xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/m32c-tdep.c (revision 200d779b75dbeafa7bc01fd0f60bc61185f6967b)
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2 
3    Copyright (C) 2004-2014 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 
22 #include <stdarg.h>
23 
24 #include <string.h>
25 #include "gdb_assert.h"
26 #include "elf-bfd.h"
27 #include "elf/m32c.h"
28 #include "gdb/sim-m32c.h"
29 #include "dis-asm.h"
30 #include "gdbtypes.h"
31 #include "regcache.h"
32 #include "arch-utils.h"
33 #include "frame.h"
34 #include "frame-unwind.h"
35 #include "dwarf2-frame.h"
36 #include "dwarf2expr.h"
37 #include "symtab.h"
38 #include "gdbcore.h"
39 #include "value.h"
40 #include "reggroups.h"
41 #include "prologue-value.h"
42 #include "target.h"
43 
44 
45 /* The m32c tdep structure.  */
46 
47 static struct reggroup *m32c_dma_reggroup;
48 
49 struct m32c_reg;
50 
51 /* The type of a function that moves the value of REG between CACHE or
52    BUF --- in either direction.  */
53 typedef enum register_status (m32c_move_reg_t) (struct m32c_reg *reg,
54 						struct regcache *cache,
55 						void *buf);
56 
57 struct m32c_reg
58 {
59   /* The name of this register.  */
60   const char *name;
61 
62   /* Its type.  */
63   struct type *type;
64 
65   /* The architecture this register belongs to.  */
66   struct gdbarch *arch;
67 
68   /* Its GDB register number.  */
69   int num;
70 
71   /* Its sim register number.  */
72   int sim_num;
73 
74   /* Its DWARF register number, or -1 if it doesn't have one.  */
75   int dwarf_num;
76 
77   /* Register group memberships.  */
78   unsigned int general_p : 1;
79   unsigned int dma_p : 1;
80   unsigned int system_p : 1;
81   unsigned int save_restore_p : 1;
82 
83   /* Functions to read its value from a regcache, and write its value
84      to a regcache.  */
85   m32c_move_reg_t *read, *write;
86 
87   /* Data for READ and WRITE functions.  The exact meaning depends on
88      the specific functions selected; see the comments for those
89      functions.  */
90   struct m32c_reg *rx, *ry;
91   int n;
92 };
93 
94 
95 /* An overestimate of the number of raw and pseudoregisters we will
96    have.  The exact answer depends on the variant of the architecture
97    at hand, but we can use this to declare statically allocated
98    arrays, and bump it up when needed.  */
99 #define M32C_MAX_NUM_REGS (75)
100 
101 /* The largest assigned DWARF register number.  */
102 #define M32C_MAX_DWARF_REGNUM (40)
103 
104 
105 struct gdbarch_tdep
106 {
107   /* All the registers for this variant, indexed by GDB register
108      number, and the number of registers present.  */
109   struct m32c_reg regs[M32C_MAX_NUM_REGS];
110 
111   /* The number of valid registers.  */
112   int num_regs;
113 
114   /* Interesting registers.  These are pointers into REGS.  */
115   struct m32c_reg *pc, *flg;
116   struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
117   struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
118   struct m32c_reg *sb, *fb, *sp;
119 
120   /* A table indexed by DWARF register numbers, pointing into
121      REGS.  */
122   struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
123 
124   /* Types for this architecture.  We can't use the builtin_type_foo
125      types, because they're not initialized when building a gdbarch
126      structure.  */
127   struct type *voyd, *ptr_voyd, *func_voyd;
128   struct type *uint8, *uint16;
129   struct type *int8, *int16, *int32, *int64;
130 
131   /* The types for data address and code address registers.  */
132   struct type *data_addr_reg_type, *code_addr_reg_type;
133 
134   /* The number of bytes a return address pushed by a 'jsr' instruction
135      occupies on the stack.  */
136   int ret_addr_bytes;
137 
138   /* The number of bytes an address register occupies on the stack
139      when saved by an 'enter' or 'pushm' instruction.  */
140   int push_addr_bytes;
141 };
142 
143 
144 /* Types.  */
145 
146 static void
147 make_types (struct gdbarch *arch)
148 {
149   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
150   unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
151   int data_addr_reg_bits, code_addr_reg_bits;
152   char type_name[50];
153 
154 #if 0
155   /* This is used to clip CORE_ADDR values, so this value is
156      appropriate both on the m32c, where pointers are 32 bits long,
157      and on the m16c, where pointers are sixteen bits long, but there
158      may be code above the 64k boundary.  */
159   set_gdbarch_addr_bit (arch, 24);
160 #else
161   /* GCC uses 32 bits for addrs in the dwarf info, even though
162      only 16/24 bits are used.  Setting addr_bit to 24 causes
163      errors in reading the dwarf addresses.  */
164   set_gdbarch_addr_bit (arch, 32);
165 #endif
166 
167   set_gdbarch_int_bit (arch, 16);
168   switch (mach)
169     {
170     case bfd_mach_m16c:
171       data_addr_reg_bits = 16;
172       code_addr_reg_bits = 24;
173       set_gdbarch_ptr_bit (arch, 16);
174       tdep->ret_addr_bytes = 3;
175       tdep->push_addr_bytes = 2;
176       break;
177 
178     case bfd_mach_m32c:
179       data_addr_reg_bits = 24;
180       code_addr_reg_bits = 24;
181       set_gdbarch_ptr_bit (arch, 32);
182       tdep->ret_addr_bytes = 4;
183       tdep->push_addr_bytes = 4;
184       break;
185 
186     default:
187       gdb_assert_not_reached ("unexpected mach");
188     }
189 
190   /* The builtin_type_mumble variables are sometimes uninitialized when
191      this is called, so we avoid using them.  */
192   tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
193   tdep->ptr_voyd
194     = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
195                  NULL);
196   TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
197   TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
198   tdep->func_voyd = lookup_function_type (tdep->voyd);
199 
200   xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
201 	     gdbarch_bfd_arch_info (arch)->printable_name);
202   tdep->data_addr_reg_type
203     = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
204                  xstrdup (type_name));
205   TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
206   TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
207 
208   xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
209 	     gdbarch_bfd_arch_info (arch)->printable_name);
210   tdep->code_addr_reg_type
211     = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
212                  xstrdup (type_name));
213   TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
214   TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
215 
216   tdep->uint8  = arch_integer_type (arch,  8, 1, "uint8_t");
217   tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
218   tdep->int8   = arch_integer_type (arch,  8, 0, "int8_t");
219   tdep->int16  = arch_integer_type (arch, 16, 0, "int16_t");
220   tdep->int32  = arch_integer_type (arch, 32, 0, "int32_t");
221   tdep->int64  = arch_integer_type (arch, 64, 0, "int64_t");
222 }
223 
224 
225 
226 /* Register set.  */
227 
228 static const char *
229 m32c_register_name (struct gdbarch *gdbarch, int num)
230 {
231   return gdbarch_tdep (gdbarch)->regs[num].name;
232 }
233 
234 
235 static struct type *
236 m32c_register_type (struct gdbarch *arch, int reg_nr)
237 {
238   return gdbarch_tdep (arch)->regs[reg_nr].type;
239 }
240 
241 
242 static int
243 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
244 {
245   return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
246 }
247 
248 
249 static int
250 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
251 {
252   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
253   if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
254       && tdep->dwarf_regs[reg_nr])
255     return tdep->dwarf_regs[reg_nr]->num;
256   else
257     /* The DWARF CFI code expects to see -1 for invalid register
258        numbers.  */
259     return -1;
260 }
261 
262 
263 static int
264 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
265 			  struct reggroup *group)
266 {
267   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
268   struct m32c_reg *reg = &tdep->regs[regnum];
269 
270   /* The anonymous raw registers aren't in any groups.  */
271   if (! reg->name)
272     return 0;
273 
274   if (group == all_reggroup)
275     return 1;
276 
277   if (group == general_reggroup
278       && reg->general_p)
279     return 1;
280 
281   if (group == m32c_dma_reggroup
282       && reg->dma_p)
283     return 1;
284 
285   if (group == system_reggroup
286       && reg->system_p)
287     return 1;
288 
289   /* Since the m32c DWARF register numbers refer to cooked registers, not
290      raw registers, and frame_pop depends on the save and restore groups
291      containing registers the DWARF CFI will actually mention, our save
292      and restore groups are cooked registers, not raw registers.  (This is
293      why we can't use the default reggroup function.)  */
294   if ((group == save_reggroup
295        || group == restore_reggroup)
296       && reg->save_restore_p)
297     return 1;
298 
299   return 0;
300 }
301 
302 
303 /* Register move functions.  We declare them here using
304    m32c_move_reg_t to check the types.  */
305 static m32c_move_reg_t m32c_raw_read,      m32c_raw_write;
306 static m32c_move_reg_t m32c_banked_read,   m32c_banked_write;
307 static m32c_move_reg_t m32c_sb_read, 	   m32c_sb_write;
308 static m32c_move_reg_t m32c_part_read,     m32c_part_write;
309 static m32c_move_reg_t m32c_cat_read,      m32c_cat_write;
310 static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
311 
312 
313 /* Copy the value of the raw register REG from CACHE to BUF.  */
314 static enum register_status
315 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
316 {
317   return regcache_raw_read (cache, reg->num, buf);
318 }
319 
320 
321 /* Copy the value of the raw register REG from BUF to CACHE.  */
322 static enum register_status
323 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
324 {
325   regcache_raw_write (cache, reg->num, (const void *) buf);
326 
327   return REG_VALID;
328 }
329 
330 
331 /* Return the value of the 'flg' register in CACHE.  */
332 static int
333 m32c_read_flg (struct regcache *cache)
334 {
335   struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
336   ULONGEST flg;
337   regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
338   return flg & 0xffff;
339 }
340 
341 
342 /* Evaluate the real register number of a banked register.  */
343 static struct m32c_reg *
344 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
345 {
346   return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
347 }
348 
349 
350 /* Move the value of a banked register from CACHE to BUF.
351    If the value of the 'flg' register in CACHE has any of the bits
352    masked in REG->n set, then read REG->ry.  Otherwise, read
353    REG->rx.  */
354 static enum register_status
355 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
356 {
357   struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
358   return regcache_raw_read (cache, bank_reg->num, buf);
359 }
360 
361 
362 /* Move the value of a banked register from BUF to CACHE.
