xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/linux-tdep.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /* Target-dependent code for GNU/Linux, architecture independent.
2 
3    Copyright (C) 2009-2019 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h"            /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observable.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "common/enum-flags.h"
41 #include "common/gdb_optional.h"
42 
43 #include <ctype.h>
44 
45 /* This enum represents the values that the user can choose when
46    informing the Linux kernel about which memory mappings will be
47    dumped in a corefile.  They are described in the file
48    Documentation/filesystems/proc.txt, inside the Linux kernel
49    tree.  */
50 
51 enum filter_flag
52   {
53     COREFILTER_ANON_PRIVATE = 1 << 0,
54     COREFILTER_ANON_SHARED = 1 << 1,
55     COREFILTER_MAPPED_PRIVATE = 1 << 2,
56     COREFILTER_MAPPED_SHARED = 1 << 3,
57     COREFILTER_ELF_HEADERS = 1 << 4,
58     COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59     COREFILTER_HUGETLB_SHARED = 1 << 6,
60   };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62 
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64    the /proc/<PID>/smaps file).  */
65 
66 struct smaps_vmflags
67   {
68     /* Zero if this structure has not been initialized yet.  It
69        probably means that the Linux kernel being used does not emit
70        the "VmFlags:" field on "/proc/PID/smaps".  */
71 
72     unsigned int initialized_p : 1;
73 
74     /* Memory mapped I/O area (VM_IO, "io").  */
75 
76     unsigned int io_page : 1;
77 
78     /* Area uses huge TLB pages (VM_HUGETLB, "ht").  */
79 
80     unsigned int uses_huge_tlb : 1;
81 
82     /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd").  */
83 
84     unsigned int exclude_coredump : 1;
85 
86     /* Is this a MAP_SHARED mapping (VM_SHARED, "sh").  */
87 
88     unsigned int shared_mapping : 1;
89   };
90 
91 /* Whether to take the /proc/PID/coredump_filter into account when
92    generating a corefile.  */
93 
94 static int use_coredump_filter = 1;
95 
96 /* Whether the value of smaps_vmflags->exclude_coredump should be
97    ignored, including mappings marked with the VM_DONTDUMP flag in
98    the dump.  */
99 static int dump_excluded_mappings = 0;
100 
101 /* This enum represents the signals' numbers on a generic architecture
102    running the Linux kernel.  The definition of "generic" comes from
103    the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104    tree, which is the "de facto" implementation of signal numbers to
105    be used by new architecture ports.
106 
107    For those architectures which have differences between the generic
108    standard (e.g., Alpha), we define the different signals (and *only*
109    those) in the specific target-dependent file (e.g.,
110    alpha-linux-tdep.c, for Alpha).  Please refer to the architecture's
111    tdep file for more information.
112 
113    ARM deserves a special mention here.  On the file
114    <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115    (and ARM-only) signal, which is SIGSWI, with the same number as
116    SIGRTMIN.  This signal is used only for a very specific target,
117    called ArthurOS (from RISCOS).  Therefore, we do not handle it on
118    the ARM-tdep file, and we can safely use the generic signal handler
119    here for ARM targets.
120 
121    As stated above, this enum is derived from
122    <include/uapi/asm-generic/signal.h>, from the Linux kernel
123    tree.  */
124 
125 enum
126   {
127     LINUX_SIGHUP = 1,
128     LINUX_SIGINT = 2,
129     LINUX_SIGQUIT = 3,
130     LINUX_SIGILL = 4,
131     LINUX_SIGTRAP = 5,
132     LINUX_SIGABRT = 6,
133     LINUX_SIGIOT = 6,
134     LINUX_SIGBUS = 7,
135     LINUX_SIGFPE = 8,
136     LINUX_SIGKILL = 9,
137     LINUX_SIGUSR1 = 10,
138     LINUX_SIGSEGV = 11,
139     LINUX_SIGUSR2 = 12,
140     LINUX_SIGPIPE = 13,
141     LINUX_SIGALRM = 14,
142     LINUX_SIGTERM = 15,
143     LINUX_SIGSTKFLT = 16,
144     LINUX_SIGCHLD = 17,
145     LINUX_SIGCONT = 18,
146     LINUX_SIGSTOP = 19,
147     LINUX_SIGTSTP = 20,
148     LINUX_SIGTTIN = 21,
149     LINUX_SIGTTOU = 22,
150     LINUX_SIGURG = 23,
151     LINUX_SIGXCPU = 24,
152     LINUX_SIGXFSZ = 25,
153     LINUX_SIGVTALRM = 26,
154     LINUX_SIGPROF = 27,
155     LINUX_SIGWINCH = 28,
156     LINUX_SIGIO = 29,
157     LINUX_SIGPOLL = LINUX_SIGIO,
158     LINUX_SIGPWR = 30,
159     LINUX_SIGSYS = 31,
160     LINUX_SIGUNUSED = 31,
161 
162     LINUX_SIGRTMIN = 32,
163     LINUX_SIGRTMAX = 64,
164   };
165 
166 static struct gdbarch_data *linux_gdbarch_data_handle;
167 
168 struct linux_gdbarch_data
169   {
170     struct type *siginfo_type;
171   };
172 
173 static void *
174 init_linux_gdbarch_data (struct gdbarch *gdbarch)
175 {
176   return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177 }
178 
179 static struct linux_gdbarch_data *
180 get_linux_gdbarch_data (struct gdbarch *gdbarch)
181 {
182   return ((struct linux_gdbarch_data *)
183 	  gdbarch_data (gdbarch, linux_gdbarch_data_handle));
184 }
185 
186 /* Per-inferior data key.  */
187 static const struct inferior_data *linux_inferior_data;
188 
189 /* Linux-specific cached data.  This is used by GDB for caching
190    purposes for each inferior.  This helps reduce the overhead of
191    transfering data from a remote target to the local host.  */
192 struct linux_info
193 {
194   /* Cache of the inferior's vsyscall/vDSO mapping range.  Only valid
195      if VSYSCALL_RANGE_P is positive.  This is cached because getting
196      at this info requires an auxv lookup (which is itself cached),
197      and looking through the inferior's mappings (which change
198      throughout execution and therefore cannot be cached).  */
199   struct mem_range vsyscall_range;
200 
201   /* Zero if we haven't tried looking up the vsyscall's range before
202      yet.  Positive if we tried looking it up, and found it.  Negative
203      if we tried looking it up but failed.  */
204   int vsyscall_range_p;
205 };
206 
207 /* Frees whatever allocated space there is to be freed and sets INF's
208    linux cache data pointer to NULL.  */
209 
210 static void
211 invalidate_linux_cache_inf (struct inferior *inf)
212 {
213   struct linux_info *info;
214 
215   info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
216   if (info != NULL)
217     {
218       xfree (info);
219       set_inferior_data (inf, linux_inferior_data, NULL);
220     }
221 }
222 
223 /* Handles the cleanup of the linux cache for inferior INF.  ARG is
224    ignored.  Callback for the inferior_appeared and inferior_exit
225    events.  */
226 
227 static void
228 linux_inferior_data_cleanup (struct inferior *inf, void *arg)
229 {
230   invalidate_linux_cache_inf (inf);
231 }
232 
233 /* Fetch the linux cache info for INF.  This function always returns a
234    valid INFO pointer.  */
235 
236 static struct linux_info *
237 get_linux_inferior_data (void)
238 {
239   struct linux_info *info;
240   struct inferior *inf = current_inferior ();
241 
242   info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
243   if (info == NULL)
244     {
245       info = XCNEW (struct linux_info);
246       set_inferior_data (inf, linux_inferior_data, info);
247     }
248 
249   return info;
250 }
251 
252 /* See linux-tdep.h.  */
253 
254 struct type *
255 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
256 				    linux_siginfo_extra_fields extra_fields)
257 {
258   struct linux_gdbarch_data *linux_gdbarch_data;
259   struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
260   struct type *uid_type, *pid_type;
261   struct type *sigval_type, *clock_type;
262   struct type *siginfo_type, *sifields_type;
263   struct type *type;
264 
265   linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
266   if (linux_gdbarch_data->siginfo_type != NULL)
267     return linux_gdbarch_data->siginfo_type;
268 
269   int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
270 			 	0, "int");
271   uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
272 				 1, "unsigned int");
273   long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
274 				 0, "long");
275   short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
276 				 0, "short");
277   void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
278 
279   /* sival_t */
280   sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
281   TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
282   append_composite_type_field (sigval_type, "sival_int", int_type);
283   append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
284 
285   /* __pid_t */
286   pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
287 			TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
288   TYPE_TARGET_TYPE (pid_type) = int_type;
289   TYPE_TARGET_STUB (pid_type) = 1;
290 
291   /* __uid_t */
292   uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
293 			TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
294   TYPE_TARGET_TYPE (uid_type) = uint_type;
295   TYPE_TARGET_STUB (uid_type) = 1;
296 
297   /* __clock_t */
298   clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
299 			  TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
300 			  "__clock_t");
301   TYPE_TARGET_TYPE (clock_type) = long_type;
302   TYPE_TARGET_STUB (clock_type) = 1;
303 
304   /* _sifields */
305   sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
306 
307   {
308     const int si_max_size = 128;
309     int si_pad_size;
310     int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
311 
312     /* _pad */
313     if (gdbarch_ptr_bit (gdbarch) == 64)
314       si_pad_size = (si_max_size / size_of_int) - 4;
315     else
316       si_pad_size = (si_max_size / size_of_int) - 3;
317     append_composite_type_field (sifields_type, "_pad",
318 				 init_vector_type (int_type, si_pad_size));
319   }
320 
321   /* _kill */
322   type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
323   append_composite_type_field (type, "si_pid", pid_type);
324   append_composite_type_field (type, "si_uid", uid_type);
325   append_composite_type_field (sifields_type, "_kill", type);
326 
327   /* _timer */
328   type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
329   append_composite_type_field (type, "si_tid", int_type);
330   append_composite_type_field (type, "si_overrun", int_type);
331   append_composite_type_field (type, "si_sigval", sigval_type);
332   append_composite_type_field (sifields_type, "_timer", type);
333 
334   /* _rt */
335   type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
336   append_composite_type_field (type, "si_pid", pid_type);
337   append_composite_type_field (type, "si_uid", uid_type);
338   append_composite_type_field (type, "si_sigval", sigval_type);
339   append_composite_type_field (sifields_type, "_rt", type);
340 
341   /* _sigchld */
342   type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
343   append_composite_type_field (type, "si_pid", pid_type);
344   append_composite_type_field (type, "si_uid", uid_type);
345   append_composite_type_field (type, "si_status", int_type);
346   append_composite_type_field (type, "si_utime", clock_type);
347   append_composite_type_field (type, "si_stime", clock_type);
348   append_composite_type_field (sifields_type, "_sigchld", type);
349 
350   /* _sigfault */
351   type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
