xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/linux-nat.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* GNU/Linux native-dependent code common to multiple platforms.
2 
3    Copyright (C) 2001-2016 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h>		/* for elf_gregset etc.  */
43 #include "elf-bfd.h"		/* for elfcore_write_* */
44 #include "gregset.h"		/* for gregset */
45 #include "gdbcore.h"		/* for get_exec_file */
46 #include <ctype.h>		/* for isdigit */
47 #include <sys/stat.h>		/* for struct stat */
48 #include <fcntl.h>		/* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "agent.h"
62 #include "tracepoint.h"
63 #include "buffer.h"
64 #include "target-descriptions.h"
65 #include "filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "fileio.h"
69 
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73 
74 /* This comment documents high-level logic of this file.
75 
76 Waiting for events in sync mode
77 ===============================
78 
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
81 
82 When waiting for an event in all threads, waitpid is not quite good:
83 
84 - If the thread group leader exits while other threads in the thread
85   group still exist, waitpid(TGID, ...) hangs.  That waitpid won't
86   return an exit status until the other threads in the group are
87   reaped.
88 
89 - When a non-leader thread execs, that thread just vanishes without
90   reporting an exit (so we'd hang if we waited for it explicitly in
91   that case).  The exec event is instead reported to the TGID pid.
92 
93 The solution is to always use -1 and WNOHANG, together with
94 sigsuspend.
95 
96 First, we use non-blocking waitpid to check for events.  If nothing is
97 found, we use sigsuspend to wait for SIGCHLD.  When SIGCHLD arrives,
98 it means something happened to a child process.  As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
100 
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal.  If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
105 
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
108 
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options.  Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target.  We
113 detect asynchronous target events by handling SIGCHLD signals.  To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe.  This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
122 
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad.  OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
128 
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop.  Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
134 sigsuspend.
135 
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls.  Those waitpid calls, while blocking, are guarantied to
138 return quickly.  E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
143 
144 Use of signals
145 ==============
146 
147 We stop threads by sending a SIGSTOP.  The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it.  SIGSTOP's advantage is that it can not be
150 blocked.  A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
152 
153 Two other signals that can't be blocked are SIGCONT and SIGKILL.  But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered.  SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
157 
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd.  But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
161 
162 We could use a real-time signal instead.  This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
166 blocked.
167 
168 Exec events
169 ===========
170 
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
173 
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid.  No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes.  Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state.  As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
183 leader.  */
184 
185 #ifndef O_LARGEFILE
186 #define O_LARGEFILE 0
187 #endif
188 
189 /* Does the current host support PTRACE_GETREGSET?  */
190 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
191 
192 /* The single-threaded native GNU/Linux target_ops.  We save a pointer for
193    the use of the multi-threaded target.  */
194 static struct target_ops *linux_ops;
195 static struct target_ops linux_ops_saved;
196 
197 /* The method to call, if any, when a new thread is attached.  */
198 static void (*linux_nat_new_thread) (struct lwp_info *);
199 
200 /* The method to call, if any, when a new fork is attached.  */
201 static linux_nat_new_fork_ftype *linux_nat_new_fork;
202 
203 /* The method to call, if any, when a process is no longer
204    attached.  */
205 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
206 
207 /* Hook to call prior to resuming a thread.  */
208 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
209 
210 /* The method to call, if any, when the siginfo object needs to be
211    converted between the layout returned by ptrace, and the layout in
212    the architecture of the inferior.  */
213 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
214 				       gdb_byte *,
215 				       int);
216 
217 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
218    Called by our to_xfer_partial.  */
219 static target_xfer_partial_ftype *super_xfer_partial;
220 
221 /* The saved to_close method, inherited from inf-ptrace.c.
222    Called by our to_close.  */
223 static void (*super_close) (struct target_ops *);
224 
225 static unsigned int debug_linux_nat;
226 static void
227 show_debug_linux_nat (struct ui_file *file, int from_tty,
228 		      struct cmd_list_element *c, const char *value)
229 {
230   fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
231 		    value);
232 }
233 
234 struct simple_pid_list
235 {
236   int pid;
237   int status;
238   struct simple_pid_list *next;
239 };
240 struct simple_pid_list *stopped_pids;
241 
242 /* Whether target_thread_events is in effect.  */
243 static int report_thread_events;
244 
245 /* Async mode support.  */
246 
247 /* The read/write ends of the pipe registered as waitable file in the
248    event loop.  */
249 static int linux_nat_event_pipe[2] = { -1, -1 };
250 
251 /* True if we're currently in async mode.  */
252 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
253 
254 /* Flush the event pipe.  */
255 
256 static void
257 async_file_flush (void)
258 {
259   int ret;
260   char buf;
261 
262   do
263     {
264       ret = read (linux_nat_event_pipe[0], &buf, 1);
265     }
266   while (ret >= 0 || (ret == -1 && errno == EINTR));
267 }
268 
269 /* Put something (anything, doesn't matter what, or how much) in event
270    pipe, so that the select/poll in the event-loop realizes we have
271    something to process.  */
272 
273 static void
274 async_file_mark (void)
275 {
276   int ret;
277 
278   /* It doesn't really matter what the pipe contains, as long we end
279      up with something in it.  Might as well flush the previous
280      left-overs.  */
281   async_file_flush ();
282 
283   do
284     {
285       ret = write (linux_nat_event_pipe[1], "+", 1);
286     }
287   while (ret == -1 && errno == EINTR);
288 
289   /* Ignore EAGAIN.  If the pipe is full, the event loop will already
290      be awakened anyway.  */
291 }
292 
293 static int kill_lwp (int lwpid, int signo);
294 
295 static int stop_callback (struct lwp_info *lp, void *data);
296 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
297 
298 static void block_child_signals (sigset_t *prev_mask);
299 static void restore_child_signals_mask (sigset_t *prev_mask);
300 
301 struct lwp_info;
302 static struct lwp_info *add_lwp (ptid_t ptid);
303 static void purge_lwp_list (int pid);
304 static void delete_lwp (ptid_t ptid);
305 static struct lwp_info *find_lwp_pid (ptid_t ptid);
306 
307 static int lwp_status_pending_p (struct lwp_info *lp);
308 
309 static int sigtrap_is_event (int status);
310 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
311 
312 static void save_stop_reason (struct lwp_info *lp);
313 
314 
315 /* LWP accessors.  */
316 
317 /* See nat/linux-nat.h.  */
318 
319 ptid_t
320 ptid_of_lwp (struct lwp_info *lwp)
321 {
322   return lwp->ptid;
323 }
324 
325 /* See nat/linux-nat.h.  */
326 
327 void
328 lwp_set_arch_private_info (struct lwp_info *lwp,
329 			   struct arch_lwp_info *info)
330 {
331   lwp->arch_private = info;
332 }
333 
334 /* See nat/linux-nat.h.  */
335 
336 struct arch_lwp_info *
337 lwp_arch_private_info (struct lwp_info *lwp)
338 {
339   return lwp->arch_private;
340 }
341 
342 /* See nat/linux-nat.h.  */
343 
344 int
345 lwp_is_stopped (struct lwp_info *lwp)
346 {
347   return lwp->stopped;
348 }
349 
350 /* See nat/linux-nat.h.  */
351 
352 enum target_stop_reason
353 lwp_stop_reason (struct lwp_info *lwp)
354 {
355   return lwp->stop_reason;
356 }
357 
358 
359 /* Trivial list manipulation functions to keep track of a list of
360    new stopped processes.  */
361 static void
362 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
363 {
364   struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
365 
366   new_pid->pid = pid;
367   new_pid->status = status;
368   new_pid->next = *listp;
369   *listp = new_pid;
370 }
371 
372 static int
373 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
374 {
375   struct simple_pid_list **p;
376 
377   for (p = listp; *p != NULL; p = &(*p)->next)
378     if ((*p)->pid == pid)
379       {
380 	struct simple_pid_list *next = (*p)->next;
381 
382 	*statusp = (*p)->status;
383 	xfree (*p);
384 	*p = next;
385 	return 1;
386       }
387   return 0;
388 }
389 
390 /* Return the ptrace options that we want to try to enable.  */
391 
392 static int
393 linux_nat_ptrace_options (int attached)
394 {
395   int options = 0;
396 
397   if (!attached)
398     options |= PTRACE_O_EXITKILL;
399 
400   options |= (PTRACE_O_TRACESYSGOOD
401 	      | PTRACE_O_TRACEVFORKDONE
402 	      | PTRACE_O_TRACEVFORK
403 	      | PTRACE_O_TRACEFORK
404 	      | PTRACE_O_TRACEEXEC);
405 
406   return options;
407 }
408 
409 /* Initialize ptrace warnings and check for supported ptrace
410    features given PID.
411 
412    ATTACHED should be nonzero iff we attached to the inferior.  */
413 
414 static void
415 linux_init_ptrace (pid_t pid, int attached)
416 {
417   int options = linux_nat_ptrace_options (attached);
418 
419   linux_enable_event_reporting (pid, options);
420   linux_ptrace_init_warnings ();
421 }
422 
423 static void
424 linux_child_post_attach (struct target_ops *self, int pid)
425 {
426   linux_init_ptrace (pid, 1);
427 }
428 
429 static void
430 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
431 {
432   linux_init_ptrace (ptid_get_pid (ptid), 0);
433 }
434 
435 /* Return the number of known LWPs in the tgid given by PID.  */
436 
437 static int
438 num_lwps (int pid)
439 {
440   int count = 0;
441   struct lwp_info *lp;
442 
443   for (lp = lwp_list; lp; lp = lp->next)
444     if (ptid_get_pid (lp->ptid) == pid)
445       count++;
446 
447   return count;
448 }
449 
450 /* Call delete_lwp with prototype compatible for make_cleanup.  */
451 
452 static void
453 delete_lwp_cleanup (void *lp_voidp)
454 {
455   struct lwp_info *lp = (struct lwp_info *) lp_voidp;
456 
457   delete_lwp (lp->ptid);
458 }
459 
460 /* Target hook for follow_fork.  On entry inferior_ptid must be the
461    ptid of the followed inferior.  At return, inferior_ptid will be
462    unchanged.  */
463 
464 static int
465 linux_child_follow_fork (struct target_ops *ops, int follow_child,
466 			 int detach_fork)
467 {
468   if (!follow_child)
469     {
470       struct lwp_info *child_lp = NULL;
471       int status = W_STOPCODE (0);
472       struct cleanup *old_chain;
473       int has_vforked;
474       ptid_t parent_ptid, child_ptid;
475       int parent_pid, child_pid;
476 
477       has_vforked = (inferior_thread ()->pending_follow.kind
478 		     == TARGET_WAITKIND_VFORKED);
479       parent_ptid = inferior_ptid;
480       child_ptid = inferior_thread ()->pending_follow.value.related_pid;
481       parent_pid = ptid_get_lwp (parent_ptid);
482       child_pid = ptid_get_lwp (child_ptid);
483 
484       /* We're already attached to the parent, by default.  */
485       old_chain = save_inferior_ptid ();
486       inferior_ptid = child_ptid;
487       child_lp = add_lwp (inferior_ptid);
488       child_lp->stopped = 1;
489       child_lp->last_resume_kind = resume_stop;
490 
491       /* Detach new forked process?  */
492       if (detach_fork)
493 	{
494 	  make_cleanup (delete_lwp_cleanup, child_lp);
495 
496 	  if (linux_nat_prepare_to_resume != NULL)
497 	    linux_nat_prepare_to_resume (child_lp);
498 
499 	  /* When debugging an inferior in an architecture that supports
500 	     hardware single stepping on a kernel without commit
501 	     6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
502 	     process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
503 	     set if the parent process had them set.
504 	     To work around this, single step the child process
505 	     once before detaching to clear the flags.  */
506 
507 	  if (!gdbarch_software_single_step_p (target_thread_architecture
508 						   (child_lp->ptid)))
509 	    {
510 	      linux_disable_event_reporting (child_pid);
511 	      if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
512 		perror_with_name (_("Couldn't do single step"));
513 	      if (my_waitpid (child_pid, &status, 0) < 0)
514 		perror_with_name (_("Couldn't wait vfork process"));
515 	    }
516 
517 	  if (WIFSTOPPED (status))
518 	    {
519 	      int signo;
520 
521 	      signo = WSTOPSIG (status);
522 	      if (signo != 0
523 		  && !signal_pass_state (gdb_signal_from_host (signo)))
524 		signo = 0;
525 	      ptrace (PTRACE_DETACH, child_pid, 0, signo);
526 	    }
527 
528 	  /* Resets value of inferior_ptid to parent ptid.  */
529 	  do_cleanups (old_chain);
530 	}
531       else
532 	{
533 	  /* Let the thread_db layer learn about this new process.  */
534 	  check_for_thread_db ();
535 	}
536 
537       do_cleanups (old_chain);
538 
539       if (has_vforked)
540 	{
541 	  struct lwp_info *parent_lp;
542 
543 	  parent_lp = find_lwp_pid (parent_ptid);
544 	  gdb_assert (linux_supports_tracefork () >= 0);
545 
546 	  if (linux_supports_tracevforkdone ())
547 	    {
548   	      if (debug_linux_nat)
549   		fprintf_unfiltered (gdb_stdlog,
550   				    "LCFF: waiting for VFORK_DONE on %d\n",
551   				    parent_pid);
552 	      parent_lp->stopped = 1;
553 
554 	      /* We'll handle the VFORK_DONE event like any other
555 		 event, in target_wait.  */
556 	    }
557 	  else
558 	    {
559 	      /* We can't insert breakpoints until the child has
560 		 finished with the shared memory region.  We need to
561 		 wait until that happens.  Ideal would be to just
562 		 call:
563 		 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
564 		 - waitpid (parent_pid, &status, __WALL);
565 		 However, most architectures can't handle a syscall
566 		 being traced on the way out if it wasn't traced on
567 		 the way in.
568 
569 		 We might also think to loop, continuing the child
570 		 until it exits or gets a SIGTRAP.  One problem is
571 		 that the child might call ptrace with PTRACE_TRACEME.
572 
573 		 There's no simple and reliable way to figure out when
574 		 the vforked child will be done with its copy of the
575 		 shared memory.  We could step it out of the syscall,
576 		 two instructions, let it go, and then single-step the
577 		 parent once.  When we have hardware single-step, this
578 		 would work; with software single-step it could still
579 		 be made to work but we'd have to be able to insert
580 		 single-step breakpoints in the child, and we'd have
581 		 to insert -just- the single-step breakpoint in the
582 		 parent.  Very awkward.
583 
584 		 In the end, the best we can do is to make sure it
585 		 runs for a little while.  Hopefully it will be out of
586 		 range of any breakpoints we reinsert.  Usually this
587 		 is only the single-step breakpoint at vfork's return
588 		 point.  */
589 
590   	      if (debug_linux_nat)
591   		fprintf_unfiltered (gdb_stdlog,
592 				    "LCFF: no VFORK_DONE "
593 				    "support, sleeping a bit\n");
594 
595 	      usleep (10000);
596 
597 	      /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
598 		 and leave it pending.  The next linux_nat_resume call
599 		 will notice a pending event, and bypasses actually
600 		 resuming the inferior.  */
601 	      parent_lp->status = 0;
602 	      parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
603 	      parent_lp->stopped = 1;
604 
605 	      /* If we're in async mode, need to tell the event loop
606 		 there's something here to process.  */
607 	      if (target_is_async_p ())
608 		async_file_mark ();
609 	    }
610 	}
611     }
612   else
613     {
614       struct lwp_info *child_lp;
615 
616       child_lp = add_lwp (inferior_ptid);
617       child_lp->stopped = 1;
618       child_lp->last_resume_kind = resume_stop;
619 
620       /* Let the thread_db layer learn about this new process.  */
621       check_for_thread_db ();
622     }
623 
624   return 0;
625 }
626 
627 
628 static int
629 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
630 {
631   return !linux_supports_tracefork ();
632 }
633 
634 static int
635 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
636 {
637   return 0;
638 }
639 
640 static int
641 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
642 {
643   return !linux_supports_tracefork ();
644 }
645 
646 static int
647 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
648 {
649   return 0;
650 }
651 
652 static int
653 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
654 {
655   return !linux_supports_tracefork ();
656 }
657 
658 static int
659 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
660 {
661   return 0;
662 }
663 
664 static int
665 linux_child_set_syscall_catchpoint (struct target_ops *self,
666 				    int pid, int needed, int any_count,
667 				    int table_size, int *table)
668 {
669   if (!linux_supports_tracesysgood ())
670     return 1;
671 
672   /* On GNU/Linux, we ignore the arguments.  It means that we only
673      enable the syscall catchpoints, but do not disable them.
674 
675      Also, we do not use the `table' information because we do not
676      filter system calls here.  We let GDB do the logic for us.  */
677   return 0;
678 }
679 
680 /* List of known LWPs, keyed by LWP PID.  This speeds up the common
681    case of mapping a PID returned from the kernel to our corresponding
682    lwp_info data structure.  */
683 static htab_t lwp_lwpid_htab;
684 
685 /* Calculate a hash from a lwp_info's LWP PID.  */
686 
687 static hashval_t
688 lwp_info_hash (const void *ap)
689 {
690   const struct lwp_info *lp = (struct lwp_info *) ap;
691   pid_t pid = ptid_get_lwp (lp->ptid);
692 
693   return iterative_hash_object (pid, 0);
694 }
695 
696 /* Equality function for the lwp_info hash table.  Compares the LWP's
697    PID.  */
698 
699 static int
700 lwp_lwpid_htab_eq (const void *a, const void *b)
701 {
702   const struct lwp_info *entry = (const struct lwp_info *) a;
703   const struct lwp_info *element = (const struct lwp_info *) b;
704 
705   return ptid_get_lwp (entry->ptid) == ptid_get_lwp (element->ptid);
706 }
707 
708 /* Create the lwp_lwpid_htab hash table.  */
709 
710 static void
711 lwp_lwpid_htab_create (void)
712 {
713   lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
714 }
715 
716 /* Add LP to the hash table.  */
717 
718 static void
719 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
720 {
721   void **slot;
722 
723   slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
724   gdb_assert (slot != NULL && *slot == NULL);
725   *slot = lp;
726 }
727 
728 /* Head of doubly-linked list of known LWPs.  Sorted by reverse
729    creation order.  This order is assumed in some cases.  E.g.,
730    reaping status after killing alls lwps of a process: the leader LWP
731    must be reaped last.  */
732 struct lwp_info *lwp_list;
733 
734 /* Add LP to sorted-by-reverse-creation-order doubly-linked list.  */
735 
736 static void
737 lwp_list_add (struct lwp_info *lp)
738 {
739   lp->next = lwp_list;
740   if (lwp_list != NULL)
741     lwp_list->prev = lp;
742   lwp_list = lp;
743 }
744 
745 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
746    list.  */
747 
748 static void
749 lwp_list_remove (struct lwp_info *lp)
750 {
751   /* Remove from sorted-by-creation-order list.  */
752   if (lp->next != NULL)
753     lp->next->prev = lp->prev;
754   if (lp->prev != NULL)
755     lp->prev->next = lp->next;
756   if (lp == lwp_list)
757     lwp_list = lp->next;
758 }
759 
760 
761 
762 /* Original signal mask.  */
763 static sigset_t normal_mask;
764 
765 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
766    _initialize_linux_nat.  */
767 static sigset_t suspend_mask;
768 
769 /* Signals to block to make that sigsuspend work.  */
770 static sigset_t blocked_mask;
771 
772 /* SIGCHLD action.  */
773 struct sigaction sigchld_action;
774 
775 /* Block child signals (SIGCHLD and linux threads signals), and store
776    the previous mask in PREV_MASK.  */
777 
778 static void
779 block_child_signals (sigset_t *prev_mask)
780 {
781   /* Make sure SIGCHLD is blocked.  */
782   if (!sigismember (&blocked_mask, SIGCHLD))
783     sigaddset (&blocked_mask, SIGCHLD);
784 
785   sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
786 }
787 
788 /* Restore child signals mask, previously returned by
789    block_child_signals.  */
790 
791 static void
792 restore_child_signals_mask (sigset_t *prev_mask)
793 {
794   sigprocmask (SIG_SETMASK, prev_mask, NULL);
795 }
796 
797 /* Mask of signals to pass directly to the inferior.  */
798 static sigset_t pass_mask;
799 
800 /* Update signals to pass to the inferior.  */
801 static void
802 linux_nat_pass_signals (struct target_ops *self,
803 			int numsigs, unsigned char *pass_signals)
804 {
805   int signo;
806 
807   sigemptyset (&pass_mask);
808 
809   for (signo = 1; signo < NSIG; signo++)
810     {
811       int target_signo = gdb_signal_from_host (signo);
812       if (target_signo < numsigs && pass_signals[target_signo])
813         sigaddset (&pass_mask, signo);
814     }
815 }
816 
817 
818 
819 /* Prototypes for local functions.  */
820 static int stop_wait_callback (struct lwp_info *lp, void *data);
821 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
822 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
823 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
824 
825 
826 
827 /* Destroy and free LP.  */
828 
829 static void
830 lwp_free (struct lwp_info *lp)
831 {
832   xfree (lp->arch_private);
833   xfree (lp);
834 }
835 
836 /* Traversal function for purge_lwp_list.  */
837 
838 static int
839 lwp_lwpid_htab_remove_pid (void **slot, void *info)
840 {
841   struct lwp_info *lp = (struct lwp_info *) *slot;
842   int pid = *(int *) info;
843 
844   if (ptid_get_pid (lp->ptid) == pid)
845     {
846       htab_clear_slot (lwp_lwpid_htab, slot);
847       lwp_list_remove (lp);
848       lwp_free (lp);
849     }
850 
851   return 1;
852 }
853 
854 /* Remove all LWPs belong to PID from the lwp list.  */
855 
856 static void
857 purge_lwp_list (int pid)
858 {
859   htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
860 }
861 
862 /* Add the LWP specified by PTID to the list.  PTID is the first LWP
863    in the process.  Return a pointer to the structure describing the
864    new LWP.
