1 /* GNU/Linux native-dependent code common to multiple platforms. 2 3 Copyright (C) 2001-2016 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "inferior.h" 22 #include "infrun.h" 23 #include "target.h" 24 #include "nat/linux-nat.h" 25 #include "nat/linux-waitpid.h" 26 #include "gdb_wait.h" 27 #include <unistd.h> 28 #include <sys/syscall.h> 29 #include "nat/gdb_ptrace.h" 30 #include "linux-nat.h" 31 #include "nat/linux-ptrace.h" 32 #include "nat/linux-procfs.h" 33 #include "nat/linux-personality.h" 34 #include "linux-fork.h" 35 #include "gdbthread.h" 36 #include "gdbcmd.h" 37 #include "regcache.h" 38 #include "regset.h" 39 #include "inf-child.h" 40 #include "inf-ptrace.h" 41 #include "auxv.h" 42 #include <sys/procfs.h> /* for elf_gregset etc. */ 43 #include "elf-bfd.h" /* for elfcore_write_* */ 44 #include "gregset.h" /* for gregset */ 45 #include "gdbcore.h" /* for get_exec_file */ 46 #include <ctype.h> /* for isdigit */ 47 #include <sys/stat.h> /* for struct stat */ 48 #include <fcntl.h> /* for O_RDONLY */ 49 #include "inf-loop.h" 50 #include "event-loop.h" 51 #include "event-top.h" 52 #include <pwd.h> 53 #include <sys/types.h> 54 #include <dirent.h> 55 #include "xml-support.h" 56 #include <sys/vfs.h> 57 #include "solib.h" 58 #include "nat/linux-osdata.h" 59 #include "linux-tdep.h" 60 #include "symfile.h" 61 #include "agent.h" 62 #include "tracepoint.h" 63 #include "buffer.h" 64 #include "target-descriptions.h" 65 #include "filestuff.h" 66 #include "objfiles.h" 67 #include "nat/linux-namespaces.h" 68 #include "fileio.h" 69 70 #ifndef SPUFS_MAGIC 71 #define SPUFS_MAGIC 0x23c9b64e 72 #endif 73 74 /* This comment documents high-level logic of this file. 75 76 Waiting for events in sync mode 77 =============================== 78 79 When waiting for an event in a specific thread, we just use waitpid, 80 passing the specific pid, and not passing WNOHANG. 81 82 When waiting for an event in all threads, waitpid is not quite good: 83 84 - If the thread group leader exits while other threads in the thread 85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't 86 return an exit status until the other threads in the group are 87 reaped. 88 89 - When a non-leader thread execs, that thread just vanishes without 90 reporting an exit (so we'd hang if we waited for it explicitly in 91 that case). The exec event is instead reported to the TGID pid. 92 93 The solution is to always use -1 and WNOHANG, together with 94 sigsuspend. 95 96 First, we use non-blocking waitpid to check for events. If nothing is 97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, 98 it means something happened to a child process. As soon as we know 99 there's an event, we get back to calling nonblocking waitpid. 100 101 Note that SIGCHLD should be blocked between waitpid and sigsuspend 102 calls, so that we don't miss a signal. If SIGCHLD arrives in between, 103 when it's blocked, the signal becomes pending and sigsuspend 104 immediately notices it and returns. 105 106 Waiting for events in async mode (TARGET_WNOHANG) 107 ================================================= 108 109 In async mode, GDB should always be ready to handle both user input 110 and target events, so neither blocking waitpid nor sigsuspend are 111 viable options. Instead, we should asynchronously notify the GDB main 112 event loop whenever there's an unprocessed event from the target. We 113 detect asynchronous target events by handling SIGCHLD signals. To 114 notify the event loop about target events, the self-pipe trick is used 115 --- a pipe is registered as waitable event source in the event loop, 116 the event loop select/poll's on the read end of this pipe (as well on 117 other event sources, e.g., stdin), and the SIGCHLD handler writes a 118 byte to this pipe. This is more portable than relying on 119 pselect/ppoll, since on kernels that lack those syscalls, libc 120 emulates them with select/poll+sigprocmask, and that is racy 121 (a.k.a. plain broken). 122 123 Obviously, if we fail to notify the event loop if there's a target 124 event, it's bad. OTOH, if we notify the event loop when there's no 125 event from the target, linux_nat_wait will detect that there's no real 126 event to report, and return event of type TARGET_WAITKIND_IGNORE. 127 This is mostly harmless, but it will waste time and is better avoided. 128 129 The main design point is that every time GDB is outside linux-nat.c, 130 we have a SIGCHLD handler installed that is called when something 131 happens to the target and notifies the GDB event loop. Whenever GDB 132 core decides to handle the event, and calls into linux-nat.c, we 133 process things as in sync mode, except that the we never block in 134 sigsuspend. 135 136 While processing an event, we may end up momentarily blocked in 137 waitpid calls. Those waitpid calls, while blocking, are guarantied to 138 return quickly. E.g., in all-stop mode, before reporting to the core 139 that an LWP hit a breakpoint, all LWPs are stopped by sending them 140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported. 141 Note that this is different from blocking indefinitely waiting for the 142 next event --- here, we're already handling an event. 143 144 Use of signals 145 ============== 146 147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another 148 signal is not entirely significant; we just need for a signal to be delivered, 149 so that we can intercept it. SIGSTOP's advantage is that it can not be 150 blocked. A disadvantage is that it is not a real-time signal, so it can only 151 be queued once; we do not keep track of other sources of SIGSTOP. 152 153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't 154 use them, because they have special behavior when the signal is generated - 155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL 156 kills the entire thread group. 157 158 A delivered SIGSTOP would stop the entire thread group, not just the thread we 159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and 160 cancel it (by PTRACE_CONT without passing SIGSTOP). 161 162 We could use a real-time signal instead. This would solve those problems; we 163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB. 164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH 165 generates it, and there are races with trying to find a signal that is not 166 blocked. 167 168 Exec events 169 =========== 170 171 The case of a thread group (process) with 3 or more threads, and a 172 thread other than the leader execs is worth detailing: 173 174 On an exec, the Linux kernel destroys all threads except the execing 175 one in the thread group, and resets the execing thread's tid to the 176 tgid. No exit notification is sent for the execing thread -- from the 177 ptracer's perspective, it appears as though the execing thread just 178 vanishes. Until we reap all other threads except the leader and the 179 execing thread, the leader will be zombie, and the execing thread will 180 be in `D (disc sleep)' state. As soon as all other threads are 181 reaped, the execing thread changes its tid to the tgid, and the 182 previous (zombie) leader vanishes, giving place to the "new" 183 leader. */ 184 185 #ifndef O_LARGEFILE 186 #define O_LARGEFILE 0 187 #endif 188 189 /* Does the current host support PTRACE_GETREGSET? */ 190 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN; 191 192 /* The single-threaded native GNU/Linux target_ops. We save a pointer for 193 the use of the multi-threaded target. */ 194 static struct target_ops *linux_ops; 195 static struct target_ops linux_ops_saved; 196 197 /* The method to call, if any, when a new thread is attached. */ 198 static void (*linux_nat_new_thread) (struct lwp_info *); 199 200 /* The method to call, if any, when a new fork is attached. */ 201 static linux_nat_new_fork_ftype *linux_nat_new_fork; 202 203 /* The method to call, if any, when a process is no longer 204 attached. */ 205 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook; 206 207 /* Hook to call prior to resuming a thread. */ 208 static void (*linux_nat_prepare_to_resume) (struct lwp_info *); 209 210 /* The