might really be a function in the low 64k.
2423 
2424    See?  You *knew* there was a reason you wanted to be a computer
2425    programmer!  :)  */
2426 
2427 static void
2428 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2429 			      struct type *type, gdb_byte *buf, CORE_ADDR addr)
2430 {
2431   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2432   enum type_code target_code;
2433   gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2434 
2435   target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2436 
2437   if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2438     {
2439       const char *func_name;
2440       char *tramp_name;
2441       struct bound_minimal_symbol tramp_msym;
2442 
2443       /* Try to find a linker symbol at this address.  */
2444       struct bound_minimal_symbol func_msym
2445 	= lookup_minimal_symbol_by_pc (addr);
2446 
2447       if (! func_msym.minsym)
2448         error (_("Cannot convert code address %s to function pointer:\n"
2449                "couldn't find a symbol at that address, to find trampoline."),
2450                paddress (gdbarch, addr));
2451 
2452       func_name = MSYMBOL_LINKAGE_NAME (func_msym.minsym);
2453       tramp_name = (char *) xmalloc (strlen (func_name) + 5);
2454       strcpy (tramp_name, func_name);
2455       strcat (tramp_name, ".plt");
2456 
2457       /* Try to find a linker symbol for the trampoline.  */
2458       tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2459 
2460       /* We've either got another copy of the name now, or don't need
2461          the name any more.  */
2462       xfree (tramp_name);
2463 
2464       if (! tramp_msym.minsym)
2465 	{
2466 	  CORE_ADDR ptrval;
2467 
2468 	  /* No PLT entry found.  Mask off the upper bits of the address
2469 	     to make a pointer.  As noted in the warning to the user
2470 	     below, this value might be useful if converted back into
2471 	     an address by GDB, but will otherwise, almost certainly,
2472 	     be garbage.
2473 
2474 	     Using this masked result does seem to be useful
2475 	     in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2476 	     PASSes.  These results appear to be correct as well.
2477 
2478 	     We print a warning here so that the user can make a
2479 	     determination about whether the result is useful or not.  */
2480 	  ptrval = addr & 0xffff;
2481 
2482 	  warning (_("Cannot convert code address %s to function pointer:\n"
2483 		   "couldn't find trampoline named '%s.plt'.\n"
2484 		   "Returning pointer value %s instead; this may produce\n"
2485 		   "a useful result if converted back into an address by GDB,\n"
2486 		   "but will most likely not be useful otherwise.\n"),
2487 		   paddress (gdbarch, addr), func_name,
2488 		   paddress (gdbarch, ptrval));
2489 
2490 	  addr = ptrval;
2491 
2492 	}
2493       else
2494 	{
2495 	  /* The trampoline's address is our pointer.  */
2496 	  addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2497 	}
2498     }
2499 
2500   store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2501 }
2502 
2503 
2504 static CORE_ADDR
2505 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2506 			      struct type *type, const gdb_byte *buf)
2507 {
2508   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2509   CORE_ADDR ptr;
2510   enum type_code target_code;
2511 
2512   gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2513 
2514   ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2515 
2516   target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2517 
2518   if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2519     {
2520       /* See if there is a minimal symbol at that address whose name is
2521          "NAME.plt".  */
2522       struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2523 
2524       if (ptr_msym.minsym)
2525         {
2526           const char *ptr_msym_name = MSYMBOL_LINKAGE_NAME (ptr_msym.minsym);
2527           int len = strlen (ptr_msym_name);
2528 
2529           if (len > 4
2530               && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2531             {
2532 	      struct bound_minimal_symbol func_msym;
2533               /* We have a .plt symbol; try to find the symbol for the
2534                  corresponding function.