352   append_composite_type_field (type, "si_addr", void_ptr_type);
353 
354   /* Additional bound fields for _sigfault in case they were requested.  */
355   if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
356     {
357       struct type *sigfault_bnd_fields;
358 
359       append_composite_type_field (type, "_addr_lsb", short_type);
360       sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
361       append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
362       append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
363       append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
364     }
365   append_composite_type_field (sifields_type, "_sigfault", type);
366 
367   /* _sigpoll */
368   type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
369   append_composite_type_field (type, "si_band", long_type);
370   append_composite_type_field (type, "si_fd", int_type);
371   append_composite_type_field (sifields_type, "_sigpoll", type);
372 
373   /* struct siginfo */
374   siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
375   TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
376   append_composite_type_field (siginfo_type, "si_signo", int_type);
377   append_composite_type_field (siginfo_type, "si_errno", int_type);
378   append_composite_type_field (siginfo_type, "si_code", int_type);
379   append_composite_type_field_aligned (siginfo_type,
380 				       "_sifields", sifields_type,
381 				       TYPE_LENGTH (long_type));
382 
383   linux_gdbarch_data->siginfo_type = siginfo_type;
384 
385   return siginfo_type;
386 }
387 
388 /* This function is suitable for architectures that don't
389    extend/override the standard siginfo structure.  */
390 
391 static struct type *
392 linux_get_siginfo_type (struct gdbarch *gdbarch)
393 {
394   return linux_get_siginfo_type_with_fields (gdbarch, 0);
395 }
396 
397 /* Return true if the target is running on uClinux instead of normal
398    Linux kernel.  */
399 
400 int
401 linux_is_uclinux (void)
402 {
403   CORE_ADDR dummy;
404 
405   return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
406 	  && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
407 }
408 
409 static int
410 linux_has_shared_address_space (struct gdbarch *gdbarch)
411 {
412   return linux_is_uclinux ();
413 }
414 
415 /* This is how we want PTIDs from core files to be printed.  */
416 
417 static const char *
418 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
419 {
420   static char buf[80];
421 
422   if (ptid.lwp () != 0)
423     {
424       snprintf (buf, sizeof (buf), "LWP %ld", ptid.lwp ());
425       return buf;
426     }
427 
428   return normal_pid_to_str (ptid);
429 }
430 
431 /* Service function for corefiles and info proc.  */
432 
433 static void
434 read_mapping (const char *line,
435 	      ULONGEST *addr, ULONGEST *endaddr,
436 	      const char **permissions, size_t *permissions_len,
437 	      ULONGEST *offset,
438               const char **device, size_t *device_len,
439 	      ULONGEST *inode,
440 	      const char **filename)
441 {
442   const char *p = line;
443 
444   *addr = strtoulst (p, &p, 16);
445   if (*p == '-')
446     p++;
447   *endaddr = strtoulst (p, &p, 16);
448 
449   p = skip_spaces (p);
450   *permissions = p;
451   while (*p && !isspace (*p))
452     p++;
453   *permissions_len = p - *permissions;
454 
455   *offset = strtoulst (p, &p, 16);
456 
457   p = skip_spaces (p);
458   *device = p;
459   while (*p && !isspace (*p))
460     p++;
461   *device_len = p - *device;
462 
463   *inode = strtoulst (p, &p, 10);
464 
465   p = skip_spaces (p);
466   *filename = p;
467 }
468 
469 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
470 
471    This function was based on the documentation found on
472    <Documentation/filesystems/proc.txt>, on the Linux kernel.
473 
474    Linux kernels before commit
475    834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
476    field on smaps.  */
477 
478 static void
479 decode_vmflags (char *p, struct smaps_vmflags *v)
480 {
481   char *saveptr = NULL;
482   const char *s;
483 
484   v->initialized_p = 1;
485   p = skip_to_space (p);
486   p = skip_spaces (p);
487 
488   for (s = strtok_r (p, " ", &saveptr);
489        s != NULL;
490        s = strtok_r (NULL, " ", &saveptr))
491     {
492       if (strcmp (s, "io") == 0)
493 	v->io_page = 1;
494       else if (strcmp (s, "ht") == 0)
495 	v->uses_huge_tlb = 1;
496       else if (strcmp (s, "dd") == 0)
497 	v->exclude_coredump = 1;
498       else if (strcmp (s, "sh") == 0)
499 	v->shared_mapping = 1;
500     }
501 }
502 
503 /* Regexes used by mapping_is_anonymous_p.  Put in a structure because
504    they're initialized lazily.  */
505 
506 struct mapping_regexes
507 {
508   /* Matches "/dev/zero" filenames (with or without the "(deleted)"
509      string in the end).  We know for sure, based on the Linux kernel
510      code, that memory mappings whose associated filename is
511      "/dev/zero" are guaranteed to be MAP_ANONYMOUS.  */
512   compiled_regex dev_zero
513     {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
514      _("Could not compile regex to match /dev/zero filename")};
515 
516   /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
517      string in the end).  These filenames refer to shared memory
518      (shmem), and memory mappings associated with them are
519      MAP_ANONYMOUS as well.  */
520   compiled_regex shmem_file
521     {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
522      _("Could not compile regex to match shmem filenames")};
523 
524   /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
525      0' code, which is responsible to decide if it is dealing with a
526      'MAP_SHARED | MAP_ANONYMOUS' mapping.  In other words, if
527      FILE_DELETED matches, it does not necessarily mean that we are
528      dealing with an anonymous shared mapping.  However, there is no
529      easy way to detect this currently, so this is the best
530      approximation we have.
531 
532      As a result, GDB will dump readonly pages of deleted executables
533      when using the default value of coredump_filter (0x33), while the
534      Linux kernel will not dump those pages.  But we can live with
535      that.  */
536   compiled_regex file_deleted
537     {" (deleted)$", REG_NOSUB,
538      _("Could not compile regex to match '<file> (deleted)'")};
539 };
540 
541 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
542 
543    FILENAME is the name of the file present in the first line of the
544    memory mapping, in the "/proc/PID/smaps" output.  For example, if
545    the first line is:
546 
547    7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770   /path/to/file
548 
549    Then FILENAME will be "/path/to/file".  */
550 
551 static int
552 mapping_is_anonymous_p (const char *filename)
553 {
554   static gdb::optional<mapping_regexes> regexes;
555   static int init_regex_p = 0;
556 
557   if (!init_regex_p)
558     {
559       /* Let's be pessimistic and assume there will be an error while
560 	 compiling the regex'es.  */
561       init_regex_p = -1;
562 
563       regexes.emplace ();
564 
565       /* If we reached this point, then everything succeeded.  */
566       init_regex_p = 1;
567     }
568 
569   if (init_regex_p == -1)
570     {
571       const char deleted[] = " (deleted)";
572       size_t del_len = sizeof (deleted) - 1;
573       size_t filename_len = strlen (filename);
574 
575       /* There was an error while compiling the regex'es above.  In
576 	 order to try to give some reliable information to the caller,
577 	 we just try to find the string " (deleted)" in the filename.
578 	 If we managed to find it, then we assume the mapping is
579 	 anonymous.  */
580       return (filename_len >= del_len
581 	      && strcmp (filename + filename_len - del_len, deleted) == 0);
582     }
583 
584   if (*filename == '\0'
585       || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
586       || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
587       || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
588     return 1;
589 
590   return 0;
591 }
592 
593 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
594    MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
595    greater than 0 if it should.
596 
597    In a nutshell, this is the logic that we follow in order to decide
598    if a mapping should be dumped or not.
599 
600    - If the mapping is associated to a file whose name ends with
601      " (deleted)", or if the file is "/dev/zero", or if it is
602      "/SYSV%08x" (shared memory), or if there is no file associated
603      with it, or if the AnonHugePages: or the Anonymous: fields in the
604      /proc/PID/smaps have contents, then GDB considers this mapping to
605      be anonymous.  Otherwise, GDB considers this mapping to be a
606      file-backed mapping (because there will be a file associated with
607      it).
608 
609      It is worth mentioning that, from all those checks described
610      above, the most fragile is the one to see if the file name ends
611      with " (deleted)".  This does not necessarily mean that the
612      mapping is anonymous, because the deleted file associated with
613      the mapping may have been a hard link to another file, for
614      example.  The Linux kernel checks to see if "i_nlink == 0", but
615      GDB cannot easily (and normally) do this check (iff running as
616      root, it could find the mapping in /proc/PID/map_files/ and
617      determine whether there still are other hard links to the
618      inode/file).  Therefore, we made a compromise here, and we assume
619      that if the file name ends with " (deleted)", then the mapping is
620      indeed anonymous.  FWIW, this is something the Linux kernel could
621      do better: expose this information in a more direct way.
622 
623    - If we see the flag "sh" in the "VmFlags:" field (in
624      /proc/PID/smaps), then certainly the memory mapping is shared
625      (VM_SHARED).  If we have access to the VmFlags, and we don't see
626      the "sh" there, then certainly the mapping is private.  However,
627      Linux kernels before commit
628      834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
629      "VmFlags:" field; in that case, we use another heuristic: if we
630      see 'p' in the permission flags, then we assume that the mapping
631      is private, even though the presence of the 's' flag there would
632      mean VM_MAYSHARE, which means the mapping could still be private.
633      This should work OK enough, however.  */
634 
635 static int
636 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
637 		int maybe_private_p, int mapping_anon_p, int mapping_file_p,
638 		const char *filename)
639 {
640   /* Initially, we trust in what we received from our caller.  This
641      value may not be very precise (i.e., it was probably gathered
642      from the permission line in the /proc/PID/smaps list, which
643      actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
644      what we have until we take a look at the "VmFlags:" field
645      (assuming that the version of the Linux kernel being used
646      supports it, of course).  */
647   int private_p = maybe_private_p;
648 
649   /* We always dump vDSO and vsyscall mappings, because it's likely that
650      there'll be no file to read the contents from at core load time.