363    If the value of the 'flg' register in CACHE has any of the bits
364    masked in REG->n set, then write REG->ry.  Otherwise, write
365    REG->rx.  */
366 static enum register_status
367 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
368 {
369   struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
370   regcache_raw_write (cache, bank_reg->num, (const void *) buf);
371 
372   return REG_VALID;
373 }
374 
375 
376 /* Move the value of SB from CACHE to BUF.  On bfd_mach_m32c, SB is a
377    banked register; on bfd_mach_m16c, it's not.  */
378 static enum register_status
379 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
380 {
381   if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
382     return m32c_raw_read (reg->rx, cache, buf);
383   else
384     return m32c_banked_read (reg, cache, buf);
385 }
386 
387 
388 /* Move the value of SB from BUF to CACHE.  On bfd_mach_m32c, SB is a
389    banked register; on bfd_mach_m16c, it's not.  */
390 static enum register_status
391 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
392 {
393   if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
394     m32c_raw_write (reg->rx, cache, buf);
395   else
396     m32c_banked_write (reg, cache, buf);
397 
398   return REG_VALID;
399 }
400 
401 
402 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
403    and *LEN_P to the offset and length, in bytes, of the part REG
404    occupies in its underlying register.  The offset is from the
405    lower-addressed end, regardless of the architecture's endianness.
406    (The M32C family is always little-endian, but let's keep those
407    assumptions out of here.)  */
408 static void
409 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
410 {
411   /* The length of the containing register, of which REG is one part.  */
412   int containing_len = TYPE_LENGTH (reg->rx->type);
413 
414   /* The length of one "element" in our imaginary array.  */
415   int elt_len = TYPE_LENGTH (reg->type);
416 
417   /* The offset of REG's "element" from the least significant end of
418      the containing register.  */
419   int elt_offset = reg->n * elt_len;
420 
421   /* If we extend off the end, trim the length of the element.  */
422   if (elt_offset + elt_len > containing_len)
423     {
424       elt_len = containing_len - elt_offset;
425       /* We shouldn't be declaring partial registers that go off the
426 	 end of their containing registers.  */
427       gdb_assert (elt_len > 0);
428     }
429 
430   /* Flip the offset around if we're big-endian.  */
431   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
432     elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
433 
434   *offset_p = elt_offset;
435   *len_p = elt_len;
436 }
437 
438 
439 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
440    to BUF.  Treating the value of the register REG->rx as an array of
441    REG->type values, where higher indices refer to more significant
442    bits, read the value of the REG->n'th element.  */
443 static enum register_status
444 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
445 {
446   int offset, len;
447 
448   memset (buf, 0, TYPE_LENGTH (reg->type));
449   m32c_find_part (reg, &offset, &len);
450   return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
451 }
452 
453 
454 /* Move the value of a banked register from BUF to CACHE.
455    Treating the value of the register REG->rx as an array of REG->type
456    values, where higher indices refer to more significant bits, write
457    the value of the REG->n'th element.  */
458 static enum register_status
459 m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
460 {
461   int offset, len;
462 
463   m32c_find_part (reg, &offset, &len);
464   regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
465 
466   return REG_VALID;
467 }
468 
469 
470 /* Move the value of REG from CACHE to BUF.  REG's value is the
471    concatenation of the values of the registers REG->rx and REG->ry,
472    with REG->rx contributing the more significant bits.  */
473 static enum register_status
474 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
475 {
476   int high_bytes = TYPE_LENGTH (reg->rx->type);
477   int low_bytes  = TYPE_LENGTH (reg->ry->type);
478   /* For address arithmetic.  */
479   unsigned char *cbuf = buf;
480   enum register_status status;
481 
482   gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
483 
484   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
485     {
486       status = regcache_cooked_read (cache, reg->rx->num, cbuf);
487       if (status == REG_VALID)
488 	status = regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
489     }
490   else
491     {
492       status = regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
493       if (status == REG_VALID)
494 	status = regcache_cooked_read (cache, reg->ry->num, cbuf);
495     }
496 
497   return status;
498 }
499 
500 
501 /* Move the value of REG from CACHE to BUF.  REG's value is the
502    concatenation of the values of the registers REG->rx and REG->ry,
503    with REG->rx contributing the more significant bits.  */
504 static enum register_status
505 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
506 {
507   int high_bytes = TYPE_LENGTH (reg->rx->type);
508   int low_bytes  = TYPE_LENGTH (reg->ry->type);
509   /* For address arithmetic.  */
510   unsigned char *cbuf = buf;
511 
512   gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
513 
514   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
515     {
516       regcache_cooked_write (cache, reg->rx->num, cbuf);
517       regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
518     }
519   else
520     {
521       regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
522       regcache_cooked_write (cache, reg->ry->num, cbuf);
523     }
524 
525   return REG_VALID;
526 }
527 
528 
529 /* Copy the value of the raw register REG from CACHE to BUF.  REG is
530    the concatenation (from most significant to least) of r3, r2, r1,
531    and r0.  */
532 static enum register_status
533 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
534 {
535   struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
536   int len = TYPE_LENGTH (tdep->r0->type);
537   enum register_status status;
538 
539   /* For address arithmetic.  */
540   unsigned char *cbuf = buf;
541 
542   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
543     {
544       status = regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
545       if (status == REG_VALID)
546 	status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
547       if (status == REG_VALID)
548 	status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
549       if (status == REG_VALID)
550 	status = regcache_cooked_read (cache, tdep->r3->num, cbuf);
551     }
552   else
553     {
554       status = regcache_cooked_read (cache, tdep->r0->num, cbuf);
555       if (status == REG_VALID)
556 	status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
557       if (status == REG_VALID)
558 	status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
559       if (status == REG_VALID)
560 	status = regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
561     }
562 
563   return status;
564 }
565 
566 
567 /* Copy the value of the raw register REG from BUF to CACHE.  REG is
568    the concatenation (from most significant to least) of r3, r2, r1,
569    and r0.  */
570 static enum register_status
571 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
572 {
573   struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
574   int len = TYPE_LENGTH (tdep->r0->type);
575 
576   /* For address arithmetic.  */
577   unsigned char *cbuf = buf;
578 
579   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
580     {
581       regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
582       regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
583       regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
584       regcache_cooked_write (cache, tdep->r3->num, cbuf);
585     }
586   else
587     {
588       regcache_cooked_write (cache, tdep->r0->num, cbuf);
589       regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
590       regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
591       regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
592     }
593 
594   return REG_VALID;
595 }
596 
597 
598 static enum register_status
599 m32c_pseudo_register_read (struct gdbarch *arch,
600 			   struct regcache *cache,
601 			   int cookednum,
602 			   gdb_byte *buf)
603 {
604   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
605   struct m32c_reg *reg;
606 
607   gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
608   gdb_assert (arch == get_regcache_arch (cache));
609   gdb_assert (arch == tdep->regs[cookednum].arch);
610   reg = &tdep->regs[cookednum];
611 
612   return reg->read (reg, cache, buf);
613 }
614 
615 
616 static void
617 m32c_pseudo_register_write (struct gdbarch *arch,
618 			    struct regcache *cache,
619 			    int cookednum,
620 			    const gdb_byte *buf)
621 {
622   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
623   struct m32c_reg *reg;
624 
625   gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
626   gdb_assert (arch == get_regcache_arch (cache));
627   gdb_assert (arch == tdep->regs[cookednum].arch);
628   reg = &tdep->regs[cookednum];
629 
630   reg->write (reg, cache, (void *) buf);
631 }
632 
633 
634 /* Add a register with the given fields to the end of ARCH's table.
635    Return a pointer to the newly added register.  */
636 static struct m32c_reg *
637 add_reg (struct gdbarch *arch,
638 	 const char *name,
639 	 struct type *type,
640 	 int sim_num,
641 	 m32c_move_reg_t *read,
642 	 m32c_move_reg_t *write,
643 	 struct m32c_reg *rx,
644 	 struct m32c_reg *ry,
645 	 int n)
646 {
647   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
648   struct m32c_reg *r = &tdep->regs[tdep->num_regs];
649 
650   gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
651 
652   r->name           = name;
653   r->type           = type;
654   r->arch           = arch;
655   r->num            = tdep->num_regs;
656   r->sim_num        = sim_num;
657   r->dwarf_num      = -1;
658   r->general_p      = 0;
659   r->dma_p          = 0;
660   r->system_p       = 0;
661   r->save_restore_p = 0;
662   r->read           = read;
663   r->write          = write;
664   r->rx             = rx;
665   r->ry             = ry;
666   r->n              = n;
667 
668   tdep->num_regs++;
669 
670   return r;
671 }
672 
673 
674 /* Record NUM as REG's DWARF register number.  */
675 static void
676 set_dwarf_regnum (struct m32c_reg *reg, int num)
677 {
678   gdb_assert (num < M32C_MAX_NUM_REGS);
679 
680   /* Update the reg->DWARF mapping.  Only count the first number
681      assigned to this register.  */
682   if (reg->dwarf_num == -1)
683     reg->dwarf_num = num;
684 
685   /* Update the DWARF->reg mapping.  */
686   gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
687 }
688 
689 
690 /* Mark REG as a general-purpose register, and return it.  */
691 static struct m32c_reg *
692 mark_general (struct m32c_reg *reg)
693 {
694   reg->general_p = 1;
695   return reg;
696 }
697 
698 
699 /* Mark REG as a DMA register, and return it.  */
700 static struct m32c_reg *
701 mark_dma (struct m32c_reg *reg)
702 {
703   reg->dma_p = 1;
704   return reg;
705 }
706 
707 
708 /* Mark REG as a SYSTEM register, and return it.  */
709 static struct m32c_reg *
710 mark_system (struct m32c_reg *reg)
711 {
712   reg->system_p = 1;
713   return reg;
714 }
715 
716 
717 /* Mark REG as a save-restore register, and return it.  */
718 static struct m32c_reg *
719 mark_save_restore (struct m32c_reg *reg)
720 {
721   reg->save_restore_p = 1;
722   return reg;
723 }
724 
725 
726 #define FLAGBIT_B	0x0010
727 #define FLAGBIT_U	0x0080
728 
729 /* Handy macros for declaring registers.  These all evaluate to
730    pointers to the register declared.  Macros that define two
731    registers evaluate to a pointer to the first.  */
732 
733 /* A raw register named NAME, with type TYPE and sim number SIM_NUM.  */
734 #define R(name, type, sim_num)					\
735   (add_reg (arch, (name), (type), (sim_num),			\
736 	    m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
737 
738 /* The simulator register number for a raw register named NAME.  */
739 #define SIM(name) (m32c_sim_reg_ ## name)
740 
741 /* A raw unsigned 16-bit data register named NAME.
742    NAME should be an identifier, not a string.  */
743 #define R16U(name)						\
744   (R(#name, tdep->uint16, SIM (name)))
745 
746 /* A raw data address register named NAME.
747    NAME should be an identifier, not a string.  */
748 #define RA(name)						\
749   (R(#name, tdep->data_addr_reg_type, SIM (name)))
750 
751 /* A raw code address register named NAME.  NAME should
752    be an identifier, not a string.  */
753 #define RC(name)						\
754   (R(#name, tdep->code_addr_reg_type, SIM (name)))
755 
756 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
757    NAME should be an identifier, not a string.  */
758 #define RP(name, type)				\
759   (R(#name "0", (type), SIM (name ## 0)),	\
760    R(#name "1", (type), SIM (name ## 1)) - 1)
761 
762 /* A raw banked general-purpose data register named NAME.
