1 /* Target-dependent code for GNU/Linux, architecture independent. 2 3 Copyright (C) 2009-2015 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "gdbtypes.h" 22 #include "linux-tdep.h" 23 #include "auxv.h" 24 #include "target.h" 25 #include "gdbthread.h" 26 #include "gdbcore.h" 27 #include "regcache.h" 28 #include "regset.h" 29 #include "elf/common.h" 30 #include "elf-bfd.h" /* for elfcore_write_* */ 31 #include "inferior.h" 32 #include "cli/cli-utils.h" 33 #include "arch-utils.h" 34 #include "gdb_obstack.h" 35 #include "observer.h" 36 #include "objfiles.h" 37 #include "infcall.h" 38 #include "gdbcmd.h" 39 #include "gdb_regex.h" 40 41 #include <ctype.h> 42 43 /* This enum represents the values that the user can choose when 44 informing the Linux kernel about which memory mappings will be 45 dumped in a corefile. They are described in the file 46 Documentation/filesystems/proc.txt, inside the Linux kernel 47 tree. */ 48 49 enum filterflags 50 { 51 COREFILTER_ANON_PRIVATE = 1 << 0, 52 COREFILTER_ANON_SHARED = 1 << 1, 53 COREFILTER_MAPPED_PRIVATE = 1 << 2, 54 COREFILTER_MAPPED_SHARED = 1 << 3, 55 COREFILTER_ELF_HEADERS = 1 << 4, 56 COREFILTER_HUGETLB_PRIVATE = 1 << 5, 57 COREFILTER_HUGETLB_SHARED = 1 << 6, 58 }; 59 60 /* This struct is used to map flags found in the "VmFlags:" field (in 61 the /proc/<PID>/smaps file). */ 62 63 struct smaps_vmflags 64 { 65 /* Zero if this structure has not been initialized yet. It 66 probably means that the Linux kernel being used does not emit 67 the "VmFlags:" field on "/proc/PID/smaps". */ 68 69 unsigned int initialized_p : 1; 70 71 /* Memory mapped I/O area (VM_IO, "io"). */ 72 73 unsigned int io_page : 1; 74 75 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */ 76 77 unsigned int uses_huge_tlb : 1; 78 79 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */ 80 81 unsigned int exclude_coredump : 1; 82 83 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */ 84 85 unsigned int shared_mapping : 1; 86 }; 87 88 /* Whether to take the /proc/PID/coredump_filter into account when 89 generating a corefile. */ 90 91 static int use_coredump_filter = 1; 92 93 /* This enum represents the signals' numbers on a generic architecture 94 running the Linux kernel. The definition of "generic" comes from 95 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel 96 tree, which is the "de facto" implementation of signal numbers to 97 be used by new architecture ports. 98 99 For those architectures which have differences between the generic 100 standard (e.g., Alpha), we define the different signals (and *only* 101 those) in the specific target-dependent file (e.g., 102 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's 103 tdep file for more information. 104 105 ARM deserves a special mention here. On the file 106 <arch/arm/include/uapi/asm/signal.h>, it defines only one different 107 (and ARM-only) signal, which is SIGSWI, with the same number as 108 SIGRTMIN. This signal is used only for a very specific target, 109 called ArthurOS (from RISCOS). Therefore, we do not handle it on 110 the ARM-tdep file, and we can safely use the generic signal handler 111 here for ARM targets. 112 113 As stated above, this enum is derived from 114 <include/uapi/asm-generic/signal.h>, from the Linux kernel 115 tree. */ 116 117 enum 118 { 119 LINUX_SIGHUP = 1, 120 LINUX_SIGINT = 2, 121 LINUX_SIGQUIT = 3, 122 LINUX_SIGILL = 4, 123 LINUX_SIGTRAP = 5, 124 LINUX_SIGABRT = 6, 125 LINUX_SIGIOT = 6, 126 LINUX_SIGBUS = 7, 127 LINUX_SIGFPE = 8, 128 LINUX_SIGKILL = 9, 129 LINUX_SIGUSR1 = 10, 130 LINUX_SIGSEGV = 11, 131 LINUX_SIGUSR2 = 12, 132 LINUX_SIGPIPE = 13, 133 LINUX_SIGALRM = 14, 134 LINUX_SIGTERM = 15, 135 LINUX_SIGSTKFLT = 16, 136 LINUX_SIGCHLD = 17, 137 LINUX_SIGCONT = 18, 138 LINUX_SIGSTOP = 19, 139 LINUX_SIGTSTP = 20, 140 LINUX_SIGTTIN = 21, 141 LINUX_SIGTTOU = 22, 142 LINUX_SIGURG = 23, 143 LINUX_SIGXCPU = 24, 144 LINUX_SIGXFSZ = 25, 145 LINUX_SIGVTALRM = 26, 146 LINUX_SIGPROF = 27, 147 LINUX_SIGWINCH = 28, 148 LINUX_SIGIO = 29, 149 LINUX_SIGPOLL = LINUX_SIGIO, 150 LINUX_SIGPWR = 30, 151 LINUX_SIGSYS = 31, 152 LINUX_SIGUNUSED = 31, 153 154 LINUX_SIGRTMIN = 32, 155 LINUX_SIGRTMAX = 64, 156 }; 157 158 static struct gdbarch_data *linux_gdbarch_data_handle; 159 160 struct linux_gdbarch_data 161 { 162 struct type *siginfo_type; 163 }; 164 165 static void * 166 init_linux_gdbarch_data (struct gdbarch *gdbarch) 167 { 168 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data); 169 } 170 171 static struct linux_gdbarch_data * 172 get_linux_gdbarch_data (struct gdbarch *gdbarch) 173 { 174 return gdbarch_data (gdbarch, linux_gdbarch_data_handle); 175 } 176 177 /* Per-inferior data key. */ 178 static const struct inferior_data *linux_inferior_data; 179 180 /* Linux-specific cached data. This is used by GDB for caching 181 purposes for each inferior. This helps reduce the overhead of 182 transfering data from a remote target to the local host. */ 183 struct linux_info 184 { 185 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid 186 if VSYSCALL_RANGE_P is positive. This is cached because getting 187 at this info requires an auxv lookup (which is itself cached), 188 and looking through the inferior's mappings (which change 189 throughout execution and therefore cannot be cached). */ 190 struct mem_range vsyscall_range; 191 192 /* Zero if we haven't tried looking up the vsyscall's range before 193 yet. Positive if we tried looking it up, and found it. Negative 194 if we tried looking it up but failed. */ 195 int vsyscall_range_p; 196 }; 197 198 /* Frees whatever allocated space there is to be freed and sets INF's 199 linux cache data pointer to NULL. */ 200 201 static void 202 invalidate_linux_cache_inf (struct inferior *inf) 203 { 204 struct linux_info *info; 205 206 info = inferior_data (inf, linux_inferior_data); 207 if (info != NULL) 208 { 209 xfree (info); 210 set_inferior_data (inf, linux_inferior_data, NULL); 211 } 212 } 213 214 /* Handles the cleanup of the linux cache for inferior INF. ARG is 215 ignored. Callback for the inferior_appeared and inferior_exit 216 events. */ 217 218 static void 219 linux_inferior_data_cleanup (struct inferior *inf, void *arg) 220 { 221 invalidate_linux_cache_inf (inf); 222 } 223 224 /* Fetch the linux cache info for INF. This function always returns a 225 valid INFO pointer. */ 226 227 static struct linux_info * 228 get_linux_inferior_data (void) 229 { 230 struct linux_info *info; 231 struct inferior *inf = current_inferior (); 232 233 info = inferior_data (inf, linux_inferior_data); 234 if (info == NULL) 235 { 236 info = XCNEW (struct linux_info); 237 set_inferior_data (inf, linux_inferior_data, info); 238 } 239 240 return info; 241 } 242 243 /* This function is suitable for architectures that don't 244 extend/override the standard siginfo structure. */ 245 246 static struct type * 247 linux_get_siginfo_type (struct gdbarch *gdbarch) 248 { 249 struct linux_gdbarch_data *linux_gdbarch_data; 250 struct type *int_type, *uint_type, *long_type, *void_ptr_type; 251 struct type *uid_type, *pid_type; 252 struct type *sigval_type, *clock_type; 253 struct type *siginfo_type, *sifields_type; 254 struct type *type; 255 256 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch); 257 if (linux_gdbarch_data->siginfo_type != NULL) 258 return linux_gdbarch_data->siginfo_type; 259 260 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 261 0, "int"); 262 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 263 1, "unsigned int"); 264 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 265 0, "long"); 266 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void); 267 268 /* sival_t */ 269 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION); 270 TYPE_NAME (sigval_type) = xstrdup ("sigval_t"); 271 append_composite_type_field (sigval_type, "sival_int", int_type); 272 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type); 273 274 /* __pid_t */ 275 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF, 276 TYPE_LENGTH (int_type), "__pid_t"); 277 TYPE_TARGET_TYPE (pid_type) = int_type; 278 TYPE_TARGET_STUB (pid_type) = 1; 279 280 /* __uid_t */ 281 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF, 282 TYPE_LENGTH (uint_type), "__uid_t"); 283 TYPE_TARGET_TYPE (uid_type) = uint_type; 284 TYPE_TARGET_STUB (uid_type) = 1; 285 286 /* __clock_t */ 287 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF, 288 TYPE_LENGTH (long_type), "__clock_t"); 289 TYPE_TARGET_TYPE (clock_type) = long_type; 290 TYPE_TARGET_STUB (clock_type) = 1; 291 292 /* _sifields */ 293 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION); 294 295 { 296 const int si_max_size = 128; 297 int si_pad_size; 298 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT; 299 300 /* _pad */ 301 if (gdbarch_ptr_bit (gdbarch) == 64) 302 si_pad_size = (si_max_size / size_of_int) - 4; 303 else 304 si_pad_size = (si_max_size / size_of_int) - 3; 305 append_composite_type_field (sifields_type, "_pad", 306 init_vector_type (int_type, si_pad_size)); 307 } 308 309 /* _kill */ 310 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); 311 append_composite_type_field (type, "si_pid", pid_type); 312 append_composite_type_field (type, "si_uid", uid_type); 313 append_composite_type_field (sifields_type, "_kill", type); 314 315 /* _timer */ 316 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); 317 append_composite_type_field (type, "si_tid", int_type); 