651      The kernel does the same.  */
652   if (strcmp ("[vdso]", filename) == 0
653       || strcmp ("[vsyscall]", filename) == 0)
654     return 1;
655 
656   if (v->initialized_p)
657     {
658       /* We never dump I/O mappings.  */
659       if (v->io_page)
660 	return 0;
661 
662       /* Check if we should exclude this mapping.  */
663       if (!dump_excluded_mappings && v->exclude_coredump)
664 	return 0;
665 
666       /* Update our notion of whether this mapping is shared or
667 	 private based on a trustworthy value.  */
668       private_p = !v->shared_mapping;
669 
670       /* HugeTLB checking.  */
671       if (v->uses_huge_tlb)
672 	{
673 	  if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
674 	      || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
675 	    return 1;
676 
677 	  return 0;
678 	}
679     }
680 
681   if (private_p)
682     {
683       if (mapping_anon_p && mapping_file_p)
684 	{
685 	  /* This is a special situation.  It can happen when we see a
686 	     mapping that is file-backed, but that contains anonymous
687 	     pages.  */
688 	  return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
689 		  || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
690 	}
691       else if (mapping_anon_p)
692 	return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
693       else
694 	return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
695     }
696   else
697     {
698       if (mapping_anon_p && mapping_file_p)
699 	{
700 	  /* This is a special situation.  It can happen when we see a
701 	     mapping that is file-backed, but that contains anonymous
702 	     pages.  */
703 	  return ((filterflags & COREFILTER_ANON_SHARED) != 0
704 		  || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
705 	}
706       else if (mapping_anon_p)
707 	return (filterflags & COREFILTER_ANON_SHARED) != 0;
708       else
709 	return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
710     }
711 }
712 
713 /* Implement the "info proc" command.  */
714 
715 static void
716 linux_info_proc (struct gdbarch *gdbarch, const char *args,
717 		 enum info_proc_what what)
718 {
719   /* A long is used for pid instead of an int to avoid a loss of precision
720      compiler warning from the output of strtoul.  */
721   long pid;
722   int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
723   int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
724   int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
725   int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
726   int status_f = (what == IP_STATUS || what == IP_ALL);
727   int stat_f = (what == IP_STAT || what == IP_ALL);
728   char filename[100];
729   int target_errno;
730 
731   if (args && isdigit (args[0]))
732     {
733       char *tem;
734 
735       pid = strtoul (args, &tem, 10);
736       args = tem;
737     }
738   else
739     {
740       if (!target_has_execution)
741 	error (_("No current process: you must name one."));
742       if (current_inferior ()->fake_pid_p)
743 	error (_("Can't determine the current process's PID: you must name one."));
744 
745       pid = current_inferior ()->pid;
746     }
747 
748   args = skip_spaces (args);
749   if (args && args[0])
750     error (_("Too many parameters: %s"), args);
751 
752   printf_filtered (_("process %ld\n"), pid);
753   if (cmdline_f)
754     {
755       xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
756       gdb_byte *buffer;
757       ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
758 
759       if (len > 0)
760 	{
761 	  gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
762 	  ssize_t pos;
763 
764 	  for (pos = 0; pos < len - 1; pos++)
765 	    {
766 	      if (buffer[pos] == '\0')
767 		buffer[pos] = ' ';
768 	    }
769 	  buffer[len - 1] = '\0';
770 	  printf_filtered ("cmdline = '%s'\n", buffer);
771 	}
772       else
773 	warning (_("unable to open /proc file '%s'"), filename);
774     }
775   if (cwd_f)
776     {
777       xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
778       gdb::optional<std::string> contents
779 	= target_fileio_readlink (NULL, filename, &target_errno);
780       if (contents.has_value ())
781 	printf_filtered ("cwd = '%s'\n", contents->c_str ());
782       else
783 	warning (_("unable to read link '%s'"), filename);
784     }
785   if (exe_f)
786     {
787       xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
788       gdb::optional<std::string> contents
789 	= target_fileio_readlink (NULL, filename, &target_errno);
790       if (contents.has_value ())
791 	printf_filtered ("exe = '%s'\n", contents->c_str ());
792       else
793 	warning (_("unable to read link '%s'"), filename);
794     }
795   if (mappings_f)
796     {
797       xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
798       gdb::unique_xmalloc_ptr<char> map
799 	= target_fileio_read_stralloc (NULL, filename);
800       if (map != NULL)
801 	{
802 	  char *line;
803 
804 	  printf_filtered (_("Mapped address spaces:\n\n"));
805 	  if (gdbarch_addr_bit (gdbarch) == 32)
806 	    {
807 	      printf_filtered ("\t%10s %10s %10s %10s %s\n",
808 			   "Start Addr",
809 			   "  End Addr",
810 			   "      Size", "    Offset", "objfile");
811             }
812 	  else
813             {
814 	      printf_filtered ("  %18s %18s %10s %10s %s\n",
815 			   "Start Addr",
816 			   "  End Addr",
817 			   "      Size", "    Offset", "objfile");
818 	    }
819 
820 	  for (line = strtok (map.get (), "\n");
821 	       line;
822 	       line = strtok (NULL, "\n"))
823 	    {
824 	      ULONGEST addr, endaddr, offset, inode;
825 	      const char *permissions, *device, *mapping_filename;
826 	      size_t permissions_len, device_len;
827 
828 	      read_mapping (line, &addr, &endaddr,
829 			    &permissions, &permissions_len,
830 			    &offset, &device, &device_len,
831 			    &inode, &mapping_filename);
832 
833 	      if (gdbarch_addr_bit (gdbarch) == 32)
834 	        {
835 	          printf_filtered ("\t%10s %10s %10s %10s %s\n",
836 				   paddress (gdbarch, addr),
837 				   paddress (gdbarch, endaddr),
838 				   hex_string (endaddr - addr),
839 				   hex_string (offset),
840 				   *mapping_filename ? mapping_filename : "");
841 		}
842 	      else
843 	        {
844 	          printf_filtered ("  %18s %18s %10s %10s %s\n",
845 				   paddress (gdbarch, addr),
846 				   paddress (gdbarch, endaddr),
847 				   hex_string (endaddr - addr),
848 				   hex_string (offset),
849 				   *mapping_filename ? mapping_filename : "");
850 	        }
851 	    }
852 	}
853       else
854 	warning (_("unable to open /proc file '%s'"), filename);
855     }
856   if (status_f)
857     {
858       xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
859       gdb::unique_xmalloc_ptr<char> status
860 	= target_fileio_read_stralloc (NULL, filename);
861       if (status)
862 	puts_filtered (status.get ());
863       else
864 	warning (_("unable to open /proc file '%s'"), filename);
865     }
866   if (stat_f)
867     {
868       xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
869       gdb::unique_xmalloc_ptr<char> statstr
870 	= target_fileio_read_stralloc (NULL, filename);
871       if (statstr)
872 	{
873 	  const char *p = statstr.get ();
874 
875 	  printf_filtered (_("Process: %s\n"),
876 			   pulongest (strtoulst (p, &p, 10)));
877 
878 	  p = skip_spaces (p);
879 	  if (*p == '(')
880 	    {
881 	      /* ps command also relies on no trailing fields
882 		 ever contain ')'.  */
883 	      const char *ep = strrchr (p, ')');
884 	      if (ep != NULL)
885 		{
886 		  printf_filtered ("Exec file: %.*s\n",
887 				   (int) (ep - p - 1), p + 1);
888 		  p = ep + 1;
889 		}
890 	    }
891 
892 	  p = skip_spaces (p);
893 	  if (*p)
894 	    printf_filtered (_("State: %c\n"), *p++);
895 
896 	  if (*p)
897 	    printf_filtered (_("Parent process: %s\n"),
898 			     pulongest (strtoulst (p, &p, 10)));
899 	  if (*p)
900 	    printf_filtered (_("Process group: %s\n"),
901 			     pulongest (strtoulst (p, &p, 10)));
902 	  if (*p)
903 	    printf_filtered (_("Session id: %s\n"),
904 			     pulongest (strtoulst (p, &p, 10)));
905 	  if (*p)
906 	    printf_filtered (_("TTY: %s\n"),
907 			     pulongest (strtoulst (p, &p, 10)));
908 	  if (*p)
909 	    printf_filtered (_("TTY owner process group: %s\n"),
910 			     pulongest (strtoulst (p, &p, 10)));
911 
912 	  if (*p)
913 	    printf_filtered (_("Flags: %s\n"),
914 			     hex_string (strtoulst (p, &p, 10)));
915 	  if (*p)
916 	    printf_filtered (_("Minor faults (no memory page): %s\n"),
917 			     pulongest (strtoulst (p, &p, 10)));
918 	  if (*p)
919 	    printf_filtered (_("Minor faults, children: %s\n"),
920 			     pulongest (strtoulst (p, &p, 10)));
921 	  if (*p)
922 	    printf_filtered (_("Major faults (memory page faults): %s\n"),
923 			     pulongest (strtoulst (p, &p, 10)));
924 	  if (*p)
925 	    printf_filtered (_("Major faults, children: %s\n"),
926 			     pulongest (strtoulst (p, &p, 10)));
927 	  if (*p)
928 	    printf_filtered (_("utime: %s\n"),
929 			     pulongest (strtoulst (p, &p, 10)));
930 	  if (*p)
931 	    printf_filtered (_("stime: %s\n"),
932 			     pulongest (strtoulst (p, &p, 10)));
933 	  if (*p)
934 	    printf_filtered (_("utime, children: %s\n"),
935 			     pulongest (strtoulst (p, &p, 10)));
936 	  if (*p)
937 	    printf_filtered (_("stime, children: %s\n"),
938 			     pulongest (strtoulst (p, &p, 10)));
939 	  if (*p)
940 	    printf_filtered (_("jiffies remaining in current "
941 			       "time slice: %s\n"),
942 			     pulongest (strtoulst (p, &p, 10)));
943 	  if (*p)
944 	    printf_filtered (_("'nice' value: %s\n"),
945 			     pulongest (strtoulst (p, &p, 10)));
946 	  if (*p)
947 	    printf_filtered (_("jiffies until next timeout: %s\n"),
948 			     pulongest (strtoulst (p, &p, 10)));
949 	  if (*p)
950 	    printf_filtered (_("jiffies until next SIGALRM: %s\n"),
951 			     pulongest (strtoulst (p, &p, 10)));
952 	  if (*p)
953 	    printf_filtered (_("start time (jiffies since "
954 			       "system boot): %s\n"),
955 			     pulongest (strtoulst (p, &p, 10)));
956 	  if (*p)
957 	    printf_filtered (_("Virtual memory size: %s\n"),
958 			     pulongest (strtoulst (p, &p, 10)));
959 	  if (*p)
960 	    printf_filtered (_("Resident set size: %s\n"),
961 			     pulongest (strtoulst (p, &p, 10)));
962 	  if (*p)
963 	    printf_filtered (_("rlim: %s\n"),
964 			     pulongest (strtoulst (p, &p, 10)));
965 	  if (*p)
966 	    printf_filtered (_("Start of text: %s\n"),
967 			     hex_string (strtoulst (p, &p, 10)));
968 	  if (*p)
969 	    printf_filtered (_("End of text: %s\n"),
970 			     hex_string (strtoulst (p, &p, 10)));
971 	  if (*p)
972 	    printf_filtered (_("Start of stack: %s\n"),
973 			     hex_string (strtoulst (p, &p, 10)));
974 #if 0	/* Don't know how architecture-dependent the rest is...