763    NAME should be an identifier, not a string.  */
764 #define RBD(name)						\
765   (R(NULL, tdep->int16, SIM (name ## _bank0)),		\
766    R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
767 
768 /* A raw banked data address register named NAME.
769    NAME should be an identifier, not a string.  */
770 #define RBA(name)						\
771   (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)),	\
772    R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
773 
774 /* A cooked register named NAME referring to a raw banked register
775    from the bank selected by the current value of FLG.  RAW_PAIR
776    should be a pointer to the first register in the banked pair.
777    NAME must be an identifier, not a string.  */
778 #define CB(name, raw_pair)				\
779   (add_reg (arch, #name, (raw_pair)->type, 0,		\
780 	    m32c_banked_read, m32c_banked_write,	\
781             (raw_pair), (raw_pair + 1), FLAGBIT_B))
782 
783 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
784    access the top and bottom halves of the register pointed to by
785    NAME.  NAME should be an identifier.  */
786 #define CHL(name, type)							\
787   (add_reg (arch, #name "h", (type), 0,					\
788 	    m32c_part_read, m32c_part_write, name, NULL, 1),		\
789    add_reg (arch, #name "l", (type), 0,					\
790 	    m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
791 
792 /* A register constructed by concatenating the two registers HIGH and
793    LOW, whose name is HIGHLOW and whose type is TYPE.  */
794 #define CCAT(high, low, type)					\
795   (add_reg (arch, #high #low, (type), 0,			\
796 	    m32c_cat_read, m32c_cat_write, (high), (low), 0))
797 
798 /* Abbreviations for marking register group membership.  */
799 #define G(reg)   (mark_general (reg))
800 #define S(reg)   (mark_system  (reg))
801 #define DMA(reg) (mark_dma     (reg))
802 
803 
804 /* Construct the register set for ARCH.  */
805 static void
806 make_regs (struct gdbarch *arch)
807 {
808   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
809   int mach = gdbarch_bfd_arch_info (arch)->mach;
810   int num_raw_regs;
811   int num_cooked_regs;
812 
813   struct m32c_reg *r0;
814   struct m32c_reg *r1;
815   struct m32c_reg *r2;
816   struct m32c_reg *r3;
817   struct m32c_reg *a0;
818   struct m32c_reg *a1;
819   struct m32c_reg *fb;
820   struct m32c_reg *sb;
821   struct m32c_reg *sp;
822   struct m32c_reg *r0hl;
823   struct m32c_reg *r1hl;
824   struct m32c_reg *r2hl;
825   struct m32c_reg *r3hl;
826   struct m32c_reg *intbhl;
827   struct m32c_reg *r2r0;
828   struct m32c_reg *r3r1;
829   struct m32c_reg *r3r1r2r0;
830   struct m32c_reg *r3r2r1r0;
831   struct m32c_reg *a1a0;
832 
833   struct m32c_reg *raw_r0_pair = RBD (r0);
834   struct m32c_reg *raw_r1_pair = RBD (r1);
835   struct m32c_reg *raw_r2_pair = RBD (r2);
836   struct m32c_reg *raw_r3_pair = RBD (r3);
837   struct m32c_reg *raw_a0_pair = RBA (a0);
838   struct m32c_reg *raw_a1_pair = RBA (a1);
839   struct m32c_reg *raw_fb_pair = RBA (fb);
840 
841   /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
842      We always declare both raw registers, and deal with the distinction
843      in the pseudoregister.  */
844   struct m32c_reg *raw_sb_pair = RBA (sb);
845 
846   struct m32c_reg *usp         = S (RA (usp));
847   struct m32c_reg *isp         = S (RA (isp));
848   struct m32c_reg *intb        = S (RC (intb));
849   struct m32c_reg *pc          = G (RC (pc));
850   struct m32c_reg *flg         = G (R16U (flg));
851 
852   if (mach == bfd_mach_m32c)
853     {
854       struct m32c_reg *svf     = S (R16U (svf));
855       struct m32c_reg *svp     = S (RC (svp));
856       struct m32c_reg *vct     = S (RC (vct));
857 
858       struct m32c_reg *dmd01   = DMA (RP (dmd, tdep->uint8));
859       struct m32c_reg *dct01   = DMA (RP (dct, tdep->uint16));
860       struct m32c_reg *drc01   = DMA (RP (drc, tdep->uint16));
861       struct m32c_reg *dma01   = DMA (RP (dma, tdep->data_addr_reg_type));
862       struct m32c_reg *dsa01   = DMA (RP (dsa, tdep->data_addr_reg_type));
863       struct m32c_reg *dra01   = DMA (RP (dra, tdep->data_addr_reg_type));
864     }
865 
866   num_raw_regs = tdep->num_regs;
867 
868   r0 	      = G (CB (r0, raw_r0_pair));
869   r1 	      = G (CB (r1, raw_r1_pair));
870   r2          = G (CB (r2, raw_r2_pair));
871   r3          = G (CB (r3, raw_r3_pair));
872   a0          = G (CB (a0, raw_a0_pair));
873   a1          = G (CB (a1, raw_a1_pair));
874   fb          = G (CB (fb, raw_fb_pair));
875 
876   /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
877      Specify custom read/write functions that do the right thing.  */
878   sb          = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
879 			    m32c_sb_read, m32c_sb_write,
880 			    raw_sb_pair, raw_sb_pair + 1, 0));
881 
882   /* The current sp is either usp or isp, depending on the value of
883      the FLG register's U bit.  */
884   sp          = G (add_reg (arch, "sp", usp->type, 0,
885 			    m32c_banked_read, m32c_banked_write,
886 			    isp, usp, FLAGBIT_U));
887 
888   r0hl        = CHL (r0, tdep->int8);
889   r1hl        = CHL (r1, tdep->int8);
890   r2hl        = CHL (r2, tdep->int8);
891   r3hl        = CHL (r3, tdep->int8);
892   intbhl      = CHL (intb, tdep->int16);
893 
894   r2r0        = CCAT (r2,   r0,   tdep->int32);
895   r3r1        = CCAT (r3,   r1,   tdep->int32);
896   r3r1r2r0    = CCAT (r3r1, r2r0, tdep->int64);
897 
898   r3r2r1r0
899     = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
900 	       m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
901 
902   if (mach == bfd_mach_m16c)
903     a1a0 = CCAT (a1, a0, tdep->int32);
904   else
905     a1a0 = NULL;
906 
907   num_cooked_regs = tdep->num_regs - num_raw_regs;
908 
909   tdep->pc   	 = pc;
910   tdep->flg  	 = flg;
911   tdep->r0   	 = r0;
912   tdep->r1   	 = r1;
913   tdep->r2   	 = r2;
914   tdep->r3   	 = r3;
915   tdep->r2r0 	 = r2r0;
916   tdep->r3r2r1r0 = r3r2r1r0;
917   tdep->r3r1r2r0 = r3r1r2r0;
918   tdep->a0       = a0;
919   tdep->a1       = a1;
920   tdep->sb       = sb;
921   tdep->fb   	 = fb;
922   tdep->sp   	 = sp;
923 
924   /* Set up the DWARF register table.  */
925   memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
926   set_dwarf_regnum (r0hl + 1, 0x01);
927   set_dwarf_regnum (r0hl + 0, 0x02);
928   set_dwarf_regnum (r1hl + 1, 0x03);
929   set_dwarf_regnum (r1hl + 0, 0x04);
930   set_dwarf_regnum (r0,       0x05);
931   set_dwarf_regnum (r1,       0x06);
932   set_dwarf_regnum (r2,       0x07);
933   set_dwarf_regnum (r3,       0x08);
934   set_dwarf_regnum (a0,       0x09);
935   set_dwarf_regnum (a1,       0x0a);
936   set_dwarf_regnum (fb,       0x0b);
937   set_dwarf_regnum (sp,       0x0c);
938   set_dwarf_regnum (pc,       0x0d); /* GCC's invention */
939   set_dwarf_regnum (sb,       0x13);
940   set_dwarf_regnum (r2r0,     0x15);
941   set_dwarf_regnum (r3r1,     0x16);
942   if (a1a0)
943     set_dwarf_regnum (a1a0,   0x17);
944 
945   /* Enumerate the save/restore register group.
946 
947      The regcache_save and regcache_restore functions apply their read
948      function to each register in this group.
949 
950      Since frame_pop supplies frame_unwind_register as its read
951      function, the registers meaningful to the Dwarf unwinder need to
952      be in this group.
953 
954      On the other hand, when we make inferior calls, save_inferior_status
955      and restore_inferior_status use them to preserve the current register
956      values across the inferior call.  For this, you'd kind of like to
957      preserve all the raw registers, to protect the interrupted code from
958      any sort of bank switching the callee might have done.  But we handle
959      those cases so badly anyway --- for example, it matters whether we
960      restore FLG before or after we restore the general-purpose registers,
961      but there's no way to express that --- that it isn't worth worrying
962      about.
963 
964      We omit control registers like inthl: if you call a function that
965      changes those, it's probably because you wanted that change to be
966      visible to the interrupted code.  */
967   mark_save_restore (r0);
968   mark_save_restore (r1);
969   mark_save_restore (r2);
970   mark_save_restore (r3);
971   mark_save_restore (a0);
972   mark_save_restore (a1);
973   mark_save_restore (sb);
974   mark_save_restore (fb);
975   mark_save_restore (sp);
976   mark_save_restore (pc);
977   mark_save_restore (flg);
978 
979   set_gdbarch_num_regs (arch, num_raw_regs);
980   set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
981   set_gdbarch_pc_regnum (arch, pc->num);
982   set_gdbarch_sp_regnum (arch, sp->num);
983   set_gdbarch_register_name (arch, m32c_register_name);
984   set_gdbarch_register_type (arch, m32c_register_type);
985   set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
986   set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
987   set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
988   set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
989   set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
990   set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
991 
992   reggroup_add (arch, general_reggroup);
993   reggroup_add (arch, all_reggroup);
994   reggroup_add (arch, save_reggroup);
995   reggroup_add (arch, restore_reggroup);
996   reggroup_add (arch, system_reggroup);
997   reggroup_add (arch, m32c_dma_reggroup);
998 }
999 
1000 
1001 
1002 /* Breakpoints.  */
1003 
1004 static const unsigned char *
1005 m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
1006 {
1007   static unsigned char break_insn[] = { 0x00 };	/* brk */
1008 
1009   *len = sizeof (break_insn);
1010   return break_insn;
1011 }
1012 
1013 
1014 
1015 /* Prologue analysis.  */
1016 
1017 struct m32c_prologue
1018 {
1019   /* For consistency with the DWARF 2 .debug_frame info generated by
1020      GCC, a frame's CFA is the address immediately after the saved
1021      return address.  */
1022 
1023   /* The architecture for which we generated this prologue info.  */
1024   struct gdbarch *arch;
1025 
1026   enum {
1027     /* This function uses a frame pointer.  */
1028     prologue_with_frame_ptr,
1029 
1030     /* This function has no frame pointer.  */
1031     prologue_sans_frame_ptr,
1032 
1033     /* This function sets up the stack, so its frame is the first
1034        frame on the stack.  */
1035     prologue_first_frame
1036 
1037   } kind;
1038 
1039   /* If KIND is prologue_with_frame_ptr, this is the offset from the
1040      CFA to where the frame pointer points.  This is always zero or
1041      negative.  */
1042   LONGEST frame_ptr_offset;
1043 
1044   /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1045      the stack pointer --- always zero or negative.