method to call, if any, when the siginfo object needs to be 211 converted between the layout returned by ptrace, and the layout in 212 the architecture of the inferior. */ 213 static int (*linux_nat_siginfo_fixup) (siginfo_t *, 214 gdb_byte *, 215 int); 216 217 /* The saved to_xfer_partial method, inherited from inf-ptrace.c. 218 Called by our to_xfer_partial. */ 219 static target_xfer_partial_ftype *super_xfer_partial; 220 221 /* The saved to_close method, inherited from inf-ptrace.c. 222 Called by our to_close. */ 223 static void (*super_close) (struct target_ops *); 224 225 static unsigned int debug_linux_nat; 226 static void 227 show_debug_linux_nat (struct ui_file *file, int from_tty, 228 struct cmd_list_element *c, const char *value) 229 { 230 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"), 231 value); 232 } 233 234 struct simple_pid_list 235 { 236 int pid; 237 int status; 238 struct simple_pid_list *next; 239 }; 240 struct simple_pid_list *stopped_pids; 241 242 /* Whether target_thread_events is in effect. */ 243 static int report_thread_events; 244 245 /* Async mode support. */ 246 247 /* The read/write ends of the pipe registered as waitable file in the 248 event loop. */ 249 static int linux_nat_event_pipe[2] = { -1, -1 }; 250 251 /* True if we're currently in async mode. */ 252 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1) 253 254 /* Flush the event pipe. */ 255 256 static void 257 async_file_flush (void) 258 { 259 int ret; 260 char buf; 261 262 do 263 { 264 ret = read (linux_nat_event_pipe[0], &buf, 1); 265 } 266 while (ret >= 0 || (ret == -1 && errno == EINTR)); 267 } 268 269 /* Put something (anything, doesn't matter what, or how much) in event 270 pipe, so that the select/poll in the event-loop realizes we have 271 something to process. */ 272 273 static void 274 async_file_mark (void) 275 { 276 int ret; 277 278 /* It doesn't really matter what the pipe contains, as long we end 279 up with something in it. Might as well flush the previous 280 left-overs. */ 281 async_file_flush (); 282 283 do 284 { 285 ret = write (linux_nat_event_pipe[1], "+", 1); 286 } 287 while (ret == -1 && errno == EINTR); 288 289 /* Ignore EAGAIN. If the pipe is full, the event loop will already 290 be awakened anyway. */ 291 } 292 293 static int kill_lwp (int lwpid, int signo); 294 295 static int stop_callback (struct lwp_info *lp, void *data); 296 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data); 297 298 static void block_child_signals (sigset_t *prev_mask); 299 static void restore_child_signals_mask (sigset_t *prev_mask); 300 301 struct lwp_info; 302 static struct lwp_info *add_lwp (ptid_t ptid); 303 static void purge_lwp_list (int pid); 304 static void delete_lwp (ptid_t ptid); 305 static struct lwp_info *find_lwp_pid (ptid_t ptid); 306 307 static int lwp_status_pending_p (struct lwp_info *lp); 308 309 static int sigtrap_is_event (int status); 310 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event; 311 312 static void save_stop_reason (struct lwp_info *lp); 313 314 315 /* LWP accessors. */ 316 317 /* See nat/linux-nat.h. */ 318 319 ptid_t 320 ptid_of_lwp (struct lwp_info *lwp) 321 { 322 return lwp->ptid; 323 } 324 325 /* See nat/linux-nat.h. */ 326 327 void 328 lwp_set_arch_private_info (struct lwp_info *lwp, 329 struct arch_lwp_info *info) 330 { 331 lwp->arch_private = info; 332 } 333 334 /* See nat/linux-nat.h. */ 335 336 struct arch_lwp_info * 337 lwp_arch_private_info (struct lwp_info *lwp) 338 { 339 return lwp->arch_private; 340 } 341 342 /* See nat/linux-nat.h. */ 343 344 int 345 lwp_is_stopped (struct lwp_info *lwp) 346 { 347 return lwp->stopped; 348 } 349 350 /* See nat/linux-nat.h. */ 351 352 enum target_stop_reason 353 lwp_stop_reason (struct lwp_info *lwp) 354 { 355 return lwp->stop_reason; 356 } 357 358 359 /* Trivial list manipulation functions to keep track of a list of 360 new stopped processes. */ 361 static void 362 add_to_pid_list (struct simple_pid_list **listp, int pid, int status) 363 { 364 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list); 365 366 new_pid->pid = pid; 367 new_pid->status = status; 368 new_pid->next = *listp; 369 *listp = new_pid; 370 } 371 372 static int 373 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp) 374 { 375 struct simple_pid_list **p; 376 377 for (p = listp; *p != NULL; p = &(*p)->next) 378 if ((*p)->pid == pid) 379 { 380 struct simple_pid_list *next = (*p)->next; 381 382 *statusp = (*p)->status; 383 xfree (*p); 384 *p = next; 385 return 1; 386 } 387 return 0; 388 } 389 390 /* Return the ptrace options that we want to try to enable. */ 391 392 static int 393 linux_nat_ptrace_options (int attached) 394 { 395 int options = 0; 396 397 if (!attached) 398 options |= PTRACE_O_EXITKILL; 399 400 options |= (PTRACE_O_TRACESYSGOOD 401 | PTRACE_O_TRACEVFORKDONE 402 | PTRACE_O_TRACEVFORK 403 | PTRACE_O_TRACEFORK 404 | PTRACE_O_TRACEEXEC); 405 406 return options; 407 } 408 409 /* Initialize ptrace warnings and check for supported ptrace 410 features given PID. 411 412 ATTACHED should be nonzero iff we attached to the inferior. */ 413 414 static void 415 linux_init_ptrace (pid_t pid, int attached) 416 { 417 int options = linux_nat_ptrace_options (attached); 418 419 linux_enable_event_reporting (pid, options); 420 linux_ptrace_init_warnings (); 421 } 422 423 static void 424 linux_child_post_attach (struct target_ops *self, int pid) 425 { 426 linux_init_ptrace (pid, 1); 427 } 428 429 static void 430 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid) 431 { 432 linux_init_ptrace (ptid_get_pid (ptid), 0); 433 } 434 435 /* Return the number of known LWPs in the tgid given by PID. */ 436 437 static int 438 num_lwps (int pid) 439 { 440 int count = 0; 441 struct lwp_info *lp; 442 443 for (lp = lwp_list; lp; lp = lp->next) 444 if (ptid_get_pid (lp->ptid) == pid) 445 count++; 446 447 return count; 448 } 449 450 /* Call delete_lwp with prototype compatible for make_cleanup. */ 451 452 static void 453 delete_lwp_cleanup (void *lp_voidp) 454 { 455 struct lwp_info *lp = (struct lwp_info *) lp_voidp; 456 457 delete_lwp (lp->ptid); 458 } 459 460 /* Target hook for follow_fork. On entry inferior_ptid must be the 461 ptid of the followed inferior. At return, inferior_ptid will be 462 unchanged. */ 463 464 static int 465 linux_child_follow_fork (struct target_ops *ops, int follow_child, 466 int detach_fork) 467 { 468 if (!follow_child) 469 { 470 struct lwp_info *child_lp = NULL; 471 int status = W_STOPCODE (0); 472 struct cleanup *old_chain; 473 int has_vforked; 474 ptid_t parent_ptid, child_ptid; 475 int parent_pid, child_pid; 476 477 has_vforked = (inferior_thread ()->pending_follow.kind 478 == TARGET_WAITKIND_VFORKED); 479 parent_ptid = inferior_ptid; 480 child_ptid = inferior_thread ()->pending_follow.value.related_pid; 481 parent_pid = ptid_get_lwp (parent_ptid); 482 child_pid = ptid_get_lwp (child_ptid); 483 484 /* We're already attached to the parent, by default. */ 485 old_chain = save_inferior_ptid (); 486 inferior_ptid = child_ptid; 487 child_lp = add_lwp (inferior_ptid); 488 child_lp->stopped = 1; 489 child_lp->last_resume_kind = resume_stop; 490 491 /* Detach new forked process? */ 492 if (detach_fork) 493 { 494 make_cleanup (delete_lwp_cleanup, child_lp); 495 496 if (linux_nat_prepare_to_resume != NULL) 497 linux_nat_prepare_to_resume (child_lp); 498 499 /* When debugging an inferior in an architecture that supports 500 hardware single stepping on a kernel without commit 501 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child 502 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits 503 set if the parent process had them set. 504 To work around this, single step the child process 505 once before detaching to clear the flags. */ 506 507 if (!gdbarch_software_single_step_p (target_thread_architecture 508 (child_lp->ptid))) 509 { 510 linux_disable_event_reporting (child_pid); 511 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0) 512 perror_with_name (_("Couldn't do single step")); 513 if (my_waitpid (child_pid, &status, 0) < 0) 514 perror_with_name (_("Couldn't wait vfork process")); 515 } 516 517 if (WIFSTOPPED (status)) 518 { 519 int signo; 520 521 signo = WSTOPSIG (status); 522 if (signo != 0 523 && !signal_pass_state (gdb_signal_from_host (signo))) 524 signo = 0; 525 ptrace (PTRACE_DETACH, child_pid, 0, signo); 526 } 527 528 /* Resets value of inferior_ptid to parent ptid. */ 529 do_cleanups (old_chain); 530 } 531 else 532 { 533 /* Let the thread_db layer learn about this new process. */ 534 check_for_thread_db (); 535 } 536 537 do_cleanups (old_chain); 538 539 if (has_vforked) 540 { 541 struct lwp_info *parent_lp; 542 543 parent_lp = find_lwp_pid (parent_ptid); 544 gdb_assert (linux_supports_tracefork () >= 0); 545 546 if (linux_supports_tracevforkdone ()) 547 { 548 if (debug_linux_nat) 549 fprintf_unfiltered (gdb_stdlog, 550 "LCFF: waiting for VFORK_DONE on %d\n", 551 parent_pid); 552 parent_lp->stopped = 1; 553 554 /* We'll handle the VFORK_DONE event like any other 555 event, in target_wait. */ 556 } 557 else 558 { 559 /* We can't insert breakpoints until the child has 560 finished with the shared memory region. We need to 561 wait until that happens. Ideal would be to just 562 call: 563 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0); 564 - waitpid (parent_pid, &status, __WALL); 565 However, most architectures can't handle a syscall 566 being traced on the way out if it wasn't traced on 567 the way in. 568 569 We might also think to loop, continuing the child 570 until it exits or gets a SIGTRAP. One problem is 571 that the child might call ptrace with PTRACE_TRACEME. 572 573 There's no simple and reliable way to figure out when 574 the vforked child will be done with its copy of the 575 shared memory. We could step it out of the syscall, 576 two instructions, let it go, and then single-step the 577 parent once. When we have hardware single-step, this 578 would work; with software single-step it could still 579 be made to work but we'd have to be able to insert 580 single-step breakpoints in the child, and we'd have 581 to insert -just- the single-step breakpoint in the 582 parent. Very awkward. 583 584 In the end, the best we can do is to make sure it 585 runs for a little while. Hopefully it will be out of 586 range of any breakpoints we reinsert. Usually this 587 is only the single-step breakpoint at vfork's return 588 point. */ 589 590 if (debug_linux_nat) 591 fprintf_unfiltered (gdb_stdlog, 592 "LCFF: no VFORK_DONE " 593 "support, sleeping a bit\n"); 594 595 usleep (10000); 596 597 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event, 598 and leave it pending. The next linux_nat_resume call 599 will notice a pending event, and bypasses actually 600 resuming the inferior. */ 601 parent_lp->status = 0; 602 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE; 603 parent_lp->stopped = 1; 604 605 /* If we're in async mode, need to tell the event loop 606 there's something here to process. */ 607 if (target_is_async_p ()) 608 async_file_mark (); 609 } 610 } 611 } 612 else 613 { 614 struct lwp_info *child_lp; 615 616 child_lp = add_lwp (inferior_ptid); 617 child_lp->stopped = 1; 618 child_lp->last_resume_kind = resume_stop; 619 620 /* Let the thread_db layer learn about this new process. */ 621 check_for_thread_db (); 622 } 623 624 return 0; 625 } 626 627 628 static int 629 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid) 630 { 631 return !linux_supports_tracefork (); 632 } 633 634 static int 635 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid) 636 { 637 return 0; 638 } 639 640 static int 641 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid) 642 { 643 return !linux_supports_tracefork (); 644 } 645 646 static int 647 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid) 648 { 649 return 0; 650 } 651 652 static int 653 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid) 654 { 655 return !linux_supports_tracefork (); 656 } 657 658 static int 659 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid) 660 { 661 return 0; 662 } 663 664 static int 665 linux_child_set_syscall_catchpoint (struct target_ops *self, 666 int pid, int needed, int any_count, 667 int table_size, int *table) 668 { 669 if (!linux_supports_tracesysgood ()) 670 return 1; 671 672 /* On GNU/Linux, we ignore the arguments. It means that we only 673 enable the syscall catchpoints, but do not disable them. 674 675 Also, we do not use the `table' information because we do not 676 filter system calls here. We let GDB do the logic for us. */ 677 return 0; 678 } 679 680 /* List of known LWPs, keyed by LWP PID. This speeds up the common 681 case of mapping a PID returned from the kernel to our corresponding 682 lwp_info data structure. */ 683 static htab_t lwp_lwpid_htab; 684 685 /* Calculate a hash from a lwp_info's LWP PID. */ 686 687 static hashval_t 688 lwp_info_hash (const void *ap) 689 { 690 const struct lwp_info *lp = (struct lwp_info *) ap; 691 pid_t pid = ptid_get_lwp (lp->ptid); 692 693 return iterative_hash_object (pid, 0); 694 } 695 696 /* Equality function for the lwp_info hash table. Compares the LWP's 697 PID. */ 698 699 static int 700 lwp_lwpid_htab_eq (const void *a, const void *b) 701 { 702 const struct lwp_info *entry = (const struct lwp_info *) a; 703 const struct lwp_info *element = (const struct lwp_info *) b; 704 705 return ptid_get_lwp (entry->ptid) == ptid_get_lwp (element->ptid); 706 } 707 708 /* Create the lwp_lwpid_htab hash table. */ 709 710 static void 711 lwp_lwpid_htab_create (void) 712 { 713 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL); 714 } 715 716 /* Add LP to the hash table. */ 717 718 static void 719 lwp_lwpid_htab_add_lwp (struct lwp_info *lp) 720 { 721 void **slot; 722 723 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT); 724 gdb_assert (slot != NULL && *slot == NULL); 725 *slot = lp; 726 } 727 728 /* Head of doubly-linked list of known LWPs. Sorted by reverse 729 creation order. This order is assumed in some cases. E.g., 730 reaping status after killing alls lwps of a process: the leader LWP 731 must be reaped last. */ 732 struct lwp_info *lwp_list; 733 734 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */ 735 736 static void 737 lwp_list_add (struct lwp_info *lp) 738 { 739 lp->next = lwp_list; 740 if (lwp_list != NULL) 741 lwp_list->prev = lp; 742 lwp_list = lp; 743 } 744 745 /* Remove LP from sorted-by-reverse-creation-order doubly-linked 746 list. */ 747 748 static void 749 lwp_list_remove (struct lwp_info *lp) 750 { 751 /* Remove from sorted-by-creation-order list. */ 752 if (lp->next != NULL) 753 lp->next->prev = lp->prev; 754 if (lp->prev != NULL) 755 lp->prev->next = lp->next; 756 if (lp == lwp_list) 757 lwp_list = lp->next; 758 } 759 760 761 762 /* Original signal mask. */ 763 static sigset_t normal_mask; 764 765 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in 766 _initialize_linux_nat. */ 767 static sigset_t suspend_mask; 768 769 /* Signals to block to make that sigsuspend work. */ 770 static sigset_t blocked_mask; 771 772 /* SIGCHLD action. */ 773 struct sigaction sigchld_action; 774 775 /* Block child signals (SIGCHLD and linux threads signals), and store 776 the previous mask in PREV_MASK. */ 777 778 static void 779 block_child_signals (sigset_t *prev_mask) 780 { 781 /* Make sure SIGCHLD is blocked. */ 782 if (!sigismember (&blocked_mask, SIGCHLD)) 783 sigaddset (&blocked_mask, SIGCHLD); 784 785 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask); 786 } 787 788 /* Restore child signals mask, previously returned by 789 block_child_signals. */ 790 791 static void 792 restore_child_signals_mask (sigset_t *prev_mask) 793 { 794 sigprocmask (SIG_SETMASK, prev_mask, NULL); 795 } 796 797 /* Mask of signals to pass directly to the inferior. */ 798 static sigset_t pass_mask; 799 800 /* Update signals to pass to the inferior. */ 801 static void 802 linux_nat_pass_signals (struct target_ops *self, 803 int numsigs, unsigned char *pass_signals) 804 { 805 int signo; 806 807 sigemptyset (&pass_mask); 808 809 for (signo = 1; signo < NSIG; signo++) 810 { 811 int target_signo = gdb_signal_from_host (signo); 812 if (target_signo < numsigs && pass_signals[target_signo]) 813 sigaddset (&pass_mask, signo); 814 } 815 } 816 817 818 819 /* Prototypes for local functions. */ 820 static int stop_wait_callback (struct lwp_info *lp, void *data); 821 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid); 822 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data); 823 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp); 824 825 826 827 /* Destroy and free LP. */ 828 829 static void 830 lwp_free (struct lwp_info *lp) 831 { 832 xfree (lp->arch_private); 833 xfree (lp); 834 } 835 836 /* Traversal function for purge_lwp_list. */ 837 838 static int 839 lwp_lwpid_htab_remove_pid (void **slot, void *info) 840 { 841 struct lwp_info *lp = (struct lwp_info *) *slot; 842 int pid = *(int *) info; 843 844 if (ptid_get_pid (lp->ptid) == pid) 845 { 846 htab_clear_slot (lwp_lwpid_htab, slot); 847 lwp_list_remove (lp); 848 lwp_free (lp); 849 } 850 851 return 1; 852 } 853 854 /* Remove all LWPs belong to PID from the lwp list. */ 855 856 static void 857 purge_lwp_list (int pid) 858 { 859 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid); 860 } 861 862 /* Add the LWP specified by PTID to the list. PTID is the first LWP 863 in the process. Return a pointer to the structure describing the 864 new LWP. 865 866 This differs from add_lwp in that we don't let the arch specific 867 bits know about this new thread. Current clients of this callback 868 take the opportunity to install watchpoints in the new thread, and 869 we shouldn't do that for the first thread. If we're spawning a 870 child ("run"), the thread executes the shell wrapper first, and we 871 shouldn't touch it until it execs the program we want to debug. 872 For "attach", it'd be okay to call the callback, but it's not 873 necessary, because watchpoints can't yet have been inserted into 874 the inferior. */ 875 876 static struct lwp_info * 877 add_initial_lwp (ptid_t ptid) 878 { 879 struct lwp_info *lp; 880 881 gdb_assert (ptid_lwp_p (ptid)); 882 883 lp = XNEW (struct lwp_info); 884 885 memset (lp, 0, sizeof (struct lwp_info)); 886 887 lp->last_resume_kind = resume_continue; 888 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 889 890 lp->ptid = ptid; 891 lp->core = -1; 892 893 /* Add to sorted-by-reverse-creation-order list. */ 894 lwp_list_add (lp); 895 896 /* Add to keyed-by-pid htab. */ 897 lwp_lwpid_htab_add_lwp (lp); 898 899 return lp; 900 } 901 902 /* Add the LWP specified by PID to the list. Return a pointer to the 903 structure describing the new LWP. The LWP should already be 904 stopped. */ 905 906 static struct lwp_info * 907 add_lwp (ptid_t ptid) 908 { 909 struct lwp_info *lp; 910 911 lp = add_initial_lwp (ptid); 912 913 /* Let the arch specific bits know about this new thread. Current 914 clients of this callback take the opportunity to install 915 watchpoints in the new thread. We don't do this for the first 916 thread though. See add_initial_lwp. */ 917 if (linux_nat_new_thread != NULL) 918 linux_nat_new_thread (lp); 919 920 return lp; 921 } 922 923 /* Remove the LWP specified by PID from the list. */ 924 925 static void 926 delete_lwp (ptid_t ptid) 927 { 928 struct lwp_info *lp; 929 void **slot; 930 struct lwp_info dummy; 931 932 dummy.ptid = ptid; 933 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT); 934 if (slot == NULL) 935 return; 936 937 lp = *(struct lwp_info **) slot; 938 gdb_assert (lp != NULL); 939 940 htab_clear_slot (lwp_lwpid_htab, slot); 941 942 /* Remove from sorted-by-creation-order list. */ 943 lwp_list_remove (lp); 944 945 /* Release. */ 946 lwp_free (lp); 947 } 948 949 /* Return a pointer to the structure describing the LWP corresponding 950 to PID. If no corresponding LWP could be found, return NULL. */ 951 952 static struct lwp_info * 953 find_lwp_pid (ptid_t ptid) 954 { 955 struct lwp_info *lp; 956 int lwp; 957 struct lwp_info dummy; 958 959 if (ptid_lwp_p (ptid)) 960 lwp = ptid_get_lwp (ptid); 961 else 962 lwp = ptid_get_pid (ptid); 963 964 dummy.ptid = ptid_build (0, lwp, 0); 965 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy); 966 return lp; 967 } 968 969 /* See nat/linux-nat.h. */ 970 971 struct lwp_info * 972 iterate_over_lwps (ptid_t filter, 973 iterate_over_lwps_ftype callback, 974 void *data) 975 { 976 struct lwp_info *lp, *lpnext; 977 978 for (lp = lwp_list; lp; lp = lpnext) 979 { 980 lpnext = lp->next; 981 982 if (ptid_match (lp->ptid, filter)) 983 { 984 if ((*callback) (lp, data) != 0) 985 return lp; 986 } 987 } 988 989 return NULL; 990 } 991 992 /* Update our internal state when changing from one checkpoint to 993 another indicated by NEW_PTID. We can only switch single-threaded 994 applications, so we only create one new LWP, and the previous list 995 is discarded. */ 996 997 void 998 linux_nat_switch_fork (ptid_t new_ptid) 999 { 1000 struct lwp_info *lp; 1001 1002 purge_lwp_list (ptid_get_pid (inferior_ptid)); 1003 1004 lp = add_lwp (new_ptid); 1005 lp->stopped = 1; 1006 1007 /* This changes the thread's ptid while preserving the gdb thread 1008 num. Also changes the inferior pid, while preserving the 1009 inferior num. */ 1010 thread_change_ptid (inferior_ptid, new_ptid); 1011 1012 /* We've just told GDB core that the thread changed target id, but, 1013 in fact, it really is a different thread, with different register 1014 contents. */ 1015 registers_changed (); 1016 } 1017 1018 /* Handle the exit of a single thread LP. */ 1019 1020 static void 1021 exit_lwp (struct lwp_info *lp) 1022 { 1023 struct thread_info *th = find_thread_ptid (lp->ptid); 1024 1025 if (th) 1026 { 1027 if (print_thread_events) 1028 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid)); 1029 1030 delete_thread (lp->ptid); 1031 } 1032 1033 delete_lwp (lp->ptid); 1034 } 1035 1036 /* Wait for the LWP specified by LP, which we have just attached to. 1037 Returns a wait status for that LWP, to cache. */ 1038 1039 static int 1040 linux_nat_post_attach_wait (ptid_t ptid, int first, int *signalled) 1041 { 1042 pid_t new_pid, pid = ptid_get_lwp (ptid); 1043 int status; 1044 1045 if (linux_proc_pid_is_stopped (pid)) 1046 { 1047 if (debug_linux_nat) 1048 fprintf_unfiltered (gdb_stdlog, 1049 "LNPAW: Attaching to a stopped process\n"); 1050 1051 /* The process is definitely stopped. It is in a job control 1052 stop, unless the kernel predates the TASK_STOPPED / 1053 TASK_TRACED distinction, in which case it might be in a 1054 ptrace stop. Make sure it is in a ptrace stop; from there we 1055 can kill it, signal it, et cetera. 1056 1057 First make sure there is a pending SIGSTOP. Since we are 1058 already attached, the process can not transition from stopped 1059 to running without a PTRACE_CONT; so we know this signal will 1060 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is 1061 probably already in the queue (unless this kernel is old 1062 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP 1063 is not an RT signal, it can only be queued once. */ 1064 kill_lwp (pid, SIGSTOP); 1065 1066 /* Finally, resume the stopped process. This will deliver the SIGSTOP 1067 (or a higher priority signal, just like normal PTRACE_ATTACH). */ 1068 ptrace (PTRACE_CONT, pid, 0, 0); 1069 } 1070 1071 /* Make sure the initial process is stopped. The user-level threads 1072 layer might want to poke around in the inferior, and that won't 1073 work if things haven't stabilized yet. */ 1074 new_pid = my_waitpid (pid, &status, __WALL); 1075 gdb_assert (pid == new_pid); 1076 1077 if (!WIFSTOPPED (status)) 1078 { 1079 /* The pid we tried to attach has apparently just exited. */ 1080 if (debug_linux_nat) 1081 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s", 1082 pid, status_to_str (status)); 1083 return status; 1084 } 1085 1086 if (WSTOPSIG (status) != SIGSTOP) 1087 { 1088 *signalled = 1; 1089 if (debug_linux_nat) 1090 fprintf_unfiltered (gdb_stdlog, 1091 "LNPAW: Received %s after attaching\n", 1092 status_to_str (status)); 1093 } 1094 1095 return status; 1096 } 1097 1098 static void 1099 linux_nat_create_inferior (struct target_ops *ops, 1100 char *exec_file, char *allargs, char **env, 1101 int from_tty) 1102 { 1103 struct cleanup *restore_personality 1104 = maybe_disable_address_space_randomization (disable_randomization); 1105 1106 /* The fork_child mechanism is synchronous and calls target_wait, so 1107 we have to mask the async mode. */ 1108 1109 /* Make sure we report all signals during startup. */ 1110 linux_nat_pass_signals (ops, 0, NULL); 1111 1112 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty); 1113 1114 do_cleanups (restore_personality); 1115 } 1116 1117 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not 1118 already attached. Returns true if a new LWP is found, false 1119 otherwise. */ 1120 1121 static int 1122 attach_proc_task_lwp_callback (ptid_t ptid) 1123 { 1124 struct lwp_info *lp; 1125 1126 /* Ignore LWPs we're already attached to. */ 1127 lp = find_lwp_pid (ptid); 1128 if (lp == NULL) 1129 { 1130 int lwpid = ptid_get_lwp (ptid); 1131 1132 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0) 1133 { 1134 int err = errno; 1135 1136 /* Be quiet if we simply raced with the thread exiting. 