975 	   Anyway the signal bitmap info is available from "status".  */
976 	  if (*p)
977 	    printf_filtered (_("Kernel stack pointer: %s\n"),
978 			     hex_string (strtoulst (p, &p, 10)));
979 	  if (*p)
980 	    printf_filtered (_("Kernel instr pointer: %s\n"),
981 			     hex_string (strtoulst (p, &p, 10)));
982 	  if (*p)
983 	    printf_filtered (_("Pending signals bitmap: %s\n"),
984 			     hex_string (strtoulst (p, &p, 10)));
985 	  if (*p)
986 	    printf_filtered (_("Blocked signals bitmap: %s\n"),
987 			     hex_string (strtoulst (p, &p, 10)));
988 	  if (*p)
989 	    printf_filtered (_("Ignored signals bitmap: %s\n"),
990 			     hex_string (strtoulst (p, &p, 10)));
991 	  if (*p)
992 	    printf_filtered (_("Catched signals bitmap: %s\n"),
993 			     hex_string (strtoulst (p, &p, 10)));
994 	  if (*p)
995 	    printf_filtered (_("wchan (system call): %s\n"),
996 			     hex_string (strtoulst (p, &p, 10)));
997 #endif
998 	}
999       else
1000 	warning (_("unable to open /proc file '%s'"), filename);
1001     }
1002 }
1003 
1004 /* Implement "info proc mappings" for a corefile.  */
1005 
1006 static void
1007 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1008 {
1009   asection *section;
1010   ULONGEST count, page_size;
1011   unsigned char *descdata, *filenames, *descend;
1012   size_t note_size;
1013   unsigned int addr_size_bits, addr_size;
1014   struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1015   /* We assume this for reading 64-bit core files.  */
1016   gdb_static_assert (sizeof (ULONGEST) >= 8);
1017 
1018   section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1019   if (section == NULL)
1020     {
1021       warning (_("unable to find mappings in core file"));
1022       return;
1023     }
1024 
1025   addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1026   addr_size = addr_size_bits / 8;
1027   note_size = bfd_get_section_size (section);
1028 
1029   if (note_size < 2 * addr_size)
1030     error (_("malformed core note - too short for header"));
1031 
1032   gdb::def_vector<unsigned char> contents (note_size);
1033   if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1034 				 0, note_size))
1035     error (_("could not get core note contents"));
1036 
1037   descdata = contents.data ();
1038   descend = descdata + note_size;
1039 
1040   if (descdata[note_size - 1] != '\0')
1041     error (_("malformed note - does not end with \\0"));
1042 
1043   count = bfd_get (addr_size_bits, core_bfd, descdata);
1044   descdata += addr_size;
1045 
1046   page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1047   descdata += addr_size;
1048 
1049   if (note_size < 2 * addr_size + count * 3 * addr_size)
1050     error (_("malformed note - too short for supplied file count"));
1051 
1052   printf_filtered (_("Mapped address spaces:\n\n"));
1053   if (gdbarch_addr_bit (gdbarch) == 32)
1054     {
1055       printf_filtered ("\t%10s %10s %10s %10s %s\n",
1056 		       "Start Addr",
1057 		       "  End Addr",
1058 		       "      Size", "    Offset", "objfile");
1059     }
1060   else
1061     {
1062       printf_filtered ("  %18s %18s %10s %10s %s\n",
1063 		       "Start Addr",
1064 		       "  End Addr",
1065 		       "      Size", "    Offset", "objfile");
1066     }
1067 
1068   filenames = descdata + count * 3 * addr_size;
1069   while (--count > 0)
1070     {
1071       ULONGEST start, end, file_ofs;
1072 
1073       if (filenames == descend)
1074 	error (_("malformed note - filenames end too early"));
1075 
1076       start = bfd_get (addr_size_bits, core_bfd, descdata);
1077       descdata += addr_size;
1078       end = bfd_get (addr_size_bits, core_bfd, descdata);
1079       descdata += addr_size;
1080       file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1081       descdata += addr_size;
1082 
1083       file_ofs *= page_size;
1084 
1085       if (gdbarch_addr_bit (gdbarch) == 32)
1086 	printf_filtered ("\t%10s %10s %10s %10s %s\n",
1087 			 paddress (gdbarch, start),
1088 			 paddress (gdbarch, end),
1089 			 hex_string (end - start),
1090 			 hex_string (file_ofs),
1091 			 filenames);
1092       else
1093 	printf_filtered ("  %18s %18s %10s %10s %s\n",
1094 			 paddress (gdbarch, start),
1095 			 paddress (gdbarch, end),
1096 			 hex_string (end - start),
1097 			 hex_string (file_ofs),
1098 			 filenames);
1099 
1100       filenames += 1 + strlen ((char *) filenames);
1101     }
1102 }
1103 
1104 /* Implement "info proc" for a corefile.  */
1105 
1106 static void
1107 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1108 		      enum info_proc_what what)
1109 {
1110   int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1111   int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1112 
1113   if (exe_f)
1114     {
1115       const char *exe;
1116 
1117       exe = bfd_core_file_failing_command (core_bfd);
1118       if (exe != NULL)
1119 	printf_filtered ("exe = '%s'\n", exe);
1120       else
1121 	warning (_("unable to find command name in core file"));
1122     }
1123 
1124   if (mappings_f)
1125     linux_core_info_proc_mappings (gdbarch, args);
1126 
1127   if (!exe_f && !mappings_f)
1128     error (_("unable to handle request"));
1129 }
1130 
1131 /* Read siginfo data from the core, if possible.  Returns -1 on
1132    failure.  Otherwise, returns the number of bytes read.  READBUF,
1133    OFFSET, and LEN are all as specified by the to_xfer_partial
1134    interface.  */
1135 
1136 static LONGEST
1137 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1138 			 ULONGEST offset, ULONGEST len)
1139 {
1140   thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1141   asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1142   if (section == NULL)
1143     return -1;
1144 
1145   if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1146     return -1;
1147 
1148   return len;
1149 }
1150 
1151 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1152 					    ULONGEST offset, ULONGEST inode,
1153 					    int read, int write,
1154 					    int exec, int modified,
1155 					    const char *filename,
1156 					    void *data);
1157 
1158 /* List memory regions in the inferior for a corefile.  */
1159 
1160 static int
1161 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1162 				linux_find_memory_region_ftype *func,
1163 				void *obfd)
1164 {
1165   char mapsfilename[100];
1166   char coredumpfilter_name[100];
1167   pid_t pid;
1168   /* Default dump behavior of coredump_filter (0x33), according to
1169      Documentation/filesystems/proc.txt from the Linux kernel
1170      tree.  */
1171   filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1172 			      | COREFILTER_ANON_SHARED
1173 			      | COREFILTER_ELF_HEADERS
1174 			      | COREFILTER_HUGETLB_PRIVATE);
1175 
1176   /* We need to know the real target PID to access /proc.  */
1177   if (current_inferior ()->fake_pid_p)
1178     return 1;
1179 
1180   pid = current_inferior ()->pid;
1181 
1182   if (use_coredump_filter)
1183     {
1184       xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1185 		 "/proc/%d/coredump_filter", pid);
1186       gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1187 	= target_fileio_read_stralloc (NULL, coredumpfilter_name);
1188       if (coredumpfilterdata != NULL)
1189 	{
1190 	  unsigned int flags;
1191 
1192 	  sscanf (coredumpfilterdata.get (), "%x", &flags);
1193 	  filterflags = (enum filter_flag) flags;
1194 	}
1195     }
1196 
1197   xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1198   gdb::unique_xmalloc_ptr<char> data
1199     = target_fileio_read_stralloc (NULL, mapsfilename);
1200   if (data == NULL)
1201     {
1202       /* Older Linux kernels did not support /proc/PID/smaps.  */
1203       xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1204       data = target_fileio_read_stralloc (NULL, mapsfilename);
1205     }
1206 
1207   if (data != NULL)
1208     {
1209       char *line, *t;
1210 
1211       line = strtok_r (data.get (), "\n", &t);
1212       while (line != NULL)
1213 	{
1214 	  ULONGEST addr, endaddr, offset, inode;
1215 	  const char *permissions, *device, *filename;
1216 	  struct smaps_vmflags v;
1217 	  size_t permissions_len, device_len;
1218 	  int read, write, exec, priv;
1219 	  int has_anonymous = 0;
1220 	  int should_dump_p = 0;
1221 	  int mapping_anon_p;
1222 	  int mapping_file_p;
1223 
1224 	  memset (&v, 0, sizeof (v));
1225 	  read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1226 			&offset, &device, &device_len, &inode, &filename);
1227 	  mapping_anon_p = mapping_is_anonymous_p (filename);
1228 	  /* If the mapping is not anonymous, then we can consider it
1229 	     to be file-backed.  These two states (anonymous or
1230 	     file-backed) seem to be exclusive, but they can actually
1231 	     coexist.  For example, if a file-backed mapping has
1232 	     "Anonymous:" pages (see more below), then the Linux
1233 	     kernel will dump this mapping when the user specified
1234 	     that she only wants anonymous mappings in the corefile
1235 	     (*even* when she explicitly disabled the dumping of
1236 	     file-backed mappings).  */
1237 	  mapping_file_p = !mapping_anon_p;
1238 
1239 	  /* Decode permissions.  */
1240 	  read = (memchr (permissions, 'r', permissions_len) != 0);
1241 	  write = (memchr (permissions, 'w', permissions_len) != 0);
1242 	  exec = (memchr (permissions, 'x', permissions_len) != 0);
1243 	  /* 'private' here actually means VM_MAYSHARE, and not
1244 	     VM_SHARED.  In order to know if a mapping is really
1245 	     private or not, we must check the flag "sh" in the
1246 	     VmFlags field.  This is done by decode_vmflags.  However,
1247 	     if we are using a Linux kernel released before the commit
1248 	     834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1249 	     not have the VmFlags there.  In this case, there is
1250 	     really no way to know if we are dealing with VM_SHARED,
1251 	     so we just assume that VM_MAYSHARE is enough.  */
1252 	  priv = memchr (permissions, 'p', permissions_len) != 0;
1253 
1254 	  /* Try to detect if region should be dumped by parsing smaps
1255 	     counters.  */
1256 	  for (line = strtok_r (NULL, "\n", &t);
1257 	       line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1258 	       line = strtok_r (NULL, "\n", &t))
1259 	    {
1260 	      char keyword[64 + 1];
1261 
1262 	      if (sscanf (line, "%64s", keyword) != 1)
1263 		{
1264 		  warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1265 		  break;
1266 		}
1267 
1268 	      if (strcmp (keyword, "Anonymous:") == 0)
1269 		{
1270 		  /* Older Linux kernels did not support the
1271 		     "Anonymous:" counter.  Check it here.  */
1272 		  has_anonymous = 1;
1273 		}
1274 	      else if (strcmp (keyword, "VmFlags:") == 0)
1275 		decode_vmflags (line, &v);
1276 
1277 	      if (strcmp (keyword, "AnonHugePages:") == 0
1278 		  || strcmp (keyword, "Anonymous:") == 0)
1279 		{
1280 		  unsigned long number;
1281 
1282 		  if (sscanf (line, "%*s%lu", &number) != 1)
1283 		    {
1284 		      warning (_("Error parsing {s,}maps file '%s' number"),
1285 			       mapsfilename);
1286 		      break;
1287 		    }
1288 		  if (number > 0)
1289 		    {
1290 		      /* Even if we are dealing with a file-backed
1291 			 mapping, if it contains anonymous pages we
1292 			 consider it to be *also* an anonymous
1293 			 mapping, because this is what the Linux
1294 			 kernel does:
1295 
1296 			 // Dump segments that have been written to.