1046 
1047      Calling this a "size" is a bit misleading, but given that the
1048      stack grows downwards, using offsets for everything keeps one
1049      from going completely sign-crazy: you never change anything's
1050      sign for an ADD instruction; always change the second operand's
1051      sign for a SUB instruction; and everything takes care of
1052      itself.
1053 
1054      Functions that use alloca don't have a constant frame size.  But
1055      they always have frame pointers, so we must use that to find the
1056      CFA (and perhaps to unwind the stack pointer).  */
1057   LONGEST frame_size;
1058 
1059   /* The address of the first instruction at which the frame has been
1060      set up and the arguments are where the debug info says they are
1061      --- as best as we can tell.  */
1062   CORE_ADDR prologue_end;
1063 
1064   /* reg_offset[R] is the offset from the CFA at which register R is
1065      saved, or 1 if register R has not been saved.  (Real values are
1066      always zero or negative.)  */
1067   LONGEST reg_offset[M32C_MAX_NUM_REGS];
1068 };
1069 
1070 
1071 /* The longest I've seen, anyway.  */
1072 #define M32C_MAX_INSN_LEN (9)
1073 
1074 /* Processor state, for the prologue analyzer.  */
1075 struct m32c_pv_state
1076 {
1077   struct gdbarch *arch;
1078   pv_t r0, r1, r2, r3;
1079   pv_t a0, a1;
1080   pv_t sb, fb, sp;
1081   pv_t pc;
1082   struct pv_area *stack;
1083 
1084   /* Bytes from the current PC, the address they were read from,
1085      and the address of the next unconsumed byte.  */
1086   gdb_byte insn[M32C_MAX_INSN_LEN];
1087   CORE_ADDR scan_pc, next_addr;
1088 };
1089 
1090 
1091 /* Push VALUE on STATE's stack, occupying SIZE bytes.  Return zero if
1092    all went well, or non-zero if simulating the action would trash our
1093    state.  */
1094 static int
1095 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1096 {
1097   if (pv_area_store_would_trash (state->stack, state->sp))
1098     return 1;
1099 
1100   state->sp = pv_add_constant (state->sp, -size);
1101   pv_area_store (state->stack, state->sp, size, value);
1102 
1103   return 0;
1104 }
1105 
1106 
1107 /* A source or destination location for an m16c or m32c
1108    instruction.  */
1109 struct srcdest
1110 {
1111   /* If srcdest_reg, the location is a register pointed to by REG.
1112      If srcdest_partial_reg, the location is part of a register pointed
1113      to by REG.  We don't try to handle this too well.
1114      If srcdest_mem, the location is memory whose address is ADDR.  */
1115   enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1116   pv_t *reg, addr;
1117 };
1118 
1119 
1120 /* Return the SIZE-byte value at LOC in STATE.  */
1121 static pv_t
1122 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1123 {
1124   if (loc.kind == srcdest_mem)
1125     return pv_area_fetch (state->stack, loc.addr, size);
1126   else if (loc.kind == srcdest_partial_reg)
1127     return pv_unknown ();
1128   else
1129     return *loc.reg;
1130 }
1131 
1132 
1133 /* Write VALUE, a SIZE-byte value, to LOC in STATE.  Return zero if
1134    all went well, or non-zero if simulating the store would trash our
1135    state.  */
1136 static int
1137 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1138 		    pv_t value, int size)
1139 {
1140   if (loc.kind == srcdest_mem)
1141     {
1142       if (pv_area_store_would_trash (state->stack, loc.addr))
1143 	return 1;
1144       pv_area_store (state->stack, loc.addr, size, value);
1145     }
1146   else if (loc.kind == srcdest_partial_reg)
1147     *loc.reg = pv_unknown ();
1148   else
1149     *loc.reg = value;
1150 
1151   return 0;
1152 }
1153 
1154 
1155 static int
1156 m32c_sign_ext (int v, int bits)
1157 {
1158   int mask = 1 << (bits - 1);
1159   return (v ^ mask) - mask;
1160 }
1161 
1162 static unsigned int
1163 m32c_next_byte (struct m32c_pv_state *st)
1164 {
1165   gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1166   return st->insn[st->next_addr++ - st->scan_pc];
1167 }
1168 
1169 static int
1170 m32c_udisp8 (struct m32c_pv_state *st)
1171 {
1172   return m32c_next_byte (st);
1173 }
1174 
1175 
1176 static int
1177 m32c_sdisp8 (struct m32c_pv_state *st)
1178 {
1179   return m32c_sign_ext (m32c_next_byte (st), 8);
1180 }
1181 
1182 
1183 static int
1184 m32c_udisp16 (struct m32c_pv_state *st)
1185 {
1186   int low  = m32c_next_byte (st);
1187   int high = m32c_next_byte (st);
1188 
1189   return low + (high << 8);
1190 }
1191 
1192 
1193 static int
1194 m32c_sdisp16 (struct m32c_pv_state *st)
1195 {
1196   int low  = m32c_next_byte (st);
1197   int high = m32c_next_byte (st);
1198 
1199   return m32c_sign_ext (low + (high << 8), 16);
1200 }
1201 
1202 
1203 static int
1204 m32c_udisp24 (struct m32c_pv_state *st)
1205 {
1206   int low  = m32c_next_byte (st);
1207   int mid  = m32c_next_byte (st);
1208   int high = m32c_next_byte (st);
1209 
1210   return low + (mid << 8) + (high << 16);
1211 }
1212 
1213 
1214 /* Extract the 'source' field from an m32c MOV.size:G-format instruction.  */
1215 static int
1216 m32c_get_src23 (unsigned char *i)
1217 {
1218   return (((i[0] & 0x70) >> 2)
1219 	  | ((i[1] & 0x30) >> 4));
1220 }
1221 
1222 
1223 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction.  */
1224 static int
1225 m32c_get_dest23 (unsigned char *i)
1226 {
1227   return (((i[0] & 0x0e) << 1)
1228 	  | ((i[1] & 0xc0) >> 6));
1229 }
1230 
1231 
1232 static struct srcdest
1233 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1234 		      int code, int size)
1235 {
1236   struct srcdest sd;
1237 
1238   if (code < 6)
1239     sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1240   else
1241     sd.kind = srcdest_mem;
1242 
1243   sd.addr = pv_unknown ();
1244   sd.reg = 0;
1245 
1246   switch (code)
1247     {
1248     case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1249     case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1250     case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1251     case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1252 
1253     case 0x4: sd.reg = &st->a0; break;
1254     case 0x5: sd.reg = &st->a1; break;
1255 
1256     case 0x6: sd.addr = st->a0; break;
1257     case 0x7: sd.addr = st->a1; break;
1258 
1259     case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1260     case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1261     case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1262     case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1263 
1264     case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1265     case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1266     case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1267     case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1268 
1269     default:
1270       gdb_assert_not_reached ("unexpected srcdest4");
1271     }
1272 
1273   return sd;
1274 }
1275 
1276 
1277 static struct srcdest
1278 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1279 {
1280   struct srcdest sd;
1281 
1282   sd.addr = pv_unknown ();
1283   sd.reg = 0;
1284 
1285   switch (code)
1286     {
1287     case 0x12:
1288     case 0x13:
1289     case 0x10:
1290     case 0x11:
1291       sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1292       break;
1293 
1294     case 0x02:
1295     case 0x03:
1296       sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1297       break;
1298 
1299     default:
1300       sd.kind = srcdest_mem;
1301       break;
1302 
1303     }
1304 
1305   switch (code)
1306     {
1307     case 0x12: sd.reg = &st->r0; break;
1308     case 0x13: sd.reg = &st->r1; break;
1309     case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1310     case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1311     case 0x02: sd.reg = &st->a0; break;
1312     case 0x03: sd.reg = &st->a1; break;
1313 
1314     case 0x00: sd.addr = st->a0; break;
1315     case 0x01: sd.addr = st->a1; break;
1316     case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1317     case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1318     case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1319     case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1320     case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1321     case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1322     case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1323     case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1324     case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1325     case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1326     case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1327     case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1328     default:
1329       gdb_assert_not_reached ("unexpected sd23");
1330     }
1331 
1332   if (ind)
1333     {
1334       sd.addr = m32c_srcdest_fetch (st, sd, 4);
1335       sd.kind = srcdest_mem;
1336     }
1337 
1338   return sd;
1339 }
1340 
1341 
1342 /* The r16c and r32c machines have instructions with similar
1343    semantics, but completely different machine language encodings.  So
1344    we break out the semantics into their own functions, and leave
1345    machine-specific decoding in m32c_analyze_prologue.
1346 
1347    The following functions all expect their arguments already decoded,
1348    and they all return zero if analysis should continue past this
1349    instruction, or non-zero if analysis should stop.  */
1350 
1351 
1352 /* Simulate an 'enter SIZE' instruction in STATE.  */
1353 static int
1354 m32c_pv_enter (struct m32c_pv_state *state, int size)
1355 {
1356   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1357 
1358   /* If simulating this store would require us to forget
1359      everything we know about the stack frame in the name of
1360      accuracy, it would be better to just quit now.  */
1361   if (pv_area_store_would_trash (state->stack, state->sp))
1362     return 1;
1363 
1364   if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1365     return 1;
1366   state->fb = state->sp;
1367   state->sp = pv_add_constant (state->sp, -size);
1368 
1369   return 0;
1370 }
1371 
1372 
1373 static int
1374 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1375 		   int bit, int src, int size)
1376 {
1377   if (bit & src)
1378     {
1379       if (m32c_pv_push (state, reg, size))
1380 	return 1;
1381     }
1382 
1383   return 0;
1384 }
1385 
1386 
1387 /* Simulate a 'pushm SRC' instruction in STATE.  */
1388 static int
1389 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1390 {
1391   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1392 
1393   /* The bits in SRC indicating which registers to save are:
1394      r0 r1 r2 r3 a0 a1 sb fb */
1395   return
1396     (   m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1397      || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1398      || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1399      || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1400      || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1401      || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1402      || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1403      || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1404 }
1405 
1406 /* Return non-zero if VALUE is the first incoming argument register.  */
1407 
1408 static int
1409 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1410 {
1411   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1412   return (value.kind == pvk_register
1413           && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1414 	      ? (value.reg == tdep->r1->num)
1415 	      : (value.reg == tdep->r0->num))
1416           && value.k == 0);
1417 }
1418 
1419 /* Return non-zero if VALUE is an incoming argument register.  */
1420 
1421 static int
1422 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1423 {
1424   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1425   return (value.kind == pvk_register
1426           && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1427 	      ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1428 	      : (value.reg == tdep->r0->num))
1429           && value.k == 0);
1430 }
1431 
1432 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1433    argument register to its stack slot in STATE.  Such instructions
1434    should be included in the prologue, if possible.