1137 EPERM is returned if the thread's task still exists, and 1138 is marked as exited or zombie, as well as other 1139 conditions, so in that case, confirm the status in 1140 /proc/PID/status. */ 1141 if (err == ESRCH 1142 || (err == EPERM && linux_proc_pid_is_gone (lwpid))) 1143 { 1144 if (debug_linux_nat) 1145 { 1146 fprintf_unfiltered (gdb_stdlog, 1147 "Cannot attach to lwp %d: " 1148 "thread is gone (%d: %s)\n", 1149 lwpid, err, safe_strerror (err)); 1150 } 1151 } 1152 else 1153 { 1154 warning (_("Cannot attach to lwp %d: %s"), 1155 lwpid, 1156 linux_ptrace_attach_fail_reason_string (ptid, 1157 err)); 1158 } 1159 } 1160 else 1161 { 1162 if (debug_linux_nat) 1163 fprintf_unfiltered (gdb_stdlog, 1164 "PTRACE_ATTACH %s, 0, 0 (OK)\n", 1165 target_pid_to_str (ptid)); 1166 1167 lp = add_lwp (ptid); 1168 1169 /* The next time we wait for this LWP we'll see a SIGSTOP as 1170 PTRACE_ATTACH brings it to a halt. */ 1171 lp->signalled = 1; 1172 1173 /* We need to wait for a stop before being able to make the 1174 next ptrace call on this LWP. */ 1175 lp->must_set_ptrace_flags = 1; 1176 1177 /* So that wait collects the SIGSTOP. */ 1178 lp->resumed = 1; 1179 1180 /* Also add the LWP to gdb's thread list, in case a 1181 matching libthread_db is not found (or the process uses 1182 raw clone). */ 1183 add_thread (lp->ptid); 1184 set_running (lp->ptid, 1); 1185 set_executing (lp->ptid, 1); 1186 } 1187 1188 return 1; 1189 } 1190 return 0; 1191 } 1192 1193 static void 1194 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty) 1195 { 1196 struct lwp_info *lp; 1197 int status; 1198 ptid_t ptid; 1199 1200 /* Make sure we report all signals during attach. */ 1201 linux_nat_pass_signals (ops, 0, NULL); 1202 1203 TRY 1204 { 1205 linux_ops->to_attach (ops, args, from_tty); 1206 } 1207 CATCH (ex, RETURN_MASK_ERROR) 1208 { 1209 pid_t pid = parse_pid_to_attach (args); 1210 struct buffer buffer; 1211 char *message, *buffer_s; 1212 1213 message = xstrdup (ex.message); 1214 make_cleanup (xfree, message); 1215 1216 buffer_init (&buffer); 1217 linux_ptrace_attach_fail_reason (pid, &buffer); 1218 1219 buffer_grow_str0 (&buffer, ""); 1220 buffer_s = buffer_finish (&buffer); 1221 make_cleanup (xfree, buffer_s); 1222 1223 if (*buffer_s != '\0') 1224 throw_error (ex.error, "warning: %s\n%s", buffer_s, message); 1225 else 1226 throw_error (ex.error, "%s", message); 1227 } 1228 END_CATCH 1229 1230 /* The ptrace base target adds the main thread with (pid,0,0) 1231 format. Decorate it with lwp info. */ 1232 ptid = ptid_build (ptid_get_pid (inferior_ptid), 1233 ptid_get_pid (inferior_ptid), 1234 0); 1235 thread_change_ptid (inferior_ptid, ptid); 1236 1237 /* Add the initial process as the first LWP to the list. */ 1238 lp = add_initial_lwp (ptid); 1239 1240 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->signalled); 1241 if (!WIFSTOPPED (status)) 1242 { 1243 if (WIFEXITED (status)) 1244 { 1245 int exit_code = WEXITSTATUS (status); 1246 1247 target_terminal_ours (); 1248 target_mourn_inferior (); 1249 if (exit_code == 0) 1250 error (_("Unable to attach: program exited normally.")); 1251 else 1252 error (_("Unable to attach: program exited with code %d."), 1253 exit_code); 1254 } 1255 else if (WIFSIGNALED (status)) 1256 { 1257 enum gdb_signal signo; 1258 1259 target_terminal_ours (); 1260 target_mourn_inferior (); 1261 1262 signo = gdb_signal_from_host (WTERMSIG (status)); 1263 error (_("Unable to attach: program terminated with signal " 1264 "%s, %s."), 1265 gdb_signal_to_name (signo), 1266 gdb_signal_to_string (signo)); 1267 } 1268 1269 internal_error (__FILE__, __LINE__, 1270 _("unexpected status %d for PID %ld"), 1271 status, (long) ptid_get_lwp (ptid)); 1272 } 1273 1274 lp->stopped = 1; 1275 1276 /* Save the wait status to report later. */ 1277 lp->resumed = 1; 1278 if (debug_linux_nat) 1279 fprintf_unfiltered (gdb_stdlog, 1280 "LNA: waitpid %ld, saving status %s\n", 1281 (long) ptid_get_pid (lp->ptid), status_to_str (status)); 1282 1283 lp->status = status; 1284 1285 /* We must attach to every LWP. If /proc is mounted, use that to 1286 find them now. The inferior may be using raw clone instead of 1287 using pthreads. But even if it is using pthreads, thread_db 1288 walks structures in the inferior's address space to find the list 1289 of threads/LWPs, and those structures may well be corrupted. 1290 Note that once thread_db is loaded, we'll still use it to list 1291 threads and associate pthread info with each LWP. */ 1292 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid), 1293 attach_proc_task_lwp_callback); 1294 1295 if (target_can_async_p ()) 1296 target_async (1); 1297 } 1298 1299 /* Get pending signal of THREAD as a host signal number, for detaching 1300 purposes. This is the signal the thread last stopped for, which we 1301 need to deliver to the thread when detaching, otherwise, it'd be 1302 suppressed/lost. */ 1303 1304 static int 1305 get_detach_signal (struct lwp_info *lp) 1306 { 1307 enum gdb_signal signo = GDB_SIGNAL_0; 1308 1309 /* If we paused threads momentarily, we may have stored pending 1310 events in lp->status or lp->waitstatus (see stop_wait_callback), 1311 and GDB core hasn't seen any signal for those threads. 1312 Otherwise, the last signal reported to the core is found in the 1313 thread object's stop_signal. 1314 1315 There's a corner case that isn't handled here at present. Only 1316 if the thread stopped with a TARGET_WAITKIND_STOPPED does 1317 stop_signal make sense as a real signal to pass to the inferior. 1318 Some catchpoint related events, like 1319 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set 1320 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But, 1321 those traps are debug API (ptrace in our case) related and 1322 induced; the inferior wouldn't see them if it wasn't being 1323 traced. Hence, we should never pass them to the inferior, even 1324 when set to pass state. Since this corner case isn't handled by 1325 infrun.c when proceeding with a signal, for consistency, neither 1326 do we handle it here (or elsewhere in the file we check for 1327 signal pass state). Normally SIGTRAP isn't set to pass state, so 1328 this is really a corner case. */ 1329 1330 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) 1331 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */ 1332 else if (lp->status) 1333 signo = gdb_signal_from_host (WSTOPSIG (lp->status)); 1334 else if (target_is_non_stop_p () && !is_executing (lp->ptid)) 1335 { 1336 struct thread_info *tp = find_thread_ptid (lp->ptid); 1337 1338 if (tp->suspend.waitstatus_pending_p) 1339 signo = tp->suspend.waitstatus.value.sig; 1340 else 1341 signo = tp->suspend.stop_signal; 1342 } 1343 else if (!target_is_non_stop_p ()) 1344 { 1345 struct target_waitstatus last; 1346 ptid_t last_ptid; 1347 1348 get_last_target_status (&last_ptid, &last); 1349 1350 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid)) 1351 { 1352 struct thread_info *tp = find_thread_ptid (lp->ptid); 1353 1354 signo = tp->suspend.stop_signal; 1355 } 1356 } 1357 1358 if (signo == GDB_SIGNAL_0) 1359 { 1360 if (debug_linux_nat) 1361 fprintf_unfiltered (gdb_stdlog, 1362 "GPT: lwp %s has no pending signal\n", 1363 target_pid_to_str (lp->ptid)); 1364 } 1365 else if (!signal_pass_state (signo)) 1366 { 1367 if (debug_linux_nat) 1368 fprintf_unfiltered (gdb_stdlog, 1369 "GPT: lwp %s had signal %s, " 1370 "but it is in no pass state\n", 1371 target_pid_to_str (lp->ptid), 1372 gdb_signal_to_string (signo)); 1373 } 1374 else 1375 { 1376 if (debug_linux_nat) 1377 fprintf_unfiltered (gdb_stdlog, 1378 "GPT: lwp %s has pending signal %s\n", 1379 target_pid_to_str (lp->ptid), 1380 gdb_signal_to_string (signo)); 1381 1382 return gdb_signal_to_host (signo); 1383 } 1384 1385 return 0; 1386 } 1387 1388 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the 1389 signal number that should be passed to the LWP when detaching. 