318 append_composite_type_field (type, "si_overrun", int_type); 319 append_composite_type_field (type, "si_sigval", sigval_type); 320 append_composite_type_field (sifields_type, "_timer", type); 321 322 /* _rt */ 323 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); 324 append_composite_type_field (type, "si_pid", pid_type); 325 append_composite_type_field (type, "si_uid", uid_type); 326 append_composite_type_field (type, "si_sigval", sigval_type); 327 append_composite_type_field (sifields_type, "_rt", type); 328 329 /* _sigchld */ 330 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); 331 append_composite_type_field (type, "si_pid", pid_type); 332 append_composite_type_field (type, "si_uid", uid_type); 333 append_composite_type_field (type, "si_status", int_type); 334 append_composite_type_field (type, "si_utime", clock_type); 335 append_composite_type_field (type, "si_stime", clock_type); 336 append_composite_type_field (sifields_type, "_sigchld", type); 337 338 /* _sigfault */ 339 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); 340 append_composite_type_field (type, "si_addr", void_ptr_type); 341 append_composite_type_field (sifields_type, "_sigfault", type); 342 343 /* _sigpoll */ 344 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); 345 append_composite_type_field (type, "si_band", long_type); 346 append_composite_type_field (type, "si_fd", int_type); 347 append_composite_type_field (sifields_type, "_sigpoll", type); 348 349 /* struct siginfo */ 350 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); 351 TYPE_NAME (siginfo_type) = xstrdup ("siginfo"); 352 append_composite_type_field (siginfo_type, "si_signo", int_type); 353 append_composite_type_field (siginfo_type, "si_errno", int_type); 354 append_composite_type_field (siginfo_type, "si_code", int_type); 355 append_composite_type_field_aligned (siginfo_type, 356 "_sifields", sifields_type, 357 TYPE_LENGTH (long_type)); 358 359 linux_gdbarch_data->siginfo_type = siginfo_type; 360 361 return siginfo_type; 362 } 363 364 /* Return true if the target is running on uClinux instead of normal 365 Linux kernel. */ 366 367 int 368 linux_is_uclinux (void) 369 { 370 CORE_ADDR dummy; 371 372 return (target_auxv_search (¤t_target, AT_NULL, &dummy) > 0 373 && target_auxv_search (¤t_target, AT_PAGESZ, &dummy) == 0); 374 } 375 376 static int 377 linux_has_shared_address_space (struct gdbarch *gdbarch) 378 { 379 return linux_is_uclinux (); 380 } 381 382 /* This is how we want PTIDs from core files to be printed. */ 383 384 static char * 385 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid) 386 { 387 static char buf[80]; 388 389 if (ptid_get_lwp (ptid) != 0) 390 { 391 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid)); 392 return buf; 393 } 394 395 return normal_pid_to_str (ptid); 396 } 397 398 /* Service function for corefiles and info proc. */ 399 400 static void 401 read_mapping (const char *line, 402 ULONGEST *addr, ULONGEST *endaddr, 403 const char **permissions, size_t *permissions_len, 404 ULONGEST *offset, 405 const char **device, size_t *device_len, 406 ULONGEST *inode, 407 const char **filename) 408 { 409 const char *p = line; 410 411 *addr = strtoulst (p, &p, 16); 412 if (*p == '-') 413 p++; 414 *endaddr = strtoulst (p, &p, 16); 415 416 p = skip_spaces_const (p); 417 *permissions = p; 418 while (*p && !isspace (*p)) 419 p++; 420 *permissions_len = p - *permissions; 421 422 *offset = strtoulst (p, &p, 16); 423 424 p = skip_spaces_const (p); 425 *device = p; 426 while (*p && !isspace (*p)) 427 p++; 428 *device_len = p - *device; 429 430 *inode = strtoulst (p, &p, 10); 431 432 p = skip_spaces_const (p); 433 *filename = p; 434 } 435 436 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps. 437 438 This function was based on the documentation found on 439 <Documentation/filesystems/proc.txt>, on the Linux kernel. 440 441 Linux kernels before commit 442 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this 443 field on smaps. */ 444 445 static void 446 decode_vmflags (char *p, struct smaps_vmflags *v) 447 { 448 char *saveptr = NULL; 449 const char *s; 450 451 v->initialized_p = 1; 452 p = skip_to_space (p); 453 p = skip_spaces (p); 454 455 for (s = strtok_r (p, " ", &saveptr); 456 s != NULL; 457 s = strtok_r (NULL, " ", &saveptr)) 458 { 459 if (strcmp (s, "io") == 0) 460 v->io_page = 1; 461 else if (strcmp (s, "ht") == 0) 462 v->uses_huge_tlb = 1; 463 else if (strcmp (s, "dd") == 0) 464 v->exclude_coredump = 1; 465 else if (strcmp (s, "sh") == 0) 466 v->shared_mapping = 1; 467 } 468 } 469 470 /* Return 1 if the memory mapping is anonymous, 0 otherwise. 471 472 FILENAME is the name of the file present in the first line of the 473 memory mapping, in the "/proc/PID/smaps" output. For example, if 474 the first line is: 475 476 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file 477 478 Then FILENAME will be "/path/to/file". */ 479 480 static int 481 mapping_is_anonymous_p (const char *filename) 482 { 483 static regex_t dev_zero_regex, shmem_file_regex, file_deleted_regex; 484 static int init_regex_p = 0; 485 486 if (!init_regex_p) 487 { 488 struct cleanup *c = make_cleanup (null_cleanup, NULL); 489 490 /* Let's be pessimistic and assume there will be an error while 491 compiling the regex'es. */ 492 init_regex_p = -1; 493 494 /* DEV_ZERO_REGEX matches "/dev/zero" filenames (with or 495 without the "(deleted)" string in the end). We know for 496 sure, based on the Linux kernel code, that memory mappings 497 whose associated filename is "/dev/zero" are guaranteed to be 498 MAP_ANONYMOUS. */ 499 compile_rx_or_error (&dev_zero_regex, "^/dev/zero\\( (deleted)\\)\\?$", 500 _("Could not compile regex to match /dev/zero " 501 "filename")); 502 /* SHMEM_FILE_REGEX matches "/SYSV%08x" filenames (with or 503 without the "(deleted)" string in the end). These filenames 504 refer to shared memory (shmem), and memory mappings 505 associated with them are MAP_ANONYMOUS as well. */ 506 compile_rx_or_error (&shmem_file_regex, 507 "^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", 508 _("Could not compile regex to match shmem " 509 "filenames")); 510 /* FILE_DELETED_REGEX is a heuristic we use to try to mimic the 511 Linux kernel's 'n_link == 0' code, which is responsible to 512 decide if it is dealing with a 'MAP_SHARED | MAP_ANONYMOUS' 513 mapping. In other words, if FILE_DELETED_REGEX matches, it 514 does not necessarily mean that we are dealing with an 515 anonymous shared mapping. However, there is no easy way to 516 detect this currently, so this is the best approximation we 517 have. 518 519 As a result, GDB will dump readonly pages of deleted 520 executables when using the default value of coredump_filter 521 (0x33), while the Linux kernel will not dump those pages. 522 But we can live with that. */ 523 compile_rx_or_error (&file_deleted_regex, " (deleted)$", 524 _("Could not compile regex to match " 525 "'<file> (deleted)'")); 526 /* We will never release these regexes, so just discard the 527 cleanups. */ 528 discard_cleanups (c); 529 530 /* If we reached this point, then everything succeeded. */ 531 init_regex_p = 1; 532 } 533 534 if (init_regex_p == -1) 535 { 536 const char deleted[] = " (deleted)"; 537 size_t del_len = sizeof (deleted) - 1; 538 size_t filename_len = strlen (filename); 539 540 /* There was an error while compiling the regex'es above. In 541 order to try to give some reliable information to the caller, 542 we just try to find the string " (deleted)" in the filename. 543 If we managed to find it, then we assume the mapping is 544 anonymous. */ 545 return (filename_len >= del_len 546 && strcmp (filename + filename_len - del_len, deleted) == 0); 547 } 548 549 if (*filename == '\0' 550 || regexec (&dev_zero_regex, filename, 0, NULL, 0) == 0 551 || regexec (&shmem_file_regex, filename, 0, NULL, 0) == 0 552 || regexec (&file_deleted_regex, filename, 0, NULL, 0) == 0) 553 return 1; 554 555 return 0; 556 } 557 558 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V, 559 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or 560 greater than 0 if it should. 561 562 In a nutshell, this is the logic that we follow in order to decide 563 if a mapping should be dumped or not. 564 565 - If the mapping is associated to a file whose name ends with 566 " (deleted)", or if the file is "/dev/zero", or if it is 567 "/SYSV%08x" (shared memory), or if there is no file associated 568 with it, or if the AnonHugePages: or the Anonymous: fields in the 569 /proc/PID/smaps have contents, then GDB considers this mapping to 570 be anonymous. Otherwise, GDB considers this mapping to be a 571 file-backed mapping (because there will be a file associated with 572 it). 