1297 			 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1298 			 	goto whole;
1299 
1300 			 Note that if the mapping is already marked as
1301 			 file-backed (i.e., mapping_file_p is
1302 			 non-zero), then this is a special case, and
1303 			 this mapping will be dumped either when the
1304 			 user wants to dump file-backed *or* anonymous
1305 			 mappings.  */
1306 		      mapping_anon_p = 1;
1307 		    }
1308 		}
1309 	    }
1310 
1311 	  if (has_anonymous)
1312 	    should_dump_p = dump_mapping_p (filterflags, &v, priv,
1313 					    mapping_anon_p, mapping_file_p,
1314 					    filename);
1315 	  else
1316 	    {
1317 	      /* Older Linux kernels did not support the "Anonymous:" counter.
1318 		 If it is missing, we can't be sure - dump all the pages.  */
1319 	      should_dump_p = 1;
1320 	    }
1321 
1322 	  /* Invoke the callback function to create the corefile segment.  */
1323 	  if (should_dump_p)
1324 	    func (addr, endaddr - addr, offset, inode,
1325 		  read, write, exec, 1, /* MODIFIED is true because we
1326 					   want to dump the mapping.  */
1327 		  filename, obfd);
1328 	}
1329 
1330       return 0;
1331     }
1332 
1333   return 1;
1334 }
1335 
1336 /* A structure for passing information through
1337    linux_find_memory_regions_full.  */
1338 
1339 struct linux_find_memory_regions_data
1340 {
1341   /* The original callback.  */
1342 
1343   find_memory_region_ftype func;
1344 
1345   /* The original datum.  */
1346 
1347   void *obfd;
1348 };
1349 
1350 /* A callback for linux_find_memory_regions that converts between the
1351    "full"-style callback and find_memory_region_ftype.  */
1352 
1353 static int
1354 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1355 				 ULONGEST offset, ULONGEST inode,
1356 				 int read, int write, int exec, int modified,
1357 				 const char *filename, void *arg)
1358 {
1359   struct linux_find_memory_regions_data *data
1360     = (struct linux_find_memory_regions_data *) arg;
1361 
1362   return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1363 }
1364 
1365 /* A variant of linux_find_memory_regions_full that is suitable as the
1366    gdbarch find_memory_regions method.  */
1367 
1368 static int
1369 linux_find_memory_regions (struct gdbarch *gdbarch,
1370 			   find_memory_region_ftype func, void *obfd)
1371 {
1372   struct linux_find_memory_regions_data data;
1373 
1374   data.func = func;
1375   data.obfd = obfd;
1376 
1377   return linux_find_memory_regions_full (gdbarch,
1378 					 linux_find_memory_regions_thunk,
1379 					 &data);
1380 }
1381 
1382 /* Determine which signal stopped execution.  */
1383 
1384 static int
1385 find_signalled_thread (struct thread_info *info, void *data)
1386 {
1387   if (info->suspend.stop_signal != GDB_SIGNAL_0
1388       && info->ptid.pid () == inferior_ptid.pid ())
1389     return 1;
1390 
1391   return 0;
1392 }
1393 
1394 /* Generate corefile notes for SPU contexts.  */
1395 
1396 static char *
1397 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1398 {
1399   static const char *spu_files[] =
1400     {
1401       "object-id",
1402       "mem",
1403       "regs",
1404       "fpcr",
1405       "lslr",
1406       "decr",
1407       "decr_status",
1408       "signal1",
1409       "signal1_type",
1410       "signal2",
1411       "signal2_type",
1412       "event_mask",
1413       "event_status",
1414       "mbox_info",
1415       "ibox_info",
1416       "wbox_info",
1417       "dma_info",
1418       "proxydma_info",
1419    };
1420 
1421   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1422 
1423   /* Determine list of SPU ids.  */
1424   gdb::optional<gdb::byte_vector>
1425     spu_ids = target_read_alloc (current_top_target (),
1426 				 TARGET_OBJECT_SPU, NULL);
1427 
1428   if (!spu_ids)
1429     return note_data;
1430 
1431   /* Generate corefile notes for each SPU file.  */
1432   for (size_t i = 0; i < spu_ids->size (); i += 4)
1433     {
1434       int fd = extract_unsigned_integer (spu_ids->data () + i, 4, byte_order);
1435 
1436       for (size_t j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1437 	{
1438 	  char annex[32], note_name[32];
1439 
1440 	  xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1441 	  gdb::optional<gdb::byte_vector> spu_data
1442 	    = target_read_alloc (current_top_target (), TARGET_OBJECT_SPU, annex);
1443 
1444 	  if (spu_data && !spu_data->empty ())
1445 	    {
1446 	      xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1447 	      note_data = elfcore_write_note (obfd, note_data, note_size,
1448 					      note_name, NT_SPU,
1449 					      spu_data->data (),
1450 					      spu_data->size ());
1451 
1452 	      if (!note_data)
1453 		return nullptr;
1454 	    }
1455 	}
1456     }
1457 
1458   return note_data;
1459 }
1460 
1461 /* This is used to pass information from
1462    linux_make_mappings_corefile_notes through
1463    linux_find_memory_regions_full.  */
1464 
1465 struct linux_make_mappings_data
1466 {
1467   /* Number of files mapped.  */
1468   ULONGEST file_count;
1469 
1470   /* The obstack for the main part of the data.  */
1471   struct obstack *data_obstack;
1472 
1473   /* The filename obstack.  */
1474   struct obstack *filename_obstack;
1475 
1476   /* The architecture's "long" type.  */
1477   struct type *long_type;
1478 };
1479 
1480 static linux_find_memory_region_ftype linux_make_mappings_callback;
1481 
1482 /* A callback for linux_find_memory_regions_full that updates the
1483    mappings data for linux_make_mappings_corefile_notes.  */
1484 
1485 static int
1486 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1487 			      ULONGEST offset, ULONGEST inode,
1488 			      int read, int write, int exec, int modified,
1489 			      const char *filename, void *data)
1490 {
1491   struct linux_make_mappings_data *map_data
1492     = (struct linux_make_mappings_data *) data;
1493   gdb_byte buf[sizeof (ULONGEST)];
1494 
1495   if (*filename == '\0' || inode == 0)
1496     return 0;
1497 
1498   ++map_data->file_count;
1499 
1500   pack_long (buf, map_data->long_type, vaddr);
1501   obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1502   pack_long (buf, map_data->long_type, vaddr + size);
1503   obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1504   pack_long (buf, map_data->long_type, offset);
1505   obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1506 
1507   obstack_grow_str0 (map_data->filename_obstack, filename);
1508 
1509   return 0;
1510 }
1511 
1512 /* Write the file mapping data to the core file, if possible.  OBFD is
1513    the output BFD.  NOTE_DATA is the current note data, and NOTE_SIZE
1514    is a pointer to the note size.  Returns the new NOTE_DATA and
1515    updates NOTE_SIZE.  */
1516 
1517 static char *
1518 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1519 				    char *note_data, int *note_size)
1520 {
1521   struct linux_make_mappings_data mapping_data;
1522   struct type *long_type
1523     = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1524   gdb_byte buf[sizeof (ULONGEST)];
1525 
1526   auto_obstack data_obstack, filename_obstack;
1527 
1528   mapping_data.file_count = 0;
1529   mapping_data.data_obstack = &data_obstack;
1530   mapping_data.filename_obstack = &filename_obstack;
1531   mapping_data.long_type = long_type;
1532 
1533   /* Reserve space for the count.  */
1534   obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1535   /* We always write the page size as 1 since we have no good way to
1536      determine the correct value.  */
1537   pack_long (buf, long_type, 1);
1538   obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1539 
1540   linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1541 				  &mapping_data);
1542 
1543   if (mapping_data.file_count != 0)
1544     {
1545       /* Write the count to the obstack.  */
1546       pack_long ((gdb_byte *) obstack_base (&data_obstack),
1547 		 long_type, mapping_data.file_count);
1548 
1549       /* Copy the filenames to the data obstack.  */
1550       int size = obstack_object_size (&filename_obstack);
1551       obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1552 		    size);
1553 
1554       note_data = elfcore_write_note (obfd, note_data, note_size,
1555 				      "CORE", NT_FILE,
1556 				      obstack_base (&data_obstack),
1557 				      obstack_object_size (&data_obstack));
1558     }
1559 
1560   return note_data;
1561 }
1562 
1563 /* Structure for passing information from
1564    linux_collect_thread_registers via an iterator to
1565    linux_collect_regset_section_cb. */
1566 
1567 struct linux_collect_regset_section_cb_data
1568 {
1569   struct gdbarch *gdbarch;
1570   const struct regcache *regcache;
1571   bfd *obfd;
1572   char *note_data;
1573   int *note_size;
1574   unsigned long lwp;
1575   enum gdb_signal stop_signal;
1576   int abort_iteration;
1577 };
1578 
1579 /* Callback for iterate_over_regset_sections that records a single
1580    regset in the corefile note section.  */
1581 
1582 static void
1583 linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1584 				 int collect_size, const struct regset *regset,
1585 				 const char *human_name, void *cb_data)
1586 {
1587   struct linux_collect_regset_section_cb_data *data
1588     = (struct linux_collect_regset_section_cb_data *) cb_data;
1589   bool variable_size_section = (regset != NULL
1590 				&& regset->flags & REGSET_VARIABLE_SIZE);
1591 
1592   if (!variable_size_section)
1593     gdb_assert (supply_size == collect_size);
1594 
1595   if (data->abort_iteration)
1596     return;
1597 
1598   gdb_assert (regset && regset->collect_regset);
1599 
1600   /* This is intentionally zero-initialized by using std::vector, so
1601      that any padding bytes in the core file will show as 0.  */
1602   std::vector<gdb_byte> buf (collect_size);
1603 
1604   regset->collect_regset (regset, data->regcache, -1, buf.data (),
1605 			  collect_size);
1606 
1607   /* PRSTATUS still needs to be treated specially.  */
1608   if (strcmp (sect_name, ".reg") == 0)
1609     data->note_data = (char *) elfcore_write_prstatus
1610       (data->obfd, data->note_data, data->note_size, data->lwp,
1611        gdb_signal_to_host (data->stop_signal), buf.data ());
1612   else
1613     data->note_data = (char *) elfcore_write_register_note
1614       (data->obfd, data->note_data, data->note_size,
1615        sect_name, buf.data (), collect_size);
1616 
1617   if (data->note_data == NULL)
1618     data->abort_iteration = 1;
1619 }
1620 
1621 /* Records the thread's register state for the corefile note
1622    section.  */
1623 
1624 static char *
1625 linux_collect_thread_registers (const struct regcache *regcache,
1626 				ptid_t ptid, bfd *obfd,
1627 				char *note_data, int *note_size,
1628 				enum gdb_signal stop_signal)
1629 {
1630   struct gdbarch *gdbarch = regcache->arch ();