865 
866    This differs from add_lwp in that we don't let the arch specific
867    bits know about this new thread.  Current clients of this callback
868    take the opportunity to install watchpoints in the new thread, and
869    we shouldn't do that for the first thread.  If we're spawning a
870    child ("run"), the thread executes the shell wrapper first, and we
871    shouldn't touch it until it execs the program we want to debug.
872    For "attach", it'd be okay to call the callback, but it's not
873    necessary, because watchpoints can't yet have been inserted into
874    the inferior.  */
875 
876 static struct lwp_info *
877 add_initial_lwp (ptid_t ptid)
878 {
879   struct lwp_info *lp;
880 
881   gdb_assert (ptid_lwp_p (ptid));
882 
883   lp = XNEW (struct lwp_info);
884 
885   memset (lp, 0, sizeof (struct lwp_info));
886 
887   lp->last_resume_kind = resume_continue;
888   lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
889 
890   lp->ptid = ptid;
891   lp->core = -1;
892 
893   /* Add to sorted-by-reverse-creation-order list.  */
894   lwp_list_add (lp);
895 
896   /* Add to keyed-by-pid htab.  */
897   lwp_lwpid_htab_add_lwp (lp);
898 
899   return lp;
900 }
901 
902 /* Add the LWP specified by PID to the list.  Return a pointer to the
903    structure describing the new LWP.  The LWP should already be
904    stopped.  */
905 
906 static struct lwp_info *
907 add_lwp (ptid_t ptid)
908 {
909   struct lwp_info *lp;
910 
911   lp = add_initial_lwp (ptid);
912 
913   /* Let the arch specific bits know about this new thread.  Current
914      clients of this callback take the opportunity to install
915      watchpoints in the new thread.  We don't do this for the first
916      thread though.  See add_initial_lwp.  */
917   if (linux_nat_new_thread != NULL)
918     linux_nat_new_thread (lp);
919 
920   return lp;
921 }
922 
923 /* Remove the LWP specified by PID from the list.  */
924 
925 static void
926 delete_lwp (ptid_t ptid)
927 {
928   struct lwp_info *lp;
929   void **slot;
930   struct lwp_info dummy;
931 
932   dummy.ptid = ptid;
933   slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
934   if (slot == NULL)
935     return;
936 
937   lp = *(struct lwp_info **) slot;
938   gdb_assert (lp != NULL);
939 
940   htab_clear_slot (lwp_lwpid_htab, slot);
941 
942   /* Remove from sorted-by-creation-order list.  */
943   lwp_list_remove (lp);
944 
945   /* Release.  */
946   lwp_free (lp);
947 }
948 
949 /* Return a pointer to the structure describing the LWP corresponding
950    to PID.  If no corresponding LWP could be found, return NULL.  */
951 
952 static struct lwp_info *
953 find_lwp_pid (ptid_t ptid)
954 {
955   struct lwp_info *lp;
956   int lwp;
957   struct lwp_info dummy;
958 
959   if (ptid_lwp_p (ptid))
960     lwp = ptid_get_lwp (ptid);
961   else
962     lwp = ptid_get_pid (ptid);
963 
964   dummy.ptid = ptid_build (0, lwp, 0);
965   lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
966   return lp;
967 }
968 
969 /* See nat/linux-nat.h.  */
970 
971 struct lwp_info *
972 iterate_over_lwps (ptid_t filter,
973 		   iterate_over_lwps_ftype callback,
974 		   void *data)
975 {
976   struct lwp_info *lp, *lpnext;
977 
978   for (lp = lwp_list; lp; lp = lpnext)
979     {
980       lpnext = lp->next;
981 
982       if (ptid_match (lp->ptid, filter))
983 	{
984 	  if ((*callback) (lp, data) != 0)
985 	    return lp;
986 	}
987     }
988 
989   return NULL;
990 }
991 
992 /* Update our internal state when changing from one checkpoint to
993    another indicated by NEW_PTID.  We can only switch single-threaded
994    applications, so we only create one new LWP, and the previous list
995    is discarded.  */
996 
997 void
998 linux_nat_switch_fork (ptid_t new_ptid)
999 {
1000   struct lwp_info *lp;
1001 
1002   purge_lwp_list (ptid_get_pid (inferior_ptid));
1003 
1004   lp = add_lwp (new_ptid);
1005   lp->stopped = 1;
1006 
1007   /* This changes the thread's ptid while preserving the gdb thread
1008      num.  Also changes the inferior pid, while preserving the
1009      inferior num.  */
1010   thread_change_ptid (inferior_ptid, new_ptid);
1011 
1012   /* We've just told GDB core that the thread changed target id, but,
1013      in fact, it really is a different thread, with different register
1014      contents.  */
1015   registers_changed ();
1016 }
1017 
1018 /* Handle the exit of a single thread LP.  */
1019 
1020 static void
1021 exit_lwp (struct lwp_info *lp)
1022 {
1023   struct thread_info *th = find_thread_ptid (lp->ptid);
1024 
1025   if (th)
1026     {
1027       if (print_thread_events)
1028 	printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1029 
1030       delete_thread (lp->ptid);
1031     }
1032 
1033   delete_lwp (lp->ptid);
1034 }
1035 
1036 /* Wait for the LWP specified by LP, which we have just attached to.
1037    Returns a wait status for that LWP, to cache.  */
1038 
1039 static int
1040 linux_nat_post_attach_wait (ptid_t ptid, int first, int *signalled)
1041 {
1042   pid_t new_pid, pid = ptid_get_lwp (ptid);
1043   int status;
1044 
1045   if (linux_proc_pid_is_stopped (pid))
1046     {
1047       if (debug_linux_nat)
1048 	fprintf_unfiltered (gdb_stdlog,
1049 			    "LNPAW: Attaching to a stopped process\n");
1050 
1051       /* The process is definitely stopped.  It is in a job control
1052 	 stop, unless the kernel predates the TASK_STOPPED /
1053 	 TASK_TRACED distinction, in which case it might be in a
1054 	 ptrace stop.  Make sure it is in a ptrace stop; from there we
1055 	 can kill it, signal it, et cetera.
1056 
1057          First make sure there is a pending SIGSTOP.  Since we are
1058 	 already attached, the process can not transition from stopped
1059 	 to running without a PTRACE_CONT; so we know this signal will
1060 	 go into the queue.  The SIGSTOP generated by PTRACE_ATTACH is
1061 	 probably already in the queue (unless this kernel is old
1062 	 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1063 	 is not an RT signal, it can only be queued once.  */
1064       kill_lwp (pid, SIGSTOP);
1065 
1066       /* Finally, resume the stopped process.  This will deliver the SIGSTOP
1067 	 (or a higher priority signal, just like normal PTRACE_ATTACH).  */
1068       ptrace (PTRACE_CONT, pid, 0, 0);
1069     }
1070 
1071   /* Make sure the initial process is stopped.  The user-level threads
1072      layer might want to poke around in the inferior, and that won't
1073      work if things haven't stabilized yet.  */
1074   new_pid = my_waitpid (pid, &status, __WALL);
1075   gdb_assert (pid == new_pid);
1076 
1077   if (!WIFSTOPPED (status))
1078     {
1079       /* The pid we tried to attach has apparently just exited.  */
1080       if (debug_linux_nat)
1081 	fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1082 			    pid, status_to_str (status));
1083       return status;
1084     }
1085 
1086   if (WSTOPSIG (status) != SIGSTOP)
1087     {
1088       *signalled = 1;
1089       if (debug_linux_nat)
1090 	fprintf_unfiltered (gdb_stdlog,
1091 			    "LNPAW: Received %s after attaching\n",
1092 			    status_to_str (status));
1093     }
1094 
1095   return status;
1096 }
1097 
1098 static void
1099 linux_nat_create_inferior (struct target_ops *ops,
1100 			   char *exec_file, char *allargs, char **env,
1101 			   int from_tty)
1102 {
1103   struct cleanup *restore_personality
1104     = maybe_disable_address_space_randomization (disable_randomization);
1105 
1106   /* The fork_child mechanism is synchronous and calls target_wait, so
1107      we have to mask the async mode.  */
1108 
1109   /* Make sure we report all signals during startup.  */
1110   linux_nat_pass_signals (ops, 0, NULL);
1111 
1112   linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1113 
1114   do_cleanups (restore_personality);
1115 }
1116 
1117 /* Callback for linux_proc_attach_tgid_threads.  Attach to PTID if not
1118    already attached.  Returns true if a new LWP is found, false
1119    otherwise.  */
1120 
1121 static int
1122 attach_proc_task_lwp_callback (ptid_t ptid)
1123 {
1124   struct lwp_info *lp;
1125 
1126   /* Ignore LWPs we're already attached to.  */
1127   lp = find_lwp_pid (ptid);
1128   if (lp == NULL)
1129     {
1130       int lwpid = ptid_get_lwp (ptid);
1131 
1132       if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1133 	{
1134 	  int err = errno;
1135 
1136 	  /* Be quiet if we simply raced with the thread exiting.
1137 	     EPERM is returned if the thread's task still exists, and
1138 	     is marked as exited or zombie, as well as other
1139 	     conditions, so in that case, confirm the status in
1140 	     /proc/PID/status.  */
1141 	  if (err == ESRCH
1142 	      || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1143 	    {
1144 	      if (debug_linux_nat)
1145 		{
1146 		  fprintf_unfiltered (gdb_stdlog,
1147 				      "Cannot attach to lwp %d: "
1148 				      "thread is gone (%d: %s)\n",
1149 				      lwpid, err, safe_strerror (err));
1150 		}
1151 	    }
1152 	  else
1153 	    {
1154 	      warning (_("Cannot attach to lwp %d: %s"),
1155 		       lwpid,
1156 		       linux_ptrace_attach_fail_reason_string (ptid,
1157 							       err));
1158 	    }
1159 	}
1160       else
1161 	{
1162 	  if (debug_linux_nat)
1163 	    fprintf_unfiltered (gdb_stdlog,
1164 				"PTRACE_ATTACH %s, 0, 0 (OK)\n",
1165 				target_pid_to_str (ptid));
1166 
1167 	  lp = add_lwp (ptid);
1168 
1169 	  /* The next time we wait for this LWP we'll see a SIGSTOP as
1170 	     PTRACE_ATTACH brings it to a halt.  */
1171 	  lp->signalled = 1;
1172 
1173 	  /* We need to wait for a stop before being able to make the
1174 	     next ptrace call on this LWP.  */
1175 	  lp->must_set_ptrace_flags = 1;
1176 
1177 	  /* So that wait collects the SIGSTOP.  */
1178 	  lp->resumed = 1;
1179 
1180 	  /* Also add the LWP to gdb's thread list, in case a
1181 	     matching libthread_db is not found (or the process uses
1182 	     raw clone).  */
1183 	  add_thread (lp->ptid);
1184 	  set_running (lp->ptid, 1);
1185 	  set_executing (lp->ptid, 1);
1186 	}
1187 
1188       return 1;
1189     }
1190   return 0;
1191 }
1192 
1193 static void
1194 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1195 {
1196   struct lwp_info *lp;
1197   int status;
1198   ptid_t ptid;
1199 
1200   /* Make sure we report all signals during attach.  */
1201   linux_nat_pass_signals (ops, 0, NULL);
1202 
1203   TRY
1204     {
1205       linux_ops->to_attach (ops, args, from_tty);
1206     }
1207   CATCH (ex, RETURN_MASK_ERROR)
1208     {
1209       pid_t pid = parse_pid_to_attach (args);
1210       struct buffer buffer;
1211       char *message, *buffer_s;
1212 
1213       message = xstrdup (ex.message);
1214       make_cleanup (xfree, message);
1215 
1216       buffer_init (&buffer);
1217       linux_ptrace_attach_fail_reason (pid, &buffer);
1218 
1219       buffer_grow_str0 (&buffer, "");
1220       buffer_s = buffer_finish (&buffer);
1221       make_cleanup (xfree, buffer_s);
1222 
1223       if (*buffer_s != '\0')
1224 	throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1225       else
1226 	throw_error (ex.error, "%s", message);
1227     }
1228   END_CATCH
1229 
1230   /* The ptrace base target adds the main thread with (pid,0,0)
1231      format.  Decorate it with lwp info.  */
1232   ptid = ptid_build (ptid_get_pid (inferior_ptid),
1233 		     ptid_get_pid (inferior_ptid),
1234 		     0);
1235   thread_change_ptid (inferior_ptid, ptid);
1236 
1237   /* Add the initial process as the first LWP to the list.  */
1238   lp = add_initial_lwp (ptid);
1239 
1240   status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->signalled);
1241   if (!WIFSTOPPED (status))
1242     {
1243       if (WIFEXITED (status))
1244 	{
1245 	  int exit_code = WEXITSTATUS (status);
1246 
1247 	  target_terminal_ours ();
1248 	  target_mourn_inferior ();
1249 	  if (exit_code == 0)
1250 	    error (_("Unable to attach: program exited normally."));
1251 	  else
1252 	    error (_("Unable to attach: program exited with code %d."),
1253 		   exit_code);
1254 	}
1255       else if (WIFSIGNALED (status))
1256 	{
1257 	  enum gdb_signal signo;
1258 
1259 	  target_terminal_ours ();
1260 	  target_mourn_inferior ();
1261 
1262 	  signo = gdb_signal_from_host (WTERMSIG (status));
1263 	  error (_("Unable to attach: program terminated with signal "
1264 		   "%s, %s."),
1265 		 gdb_signal_to_name (signo),
1266 		 gdb_signal_to_string (signo));
1267 	}
1268 
1269       internal_error (__FILE__, __LINE__,
1270 		      _("unexpected status %d for PID %ld"),
1271 		      status, (long) ptid_get_lwp (ptid));
1272     }
1273 
1274   lp->stopped = 1;
1275 
1276   /* Save the wait status to report later.  */
1277   lp->resumed = 1;
1278   if (debug_linux_nat)
1279     fprintf_unfiltered (gdb_stdlog,
1280 			"LNA: waitpid %ld, saving status %s\n",
1281 			(long) ptid_get_pid (lp->ptid), status_to_str (status));
1282 
1283   lp->status = status;
1284 
1285   /* We must attach to every LWP.  If /proc is mounted, use that to
1286      find them now.  The inferior may be using raw clone instead of
1287      using pthreads.  But even if it is using pthreads, thread_db
1288      walks structures in the inferior's address space to find the list
1289      of threads/LWPs, and those structures may well be corrupted.
1290      Note that once thread_db is loaded, we'll still use it to list
1291      threads and associate pthread info with each LWP.  */
1292   linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1293 				  attach_proc_task_lwp_callback);
1294 
1295   if (target_can_async_p ())
1296     target_async (1);
1297 }
1298 
1299 /* Get pending signal of THREAD as a host signal number, for detaching
1300    purposes.  This is the signal the thread last stopped for, which we
1301    need to deliver to the thread when detaching, otherwise, it'd be
1302    suppressed/lost.  */
1303 
1304 static int
1305 get_detach_signal (struct lwp_info *lp)
1306 {
1307   enum gdb_signal signo = GDB_SIGNAL_0;
1308 
1309   /* If we paused threads momentarily, we may have stored pending
1310      events in lp->status or lp->waitstatus (see stop_wait_callback),
1311      and GDB core hasn't seen any signal for those threads.
1312      Otherwise, the last signal reported to the core is found in the
1313      thread object's stop_signal.
1314 
1315      There's a corner case that isn't handled here at present.  Only
1316      if the thread stopped with a TARGET_WAITKIND_STOPPED does
1317      stop_signal make sense as a real signal to pass to the inferior.
1318      Some catchpoint related events, like
1319      TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1320      to GDB_SIGNAL_SIGTRAP when the catchpoint triggers.  But,
1321      those traps are debug API (ptrace in our case) related and
1322      induced; the inferior wouldn't see them if it wasn't being
1323      traced.  Hence, we should never pass them to the inferior, even
1324      when set to pass state.  Since this corner case isn't handled by
1325      infrun.c when proceeding with a signal, for consistency, neither
1326      do we handle it here (or elsewhere in the file we check for
1327      signal pass state).  Normally SIGTRAP isn't set to pass state, so
1328      this is really a corner case.  */
1329 
1330   if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1331     signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal.  */
1332   else if (lp->status)
1333     signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1334   else if (target_is_non_stop_p () && !is_executing (lp->ptid))
1335     {
1336       struct thread_info *tp = find_thread_ptid (lp->ptid);
1337 
1338       if (tp->suspend.waitstatus_pending_p)
1339 	signo = tp->suspend.waitstatus.value.sig;
1340       else
1341 	signo = tp->suspend.stop_signal;
1342     }
1343   else if (!target_is_non_stop_p ())
1344     {
1345       struct target_waitstatus last;
1346       ptid_t last_ptid;
1347 
1348       get_last_target_status (&last_ptid, &last);
1349 
1350       if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1351 	{
1352 	  struct thread_info *tp = find_thread_ptid (lp->ptid);
1353 
1354 	  signo = tp->suspend.stop_signal;
1355 	}
1356     }
1357 
1358   if (signo == GDB_SIGNAL_0)
1359     {
1360       if (debug_linux_nat)
1361 	fprintf_unfiltered (gdb_stdlog,
1362 			    "GPT: lwp %s has no pending signal\n",
1363 			    target_pid_to_str (lp->ptid));
1364     }
1365   else if (!signal_pass_state (signo))
1366     {
1367       if (debug_linux_nat)
1368 	fprintf_unfiltered (gdb_stdlog,
1369 			    "GPT: lwp %s had signal %s, "
1370 			    "but it is in no pass state\n",
1371 			    target_pid_to_str (lp->ptid),
1372 			    gdb_signal_to_string (signo));
1373     }
1374   else
1375     {
1376       if (debug_linux_nat)
1377 	fprintf_unfiltered (gdb_stdlog,
1378 			    "GPT: lwp %s has pending signal %s\n",
1379 			    target_pid_to_str (lp->ptid),
1380 			    gdb_signal_to_string (signo));
1381 
1382       return gdb_signal_to_host (signo);
1383     }
1384 
1385   return 0;
1386 }
1387 
1388 /* Detach from LP.  If SIGNO_P is non-NULL, then it points to the
1389    signal number that should be passed to the LWP when detaching.