573 574 It is worth mentioning that, from all those checks described 575 above, the most fragile is the one to see if the file name ends 576 with " (deleted)". This does not necessarily mean that the 577 mapping is anonymous, because the deleted file associated with 578 the mapping may have been a hard link to another file, for 579 example. The Linux kernel checks to see if "i_nlink == 0", but 580 GDB cannot easily (and normally) do this check (iff running as 581 root, it could find the mapping in /proc/PID/map_files/ and 582 determine whether there still are other hard links to the 583 inode/file). Therefore, we made a compromise here, and we assume 584 that if the file name ends with " (deleted)", then the mapping is 585 indeed anonymous. FWIW, this is something the Linux kernel could 586 do better: expose this information in a more direct way. 587 588 - If we see the flag "sh" in the "VmFlags:" field (in 589 /proc/PID/smaps), then certainly the memory mapping is shared 590 (VM_SHARED). If we have access to the VmFlags, and we don't see 591 the "sh" there, then certainly the mapping is private. However, 592 Linux kernels before commit 593 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the 594 "VmFlags:" field; in that case, we use another heuristic: if we 595 see 'p' in the permission flags, then we assume that the mapping 596 is private, even though the presence of the 's' flag there would 597 mean VM_MAYSHARE, which means the mapping could still be private. 598 This should work OK enough, however. */ 599 600 static int 601 dump_mapping_p (enum filterflags filterflags, const struct smaps_vmflags *v, 602 int maybe_private_p, int mapping_anon_p, int mapping_file_p, 603 const char *filename) 604 { 605 /* Initially, we trust in what we received from our caller. This 606 value may not be very precise (i.e., it was probably gathered 607 from the permission line in the /proc/PID/smaps list, which 608 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is 609 what we have until we take a look at the "VmFlags:" field 610 (assuming that the version of the Linux kernel being used 611 supports it, of course). */ 612 int private_p = maybe_private_p; 613 614 /* We always dump vDSO and vsyscall mappings, because it's likely that 615 there'll be no file to read the contents from at core load time. 616 The kernel does the same. */ 617 if (strcmp ("[vdso]", filename) == 0 618 || strcmp ("[vsyscall]", filename) == 0) 619 return 1; 620 621 if (v->initialized_p) 622 { 623 /* We never dump I/O mappings. */ 624 if (v->io_page) 625 return 0; 626 627 /* Check if we should exclude this mapping. */ 628 if (v->exclude_coredump) 629 return 0; 630 631 /* Update our notion of whether this mapping is shared or 632 private based on a trustworthy value. */ 633 private_p = !v->shared_mapping; 634 635 /* HugeTLB checking. */ 636 if (v->uses_huge_tlb) 637 { 638 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE)) 639 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED))) 640 return 1; 641 642 return 0; 643 } 644 } 645 646 if (private_p) 647 { 648 if (mapping_anon_p && mapping_file_p) 649 { 650 /* This is a special situation. It can happen when we see a 651 mapping that is file-backed, but that contains anonymous 652 pages. */ 653 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0 654 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0); 655 } 656 else if (mapping_anon_p) 657 return (filterflags & COREFILTER_ANON_PRIVATE) != 0; 658 else 659 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0; 660 } 661 else 662 { 663 if (mapping_anon_p && mapping_file_p) 664 { 665 /* This is a special situation. It can happen when we see a 666 mapping that is file-backed, but that contains anonymous 667 pages. */ 668 return ((filterflags & COREFILTER_ANON_SHARED) != 0 669 || (filterflags & COREFILTER_MAPPED_SHARED) != 0); 670 } 671 else if (mapping_anon_p) 672 return (filterflags & COREFILTER_ANON_SHARED) != 0; 673 else 674 return (filterflags & COREFILTER_MAPPED_SHARED) != 0; 675 } 676 } 677 678 /* Implement the "info proc" command. */ 679 680 static void 681 linux_info_proc (struct gdbarch *gdbarch, const char *args, 682 enum info_proc_what what) 683 { 684 /* A long is used for pid instead of an int to avoid a loss of precision 685 compiler warning from the output of strtoul. */ 686 long pid; 687 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL); 688 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL); 689 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL); 690 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL); 691 int status_f = (what == IP_STATUS || what == IP_ALL); 692 int stat_f = (what == IP_STAT || what == IP_ALL); 693 char filename[100]; 694 char *data; 695 int target_errno; 696 697 if (args && isdigit (args[0])) 698 { 699 char *tem; 700 701 pid = strtoul (args, &tem, 10); 702 args = tem; 703 } 704 else 705 { 706 if (!target_has_execution) 707 error (_("No current process: you must name one.")); 708 if (current_inferior ()->fake_pid_p) 709 error (_("Can't determine the current process's PID: you must name one.")); 710 711 pid = current_inferior ()->pid; 712 } 713 714 args = skip_spaces_const (args); 715 if (args && args[0]) 716 error (_("Too many parameters: %s"), args); 717 718 printf_filtered (_("process %ld\n"), pid); 719 if (cmdline_f) 720 { 721 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid); 722 data = target_fileio_read_stralloc (NULL, filename); 723 if (data) 724 { 725 struct cleanup *cleanup = make_cleanup (xfree, data); 726 printf_filtered ("cmdline = '%s'\n", data); 727 do_cleanups (cleanup); 728 } 729 else 730 warning (_("unable to open /proc file '%s'"), filename); 731 } 732 if (cwd_f) 733 { 734 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid); 735 data = target_fileio_readlink (NULL, filename, &target_errno); 736 if (data) 737 { 738 struct cleanup *cleanup = make_cleanup (xfree, data); 739 printf_filtered ("cwd = '%s'\n", data); 740 do_cleanups (cleanup); 741 } 742 else 743 warning (_("unable to read link '%s'"), filename); 744 } 745 if (exe_f) 746 { 747 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid); 748 data = target_fileio_readlink (NULL, filename, &target_errno); 749 if (data) 750 { 751 struct cleanup *cleanup = make_cleanup (xfree, data); 752 printf_filtered ("exe = '%s'\n", data); 753 do_cleanups (cleanup); 754 } 755 else 756 warning (_("unable to read link '%s'"), filename); 757 } 758 if (mappings_f) 759 { 760 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid); 761 data = target_fileio_read_stralloc (NULL, filename); 762 if (data) 763 { 764 struct cleanup *cleanup = make_cleanup (xfree, data); 765 char *line; 766 767 printf_filtered (_("Mapped address spaces:\n\n")); 768 if (gdbarch_addr_bit (gdbarch) == 32) 769 { 770 printf_filtered ("\t%10s %10s %10s %10s %s\n", 771 "Start Addr", 772 " End Addr", 773 " Size", " Offset", "objfile"); 774 } 775 else 776 { 777 printf_filtered (" %18s %18s %10s %10s %s\n", 778 "Start Addr", 779 " End Addr", 780 " Size", " Offset", "objfile"); 781 } 782 783 for (line = strtok (data, "\n"); line; line = strtok (NULL, "\n")) 784 { 785 ULONGEST addr, endaddr, offset, inode; 786 const char *permissions, *device, *filename; 787 size_t permissions_len, device_len; 788 789 read_mapping (line, &addr, &endaddr, 790 &permissions, &permissions_len, 791 &offset, &device, &device_len, 792 &inode, &filename); 793 794 if (gdbarch_addr_bit (gdbarch) == 32) 795 { 796 printf_filtered ("\t%10s %10s %10s %10s %s\n", 797 paddress (gdbarch, addr), 798 paddress (gdbarch, endaddr), 799 hex_string (endaddr - addr), 800 hex_string (offset), 801 *filename? filename : ""); 802 } 803 else 804 { 805 printf_filtered (" %18s %18s %10s %10s %s\n", 806 paddress (gdbarch, addr), 807 paddress (gdbarch, endaddr), 808 hex_string (endaddr - addr), 809 hex_string (offset), 810 *filename? filename : ""); 811 } 812 } 813 814 do_cleanups (cleanup); 815 } 816 else 817 warning (_("unable to open /proc file '%s'"), filename); 818 } 819 if (status_f) 820 { 821 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid); 822 data = target_fileio_read_stralloc (NULL, filename); 823 if (data) 824 { 825 struct cleanup *cleanup = make_cleanup (xfree, data); 826 puts_filtered (data); 827 do_cleanups (cleanup); 828 } 829 else 830 warning (_("unable to open /proc file '%s'"), filename); 831 } 832 if (stat_f) 833 { 834 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid); 835 data = target_fileio_read_stralloc (NULL, filename); 836 if (data) 837 { 838 struct cleanup *cleanup = make_cleanup (xfree, data); 839 const char *p = data; 840 841 printf_filtered (_("Process: %s\n"), 842 pulongest (strtoulst (p, &p, 10))); 843 844 p = skip_spaces_const (p); 845 if (*p == '(') 846 { 847 /* ps command also relies on no trailing fields 848 ever contain ')'. */ 849 const char *ep = strrchr (p, ')'); 850 if (ep != NULL) 851 { 852 printf_filtered ("Exec file: %.