1631   struct linux_collect_regset_section_cb_data data;
1632 
1633   data.gdbarch = gdbarch;
1634   data.regcache = regcache;
1635   data.obfd = obfd;
1636   data.note_data = note_data;
1637   data.note_size = note_size;
1638   data.stop_signal = stop_signal;
1639   data.abort_iteration = 0;
1640 
1641   /* For remote targets the LWP may not be available, so use the TID.  */
1642   data.lwp = ptid.lwp ();
1643   if (!data.lwp)
1644     data.lwp = ptid.tid ();
1645 
1646   gdbarch_iterate_over_regset_sections (gdbarch,
1647 					linux_collect_regset_section_cb,
1648 					&data, regcache);
1649   return data.note_data;
1650 }
1651 
1652 /* Fetch the siginfo data for the specified thread, if it exists.  If
1653    there is no data, or we could not read it, return an empty
1654    buffer.  */
1655 
1656 static gdb::byte_vector
1657 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
1658 {
1659   struct type *siginfo_type;
1660   LONGEST bytes_read;
1661 
1662   if (!gdbarch_get_siginfo_type_p (gdbarch))
1663     return gdb::byte_vector ();
1664 
1665   scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1666   inferior_ptid = thread->ptid;
1667 
1668   siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1669 
1670   gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
1671 
1672   bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
1673 			    buf.data (), 0, TYPE_LENGTH (siginfo_type));
1674   if (bytes_read != TYPE_LENGTH (siginfo_type))
1675     buf.clear ();
1676 
1677   return buf;
1678 }
1679 
1680 struct linux_corefile_thread_data
1681 {
1682   struct gdbarch *gdbarch;
1683   bfd *obfd;
1684   char *note_data;
1685   int *note_size;
1686   enum gdb_signal stop_signal;
1687 };
1688 
1689 /* Records the thread's register state for the corefile note
1690    section.  */
1691 
1692 static void
1693 linux_corefile_thread (struct thread_info *info,
1694 		       struct linux_corefile_thread_data *args)
1695 {
1696   struct regcache *regcache;
1697 
1698   regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1699 
1700   target_fetch_registers (regcache, -1);
1701   gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
1702 
1703   args->note_data = linux_collect_thread_registers
1704     (regcache, info->ptid, args->obfd, args->note_data,
1705      args->note_size, args->stop_signal);
1706 
1707   /* Don't return anything if we got no register information above,
1708      such a core file is useless.  */
1709   if (args->note_data != NULL)
1710     if (!siginfo_data.empty ())
1711       args->note_data = elfcore_write_note (args->obfd,
1712 					    args->note_data,
1713 					    args->note_size,
1714 					    "CORE", NT_SIGINFO,
1715 					    siginfo_data.data (),
1716 					    siginfo_data.size ());
1717 }
1718 
1719 /* Fill the PRPSINFO structure with information about the process being
1720    debugged.  Returns 1 in case of success, 0 for failures.  Please note that
1721    even if the structure cannot be entirely filled (e.g., GDB was unable to
1722    gather information about the process UID/GID), this function will still
1723    return 1 since some information was already recorded.  It will only return
1724    0 iff nothing can be gathered.  */
1725 
1726 static int
1727 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1728 {
1729   /* The filename which we will use to obtain some info about the process.
1730      We will basically use this to store the `/proc/PID/FILENAME' file.  */
1731   char filename[100];
1732   /* The basename of the executable.  */
1733   const char *basename;
1734   const char *infargs;
1735   /* Temporary buffer.  */
1736   char *tmpstr;
1737   /* The valid states of a process, according to the Linux kernel.  */
1738   const char valid_states[] = "RSDTZW";
1739   /* The program state.  */
1740   const char *prog_state;
1741   /* The state of the process.  */
1742   char pr_sname;
1743   /* The PID of the program which generated the corefile.  */
1744   pid_t pid;
1745   /* Process flags.  */
1746   unsigned int pr_flag;
1747   /* Process nice value.  */
1748   long pr_nice;
1749   /* The number of fields read by `sscanf'.  */
1750   int n_fields = 0;
1751 
1752   gdb_assert (p != NULL);
1753 
1754   /* Obtaining PID and filename.  */
1755   pid = inferior_ptid.pid ();
1756   xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1757   /* The full name of the program which generated the corefile.  */
1758   gdb::unique_xmalloc_ptr<char> fname
1759     = target_fileio_read_stralloc (NULL, filename);
1760 
1761   if (fname == NULL || fname.get ()[0] == '\0')
1762     {
1763       /* No program name was read, so we won't be able to retrieve more
1764 	 information about the process.  */
1765       return 0;
1766     }
1767 
1768   memset (p, 0, sizeof (*p));
1769 
1770   /* Defining the PID.  */
1771   p->pr_pid = pid;
1772 
1773   /* Copying the program name.  Only the basename matters.  */
1774   basename = lbasename (fname.get ());
1775   strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1776   p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1777 
1778   infargs = get_inferior_args ();
1779 
1780   /* The arguments of the program.  */
1781   std::string psargs = fname.get ();
1782   if (infargs != NULL)
1783     psargs = psargs + " " + infargs;
1784 
1785   strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs));
1786   p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1787 
1788   xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1789   /* The contents of `/proc/PID/stat'.  */
1790   gdb::unique_xmalloc_ptr<char> proc_stat_contents
1791     = target_fileio_read_stralloc (NULL, filename);
1792   char *proc_stat = proc_stat_contents.get ();
1793 
1794   if (proc_stat == NULL || *proc_stat == '\0')
1795     {
1796       /* Despite being unable to read more information about the
1797 	 process, we return 1 here because at least we have its
1798 	 command line, PID and arguments.  */
1799       return 1;
1800     }
1801 
1802   /* Ok, we have the stats.  It's time to do a little parsing of the
1803      contents of the buffer, so that we end up reading what we want.
1804 
1805      The following parsing mechanism is strongly based on the
1806      information generated by the `fs/proc/array.c' file, present in
1807      the Linux kernel tree.  More details about how the information is
1808      displayed can be obtained by seeing the manpage of proc(5),
1809      specifically under the entry of `/proc/[pid]/stat'.  */
1810 
1811   /* Getting rid of the PID, since we already have it.  */
1812   while (isdigit (*proc_stat))
1813     ++proc_stat;
1814 
1815   proc_stat = skip_spaces (proc_stat);
1816 
1817   /* ps command also relies on no trailing fields ever contain ')'.  */
1818   proc_stat = strrchr (proc_stat, ')');
1819   if (proc_stat == NULL)
1820     return 1;
1821   proc_stat++;
1822 
1823   proc_stat = skip_spaces (proc_stat);
1824 
1825   n_fields = sscanf (proc_stat,
1826 		     "%c"		/* Process state.  */
1827 		     "%d%d%d"		/* Parent PID, group ID, session ID.  */
1828 		     "%*d%*d"		/* tty_nr, tpgid (not used).  */
1829 		     "%u"		/* Flags.  */
1830 		     "%*s%*s%*s%*s"	/* minflt, cminflt, majflt,
1831 					   cmajflt (not used).  */
1832 		     "%*s%*s%*s%*s"	/* utime, stime, cutime,
1833 					   cstime (not used).  */
1834 		     "%*s"		/* Priority (not used).  */
1835 		     "%ld",		/* Nice.  */
1836 		     &pr_sname,
1837 		     &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1838 		     &pr_flag,
1839 		     &pr_nice);
1840 
1841   if (n_fields != 6)
1842     {
1843       /* Again, we couldn't read the complementary information about
1844 	 the process state.  However, we already have minimal
1845 	 information, so we just return 1 here.  */
1846       return 1;
1847     }
1848 
1849   /* Filling the structure fields.  */
1850   prog_state = strchr (valid_states, pr_sname);
1851   if (prog_state != NULL)
1852     p->pr_state = prog_state - valid_states;
1853   else
1854     {
1855       /* Zero means "Running".  */
1856       p->pr_state = 0;
1857     }
1858 
1859   p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1860   p->pr_zomb = p->pr_sname == 'Z';
1861   p->pr_nice = pr_nice;
1862   p->pr_flag = pr_flag;
1863 
1864   /* Finally, obtaining the UID and GID.  For that, we read and parse the
1865      contents of the `/proc/PID/status' file.  */
1866   xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1867   /* The contents of `/proc/PID/status'.  */
1868   gdb::unique_xmalloc_ptr<char> proc_status_contents
1869     = target_fileio_read_stralloc (NULL, filename);
1870   char *proc_status = proc_status_contents.get ();
1871 
1872   if (proc_status == NULL || *proc_status == '\0')
1873     {
1874       /* Returning 1 since we already have a bunch of information.  */
1875       return 1;
1876     }
1877 
1878   /* Extracting the UID.  */
1879   tmpstr = strstr (proc_status, "Uid:");
1880   if (tmpstr != NULL)
1881     {
1882       /* Advancing the pointer to the beginning of the UID.  */
1883       tmpstr += sizeof ("Uid:");
1884       while (*tmpstr != '\0' && !isdigit (*tmpstr))
1885 	++tmpstr;
1886 
1887       if (isdigit (*tmpstr))
1888 	p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1889     }
1890 
1891   /* Extracting the GID.  */
1892   tmpstr = strstr (proc_status, "Gid:");
1893   if (tmpstr != NULL)
1894     {
1895       /* Advancing the pointer to the beginning of the GID.  */
1896       tmpstr += sizeof ("Gid:");
1897       while (*tmpstr != '\0' && !isdigit (*tmpstr))
1898 	++tmpstr;
1899 
1900       if (isdigit (*tmpstr))
1901 	p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1902     }
1903 
1904   return 1;
1905 }
1906 
1907 /* Build the note section for a corefile, and return it in a malloc
1908    buffer.  */
1909 
1910 static char *
1911 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1912 {
1913   struct linux_corefile_thread_data thread_args;
1914   struct elf_internal_linux_prpsinfo prpsinfo;
1915   char *note_data = NULL;
1916   struct thread_info *curr_thr, *signalled_thr;
1917 
1918   if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1919     return NULL;
1920 
1921   if (linux_fill_prpsinfo (&prpsinfo))
1922     {
1923       if (gdbarch_ptr_bit (gdbarch) == 64)
1924 	note_data = elfcore_write_linux_prpsinfo64 (obfd,
1925 						    note_data, note_size,
1926 						    &prpsinfo);
1927       else
1928 	note_data = elfcore_write_linux_prpsinfo32 (obfd,
1929 						    note_data, note_size,
1930 						    &prpsinfo);
1931     }
1932 
1933   /* Thread register information.  */
1934   TRY
1935     {
1936       update_thread_list ();
1937     }
1938   CATCH (e, RETURN_MASK_ERROR)
1939     {
1940       exception_print (gdb_stderr, e);
1941     }
1942   END_CATCH
1943 
1944   /* Like the kernel, prefer dumping the signalled thread first.