1435 
1436    The store is a spill if:
1437    - the value being stored is the original value of an argument register;
1438    - the value has not already been stored somewhere in STACK; and
1439    - LOC is a stack slot (e.g., a memory location whose address is
1440      relative to the original value of the SP).  */
1441 
1442 static int
1443 m32c_is_arg_spill (struct m32c_pv_state *st,
1444 		   struct srcdest loc,
1445 		   pv_t value)
1446 {
1447   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1448 
1449   return (m32c_is_arg_reg (st, value)
1450 	  && loc.kind == srcdest_mem
1451           && pv_is_register (loc.addr, tdep->sp->num)
1452           && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1453 }
1454 
1455 /* Return non-zero if a store of VALUE to LOC is probably
1456    copying the struct return address into an address register
1457    for immediate use.  This is basically a "spill" into the
1458    address register, instead of onto the stack.
1459 
1460    The prerequisites are:
1461    - value being stored is original value of the FIRST arg register;
1462    - value has not already been stored on stack; and
1463    - LOC is an address register (a0 or a1).  */
1464 
1465 static int
1466 m32c_is_struct_return (struct m32c_pv_state *st,
1467 		       struct srcdest loc,
1468 		       pv_t value)
1469 {
1470   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1471 
1472   return (m32c_is_1st_arg_reg (st, value)
1473 	  && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1474 	  && loc.kind == srcdest_reg
1475 	  && (pv_is_register (*loc.reg, tdep->a0->num)
1476 	      || pv_is_register (*loc.reg, tdep->a1->num)));
1477 }
1478 
1479 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1480    was a register save:
1481    - all the named registers should have their original values, and
1482    - the stack pointer should be at a constant offset from the
1483      original stack pointer.  */
1484 static int
1485 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1486 {
1487   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1488   /* The bits in SRC indicating which registers to save are:
1489      r0 r1 r2 r3 a0 a1 sb fb */
1490   return
1491     (pv_is_register (st->sp, tdep->sp->num)
1492      && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1493      && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1494      && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1495      && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1496      && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1497      && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1498      && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1499      && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1500 }
1501 
1502 
1503 /* Function for finding saved registers in a 'struct pv_area'; we pass
1504    this to pv_area_scan.
1505 
1506    If VALUE is a saved register, ADDR says it was saved at a constant
1507    offset from the frame base, and SIZE indicates that the whole
1508    register was saved, record its offset in RESULT_UNTYPED.  */
1509 static void
1510 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1511 {
1512   struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1513   struct gdbarch *arch = prologue->arch;
1514   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1515 
1516   /* Is this the unchanged value of some register being saved on the
1517      stack?  */
1518   if (value.kind == pvk_register
1519       && value.k == 0
1520       && pv_is_register (addr, tdep->sp->num))
1521     {
1522       /* Some registers require special handling: they're saved as a
1523 	 larger value than the register itself.  */
1524       CORE_ADDR saved_size = register_size (arch, value.reg);
1525 
1526       if (value.reg == tdep->pc->num)
1527 	saved_size = tdep->ret_addr_bytes;
1528       else if (register_type (arch, value.reg)
1529 	       == tdep->data_addr_reg_type)
1530 	saved_size = tdep->push_addr_bytes;
1531 
1532       if (size == saved_size)
1533 	{
1534 	  /* Find which end of the saved value corresponds to our
1535 	     register.  */
1536 	  if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1537 	    prologue->reg_offset[value.reg]
1538 	      = (addr.k + saved_size - register_size (arch, value.reg));
1539 	  else
1540 	    prologue->reg_offset[value.reg] = addr.k;
1541 	}
1542     }
1543 }
1544 
1545 
1546 /* Analyze the function prologue for ARCH at START, going no further
1547    than LIMIT, and place a description of what we found in
1548    PROLOGUE.  */
1549 static void
1550 m32c_analyze_prologue (struct gdbarch *arch,
1551 		       CORE_ADDR start, CORE_ADDR limit,
1552 		       struct m32c_prologue *prologue)
1553 {
1554   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1555   unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1556   CORE_ADDR after_last_frame_related_insn;
1557   struct cleanup *back_to;
1558   struct m32c_pv_state st;
1559 
1560   st.arch = arch;
1561   st.r0 = pv_register (tdep->r0->num, 0);
1562   st.r1 = pv_register (tdep->r1->num, 0);
1563   st.r2 = pv_register (tdep->r2->num, 0);
1564   st.r3 = pv_register (tdep->r3->num, 0);
1565   st.a0 = pv_register (tdep->a0->num, 0);
1566   st.a1 = pv_register (tdep->a1->num, 0);
1567   st.sb = pv_register (tdep->sb->num, 0);
1568   st.fb = pv_register (tdep->fb->num, 0);
1569   st.sp = pv_register (tdep->sp->num, 0);
1570   st.pc = pv_register (tdep->pc->num, 0);
1571   st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
1572   back_to = make_cleanup_free_pv_area (st.stack);
1573 
1574   /* Record that the call instruction has saved the return address on
1575      the stack.  */
1576   m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1577 
1578   memset (prologue, 0, sizeof (*prologue));
1579   prologue->arch = arch;
1580   {
1581     int i;
1582     for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1583       prologue->reg_offset[i] = 1;
1584   }
1585 
1586   st.scan_pc = after_last_frame_related_insn = start;
1587 
1588   while (st.scan_pc < limit)
1589     {
1590       pv_t pre_insn_fb = st.fb;
1591       pv_t pre_insn_sp = st.sp;
1592 
1593       /* In theory we could get in trouble by trying to read ahead
1594 	 here, when we only know we're expecting one byte.  In
1595 	 practice I doubt anyone will care, and it makes the rest of
1596 	 the code easier.  */
1597       if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1598 	/* If we can't fetch the instruction from memory, stop here
1599 	   and hope for the best.  */
1600 	break;
1601       st.next_addr = st.scan_pc;
1602 
1603       /* The assembly instructions are written as they appear in the
1604 	 section of the processor manuals that describe the
1605 	 instruction encodings.
1606 
1607 	 When a single assembly language instruction has several
1608 	 different machine-language encodings, the manual
1609 	 distinguishes them by a number in parens, before the
1610 	 mnemonic.  Those numbers are included, as well.
1611 
1612 	 The srcdest decoding instructions have the same names as the
1613 	 analogous functions in the simulator.  */
1614       if (mach == bfd_mach_m16c)
1615 	{
1616 	  /* (1) ENTER #imm8 */
1617 	  if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1618 	    {
1619 	      if (m32c_pv_enter (&st, st.insn[2]))
1620 		break;
1621 	      st.next_addr += 3;
1622 	    }
1623 	  /* (1) PUSHM src */
1624 	  else if (st.insn[0] == 0xec)
1625 	    {
1626 	      int src = st.insn[1];
1627 	      if (m32c_pv_pushm (&st, src))
1628 		break;
1629 	      st.next_addr += 2;
1630 
1631 	      if (m32c_pushm_is_reg_save (&st, src))
1632 		after_last_frame_related_insn = st.next_addr;
1633 	    }
1634 
1635 	  /* (6) MOV.size:G src, dest */
1636 	  else if ((st.insn[0] & 0xfe) == 0x72)
1637 	    {
1638 	      int size = (st.insn[0] & 0x01) ? 2 : 1;
1639 	      struct srcdest src;
1640 	      struct srcdest dest;
1641 	      pv_t src_value;
1642 	      st.next_addr += 2;
1643 
1644 	      src
1645 		= m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1646 	      dest
1647 		= m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1648 	      src_value = m32c_srcdest_fetch (&st, src, size);
1649 
1650 	      if (m32c_is_arg_spill (&st, dest, src_value))
1651 		after_last_frame_related_insn = st.next_addr;
1652 	      else if (m32c_is_struct_return (&st, dest, src_value))
1653 		after_last_frame_related_insn = st.next_addr;
1654 
1655 	      if (m32c_srcdest_store (&st, dest, src_value, size))
1656 		break;
1657 	    }
1658 
1659 	  /* (1) LDC #IMM16, sp */
1660 	  else if (st.insn[0] == 0xeb
1661 		   && st.insn[1] == 0x50)
1662 	    {
1663 	      st.next_addr += 2;
1664 	      st.sp = pv_constant (m32c_udisp16 (&st));
1665 	    }
1666 
1667 	  else
1668 	    /* We've hit some instruction we don't know how to simulate.
1669 	       Strictly speaking, we should set every value we're
1670 	       tracking to "unknown".  But we'll be optimistic, assume
1671 	       that we have enough information already, and stop
1672 	       analysis here.  */
1673 	    break;
1674 	}
1675       else
1676 	{
1677 	  int src_indirect = 0;
1678 	  int dest_indirect = 0;
1679 	  int i = 0;
1680 
1681 	  gdb_assert (mach == bfd_mach_m32c);
1682 
1683 	  /* Check for prefix bytes indicating indirect addressing.  */
1684 	  if (st.insn[0] == 0x41)
1685 	    {
1686 	      src_indirect = 1;
1687 	      i++;
1688 	    }
1689 	  else if (st.insn[0] == 0x09)
1690 	    {
1691 	      dest_indirect = 1;
1692 	      i++;
1693 	    }
1694 	  else if (st.insn[0] == 0x49)
1695 	    {
1696 	      src_indirect = dest_indirect = 1;
1697 	      i++;
1698 	    }
1699 
1700 	  /* (1) ENTER #imm8 */
1701 	  if (st.insn[i] == 0xec)
1702 	    {
1703 	      if (m32c_pv_enter (&st, st.insn[i + 1]))
1704 		break;
1705 	      st.next_addr += 2;
1706 	    }
1707 
1708 	  /* (1) PUSHM src */
1709 	  else if (st.insn[i] == 0x8f)
1710 	    {
1711 	      int src = st.insn[i + 1];
1712 	      if (m32c_pv_pushm (&st, src))
1713 		break;
1714 	      st.next_addr += 2;
1715 
1716 	      if (m32c_pushm_is_reg_save (&st, src))
1717 		after_last_frame_related_insn = st.next_addr;
1718 	    }
1719 
1720 	  /* (7) MOV.size:G src, dest */
1721 	  else if ((st.insn[i] & 0x80) == 0x80
1722 		   && (st.insn[i + 1] & 0x0f) == 0x0b
1723 		   && m32c_get_src23 (&st.insn[i]) < 20
1724 		   && m32c_get_dest23 (&st.insn[i]) < 20)
1725 	    {
1726 	      struct srcdest src;
1727 	      struct srcdest dest;
1728 	      pv_t src_value;
1729 	      int bw = st.insn[i] & 0x01;
1730 	      int size = bw ? 2 : 1;
1731 	      st.next_addr += 2;
1732 
1733 	      src
1734 		= m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1735 				    size, src_indirect);
1736 	      dest
1737 		= m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1738 				    size, dest_indirect);
1739 	      src_value = m32c_srcdest_fetch (&st, src, size);
1740 
1741 	      if (m32c_is_arg_spill (&st, dest, src_value))
1742 		after_last_frame_related_insn = st.next_addr;
1743 
1744 	      if (m32c_srcdest_store (&st, dest, src_value, size))
1745 		break;
1746 	    }
1747 	  /* (2) LDC #IMM24, sp */
1748 	  else if (st.insn[i] == 0xd5
1749 		   && st.insn[i + 1] == 0x29)
1750 	    {
1751 	      st.next_addr += 2;
1752 	      st.sp = pv_constant (m32c_udisp24 (&st));
1753 	    }
1754 	  else
1755 	    /* We've hit some instruction we don't know how to simulate.