*s\n", 853 (int) (ep - p - 1), p + 1); 854 p = ep + 1; 855 } 856 } 857 858 p = skip_spaces_const (p); 859 if (*p) 860 printf_filtered (_("State: %c\n"), *p++); 861 862 if (*p) 863 printf_filtered (_("Parent process: %s\n"), 864 pulongest (strtoulst (p, &p, 10))); 865 if (*p) 866 printf_filtered (_("Process group: %s\n"), 867 pulongest (strtoulst (p, &p, 10))); 868 if (*p) 869 printf_filtered (_("Session id: %s\n"), 870 pulongest (strtoulst (p, &p, 10))); 871 if (*p) 872 printf_filtered (_("TTY: %s\n"), 873 pulongest (strtoulst (p, &p, 10))); 874 if (*p) 875 printf_filtered (_("TTY owner process group: %s\n"), 876 pulongest (strtoulst (p, &p, 10))); 877 878 if (*p) 879 printf_filtered (_("Flags: %s\n"), 880 hex_string (strtoulst (p, &p, 10))); 881 if (*p) 882 printf_filtered (_("Minor faults (no memory page): %s\n"), 883 pulongest (strtoulst (p, &p, 10))); 884 if (*p) 885 printf_filtered (_("Minor faults, children: %s\n"), 886 pulongest (strtoulst (p, &p, 10))); 887 if (*p) 888 printf_filtered (_("Major faults (memory page faults): %s\n"), 889 pulongest (strtoulst (p, &p, 10))); 890 if (*p) 891 printf_filtered (_("Major faults, children: %s\n"), 892 pulongest (strtoulst (p, &p, 10))); 893 if (*p) 894 printf_filtered (_("utime: %s\n"), 895 pulongest (strtoulst (p, &p, 10))); 896 if (*p) 897 printf_filtered (_("stime: %s\n"), 898 pulongest (strtoulst (p, &p, 10))); 899 if (*p) 900 printf_filtered (_("utime, children: %s\n"), 901 pulongest (strtoulst (p, &p, 10))); 902 if (*p) 903 printf_filtered (_("stime, children: %s\n"), 904 pulongest (strtoulst (p, &p, 10))); 905 if (*p) 906 printf_filtered (_("jiffies remaining in current " 907 "time slice: %s\n"), 908 pulongest (strtoulst (p, &p, 10))); 909 if (*p) 910 printf_filtered (_("'nice' value: %s\n"), 911 pulongest (strtoulst (p, &p, 10))); 912 if (*p) 913 printf_filtered (_("jiffies until next timeout: %s\n"), 914 pulongest (strtoulst (p, &p, 10))); 915 if (*p) 916 printf_filtered (_("jiffies until next SIGALRM: %s\n"), 917 pulongest (strtoulst (p, &p, 10))); 918 if (*p) 919 printf_filtered (_("start time (jiffies since " 920 "system boot): %s\n"), 921 pulongest (strtoulst (p, &p, 10))); 922 if (*p) 923 printf_filtered (_("Virtual memory size: %s\n"), 924 pulongest (strtoulst (p, &p, 10))); 925 if (*p) 926 printf_filtered (_("Resident set size: %s\n"), 927 pulongest (strtoulst (p, &p, 10))); 928 if (*p) 929 printf_filtered (_("rlim: %s\n"), 930 pulongest (strtoulst (p, &p, 10))); 931 if (*p) 932 printf_filtered (_("Start of text: %s\n"), 933 hex_string (strtoulst (p, &p, 10))); 934 if (*p) 935 printf_filtered (_("End of text: %s\n"), 936 hex_string (strtoulst (p, &p, 10))); 937 if (*p) 938 printf_filtered (_("Start of stack: %s\n"), 939 hex_string (strtoulst (p, &p, 10))); 940 #if 0 /* Don't know how architecture-dependent the rest is... 941 Anyway the signal bitmap info is available from "status". */ 942 if (*p) 943 printf_filtered (_("Kernel stack pointer: %s\n"), 944 hex_string (strtoulst (p, &p, 10))); 945 if (*p) 946 printf_filtered (_("Kernel instr pointer: %s\n"), 947 hex_string (strtoulst (p, &p, 10))); 948 if (*p) 949 printf_filtered (_("Pending signals bitmap: %s\n"), 950 hex_string (strtoulst (p, &p, 10))); 951 if (*p) 952 printf_filtered (_("Blocked signals bitmap: %s\n"), 953 hex_string (strtoulst (p, &p, 10))); 954 if (*p) 955 printf_filtered (_("Ignored signals bitmap: %s\n"), 956 hex_string (strtoulst (p, &p, 10))); 957 if (*p) 958 printf_filtered (_("Catched signals bitmap: %s\n"), 959 hex_string (strtoulst (p, &p, 10))); 960 if (*p) 961 printf_filtered (_("wchan (system call): %s\n"), 962 hex_string (strtoulst (p, &p, 10))); 963 #endif 964 do_cleanups (cleanup); 965 } 966 else 967 warning (_("unable to open /proc file '%s'"), filename); 968 } 969 } 970 971 /* Implement "info proc mappings" for a corefile. */ 972 973 static void 974 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args) 975 { 976 asection *section; 977 ULONGEST count, page_size; 978 unsigned char *descdata, *filenames, *descend, *contents; 979 size_t note_size; 980 unsigned int addr_size_bits, addr_size; 981 struct cleanup *cleanup; 982 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd); 983 /* We assume this for reading 64-bit core files. */ 984 gdb_static_assert (sizeof (ULONGEST) >= 8); 985 986 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file"); 987 if (section == NULL) 988 { 989 warning (_("unable to find mappings in core file")); 990 return; 991 } 992 993 addr_size_bits = gdbarch_addr_bit (core_gdbarch); 994 addr_size = addr_size_bits / 8; 995 note_size = bfd_get_section_size (section); 996 997 if (note_size < 2 * addr_size) 998 error (_("malformed core note - too short for header")); 999 1000 contents = xmalloc (note_size); 1001 cleanup = make_cleanup (xfree, contents); 1002 if (!bfd_get_section_contents (core_bfd, section, contents, 0, note_size)) 1003 error (_("could not get core note contents")); 1004 1005 descdata = contents; 1006 descend = descdata + note_size; 1007 1008 if (descdata[note_size - 1] != '\0') 1009 error (_("malformed note - does not end with \\0")); 1010 1011 count = bfd_get (addr_size_bits, core_bfd, descdata); 1012 descdata += addr_size; 1013 1014 page_size = bfd_get (addr_size_bits, core_bfd, descdata); 1015 descdata += addr_size; 1016 1017 if (note_size < 2 * addr_size + count * 3 * addr_size) 1018 error (_("malformed note - too short for supplied file count")); 1019 1020 printf_filtered (_("Mapped address spaces:\n\n")); 1021 if (gdbarch_addr_bit (gdbarch) == 32) 1022 { 1023 printf_filtered ("\t%10s %10s %10s %10s %s\n", 1024 "Start Addr", 1025 " End Addr", 1026 " Size", " Offset", "objfile"); 1027 } 1028 else 1029 { 1030 printf_filtered (" %18s %18s %10s %10s %s\n", 1031 "Start Addr", 1032 " End Addr", 1033 " Size", " Offset", "objfile"); 1034 } 1035 1036 filenames = descdata + count * 3 * addr_size; 1037 while (--count > 0) 1038 { 1039 ULONGEST start, end, file_ofs; 1040 1041 if (filenames == descend) 1042 error (_("malformed note - filenames end too early")); 1043 1044 start = bfd_get (addr_size_bits, core_bfd, descdata); 1045 descdata += addr_size; 1046 end = bfd_get (addr_size_bits, core_bfd, descdata); 1047 descdata += addr_size; 1048 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata); 1049 descdata += addr_size; 1050 1051 file_ofs *= page_size; 1052 1053 if (gdbarch_addr_bit (gdbarch) == 32) 1054 printf_filtered ("\t%10s %10s %10s %10s %s\n", 1055 paddress (gdbarch, start), 1056 paddress (gdbarch, end), 1057 hex_string (end - start), 1058 hex_string (file_ofs), 1059 filenames); 1060 else 1061 printf_filtered (" %18s %18s %10s %10s %s\n", 1062 paddress (gdbarch, start), 1063 paddress (gdbarch, end), 1064 hex_string (end - start), 1065 hex_string (file_ofs), 1066 filenames); 1067 1068 filenames += 1 + strlen ((char *) filenames); 1069 } 1070 1071 do_cleanups (cleanup); 1072 } 1073 1074 /* Implement "info proc" for a corefile. */ 1075 1076 static void 1077 linux_core_info_proc (struct gdbarch *gdbarch, const char *args, 1078 enum info_proc_what what) 1079 { 1080 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL); 1081 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL); 1082 1083 if (exe_f) 1084 { 1085 const char *exe; 1086 1087 exe = bfd_core_file_failing_command (core_bfd); 1088 if (exe != NULL) 1089 printf_filtered ("exe = '%s'\n", exe); 1090 else 1091 warning (_("unable to find command name in core file")); 1092 } 1093 1094 if (mappings_f) 1095 linux_core_info_proc_mappings (gdbarch, args); 1096 1097 if (!exe_f && !mappings_f) 1098 error (_("unable to handle request")); 1099 } 1100 1101 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size, 1102 ULONGEST offset, ULONGEST inode, 1103 int read, int write, 1104 int exec, int modified, 1105 const char *filename, 1106 void *data); 1107 1108 /* List memory regions in the inferior for a corefile. */ 1109 1110 static int 1111 linux_find_memory_regions_full (struct gdbarch *gdbarch, 1112 linux_find_memory_region_ftype *func, 1113 void *obfd) 1114 { 1115 char mapsfilename[100]; 1116 char coredumpfilter_name[100]; 1117 char *data, *coredumpfilterdata; 1118 pid_t pid; 1119 /* Default dump behavior of coredump_filter (0x33), according to 1120 Documentation/filesystems/proc.txt from the Linux kernel 1121 tree. */ 1122 enum filterflags filterflags = (COREFILTER_ANON_PRIVATE 1123 | COREFILTER_ANON_SHARED 1124 | COREFILTER_ELF_HEADERS 1125 | COREFILTER_HUGETLB_PRIVATE); 1126 1127 /* We need to know the real target PID to access /proc. */ 1128 if (current_inferior ()->fake_pid_p) 1129 return 1; 1130 1131 pid = current_inferior ()->pid; 1132 1133 if (use_coredump_filter) 1134 { 1135 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name), 1136 "/proc/%d/coredump_filter", pid); 1137 coredumpfilterdata = target_fileio_read_stralloc (NULL, 1138 coredumpfilter_name); 1139 if (coredumpfilterdata != NULL) 1140 { 1141 sscanf (coredumpfilterdata, "%x", &filterflags); 1142 xfree (coredumpfilterdata); 1143 } 1144 } 1145 1146 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid); 1147 data = target_fileio_read_stralloc (NULL, mapsfilename); 1148 if (data == NULL) 1149 { 1150 /* Older Linux kernels did not support /proc/PID/smaps. */ 1151 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid); 1152 data = target_fileio_read_stralloc (NULL, mapsfilename); 1153 } 1154 1155 if (data != NULL) 1156 { 1157 struct cleanup *cleanup = make_cleanup (xfree, data); 1158 char *line, *t; 1159 1160 line = strtok_r (data, "\n", &t); 1161 while (line != NULL) 1162 { 1163 ULONGEST addr, endaddr, offset, inode; 1164 const char *permissions, *device, *filename; 1165 struct smaps_vmflags v; 1166 size_t permissions_len, device_len; 1167 int read, write, exec, priv; 1168 int has_anonymous = 0; 1169 int should_dump_p = 0; 1170 int mapping_anon_p; 1171 int mapping_file_p; 1172 1173 memset (&v, 0, sizeof (v)); 1174 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len, 1175 &offset, &device, &device_len, &inode, &filename); 1176 mapping_anon_p = mapping_is_anonymous_p (filename); 1177 /* If the mapping is not anonymous, then we can consider it 1178 to be file-backed. These two states (anonymous or 1179 file-backed) seem to be exclusive, but they can actually 1180 coexist. For example, if a file-backed mapping has 1181 "Anonymous:" pages (see more below), then the Linux 1182 kernel will dump this mapping when the user specified 1183 that she only wants anonymous mappings in the corefile 1184 (*even* when she explicitly disabled the dumping of 1185 file-backed mappings). */ 1186 mapping_file_p = !mapping_anon_p; 1187 1188 /* Decode permissions. */ 1189 read = (memchr (permissions, 'r', permissions_len) != 0); 1190 write = (memchr (permissions, 'w', permissions_len) != 0); 1191 exec = (memchr (permissions, 'x', permissions_len) != 0); 1192 /* 'private' here actually means VM_MAYSHARE, and not 1193 VM_SHARED. In order to know if a mapping is really 1194 private or not, we must check the flag "sh" in the 1195 VmFlags field. This is done by decode_vmflags. However, 1196 if we are using a Linux kernel released before the commit 1197 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will 1198 not have the VmFlags there. In this case, there is 1199 really no way to know if we are dealing with VM_SHARED, 1200 so we just assume that VM_MAYSHARE is enough. */ 1201 priv = memchr (permissions, 'p', permissions_len) != 0; 1202 1203 /* Try to detect if region should be dumped by parsing smaps 1204 counters. */ 1205 for (line = strtok_r (NULL, "\n", &t); 1206 line != NULL && line[0] >= 'A' && line[0] <= 'Z'; 1207 line = strtok_r (NULL, "\n", &t)) 1208 { 1209 char keyword[64 + 1]; 1210 1211 if (sscanf (line, "%64s", keyword) != 1) 1212 { 1213 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename); 1214 break; 1215 } 1216 1217 if (strcmp (keyword, "Anonymous:") == 0) 1218 { 1219 /* Older Linux kernels did not support the 1220 "Anonymous:" counter. Check it here. */ 1221 has_anonymous = 1; 1222 } 1223 else if (strcmp (keyword, "VmFlags:") == 0) 1224 decode_vmflags (line, &v); 1225 1226 if (strcmp (keyword, "AnonHugePages:") == 0 1227 || strcmp (keyword, "Anonymous:") == 0) 1228 { 1229 unsigned long number; 1230 1231 if (sscanf (line, "%*s%lu", &number) != 1) 1232 { 1233 warning (_("Error parsing {s,}maps file '%s' number"), 1234 mapsfilename); 1235 break; 1236 } 1237 if (number > 0) 1238 { 1239 /* Even if we are dealing with a file-backed 1240 mapping, if it contains anonymous pages we 1241 consider it to be *also* an anonymous 1242 mapping, because this is what the Linux 1243 kernel does: 1244 1245 // Dump segments that have been written to. 1246 if (vma->anon_vma && FILTER(ANON_PRIVATE)) 1247 goto whole; 1248 1249 Note that if the mapping is already marked as 1250 file-backed (i.e., mapping_file_p is 1251 non-zero), then this is a special case, and 1252 this mapping will be dumped either when the 1253 user wants to dump file-backed *or* anonymous 1254 mappings. */ 1255 mapping_anon_p = 1; 1256 } 1257 } 1258 } 1259 1260 if (has_anonymous) 1261 should_dump_p = dump_mapping_p (filterflags, &v, priv, 1262 mapping_anon_p, mapping_file_p, 1263 filename); 1264 else 1265 { 1266 /* Older Linux kernels did not support the "Anonymous:" counter. 1267 If it is missing, we can't be sure - dump all the pages. */ 1268 should_dump_p = 1; 1269 } 1270 1271 /* Invoke the callback function to create the corefile segment. */ 1272 if (should_dump_p) 1273 func (addr, endaddr - addr, offset, inode, 1274 read, write, exec, 1, /* MODIFIED is true because we 1275 want to dump the mapping. */ 1276 filename, obfd); 1277 } 1278 1279 do_cleanups (cleanup); 1280 return 0; 1281 } 1282 1283 return 1; 1284 } 1285 1286 /* A structure for passing information through 1287 linux_find_memory_regions_full. */ 1288 1289 struct linux_find_memory_regions_data 1290 { 1291 /* The original callback. */ 1292 1293 find_memory_region_ftype func; 1294 1295 /* The original datum. */ 1296 1297 void *obfd; 1298 }; 1299 1300 /* A callback for linux_find_memory_regions that converts between the 1301 "full"-style callback and find_memory_region_ftype. */ 1302 1303 static int 1304 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size, 1305 ULONGEST offset, ULONGEST inode, 1306 int read, int write, int exec, int modified, 1307 const char *filename, void *arg) 1308 { 1309 struct linux_find_memory_regions_data *data = arg; 1310 1311 return data->func (vaddr, size, read, write, exec, modified, data->obfd); 1312 } 1313 1314 /* A variant of linux_find_memory_regions_full that is suitable as the 1315 gdbarch find_memory_regions method. */ 1316 1317 static int 1318 linux_find_memory_regions (struct gdbarch *gdbarch, 1319 find_memory_region_ftype func, void *obfd) 1320 { 1321 struct linux_find_memory_regions_data data; 1322 1323 data.func = func; 1324 data.obfd = obfd; 1325 1326 return linux_find_memory_regions_full (gdbarch, 1327 linux_find_memory_regions_thunk, 1328 &data); 1329 } 1330 1331 /* Determine which signal stopped execution. */ 1332 1333 static int 1334 find_signalled_thread (struct thread_info *info, void *data) 1335 { 1336 if (info->suspend.stop_signal != GDB_SIGNAL_0 1337 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid)) 1338 return 1; 1339 1340 return 0; 1341 } 1342 1343 static enum gdb_signal 1344 find_stop_signal (void) 1345 { 1346 struct thread_info *info = 1347 iterate_over_threads (find_signalled_thread, NULL); 1348 1349 if (info) 1350 return info->suspend.stop_signal; 1351 else 1352 return GDB_SIGNAL_0; 1353 } 1354 1355 /* Generate corefile notes for SPU contexts. */ 1356 1357 static char * 1358 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size) 1359 { 1360 static const char *spu_files[] = 1361 { 1362 "object-id", 1363 "mem", 1364 "regs", 1365 "fpcr", 1366 "lslr", 1367 "decr", 1368 "decr_status", 1369 "signal1", 1370 "signal1_type", 1371 "signal2", 1372 "signal2_type", 1373 "event_mask", 1374 "event_status", 1375 "mbox_info", 1376 "ibox_info", 1377 "wbox_info", 1378 "dma_info", 1379 "proxydma_info", 1380 }; 1381 1382 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 1383 gdb_byte *spu_ids; 1384 LONGEST i, j, size; 1385 1386 /* Determine list of SPU ids. */ 1387 size = target_read_alloc (¤t_target, TARGET_OBJECT_SPU, 1388 NULL, &spu_ids); 1389 1390 /* Generate corefile notes for each SPU file. */ 1391 for (i = 0; i < size; i += 4) 1392 { 1393 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order); 1394 1395 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++) 1396 { 1397 char annex[32], note_name[32]; 1398 gdb_byte *spu_data; 1399 LONGEST spu_len; 1400 1401 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]); 1402 spu_len = target_read_alloc (¤t_target, TARGET_OBJECT_SPU, 1403 annex, &spu_data); 1404 if (spu_len > 0) 1405 { 1406 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex); 1407 note_data = elfcore_write_note (obfd, note_data, note_size, 1408 note_name, NT_SPU, 1409 spu_data, spu_len); 1410 xfree (spu_data); 1411 1412 if (!note_data) 1413 { 1414 xfree (spu_ids); 1415 return NULL; 1416 } 1417 } 1418 } 1419 } 1420 1421 if (size > 0) 1422 xfree (spu_ids); 1423 1424 return note_data; 1425 } 1426 1427 /* This is used to pass information from 1428 linux_make_mappings_corefile_notes through 1429 linux_find_memory_regions_full. */ 1430 1431 struct linux_make_mappings_data 1432 { 1433 /* Number of files mapped. */ 1434 ULONGEST file_count; 1435 1436 /* The obstack for the main part of the data. */ 1437 struct obstack *data_obstack; 1438 1439 /* The filename obstack. */ 1440 struct obstack *filename_obstack; 1441 1442 /* The architecture's "long" type. */ 1443 struct type *long_type; 1444 }; 1445 1446 static linux_find_memory_region_ftype linux_make_mappings_callback; 1447 1448 /* A callback for linux_find_memory_regions_full that updates the 1449 mappings data for linux_make_mappings_corefile_notes. */ 1450 1451 static int 1452 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size, 1453 ULONGEST offset, ULONGEST inode, 1454 int read, int write, int exec, int modified, 1455 const char *filename, void *data) 1456 { 1457 struct linux_make_mappings_data *map_data = data; 1458 gdb_byte buf[sizeof (ULONGEST)]; 1459 1460 if (*filename == '\0' || inode == 0) 1461 return 0; 1462 1463 ++map_data->file_count; 1464 1465 pack_long (buf, map_data->long_type, vaddr); 1466 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type)); 1467 pack_long (buf, map_data->long_type, vaddr + size); 1468 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type)); 1469 pack_long (buf, map_data->long_type, offset); 1470 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type)); 1471 1472 obstack_grow_str0 (map_data->filename_obstack, filename); 1473 1474 return 0; 1475 } 1476 1477 /* Write the file mapping data to the core file, if possible. OBFD is 1478 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE 1479 is a pointer to the note size. Returns the new NOTE_DATA and 1480 updates NOTE_SIZE. */ 1481 1482 static char * 1483 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, 1484 char *note_data, int *note_size) 1485 { 1486 struct cleanup *cleanup; 1487 struct obstack data_obstack, filename_obstack; 1488 struct linux_make_mappings_data mapping_data; 1489 struct type *long_type 1490 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long"); 1491 gdb_byte buf[sizeof (ULONGEST)]; 1492 1493 obstack_init (&data_obstack); 1494 cleanup = make_cleanup_obstack_free (&data_obstack); 1495 obstack_init (&filename_obstack); 1496 make_cleanup_obstack_free (&filename_obstack); 1497 1498 mapping_data.file_count = 0; 1499 mapping_data.data_obstack = &data_obstack; 1500 mapping_data.filename_obstack = &filename_obstack; 1501 mapping_data.long_type = long_type; 1502 1503 /* Reserve space for the count. */ 1504 obstack_blank (&data_obstack, TYPE_LENGTH (long_type)); 1505 /* We always write the page size as 1 since we have no good way to 1506 determine the correct value. */ 1507 pack_long (buf, long_type, 1); 1508 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type)); 1509 1510 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback, 1511 &mapping_data); 1512 1513 if (mapping_data.file_count != 0) 1514 { 1515 /* Write the count to the obstack. */ 1516 pack_long ((gdb_byte *) obstack_base (&data_obstack), 1517 long_type, mapping_data.file_count); 1518 1519 /* Copy the filenames to the data obstack. */ 1520 obstack_grow (&data_obstack, obstack_base (&filename_obstack), 1521 obstack_object_size (&filename_obstack)); 1522 1523 note_data = elfcore_write_note (obfd, note_data, note_size, 1524 "CORE", NT_FILE, 1525 obstack_base (&data_obstack), 1526 obstack_object_size (&data_obstack)); 1527 } 1528 1529 do_cleanups (cleanup); 1530 return note_data; 1531 } 1532 1533 /* Structure for passing information from 1534 linux_collect_thread_registers via an iterator to 1535 linux_collect_regset_section_cb. */ 1536 1537 struct linux_collect_regset_section_cb_data 1538 { 1539 struct gdbarch *gdbarch; 1540 const struct regcache *regcache; 1541 bfd *obfd; 1542 char *note_data; 1543 int *note_size; 1544 unsigned long lwp; 1545 enum gdb_signal stop_signal; 1546 int abort_iteration; 1547 }; 1548 1549 /* Callback for iterate_over_regset_sections that records a single 1550 regset in the corefile note section. */ 1551 1552 static void 1553 linux_collect_regset_section_cb (const char *sect_name, int size, 1554 const struct regset *regset, 1555 const char *human_name, void *cb_data) 1556 { 1557 char *buf; 1558 struct linux_collect_regset_section_cb_data *data = cb_data; 1559 1560 if (data->abort_iteration) 1561 return; 1562 1563 gdb_assert (regset && regset->collect_regset); 1564 1565 buf = xmalloc (size); 1566 regset->collect_regset (regset, data->regcache, -1, buf, size); 1567 1568 /* PRSTATUS still needs to be treated specially. */ 1569 if (strcmp (sect_name, ".reg") == 0) 1570 data->note_data = (char *) elfcore_write_prstatus 1571 (data->obfd, data->note_data, data->note_size, data->lwp, 1572 gdb_signal_to_host (data->stop_signal), buf); 1573 else 1574 data->note_data = (char *) elfcore_write_register_note 1575 (data->obfd, data->note_data, data->note_size, 1576 sect_name, buf, size); 1577 xfree (buf); 1578 1579 if (data->note_data == NULL) 1580 data->abort_iteration = 1; 1581 } 1582 1583 /* Records the thread's register state for the corefile note 1584 section. */ 1585 1586 static char * 1587 linux_collect_thread_registers (const struct regcache *regcache, 1588 ptid_t ptid, bfd *obfd, 1589 char *note_data, int *note_size, 1590 enum gdb_signal stop_signal) 1591 { 1592 struct gdbarch *gdbarch = get_regcache_arch (regcache); 1593 struct linux_collect_regset_section_cb_data data; 1594 1595 data.gdbarch = gdbarch; 1596 data.regcache = regcache; 1597 data.obfd = obfd; 1598 data.note_data = note_data; 1599 data.note_size = note_size; 1600 data.stop_signal = stop_signal; 1601 data.abort_iteration = 0; 1602 1603 /* For remote targets the LWP may not be available, so use the TID. */ 1604 data.lwp = ptid_get_lwp (ptid); 1605 if (!data.lwp) 1606 data.lwp = ptid_get_tid (ptid); 1607 1608 gdbarch_iterate_over_regset_sections (gdbarch, 1609 linux_collect_regset_section_cb, 1610 &data, regcache); 1611 return data.note_data; 1612 } 1613 1614 /* Fetch the siginfo data for the current thread, if it exists. If 1615 there is no data, or we could not read it, return NULL. Otherwise, 1616 return a newly malloc'd buffer holding the data and fill in *SIZE 1617 with the size of the data. The caller is responsible for freeing 1618 the data. */ 1619 1620 static gdb_byte * 1621 linux_get_siginfo_data (struct gdbarch *gdbarch, LONGEST *size) 1622 { 1623 struct type *siginfo_type; 1624 gdb_byte *buf; 1625 LONGEST bytes_read; 1626 struct cleanup *cleanups; 1627 1628 if (!gdbarch_get_siginfo_type_p (gdbarch)) 1629 return NULL; 1630 1631 siginfo_type = gdbarch_get_siginfo_type (gdbarch); 1632 1633 buf = xmalloc (TYPE_LENGTH (siginfo_type)); 1634 cleanups = make_cleanup (xfree, buf); 1635 1636 bytes_read = target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, 1637 buf, 0, TYPE_LENGTH (siginfo_type)); 1638 if (bytes_read == TYPE_LENGTH (siginfo_type)) 1639 { 1640 discard_cleanups (cleanups); 1641 *size = bytes_read; 1642 } 1643 else 1644 { 1645 do_cleanups (cleanups); 1646 buf = NULL; 1647 } 1648 1649 return buf; 1650 } 1651 1652 struct linux_corefile_thread_data 1653 { 1654 struct gdbarch *gdbarch; 1655 int pid; 1656 bfd *obfd; 1657 char *note_data; 1658 int *note_size; 1659 enum gdb_signal stop_signal; 1660 }; 1661 1662 /* Called by gdbthread.c once per thread. Records the thread's 1663 register state for the corefile note section. */ 1664 1665 static int 1666 linux_corefile_thread_callback (struct thread_info *info, void *data) 1667 { 1668 struct linux_corefile_thread_data *args = data; 1669 1670 /* It can be current thread 1671 which cannot be removed by update_thread_list. */ 1672 if (info->state == THREAD_EXITED) 1673 return 0; 1674 1675 if (ptid_get_pid (info->ptid) == args->pid) 1676 { 1677 struct cleanup *old_chain; 1678 struct regcache *regcache; 1679 gdb_byte *siginfo_data; 1680 LONGEST siginfo_size = 0; 1681 1682 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch); 1683 1684 old_chain = save_inferior_ptid (); 1685 inferior_ptid = info->ptid; 1686 target_fetch_registers (regcache, -1); 1687 siginfo_data = linux_get_siginfo_data (args->gdbarch, &siginfo_size); 1688 do_cleanups (old_chain); 1689 1690 old_chain = make_cleanup (xfree, siginfo_data); 1691 1692 args->note_data = linux_collect_thread_registers 1693 (regcache, info->ptid, args->obfd, args->note_data, 1694 args->note_size, args->stop_signal); 1695 1696 /* Don't return anything if we got no register information above, 1697 such a core file is useless. */ 1698 if (args->note_data != NULL) 1699 if (siginfo_data != NULL) 1700 args->note_data = elfcore_write_note (args->obfd, 1701 args->note_data, 1702 args->note_size, 1703 "CORE", NT_SIGINFO, 1704 siginfo_data, siginfo_size); 1705 1706 do_cleanups (old_chain); 1707 } 1708 1709 return !args->note_data; 1710 } 1711 1712 /* Fill the PRPSINFO structure with information about the process being 1713 debugged. Returns 1 in case of success, 0 for failures. Please note that 1714 even if the structure cannot be entirely filled (e.g., GDB was unable to 1715 gather information about the process UID/GID), this function will still 1716 return 1 since some information was already recorded. It will only return 1717 0 iff nothing can be gathered. */ 1718 1719 static int 1720 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p) 1721 { 1722 /* The filename which we will use to obtain some info about the process. 1723 We will basically use this to store the `/proc/PID/FILENAME' file. */ 1724 char filename[100]; 1725 /* The full name of the program which generated the corefile. */ 1726 char *fname; 1727 /* The basename of the executable. */ 1728 const char *basename; 1729 /* The arguments of the program. */ 1730 char *psargs; 1731 char *infargs; 1732 /* The contents of `/proc/PID/stat' and `/proc/PID/status' files. */ 1733 char *proc_stat, *proc_status; 1734 /* Temporary buffer. */ 1735 char *tmpstr; 1736 /* The valid states of a process, according to the Linux kernel. */ 1737 const char valid_states[] = "RSDTZW"; 1738 /* The program state. */ 1739 const char *prog_state; 1740 /* The state of the process. */ 1741 char pr_sname; 1742 /* The PID of the program which generated the corefile. */ 1743 pid_t pid; 1744 /* Process flags. */ 1745 unsigned int pr_flag; 1746 /* Process nice value. */ 1747 long pr_nice; 1748 /* The number of fields read by `sscanf'. */ 1749 int n_fields = 0; 1750 /* Cleanups. */ 1751 struct cleanup *c; 1752 int i; 1753 1754 gdb_assert (p != NULL); 1755 1756 /* Obtaining PID and filename. */ 1757 pid = ptid_get_pid (inferior_ptid); 1758 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid); 1759 fname = target_fileio_read_stralloc (NULL, filename); 1760 1761 if (fname == NULL || *fname == '\0') 1762 { 1763 /* No program name was read, so we won't be able to retrieve more 1764 information about the process. */ 1765 xfree (fname); 1766 return 0; 1767 } 1768 1769 c = make_cleanup (xfree, fname); 1770 memset (p, 0, sizeof (*p)); 1771 1772 /* Defining the PID. */ 1773 p->pr_pid = pid; 1774 1775 /* Copying the program name. Only the basename matters. */ 1776 basename = lbasename (fname); 1777 strncpy (p->pr_fname, basename, sizeof (p->pr_fname)); 1778 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0'; 1779 1780 infargs = get_inferior_args (); 1781 1782 psargs = xstrdup (fname); 1783 if (infargs != NULL) 1784 psargs = reconcat (psargs, psargs, " ", infargs, NULL); 1785 1786 make_cleanup (xfree, psargs); 1787 1788 strncpy (p->pr_psargs, psargs, sizeof (p->pr_psargs)); 1789 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0'; 1790 1791 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid); 1792 proc_stat = target_fileio_read_stralloc (NULL, filename); 1793 make_cleanup (xfree, proc_stat); 1794 1795 if (proc_stat == NULL || *proc_stat == '\0') 1796 { 1797 /* Despite being unable to read more information about the 1798 process, we return 1 here because at least we have its 1799 command line, PID and arguments. */ 1800 do_cleanups (c); 1801 return 1; 1802 } 1803 1804 /* Ok, we have the stats. It's time to do a little parsing of the 1805 contents