1945      "First thread" is what tools use to infer the signalled thread.
1946      In case there's more than one signalled thread, prefer the
1947      current thread, if it is signalled.  */
1948   curr_thr = inferior_thread ();
1949   if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1950     signalled_thr = curr_thr;
1951   else
1952     {
1953       signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1954       if (signalled_thr == NULL)
1955 	signalled_thr = curr_thr;
1956     }
1957 
1958   thread_args.gdbarch = gdbarch;
1959   thread_args.obfd = obfd;
1960   thread_args.note_data = note_data;
1961   thread_args.note_size = note_size;
1962   thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1963 
1964   linux_corefile_thread (signalled_thr, &thread_args);
1965   for (thread_info *thr : current_inferior ()->non_exited_threads ())
1966     {
1967       if (thr == signalled_thr)
1968 	continue;
1969 
1970       linux_corefile_thread (thr, &thread_args);
1971     }
1972 
1973   note_data = thread_args.note_data;
1974   if (!note_data)
1975     return NULL;
1976 
1977   /* Auxillary vector.  */
1978   gdb::optional<gdb::byte_vector> auxv =
1979     target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
1980   if (auxv && !auxv->empty ())
1981     {
1982       note_data = elfcore_write_note (obfd, note_data, note_size,
1983 				      "CORE", NT_AUXV, auxv->data (),
1984 				      auxv->size ());
1985 
1986       if (!note_data)
1987 	return NULL;
1988     }
1989 
1990   /* SPU information.  */
1991   note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
1992   if (!note_data)
1993     return NULL;
1994 
1995   /* File mappings.  */
1996   note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
1997 						  note_data, note_size);
1998 
1999   return note_data;
2000 }
2001 
2002 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2003    gdbarch.h.  This function is not static because it is exported to
2004    other -tdep files.  */
2005 
2006 enum gdb_signal
2007 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2008 {
2009   switch (signal)
2010     {
2011     case 0:
2012       return GDB_SIGNAL_0;
2013 
2014     case LINUX_SIGHUP:
2015       return GDB_SIGNAL_HUP;
2016 
2017     case LINUX_SIGINT:
2018       return GDB_SIGNAL_INT;
2019 
2020     case LINUX_SIGQUIT:
2021       return GDB_SIGNAL_QUIT;
2022 
2023     case LINUX_SIGILL:
2024       return GDB_SIGNAL_ILL;
2025 
2026     case LINUX_SIGTRAP:
2027       return GDB_SIGNAL_TRAP;
2028 
2029     case LINUX_SIGABRT:
2030       return GDB_SIGNAL_ABRT;
2031 
2032     case LINUX_SIGBUS:
2033       return GDB_SIGNAL_BUS;
2034 
2035     case LINUX_SIGFPE:
2036       return GDB_SIGNAL_FPE;
2037 
2038     case LINUX_SIGKILL:
2039       return GDB_SIGNAL_KILL;
2040 
2041     case LINUX_SIGUSR1:
2042       return GDB_SIGNAL_USR1;
2043 
2044     case LINUX_SIGSEGV:
2045       return GDB_SIGNAL_SEGV;
2046 
2047     case LINUX_SIGUSR2:
2048       return GDB_SIGNAL_USR2;
2049 
2050     case LINUX_SIGPIPE:
2051       return GDB_SIGNAL_PIPE;
2052 
2053     case LINUX_SIGALRM:
2054       return GDB_SIGNAL_ALRM;
2055 
2056     case LINUX_SIGTERM:
2057       return GDB_SIGNAL_TERM;
2058 
2059     case LINUX_SIGCHLD:
2060       return GDB_SIGNAL_CHLD;
2061 
2062     case LINUX_SIGCONT:
2063       return GDB_SIGNAL_CONT;
2064 
2065     case LINUX_SIGSTOP:
2066       return GDB_SIGNAL_STOP;
2067 
2068     case LINUX_SIGTSTP:
2069       return GDB_SIGNAL_TSTP;
2070 
2071     case LINUX_SIGTTIN:
2072       return GDB_SIGNAL_TTIN;
2073 
2074     case LINUX_SIGTTOU:
2075       return GDB_SIGNAL_TTOU;
2076 
2077     case LINUX_SIGURG:
2078       return GDB_SIGNAL_URG;
2079 
2080     case LINUX_SIGXCPU:
2081       return GDB_SIGNAL_XCPU;
2082 
2083     case LINUX_SIGXFSZ:
2084       return GDB_SIGNAL_XFSZ;
2085 
2086     case LINUX_SIGVTALRM:
2087       return GDB_SIGNAL_VTALRM;
2088 
2089     case LINUX_SIGPROF:
2090       return GDB_SIGNAL_PROF;
2091 
2092     case LINUX_SIGWINCH:
2093       return GDB_SIGNAL_WINCH;
2094 
2095     /* No way to differentiate between SIGIO and SIGPOLL.
2096        Therefore, we just handle the first one.  */
2097     case LINUX_SIGIO:
2098       return GDB_SIGNAL_IO;
2099 
2100     case LINUX_SIGPWR:
2101       return GDB_SIGNAL_PWR;
2102 
2103     case LINUX_SIGSYS:
2104       return GDB_SIGNAL_SYS;
2105 
2106     /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2107        therefore we have to handle them here.  */
2108     case LINUX_SIGRTMIN:
2109       return GDB_SIGNAL_REALTIME_32;
2110 
2111     case LINUX_SIGRTMAX:
2112       return GDB_SIGNAL_REALTIME_64;
2113     }
2114 
2115   if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2116     {
2117       int offset = signal - LINUX_SIGRTMIN + 1;
2118 
2119       return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2120     }
2121 
2122   return GDB_SIGNAL_UNKNOWN;
2123 }
2124 
2125 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2126    gdbarch.h.  This function is not static because it is exported to
2127    other -tdep files.  */
2128 
2129 int
2130 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2131 			    enum gdb_signal signal)
2132 {
2133   switch (signal)
2134     {
2135     case GDB_SIGNAL_0:
2136       return 0;
2137 
2138     case GDB_SIGNAL_HUP:
2139       return LINUX_SIGHUP;
2140 
2141     case GDB_SIGNAL_INT:
2142       return LINUX_SIGINT;
2143 
2144     case GDB_SIGNAL_QUIT:
2145       return LINUX_SIGQUIT;
2146 
2147     case GDB_SIGNAL_ILL:
2148       return LINUX_SIGILL;
2149 
2150     case GDB_SIGNAL_TRAP:
2151       return LINUX_SIGTRAP;
2152 
2153     case GDB_SIGNAL_ABRT:
2154       return LINUX_SIGABRT;
2155 
2156     case GDB_SIGNAL_FPE:
2157       return LINUX_SIGFPE;
2158 
2159     case GDB_SIGNAL_KILL:
2160       return LINUX_SIGKILL;
2161 
2162     case GDB_SIGNAL_BUS:
2163       return LINUX_SIGBUS;
2164 
2165     case GDB_SIGNAL_SEGV:
2166       return LINUX_SIGSEGV;
2167 
2168     case GDB_SIGNAL_SYS:
2169       return LINUX_SIGSYS;
2170 
2171     case GDB_SIGNAL_PIPE:
2172       return LINUX_SIGPIPE;
2173 
2174     case GDB_SIGNAL_ALRM:
2175       return LINUX_SIGALRM;
2176 
2177     case GDB_SIGNAL_TERM:
2178       return LINUX_SIGTERM;
2179 
2180     case GDB_SIGNAL_URG:
2181       return LINUX_SIGURG;
2182 
2183     case GDB_SIGNAL_STOP:
2184       return LINUX_SIGSTOP;
2185 
2186     case GDB_SIGNAL_TSTP:
2187       return LINUX_SIGTSTP;
2188 
2189     case GDB_SIGNAL_CONT:
2190       return LINUX_SIGCONT;
2191 
2192     case GDB_SIGNAL_CHLD:
2193       return LINUX_SIGCHLD;
2194 
2195     case GDB_SIGNAL_TTIN:
2196       return LINUX_SIGTTIN;
2197 
2198     case GDB_SIGNAL_TTOU:
2199       return LINUX_SIGTTOU;
2200 
2201     case GDB_SIGNAL_IO:
2202       return LINUX_SIGIO;
2203 
2204     case GDB_SIGNAL_XCPU:
2205       return LINUX_SIGXCPU;
2206 
2207     case GDB_SIGNAL_XFSZ:
2208       return LINUX_SIGXFSZ;
2209 
2210     case GDB_SIGNAL_VTALRM:
2211       return LINUX_SIGVTALRM;
2212 
2213     case GDB_SIGNAL_PROF:
2214       return LINUX_SIGPROF;
2215 
2216     case GDB_SIGNAL_WINCH:
2217       return LINUX_SIGWINCH;
2218 
2219     case GDB_SIGNAL_USR1:
2220       return LINUX_SIGUSR1;
2221 
2222     case GDB_SIGNAL_USR2:
2223       return LINUX_SIGUSR2;
2224 
2225     case GDB_SIGNAL_PWR:
2226       return LINUX_SIGPWR;
2227 
2228     case GDB_SIGNAL_POLL:
2229       return LINUX_SIGPOLL;
2230 
2231     /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2232        therefore we have to handle it here.  */
2233     case GDB_SIGNAL_REALTIME_32:
2234       return LINUX_SIGRTMIN;
2235 
2236     /* Same comment applies to _64.  */
2237     case GDB_SIGNAL_REALTIME_64:
2238       return LINUX_SIGRTMAX;
2239     }
2240 
2241   /* GDB_SIGNAL_REALTIME_33 to _64 are continuous.  */
2242   if (signal >= GDB_SIGNAL_REALTIME_33
2243       && signal <= GDB_SIGNAL_REALTIME_63)
2244     {
2245       int offset = signal - GDB_SIGNAL_REALTIME_33;
2246 
2247       return LINUX_SIGRTMIN + 1 + offset;
2248     }
2249 
2250   return -1;
2251 }
2252 
2253 /* Helper for linux_vsyscall_range that does the real work of finding
2254    the vsyscall's address range.  */
2255 
2256 static int
2257 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2258 {
2259   char filename[100];
2260   long pid;
2261 
2262   if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
2263     return 0;
2264 
2265   /* It doesn't make sense to access the host's /proc when debugging a
2266      core file.  Instead, look for the PT_LOAD segment that matches
2267      the vDSO.  */
2268   if (!target_has_execution)
2269     {
2270       long phdrs_size;
2271       int num_phdrs, i;
2272 
2273       phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2274       if (phdrs_size == -1)
2275 	return 0;
2276 
2277       gdb::unique_xmalloc_ptr<Elf_Internal_Phdr>
2278 	phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size));
2279       num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ());
2280       if (num_phdrs == -1)
2281 	return 0;
2282 
2283       for (i = 0; i < num_phdrs; i++)
2284 	if (phdrs.get ()[i].p_type == PT_LOAD
2285 	    && phdrs.get ()[i].p_vaddr == range->start)
2286 	  {
2287 	    range->length = phdrs.get ()[i].p_memsz;
2288 	    return 1;
2289 	  }
2290 
2291       return 0;
2292     }
2293 
2294   /* We need to know the real target PID to access /proc.  */
2295   if (current_inferior ()->fake_pid_p)
2296     return 0;
2297 
2298   pid = current_inferior ()->pid;
2299 
2300   /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2301      reading /proc/PID/maps (2).  The later identifies thread stacks