1756 	       Strictly speaking, we should set every value we're
1757 	       tracking to "unknown".  But we'll be optimistic, assume
1758 	       that we have enough information already, and stop
1759 	       analysis here.  */
1760 	    break;
1761 	}
1762 
1763       /* If this instruction changed the FB or decreased the SP (i.e.,
1764          allocated more stack space), then this may be a good place to
1765          declare the prologue finished.  However, there are some
1766          exceptions:
1767 
1768          - If the instruction just changed the FB back to its original
1769            value, then that's probably a restore instruction.  The
1770            prologue should definitely end before that.
1771 
1772          - If the instruction increased the value of the SP (that is,
1773            shrunk the frame), then it's probably part of a frame
1774            teardown sequence, and the prologue should end before
1775            that.  */
1776 
1777       if (! pv_is_identical (st.fb, pre_insn_fb))
1778         {
1779           if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1780             after_last_frame_related_insn = st.next_addr;
1781         }
1782       else if (! pv_is_identical (st.sp, pre_insn_sp))
1783         {
1784           /* The comparison of the constants looks odd, there, because
1785              .k is unsigned.  All it really means is that the SP is
1786              lower than it was before the instruction.  */
1787           if (   pv_is_register (pre_insn_sp, tdep->sp->num)
1788               && pv_is_register (st.sp,       tdep->sp->num)
1789               && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1790             after_last_frame_related_insn = st.next_addr;
1791         }
1792 
1793       st.scan_pc = st.next_addr;
1794     }
1795 
1796   /* Did we load a constant value into the stack pointer?  */
1797   if (pv_is_constant (st.sp))
1798     prologue->kind = prologue_first_frame;
1799 
1800   /* Alternatively, did we initialize the frame pointer?  Remember
1801      that the CFA is the address after the return address.  */
1802   if (pv_is_register (st.fb, tdep->sp->num))
1803     {
1804       prologue->kind = prologue_with_frame_ptr;
1805       prologue->frame_ptr_offset = st.fb.k;
1806     }
1807 
1808   /* Is the frame size a known constant?  Remember that frame_size is
1809      actually the offset from the CFA to the SP (i.e., a negative
1810      value).  */
1811   else if (pv_is_register (st.sp, tdep->sp->num))
1812     {
1813       prologue->kind = prologue_sans_frame_ptr;
1814       prologue->frame_size = st.sp.k;
1815     }
1816 
1817   /* We haven't been able to make sense of this function's frame.  Treat
1818      it as the first frame.  */
1819   else
1820     prologue->kind = prologue_first_frame;
1821 
1822   /* Record where all the registers were saved.  */
1823   pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1824 
1825   prologue->prologue_end = after_last_frame_related_insn;
1826 
1827   do_cleanups (back_to);
1828 }
1829 
1830 
1831 static CORE_ADDR
1832 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1833 {
1834   const char *name;
1835   CORE_ADDR func_addr, func_end, sal_end;
1836   struct m32c_prologue p;
1837 
1838   /* Try to find the extent of the function that contains IP.  */
1839   if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1840     return ip;
1841 
1842   /* Find end by prologue analysis.  */
1843   m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1844   /* Find end by line info.  */
1845   sal_end = skip_prologue_using_sal (gdbarch, ip);
1846   /* Return whichever is lower.  */
1847   if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1848     return sal_end;
1849   else
1850     return p.prologue_end;
1851 }
1852 
1853 
1854 
1855 /* Stack unwinding.  */
1856 
1857 static struct m32c_prologue *
1858 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1859 			     void **this_prologue_cache)
1860 {
1861   if (! *this_prologue_cache)
1862     {
1863       CORE_ADDR func_start = get_frame_func (this_frame);
1864       CORE_ADDR stop_addr = get_frame_pc (this_frame);
1865 
1866       /* If we couldn't find any function containing the PC, then
1867          just initialize the prologue cache, but don't do anything.  */
1868       if (! func_start)
1869         stop_addr = func_start;
1870 
1871       *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1872       m32c_analyze_prologue (get_frame_arch (this_frame),
1873 			     func_start, stop_addr, *this_prologue_cache);
1874     }
1875 
1876   return *this_prologue_cache;
1877 }
1878 
1879 
1880 static CORE_ADDR
1881 m32c_frame_base (struct frame_info *this_frame,
1882                 void **this_prologue_cache)
1883 {
1884   struct m32c_prologue *p
1885     = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1886   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1887 
1888   /* In functions that use alloca, the distance between the stack
1889      pointer and the frame base varies dynamically, so we can't use
1890      the SP plus static information like prologue analysis to find the
1891      frame base.  However, such functions must have a frame pointer,
1892      to be able to restore the SP on exit.  So whenever we do have a
1893      frame pointer, use that to find the base.  */
1894   switch (p->kind)
1895     {
1896     case prologue_with_frame_ptr:
1897       {
1898 	CORE_ADDR fb
1899 	  = get_frame_register_unsigned (this_frame, tdep->fb->num);
1900 	return fb - p->frame_ptr_offset;
1901       }
1902 
1903     case prologue_sans_frame_ptr:
1904       {
1905 	CORE_ADDR sp
1906 	  = get_frame_register_unsigned (this_frame, tdep->sp->num);
1907 	return sp - p->frame_size;
1908       }
1909 
1910     case prologue_first_frame:
1911       return 0;
1912 
1913     default:
1914       gdb_assert_not_reached ("unexpected prologue kind");
1915     }
1916 }
1917 
1918 
1919 static void
1920 m32c_this_id (struct frame_info *this_frame,
1921 	      void **this_prologue_cache,
1922 	      struct frame_id *this_id)
1923 {
1924   CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1925 
1926   if (base)
1927     *this_id = frame_id_build (base, get_frame_func (this_frame));
1928   /* Otherwise, leave it unset, and that will terminate the backtrace.  */
1929 }
1930 
1931 
1932 static struct value *
1933 m32c_prev_register (struct frame_info *this_frame,
1934 		    void **this_prologue_cache, int regnum)
1935 {
1936   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1937   struct m32c_prologue *p
1938     = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1939   CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1940   int reg_size = register_size (get_frame_arch (this_frame), regnum);
1941 
1942   if (regnum == tdep->sp->num)
1943     return frame_unwind_got_constant (this_frame, regnum, frame_base);
1944 
1945   /* If prologue analysis says we saved this register somewhere,
1946      return a description of the stack slot holding it.  */
1947   if (p->reg_offset[regnum] != 1)
1948     return frame_unwind_got_memory (this_frame, regnum,
1949                                     frame_base + p->reg_offset[regnum]);
1950 
1951   /* Otherwise, presume we haven't changed the value of this
1952      register, and get it from the next frame.  */
1953   return frame_unwind_got_register (this_frame, regnum, regnum);
1954 }
1955 
1956 
1957 static const struct frame_unwind m32c_unwind = {
1958   NORMAL_FRAME,
1959   default_frame_unwind_stop_reason,
1960   m32c_this_id,
1961   m32c_prev_register,
1962   NULL,
1963   default_frame_sniffer
1964 };
1965 
1966 
1967 static CORE_ADDR
1968 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1969 {
1970   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1971   return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1972 }
1973 
1974 
1975 static CORE_ADDR
1976 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1977 {
1978   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1979   return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1980 }
1981 
1982 
1983 /* Inferior calls.  */
1984 
1985 /* The calling conventions, according to GCC:
1986 
1987    r8c, m16c
1988    ---------
1989    First arg may be passed in r1l or r1 if it (1) fits (QImode or
1990    HImode), (2) is named, and (3) is an integer or pointer type (no
1991    structs, floats, etc).  Otherwise, it's passed on the stack.
1992 
1993    Second arg may be passed in r2, same restrictions (but not QImode),
1994    even if the first arg is passed on the stack.
1995 
1996    Third and further args are passed on the stack.  No padding is
1997    used, stack "alignment" is 8 bits.