of the buffer, so that we end up reading what we want. 1806 1807 The following parsing mechanism is strongly based on the 1808 information generated by the `fs/proc/array.c' file, present in 1809 the Linux kernel tree. More details about how the information is 1810 displayed can be obtained by seeing the manpage of proc(5), 1811 specifically under the entry of `/proc/[pid]/stat'. */ 1812 1813 /* Getting rid of the PID, since we already have it. */ 1814 while (isdigit (*proc_stat)) 1815 ++proc_stat; 1816 1817 proc_stat = skip_spaces (proc_stat); 1818 1819 /* ps command also relies on no trailing fields ever contain ')'. */ 1820 proc_stat = strrchr (proc_stat, ')'); 1821 if (proc_stat == NULL) 1822 { 1823 do_cleanups (c); 1824 return 1; 1825 } 1826 proc_stat++; 1827 1828 proc_stat = skip_spaces (proc_stat); 1829 1830 n_fields = sscanf (proc_stat, 1831 "%c" /* Process state. */ 1832 "%d%d%d" /* Parent PID, group ID, session ID. */ 1833 "%*d%*d" /* tty_nr, tpgid (not used). */ 1834 "%u" /* Flags. */ 1835 "%*s%*s%*s%*s" /* minflt, cminflt, majflt, 1836 cmajflt (not used). */ 1837 "%*s%*s%*s%*s" /* utime, stime, cutime, 1838 cstime (not used). */ 1839 "%*s" /* Priority (not used). */ 1840 "%ld", /* Nice. */ 1841 &pr_sname, 1842 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid, 1843 &pr_flag, 1844 &pr_nice); 1845 1846 if (n_fields != 6) 1847 { 1848 /* Again, we couldn't read the complementary information about 1849 the process state. However, we already have minimal 1850 information, so we just return 1 here. */ 1851 do_cleanups (c); 1852 return 1; 1853 } 1854 1855 /* Filling the structure fields. */ 1856 prog_state = strchr (valid_states, pr_sname); 1857 if (prog_state != NULL) 1858 p->pr_state = prog_state - valid_states; 1859 else 1860 { 1861 /* Zero means "Running". */ 1862 p->pr_state = 0; 1863 } 1864 1865 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname; 1866 p->pr_zomb = p->pr_sname == 'Z'; 1867 p->pr_nice = pr_nice; 1868 p->pr_flag = pr_flag; 1869 1870 /* Finally, obtaining the UID and GID. For that, we read and parse the 1871 contents of the `/proc/PID/status' file. */ 1872 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid); 1873 proc_status = target_fileio_read_stralloc (NULL, filename); 1874 make_cleanup (xfree, proc_status); 1875 1876 if (proc_status == NULL || *proc_status == '\0') 1877 { 1878 /* Returning 1 since we already have a bunch of information. */ 1879 do_cleanups (c); 1880 return 1; 1881 } 1882 1883 /* Extracting the UID. */ 1884 tmpstr = strstr (proc_status, "Uid:"); 1885 if (tmpstr != NULL) 1886 { 1887 /* Advancing the pointer to the beginning of the UID. */ 1888 tmpstr += sizeof ("Uid:"); 1889 while (*tmpstr != '\0' && !isdigit (*tmpstr)) 1890 ++tmpstr; 1891 1892 if (isdigit (*tmpstr)) 1893 p->pr_uid = strtol (tmpstr, &tmpstr, 10); 1894 } 1895 1896 /* Extracting the GID. */ 1897 tmpstr = strstr (proc_status, "Gid:"); 1898 if (tmpstr != NULL) 1899 { 1900 /* Advancing the pointer to the beginning of the GID. */ 1901 tmpstr += sizeof ("Gid:"); 1902 while (*tmpstr != '\0' && !isdigit (*tmpstr)) 1903 ++tmpstr; 1904 1905 if (isdigit (*tmpstr)) 1906 p->pr_gid = strtol (tmpstr, &tmpstr, 10); 1907 } 1908 1909 do_cleanups (c); 1910 1911 return 1; 1912 } 1913 1914 /* Build the note section for a corefile, and return it in a malloc 1915 buffer. */ 1916 1917 static char * 1918 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size) 1919 { 1920 struct linux_corefile_thread_data thread_args; 1921 struct elf_internal_linux_prpsinfo prpsinfo; 1922 char *note_data = NULL; 1923 gdb_byte *auxv; 1924 int auxv_len; 1925 1926 if (! gdbarch_iterate_over_regset_sections_p (gdbarch)) 1927 return NULL; 1928 1929 if (linux_fill_prpsinfo (&prpsinfo)) 1930 { 1931 if (gdbarch_elfcore_write_linux_prpsinfo_p (gdbarch)) 1932 { 1933 note_data = gdbarch_elfcore_write_linux_prpsinfo (gdbarch, obfd, 1934 note_data, note_size, 1935 &prpsinfo); 1936 } 1937 else 1938 { 1939 if (gdbarch_ptr_bit (gdbarch) == 64) 1940 note_data = elfcore_write_linux_prpsinfo64 (obfd, 1941 note_data, note_size, 1942 &prpsinfo); 1943 else 1944 note_data = elfcore_write_linux_prpsinfo32 (obfd, 1945 note_data, note_size, 1946 &prpsinfo); 1947 } 1948 } 1949 1950 /* Thread register information. */ 1951 TRY 1952 { 1953 update_thread_list (); 1954 } 1955 CATCH (e, RETURN_MASK_ERROR) 1956 { 1957 exception_print (gdb_stderr, e); 1958 } 1959 END_CATCH 1960 1961 thread_args.gdbarch = gdbarch; 1962 thread_args.pid = ptid_get_pid (inferior_ptid); 1963 thread_args.obfd = obfd; 1964 thread_args.note_data = note_data; 1965 thread_args.note_size = note_size; 1966 thread_args.stop_signal = find_stop_signal (); 1967 iterate_over_threads (linux_corefile_thread_callback, &thread_args); 1968 note_data = thread_args.note_data; 1969 if (!note_data) 1970 return NULL; 1971 1972 /* Auxillary vector. */ 1973 auxv_len = target_read_alloc (¤t_target, TARGET_OBJECT_AUXV, 1974 NULL, &auxv); 1975 if (auxv_len > 0) 1976 { 1977 note_data = elfcore_write_note (obfd, note_data, note_size, 1978 "CORE", NT_AUXV, auxv, auxv_len); 1979 xfree (auxv); 1980 1981 if (!note_data) 1982 return NULL; 1983 } 1984 1985 /* SPU information. */ 1986 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size); 1987 if (!note_data) 1988 return NULL; 1989 1990 /* File mappings. */ 1991 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd, 1992 note_data, note_size); 1993 1994 return note_data; 1995 } 1996 1997 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in 1998 gdbarch.h. This function is not static because it is exported to 1999 other -tdep files. */ 2000 2001 enum gdb_signal 2002 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal) 2003 { 2004 switch (signal) 2005 { 2006 case 0: 2007 return GDB_SIGNAL_0; 2008 2009 case LINUX_SIGHUP: 2010 return GDB_SIGNAL_HUP; 2011 2012 case LINUX_SIGINT: 2013 return GDB_SIGNAL_INT; 2014 2015 case LINUX_SIGQUIT: 2016 return GDB_SIGNAL_QUIT; 2017 2018 case LINUX_SIGILL: 2019 return GDB_SIGNAL_ILL; 2020 2021 case LINUX_SIGTRAP: 2022 return GDB_SIGNAL_TRAP; 2023 2024 case LINUX_SIGABRT: 2025 return GDB_SIGNAL_ABRT; 2026 2027 case LINUX_SIGBUS: 2028 return GDB_SIGNAL_BUS; 2029 2030 case LINUX_SIGFPE: 2031 return GDB_SIGNAL_FPE; 2032 2033 case LINUX_SIGKILL: 2034 return GDB_SIGNAL_KILL; 2035 2036 case LINUX_SIGUSR1: 2037 return GDB_SIGNAL_USR1; 2038 2039 case LINUX_SIGSEGV: 2040 return GDB_SIGNAL_SEGV; 2041 2042 case LINUX_SIGUSR2: 2043 return GDB_SIGNAL_USR2; 2044 2045 case LINUX_SIGPIPE: 2046 return GDB_SIGNAL_PIPE; 2047 2048 case LINUX_SIGALRM: 2049 return GDB_SIGNAL_ALRM; 2050 2051 case LINUX_SIGTERM: 2052 return GDB_SIGNAL_TERM; 2053 2054 case LINUX_SIGCHLD: 2055 return GDB_SIGNAL_CHLD; 2056 2057 case LINUX_SIGCONT: 2058 return GDB_SIGNAL_CONT; 2059 2060 case LINUX_SIGSTOP: 2061 return GDB_SIGNAL_STOP; 2062 2063 case LINUX_SIGTSTP: 2064 return GDB_SIGNAL_TSTP; 2065 2066 case LINUX_SIGTTIN: 2067 return GDB_SIGNAL_TTIN; 2068 2069 case LINUX_SIGTTOU: 2070 return GDB_SIGNAL_TTOU; 2071 2072 case LINUX_SIGURG: 2073 return GDB_SIGNAL_URG; 2074 2075 case LINUX_SIGXCPU: 2076 return GDB_SIGNAL_XCPU; 2077 2078 case LINUX_SIGXFSZ: 2079 return GDB_SIGNAL_XFSZ; 2080 2081 case LINUX_SIGVTALRM: 2082 return GDB_SIGNAL_VTALRM; 2083 2084 case LINUX_SIGPROF: 2085 return GDB_SIGNAL_PROF; 2086 2087 case LINUX_SIGWINCH: 2088 return GDB_SIGNAL_WINCH; 2089 2090 /* No way to differentiate between SIGIO and SIGPOLL. 2091 Therefore, we just handle the first one. */ 2092 case LINUX_SIGIO: 2093 return GDB_SIGNAL_IO; 2094 2095 case LINUX_SIGPWR: 2096 return GDB_SIGNAL_PWR; 2097 2098 case LINUX_SIGSYS: 2099 return GDB_SIGNAL_SYS; 2100 2101 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>, 2102 therefore we have to handle them here. */ 2103 case LINUX_SIGRTMIN: 2104 return GDB_SIGNAL_REALTIME_32; 2105 2106 case LINUX_SIGRTMAX: 2107 return GDB_SIGNAL_REALTIME_64; 2108 } 2109 2110 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1) 2111 { 2112 int offset = signal - LINUX_SIGRTMIN + 1; 2113 2114 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset); 2115 } 2116 2117 return GDB_SIGNAL_UNKNOWN; 2118 } 2119 2120 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in 2121 gdbarch.h. This function is not static because it is exported to 2122 other -tdep files. */ 2123 2124 int 2125 linux_gdb_signal_to_target (struct gdbarch *gdbarch, 2126 enum gdb_signal signal) 2127 { 2128 switch (signal) 2129 { 2130 case GDB_SIGNAL_0: 2131 return 0; 2132 2133 case GDB_SIGNAL_HUP: 2134 return LINUX_SIGHUP; 2135 2136 case GDB_SIGNAL_INT: 2137 return LINUX_SIGINT; 2138 2139 case GDB_SIGNAL_QUIT: 2140 return LINUX_SIGQUIT; 2141 2142 case GDB_SIGNAL_ILL: 2143 return LINUX_SIGILL; 2144 2145 case GDB_SIGNAL_TRAP: 2146 return LINUX_SIGTRAP; 2147 2148 case GDB_SIGNAL_ABRT: 2149 return LINUX_SIGABRT; 2150 2151 case GDB_SIGNAL_FPE: 2152 return LINUX_SIGFPE; 2153 2154 case GDB_SIGNAL_KILL: 2155 return LINUX_SIGKILL; 2156 2157 case GDB_SIGNAL_BUS: 2158 return LINUX_SIGBUS; 2159 2160 case GDB_SIGNAL_SEGV: 2161 return LINUX_SIGSEGV; 2162 2163 case GDB_SIGNAL_SYS: 2164 return LINUX_SIGSYS; 2165 2166 case GDB_SIGNAL_PIPE: 2167 return LINUX_SIGPIPE; 2168 2169 case GDB_SIGNAL_ALRM: 2170 return LINUX_SIGALRM; 2171 2172 case GDB_SIGNAL_TERM: 2173 return LINUX_SIGTERM; 2174 2175 case GDB_SIGNAL_URG: 2176 return LINUX_SIGURG; 2177 2178 case GDB_SIGNAL_STOP: 2179 return LINUX_SIGSTOP; 2180 2181 case GDB_SIGNAL_TSTP: 2182 return