2535 
2536                  Since the trampoline contains a jump instruction, we
2537                  could also just extract the jump's target address.  I
2538                  don't see much advantage one way or the other.  */
2539               char *func_name = (char *) xmalloc (len - 4 + 1);
2540               memcpy (func_name, ptr_msym_name, len - 4);
2541               func_name[len - 4] = '\0';
2542               func_msym
2543                 = lookup_minimal_symbol (func_name, NULL, NULL);
2544 
2545               /* If we do have such a symbol, return its value as the
2546                  function's true address.  */
2547               if (func_msym.minsym)
2548                 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2549             }
2550         }
2551       else
2552 	{
2553 	  int aspace;
2554 
2555 	  for (aspace = 1; aspace <= 15; aspace++)
2556 	    {
2557 	      ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2558 
2559 	      if (ptr_msym.minsym)
2560 		ptr |= aspace << 16;
2561 	    }
2562 	}
2563     }
2564 
2565   return ptr;
2566 }
2567 
2568 static void
2569 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2570 			    int *frame_regnum,
2571 			    LONGEST *frame_offset)
2572 {
2573   const char *name;
2574   CORE_ADDR func_addr, func_end;
2575   struct m32c_prologue p;
2576 
2577   struct regcache *regcache = get_current_regcache ();
2578   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2579 
2580   if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2581     internal_error (__FILE__, __LINE__,
2582 		    _("No virtual frame pointer available"));
2583 
2584   m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2585   switch (p.kind)
2586     {
2587     case prologue_with_frame_ptr:
2588       *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2589       *frame_offset = p.frame_ptr_offset;
2590       break;
2591     case prologue_sans_frame_ptr:
2592       *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2593       *frame_offset = p.frame_size;
2594       break;
2595     default:
2596       *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2597       *frame_offset = 0;
2598       break;
2599     }
2600   /* Sanity check */
2601   if (*frame_regnum > gdbarch_num_regs (gdbarch))
2602     internal_error (__FILE__, __LINE__,
2603 		    _("No virtual frame pointer available"));
2604 }
2605 
2606 
2607 /* Initialization.  */
2608 
2609 static struct gdbarch *
2610 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2611 {
2612   struct gdbarch *gdbarch;
2613   struct gdbarch_tdep *tdep;
2614   unsigned long mach = info.bfd_arch_info->mach;
2615 
2616   /* Find a candidate among the list of architectures we've created
2617      already.  */
2618   for (arches = gdbarch_list_lookup_by_info (arches, &info);
2619        arches != NULL;
2620        arches = gdbarch_list_lookup_by_info (arches->next, &info))
2621     return arches->gdbarch;
2622 
2623   tdep = XCNEW (struct gdbarch_tdep);
2624   gdbarch = gdbarch_alloc (&info, tdep);
2625 
2626   /* Essential types.  */
2627   make_types (gdbarch);
2628 
2629   /* Address/pointer conversions.  */
2630   if (mach == bfd_mach_m16c)
2631     {
2632       set_gdbarch_address_to_pointer (gdbarch, m32c_m16c_address_to_pointer);
2633       set_gdbarch_pointer_to_address (gdbarch, m32c_m16c_pointer_to_address);
2634     }
2635 
2636   /* Register set.  */
2637   make_regs (gdbarch);
2638 
2639   /* Breakpoints.  */
2640   set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32c_breakpoint::kind_from_pc);
2641   set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32c_breakpoint::bp_from_kind);
2642 
2643   /* Prologue analysis and unwinding.  */
2644   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2645   set_gdbarch_skip_prologue (gdbarch, m32c_skip_prologue);
2646   set_gdbarch_unwind_pc (gdbarch, m32c_unwind_pc);
2647   set_gdbarch_unwind_sp (gdbarch, m32c_unwind_sp);
2648 #if 0
2649   /* I'm dropping the dwarf2 sniffer because it has a few problems.
2650      They may be in the dwarf2 cfi code in GDB, or they may be in
2651      the debug info emitted by the upstream toolchain.  I don't
2652      know which, but I do know that the prologue analyzer works better.
2653      MVS 04/13/06  */
2654   dwarf2_append_sniffers (gdbarch);
2655 #endif
2656   frame_unwind_append_unwinder (gdbarch, &m32c_unwind);
2657 
2658   /* Inferior calls.  */
2659   set_gdbarch_push_dummy_call (gdbarch, m32c_push_dummy_call);
2660   set_gdbarch_return_value (gdbarch, m32c_return_value);
2661   set_gdbarch_dummy_id (gdbarch, m32c_dummy_id);
2662 
2663   /* Trampolines.  */
2664   set_gdbarch_skip_trampoline_code (gdbarch, m32c_skip_trampoline_code);
2665 
2666   set_gdbarch_virtual_frame_pointer (gdbarch, m32c_virtual_frame_pointer);
2667 
2668   /* m32c function boundary addresses are not necessarily even.
2669      Therefore, the `vbit', which indicates a pointer to a virtual
2670      member function, is stored in the delta field, rather than as
2671      the low bit of a function pointer address.
2672 
2673      In order to verify this, see the definition of
2674      TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2675      definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h.  */
2676   set_gdbarch_vbit_in_delta (gdbarch, 1);
2677 
2678   return gdbarch;
2679 }
2680 
2681 void
2682 _initialize_m32c_tdep (void)
2683 {
2684   register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2685 
2686   m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2687 }
2688