1998 
1999    m32cm, m32c
2000    -----------
2001 
2002    First arg may be passed in r0l or r0, same restrictions as above.
2003 
2004    Second and further args are passed on the stack.  Padding is used
2005    after QImode parameters (i.e. lower-addressed byte is the value,
2006    higher-addressed byte is the padding), stack "alignment" is 16
2007    bits.  */
2008 
2009 
2010 /* Return true if TYPE is a type that can be passed in registers.  (We
2011    ignore the size, and pay attention only to the type code;
2012    acceptable sizes depends on which register is being considered to
2013    hold it.)  */
2014 static int
2015 m32c_reg_arg_type (struct type *type)
2016 {
2017   enum type_code code = TYPE_CODE (type);
2018 
2019   return (code == TYPE_CODE_INT
2020 	  || code == TYPE_CODE_ENUM
2021 	  || code == TYPE_CODE_PTR
2022 	  || code == TYPE_CODE_REF
2023 	  || code == TYPE_CODE_BOOL
2024 	  || code == TYPE_CODE_CHAR);
2025 }
2026 
2027 
2028 static CORE_ADDR
2029 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2030 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2031 		      struct value **args, CORE_ADDR sp, int struct_return,
2032 		      CORE_ADDR struct_addr)
2033 {
2034   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2035   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2036   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2037   CORE_ADDR cfa;
2038   int i;
2039 
2040   /* The number of arguments given in this function's prototype, or
2041      zero if it has a non-prototyped function type.  The m32c ABI
2042      passes arguments mentioned in the prototype differently from
2043      those in the ellipsis of a varargs function, or from those passed
2044      to a non-prototyped function.  */
2045   int num_prototyped_args = 0;
2046 
2047   {
2048     struct type *func_type = value_type (function);
2049 
2050     /* Dereference function pointer types.  */
2051     if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2052       func_type = TYPE_TARGET_TYPE (func_type);
2053 
2054     gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2055 		TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2056 
2057 #if 0
2058     /* The ABI description in gcc/config/m32c/m32c.abi says that
2059        we need to handle prototyped and non-prototyped functions
2060        separately, but the code in GCC doesn't actually do so.  */
2061     if (TYPE_PROTOTYPED (func_type))
2062 #endif
2063       num_prototyped_args = TYPE_NFIELDS (func_type);
2064   }
2065 
2066   /* First, if the function returns an aggregate by value, push a
2067      pointer to a buffer for it.  This doesn't affect the way
2068      subsequent arguments are allocated to registers.  */
2069   if (struct_return)
2070     {
2071       int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2072       sp -= ptr_len;
2073       write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2074     }
2075 
2076   /* Push the arguments.  */
2077   for (i = nargs - 1; i >= 0; i--)
2078     {
2079       struct value *arg = args[i];
2080       const gdb_byte *arg_bits = value_contents (arg);
2081       struct type *arg_type = value_type (arg);
2082       ULONGEST arg_size = TYPE_LENGTH (arg_type);
2083 
2084       /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)?  */
2085       if (i == 0
2086 	  && arg_size <= 2
2087 	  && i < num_prototyped_args
2088 	  && m32c_reg_arg_type (arg_type))
2089 	{
2090 	  /* Extract and re-store as an integer as a terse way to make
2091 	     sure it ends up in the least significant end of r1.  (GDB
2092 	     should avoid assuming endianness, even on uni-endian
2093 	     processors.)  */
2094 	  ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2095 						 byte_order);
2096 	  struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2097 	  regcache_cooked_write_unsigned (regcache, reg->num, u);
2098 	}
2099 
2100       /* Can it go in r2?  */
2101       else if (mach == bfd_mach_m16c
2102 	       && i == 1
2103 	       && arg_size == 2
2104 	       && i < num_prototyped_args
2105 	       && m32c_reg_arg_type (arg_type))
2106 	regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2107 
2108       /* Everything else goes on the stack.  */
2109       else
2110 	{
2111 	  sp -= arg_size;
2112 
2113 	  /* Align the stack.  */
2114 	  if (mach == bfd_mach_m32c)
2115 	    sp &= ~1;
2116 
2117 	  write_memory (sp, arg_bits, arg_size);
2118 	}
2119     }
2120 
2121   /* This is the CFA we use to identify the dummy frame.  */
2122   cfa = sp;
2123 
2124   /* Push the return address.  */
2125   sp -= tdep->ret_addr_bytes;
2126   write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2127 				 bp_addr);
2128 
2129   /* Update the stack pointer.  */
2130   regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2131 
2132   /* We need to borrow an odd trick from the i386 target here.
2133 
2134      The value we return from this function gets used as the stack
2135      address (the CFA) for the dummy frame's ID.  The obvious thing is
2136      to return the new TOS.  However, that points at the return
2137      address, saved on the stack, which is inconsistent with the CFA's
2138      described by GCC's DWARF 2 .debug_frame information: DWARF 2
2139      .debug_frame info uses the address immediately after the saved
2140      return address.  So you end up with a dummy frame whose CFA
2141      points at the return address, but the frame for the function
2142      being called has a CFA pointing after the return address: the
2143      younger CFA is *greater than* the older CFA.  The sanity checks
2144      in frame.c don't like that.
2145 
2146      So we try to be consistent with the CFA's used by DWARF 2.
2147      Having a dummy frame and a real frame with the *same* CFA is
2148      tolerable.  */
2149   return cfa;
2150 }
2151 
2152 
2153 static struct frame_id
2154 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2155 {
2156   /* This needs to return a frame ID whose PC is the return address
2157      passed to m32c_push_dummy_call, and whose stack_addr is the SP
2158      m32c_push_dummy_call returned.
2159 
2160      m32c_unwind_sp gives us the CFA, which is the value the SP had
2161      before the return address was pushed.  */
2162   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2163   CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2164   return frame_id_build (sp, get_frame_pc (this_frame));
2165 }
2166 
2167 
2168 
2169 /* Return values.  */
2170 
2171 /* Return value conventions, according to GCC:
2172 
2173    r8c, m16c
2174    ---------
2175 
2176    QImode in r0l
2177    HImode in r0
2178    SImode in r2r0
2179    near pointer in r0
2180    far pointer in r2r0
2181 
2182    Aggregate values (regardless of size) are returned by pushing a
2183    pointer to a temporary area on the stack after the args are pushed.
2184    The function fills in this area with the value.  Note that this
2185    pointer on the stack does not affect how register arguments, if any,
2186    are configured.
2187 
2188    m32cm, m32c
2189    -----------
2190    Same.  */
2191 
2192 /* Return non-zero if values of type TYPE are returned by storing them
2193    in a buffer whose address is passed on the stack, ahead of the
2194    other arguments.  */
2195 static int
2196 m32c_return_by_passed_buf (struct type *type)
2197 {
2198   enum type_code code = TYPE_CODE (type);
2199 
2200   return (code == TYPE_CODE_STRUCT
2201 	  || code == TYPE_CODE_UNION);
2202 }
2203 
2204 static enum return_value_convention
2205 m32c_return_value (struct gdbarch *gdbarch,
2206 		   struct value *function,
2207 		   struct type *valtype,
2208 		   struct regcache *regcache,
2209 		   gdb_byte *readbuf,
2210 		   const gdb_byte *writebuf)
2211 {
2212   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2213   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2214   enum return_value_convention conv;
2215   ULONGEST valtype_len = TYPE_LENGTH (valtype);
2216 
2217   if (m32c_return_by_passed_buf (valtype))
2218     conv = RETURN_VALUE_STRUCT_CONVENTION;
2219   else
2220     conv = RETURN_VALUE_REGISTER_CONVENTION;
2221 
2222   if (readbuf)
2223     {
2224       /* We should never be called to find values being returned by
2225 	 RETURN_VALUE_STRUCT_CONVENTION.  Those can't be located,
2226 	 unless we made the call ourselves.  */
2227       gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2228 
2229       gdb_assert (valtype_len <= 8);
2230 
2231       /* Anything that fits in r0 is returned there.  */
2232       if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2233 	{
2234 	  ULONGEST u;
2235 	  regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2236 	  store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2237 	}
2238       else
2239 	{
2240 	  /* Everything else is passed in mem0, using as many bytes as
2241 	     needed.  This is not what the Renesas tools do, but it's
2242 	     what GCC does at the moment.  */
2243 	  struct minimal_symbol *mem0
2244 	    = lookup_minimal_symbol ("mem0", NULL, NULL);
2245 
2246 	  if (! mem0)
2247 	    error (_("The return value is stored in memory at 'mem0', "
2248 		     "but GDB cannot find\n"
2249 		     "its address."));
2250 	  read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2251 	}
2252     }
2253 
2254   if (writebuf)
2255     {
2256       /* We should never be called to store values to be returned
2257 	 using RETURN_VALUE_STRUCT_CONVENTION.  We have no way of
2258 	 finding the buffer, unless we made the call ourselves.  */
2259       gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2260 
2261       gdb_assert (valtype_len <= 8);
2262 
2263       /* Anything that fits in r0 is returned there.  */
2264       if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2265 	{
2266 	  ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2267 						 byte_order);
2268 	  regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2269 	}
2270       else
2271 	{
2272 	  /* Everything else is passed in mem0, using as many bytes as
2273 	     needed.  This is not what the Renesas tools do, but it's
2274 	     what GCC does at the moment.  */
2275 	  struct minimal_symbol *mem0
2276 	    = lookup_minimal_symbol ("mem0", NULL, NULL);
2277 
2278 	  if (! mem0)
2279 	    error (_("The return value is stored in memory at 'mem0', "
2280 		     "but GDB cannot find\n"
2281 		     " its address."));
2282 	  write_memory (SYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2283 	}
2284     }
2285 
2286   return conv;
2287 }
2288 
2289 
2290 
2291 /* Trampolines.  */
2292 
2293 /* The m16c and m32c use a trampoline function for indirect function
2294    calls.  An indirect call looks like this:
2295 
2296 	     ... push arguments ...
2297 	     ... push target function address ...
2298 	     jsr.a m32c_jsri16
2299 
2300    The code for m32c_jsri16 looks like this:
2301 
2302      m32c_jsri16:
2303 
2304              # Save return address.
2305 	     pop.w	m32c_jsri_ret
2306 	     pop.b	m32c_jsri_ret+2
2307 
2308              # Store target function address.
2309 	     pop.w	m32c_jsri_addr
2310 
2311 	     # Re-push return address.
2312 	     push.b	m32c_jsri_ret+2
2313 	     push.w	m32c_jsri_ret
2314 
2315 	     # Call the target function.
2316 	     jmpi.a	m32c_jsri_addr
2317 
2318    Without further information, GDB will treat calls to m32c_jsri16
2319    like calls to any other function.  Since m32c_jsri16 doesn't have
2320    debugging information, that normally means that GDB sets a step-
2321    resume breakpoint and lets the program continue --- which is not
2322    what the user wanted.  (Giving the trampoline debugging info
2323    doesn't help: the user expects the program to stop in the function
2324    their program is calling, not in some trampoline code they've never
2325    seen before.)
2326 
2327    The gdbarch_skip_trampoline_code method tells GDB how to step
2328    through such trampoline functions transparently to the user.  When
2329    given the address of a trampoline function's first instruction,
2330    gdbarch_skip_trampoline_code should return the address of the first
2331    instruction of the function really being called.  If GDB decides it
2332    wants to step into that function, it will set a breakpoint there
2333    and silently continue to it.
2334 
2335    We recognize the trampoline by name, and extract the target address
2336    directly from the stack.  This isn't great, but recognizing by its
2337    code sequence seems more fragile.  */
2338 
2339 static CORE_ADDR
2340 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2341 {
2342   struct gdbarch *gdbarch = get_frame_arch (frame);
2343   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2344   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2345 
2346   /* It would be nicer to simply look up the addresses of known
2347      trampolines once, and then compare stop_pc with them.  However,
2348      we'd need to ensure that that cached address got invalidated when
2349      someone loaded a new executable, and I'm not quite sure of the
2350      best way to do that.  find_pc_partial_function does do some
2351      caching, so we'll see how this goes.  */
2352   const char *name;
2353   CORE_ADDR start, end;
2354 
2355   if (find_pc_partial_function (stop_pc, &name, &start, &end))
2356     {
2357       /* Are we stopped at the beginning of the trampoline function?  */
2358       if (strcmp (name, "m32c_jsri16") == 0
2359 	  && stop_pc == start)
2360 	{
2361 	  /* Get the stack pointer.  The return address is at the top,
2362 	     and the target function's address is just below that.  We
2363 	     know it's a two-byte address, since the trampoline is
2364 	     m32c_jsri*16*.  */
2365 	  CORE_ADDR sp = get_frame_sp (get_current_frame ());
2366 	  CORE_ADDR target
2367 	    = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2368 					    2, byte_order);
2369 
2370 	  /* What we have now is the address of a jump instruction.