1390    Otherwise pass any pending signal the LWP may have, if any.  */
1391 
1392 static void
1393 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1394 {
1395   int lwpid = ptid_get_lwp (lp->ptid);
1396   int signo;
1397 
1398   gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1399 
1400   if (debug_linux_nat && lp->status)
1401     fprintf_unfiltered (gdb_stdlog, "DC:  Pending %s for %s on detach.\n",
1402 			strsignal (WSTOPSIG (lp->status)),
1403 			target_pid_to_str (lp->ptid));
1404 
1405   /* If there is a pending SIGSTOP, get rid of it.  */
1406   if (lp->signalled)
1407     {
1408       if (debug_linux_nat)
1409 	fprintf_unfiltered (gdb_stdlog,
1410 			    "DC: Sending SIGCONT to %s\n",
1411 			    target_pid_to_str (lp->ptid));
1412 
1413       kill_lwp (lwpid, SIGCONT);
1414       lp->signalled = 0;
1415     }
1416 
1417   if (signo_p == NULL)
1418     {
1419       /* Pass on any pending signal for this LWP.  */
1420       signo = get_detach_signal (lp);
1421     }
1422   else
1423     signo = *signo_p;
1424 
1425   /* Preparing to resume may try to write registers, and fail if the
1426      lwp is zombie.  If that happens, ignore the error.  We'll handle
1427      it below, when detach fails with ESRCH.  */
1428   TRY
1429     {
1430       if (linux_nat_prepare_to_resume != NULL)
1431 	linux_nat_prepare_to_resume (lp);
1432     }
1433   CATCH (ex, RETURN_MASK_ERROR)
1434     {
1435       if (!check_ptrace_stopped_lwp_gone (lp))
1436 	throw_exception (ex);
1437     }
1438   END_CATCH
1439 
1440   if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1441     {
1442       int save_errno = errno;
1443 
1444       /* We know the thread exists, so ESRCH must mean the lwp is
1445 	 zombie.  This can happen if one of the already-detached
1446 	 threads exits the whole thread group.  In that case we're
1447 	 still attached, and must reap the lwp.  */
1448       if (save_errno == ESRCH)
1449 	{
1450 	  int ret, status;
1451 
1452 	  ret = my_waitpid (lwpid, &status, __WALL);
1453 	  if (ret == -1)
1454 	    {
1455 	      warning (_("Couldn't reap LWP %d while detaching: %s"),
1456 		       lwpid, strerror (errno));
1457 	    }
1458 	  else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1459 	    {
1460 	      warning (_("Reaping LWP %d while detaching "
1461 			 "returned unexpected status 0x%x"),
1462 		       lwpid, status);
1463 	    }
1464 	}
1465       else
1466 	{
1467 	  error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1468 		 safe_strerror (save_errno));
1469 	}
1470     }
1471   else if (debug_linux_nat)
1472     {
1473       fprintf_unfiltered (gdb_stdlog,
1474 			  "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1475 			  target_pid_to_str (lp->ptid),
1476 			  strsignal (signo));
1477     }
1478 
1479   delete_lwp (lp->ptid);
1480 }
1481 
1482 static int
1483 detach_callback (struct lwp_info *lp, void *data)
1484 {
1485   /* We don't actually detach from the thread group leader just yet.
1486      If the thread group exits, we must reap the zombie clone lwps
1487      before we're able to reap the leader.  */
1488   if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1489     detach_one_lwp (lp, NULL);
1490   return 0;
1491 }
1492 
1493 static void
1494 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1495 {
1496   int pid;
1497   struct lwp_info *main_lwp;
1498 
1499   pid = ptid_get_pid (inferior_ptid);
1500 
1501   /* Don't unregister from the event loop, as there may be other
1502      inferiors running. */
1503 
1504   /* Stop all threads before detaching.  ptrace requires that the
1505      thread is stopped to sucessfully detach.  */
1506   iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1507   /* ... and wait until all of them have reported back that
1508      they're no longer running.  */
1509   iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1510 
1511   iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1512 
1513   /* Only the initial process should be left right now.  */
1514   gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1515 
1516   main_lwp = find_lwp_pid (pid_to_ptid (pid));
1517 
1518   if (forks_exist_p ())
1519     {
1520       /* Multi-fork case.  The current inferior_ptid is being detached
1521 	 from, but there are other viable forks to debug.  Detach from
1522 	 the current fork, and context-switch to the first
1523 	 available.  */
1524       linux_fork_detach (args, from_tty);
1525     }
1526   else
1527     {
1528       int signo;
1529 
1530       target_announce_detach (from_tty);
1531 
1532       /* Pass on any pending signal for the last LWP, unless the user
1533 	 requested detaching with a different signal (most likely 0,
1534 	 meaning, discard the signal).  */
1535       if (args != NULL)
1536 	signo = atoi (args);
1537       else
1538 	signo = get_detach_signal (main_lwp);
1539 
1540       detach_one_lwp (main_lwp, &signo);
1541 
1542       inf_ptrace_detach_success (ops);
1543     }
1544   delete_lwp (main_lwp->ptid);
1545 }
1546 
1547 /* Resume execution of the inferior process.  If STEP is nonzero,
1548    single-step it.  If SIGNAL is nonzero, give it that signal.  */
1549 
1550 static void
1551 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1552 			    enum gdb_signal signo)
1553 {
1554   lp->step = step;
1555 
1556   /* stop_pc doubles as the PC the LWP had when it was last resumed.
1557      We only presently need that if the LWP is stepped though (to
1558      handle the case of stepping a breakpoint instruction).  */
1559   if (step)
1560     {
1561       struct regcache *regcache = get_thread_regcache (lp->ptid);
1562 
1563       lp->stop_pc = regcache_read_pc (regcache);
1564     }
1565   else
1566     lp->stop_pc = 0;
1567 
1568   if (linux_nat_prepare_to_resume != NULL)
1569     linux_nat_prepare_to_resume (lp);
1570   linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1571 
1572   /* Successfully resumed.  Clear state that no longer makes sense,
1573      and mark the LWP as running.  Must not do this before resuming
1574      otherwise if that fails other code will be confused.  E.g., we'd
1575      later try to stop the LWP and hang forever waiting for a stop
1576      status.  Note that we must not throw after this is cleared,
1577      otherwise handle_zombie_lwp_error would get confused.  */
1578   lp->stopped = 0;
1579   lp->core = -1;
1580   lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1581   registers_changed_ptid (lp->ptid);
1582 }
1583 
1584 /* Called when we try to resume a stopped LWP and that errors out.  If
1585    the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1586    or about to become), discard the error, clear any pending status
1587    the LWP may have, and return true (we'll collect the exit status
1588    soon enough).  Otherwise, return false.  */
1589 
1590 static int
1591 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1592 {
1593   /* If we get an error after resuming the LWP successfully, we'd
1594      confuse !T state for the LWP being gone.  */
1595   gdb_assert (lp->stopped);
1596 
1597   /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1598      because even if ptrace failed with ESRCH, the tracee may be "not
1599      yet fully dead", but already refusing ptrace requests.  In that
1600      case the tracee has 'R (Running)' state for a little bit
1601      (observed in Linux 3.18).  See also the note on ESRCH in the
1602      ptrace(2) man page.  Instead, check whether the LWP has any state
1603      other than ptrace-stopped.  */
1604 
1605   /* Don't assume anything if /proc/PID/status can't be read.  */
1606   if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1607     {
1608       lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1609       lp->status = 0;
1610       lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1611       return 1;
1612     }
1613   return 0;
1614 }
1615 
1616 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1617    disappears while we try to resume it.  */
1618 
1619 static void
1620 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1621 {
1622   TRY
1623     {
1624       linux_resume_one_lwp_throw (lp, step, signo);
1625     }
1626   CATCH (ex, RETURN_MASK_ERROR)
1627     {
1628       if (!check_ptrace_stopped_lwp_gone (lp))
1629 	throw_exception (ex);
1630     }
1631   END_CATCH
1632 }
1633 
1634 /* Resume LP.  */
1635 
1636 static void
1637 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1638 {
1639   if (lp->stopped)
1640     {
1641       struct inferior *inf = find_inferior_ptid (lp->ptid);
1642 
1643       if (inf->vfork_child != NULL)
1644 	{
1645 	  if (debug_linux_nat)
1646 	    fprintf_unfiltered (gdb_stdlog,
1647 				"RC: Not resuming %s (vfork parent)\n",
1648 				target_pid_to_str (lp->ptid));
1649 	}
1650       else if (!lwp_status_pending_p (lp))
1651 	{
1652 	  if (debug_linux_nat)
1653 	    fprintf_unfiltered (gdb_stdlog,
1654 				"RC: Resuming sibling %s, %s, %s\n",
1655 				target_pid_to_str (lp->ptid),
1656 				(signo != GDB_SIGNAL_0
1657 				 ? strsignal (gdb_signal_to_host (signo))
1658 				 : "0"),
1659 				step ? "step" : "resume");
1660 
1661 	  linux_resume_one_lwp (lp, step, signo);
1662 	}
1663       else
1664 	{
1665 	  if (debug_linux_nat)
1666 	    fprintf_unfiltered (gdb_stdlog,
1667 				"RC: Not resuming sibling %s (has pending)\n",
1668 				target_pid_to_str (lp->ptid));
1669 	}
1670     }
1671   else
1672     {
1673       if (debug_linux_nat)
1674 	fprintf_unfiltered (gdb_stdlog,
1675 			    "RC: Not resuming sibling %s (not stopped)\n",
1676 			    target_pid_to_str (lp->ptid));
1677     }
1678 }
1679 
1680 /* Callback for iterate_over_lwps.  If LWP is EXCEPT, do nothing.
1681    Resume LWP with the last stop signal, if it is in pass state.  */
1682 
1683 static int
1684 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1685 {
1686   enum gdb_signal signo = GDB_SIGNAL_0;
1687 
1688   if (lp == except)
1689     return 0;
1690 
1691   if (lp->stopped)
1692     {
1693       struct thread_info *thread;
1694 
1695       thread = find_thread_ptid (lp->ptid);
1696       if (thread != NULL)
1697 	{
1698 	  signo = thread->suspend.stop_signal;
1699 	  thread->suspend.stop_signal = GDB_SIGNAL_0;
1700 	}
1701     }
1702 
1703   resume_lwp (lp, 0, signo);
1704   return 0;
1705 }
1706 
1707 static int
1708 resume_clear_callback (struct lwp_info *lp, void *data)
1709 {
1710   lp->resumed = 0;
1711   lp->last_resume_kind = resume_stop;
1712   return 0;
1713 }
1714 
1715 static int
1716 resume_set_callback (struct lwp_info *lp, void *data)
1717 {
1718   lp->resumed = 1;
1719   lp->last_resume_kind = resume_continue;
1720   return 0;
1721 }
1722 
1723 static void
1724 linux_nat_resume (struct target_ops *ops,
1725 		  ptid_t ptid, int step, enum gdb_signal signo)
1726 {
1727   struct lwp_info *lp;
1728   int resume_many;
1729 
1730   if (debug_linux_nat)
1731     fprintf_unfiltered (gdb_stdlog,
1732 			"LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1733 			step ? "step" : "resume",
1734 			target_pid_to_str (ptid),
1735 			(signo != GDB_SIGNAL_0
1736 			 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1737 			target_pid_to_str (inferior_ptid));
1738 
1739   /* A specific PTID means `step only this process id'.  */
1740   resume_many = (ptid_equal (minus_one_ptid, ptid)
1741 		 || ptid_is_pid (ptid));
1742 
1743   /* Mark the lwps we're resuming as resumed.  */
1744   iterate_over_lwps (ptid, resume_set_callback, NULL);
1745 
1746   /* See if it's the current inferior that should be handled
1747      specially.  */
1748   if (resume_many)
1749     lp = find_lwp_pid (inferior_ptid);
1750   else
1751     lp = find_lwp_pid (ptid);
1752   gdb_assert (lp != NULL);
1753 
1754   /* Remember if we're stepping.  */
1755   lp->last_resume_kind = step ? resume_step : resume_continue;
1756 
1757   /* If we have a pending wait status for this thread, there is no
1758      point in resuming the process.  But first make sure that
1759      linux_nat_wait won't preemptively handle the event - we
1760      should never take this short-circuit if we are going to
1761      leave LP running, since we have skipped resuming all the
1762      other threads.  This bit of code needs to be synchronized
1763      with linux_nat_wait.  */
1764 
1765   if (lp->status && WIFSTOPPED (lp->status))
1766     {
1767       if (!lp->step
1768 	  && WSTOPSIG (lp->status)
1769 	  && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1770 	{
1771 	  if (debug_linux_nat)
1772 	    fprintf_unfiltered (gdb_stdlog,
1773 				"LLR: Not short circuiting for ignored "
1774 				"status 0x%x\n", lp->status);
1775 
1776 	  /* FIXME: What should we do if we are supposed to continue
1777 	     this thread with a signal?  */
1778 	  gdb_assert (signo == GDB_SIGNAL_0);
1779 	  signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1780 	  lp->status = 0;
1781 	}
1782     }
1783 
1784   if (lwp_status_pending_p (lp))
1785     {
1786       /* FIXME: What should we do if we are supposed to continue
1787 	 this thread with a signal?  */
1788       gdb_assert (signo == GDB_SIGNAL_0);
1789 
1790       if (debug_linux_nat)
1791 	fprintf_unfiltered (gdb_stdlog,
1792 			    "LLR: Short circuiting for status 0x%x\n",
1793 			    lp->status);
1794 
1795       if (target_can_async_p ())
1796 	{
1797 	  target_async (1);
1798 	  /* Tell the event loop we have something to process.  */
1799 	  async_file_mark ();
1800 	}
1801       return;
1802     }
1803 
1804   if (resume_many)
1805     iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1806 
1807   if (debug_linux_nat)
1808     fprintf_unfiltered (gdb_stdlog,
1809 			"LLR: %s %s, %s (resume event thread)\n",
1810 			step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1811 			target_pid_to_str (lp->ptid),
1812 			(signo != GDB_SIGNAL_0
1813 			 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1814 
1815   linux_resume_one_lwp (lp, step, signo);
1816 
1817   if (target_can_async_p ())
1818     target_async (1);
1819 }
1820 
1821 /* Send a signal to an LWP.  */
1822 
1823 static int
1824 kill_lwp (int lwpid, int signo)
1825 {
1826   int ret;
1827 
1828   errno = 0;
1829   ret = syscall (__NR_tkill, lwpid, signo);
1830   if (errno == ENOSYS)
1831     {
1832       /* If tkill fails, then we are not using nptl threads, a
1833 	 configuration we no longer support.  */
1834       perror_with_name (("tkill"));
1835     }
1836   return ret;
1837 }
1838 
1839 /* Handle a GNU/Linux syscall trap wait response.  If we see a syscall
1840    event, check if the core is interested in it: if not, ignore the
1841    event, and keep waiting; otherwise, we need to toggle the LWP's
1842    syscall entry/exit status, since the ptrace event itself doesn't
1843    indicate it, and report the trap to higher layers.  */
1844 
1845 static int
1846 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1847 {
1848   struct target_waitstatus *ourstatus = &lp->waitstatus;
1849   struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1850   int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1851 
1852   if (stopping)
1853     {
1854       /* If we're stopping threads, there's a SIGSTOP pending, which
1855 	 makes it so that the LWP reports an immediate syscall return,
1856 	 followed by the SIGSTOP.  Skip seeing that "return" using
1857 	 PTRACE_CONT directly, and let stop_wait_callback collect the
1858 	 SIGSTOP.  Later when the thread is resumed, a new syscall
1859 	 entry event.  If we didn't do this (and returned 0), we'd
1860 	 leave a syscall entry pending, and our caller, by using
1861 	 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1862 	 itself.  Later, when the user re-resumes this LWP, we'd see
1863 	 another syscall entry event and we'd mistake it for a return.
1864 
1865 	 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1866 	 (leaving immediately with LWP->signalled set, without issuing
1867 	 a PTRACE_CONT), it would still be problematic to leave this
1868 	 syscall enter pending, as later when the thread is resumed,
1869 	 it would then see the same syscall exit mentioned above,
1870 	 followed by the delayed SIGSTOP, while the syscall didn't
1871 	 actually get to execute.  It seems it would be even more
1872 	 confusing to the user.  */
1873 
1874       if (debug_linux_nat)
1875 	fprintf_unfiltered (gdb_stdlog,
1876 			    "LHST: ignoring syscall %d "
1877 			    "for LWP %ld (stopping threads), "
1878 			    "resuming with PTRACE_CONT for SIGSTOP\n",
1879 			    syscall_number,
1880 			    ptid_get_lwp (lp->ptid));
1881 
1882       lp->syscall_state = TARGET_WAITKIND_IGNORE;
1883       ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1884       lp->stopped = 0;
1885       return 1;
1886     }
1887 
1888   /* Always update the entry/return state, even if this particular
1889      syscall isn't interesting to the core now.  In async mode,
1890      the user could install a new catchpoint for this syscall
1891      between syscall enter/return, and we'll need to know to
1892      report a syscall return if that happens.  */
1893   lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1894 		       ? TARGET_WAITKIND_SYSCALL_RETURN
1895 		       : TARGET_WAITKIND_SYSCALL_ENTRY);
1896 
1897   if (catch_syscall_enabled ())
1898     {
1899       if (catching_syscall_number (syscall_number))
1900 	{
1901 	  /* Alright, an event to report.  */
1902 	  ourstatus->kind = lp->syscall_state;
1903 	  ourstatus->value.syscall_number = syscall_number;
1904 
1905 	  if (debug_linux_nat)
1906 	    fprintf_unfiltered (gdb_stdlog,
1907 				"LHST: stopping for %s of syscall %d"
1908 				" for LWP %ld\n",
1909 				lp->syscall_state
1910 				== TARGET_WAITKIND_SYSCALL_ENTRY
1911 				? "entry" : "return",
1912 				syscall_number,
1913 				ptid_get_lwp (lp->ptid));
1914 	  return 0;
1915 	}
1916 
1917       if (debug_linux_nat)
1918 	fprintf_unfiltered (gdb_stdlog,
1919 			    "LHST: ignoring %s of syscall %d "
1920 			    "for LWP %ld\n",
1921 			    lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1922 			    ? "entry" : "return",
1923 			    syscall_number,
1924 			    ptid_get_lwp (lp->ptid));
1925     }
1926   else
1927     {
1928       /* If we had been syscall tracing, and hence used PT_SYSCALL
1929 	 before on this LWP, it could happen that the user removes all
1930 	 syscall catchpoints before we get to process this event.
1931 	 There are two noteworthy issues here:
1932 
1933 	 - When stopped at a syscall entry event, resuming with
1934 	   PT_STEP still resumes executing the syscall and reports a
1935 	   syscall return.
1936 
1937 	 - Only PT_SYSCALL catches syscall enters.  If we last
1938 	   single-stepped this thread, then this event can't be a
1939 	   syscall enter.  If we last single-stepped this thread, this
1940 	   has to be a syscall exit.
1941 
1942 	 The points above mean that the next resume, be it PT_STEP or
1943 	 PT_CONTINUE, can not trigger a syscall trace event.  */
1944       if (debug_linux_nat)
1945 	fprintf_unfiltered (gdb_stdlog,
1946 			    "LHST: caught syscall event "
1947 			    "with no syscall catchpoints."
1948 			    " %d for LWP %ld, ignoring\n",
1949 			    syscall_number,
1950 			    ptid_get_lwp (lp->ptid));
1951       lp->syscall_state = TARGET_WAITKIND_IGNORE;
1952     }
1953 
1954   /* The core isn't interested in this event.  For efficiency, avoid
1955      stopping all threads only to have the core resume them all again.