1390 Otherwise pass any pending signal the LWP may have, if any. */ 1391 1392 static void 1393 detach_one_lwp (struct lwp_info *lp, int *signo_p) 1394 { 1395 int lwpid = ptid_get_lwp (lp->ptid); 1396 int signo; 1397 1398 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status)); 1399 1400 if (debug_linux_nat && lp->status) 1401 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n", 1402 strsignal (WSTOPSIG (lp->status)), 1403 target_pid_to_str (lp->ptid)); 1404 1405 /* If there is a pending SIGSTOP, get rid of it. */ 1406 if (lp->signalled) 1407 { 1408 if (debug_linux_nat) 1409 fprintf_unfiltered (gdb_stdlog, 1410 "DC: Sending SIGCONT to %s\n", 1411 target_pid_to_str (lp->ptid)); 1412 1413 kill_lwp (lwpid, SIGCONT); 1414 lp->signalled = 0; 1415 } 1416 1417 if (signo_p == NULL) 1418 { 1419 /* Pass on any pending signal for this LWP. */ 1420 signo = get_detach_signal (lp); 1421 } 1422 else 1423 signo = *signo_p; 1424 1425 /* Preparing to resume may try to write registers, and fail if the 1426 lwp is zombie. If that happens, ignore the error. We'll handle 1427 it below, when detach fails with ESRCH. */ 1428 TRY 1429 { 1430 if (linux_nat_prepare_to_resume != NULL) 1431 linux_nat_prepare_to_resume (lp); 1432 } 1433 CATCH (ex, RETURN_MASK_ERROR) 1434 { 1435 if (!check_ptrace_stopped_lwp_gone (lp)) 1436 throw_exception (ex); 1437 } 1438 END_CATCH 1439 1440 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0) 1441 { 1442 int save_errno = errno; 1443 1444 /* We know the thread exists, so ESRCH must mean the lwp is 1445 zombie. This can happen if one of the already-detached 1446 threads exits the whole thread group. In that case we're 1447 still attached, and must reap the lwp. */ 1448 if (save_errno == ESRCH) 1449 { 1450 int ret, status; 1451 1452 ret = my_waitpid (lwpid, &status, __WALL); 1453 if (ret == -1) 1454 { 1455 warning (_("Couldn't reap LWP %d while detaching: %s"), 1456 lwpid, strerror (errno)); 1457 } 1458 else if (!WIFEXITED (status) && !WIFSIGNALED (status)) 1459 { 1460 warning (_("Reaping LWP %d while detaching " 1461 "returned unexpected status 0x%x"), 1462 lwpid, status); 1463 } 1464 } 1465 else 1466 { 1467 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid), 1468 safe_strerror (save_errno)); 1469 } 1470 } 1471 else if (debug_linux_nat) 1472 { 1473 fprintf_unfiltered (gdb_stdlog, 1474 "PTRACE_DETACH (%s, %s, 0) (OK)\n", 1475 target_pid_to_str (lp->ptid), 1476 strsignal (signo)); 1477 } 1478 1479 delete_lwp (lp->ptid); 1480 } 1481 1482 static int 1483 detach_callback (struct lwp_info *lp, void *data) 1484 { 1485 /* We don't actually detach from the thread group leader just yet. 1486 If the thread group exits, we must reap the zombie clone lwps 1487 before we're able to reap the leader. */ 1488 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid)) 1489 detach_one_lwp (lp, NULL); 1490 return 0; 1491 } 1492 1493 static void 1494 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty) 1495 { 1496 int pid; 1497 struct lwp_info *main_lwp; 1498 1499 pid = ptid_get_pid (inferior_ptid); 1500 1501 /* Don't unregister from the event loop, as there may be other 1502 inferiors running. */ 1503 1504 /* Stop all threads before detaching. ptrace requires that the 1505 thread is stopped to sucessfully detach. */ 1506 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL); 1507 /* ... and wait until all of them have reported back that 1508 they're no longer running. */ 1509 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL); 1510 1511 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL); 1512 1513 /* Only the initial process should be left right now. */ 1514 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1); 1515 1516 main_lwp = find_lwp_pid (pid_to_ptid (pid)); 1517 1518 if (forks_exist_p ()) 1519 { 1520 /* Multi-fork case. The current inferior_ptid is being detached 1521 from, but there are other viable forks to debug. Detach from 1522 the current fork, and context-switch to the first 1523 available. */ 1524 linux_fork_detach (args, from_tty); 1525 } 1526 else 1527 { 1528 int signo; 1529 1530 target_announce_detach (from_tty); 1531 1532 /* Pass on any pending signal for the last LWP, unless the user 1533 requested detaching with a different signal (most likely 0, 1534 meaning, discard the signal). */ 1535 if (args != NULL) 1536 signo = atoi (args); 1537 else 1538 signo = get_detach_signal (main_lwp); 1539 1540 detach_one_lwp (main_lwp, &signo); 1541 1542 inf_ptrace_detach_success (ops); 1543 } 1544 delete_lwp (main_lwp->ptid); 1545 } 1546 1547 /* Resume execution of the inferior process. If STEP is nonzero, 1548 single-step it. If SIGNAL is nonzero, give it that signal. */ 1549 1550 static void 1551 linux_resume_one_lwp_throw (struct lwp_info *lp, int step, 1552 enum gdb_signal signo) 1553 { 1554 lp->step = step; 1555 1556 /* stop_pc doubles as the PC the LWP had when it was last resumed. 1557 We only presently need that if the LWP is stepped though (to 1558 handle the case of stepping a breakpoint instruction). */ 1559 if (step) 1560 { 1561 struct regcache *regcache = get_thread_regcache (lp->ptid); 1562 1563 lp->stop_pc = regcache_read_pc (regcache); 1564 } 1565 else 1566 lp->stop_pc = 0; 1567 1568 if (linux_nat_prepare_to_resume != NULL) 1569 linux_nat_prepare_to_resume (lp); 1570 linux_ops->to_resume (linux_ops, lp->ptid, step, signo); 1571 1572 /* Successfully resumed. Clear state that no longer makes sense, 1573 and mark the LWP as running. Must not do this before resuming 1574 otherwise if that fails other code will be confused. E.g., we'd 1575 later try to stop the LWP and hang forever waiting for a stop 1576 status. Note that we must not throw after this is cleared, 1577 otherwise handle_zombie_lwp_error would get confused. */ 1578 lp->stopped = 0; 1579 lp->core = -1; 1580 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON; 1581 registers_changed_ptid (lp->ptid); 1582 } 1583 1584 /* Called when we try to resume a stopped LWP and that errors out. If 1585 the LWP is no longer in ptrace-stopped state (meaning it's zombie, 1586 or about to become), discard the error, clear any pending status 1587 the LWP may have, and return true (we'll collect the exit status 1588 soon enough). Otherwise, return false. */ 1589 1590 static int 1591 check_ptrace_stopped_lwp_gone (struct lwp_info *lp) 1592 { 1593 /* If we get an error after resuming the LWP successfully, we'd 1594 confuse !T state for the LWP being gone. */ 1595 gdb_assert (lp->stopped); 1596 1597 /* We can't just check whether the LWP is in 'Z (Zombie)' state, 1598 because even if ptrace failed with ESRCH, the tracee may be "not 1599 yet fully dead", but already refusing ptrace requests. In that 1600 case the tracee has 'R (Running)' state for a little bit 1601 (observed in Linux 3.18). See also the note on ESRCH in the 1602 ptrace(2) man page. Instead, check whether the LWP has any state 1603 other than ptrace-stopped. */ 1604 1605 /* Don't assume anything if /proc/PID/status can't be read. */ 1606 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0) 1607 { 1608 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON; 1609 lp->status = 0; 1610 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 1611 return 1; 1612 } 1613 return 0; 1614 } 1615 1616 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP 1617 disappears while we try to resume it. */ 1618 1619 static