2371 	     What we need is the destination of that jump.
2372 	     The opcode is 1 byte, and the destination is the next 3 bytes.  */
2373 
2374 	  target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2375 	  return target;
2376 	}
2377     }
2378 
2379   return 0;
2380 }
2381 
2382 
2383 /* Address/pointer conversions.  */
2384 
2385 /* On the m16c, there is a 24-bit address space, but only a very few
2386    instructions can generate addresses larger than 0xffff: jumps,
2387    jumps to subroutines, and the lde/std (load/store extended)
2388    instructions.
2389 
2390    Since GCC can only support one size of pointer, we can't have
2391    distinct 'near' and 'far' pointer types; we have to pick one size
2392    for everything.  If we wanted to use 24-bit pointers, then GCC
2393    would have to use lde and ste for all memory references, which
2394    would be terrible for performance and code size.  So the GNU
2395    toolchain uses 16-bit pointers for everything, and gives up the
2396    ability to have pointers point outside the first 64k of memory.
2397 
2398    However, as a special hack, we let the linker place functions at
2399    addresses above 0xffff, as long as it also places a trampoline in
2400    the low 64k for every function whose address is taken.  Each
2401    trampoline consists of a single jmp.a instruction that jumps to the
2402    function's real entry point.  Pointers to functions can be 16 bits
2403    long, even though the functions themselves are at higher addresses:
2404    the pointers refer to the trampolines, not the functions.
2405 
2406    This complicates things for GDB, however: given the address of a
2407    function (from debug info or linker symbols, say) which could be
2408    anywhere in the 24-bit address space, how can we find an
2409    appropriate 16-bit value to use as a pointer to it?
2410 
2411    If the linker has not generated a trampoline for the function,
2412    we're out of luck.  Well, I guess we could malloc some space and
2413    write a jmp.a instruction to it, but I'm not going to get into that
2414    at the moment.
2415 
2416    If the linker has generated a trampoline for the function, then it
2417    also emitted a symbol for the trampoline: if the function's linker
2418    symbol is named NAME, then the function's trampoline's linker
2419    symbol is named NAME.plt.
2420 
2421    So, given a code address:
2422    - We try to find a linker symbol at that address.
2423    - If we find such a symbol named NAME, we look for a linker symbol
2424      named NAME.plt.
2425    - If we find such a symbol, we assume it is a trampoline, and use
2426      its address as the pointer value.
2427 
2428    And, given a function pointer:
2429    - We try to find a linker symbol at that address named NAME.plt.
2430    - If we find such a symbol, we look for a linker symbol named NAME.
2431    - If we find that, we provide that as the function's address.
2432    - If any of the above steps fail, we return the original address
2433      unchanged; it might really be a function in the low 64k.
2434 
2435    See?  You *knew* there was a reason you wanted to be a computer
2436    programmer!  :)  */
2437 
2438 static void
2439 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2440 			      struct type *type, gdb_byte *buf, CORE_ADDR addr)
2441 {
2442   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2443   enum type_code target_code;
2444   gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2445 	      TYPE_CODE (type) == TYPE_CODE_REF);
2446 
2447   target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2448 
2449   if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2450     {
2451       const char *func_name;
2452       char *tramp_name;
2453       struct minimal_symbol *tramp_msym;
2454 
2455       /* Try to find a linker symbol at this address.  */
2456       struct bound_minimal_symbol func_msym
2457 	= lookup_minimal_symbol_by_pc (addr);
2458 
2459       if (! func_msym.minsym)
2460         error (_("Cannot convert code address %s to function pointer:\n"
2461                "couldn't find a symbol at that address, to find trampoline."),
2462                paddress (gdbarch, addr));
2463 
2464       func_name = SYMBOL_LINKAGE_NAME (func_msym.minsym);
2465       tramp_name = xmalloc (strlen (func_name) + 5);
2466       strcpy (tramp_name, func_name);
2467       strcat (tramp_name, ".plt");
2468 
2469       /* Try to find a linker symbol for the trampoline.  */
2470       tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2471 
2472       /* We've either got another copy of the name now, or don't need
2473          the name any more.  */
2474       xfree (tramp_name);
2475 
2476       if (! tramp_msym)
2477 	{
2478 	  CORE_ADDR ptrval;
2479 
2480 	  /* No PLT entry found.  Mask off the upper bits of the address
2481 	     to make a pointer.  As noted in the warning to the user
2482 	     below, this value might be useful if converted back into
2483 	     an address by GDB, but will otherwise, almost certainly,
2484 	     be garbage.
2485 
2486 	     Using this masked result does seem to be useful
2487 	     in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2488 	     PASSes.  These results appear to be correct as well.
2489 
2490 	     We print a warning here so that the user can make a
2491 	     determination about whether the result is useful or not.  */
2492 	  ptrval = addr & 0xffff;
2493 
2494 	  warning (_("Cannot convert code address %s to function pointer:\n"
2495 		   "couldn't find trampoline named '%s.plt'.\n"
2496 		   "Returning pointer value %s instead; this may produce\n"
2497 		   "a useful result if converted back into an address by GDB,\n"
2498 		   "but will most likely not be useful otherwise.\n"),
2499 		   paddress (gdbarch, addr), func_name,
2500 		   paddress (gdbarch, ptrval));
2501 
2502 	  addr = ptrval;
2503 
2504 	}
2505       else
2506 	{
2507 	  /* The trampoline's address is our pointer.  */
2508 	  addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
2509 	}
2510     }
2511 
2512   store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2513 }
2514 
2515 
2516 static CORE_ADDR
2517 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2518 			      struct type *type, const gdb_byte *buf)
2519 {
2520   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2521   CORE_ADDR ptr;
2522   enum type_code target_code;
2523 
2524   gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2525 	      TYPE_CODE (type) == TYPE_CODE_REF);
2526 
2527   ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2528 
2529   target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2530 
2531   if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2532     {
2533       /* See if there is a minimal symbol at that address whose name is
2534          "NAME.plt".  */
2535       struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2536 
2537       if (ptr_msym.minsym)
2538         {
2539           const char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym.minsym);
2540           int len = strlen (ptr_msym_name);
2541 
2542           if (len > 4
2543               && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2544             {
2545 	      struct minimal_symbol *func_msym;
2546               /* We have a .plt symbol; try to find the symbol for the
2547                  corresponding function.
2548 
2549                  Since the trampoline contains a jump instruction, we
2550                  could also just extract the jump's target address.  I
2551                  don't see much advantage one way or the other.  */
2552               char *func_name = xmalloc (len - 4 + 1);
2553               memcpy (func_name, ptr_msym_name, len - 4);
2554               func_name[len - 4] = '\0';
2555               func_msym
2556                 = lookup_minimal_symbol (func_name, NULL, NULL);
2557 
2558               /* If we do have such a symbol, return its value as the
2559                  function's true address.  */
2560               if (func_msym)
2561                 ptr = SYMBOL_VALUE_ADDRESS (func_msym);
2562             }
2563         }
2564       else
2565 	{
2566 	  int aspace;
2567 
2568 	  for (aspace = 1; aspace <= 15; aspace++)
2569 	    {
2570 	      ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2571 
2572 	      if (ptr_msym.minsym)
2573 		ptr |= aspace << 16;
2574 	    }
2575 	}
2576     }
2577 
2578   return ptr;
2579 }
2580 
2581 static void
2582 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2583 			    int *frame_regnum,
2584 			    LONGEST *frame_offset)
2585 {
2586   const char *name;
2587   CORE_ADDR func_addr, func_end;
2588   struct m32c_prologue p;
2589 
2590   struct regcache *regcache = get_current_regcache ();
2591   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2592 
2593   if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2594     internal_error (__FILE__, __LINE__,
2595 		    _("No virtual frame pointer available"));
2596 
2597   m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2598   switch (p.kind)
2599     {
2600     case prologue_with_frame_ptr:
2601       *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2602       *frame_offset = p.frame_ptr_offset;
2603       break;
2604     case prologue_sans_frame_ptr:
2605       *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2606       *frame_offset = p.frame_size;
2607       break;
2608     default:
2609       *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2610       *frame_offset = 0;
2611       break;
2612     }
2613   /* Sanity check */
2614   if (*frame_regnum > gdbarch_num_regs (gdbarch))
2615     internal_error (__FILE__, __LINE__,
2616 		    _("No virtual frame pointer available"));
2617 }
2618 
2619 
2620 /* Initialization.  */
2621 
2622 static struct gdbarch *
2623 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2624 {
2625   struct gdbarch *arch;
2626   struct gdbarch_tdep *tdep;
2627   unsigned long mach = info.bfd_arch_info->mach;
2628 
2629   /* Find a candidate among the list of architectures we've created
2630      already.  */
2631   for (arches = gdbarch_list_lookup_by_info (arches, &info);
2632        arches != NULL;
2633        arches = gdbarch_list_lookup_by_info (arches->next, &info))
2634     return arches->gdbarch;
2635 
2636   tdep = xcalloc (1, sizeof (*tdep));
2637   arch = gdbarch_alloc (&info, tdep);
2638 
2639   /* Essential types.  */
2640   make_types (arch);
2641 
2642   /* Address/pointer conversions.  */
2643   if (mach == bfd_mach_m16c)
2644     {
2645       set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2646       set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2647     }
2648 
2649   /* Register set.  */
2650   make_regs (arch);
2651 
2652   /* Disassembly.  */
2653   set_gdbarch_print_insn (arch, print_insn_m32c);
2654 
2655   /* Breakpoints.  */
2656   set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2657 
2658   /* Prologue analysis and unwinding.  */
2659   set_gdbarch_inner_than (arch, core_addr_lessthan);
2660   set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2661   set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2662   set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2663 #if 0
2664   /* I'm dropping the dwarf2 sniffer because it has a few problems.
2665      They may be in the dwarf2 cfi code in GDB, or they may be in
2666      the debug info emitted by the upstream toolchain.  I don't
2667      know which, but I do know that the prologue analyzer works better.
2668      MVS 04/13/06  */
2669   dwarf2_append_sniffers (arch);
2670 #endif
2671   frame_unwind_append_unwinder (arch, &m32c_unwind);
2672 
2673   /* Inferior calls.  */
2674   set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2675   set_gdbarch_return_value (arch, m32c_return_value);
2676   set_gdbarch_dummy_id (arch, m32c_dummy_id);
2677 
2678   /* Trampolines.  */
2679   set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2680 
2681   set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2682 
2683   /* m32c function boundary addresses are not necessarily even.
2684      Therefore, the `vbit', which indicates a pointer to a virtual
2685      member function, is stored in the delta field, rather than as
2686      the low bit of a function pointer address.
2687 
2688      In order to verify this, see the definition of
2689      TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2690      definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h.  */
2691   set_gdbarch_vbit_in_delta (arch, 1);
2692 
2693   return arch;
2694 }
2695 
2696 /* Provide a prototype to silence -Wmissing-prototypes.  */
2697 extern initialize_file_ftype _initialize_m32c_tdep;
2698 
2699 void
2700 _initialize_m32c_tdep (void)
2701 {
2702   register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2703 
2704   m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2705 }
2706