2302      in the output, which requires scanning every thread in the thread
2303      group to check whether a VMA is actually a thread's stack.  With
2304      Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2305      a few thousand threads, (1) takes a few miliseconds, while (2)
2306      takes several seconds.  Also note that "smaps", what we read for
2307      determining core dump mappings, is even slower than "maps".  */
2308   xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2309   gdb::unique_xmalloc_ptr<char> data
2310     = target_fileio_read_stralloc (NULL, filename);
2311   if (data != NULL)
2312     {
2313       char *line;
2314       char *saveptr = NULL;
2315 
2316       for (line = strtok_r (data.get (), "\n", &saveptr);
2317 	   line != NULL;
2318 	   line = strtok_r (NULL, "\n", &saveptr))
2319 	{
2320 	  ULONGEST addr, endaddr;
2321 	  const char *p = line;
2322 
2323 	  addr = strtoulst (p, &p, 16);
2324 	  if (addr == range->start)
2325 	    {
2326 	      if (*p == '-')
2327 		p++;
2328 	      endaddr = strtoulst (p, &p, 16);
2329 	      range->length = endaddr - addr;
2330 	      return 1;
2331 	    }
2332 	}
2333     }
2334   else
2335     warning (_("unable to open /proc file '%s'"), filename);
2336 
2337   return 0;
2338 }
2339 
2340 /* Implementation of the "vsyscall_range" gdbarch hook.  Handles
2341    caching, and defers the real work to linux_vsyscall_range_raw.  */
2342 
2343 static int
2344 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2345 {
2346   struct linux_info *info = get_linux_inferior_data ();
2347 
2348   if (info->vsyscall_range_p == 0)
2349     {
2350       if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2351 	info->vsyscall_range_p = 1;
2352       else
2353 	info->vsyscall_range_p = -1;
2354     }
2355 
2356   if (info->vsyscall_range_p < 0)
2357     return 0;
2358 
2359   *range = info->vsyscall_range;
2360   return 1;
2361 }
2362 
2363 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2364    definitions would be dependent on compilation host.  */
2365 #define GDB_MMAP_MAP_PRIVATE	0x02		/* Changes are private.  */
2366 #define GDB_MMAP_MAP_ANONYMOUS	0x20		/* Don't use a file.  */
2367 
2368 /* See gdbarch.sh 'infcall_mmap'.  */
2369 
2370 static CORE_ADDR
2371 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2372 {
2373   struct objfile *objf;
2374   /* Do there still exist any Linux systems without "mmap64"?
2375      "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32.  */
2376   struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2377   struct value *addr_val;
2378   struct gdbarch *gdbarch = get_objfile_arch (objf);
2379   CORE_ADDR retval;
2380   enum
2381     {
2382       ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2383     };
2384   struct value *arg[ARG_LAST];
2385 
2386   arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2387 				      0);
2388   /* Assuming sizeof (unsigned long) == sizeof (size_t).  */
2389   arg[ARG_LENGTH] = value_from_ulongest
2390 		    (builtin_type (gdbarch)->builtin_unsigned_long, size);
2391   gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2392 			| GDB_MMAP_PROT_EXEC))
2393 	      == 0);
2394   arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2395   arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2396 				       GDB_MMAP_MAP_PRIVATE
2397 				       | GDB_MMAP_MAP_ANONYMOUS);
2398   arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2399   arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2400 					0);
2401   addr_val = call_function_by_hand (mmap_val, NULL, arg);
2402   retval = value_as_address (addr_val);
2403   if (retval == (CORE_ADDR) -1)
2404     error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2405 	   pulongest (size));
2406   return retval;
2407 }
2408 
2409 /* See gdbarch.sh 'infcall_munmap'.  */
2410 
2411 static void
2412 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2413 {
2414   struct objfile *objf;
2415   struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2416   struct value *retval_val;
2417   struct gdbarch *gdbarch = get_objfile_arch (objf);
2418   LONGEST retval;
2419   enum
2420     {
2421       ARG_ADDR, ARG_LENGTH, ARG_LAST
2422     };
2423   struct value *arg[ARG_LAST];
2424 
2425   arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2426 				      addr);
2427   /* Assuming sizeof (unsigned long) == sizeof (size_t).  */
2428   arg[ARG_LENGTH] = value_from_ulongest
2429 		    (builtin_type (gdbarch)->builtin_unsigned_long, size);
2430   retval_val = call_function_by_hand (munmap_val, NULL, arg);
2431   retval = value_as_long (retval_val);
2432   if (retval != 0)
2433     warning (_("Failed inferior munmap call at %s for %s bytes, "
2434 	       "errno is changed."),
2435 	     hex_string (addr), pulongest (size));
2436 }
2437 
2438 /* See linux-tdep.h.  */
2439 
2440 CORE_ADDR
2441 linux_displaced_step_location (struct gdbarch *gdbarch)
2442 {
2443   CORE_ADDR addr;
2444   int bp_len;
2445 
2446   /* Determine entry point from target auxiliary vector.  This avoids
2447      the need for symbols.  Also, when debugging a stand-alone SPU
2448      executable, entry_point_address () will point to an SPU
2449      local-store address and is thus not usable as displaced stepping
2450      location.  The auxiliary vector gets us the PowerPC-side entry
2451      point address instead.  */
2452   if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
2453     throw_error (NOT_SUPPORTED_ERROR,
2454 		 _("Cannot find AT_ENTRY auxiliary vector entry."));
2455 
2456   /* Make certain that the address points at real code, and not a
2457      function descriptor.  */
2458   addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2459 					     current_top_target ());
2460 
2461   /* Inferior calls also use the entry point as a breakpoint location.
2462      We don't want displaced stepping to interfere with those
2463      breakpoints, so leave space.  */
2464   gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2465   addr += bp_len * 2;
2466 
2467   return addr;
2468 }
2469 
2470 /* Display whether the gcore command is using the
2471    /proc/PID/coredump_filter file.  */
2472 
2473 static void
2474 show_use_coredump_filter (struct ui_file *file, int from_tty,
2475 			  struct cmd_list_element *c, const char *value)
2476 {
2477   fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2478 			    " corefiles is %s.\n"), value);
2479 }
2480 
2481 /* Display whether the gcore command is dumping mappings marked with
2482    the VM_DONTDUMP flag.  */
2483 
2484 static void
2485 show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2486 			     struct cmd_list_element *c, const char *value)
2487 {
2488   fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2489 			    " flag is %s.\n"), value);
2490 }
2491 
2492 /* To be called from the various GDB_OSABI_LINUX handlers for the
2493    various GNU/Linux architectures and machine types.  */
2494 
2495 void
2496 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2497 {
2498   set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2499   set_gdbarch_info_proc (gdbarch, linux_info_proc);
2500   set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2501   set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2502   set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2503   set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2504   set_gdbarch_has_shared_address_space (gdbarch,
2505 					linux_has_shared_address_space);
2506   set_gdbarch_gdb_signal_from_target (gdbarch,
2507 				      linux_gdb_signal_from_target);
2508   set_gdbarch_gdb_signal_to_target (gdbarch,
2509 				    linux_gdb_signal_to_target);
2510   set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2511   set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2512   set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2513   set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2514 }
2515 
2516 void
2517 _initialize_linux_tdep (void)
2518 {
2519   linux_gdbarch_data_handle =
2520     gdbarch_data_register_post_init (init_linux_gdbarch_data);
2521 
2522   /* Set a cache per-inferior.  */
2523   linux_inferior_data
2524     = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2525   /* Observers used to invalidate the cache when needed.  */
2526   gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2527   gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
2528 
2529   add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2530 			   &use_coredump_filter, _("\
2531 Set whether gcore should consider /proc/PID/coredump_filter."),
2532 			   _("\
2533 Show whether gcore should consider /proc/PID/coredump_filter."),
2534 			   _("\
2535 Use this command to set whether gcore should consider the contents\n\
2536 of /proc/PID/coredump_filter when generating the corefile.  For more information\n\
2537 about this file, refer to the manpage of core(5)."),
2538 			   NULL, show_use_coredump_filter,
2539 			   &setlist, &showlist);
2540 
2541   add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2542 			   &dump_excluded_mappings, _("\
2543 Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2544 			   _("\
2545 Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2546 			   _("\
2547 Use this command to set whether gcore should dump mappings marked with the\n\
2548 VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile.  For\n\
2549 more information about this file, refer to the manpage of proc(5) and core(5)."),
2550 			   NULL, show_dump_excluded_mappings,
2551 			   &setlist, &showlist);
2552 }
2553