1956      Since we're not stopping threads, if we're still syscall tracing
1957      and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1958      subsequent syscall.  Simply resume using the inf-ptrace layer,
1959      which knows when to use PT_SYSCALL or PT_CONTINUE.  */
1960 
1961   linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1962   return 1;
1963 }
1964 
1965 /* Handle a GNU/Linux extended wait response.  If we see a clone
1966    event, we need to add the new LWP to our list (and not report the
1967    trap to higher layers).  This function returns non-zero if the
1968    event should be ignored and we should wait again.  If STOPPING is
1969    true, the new LWP remains stopped, otherwise it is continued.  */
1970 
1971 static int
1972 linux_handle_extended_wait (struct lwp_info *lp, int status)
1973 {
1974   int pid = ptid_get_lwp (lp->ptid);
1975   struct target_waitstatus *ourstatus = &lp->waitstatus;
1976   int event = linux_ptrace_get_extended_event (status);
1977 
1978   /* All extended events we currently use are mid-syscall.  Only
1979      PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1980      you have to be using PTRACE_SEIZE to get that.  */
1981   lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1982 
1983   if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1984       || event == PTRACE_EVENT_CLONE)
1985     {
1986       unsigned long new_pid;
1987       int ret;
1988 
1989       ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1990 
1991       /* If we haven't already seen the new PID stop, wait for it now.  */
1992       if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1993 	{
1994 	  /* The new child has a pending SIGSTOP.  We can't affect it until it
1995 	     hits the SIGSTOP, but we're already attached.  */
1996 	  ret = my_waitpid (new_pid, &status, __WALL);
1997 	  if (ret == -1)
1998 	    perror_with_name (_("waiting for new child"));
1999 	  else if (ret != new_pid)
2000 	    internal_error (__FILE__, __LINE__,
2001 			    _("wait returned unexpected PID %d"), ret);
2002 	  else if (!WIFSTOPPED (status))
2003 	    internal_error (__FILE__, __LINE__,
2004 			    _("wait returned unexpected status 0x%x"), status);
2005 	}
2006 
2007       ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2008 
2009       if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2010 	{
2011 	  /* The arch-specific native code may need to know about new
2012 	     forks even if those end up never mapped to an
2013 	     inferior.  */
2014 	  if (linux_nat_new_fork != NULL)
2015 	    linux_nat_new_fork (lp, new_pid);
2016 	}
2017 
2018       if (event == PTRACE_EVENT_FORK
2019 	  && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2020 	{
2021 	  /* Handle checkpointing by linux-fork.c here as a special
2022 	     case.  We don't want the follow-fork-mode or 'catch fork'
2023 	     to interfere with this.  */
2024 
2025 	  /* This won't actually modify the breakpoint list, but will
2026 	     physically remove the breakpoints from the child.  */
2027 	  detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2028 
2029 	  /* Retain child fork in ptrace (stopped) state.  */
2030 	  if (!find_fork_pid (new_pid))
2031 	    add_fork (new_pid);
2032 
2033 	  /* Report as spurious, so that infrun doesn't want to follow
2034 	     this fork.  We're actually doing an infcall in
2035 	     linux-fork.c.  */
2036 	  ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2037 
2038 	  /* Report the stop to the core.  */
2039 	  return 0;
2040 	}
2041 
2042       if (event == PTRACE_EVENT_FORK)
2043 	ourstatus->kind = TARGET_WAITKIND_FORKED;
2044       else if (event == PTRACE_EVENT_VFORK)
2045 	ourstatus->kind = TARGET_WAITKIND_VFORKED;
2046       else if (event == PTRACE_EVENT_CLONE)
2047 	{
2048 	  struct lwp_info *new_lp;
2049 
2050 	  ourstatus->kind = TARGET_WAITKIND_IGNORE;
2051 
2052 	  if (debug_linux_nat)
2053 	    fprintf_unfiltered (gdb_stdlog,
2054 				"LHEW: Got clone event "
2055 				"from LWP %d, new child is LWP %ld\n",
2056 				pid, new_pid);
2057 
2058 	  new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2059 	  new_lp->stopped = 1;
2060 	  new_lp->resumed = 1;
2061 
2062 	  /* If the thread_db layer is active, let it record the user
2063 	     level thread id and status, and add the thread to GDB's
2064 	     list.  */
2065 	  if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2066 	    {
2067 	      /* The process is not using thread_db.  Add the LWP to
2068 		 GDB's list.  */
2069 	      target_post_attach (ptid_get_lwp (new_lp->ptid));
2070 	      add_thread (new_lp->ptid);
2071 	    }
2072 
2073 	  /* Even if we're stopping the thread for some reason
2074 	     internal to this module, from the perspective of infrun
2075 	     and the user/frontend, this new thread is running until
2076 	     it next reports a stop.  */
2077 	  set_running (new_lp->ptid, 1);
2078 	  set_executing (new_lp->ptid, 1);
2079 
2080 	  if (WSTOPSIG (status) != SIGSTOP)
2081 	    {
2082 	      /* This can happen if someone starts sending signals to
2083 		 the new thread before it gets a chance to run, which
2084 		 have a lower number than SIGSTOP (e.g. SIGUSR1).
2085 		 This is an unlikely case, and harder to handle for
2086 		 fork / vfork than for clone, so we do not try - but
2087 		 we handle it for clone events here.  */
2088 
2089 	      new_lp->signalled = 1;
2090 
2091 	      /* We created NEW_LP so it cannot yet contain STATUS.  */
2092 	      gdb_assert (new_lp->status == 0);
2093 
2094 	      /* Save the wait status to report later.  */
2095 	      if (debug_linux_nat)
2096 		fprintf_unfiltered (gdb_stdlog,
2097 				    "LHEW: waitpid of new LWP %ld, "
2098 				    "saving status %s\n",
2099 				    (long) ptid_get_lwp (new_lp->ptid),
2100 				    status_to_str (status));
2101 	      new_lp->status = status;
2102 	    }
2103 	  else if (report_thread_events)
2104 	    {
2105 	      new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2106 	      new_lp->status = status;
2107 	    }
2108 
2109 	  return 1;
2110 	}
2111 
2112       return 0;
2113     }
2114 
2115   if (event == PTRACE_EVENT_EXEC)
2116     {
2117       if (debug_linux_nat)
2118 	fprintf_unfiltered (gdb_stdlog,
2119 			    "LHEW: Got exec event from LWP %ld\n",
2120 			    ptid_get_lwp (lp->ptid));
2121 
2122       ourstatus->kind = TARGET_WAITKIND_EXECD;
2123       ourstatus->value.execd_pathname
2124 	= xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2125 
2126       /* The thread that execed must have been resumed, but, when a
2127 	 thread execs, it changes its tid to the tgid, and the old
2128 	 tgid thread might have not been resumed.  */
2129       lp->resumed = 1;
2130       return 0;
2131     }
2132 
2133   if (event == PTRACE_EVENT_VFORK_DONE)
2134     {
2135       if (current_inferior ()->waiting_for_vfork_done)
2136 	{
2137 	  if (debug_linux_nat)
2138 	    fprintf_unfiltered (gdb_stdlog,
2139 				"LHEW: Got expected PTRACE_EVENT_"
2140 				"VFORK_DONE from LWP %ld: stopping\n",
2141 				ptid_get_lwp (lp->ptid));
2142 
2143 	  ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2144 	  return 0;
2145 	}
2146 
2147       if (debug_linux_nat)
2148 	fprintf_unfiltered (gdb_stdlog,
2149 			    "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2150 			    "from LWP %ld: ignoring\n",
2151 			    ptid_get_lwp (lp->ptid));
2152       return 1;
2153     }
2154 
2155   internal_error (__FILE__, __LINE__,
2156 		  _("unknown ptrace event %d"), event);
2157 }
2158 
2159 /* Wait for LP to stop.  Returns the wait status, or 0 if the LWP has
2160    exited.  */
2161 
2162 static int
2163 wait_lwp (struct lwp_info *lp)
2164 {
2165   pid_t pid;
2166   int status = 0;
2167   int thread_dead = 0;
2168   sigset_t prev_mask;
2169 
2170   gdb_assert (!lp->stopped);
2171   gdb_assert (lp->status == 0);
2172 
2173   /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below.  */
2174   block_child_signals (&prev_mask);
2175 
2176   for (;;)
2177     {
2178       pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WALL | WNOHANG);
2179       if (pid == -1 && errno == ECHILD)
2180 	{
2181 	  /* The thread has previously exited.  We need to delete it
2182 	     now because if this was a non-leader thread execing, we
2183 	     won't get an exit event.  See comments on exec events at
2184 	     the top of the file.  */
2185 	  thread_dead = 1;
2186 	  if (debug_linux_nat)
2187 	    fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2188 				target_pid_to_str (lp->ptid));
2189 	}
2190       if (pid != 0)
2191 	break;
2192 
2193       /* Bugs 10970, 12702.
2194 	 Thread group leader may have exited in which case we'll lock up in
2195 	 waitpid if there are other threads, even if they are all zombies too.
2196 	 Basically, we're not supposed to use waitpid this way.
2197 	  tkill(pid,0) cannot be used here as it gets ESRCH for both
2198 	 for zombie and running processes.
2199 
2200 	 As a workaround, check if we're waiting for the thread group leader and
2201 	 if it's a zombie, and avoid calling waitpid if it is.
2202 
2203 	 This is racy, what if the tgl becomes a zombie right after we check?
2204 	 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2205 	 waiting waitpid but linux_proc_pid_is_zombie is safe this way.  */
2206 
2207       if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2208 	  && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2209 	{
2210 	  thread_dead = 1;
2211 	  if (debug_linux_nat)
2212 	    fprintf_unfiltered (gdb_stdlog,
2213 				"WL: Thread group leader %s vanished.\n",
2214 				target_pid_to_str (lp->ptid));
2215 	  break;
2216 	}
2217 
2218       /* Wait for next SIGCHLD and try again.  This may let SIGCHLD handlers
2219 	 get invoked despite our caller had them intentionally blocked by
2220 	 block_child_signals.  This is sensitive only to the loop of
2221 	 linux_nat_wait_1 and there if we get called my_waitpid gets called
2222 	 again before it gets to sigsuspend so we can safely let the handlers
2223 	 get executed here.  */
2224 
2225       if (debug_linux_nat)
2226 	fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2227       sigsuspend (&suspend_mask);
2228     }
2229 
2230   restore_child_signals_mask (&prev_mask);
2231 
2232   if (!thread_dead)
2233     {
2234       gdb_assert (pid == ptid_get_lwp (lp->ptid));
2235 
2236       if (debug_linux_nat)
2237 	{
2238 	  fprintf_unfiltered (gdb_stdlog,
2239 			      "WL: waitpid %s received %s\n",
2240 			      target_pid_to_str (lp->ptid),
2241 			      status_to_str (status));
2242 	}
2243 
2244       /* Check if the thread has exited.  */
2245       if (WIFEXITED (status) || WIFSIGNALED (status))
2246 	{
2247 	  if (report_thread_events
2248 	      || ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2249 	    {
2250 	      if (debug_linux_nat)
2251 		fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2252 				    ptid_get_pid (lp->ptid));
2253 
2254 	      /* If this is the leader exiting, it means the whole
2255 		 process is gone.  Store the status to report to the
2256 		 core.  Store it in lp->waitstatus, because lp->status
2257 		 would be ambiguous (W_EXITCODE(0,0) == 0).  */
2258 	      store_waitstatus (&lp->waitstatus, status);
2259 	      return 0;
2260 	    }
2261 
2262 	  thread_dead = 1;
2263 	  if (debug_linux_nat)
2264 	    fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2265 				target_pid_to_str (lp->ptid));
2266 	}
2267     }
2268 
2269   if (thread_dead)
2270     {
2271       exit_lwp (lp);
2272       return 0;
2273     }
2274 
2275   gdb_assert (WIFSTOPPED (status));
2276   lp->stopped = 1;
2277 
2278   if (lp->must_set_ptrace_flags)
2279     {
2280       struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2281       int options = linux_nat_ptrace_options (inf->attach_flag);
2282 
2283       linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2284       lp->must_set_ptrace_flags = 0;
2285     }
2286 
2287   /* Handle GNU/Linux's syscall SIGTRAPs.  */
2288   if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2289     {
2290       /* No longer need the sysgood bit.  The ptrace event ends up
2291 	 recorded in lp->waitstatus if we care for it.  We can carry
2292 	 on handling the event like a regular SIGTRAP from here
2293 	 on.  */
2294       status = W_STOPCODE (SIGTRAP);
2295       if (linux_handle_syscall_trap (lp, 1))
2296 	return wait_lwp (lp);
2297     }
2298   else
2299     {
2300       /* Almost all other ptrace-stops are known to be outside of system
2301 	 calls, with further exceptions in linux_handle_extended_wait.  */
2302       lp->syscall_state = TARGET_WAITKIND_IGNORE;
2303     }
2304 
2305   /* Handle GNU/Linux's extended waitstatus for trace events.  */
2306   if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2307       && linux_is_extended_waitstatus (status))
2308     {
2309       if (debug_linux_nat)
2310 	fprintf_unfiltered (gdb_stdlog,
2311 			    "WL: Handling extended status 0x%06x\n",
2312 			    status);
2313       linux_handle_extended_wait (lp, status);
2314       return 0;
2315     }
2316 
2317   return status;
2318 }
2319 
2320 /* Send a SIGSTOP to LP.  */
2321 
2322 static int
2323 stop_callback (struct lwp_info *lp, void *data)
2324 {
2325   if (!lp->stopped && !lp->signalled)
2326     {
2327       int ret;
2328 
2329       if (debug_linux_nat)
2330 	{
2331 	  fprintf_unfiltered (gdb_stdlog,
2332 			      "SC:  kill %s **<SIGSTOP>**\n",
2333 			      target_pid_to_str (lp->ptid));
2334 	}
2335       errno = 0;
2336       ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2337       if (debug_linux_nat)
2338 	{
2339 	  fprintf_unfiltered (gdb_stdlog,
2340 			      "SC:  lwp kill %d %s\n",
2341 			      ret,
2342 			      errno ? safe_strerror (errno) : "ERRNO-OK");
2343 	}
2344 
2345       lp->signalled = 1;
2346       gdb_assert (lp->status == 0);
2347     }
2348 
2349   return 0;
2350 }
2351 
2352 /* Request a stop on LWP.  */
2353 
2354 void
2355 linux_stop_lwp (struct lwp_info *lwp)
2356 {
2357   stop_callback (lwp, NULL);
2358 }
2359 
2360 /* See linux-nat.h  */
2361 
2362 void
2363 linux_stop_and_wait_all_lwps (void)
2364 {
2365   /* Stop all LWP's ...  */
2366   iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2367 
2368   /* ... and wait until all of them have reported back that
2369      they're no longer running.  */
2370   iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2371 }
2372 
2373 /* See linux-nat.h  */
2374 
2375 void
2376 linux_unstop_all_lwps (void)
2377 {
2378   iterate_over_lwps (minus_one_ptid,
2379 		     resume_stopped_resumed_lwps, &minus_one_ptid);
2380 }
2381 
2382 /* Return non-zero if LWP PID has a pending SIGINT.  */
2383 
2384 static int
2385 linux_nat_has_pending_sigint (int pid)
2386 {
2387   sigset_t pending, blocked, ignored;
2388 
2389   linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2390 
2391   if (sigismember (&pending, SIGINT)
2392       && !sigismember (&ignored, SIGINT))
2393     return 1;
2394 
2395   return 0;
2396 }
2397 
2398 /* Set a flag in LP indicating that we should ignore its next SIGINT.  */
2399 
2400 static int
2401 set_ignore_sigint (struct lwp_info *lp, void *data)
2402 {
2403   /* If a thread has a pending SIGINT, consume it; otherwise, set a
2404      flag to consume the next one.  */
2405   if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2406       && WSTOPSIG (lp->status) == SIGINT)
2407     lp->status = 0;
2408   else
2409     lp->ignore_sigint = 1;
2410 
2411   return 0;
2412 }
2413 
2414 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2415    This function is called after we know the LWP has stopped; if the LWP
2416    stopped before the expected SIGINT was delivered, then it will never have
2417    arrived.  Also, if the signal was delivered to a shared queue and consumed
2418    by a different thread, it will never be delivered to this LWP.  */
2419 
2420 static void
2421 maybe_clear_ignore_sigint (struct lwp_info *lp)
2422 {
2423   if (!lp->ignore_sigint)
2424     return;
2425 
2426   if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2427     {
2428       if (debug_linux_nat)
2429 	fprintf_unfiltered (gdb_stdlog,
2430 			    "MCIS: Clearing bogus flag for %s\n",
2431 			    target_pid_to_str (lp->ptid));
2432       lp->ignore_sigint = 0;