void 1620 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo) 1621 { 1622 TRY 1623 { 1624 linux_resume_one_lwp_throw (lp, step, signo); 1625 } 1626 CATCH (ex, RETURN_MASK_ERROR) 1627 { 1628 if (!check_ptrace_stopped_lwp_gone (lp)) 1629 throw_exception (ex); 1630 } 1631 END_CATCH 1632 } 1633 1634 /* Resume LP. */ 1635 1636 static void 1637 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo) 1638 { 1639 if (lp->stopped) 1640 { 1641 struct inferior *inf = find_inferior_ptid (lp->ptid); 1642 1643 if (inf->vfork_child != NULL) 1644 { 1645 if (debug_linux_nat) 1646 fprintf_unfiltered (gdb_stdlog, 1647 "RC: Not resuming %s (vfork parent)\n", 1648 target_pid_to_str (lp->ptid)); 1649 } 1650 else if (!lwp_status_pending_p (lp)) 1651 { 1652 if (debug_linux_nat) 1653 fprintf_unfiltered (gdb_stdlog, 1654 "RC: Resuming sibling %s, %s, %s\n", 1655 target_pid_to_str (lp->ptid), 1656 (signo != GDB_SIGNAL_0 1657 ? strsignal (gdb_signal_to_host (signo)) 1658 : "0"), 1659 step ? "step" : "resume"); 1660 1661 linux_resume_one_lwp (lp, step, signo); 1662 } 1663 else 1664 { 1665 if (debug_linux_nat) 1666 fprintf_unfiltered (gdb_stdlog, 1667 "RC: Not resuming sibling %s (has pending)\n", 1668 target_pid_to_str (lp->ptid)); 1669 } 1670 } 1671 else 1672 { 1673 if (debug_linux_nat) 1674 fprintf_unfiltered (gdb_stdlog, 1675 "RC: Not resuming sibling %s (not stopped)\n", 1676 target_pid_to_str (lp->ptid)); 1677 } 1678 } 1679 1680 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing. 1681 Resume LWP with the last stop signal, if it is in pass state. */ 1682 1683 static int 1684 linux_nat_resume_callback (struct lwp_info *lp, void *except) 1685 { 1686 enum gdb_signal signo = GDB_SIGNAL_0; 1687 1688 if (lp == except) 1689 return 0; 1690 1691 if (lp->stopped) 1692 { 1693 struct thread_info *thread; 1694 1695 thread = find_thread_ptid (lp->ptid); 1696 if (thread != NULL) 1697 { 1698 signo = thread->suspend.stop_signal; 1699 thread->suspend.stop_signal = GDB_SIGNAL_0; 1700 } 1701 } 1702 1703 resume_lwp (lp, 0, signo); 1704 return 0; 1705 } 1706 1707 static int 1708 resume_clear_callback (struct lwp_info *lp, void *data) 1709 { 1710 lp->resumed = 0; 1711 lp->last_resume_kind = resume_stop; 1712 return 0; 1713 } 1714 1715 static int 1716 resume_set_callback (struct lwp_info *lp, void *data) 1717 { 1718 lp->resumed = 1; 1719 lp->last_resume_kind = resume_continue; 1720 return 0; 1721 } 1722 1723 static void 1724 linux_nat_resume (struct target_ops *ops, 1725 ptid_t ptid, int step, enum gdb_signal signo) 1726 { 1727 struct lwp_info *lp; 1728 int resume_many; 1729 1730 if (debug_linux_nat) 1731 fprintf_unfiltered (gdb_stdlog, 1732 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n", 1733 step ? "step" : "resume", 1734 target_pid_to_str (ptid), 1735 (signo != GDB_SIGNAL_0 1736 ? strsignal (gdb_signal_to_host (signo)) : "0"), 1737 target_pid_to_str (inferior_ptid)); 1738 1739 /* A specific PTID means `step only this process id'. */ 1740 resume_many = (ptid_equal (minus_one_ptid, ptid) 1741 || ptid_is_pid (ptid)); 1742 1743 /* Mark the lwps we're resuming as resumed. */ 1744 iterate_over_lwps (ptid, resume_set_callback, NULL); 1745 1746 /* See if it's the current inferior that should be handled 1747 specially. */ 1748 if (resume_many) 1749 lp = find_lwp_pid (inferior_ptid); 1750 else 1751 lp = find_lwp_pid (ptid); 1752 gdb_assert (lp != NULL); 1753 1754 /* Remember if we're stepping. */ 1755 lp->last_resume_kind = step ? resume_step : resume_continue; 1756 1757 /* If we have a pending wait status for this thread, there is no 1758 point in resuming the process. But first make sure that 1759 linux_nat_wait won't preemptively handle the event - we 1760 should never take this short-circuit if we are going to 1761 leave LP running, since we have skipped resuming all the 1762 other threads. This bit of code needs to be synchronized 1763 with linux_nat_wait. */ 1764 1765 if (lp->status && WIFSTOPPED (lp->status)) 1766 { 1767 if (!lp->step 1768 && WSTOPSIG (lp->status) 1769 && sigismember (&pass_mask, WSTOPSIG (lp->status))) 1770 { 1771 if (debug_linux_nat) 1772 fprintf_unfiltered (gdb_stdlog, 1773 "LLR: Not short circuiting for ignored " 1774 "status 0x%x\n", lp->status); 1775 1776 /* FIXME: What should we do if we are supposed to continue 1777 this thread with a signal? */ 1778 gdb_assert (signo == GDB_SIGNAL_0); 1779 signo = gdb_signal_from_host (WSTOPSIG (lp->status)); 1780 lp->status = 0; 1781 } 1782 } 1783 1784 if (lwp_status_pending_p (lp)) 1785 { 1786 /* FIXME: What should we do if we are supposed to continue 1787 this thread with a signal? */ 1788 gdb_assert (signo == GDB_SIGNAL_0); 1789 1790 if (debug_linux_nat) 1791 fprintf_unfiltered (gdb_stdlog, 1792 "LLR: Short circuiting for status 0x%x\n", 1793 lp->status); 1794 1795 if (target_can_async_p ()) 1796 { 1797 target_async (1); 1798 /* Tell the event loop we have something to process. */ 1799 async_file_mark (); 1800 } 1801 return; 1802 } 1803 1804 if (resume_many) 1805 iterate_over_lwps (ptid, linux_nat_resume_callback, lp); 1806 1807 if (debug_linux_nat) 1808 fprintf_unfiltered (gdb_stdlog, 1809 "LLR: %s %s, %s (resume event thread)\n", 1810 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", 1811 target_pid_to_str (lp->ptid), 1812 (signo != GDB_SIGNAL_0 1813 ? strsignal (gdb_signal_to_host (signo)) : "0")); 1814 1815 linux_resume_one_lwp (lp, step, signo); 1816 1817 if (target_can_async_p ()) 1818 target_async (1); 1819 } 1820 1821 /* Send a signal to an LWP. */ 1822 1823 static int 1824 kill_lwp (int lwpid, int signo) 1825 { 1826 int ret; 1827 1828 errno = 0; 1829 ret = syscall (__NR_tkill, lwpid, signo); 1830 if (errno == ENOSYS) 1831 { 1832 /* If tkill fails, then we are not using nptl threads, a 1833 configuration we no longer support. */ 1834 perror_with_name (("tkill")); 1835 } 1836 return ret; 1837 } 1838 1839 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall 1840 event, check if the core is interested in it: if not, ignore the 1841 event, and keep waiting; otherwise, we need to toggle the LWP's 1842 syscall entry/exit status, since the ptrace event itself doesn't 1843 indicate it, and report the trap to higher layers. */ 1844 1845 static int 1846 linux_handle_syscall_trap (struct lwp_info *lp, int stopping) 1847 { 1848 struct target_waitstatus *ourstatus = &lp->waitstatus; 1849 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid); 1850 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid); 1851 1852 if (stopping) 1853 { 1854 /* If we're stopping threads, there's a SIGSTOP pending, which 1855 makes it so that the LWP reports an immediate syscall return, 1856 followed by the SIGSTOP. Skip seeing that "return" using 1857 PTRACE_CONT directly, and let stop_wait_callback collect the 1858 SIGSTOP. Later when the thread is resumed, a new syscall 1859 entry event. If we didn't do this (and returned 0), we'd 1860 leave a syscall entry pending, and our caller, by using 1861 PTRACE_CONT to collect the SIGSTOP, skips the syscall return 1862 itself. Later, when the user re-resumes this LWP, we'd see 1863 another syscall entry event and we'd mistake it for a return. 