LINUX_SIGTSTP; 2183 2184 case GDB_SIGNAL_CONT: 2185 return LINUX_SIGCONT; 2186 2187 case GDB_SIGNAL_CHLD: 2188 return LINUX_SIGCHLD; 2189 2190 case GDB_SIGNAL_TTIN: 2191 return LINUX_SIGTTIN; 2192 2193 case GDB_SIGNAL_TTOU: 2194 return LINUX_SIGTTOU; 2195 2196 case GDB_SIGNAL_IO: 2197 return LINUX_SIGIO; 2198 2199 case GDB_SIGNAL_XCPU: 2200 return LINUX_SIGXCPU; 2201 2202 case GDB_SIGNAL_XFSZ: 2203 return LINUX_SIGXFSZ; 2204 2205 case GDB_SIGNAL_VTALRM: 2206 return LINUX_SIGVTALRM; 2207 2208 case GDB_SIGNAL_PROF: 2209 return LINUX_SIGPROF; 2210 2211 case GDB_SIGNAL_WINCH: 2212 return LINUX_SIGWINCH; 2213 2214 case GDB_SIGNAL_USR1: 2215 return LINUX_SIGUSR1; 2216 2217 case GDB_SIGNAL_USR2: 2218 return LINUX_SIGUSR2; 2219 2220 case GDB_SIGNAL_PWR: 2221 return LINUX_SIGPWR; 2222 2223 case GDB_SIGNAL_POLL: 2224 return LINUX_SIGPOLL; 2225 2226 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>, 2227 therefore we have to handle it here. */ 2228 case GDB_SIGNAL_REALTIME_32: 2229 return LINUX_SIGRTMIN; 2230 2231 /* Same comment applies to _64. */ 2232 case GDB_SIGNAL_REALTIME_64: 2233 return LINUX_SIGRTMAX; 2234 } 2235 2236 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */ 2237 if (signal >= GDB_SIGNAL_REALTIME_33 2238 && signal <= GDB_SIGNAL_REALTIME_63) 2239 { 2240 int offset = signal - GDB_SIGNAL_REALTIME_33; 2241 2242 return LINUX_SIGRTMIN + 1 + offset; 2243 } 2244 2245 return -1; 2246 } 2247 2248 /* Rummage through mappings to find a mapping's size. */ 2249 2250 static int 2251 find_mapping_size (CORE_ADDR vaddr, unsigned long size, 2252 int read, int write, int exec, int modified, 2253 void *data) 2254 { 2255 struct mem_range *range = data; 2256 2257 if (vaddr == range->start) 2258 { 2259 range->length = size; 2260 return 1; 2261 } 2262 return 0; 2263 } 2264 2265 /* Helper for linux_vsyscall_range that does the real work of finding 2266 the vsyscall's address range. */ 2267 2268 static int 2269 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range) 2270 { 2271 if (target_auxv_search (¤t_target, AT_SYSINFO_EHDR, &range->start) <= 0) 2272 return 0; 2273 2274 /* This is installed by linux_init_abi below, so should always be 2275 available. */ 2276 gdb_assert (gdbarch_find_memory_regions_p (target_gdbarch ())); 2277 2278 range->length = 0; 2279 gdbarch_find_memory_regions (gdbarch, find_mapping_size, range); 2280 return 1; 2281 } 2282 2283 /* Implementation of the "vsyscall_range" gdbarch hook. Handles 2284 caching, and defers the real work to linux_vsyscall_range_raw. */ 2285 2286 static int 2287 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range) 2288 { 2289 struct linux_info *info = get_linux_inferior_data (); 2290 2291 if (info->vsyscall_range_p == 0) 2292 { 2293 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range)) 2294 info->vsyscall_range_p = 1; 2295 else 2296 info->vsyscall_range_p = -1; 2297 } 2298 2299 if (info->vsyscall_range_p < 0) 2300 return 0; 2301 2302 *range = info->vsyscall_range; 2303 return 1; 2304 } 2305 2306 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system 2307 definitions would be dependent on compilation host. */ 2308 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */ 2309 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */ 2310 2311 /* See gdbarch.sh 'infcall_mmap'. */ 2312 2313 static CORE_ADDR 2314 linux_infcall_mmap (CORE_ADDR size, unsigned prot) 2315 { 2316 struct objfile *objf; 2317 /* Do there still exist any Linux systems without "mmap64"? 2318 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */ 2319 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf); 2320 struct value *addr_val; 2321 struct gdbarch *gdbarch = get_objfile_arch (objf); 2322 CORE_ADDR retval; 2323 enum 2324 { 2325 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST 2326 }; 2327 struct value *arg[ARG_LAST]; 2328 2329 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr, 2330 0); 2331 /* Assuming sizeof (unsigned long) == sizeof (size_t). */ 2332 arg[ARG_LENGTH] = value_from_ulongest 2333 (builtin_type (gdbarch)->builtin_unsigned_long, size); 2334 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE 2335 | GDB_MMAP_PROT_EXEC)) 2336 == 0); 2337 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot); 2338 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int, 2339 GDB_MMAP_MAP_PRIVATE 2340 | GDB_MMAP_MAP_ANONYMOUS); 2341 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1); 2342 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64, 2343 0); 2344 addr_val = call_function_by_hand (mmap_val, ARG_LAST, arg); 2345 retval = value_as_address (addr_val); 2346 if (retval == (CORE_ADDR) -1) 2347 error (_("Failed inferior mmap call for %s bytes, errno is changed."), 2348 pulongest (size)); 2349 return retval; 2350 } 2351 2352 /* See gdbarch.sh 'infcall_munmap'. */ 2353 2354 static void 2355 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size) 2356 { 2357 struct objfile *objf; 2358 struct value *munmap_val = find_function_in_inferior ("munmap", &objf); 2359 struct value *retval_val; 2360 struct gdbarch *gdbarch = get_objfile_arch (objf); 2361 LONGEST retval; 2362 enum 2363 { 2364 ARG_ADDR, ARG_LENGTH, ARG_LAST 2365 }; 2366 struct value *arg[ARG_LAST]; 2367 2368 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr, 2369 addr); 2370 /* Assuming sizeof (unsigned long) == sizeof (size_t). */ 2371 arg[ARG_LENGTH] = value_from_ulongest 2372 (builtin_type (gdbarch)->builtin_unsigned_long, size); 2373 retval_val = call_function_by_hand (munmap_val, ARG_LAST, arg); 2374 retval = value_as_long (retval_val); 2375 if (retval != 0) 2376 warning (_("Failed inferior munmap call at %s for %s bytes, " 2377 "errno is changed."), 2378 hex_string (addr), pulongest (size)); 2379 } 2380 2381 /* See linux-tdep.h. */ 2382 2383 CORE_ADDR 2384 linux_displaced_step_location (struct gdbarch *gdbarch) 2385 { 2386 CORE_ADDR addr; 2387 int bp_len; 2388 2389 /* Determine entry point from target auxiliary vector. This avoids 2390 the need for symbols. Also, when debugging a stand-alone SPU 2391 executable, entry_point_address () will point to an SPU 2392 local-store address and is thus not usable as displaced stepping 2393 location. The auxiliary vector gets us the PowerPC-side entry 2394 point address instead. */ 2395 if (target_auxv_search (¤t_target, AT_ENTRY, &addr) <= 0) 2396 error (_("Cannot find AT_ENTRY auxiliary vector entry.")); 2397 2398 /* Make certain that the address points at real code, and not a 2399 function descriptor. */ 2400 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, 2401 ¤t_target); 2402 2403 /* Inferior calls also use the entry point as a breakpoint location. 2404 We don't want displaced stepping to interfere with those 2405 breakpoints, so leave space. */ 2406 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len); 2407 addr += bp_len * 2; 2408 2409 return addr; 2410 } 2411 2412 /* Display whether the gcore command is using the 2413 /proc/PID/coredump_filter file. */ 2414 2415 static void 2416 show_use_coredump_filter (struct ui_file *file, int from_tty, 2417 struct cmd_list_element *c, const char *value) 2418 { 2419 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate" 2420 " corefiles is %s.\n"), value); 2421 } 2422 2423 /* To be called from the various GDB_OSABI_LINUX handlers for the 2424 various GNU/Linux architectures and machine types. */ 2425 2426 void 2427 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) 2428 { 2429 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str); 2430 set_gdbarch_info_proc (gdbarch, linux_info_proc); 2431 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc); 2432 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions); 2433 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes); 2434 set_gdbarch_has_shared_address_space (gdbarch, 2435 linux_has_shared_address_space); 2436 set_gdbarch_gdb_signal_from_target (gdbarch, 2437 linux_gdb_signal_from_target); 2438 set_gdbarch_gdb_signal_to_target (gdbarch, 2439 linux_gdb_signal_to_target); 2440 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range); 2441 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap); 2442 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap); 2443 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type); 2444 } 2445 2446 /* Provide a prototype to silence -Wmissing-prototypes. */ 2447 extern initialize_file_ftype _initialize_linux_tdep; 2448 2449 void 2450 _initialize_linux_tdep (void) 2451 { 2452 linux_gdbarch_data_handle = 2453 gdbarch_data_register_post_init (init_linux_gdbarch_data); 2454 2455 /* Set a cache per-inferior. */ 2456 linux_inferior_data 2457 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup); 2458 /* Observers used to invalidate the cache when needed. */ 2459 observer_attach_inferior_exit (invalidate_linux_cache_inf); 2460 observer_attach_inferior_appeared (invalidate_linux_cache_inf); 2461 2462 add_setshow_boolean_cmd ("use-coredump-filter", class_files, 2463 &use_coredump_filter, _("\ 2464 Set whether gcore should consider /proc/PID/coredump_filter."), 2465 _("\ 2466 Show whether gcore should consider /proc/PID/coredump_filter."), 2467 _("\ 2468 Use this command to set whether gcore should consider the contents\n\ 2469 of /proc/PID/coredump_filter when generating the corefile. For more information\n\ 2470 about this file, refer to the manpage of core(5)."), 2471 NULL, show_use_coredump_filter, 2472 &setlist, &showlist); 2473 } 2474