2433     }
2434 }
2435 
2436 /* Fetch the possible triggered data watchpoint info and store it in
2437    LP.
2438 
2439    On some archs, like x86, that use debug registers to set
2440    watchpoints, it's possible that the way to know which watched
2441    address trapped, is to check the register that is used to select
2442    which address to watch.  Problem is, between setting the watchpoint
2443    and reading back which data address trapped, the user may change
2444    the set of watchpoints, and, as a consequence, GDB changes the
2445    debug registers in the inferior.  To avoid reading back a stale
2446    stopped-data-address when that happens, we cache in LP the fact
2447    that a watchpoint trapped, and the corresponding data address, as
2448    soon as we see LP stop with a SIGTRAP.  If GDB changes the debug
2449    registers meanwhile, we have the cached data we can rely on.  */
2450 
2451 static int
2452 check_stopped_by_watchpoint (struct lwp_info *lp)
2453 {
2454   struct cleanup *old_chain;
2455 
2456   if (linux_ops->to_stopped_by_watchpoint == NULL)
2457     return 0;
2458 
2459   old_chain = save_inferior_ptid ();
2460   inferior_ptid = lp->ptid;
2461 
2462   if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2463     {
2464       lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2465 
2466       if (linux_ops->to_stopped_data_address != NULL)
2467 	lp->stopped_data_address_p =
2468 	  linux_ops->to_stopped_data_address (&current_target,
2469 					      &lp->stopped_data_address);
2470       else
2471 	lp->stopped_data_address_p = 0;
2472     }
2473 
2474   do_cleanups (old_chain);
2475 
2476   return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2477 }
2478 
2479 /* Returns true if the LWP had stopped for a watchpoint.  */
2480 
2481 static int
2482 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2483 {
2484   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2485 
2486   gdb_assert (lp != NULL);
2487 
2488   return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2489 }
2490 
2491 static int
2492 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2493 {
2494   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2495 
2496   gdb_assert (lp != NULL);
2497 
2498   *addr_p = lp->stopped_data_address;
2499 
2500   return lp->stopped_data_address_p;
2501 }
2502 
2503 /* Commonly any breakpoint / watchpoint generate only SIGTRAP.  */
2504 
2505 static int
2506 sigtrap_is_event (int status)
2507 {
2508   return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2509 }
2510 
2511 /* Set alternative SIGTRAP-like events recognizer.  If
2512    breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2513    applied.  */
2514 
2515 void
2516 linux_nat_set_status_is_event (struct target_ops *t,
2517 			       int (*status_is_event) (int status))
2518 {
2519   linux_nat_status_is_event = status_is_event;
2520 }
2521 
2522 /* Wait until LP is stopped.  */
2523 
2524 static int
2525 stop_wait_callback (struct lwp_info *lp, void *data)
2526 {
2527   struct inferior *inf = find_inferior_ptid (lp->ptid);
2528 
2529   /* If this is a vfork parent, bail out, it is not going to report
2530      any SIGSTOP until the vfork is done with.  */
2531   if (inf->vfork_child != NULL)
2532     return 0;
2533 
2534   if (!lp->stopped)
2535     {
2536       int status;
2537 
2538       status = wait_lwp (lp);
2539       if (status == 0)
2540 	return 0;
2541 
2542       if (lp->ignore_sigint && WIFSTOPPED (status)
2543 	  && WSTOPSIG (status) == SIGINT)
2544 	{
2545 	  lp->ignore_sigint = 0;
2546 
2547 	  errno = 0;
2548 	  ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2549 	  lp->stopped = 0;
2550 	  if (debug_linux_nat)
2551 	    fprintf_unfiltered (gdb_stdlog,
2552 				"PTRACE_CONT %s, 0, 0 (%s) "
2553 				"(discarding SIGINT)\n",
2554 				target_pid_to_str (lp->ptid),
2555 				errno ? safe_strerror (errno) : "OK");
2556 
2557 	  return stop_wait_callback (lp, NULL);
2558 	}
2559 
2560       maybe_clear_ignore_sigint (lp);
2561 
2562       if (WSTOPSIG (status) != SIGSTOP)
2563 	{
2564 	  /* The thread was stopped with a signal other than SIGSTOP.  */
2565 
2566 	  if (debug_linux_nat)
2567 	    fprintf_unfiltered (gdb_stdlog,
2568 				"SWC: Pending event %s in %s\n",
2569 				status_to_str ((int) status),
2570 				target_pid_to_str (lp->ptid));
2571 
2572 	  /* Save the sigtrap event.  */
2573 	  lp->status = status;
2574 	  gdb_assert (lp->signalled);
2575 	  save_stop_reason (lp);
2576 	}
2577       else
2578 	{
2579 	  /* We caught the SIGSTOP that we intended to catch, so
2580 	     there's no SIGSTOP pending.  */
2581 
2582 	  if (debug_linux_nat)
2583 	    fprintf_unfiltered (gdb_stdlog,
2584 				"SWC: Expected SIGSTOP caught for %s.\n",
2585 				target_pid_to_str (lp->ptid));
2586 
2587 	  /* Reset SIGNALLED only after the stop_wait_callback call
2588 	     above as it does gdb_assert on SIGNALLED.  */
2589 	  lp->signalled = 0;
2590 	}
2591     }
2592 
2593   return 0;
2594 }
2595 
2596 /* Return non-zero if LP has a wait status pending.  Discard the
2597    pending event and resume the LWP if the event that originally
2598    caused the stop became uninteresting.  */
2599 
2600 static int
2601 status_callback (struct lwp_info *lp, void *data)
2602 {
2603   /* Only report a pending wait status if we pretend that this has
2604      indeed been resumed.  */
2605   if (!lp->resumed)
2606     return 0;
2607 
2608   if (!lwp_status_pending_p (lp))
2609     return 0;
2610 
2611   if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2612       || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2613     {
2614       struct regcache *regcache = get_thread_regcache (lp->ptid);
2615       CORE_ADDR pc;
2616       int discard = 0;
2617 
2618       pc = regcache_read_pc (regcache);
2619 
2620       if (pc != lp->stop_pc)
2621 	{
2622 	  if (debug_linux_nat)
2623 	    fprintf_unfiltered (gdb_stdlog,
2624 				"SC: PC of %s changed.  was=%s, now=%s\n",
2625 				target_pid_to_str (lp->ptid),
2626 				paddress (target_gdbarch (), lp->stop_pc),
2627 				paddress (target_gdbarch (), pc));
2628 	  discard = 1;
2629 	}
2630 
2631 #if !USE_SIGTRAP_SIGINFO
2632       else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2633 	{
2634 	  if (debug_linux_nat)
2635 	    fprintf_unfiltered (gdb_stdlog,
2636 				"SC: previous breakpoint of %s, at %s gone\n",
2637 				target_pid_to_str (lp->ptid),
2638 				paddress (target_gdbarch (), lp->stop_pc));
2639 
2640 	  discard = 1;
2641 	}
2642 #endif
2643 
2644       if (discard)
2645 	{
2646 	  if (debug_linux_nat)
2647 	    fprintf_unfiltered (gdb_stdlog,
2648 				"SC: pending event of %s cancelled.\n",
2649 				target_pid_to_str (lp->ptid));
2650 
2651 	  lp->status = 0;
2652 	  linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2653 	  return 0;
2654 	}
2655     }
2656 
2657   return 1;
2658 }
2659 
2660 /* Count the LWP's that have had events.  */
2661 
2662 static int
2663 count_events_callback (struct lwp_info *lp, void *data)
2664 {
2665   int *count = (int *) data;
2666 
2667   gdb_assert (count != NULL);
2668 
2669   /* Select only resumed LWPs that have an event pending.  */
2670   if (lp->resumed && lwp_status_pending_p (lp))
2671     (*count)++;
2672 
2673   return 0;
2674 }
2675 
2676 /* Select the LWP (if any) that is currently being single-stepped.  */
2677 
2678 static int
2679 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2680 {
2681   if (lp->last_resume_kind == resume_step
2682       && lp->status != 0)
2683     return 1;
2684   else
2685     return 0;
2686 }
2687 
2688 /* Returns true if LP has a status pending.  */
2689 
2690 static int
2691 lwp_status_pending_p (struct lwp_info *lp)
2692 {
2693   /* We check for lp->waitstatus in addition to lp->status, because we
2694      can have pending process exits recorded in lp->status and
2695      W_EXITCODE(0,0) happens to be 0.  */
2696   return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2697 }
2698 
2699 /* Select the Nth LWP that has had an event.  */
2700 
2701 static int
2702 select_event_lwp_callback (struct lwp_info *lp, void *data)
2703 {
2704   int *selector = (int *) data;
2705 
2706   gdb_assert (selector != NULL);
2707 
2708   /* Select only resumed LWPs that have an event pending.  */
2709   if (lp->resumed && lwp_status_pending_p (lp))
2710     if ((*selector)-- == 0)
2711       return 1;
2712 
2713   return 0;
2714 }
2715 
2716 /* Called when the LWP stopped for a signal/trap.  If it stopped for a
2717    trap check what caused it (breakpoint, watchpoint, trace, etc.),
2718    and save the result in the LWP's stop_reason field.  If it stopped
2719    for a breakpoint, decrement the PC if necessary on the lwp's
2720    architecture.  */
2721 
2722 static void
2723 save_stop_reason (struct lwp_info *lp)
2724 {
2725   struct regcache *regcache;
2726   struct gdbarch *gdbarch;
2727   CORE_ADDR pc;
2728   CORE_ADDR sw_bp_pc;
2729 #if USE_SIGTRAP_SIGINFO
2730   siginfo_t siginfo;
2731 #endif
2732 
2733   gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2734   gdb_assert (lp->status != 0);
2735 
2736   if (!linux_nat_status_is_event (lp->status))
2737     return;
2738 
2739   regcache = get_thread_regcache (lp->ptid);
2740   gdbarch = get_regcache_arch (regcache);
2741 
2742   pc = regcache_read_pc (regcache);
2743   sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2744 
2745 #if USE_SIGTRAP_SIGINFO
2746   if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2747     {
2748       if (siginfo.si_signo == SIGTRAP)
2749 	{
2750 	  if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2751 	      && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2752 	    {
2753 	      /* The si_code is ambiguous on this arch -- check debug
2754 		 registers.  */
2755 	      if (!check_stopped_by_watchpoint (lp))
2756 		lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2757 	    }
2758 	  else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2759 	    {
2760 	      /* If we determine the LWP stopped for a SW breakpoint,
2761 		 trust it.  Particularly don't check watchpoint
2762 		 registers, because at least on s390, we'd find
2763 		 stopped-by-watchpoint as long as there's a watchpoint
2764 		 set.  */
2765 	      lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2766 	    }
2767 	  else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2768 	    {
2769 	      /* This can indicate either a hardware breakpoint or
2770 		 hardware watchpoint.  Check debug registers.  */
2771 	      if (!check_stopped_by_watchpoint (lp))
2772 		lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2773 	    }
2774 	  else if (siginfo.si_code == TRAP_TRACE)
2775 	    {
2776 	      if (debug_linux_nat)
2777 		fprintf_unfiltered (gdb_stdlog,
2778 				    "CSBB: %s stopped by trace\n",
2779 				    target_pid_to_str (lp->ptid));
2780 
2781 	      /* We may have single stepped an instruction that
2782 		 triggered a watchpoint.  In that case, on some
2783 		 architectures (such as x86), instead of TRAP_HWBKPT,
2784 		 si_code indicates TRAP_TRACE, and we need to check
2785 		 the debug registers separately.  */
2786 	      check_stopped_by_watchpoint (lp);
2787 	    }
2788 	}
2789     }
2790 #else
2791   if ((!lp->step || lp->stop_pc == sw_bp_pc)
2792       && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2793 					      sw_bp_pc))
2794     {
2795       /* The LWP was either continued, or stepped a software
2796 	 breakpoint instruction.  */
2797       lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2798     }
2799 
2800   if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2801     lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2802 
2803   if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2804     check_stopped_by_watchpoint (lp);
2805 #endif
2806 
2807   if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2808     {
2809       if (debug_linux_nat)
2810 	fprintf_unfiltered (gdb_stdlog,
2811 			    "CSBB: %s stopped by software breakpoint\n",
2812 			    target_pid_to_str (lp->ptid));
2813 
2814       /* Back up the PC if necessary.  */
2815       if (pc != sw_bp_pc)
2816 	regcache_write_pc (regcache, sw_bp_pc);
2817 
2818       /* Update this so we record the correct stop PC below.  */
2819       pc = sw_bp_pc;
2820     }
2821   else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2822     {
2823       if (debug_linux_nat)
2824 	fprintf_unfiltered (gdb_stdlog,
2825 			    "CSBB: %s stopped by hardware breakpoint\n",
2826 			    target_pid_to_str (lp->ptid));
2827     }
2828   else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2829     {
2830       if (debug_linux_nat)
2831 	fprintf_unfiltered (gdb_stdlog,
2832 			    "CSBB: %s stopped by hardware watchpoint\n",
2833 			    target_pid_to_str (lp->ptid));
2834     }
2835 
2836   lp->stop_pc = pc;
2837 }
2838 
2839 
2840 /* Returns true if the LWP had stopped for a software breakpoint.  */
2841 
2842 static int
2843 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2844 {
2845   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2846 
2847   gdb_assert (lp != NULL);
2848 
2849   return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2850 }
2851 
2852 /* Implement the supports_stopped_by_sw_breakpoint method.  */
2853 
2854 static int
2855 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2856 {
2857   return USE_SIGTRAP_SIGINFO;
2858 }
2859 
2860 /* Returns true if the LWP had stopped for a hardware
2861    breakpoint/watchpoint.  */
2862 
2863 static int
2864 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2865 {
2866   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2867 
2868   gdb_assert (lp != NULL);
2869 
2870   return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2871 }
2872 
2873 /* Implement the supports_stopped_by_hw_breakpoint method.  */
2874 
2875 static int
2876 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2877 {
2878   return USE_SIGTRAP_SIGINFO;
2879 }
2880 
2881 /* Select one LWP out of those that have events pending.  */
2882 
2883 static void
2884 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2885 {
2886   int num_events = 0;
2887   int random_selector;
2888   struct lwp_info *event_lp = NULL;
2889 
2890   /* Record the wait status for the original LWP.  */
2891   (*orig_lp)->status = *status;
2892 
2893   /* In all-stop, give preference to the LWP that is being
2894      single-stepped.  There will be at most one, and it will be the
2895      LWP that the core is most interested in.  If we didn't do this,
2896      then we'd have to handle pending step SIGTRAPs somehow in case
2897      the core later continues the previously-stepped thread, as
2898      otherwise we'd report the pending SIGTRAP then, and the core, not
2899      having stepped the thread, wouldn't understand what the trap was
2900      for, and therefore would report it to the user as a random
2901      signal.  */
2902   if (!target_is_non_stop_p ())
2903     {
2904       event_lp = iterate_over_lwps (filter,
2905 				    select_singlestep_lwp_callback, NULL);
2906       if (event_lp != NULL)
2907 	{
2908 	  if (debug_linux_nat)
2909 	    fprintf_unfiltered (gdb_stdlog,
2910 				"SEL: Select single-step %s\n",
2911 				target_pid_to_str (event_lp->ptid));
2912 	}
2913     }
2914 
2915   if (event_lp == NULL)
2916     {
2917       /* Pick one at random, out of those which have had events.  */
2918 
2919       /* First see how many events we have.  */
2920       iterate_over_lwps (filter, count_events_callback, &num_events);
2921       gdb_assert (num_events > 0);
2922 
2923       /* Now randomly pick a LWP out of those that have had
2924 	 events.  */
2925       random_selector = (int)
2926 	((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2927 
2928       if (debug_linux_nat && num_events > 1)
2929 	fprintf_unfiltered (gdb_stdlog,
2930 			    "SEL: Found %d events, selecting #%d\n",
2931 			    num_events, random_selector);
2932 
2933       event_lp = iterate_over_lwps (filter,
2934 				    select_event_lwp_callback,
2935 				    &random_selector);
2936     }
2937 
2938   if (event_lp != NULL)
2939     {
2940       /* Switch the event LWP.  */
2941       *orig_lp = event_lp;
2942       *status = event_lp->status;
2943     }
2944 
2945   /* Flush the wait status for the event LWP.  */
2946   (*orig_lp)->status = 0;
2947 }
2948 
2949 /* Return non-zero if LP has been resumed.  */
2950 
2951 static int
2952 resumed_callback (struct lwp_info *lp, void *data)
2953 {
2954   return lp->resumed;
2955 }
2956 
2957 /* Check if we should go on and pass this event to common code.
2958    Return the affected lwp if we are, or NULL otherwise.  */
2959 
2960 static struct lwp_info *
2961 linux_nat_filter_event (int lwpid, int status)
2962 {
2963   struct lwp_info *lp;
2964   int event = linux_ptrace_get_extended_event (status);
2965 
2966   lp = find_lwp_pid (pid_to_ptid (lwpid));
2967 
2968   /* Check for stop events reported by a process we didn't already
2969      know about - anything not already in our LWP list.
2970 
2971      If we're expecting to receive stopped processes after
2972      fork, vfork, and clone events, then we'll just add the
2973      new one to our list and go back to waiting for the event
2974      to be reported - the stopped process might be returned
2975      from waitpid before or after the event is.
2976 
2977      But note the case of a non-leader thread exec'ing after the
2978      leader having exited, and gone from our lists.  The non-leader
2979      thread changes its tid to the tgid.  */
2980 
2981   if (WIFSTOPPED (status) && lp == NULL
2982       && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2983     {
2984       /* A multi-thread exec after we had seen the leader exiting.  */
2985       if (debug_linux_nat)
2986 	fprintf_unfiltered (gdb_stdlog,
2987 			    "LLW: Re-adding thread group leader LWP %d.\n",
2988 			    lwpid);
2989 
2990       lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2991       lp->stopped = 1;
2992       lp->resumed = 1;
2993       add_thread (lp->ptid);
2994     }
2995 
2996   if (WIFSTOPPED (status) && !lp)
2997     {
2998       if (debug_linux_nat)
2999 	fprintf_unfiltered (gdb_stdlog,
3000 			    "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3001 			    (long) lwpid, status_to_str (status));
3002       add_to_pid_list (&stopped_pids, lwpid, status);
3003       return NULL;
3004     }
3005 
3006   /* Make sure we don't report an event for the exit of an LWP not in
3007      our list, i.e. not part of the current process.  This can happen
3008      if we detach from a program we originally forked and then it
3009      exits.  */
3010   if (!WIFSTOPPED (status) && !lp)
3011     return NULL;
3012 
3013   /* This LWP is stopped now.  (And if dead, this prevents it from
3014      ever being continued.)  */
3015   lp->stopped = 1;
3016 
3017   if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3018     {
3019       struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3020       int options = linux_nat_ptrace_options (inf->attach_flag);
3021 
3022       linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
3023       lp->must_set_ptrace_flags = 0;
3024     }
3025 
3026   /* Handle GNU/Linux's syscall SIGTRAPs.  */
3027   if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3028     {
3029       /* No longer need the sysgood bit.  The ptrace event ends up
3030 	 recorded in lp->waitstatus if we care for it.  We can carry
3031 	 on handling the event like a regular SIGTRAP from here
3032 	 on.  */
3033       status = W_STOPCODE (SIGTRAP);
3034       if (linux_handle_syscall_trap (lp, 0))
3035 	return NULL;
3036     }
3037   else
3038     {
3039       /* Almost all other ptrace-stops are known to be outside of system
3040 	 calls, with further exceptions in linux_handle_extended_wait.  */
3041       lp->syscall_state = TARGET_WAITKIND_IGNORE;
3042     }
3043 
3044   /* Handle GNU/Linux's extended waitstatus for trace events.  */
3045   if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3046       && linux_is_extended_waitstatus (status))
3047     {
3048       if (debug_linux_nat)
3049 	fprintf_unfiltered (gdb_stdlog,
3050 			    "LLW: Handling extended status 0x%06x\n",
3051 			    status);
3052       if (linux_handle_extended_wait (lp, status))
3053 	return NULL;
3054     }
3055 
3056   /* Check if the thread has exited.  */
3057   if (WIFEXITED (status) || WIFSIGNALED (status))
3058     {
3059       if (!report_thread_events
3060 	  && num_lwps (ptid_get_pid (lp->ptid)) > 1)
3061 	{
3062 	  if (debug_linux_nat)
3063 	    fprintf_unfiltered (gdb_stdlog,
3064 				"LLW: %s exited.\n",
3065 				target_pid_to_str (lp->ptid));
3066 
3067 	  /* If there is at least one more LWP, then the exit signal
3068 	     was not the end of the debugged application and should be
3069 	     ignored.  */
3070 	  exit_lwp (lp);
3071 	  return NULL;
3072 	}
3073 
3074       /* Note that even if the leader was ptrace-stopped, it can still
3075 	 exit, if e.g., some other thread brings down the whole
3076 	 process (calls `exit').  So don't assert that the lwp is
3077 	 resumed.  */
3078       if (debug_linux_nat)
3079 	fprintf_unfiltered (gdb_stdlog,
3080 			    "LWP %ld exited (resumed=%d)\n",
3081 			    ptid_get_lwp (lp->ptid), lp->resumed);
3082 
3083       /* Dead LWP's aren't expected to reported a pending sigstop.  */
3084       lp->signalled = 0;
3085 
3086       /* Store the pending event in the waitstatus, because
3087 	 W_EXITCODE(0,0) == 0.  */
3088       store_waitstatus (&lp->waitstatus, status);
3089       return lp;
3090     }
3091 
3092   /* Make sure we don't report a SIGSTOP that we sent ourselves in
3093      an attempt to stop an LWP.  */
3094   if (lp->signalled
3095       && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3096     {
3097       lp->signalled = 0;
3098 
3099       if (lp->last_resume_kind == resume_stop)
3100 	{
3101 	  if (debug_linux_nat)
3102 	    fprintf_unfiltered (gdb_stdlog,
3103 				"LLW: resume_stop SIGSTOP caught for %s.\n",
3104 				target_pid_to_str (lp->ptid));
3105 	}
3106       else
3107 	{
3108 	  /* This is a delayed SIGSTOP.  Filter out the event.  */
3109 
3110 	  if (debug_linux_nat)
3111 	    fprintf_unfiltered (gdb_stdlog,
3112 				"LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3113 				lp->step ?
3114 				"PTRACE_SINGLESTEP" : "PTRACE_CONT",
3115 				target_pid_to_str (lp->ptid));
3116 
3117 	  linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3118 	  gdb_assert (lp->resumed);
3119 	  return NULL;
3120 	}
3121     }
3122 
3123   /* Make sure we don't report a SIGINT that we have already displayed
3124      for another thread.  */
3125   if (lp->ignore_sigint
3126       && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3127     {
3128       if (debug_linux_nat)
3129 	fprintf_unfiltered (gdb_stdlog,
3130 			    "LLW: Delayed SIGINT caught for %s.\n",
3131 			    target_pid_to_str (lp->ptid));
3132 
3133       /* This is a delayed SIGINT.  */
3134       lp->ignore_sigint = 0;
3135 
3136       linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3137       if (debug_linux_nat)
3138 	fprintf_unfiltered (gdb_stdlog,
3139 			    "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3140 			    lp->step ?
3141 			    "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3142 			    target_pid_to_str (lp->ptid));
3143       gdb_assert (lp->resumed);
3144 
3145       /* Discard the event.  */
3146       return NULL;
3147     }
3148 
3149   /* Don't report signals that GDB isn't interested in, such as
3150      signals that are neither printed nor stopped upon.  Stopping all
3151      threads can be a bit time-consuming so if we want decent
3152      performance with heavily multi-threaded programs, especially when
3153      they're using a high frequency timer, we'd better avoid it if we
3154      can.  */
3155   if (WIFSTOPPED (status))
3156     {
3157       enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3158 
3159       if (!target_is_non_stop_p ())
3160 	{
3161 	  /* Only do the below in all-stop, as we currently use SIGSTOP
3162 	     to implement target_stop (see linux_nat_stop) in
3163 	     non-stop.  */
3164 	  if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3165 	    {
3166 	      /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3167 		 forwarded to the entire process group, that is, all LWPs
3168 		 will receive it - unless they're using CLONE_THREAD to
3169 		 share signals.  Since we only want to report it once, we
3170 		 mark it as ignored for all LWPs except this one.  */
3171 	      iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3172 					      set_ignore_sigint, NULL);
3173 	      lp->ignore_sigint = 0;
3174 	    }
3175 	  else
3176 	    maybe_clear_ignore_sigint (lp);
3177 	}
3178 
3179       /* When using hardware single-step, we need to report every signal.
3180 	 Otherwise, signals in pass_mask may be short-circuited
3181 	 except signals that might be caused by a breakpoint.  */
3182       if (!lp->step
3183 	  && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3184 	  && !linux_wstatus_maybe_breakpoint (status))
3185 	{
3186 	  linux_resume_one_lwp (lp, lp->step, signo);
3187 	  if (debug_linux_nat)
3188 	    fprintf_unfiltered (gdb_stdlog,
3189 				"LLW: %s %s, %s (preempt 'handle')\n",
3190 				lp->step ?
3191 				"PTRACE_SINGLESTEP" : "PTRACE_CONT",
3192 				target_pid_to_str (lp->ptid),
3193 				(signo != GDB_SIGNAL_0
3194 				 ? strsignal (gdb_signal_to_host (signo))
3195 				 : "0"));
3196 	  return NULL;
3197 	}
3198     }
3199 
3200   /* An interesting event.  */
3201   gdb_assert (lp);
3202   lp->status = status;
3203   save_stop_reason (lp);
3204   return lp;
3205 }
3206 
3207 /* Detect zombie thread group leaders, and "exit" them.  We can't reap
3208    their exits until all other threads in the group have exited.  */
3209 
3210 static void
3211 check_zombie_leaders (void)
3212 {
3213   struct inferior *inf;
3214 
3215   ALL_INFERIORS (inf)
3216     {
3217       struct lwp_info *leader_lp;
3218 
3219       if (inf->pid == 0)
3220 	continue;
3221 
3222       leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3223       if (leader_lp != NULL
3224 	  /* Check if there are other threads in the group, as we may
3225 	     have raced with the inferior simply exiting.  */
3226 	  && num_lwps (inf->pid) > 1
3227 	  && linux_proc_pid_is_zombie (inf->pid))
3228 	{
3229 	  if (debug_linux_nat)
3230 	    fprintf_unfiltered (gdb_stdlog,
3231 				"CZL: Thread group leader %d zombie "
3232 				"(it exited, or another thread execd).\n",
3233 				inf->pid);
3234 
3235 	  /* A leader zombie can mean one of two things:
3236 
3237 	     - It exited, and there's an exit status pending
3238 	     available, or only the leader exited (not the whole
3239 	     program).  In the latter case, we can't waitpid the
3240 	     leader's exit status until all other threads are gone.
3241 
3242 	     - There are 3 or more threads in the group, and a thread
3243 	     other than the leader exec'd.  See comments on exec
3244 	     events at the top of the file.  We could try
3245 	     distinguishing the exit and exec cases, by waiting once
3246 	     more, and seeing if something comes out, but it doesn't
3247 	     sound useful.  The previous leader _does_ go away, and
3248 	     we'll re-add the new one once we see the exec event
3249 	     (which is just the same as what would happen if the
3250 	     previous leader did exit voluntarily before some other
3251 	     thread execs).  */
3252 
3253 	  if (debug_linux_nat)
3254 	    fprintf_unfiltered (gdb_stdlog,
3255 				"CZL: Thread group leader %d vanished.\n",
3256 				inf->pid);
3257 	  exit_lwp (leader_lp);
3258 	}
3259     }
3260 }
3261 
3262 /* Convenience function that is called when the kernel reports an exit
3263    event.  This decides whether to report the event to GDB as a
3264    process exit event, a thread exit event, or to suppress the
3265    event.  */
3266 
3267 static ptid_t
3268 filter_exit_event (struct lwp_info *event_child,
3269 		   struct target_waitstatus *ourstatus)
3270 {
3271   ptid_t ptid = event_child->ptid;
3272 
3273   if (num_lwps (ptid_get_pid (ptid)) > 1)
3274     {
3275       if (report_thread_events)
3276 	ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3277       else
3278 	ourstatus->kind = TARGET_WAITKIND_IGNORE;
3279 
3280       exit_lwp (event_child);
3281     }
3282 
3283   return ptid;
3284 }
3285 
3286 static ptid_t
3287 linux_nat_wait_1 (struct target_ops *ops,
3288 		  ptid_t ptid, struct target_waitstatus *ourstatus,
3289 		  int target_options)
3290 {
3291   sigset_t prev_mask;
3292   enum resume_kind last_resume_kind;
3293   struct lwp_info *lp;
3294   int status;
3295 
3296   if (debug_linux_nat)
3297     fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3298 
3299   /* The first time we get here after starting a new inferior, we may
3300      not have added it to the LWP list yet - this is the earliest
3301      moment at which we know its PID.  */
3302   if (ptid_is_pid (inferior_ptid))
3303     {
3304       /* Upgrade the main thread's ptid.  */
3305       thread_change_ptid (inferior_ptid,
3306 			  ptid_build (ptid_get_pid (inferior_ptid),
3307 				      ptid_get_pid (inferior_ptid), 0));
3308 
3309       lp = add_initial_lwp (inferior_ptid);
3310       lp->resumed = 1;
3311     }
3312 
3313   /* Make sure SIGCHLD is blocked until the sigsuspend below.  */
3314   block_child_signals (&prev_mask);
3315 
3316   /* First check if there is a LWP with a wait status pending.  */
3317   lp = iterate_over_lwps (ptid, status_callback, NULL);
3318   if (lp != NULL)
3319     {
3320       if (debug_linux_nat)
3321 	fprintf_unfiltered (gdb_stdlog,
3322 			    "LLW: Using pending wait status %s for %s.\n",
3323 			    status_to_str (lp->status),
3324 			    target_pid_to_str (lp->ptid));
3325     }
3326 
3327   /* But if we don't find a pending event, we'll have to wait.  Always
3328      pull all events out of the kernel.  We'll randomly select an
3329      event LWP out of all that have events, to prevent starvation.  */
3330 
3331   while (lp == NULL)
3332     {
3333       pid_t lwpid;
3334 
3335       /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3336 	 quirks:
3337 
3338 	 - If the thread group leader exits while other threads in the
3339 	   thread group still exist, waitpid(TGID, ...) hangs.  That
3340 	   waitpid won't return an exit status until the other threads
3341 	   in the group are reapped.
3342 
3343 	 - When a non-leader thread execs, that thread just vanishes
3344 	   without reporting an exit (so we'd hang if we waited for it
3345 	   explicitly in that case).  The exec event is reported to
3346 	   the TGID pid.  */
3347 
3348       errno = 0;
3349       lwpid = my_waitpid (-1, &status,  __WALL | WNOHANG);
3350 
3351       if (debug_linux_nat)
3352 	fprintf_unfiltered (gdb_stdlog,
3353 			    "LNW: waitpid(-1, ...) returned %d, %s\n",
3354 			    lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3355 
3356       if (lwpid > 0)
3357 	{
3358 	  if (debug_linux_nat)
3359 	    {
3360 	      fprintf_unfiltered (gdb_stdlog,
3361 				  "LLW: waitpid %ld received %s\n",
3362 				  (long) lwpid, status_to_str (status));
3363 	    }
3364 
3365 	  linux_nat_filter_event (lwpid, status);
3366 	  /* Retry until nothing comes out of waitpid.  A single
3367 	     SIGCHLD can indicate more than one child stopped.  */
3368 	  continue;
3369 	}
3370 
3371       /* Now that we've pulled all events out of the kernel, resume
3372 	 LWPs that don't have an interesting event to report.  */
3373       iterate_over_lwps (minus_one_ptid,
3374 			 resume_stopped_resumed_lwps, &minus_one_ptid);
3375 
3376       /* ... and find an LWP with a status to report to the core, if
3377 	 any.  */
3378       lp = iterate_over_lwps (ptid, status_callback, NULL);
3379       if (lp != NULL)
3380 	break;
3381 
3382       /* Check for zombie thread group leaders.  Those can't be reaped
3383 	 until all other threads in the thread group are.  */
3384       check_zombie_leaders ();
3385 
3386       /* If there are no resumed children left, bail.  We'd be stuck
3387 	 forever in the sigsuspend call below otherwise.  */
3388       if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3389 	{
3390 	  if (debug_linux_nat)
3391 	    fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3392 
3393 	  ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3394 
3395 	  restore_child_signals_mask (&prev_mask);
3396 	  return minus_one_ptid;
3397 	}
3398 
3399       /* No interesting event to report to the core.  */
3400 
3401       if (target_options & TARGET_WNOHANG)
3402 	{
3403 	  if (debug_linux_nat)
3404 	    fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3405 
3406 	  ourstatus->kind = TARGET_WAITKIND_IGNORE;
3407 	  restore_child_signals_mask (&prev_mask);
3408 	  return minus_one_ptid;
3409 	}
3410 
3411       /* We shouldn't end up here unless we want to try again.  */
3412       gdb_assert (lp == NULL);
3413 
3414       /* Block until we get an event reported with SIGCHLD.  */
3415       if (debug_linux_nat)
3416 	fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3417       sigsuspend (&suspend_mask);
3418     }
3419 
3420   gdb_assert (lp);
3421 
3422   status = lp->status;
3423   lp->status = 0;
3424 
3425   if (!target_is_non_stop_p ())
3426     {
3427       /* Now stop all other LWP's ...  */
3428       iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3429 
3430       /* ... and wait until all of them have reported back that
3431 	 they're no longer running.  */
3432       iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3433     }
3434 
3435   /* If we're not waiting for a specific LWP, choose an event LWP from
3436      among those that have had events.  Giving equal priority to all
3437      LWPs that have had events helps prevent starvation.  */
3438   if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3439     select_event_lwp (ptid, &lp, &status);
3440 
3441   gdb_assert (lp != NULL);
3442 
3443   /* Now that we've selected our final event LWP, un-adjust its PC if
3444      it was a software breakpoint, and we can't reliably support the
3445      "stopped by software breakpoint" stop reason.  */
3446   if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3447       && !USE_SIGTRAP_SIGINFO)
3448     {
3449       struct regcache *regcache = get_thread_regcache (lp->ptid);
3450       struct gdbarch *gdbarch = get_regcache_arch (regcache);
3451       int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3452 
3453       if (decr_pc != 0)
3454 	{
3455 	  CORE_ADDR pc;
3456 
3457 	  pc = regcache_read_pc (regcache);
3458 	  regcache_write_pc (regcache, pc + decr_pc);
3459 	}
3460     }
3461 
3462   /* We'll need this to determine whether to report a SIGSTOP as
3463      GDB_SIGNAL_0.  Need to take a copy because resume_clear_callback
3464      clears it.  */
3465   last_resume_kind = lp->last_resume_kind;
3466 
3467   if (!target_is_non_stop_p ())
3468     {
3469       /* In all-stop, from the core's perspective, all LWPs are now
3470 	 stopped until a new resume action is sent over.  */
3471       iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3472     }
3473   else
3474     {
3475       resume_clear_callback (lp, NULL);
3476     }
3477 
3478   if (linux_nat_status_is_event (status))
3479     {
3480       if (debug_linux_nat)
3481 	fprintf_unfiltered (gdb_stdlog,
3482 			    "LLW: trap ptid is %s.\n",
3483 			    target_pid_to_str (lp->ptid));
3484     }
3485 
3486   if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3487     {
3488       *ourstatus = lp->waitstatus;
3489       lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3490     }
3491   else
3492     store_waitstatus (ourstatus, status);
3493 
3494   if (debug_linux_nat)
3495     fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3496 
3497   restore_child_signals_mask (&prev_mask);
3498 
3499   if (last_resume_kind == resume_stop
3500       && ourstatus->kind == TARGET_WAITKIND_STOPPED
3501       && WSTOPSIG (status) == SIGSTOP)
3502     {
3503       /* A thread that has been requested to stop by GDB with
3504 	 target_stop, and it stopped cleanly, so report as SIG0.  The
3505 	 use of SIGSTOP is an implementation detail.  */
3506       ourstatus->value.sig = GDB_SIGNAL_0;
3507     }
3508 
3509   if (ourstatus->kind == TARGET_WAITKIND_EXITED
3510       || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3511     lp->core = -1;
3512   else
3513     lp->core = linux_common_core_of_thread (lp->ptid);
3514 
3515   if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3516     return filter_exit_event (lp, ourstatus);
3517 
3518   return lp->ptid;
3519 }
3520 
3521 /* Resume LWPs that are currently stopped without any pending status
3522    to report, but are resumed from the core's perspective.  */
3523 
3524 static int
3525 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3526 {
3527   ptid_t *wait_ptid_p = (ptid_t *) data;
3528 
3529   if (!lp->stopped)
3530     {
3531       if (debug_linux_nat)
3532 	fprintf_unfiltered (gdb_stdlog,
3533 			    "RSRL: NOT resuming LWP %s, not stopped\n",
3534 			    target_pid_to_str (lp->ptid));
3535     }
3536   else if (!lp->resumed)
3537     {
3538       if (debug_linux_nat)
3539 	fprintf_unfiltered (gdb_stdlog,
3540 			    "RSRL: NOT resuming LWP %s, not resumed\n",
3541 			    target_pid_to_str (lp->ptid));
3542     }
3543   else if (lwp_status_pending_p (lp))
3544     {
3545       if (debug_linux_nat)
3546 	fprintf_unfiltered (gdb_stdlog,
3547 			    "RSRL: NOT resuming LWP %s, has pending status\n",
3548 			    target_pid_to_str (lp->ptid));
3549     }
3550   else
3551     {
3552       struct regcache *regcache = get_thread_regcache (lp->ptid);
3553       struct gdbarch *gdbarch = get_regcache_arch (regcache);
3554 
3555       TRY
3556 	{
3557 	  CORE_ADDR pc = regcache_read_pc (regcache);
3558 	  int leave_stopped = 0;
3559 
3560 	  /* Don't bother if there's a breakpoint at PC that we'd hit
3561 	     immediately, and we're not waiting for this LWP.  */
3562 	  if (!ptid_match (lp->ptid, *wait_ptid_p))
3563 	    {
3564 	      if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3565 		leave_stopped = 1;
3566 	    }
3567 
3568 	  if (!leave_stopped)
3569 	    {
3570 	      if (debug_linux_nat)
3571 		fprintf_unfiltered (gdb_stdlog,
3572 				    "RSRL: resuming stopped-resumed LWP %s at "
3573 				    "%s: step=%d\n",
3574 				    target_pid_to_str (lp->ptid),
3575 				    paddress (gdbarch, pc),
3576 				    lp->step);
3577 
3578 	      linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3579 	    }
3580 	}
3581       CATCH (ex, RETURN_MASK_ERROR)
3582 	{
3583 	  if (!check_ptrace_stopped_lwp_gone (lp))
3584 	    throw_exception (ex);
3585 	}
3586       END_CATCH
3587     }
3588 
3589   return 0;
3590 }
3591 
3592 static ptid_t
3593 linux_nat_wait (struct target_ops *ops,
3594 		ptid_t ptid, struct target_waitstatus *ourstatus,
3595 		int target_options)
3596 {
3597   ptid_t event_ptid;
3598 
3599   if (debug_linux_nat)
3600     {
3601       char *options_string;
3602 
3603       options_string = target_options_to_string (target_options);
3604       fprintf_unfiltered (gdb_stdlog,
3605 			  "linux_nat_wait: [%s], [%s]\n",
3606 			  target_pid_to_str (ptid),
3607 			  options_string);
3608       xfree (options_string);
3609     }
3610 
3611   /* Flush the async file first.  */
3612   if (target_is_async_p ())
3613     async_file_flush ();
3614 
3615   /* Resume LWPs that are currently stopped without any pending status
3616      to report, but are resumed from the core's perspective.  LWPs get
3617      in this state if we find them stopping at a time we're not
3618      interested in reporting the event (target_wait on a
3619      specific_process, for example, see linux_nat_wait_1), and
3620      meanwhile the event became uninteresting.  Don't bother resuming
3621      LWPs we're not going to wait for if they'd stop immediately.  */
3622   if (target_is_non_stop_p ())
3623     iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3624 
3625   event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3626 
3627   /* If we requested any event, and something came out, assume there
3628      may be more.  If we requested a specific lwp or process, also
3629      assume there may be more.  */
3630   if (target_is_async_p ()
3631       && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3632 	   && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3633 	  || !ptid_equal (ptid, minus_one_ptid)))
3634     async_file_mark ();
3635 
3636   return event_ptid;
3637 }
3638 
3639 /* Kill one LWP.  */
3640 
3641 static void
3642 kill_one_lwp (pid_t pid)
3643 {
3644   /* PTRACE_KILL may resume the inferior.  Send SIGKILL first.  */
3645 
3646   errno = 0;
3647   kill_lwp (pid, SIGKILL);
3648   if (debug_linux_nat)
3649     {
3650       int save_errno = errno;
3651 
3652       fprintf_unfiltered (gdb_stdlog,
3653 			  "KC:  kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3654 			  save_errno ? safe_strerror (save_errno) : "OK");
3655     }
3656 
3657   /* Some kernels ignore even SIGKILL for processes under ptrace.  */
3658 
3659   errno = 0;
3660   ptrace (PTRACE_KILL, pid, 0, 0);
3661   if (debug_linux_nat)
3662     {
3663       int save_errno = errno;
3664 
3665       fprintf_unfiltered (gdb_stdlog,
3666 			  "KC:  PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3667 			  save_errno ? safe_strerror (save_errno) : "OK");
3668     }
3669 }
3670 
3671 /* Wait for an LWP to die.  */
3672 
3673 static void
3674 kill_wait_one_lwp (pid_t pid)
3675 {
3676   pid_t res;
3677 
3678   /* We must make sure that there are no pending events (delayed
3679      SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3680      program doesn't interfere with any following debugging session.  */
3681 
3682   do
3683     {
3684       res = my_waitpid (pid, NULL, __WALL);
3685       if (res != (pid_t) -1)
3686 	{
3687 	  if (debug_linux_nat)
3688 	    fprintf_unfiltered (gdb_stdlog,
3689 				"KWC: wait %ld received unknown.\n",
3690 				(long) pid);
3691 	  /* The Linux kernel sometimes fails to kill a thread
3692 	     completely after PTRACE_KILL; that goes from the stop
3693 	     point in do_fork out to the one in get_signal_to_deliver
3694 	     and waits again.  So kill it again.  */
3695 	  kill_one_lwp (pid);
3696 	}
3697     }
3698   while (res == pid);
3699 
3700   gdb_assert (res == -1 && errno == ECHILD);
3701 }
3702 
3703 /* Callback for iterate_over_lwps.  */
3704 
3705 static int
3706 kill_callback (struct lwp_info *lp, void *data)
3707 {
3708   kill_one_lwp (ptid_get_lwp (lp->ptid));
3709   return 0;
3710 }
3711 
3712 /* Callback for iterate_over_lwps.  */
3713 
3714 static int
3715 kill_wait_callback (struct lwp_info *lp, void *data)
3716 {
3717   kill_wait_one_lwp (ptid_get_lwp (lp->ptid));
3718   return 0;
3719 }
3720 
3721 /* Kill the fork children of any threads of inferior INF that are
3722    stopped at a fork event.  */
3723 
3724 static void
3725 kill_unfollowed_fork_children (struct inferior *inf)
3726 {
3727   struct thread_info *thread;
3728 
3729   ALL_NON_EXITED_THREADS (thread)
3730     if (thread->inf == inf)
3731       {
3732 	struct target_waitstatus *ws = &thread->pending_follow;
3733 
3734 	if (ws->kind == TARGET_WAITKIND_FORKED
3735 	    || ws->kind == TARGET_WAITKIND_VFORKED)
3736 	  {
3737 	    ptid_t child_ptid = ws->value.related_pid;
3738 	    int child_pid = ptid_get_pid (child_ptid);
3739 	    int child_lwp = ptid_get_lwp (child_ptid);
3740 
3741 	    kill_one_lwp (child_lwp);
3742 	    kill_wait_one_lwp (child_lwp);
3743 
3744 	    /* Let the arch-specific native code know this process is
3745 	       gone.  */
3746 	    linux_nat_forget_process (child_pid);
3747 	  }
3748       }
3749 }
3750 
3751 static void
3752 linux_nat_kill (struct target_ops *ops)
3753 {
3754   /* If we're stopped while forking and we haven't followed yet,
3755      kill the other task.  We need to do this first because the
3756      parent will be sleeping if this is a vfork.  */
3757   kill_unfollowed_fork_children (current_inferior ());
3758 
3759   if (forks_exist_p ())
3760     linux_fork_killall ();
3761   else
3762     {
3763       ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3764 
3765       /* Stop all threads before killing them, since ptrace requires
3766 	 that the thread is stopped to sucessfully PTRACE_KILL.  */
3767       iterate_over_lwps (ptid, stop_callback, NULL);
3768       /* ... and wait until all of them have reported back that
3769 	 they're no longer running.  */
3770       iterate_over_lwps (ptid, stop_wait_callback, NULL);
3771 
3772       /* Kill all LWP's ...  */
3773       iterate_over_lwps (ptid, kill_callback, NULL);
3774 
3775       /* ... and wait until we've flushed all events.  */
3776       iterate_over_lwps (ptid, kill_wait_callback, NULL);
3777     }
3778 
3779   target_mourn_inferior ();
3780 }
3781 
3782 static void
3783 linux_nat_mourn_inferior (struct target_ops *ops)
3784 {
3785   int pid = ptid_get_pid (inferior_ptid);
3786 
3787   purge_lwp_list (pid);
3788 
3789   if (! forks_exist_p ())
3790     /* Normal case, no other forks available.  */
3791     linux_ops->to_mourn_inferior (ops);
3792   else
3793     /* Multi-fork case.  The current inferior_ptid has exited, but
3794        there are other viable forks to debug.  Delete the exiting
3795        one and context-switch to the first available.  */
3796     linux_fork_mourn_inferior ();
3797 
3798   /* Let the arch-specific native code know this process is gone.  */
3799   linux_nat_forget_process (pid);
3800 }
3801 
3802 /* Convert a native/host siginfo object, into/from the siginfo in the
3803    layout of the inferiors' architecture.  */
3804 
3805 static void
3806 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3807 {
3808   int done = 0;
3809 
3810   if (linux_nat_siginfo_fixup != NULL)
3811     done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3812 
3813   /* If there was no callback, or the callback didn't do anything,
3814      then just do a straight memcpy.  */
3815   if (!done)
3816     {
3817       if (direction == 1)
3818 	memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3819       else
3820 	memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3821     }
3822 }
3823 
3824 static enum target_xfer_status
3825 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3826                     const char *annex, gdb_byte *readbuf,
3827 		    const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3828 		    ULONGEST *xfered_len)
3829 {
3830   int pid;
3831   siginfo_t siginfo;
3832   gdb_byte inf_siginfo[sizeof (siginfo_t)];
3833 
3834   gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3835   gdb_assert (readbuf || writebuf);
3836 
3837   pid = ptid_get_lwp (inferior_ptid);
3838   if (pid == 0)
3839     pid = ptid_get_pid (inferior_ptid);
3840 
3841   if (offset > sizeof (siginfo))
3842     return TARGET_XFER_E_IO;
3843 
3844   errno = 0;
3845   ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3846   if (errno != 0)
3847     return TARGET_XFER_E_IO;
3848 
3849   /* When GDB is built as a 64-bit application, ptrace writes into
3850      SIGINFO an object with 64-bit layout.  Since debugging a 32-bit
3851      inferior with a 64-bit GDB should look the same as debugging it
3852      with a 32-bit GDB, we need to convert it.  GDB core always sees
3853      the converted layout, so any read/write will have to be done
3854      post-conversion.  */
3855   siginfo_fixup (&siginfo, inf_siginfo, 0);
3856 
3857   if (offset + len > sizeof (siginfo))
3858     len = sizeof (siginfo) - offset;
3859 
3860   if (readbuf != NULL)
3861     memcpy (readbuf, inf_siginfo + offset, len);
3862   else
3863     {
3864       memcpy (inf_siginfo + offset, writebuf, len);
3865 
3866       /* Convert back to ptrace layout before flushing it out.  */
3867       siginfo_fixup (&siginfo, inf_siginfo, 1);
3868 
3869       errno = 0;
3870       ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3871       if (errno != 0)
3872 	return TARGET_XFER_E_IO;
3873     }
3874 
3875   *xfered_len = len;
3876   return TARGET_XFER_OK;
3877 }
3878 
3879 static enum target_xfer_status
3880 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3881 			const char *annex, gdb_byte *readbuf,
3882 			const gdb_byte *writebuf,
3883 			ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3884 {
3885   struct cleanup *old_chain;
3886   enum target_xfer_status xfer;
3887 
3888   if (object == TARGET_OBJECT_SIGNAL_INFO)
3889     return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3890 			       offset, len, xfered_len);
3891 
3892   /* The target is connected but no live inferior is selected.  Pass
3893      this request down to a lower stratum (e.g., the executable
3894      file).  */
3895   if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3896     return TARGET_XFER_EOF;
3897 
3898   old_chain = save_inferior_ptid ();
3899 
3900   if (ptid_lwp_p (inferior_ptid))
3901     inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3902 
3903   xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3904 				     offset, len, xfered_len);
3905 
3906   do_cleanups (old_chain);
3907   return xfer;
3908 }
3909 
3910 static int
3911 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3912 {
3913   /* As long as a PTID is in lwp list, consider it alive.  */
3914   return find_lwp_pid (ptid) != NULL;
3915 }
3916 
3917 /* Implement the to_update_thread_list target method for this
3918    target.  */
3919 
3920 static void
3921 linux_nat_update_thread_list (struct target_ops *ops)
3922 {
3923   struct lwp_info *lwp;
3924 
3925   /* We add/delete threads from the list as clone/exit events are
3926      processed, so just try deleting exited threads still in the
3927      thread list.  */
3928   delete_exited_threads ();
3929 
3930   /* Update the processor core that each lwp/thread was last seen
3931      running on.  */
3932   ALL_LWPS (lwp)
3933     {
3934       /* Avoid accessing /proc if the thread hasn't run since we last
3935 	 time we fetched the thread's core.  Accessing /proc becomes
3936 	 noticeably expensive when we have thousands of LWPs.  */
3937       if (lwp->core == -1)
3938 	lwp->core = linux_common_core_of_thread (lwp->ptid);
3939     }
3940 }
3941 
3942 static char *
3943 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3944 {
3945   static char buf[64];
3946 
3947   if (ptid_lwp_p (ptid)
3948       && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3949 	  || num_lwps (ptid_get_pid (ptid)) > 1))
3950     {
3951       snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3952       return buf;
3953     }
3954 
3955   return normal_pid_to_str (ptid);
3956 }
3957 
3958 static const char *
3959 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3960 {
3961   return linux_proc_tid_get_name (thr->ptid);
3962 }
3963 
3964 /* Accepts an integer PID; Returns a string representing a file that
3965    can be opened to get the symbols for the child process.  */
3966 
3967 static char *
3968 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3969 {
3970   return linux_proc_pid_to_exec_file (pid);
3971 }
3972 
3973 /* Implement the to_xfer_partial interface for memory reads using the /proc
3974    filesystem.  Because we can use a single read() call for /proc, this
3975    can be much more efficient than banging away at PTRACE_PEEKTEXT,
3976    but it doesn't support writes.  */
3977 
3978 static enum target_xfer_status
3979 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3980 			 const char *annex, gdb_byte *readbuf,
3981 			 const gdb_byte *writebuf,
3982 			 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3983 {
3984   LONGEST ret;
3985   int fd;
3986   char filename[64];
3987 
3988   if (object != TARGET_OBJECT_MEMORY || !readbuf)
3989     return TARGET_XFER_EOF;
3990 
3991   /* Don't bother for one word.  */
3992   if (len < 3 * sizeof (long))
3993     return TARGET_XFER_EOF;
3994 
3995   /* We could keep this file open and cache it - possibly one per
3996      thread.  That requires some juggling, but is even faster.  */
3997   xsnprintf (filename, sizeof filename, "/proc/%d/mem",
3998 	     ptid_get_pid (inferior_ptid));
3999   fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4000   if (fd == -1)
4001     return TARGET_XFER_EOF;
4002 
4003   /* If pread64 is available, use it.  It's faster if the kernel
4004      supports it (only one syscall), and it's 64-bit safe even on
4005      32-bit platforms (for instance, SPARC debugging a SPARC64
4006      application).  */
4007 #ifdef HAVE_PREAD64
4008   if (pread64 (fd, readbuf, len, offset) != len)
4009 #else
4010   if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4011 #endif
4012     ret = 0;
4013   else
4014     ret = len;
4015 
4016   close (fd);
4017 
4018   if (ret == 0)
4019     return TARGET_XFER_EOF;
4020   else
4021     {
4022       *xfered_len = ret;
4023       return TARGET_XFER_OK;
4024     }
4025 }
4026 
4027 
4028 /* Enumerate spufs IDs for process PID.  */
4029 static LONGEST
4030 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4031 {
4032   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4033   LONGEST pos = 0;
4034   LONGEST written = 0;
4035   char path[128];
4036   DIR *dir;
4037   struct dirent *entry;
4038 
4039   xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4040   dir = opendir (path);
4041   if (!dir)
4042     return -1;
4043 
4044   rewinddir (dir);
4045   while ((entry = readdir (dir)) != NULL)
4046     {
4047       struct stat st;
4048       struct statfs stfs;
4049       int fd;
4050 
4051       fd = atoi (entry->d_name);
4052       if (!fd)
4053 	continue;
4054 
4055       xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4056       if (stat (path, &st) != 0)
4057 	continue;
4058       if (!S_ISDIR (st.st_mode))
4059 	continue;
4060 
4061       if (statfs (path, &stfs) != 0)
4062 	continue;
4063       if (stfs.f_type != SPUFS_MAGIC)
4064 	continue;
4065 
4066       if (pos >= offset && pos + 4 <= offset + len)
4067 	{
4068 	  store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4069 	  written += 4;
4070 	}
4071       pos += 4;
4072     }
4073 
4074   closedir (dir);
4075   return written;
4076 }
4077 
4078 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4079    object type, using the /proc file system.  */
4080 
4081 static enum target_xfer_status
4082 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4083 		     const char *annex, gdb_byte *readbuf,
4084 		     const gdb_byte *writebuf,
4085 		     ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4086 {
4087   char buf[128];
4088   int fd = 0;
4089   int ret = -1;
4090   int pid = ptid_get_pid (inferior_ptid);
4091 
4092   if (!annex)
4093     {
4094       if (!readbuf)
4095 	return TARGET_XFER_E_IO;
4096       else
4097 	{
4098 	  LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4099 
4100 	  if (l < 0)
4101 	    return TARGET_XFER_E_IO;
4102 	  else if (l == 0)
4103 	    return TARGET_XFER_EOF;
4104 	  else
4105 	    {
4106 	      *xfered_len = (ULONGEST) l;
4107 	      return TARGET_XFER_OK;
4108 	    }
4109 	}
4110     }
4111 
4112   xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4113   fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4114   if (fd <= 0)
4115     return TARGET_XFER_E_IO;
4116 
4117   if (offset != 0
4118       && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4119     {
4120       close (fd);
4121       return TARGET_XFER_EOF;
4122     }
4123 
4124   if (writebuf)
4125     ret = write (fd, writebuf, (size_t) len);
4126   else if (readbuf)
4127     ret = read (fd, readbuf, (size_t) len);
4128 
4129   close (fd);
4130 
4131   if (ret < 0)
4132     return TARGET_XFER_E_IO;
4133   else if (ret == 0)
4134     return TARGET_XFER_EOF;
4135   else
4136     {
4137       *xfered_len = (ULONGEST) ret;
4138       return TARGET_XFER_OK;
4139     }
4140 }
4141 
4142 
4143 /* Parse LINE as a signal set and add its set bits to SIGS.  */
4144 
4145 static void
4146 add_line_to_sigset (const char *line, sigset_t *sigs)
4147 {
4148   int len = strlen (line) - 1;
4149   const char *p;
4150   int signum;
4151 
4152   if (line[len] != '\n')
4153     error (_("Could not parse signal set: %s"), line);
4154 
4155   p = line;
4156   signum = len * 4;
4157   while (len-- > 0)
4158     {
4159       int digit;
4160 
4161       if (*p >= '0' && *p <= '9')
4162 	digit = *p - '0';
4163       else if (*p >= 'a' && *p <= 'f')
4164 	digit = *p - 'a' + 10;
4165       else
4166 	error (_("Could not parse signal set: %s"), line);
4167 
4168       signum -= 4;
4169 
4170       if (digit & 1)
4171 	sigaddset (sigs, signum + 1);
4172       if (digit & 2)
4173 	sigaddset (sigs, signum + 2);
4174       if (digit & 4)
4175 	sigaddset (sigs, signum + 3);
4176       if (digit & 8)
4177 	sigaddset (sigs, signum + 4);
4178 
4179       p++;
4180     }
4181 }
4182 
4183 /* Find process PID's pending signals from /proc/pid/status and set
4184    SIGS to match.  */
4185 
4186 void
4187 linux_proc_pending_signals (int pid, sigset_t *pending,
4188 			    sigset_t *blocked, sigset_t *ignored)
4189 {
4190   FILE *procfile;
4191   char buffer[PATH_MAX], fname[PATH_MAX];
4192   struct cleanup *cleanup;
4193 
4194   sigemptyset (pending);
4195   sigemptyset (blocked);
4196   sigemptyset (ignored);
4197   xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4198   procfile = gdb_fopen_cloexec (fname, "r");
4199   if (procfile == NULL)
4200     error (_("Could not open %s"), fname);
4201   cleanup = make_cleanup_fclose (procfile);
4202 
4203   while (fgets (buffer, PATH_MAX, procfile) != NULL)
4204     {
4205       /* Normal queued signals are on the SigPnd line in the status
4206 	 file.  However, 2.6 kernels also have a "shared" pending
4207 	 queue for delivering signals to a thread group, so check for
4208 	 a ShdPnd line also.
4209 
4210 	 Unfortunately some Red Hat kernels include the shared pending
4211 	 queue but not the ShdPnd status field.  */
4212 
4213       if (startswith (buffer, "SigPnd:\t"))
4214 	add_line_to_sigset (buffer + 8, pending);
4215       else if (startswith (buffer, "ShdPnd:\t"))
4216 	add_line_to_sigset (buffer + 8, pending);
4217       else if (startswith (buffer, "SigBlk:\t"))
4218 	add_line_to_sigset (buffer + 8, blocked);
4219       else if (startswith (buffer, "SigIgn:\t"))
4220 	add_line_to_sigset (buffer + 8, ignored);
4221     }
4222 
4223   do_cleanups (cleanup);
4224 }
4225 
4226 static enum target_xfer_status
4227 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4228 		       const char *annex, gdb_byte *readbuf,
4229 		       const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4230 		       ULONGEST *xfered_len)
4231 {
4232   gdb_assert (object == TARGET_OBJECT_OSDATA);
4233 
4234   *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4235   if (*xfered_len == 0)
4236     return TARGET_XFER_EOF;
4237   else
4238     return TARGET_XFER_OK;
4239 }
4240 
4241 static enum target_xfer_status
4242 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4243                     const char *annex, gdb_byte *readbuf,
4244 		    const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4245 		    ULONGEST *xfered_len)
4246 {
4247   enum target_xfer_status xfer;
4248 
4249   if (object == TARGET_OBJECT_AUXV)
4250     return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4251 			     offset, len, xfered_len);
4252 
4253   if (object == TARGET_OBJECT_OSDATA)
4254     return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4255 				  offset, len, xfered_len);
4256 
4257   if (object == TARGET_OBJECT_SPU)
4258     return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4259 				offset, len, xfered_len);
4260 
4261   /* GDB calculates all the addresses in possibly larget width of the address.
4262      Address width needs to be masked before its final use - either by
4263      linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4264 
4265      Compare ADDR_BIT first to avoid a compiler warning on shift overflow.  */
4266 
4267   if (object == TARGET_OBJECT_MEMORY)
4268     {
4269       int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4270 
4271       if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4272 	offset &= ((ULONGEST) 1 << addr_bit) - 1;
4273     }
4274 
4275   xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4276 				  offset, len, xfered_len);
4277   if (xfer != TARGET_XFER_EOF)
4278     return xfer;
4279 
4280   return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4281 			     offset, len, xfered_len);
4282 }
4283 
4284 static void
4285 cleanup_target_stop (void *arg)
4286 {
4287   ptid_t *ptid = (ptid_t *) arg;
4288 
4289   gdb_assert (arg != NULL);
4290 
4291   /* Unpause all */
4292   target_resume (*ptid, 0, GDB_SIGNAL_0);
4293 }
4294 
4295 static VEC(static_tracepoint_marker_p) *
4296 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4297 						const char *strid)
4298 {
4299   char s[IPA_CMD_BUF_SIZE];
4300   struct cleanup *old_chain;
4301   int pid = ptid_get_pid (inferior_ptid);
4302   VEC(static_tracepoint_marker_p) *markers = NULL;
4303   struct static_tracepoint_marker *marker = NULL;
4304   char *p = s;
4305   ptid_t ptid = ptid_build (pid, 0, 0);
4306 
4307   /* Pause all */
4308   target_stop (ptid);
4309 
4310   memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4311   s[sizeof ("qTfSTM")] = 0;
4312 
4313   agent_run_command (pid, s, strlen (s) + 1);
4314 
4315   old_chain = make_cleanup (free_current_marker, &marker);
4316   make_cleanup (cleanup_target_stop, &ptid);
4317 
4318   while (*p++ == 'm')
4319     {
4320       if (marker == NULL)
4321 	marker = XCNEW (struct static_tracepoint_marker);
4322 
4323       do
4324 	{
4325 	  parse_static_tracepoint_marker_definition (p, &p, marker);
4326 
4327 	  if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4328 	    {
4329 	      VEC_safe_push (static_tracepoint_marker_p,
4330 			     markers, marker);
4331 	      marker = NULL;
4332 	    }
4333 	  else
4334 	    {
4335 	      release_static_tracepoint_marker (marker);
4336 	      memset (marker, 0, sizeof (*marker));
4337 	    }
4338 	}
4339       while (*p++ == ',');	/* comma-separated list */
4340 
4341       memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4342       s[sizeof ("qTsSTM")] = 0;
4343       agent_run_command (pid, s, strlen (s) + 1);
4344       p = s;
4345     }
4346 
4347   do_cleanups (old_chain);
4348 
4349   return markers;
4350 }
4351 
4352 /* Create a prototype generic GNU/Linux target.  The client can override
4353    it with local methods.  */
4354 
4355 static void
4356 linux_target_install_ops (struct target_ops *t)
4357 {
4358   t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4359   t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4360   t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4361   t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4362   t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4363   t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4364   t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4365   t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4366   t->to_post_startup_inferior = linux_child_post_startup_inferior;
4367   t->to_post_attach = linux_child_post_attach;
4368   t->to_follow_fork = linux_child_follow_fork;
4369 
4370   super_xfer_partial = t->to_xfer_partial;
4371   t->to_xfer_partial = linux_xfer_partial;
4372 
4373   t->to_static_tracepoint_markers_by_strid
4374     = linux_child_static_tracepoint_markers_by_strid;
4375 }
4376 
4377 struct target_ops *
4378 linux_target (void)
4379 {
4380   struct target_ops *t;
4381 
4382   t = inf_ptrace_target ();
4383   linux_target_install_ops (t);
4384 
4385   return t;
4386 }
4387 
4388 struct target_ops *
4389 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4390 {
4391   struct target_ops *t;
4392 
4393   t = inf_ptrace_trad_target (register_u_offset);
4394   linux_target_install_ops (t);
4395 
4396   return t;
4397 }
4398 
4399 /* target_is_async_p implementation.  */
4400 
4401 static int
4402 linux_nat_is_async_p (struct target_ops *ops)
4403 {
4404   return linux_is_async_p ();
4405 }
4406 
4407 /* target_can_async_p implementation.  */
4408 
4409 static int
4410 linux_nat_can_async_p (struct target_ops *ops)
4411 {
4412   /* NOTE: palves 2008-03-21: We're only async when the user requests
4413      it explicitly with the "set target-async" command.
4414      Someday, linux will always be async.  */
4415   return target_async_permitted;
4416 }
4417 
4418 static int
4419 linux_nat_supports_non_stop (struct target_ops *self)
4420 {
4421   return 1;
4422 }
4423 
4424 /* to_always_non_stop_p implementation.  */
4425 
4426 static int
4427 linux_nat_always_non_stop_p (struct target_ops *self)
4428 {
4429   return 1;
4430 }
4431 
4432 /* True if we want to support multi-process.  To be removed when GDB
4433    supports multi-exec.  */
4434 
4435 int linux_multi_process = 1;
4436 
4437 static int
4438 linux_nat_supports_multi_process (struct target_ops *self)
4439 {
4440   return linux_multi_process;
4441 }
4442 
4443 static int
4444 linux_nat_supports_disable_randomization (struct target_ops *self)
4445 {
4446 #ifdef HAVE_PERSONALITY
4447   return 1;
4448 #else
4449   return 0;
4450 #endif
4451 }
4452 
4453 static int async_terminal_is_ours = 1;
4454 
4455 /* target_terminal_inferior implementation.
4456 
4457    This is a wrapper around child_terminal_inferior to add async support.  */
4458 
4459 static void
4460 linux_nat_terminal_inferior (struct target_ops *self)
4461 {
4462   child_terminal_inferior (self);
4463 
4464   /* Calls to target_terminal_*() are meant to be idempotent.  */
4465   if (!async_terminal_is_ours)
4466     return;
4467 
4468   async_terminal_is_ours = 0;
4469   set_sigint_trap ();
4470 }
4471 
4472 /* target_terminal_ours implementation.
4473 
4474    This is a wrapper around child_terminal_ours to add async support (and
4475    implement the target_terminal_ours vs target_terminal_ours_for_output
4476    distinction).  child_terminal_ours is currently no different than
4477    child_terminal_ours_for_output.
4478    We leave target_terminal_ours_for_output alone, leaving it to
4479    child_terminal_ours_for_output.  */
4480 
4481 static void
4482 linux_nat_terminal_ours (struct target_ops *self)
4483 {
4484   /* GDB should never give the terminal to the inferior if the
4485      inferior is running in the background (run&, continue&, etc.),
4486      but claiming it sure should.  */
4487   child_terminal_ours (self);
4488 
4489   if (async_terminal_is_ours)
4490     return;
4491 
4492   clear_sigint_trap ();
4493   async_terminal_is_ours = 1;
4494 }
4495 
4496 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4497    so we notice when any child changes state, and notify the
4498    event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4499    above to wait for the arrival of a SIGCHLD.  */
4500 
4501 static void
4502 sigchld_handler (int signo)
4503 {
4504   int old_errno = errno;
4505 
4506   if (debug_linux_nat)
4507     ui_file_write_async_safe (gdb_stdlog,
4508 			      "sigchld\n", sizeof ("sigchld\n") - 1);
4509 
4510   if (signo == SIGCHLD
4511       && linux_nat_event_pipe[0] != -1)
4512     async_file_mark (); /* Let the event loop know that there are
4513 			   events to handle.  */
4514 
4515   errno = old_errno;
4516 }
4517 
4518 /* Callback registered with the target events file descriptor.  */
4519 
4520 static void
4521 handle_target_event (int error, gdb_client_data client_data)
4522 {
4523   inferior_event_handler (INF_REG_EVENT, NULL);
4524 }
4525 
4526 /* Create/destroy the target events pipe.  Returns previous state.  */
4527 
4528 static int
4529 linux_async_pipe (int enable)
4530 {
4531   int previous = linux_is_async_p ();
4532 
4533   if (previous != enable)
4534     {
4535       sigset_t prev_mask;
4536 
4537       /* Block child signals while we create/destroy the pipe, as
4538 	 their handler writes to it.  */
4539       block_child_signals (&prev_mask);
4540 
4541       if (enable)
4542 	{
4543 	  if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4544 	    internal_error (__FILE__, __LINE__,
4545 			    "creating event pipe failed.");
4546 
4547 	  fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4548 	  fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4549 	}
4550       else
4551 	{
4552 	  close (linux_nat_event_pipe[0]);
4553 	  close (linux_nat_event_pipe[1]);
4554 	  linux_nat_event_pipe[0] = -1;
4555 	  linux_nat_event_pipe[1] = -1;
4556 	}
4557 
4558       restore_child_signals_mask (&prev_mask);
4559     }
4560 
4561   return previous;
4562 }
4563 
4564 /* target_async implementation.  */
4565 
4566 static void
4567 linux_nat_async (struct target_ops *ops, int enable)
4568 {
4569   if (enable)
4570     {
4571       if (!linux_async_pipe (1))
4572 	{
4573 	  add_file_handler (linux_nat_event_pipe[0],
4574 			    handle_target_event, NULL);
4575 	  /* There may be pending events to handle.  Tell the event loop
4576 	     to poll them.  */
4577 	  async_file_mark ();
4578 	}
4579     }
4580   else
4581     {
4582       delete_file_handler (linux_nat_event_pipe[0]);
4583       linux_async_pipe (0);
4584     }
4585   return;
4586 }
4587 
4588 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4589    event came out.  */
4590 
4591 static int
4592 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4593 {
4594   if (!lwp->stopped)
4595     {
4596       if (debug_linux_nat)
4597 	fprintf_unfiltered (gdb_stdlog,
4598 			    "LNSL: running -> suspending %s\n",
4599 			    target_pid_to_str (lwp->ptid));
4600 
4601 
4602       if (lwp->last_resume_kind == resume_stop)
4603 	{
4604 	  if (debug_linux_nat)
4605 	    fprintf_unfiltered (gdb_stdlog,
4606 				"linux-nat: already stopping LWP %ld at "
4607 				"GDB's request\n",
4608 				ptid_get_lwp (lwp->ptid));
4609 	  return 0;
4610 	}
4611 
4612       stop_callback (lwp, NULL);
4613       lwp->last_resume_kind = resume_stop;
4614     }
4615   else
4616     {
4617       /* Already known to be stopped; do nothing.  */
4618 
4619       if (debug_linux_nat)
4620 	{
4621 	  if (find_thread_ptid (lwp->ptid)->stop_requested)
4622 	    fprintf_unfiltered (gdb_stdlog,
4623 				"LNSL: already stopped/stop_requested %s\n",
4624 				target_pid_to_str (lwp->ptid));
4625 	  else
4626 	    fprintf_unfiltered (gdb_stdlog,
4627 				"LNSL: already stopped/no "
4628 				"stop_requested yet %s\n",
4629 				target_pid_to_str (lwp->ptid));
4630 	}
4631     }
4632   return 0;
4633 }
4634 
4635 static void
4636 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4637 {
4638   iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4639 }
4640 
4641 static void
4642 linux_nat_close (struct target_ops *self)
4643 {
4644   /* Unregister from the event loop.  */
4645   if (linux_nat_is_async_p (self))
4646     linux_nat_async (self, 0);
4647 
4648   if (linux_ops->to_close)
4649     linux_ops->to_close (linux_ops);
4650 
4651   super_close (self);
4652 }
4653 
4654 /* When requests are passed down from the linux-nat layer to the
4655    single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4656    used.  The address space pointer is stored in the inferior object,
4657    but the common code that is passed such ptid can't tell whether
4658    lwpid is a "main" process id or not (it assumes so).  We reverse
4659    look up the "main" process id from the lwp here.  */
4660 
4661 static struct address_space *
4662 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4663 {
4664   struct lwp_info *lwp;
4665   struct inferior *inf;
4666   int pid;
4667 
4668   if (ptid_get_lwp (ptid) == 0)
4669     {
4670       /* An (lwpid,0,0) ptid.  Look up the lwp object to get at the
4671 	 tgid.  */
4672       lwp = find_lwp_pid (ptid);
4673       pid = ptid_get_pid (lwp->ptid);
4674     }
4675   else
4676     {
4677       /* A (pid,lwpid,0) ptid.  */
4678       pid = ptid_get_pid (ptid);
4679     }
4680 
4681   inf = find_inferior_pid (pid);
4682   gdb_assert (inf != NULL);
4683   return inf->aspace;
4684 }
4685 
4686 /* Return the cached value of the processor core for thread PTID.  */
4687 
4688 static int
4689 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4690 {
4691   struct lwp_info *info = find_lwp_pid (ptid);
4692 
4693   if (info)
4694     return info->core;
4695   return -1;
4696 }
4697 
4698 /* Implementation of to_filesystem_is_local.  */
4699 
4700 static int
4701 linux_nat_filesystem_is_local (struct target_ops *ops)
4702 {
4703   struct inferior *inf = current_inferior ();
4704 
4705   if (inf->fake_pid_p || inf->pid == 0)
4706     return 1;
4707 
4708   return linux_ns_same (inf->pid, LINUX_NS_MNT);
4709 }
4710 
4711 /* Convert the INF argument passed to a to_fileio_* method
4712    to a process ID suitable for passing to its corresponding
4713    linux_mntns_* function.  If INF is non-NULL then the
4714    caller is requesting the filesystem seen by INF.  If INF
4715    is NULL then the caller is requesting the filesystem seen
4716    by the GDB.  We fall back to GDB's filesystem in the case
4717    that INF is non-NULL but its PID is unknown.  */
4718 
4719 static pid_t
4720 linux_nat_fileio_pid_of (struct inferior *inf)
4721 {
4722   if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4723     return getpid ();
4724   else
4725     return inf->pid;
4726 }
4727 
4728 /* Implementation of to_fileio_open.  */
4729 
4730 static int
4731 linux_nat_fileio_open (struct target_ops *self,
4732 		       struct inferior *inf, const char *filename,
4733 		       int flags, int mode, int warn_if_slow,
4734 		       int *target_errno)
4735 {
4736   int nat_flags;
4737   mode_t nat_mode;
4738   int fd;
4739 
4740   if (fileio_to_host_openflags (flags, &nat_flags) == -1
4741       || fileio_to_host_mode (mode, &nat_mode) == -1)
4742     {
4743       *target_errno = FILEIO_EINVAL;
4744       return -1;
4745     }
4746 
4747   fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4748 				 filename, nat_flags, nat_mode);
4749   if (fd == -1)
4750     *target_errno = host_to_fileio_error (errno);
4751 
4752   return fd;
4753 }
4754 
4755 /* Implementation of to_fileio_readlink.  */
4756 
4757 static char *
4758 linux_nat_fileio_readlink (struct target_ops *self,
4759 			   struct inferior *inf, const char *filename,
4760 			   int *target_errno)
4761 {
4762   char buf[PATH_MAX];
4763   int len;
4764   char *ret;
4765 
4766   len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4767 			      filename, buf, sizeof (buf));
4768   if (len < 0)
4769     {
4770       *target_errno = host_to_fileio_error (errno);
4771       return NULL;
4772     }
4773 
4774   ret = (char *) xmalloc (len + 1);
4775   memcpy (ret, buf, len);
4776   ret[len] = '\0';
4777   return ret;
4778 }
4779 
4780 /* Implementation of to_fileio_unlink.  */
4781 
4782 static int
4783 linux_nat_fileio_unlink (struct target_ops *self,
4784 			 struct inferior *inf, const char *filename,
4785 			 int *target_errno)
4786 {
4787   int ret;
4788 
4789   ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4790 			    filename);
4791   if (ret == -1)
4792     *target_errno = host_to_fileio_error (errno);
4793 
4794   return ret;
4795 }
4796 
4797 /* Implementation of the to_thread_events method.  */
4798 
4799 static void
4800 linux_nat_thread_events (struct target_ops *ops, int enable)
4801 {
4802   report_thread_events = enable;
4803 }
4804 
4805 void
4806 linux_nat_add_target (struct target_ops *t)
4807 {
4808   /* Save the provided single-threaded target.  We save this in a separate
4809      variable because another target we've inherited from (e.g. inf-ptrace)
4810      may have saved a pointer to T; we want to use it for the final
4811      process stratum target.  */
4812   linux_ops_saved = *t;
4813   linux_ops = &linux_ops_saved;
4814 
4815   /* Override some methods for multithreading.  */
4816   t->to_create_inferior = linux_nat_create_inferior;
4817   t->to_attach = linux_nat_attach;
4818   t->to_detach = linux_nat_detach;
4819   t->to_resume = linux_nat_resume;
4820   t->to_wait = linux_nat_wait;
4821   t->to_pass_signals = linux_nat_pass_signals;
4822   t->to_xfer_partial = linux_nat_xfer_partial;
4823   t->to_kill = linux_nat_kill;
4824   t->to_mourn_inferior = linux_nat_mourn_inferior;
4825   t->to_thread_alive = linux_nat_thread_alive;
4826   t->to_update_thread_list = linux_nat_update_thread_list;
4827   t->to_pid_to_str = linux_nat_pid_to_str;
4828   t->to_thread_name = linux_nat_thread_name;
4829   t->to_has_thread_control = tc_schedlock;
4830   t->to_thread_address_space = linux_nat_thread_address_space;
4831   t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4832   t->to_stopped_data_address = linux_nat_stopped_data_address;
4833   t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4834   t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4835   t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4836   t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4837   t->to_thread_events = linux_nat_thread_events;
4838 
4839   t->to_can_async_p = linux_nat_can_async_p;
4840   t->to_is_async_p = linux_nat_is_async_p;
4841   t->to_supports_non_stop = linux_nat_supports_non_stop;
4842   t->to_always_non_stop_p = linux_nat_always_non_stop_p;
4843   t->to_async = linux_nat_async;
4844   t->to_terminal_inferior = linux_nat_terminal_inferior;
4845   t->to_terminal_ours = linux_nat_terminal_ours;
4846 
4847   super_close = t->to_close;
4848   t->to_close = linux_nat_close;
4849 
4850   t->to_stop = linux_nat_stop;
4851 
4852   t->to_supports_multi_process = linux_nat_supports_multi_process;
4853 
4854   t->to_supports_disable_randomization
4855     = linux_nat_supports_disable_randomization;
4856 
4857   t->to_core_of_thread = linux_nat_core_of_thread;
4858 
4859   t->to_filesystem_is_local = linux_nat_filesystem_is_local;
4860   t->to_fileio_open = linux_nat_fileio_open;
4861   t->to_fileio_readlink = linux_nat_fileio_readlink;
4862   t->to_fileio_unlink = linux_nat_fileio_unlink;
4863 
4864   /* We don't change the stratum; this target will sit at
4865      process_stratum and thread_db will set at thread_stratum.  This
4866      is a little strange, since this is a multi-threaded-capable
4867      target, but we want to be on the stack below thread_db, and we
4868      also want to be used for single-threaded processes.  */
4869 
4870   add_target (t);
4871 }
4872 
4873 /* Register a method to call whenever a new thread is attached.  */
4874 void
4875 linux_nat_set_new_thread (struct target_ops *t,
4876 			  void (*new_thread) (struct lwp_info *))
4877 {
4878   /* Save the pointer.  We only support a single registered instance
4879      of the GNU/Linux native target, so we do not need to map this to
4880      T.  */
4881   linux_nat_new_thread = new_thread;
4882 }
4883 
4884 /* See declaration in linux-nat.h.  */
4885 
4886 void
4887 linux_nat_set_new_fork (struct target_ops *t,
4888 			linux_nat_new_fork_ftype *new_fork)
4889 {
4890   /* Save the pointer.  */
4891   linux_nat_new_fork = new_fork;
4892 }
4893 
4894 /* See declaration in linux-nat.h.  */
4895 
4896 void
4897 linux_nat_set_forget_process (struct target_ops *t,
4898 			      linux_nat_forget_process_ftype *fn)
4899 {
4900   /* Save the pointer.  */
4901   linux_nat_forget_process_hook = fn;
4902 }
4903 
4904 /* See declaration in linux-nat.h.  */
4905 
4906 void
4907 linux_nat_forget_process (pid_t pid)
4908 {
4909   if (linux_nat_forget_process_hook != NULL)
4910     linux_nat_forget_process_hook (pid);
4911 }
4912 
4913 /* Register a method that converts a siginfo object between the layout
4914    that ptrace returns, and the layout in the architecture of the
4915    inferior.  */
4916 void
4917 linux_nat_set_siginfo_fixup (struct target_ops *t,
4918 			     int (*siginfo_fixup) (siginfo_t *,
4919 						   gdb_byte *,
4920 						   int))
4921 {
4922   /* Save the pointer.  */
4923   linux_nat_siginfo_fixup = siginfo_fixup;
4924 }
4925 
4926 /* Register a method to call prior to resuming a thread.  */
4927 
4928 void
4929 linux_nat_set_prepare_to_resume (struct target_ops *t,
4930 				 void (*prepare_to_resume) (struct lwp_info *))
4931 {
4932   /* Save the pointer.  */
4933   linux_nat_prepare_to_resume = prepare_to_resume;
4934 }
4935 
4936 /* See linux-nat.h.  */
4937 
4938 int
4939 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4940 {
4941   int pid;
4942 
4943   pid = ptid_get_lwp (ptid);
4944   if (pid == 0)
4945     pid = ptid_get_pid (ptid);
4946 
4947   errno = 0;
4948   ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4949   if (errno != 0)
4950     {
4951       memset (siginfo, 0, sizeof (*siginfo));
4952       return 0;
4953     }
4954   return 1;
4955 }
4956 
4957 /* See nat/linux-nat.h.  */
4958 
4959 ptid_t
4960 current_lwp_ptid (void)
4961 {
4962   gdb_assert (ptid_lwp_p (inferior_ptid));
4963   return inferior_ptid;
4964 }
4965 
4966 /* Provide a prototype to silence -Wmissing-prototypes.  */
4967 extern initialize_file_ftype _initialize_linux_nat;
4968 
4969 void
4970 _initialize_linux_nat (void)
4971 {
4972   add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4973 			     &debug_linux_nat, _("\
4974 Set debugging of GNU/Linux lwp module."), _("\
4975 Show debugging of GNU/Linux lwp module."), _("\
4976 Enables printf debugging output."),
4977 			     NULL,
4978 			     show_debug_linux_nat,
4979 			     &setdebuglist, &showdebuglist);
4980 
4981   add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4982 			   &debug_linux_namespaces, _("\
4983 Set debugging of GNU/Linux namespaces module."), _("\
4984 Show debugging of GNU/Linux namespaces module."), _("\
4985 Enables printf debugging output."),
4986 			   NULL,
4987 			   NULL,
4988 			   &setdebuglist, &showdebuglist);
4989 
4990   /* Save this mask as the default.  */
4991   sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4992 
4993   /* Install a SIGCHLD handler.  */
4994   sigchld_action.sa_handler = sigchld_handler;
4995   sigemptyset (&sigchld_action.sa_mask);
4996   sigchld_action.sa_flags = SA_RESTART;
4997 
4998   /* Make it the default.  */
4999   sigaction (SIGCHLD, &sigchld_action, NULL);
5000 
5001   /* Make sure we don't block SIGCHLD during a sigsuspend.  */
5002   sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5003   sigdelset (&suspend_mask, SIGCHLD);
5004 
5005   sigemptyset (&blocked_mask);
5006 
5007   lwp_lwpid_htab_create ();
5008 }
5009 
5010 
5011 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5012    the GNU/Linux Threads library and therefore doesn't really belong
5013    here.  */
5014 
5015 /* Return the set of signals used by the threads library in *SET.  */
5016 
5017 void
5018 lin_thread_get_thread_signals (sigset_t *set)
5019 {
5020   sigemptyset (set);
5021 
5022   /* NPTL reserves the first two RT signals, but does not provide any
5023      way for the debugger to query the signal numbers - fortunately
5024      they don't change.  */
5025   sigaddset (set, __SIGRTMIN);
5026   sigaddset (set, __SIGRTMIN + 1);
5027 }
5028