1864 1865 If stop_wait_callback didn't force the SIGSTOP out of the LWP 1866 (leaving immediately with LWP->signalled set, without issuing 1867 a PTRACE_CONT), it would still be problematic to leave this 1868 syscall enter pending, as later when the thread is resumed, 1869 it would then see the same syscall exit mentioned above, 1870 followed by the delayed SIGSTOP, while the syscall didn't 1871 actually get to execute. It seems it would be even more 1872 confusing to the user. */ 1873 1874 if (debug_linux_nat) 1875 fprintf_unfiltered (gdb_stdlog, 1876 "LHST: ignoring syscall %d " 1877 "for LWP %ld (stopping threads), " 1878 "resuming with PTRACE_CONT for SIGSTOP\n", 1879 syscall_number, 1880 ptid_get_lwp (lp->ptid)); 1881 1882 lp->syscall_state = TARGET_WAITKIND_IGNORE; 1883 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0); 1884 lp->stopped = 0; 1885 return 1; 1886 } 1887 1888 /* Always update the entry/return state, even if this particular 1889 syscall isn't interesting to the core now. In async mode, 1890 the user could install a new catchpoint for this syscall 1891 between syscall enter/return, and we'll need to know to 1892 report a syscall return if that happens. */ 1893 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1894 ? TARGET_WAITKIND_SYSCALL_RETURN 1895 : TARGET_WAITKIND_SYSCALL_ENTRY); 1896 1897 if (catch_syscall_enabled ()) 1898 { 1899 if (catching_syscall_number (syscall_number)) 1900 { 1901 /* Alright, an event to report. */ 1902 ourstatus->kind = lp->syscall_state; 1903 ourstatus->value.syscall_number = syscall_number; 1904 1905 if (debug_linux_nat) 1906 fprintf_unfiltered (gdb_stdlog, 1907 "LHST: stopping for %s of syscall %d" 1908 " for LWP %ld\n", 1909 lp->syscall_state 1910 == TARGET_WAITKIND_SYSCALL_ENTRY 1911 ? "entry" : "return", 1912 syscall_number, 1913 ptid_get_lwp (lp->ptid)); 1914 return 0; 1915 } 1916 1917 if (debug_linux_nat) 1918 fprintf_unfiltered (gdb_stdlog, 1919 "LHST: ignoring %s of syscall %d " 1920 "for LWP %ld\n", 1921 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1922 ? "entry" : "return", 1923 syscall_number, 1924 ptid_get_lwp (lp->ptid)); 1925 } 1926 else 1927 { 1928 /* If we had been syscall tracing, and hence used PT_SYSCALL 1929 before on this LWP, it could happen that the user removes all 1930 syscall catchpoints before we get to process this event. 1931 There are two noteworthy issues here: 1932 1933 - When stopped at a syscall entry event, resuming with 1934 PT_STEP still resumes executing the syscall and reports a 1935 syscall return. 1936 1937 - Only PT_SYSCALL catches syscall enters. If we last 1938 single-stepped this thread, then this event can't be a 1939 syscall enter. If we last single-stepped this thread, this 1940 has to be a syscall exit. 1941 1942 The points above mean that the next resume, be it PT_STEP or 1943 PT_CONTINUE, can not trigger a syscall trace event. */ 1944 if (debug_linux_nat) 1945 fprintf_unfiltered (gdb_stdlog, 1946 "LHST: caught syscall event " 1947 "with no syscall catchpoints." 1948 " %d for LWP %ld, ignoring\n", 1949 syscall_number, 1950 ptid_get_lwp (lp->ptid)); 1951 lp->syscall_state = TARGET_WAITKIND_IGNORE; 1952 } 1953 1954 /* The core isn't interested in this event. For efficiency, avoid 1955 stopping all threads only to have the core resume them all again. 1956 Since we're not stopping threads, if we're still syscall tracing 1957 and not stepping, we can't use PTRACE_CONT here, as we'd miss any 1958 subsequent syscall. Simply resume using the inf-ptrace layer, 1959 which knows when to use PT_SYSCALL or PT_CONTINUE. */ 1960 1961 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 1962 return 1; 1963 } 1964 1965 /* Handle a GNU/Linux extended wait response. If we see a clone 1966 event, we need to add the new LWP to our list (and not report the 1967 trap to higher layers). This function returns non-zero if the 1968 event should be ignored and we should wait again. If STOPPING is 1969 true, the new LWP remains stopped, otherwise it is continued. */ 1970 1971 static int 1972 linux_handle_extended_wait (struct lwp_info *lp, int status) 1973 { 1974 int pid = ptid_get_lwp (lp->ptid); 1975 struct target_waitstatus *ourstatus = &lp->waitstatus; 1976 int event = linux_ptrace_get_extended_event (status); 1977 1978 /* All extended events we currently use are mid-syscall. Only 1979 PTRACE_EVENT_STOP is delivered more like a signal-stop, but 1980 you have to be using PTRACE_SEIZE to get that. */ 1981 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY; 1982 1983 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK 1984 || event == PTRACE_EVENT_CLONE) 1985 { 1986 unsigned long new_pid; 1987 int ret; 1988 1989 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid); 1990 1991 /* If we haven't already seen the new PID stop, wait for it now. */ 1992 if (! pull_pid_from_list (&stopped_pids, new_pid, &status)) 1993 { 1994 /* The new child has a pending SIGSTOP. We can't affect it until it 1995 hits the SIGSTOP, but we're already attached. */ 1996 ret = my_waitpid (new_pid, &status, __WALL); 1997 if (ret == -1) 1998 perror_with_name (_("waiting for new child")); 1999 else if (ret != new_pid) 2000 internal_error (__FILE__, __LINE__, 2001 _("wait returned unexpected PID %d"), ret); 2002 else if (!WIFSTOPPED (status)) 2003 internal_error (__FILE__, __LINE__, 2004 _("wait returned unexpected status 0x%x"), status); 2005 } 2006 2007 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0); 2008 2009 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK) 2010 { 2011 /* The arch-specific native code may need to know about new 2012 forks even if those end up never mapped to an 2013 inferior. */ 2014 if (linux_nat_new_fork != NULL) 2015 linux_nat_new_fork (lp, new_pid); 2016 } 2017 2018 if (event == PTRACE_EVENT_FORK 2019 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid))) 2020 { 2021 /* Handle checkpointing by linux-fork.c here as a special 2022 case. We don't want the follow-fork-mode or 'catch fork' 2023 to interfere with this. */ 2024 2025 /* This won't actually modify the breakpoint list, but will 2026 physically remove the breakpoints from the child. */ 2027 detach_breakpoints (ptid_build (new_pid, new_pid, 0)); 2028 2029 /* Retain child fork in ptrace (stopped) state. */ 2030 if (!find_fork_pid (new_pid)) 2031 add_fork (new_pid); 2032 2033 /* Report as spurious, so that infrun doesn't want to follow 2034 this fork. We're actually doing an infcall in 2035 linux-fork.c. */ 2036 ourstatus->kind = TARGET_WAITKIND_SPURIOUS; 2037 2038 /* Report the stop to the core. */ 2039 return 0; 2040 } 2041 2042 if (event == PTRACE_EVENT_FORK) 2043 ourstatus->kind = TARGET_WAITKIND_FORKED; 2044 else if (event == PTRACE_EVENT_VFORK) 2045 ourstatus->kind = TARGET_WAITKIND_VFORKED; 2046 else if (event == PTRACE_EVENT_CLONE) 2047 { 2048 struct lwp_info *new_lp; 2049 2050 ourstatus->kind = TARGET_WAITKIND_IGNORE; 2051 2052 if (debug_linux_nat) 2053 fprintf_unfiltered (gdb_stdlog, 2054 "LHEW: Got clone event " 2055 "from LWP %d, new child is LWP %ld\n", 2056 pid, new_pid); 2057 2058 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0)); 2059 new_lp->stopped = 1; 2060 new_lp->resumed = 1; 2061 2062 /* If the thread_db layer is active, let it record the user 2063 level thread id and status, and add the thread to GDB's 2064 list. */ 2065 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid)) 2066 { 2067 /* The process is not using thread_db. Add the LWP to 2068 GDB's list. */ 2069 target_post_attach (ptid_get_lwp (new_lp->ptid)); 2070 add_thread (new_lp->ptid); 2071 } 2072 2073 /* Even if we're stopping the thread for some reason 2074 internal to this module, from the perspective of infrun 2075 and the user/frontend, this new thread is running until 2076 it next reports a stop. */ 2077 set_running (new_lp->ptid, 1); 2078 set_executing (new_lp->ptid, 1); 2079 2080 if (WSTOPSIG (status) != SIGSTOP) 2081 { 2082 /* This can happen if someone starts sending signals to 2083 the new thread before it gets a chance to run, which 2084 have a lower number than SIGSTOP (e.g. SIGUSR1). 2085 This is an unlikely case, and harder to handle for 2086 fork / vfork than for clone, so we do not try - but 2087 we handle it for clone events here. */ 2088 2089 new_lp->signalled = 1; 2090 2091 /* We created NEW_LP so it cannot yet contain STATUS. */ 2092 gdb_assert (new_lp->status == 0); 2093 2094 /* Save the wait status to report later. */ 2095 if (debug_linux_nat) 2096 fprintf_unfiltered (gdb_stdlog, 2097 "LHEW: waitpid of new LWP %ld, " 2098 "saving status %s\n", 2099 (long) ptid_get_lwp (new_lp->ptid), 2100 status_to_str (status)); 2101 new_lp->status = status; 2102 } 2103 else if (report_thread_events) 2104 { 2105 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED; 2106 new_lp->status = status; 2107 } 2108 2109 return 1; 2110 } 2111 2112 return 0; 2113 } 2114 2115 if (event == PTRACE_EVENT_EXEC) 2116 { 2117 if (debug_linux_nat) 2118 fprintf_unfiltered (gdb_stdlog, 2119 "LHEW: Got exec event from LWP %ld\n", 2120 ptid_get_lwp (lp->ptid)); 2121 2122 ourstatus->kind = TARGET_WAITKIND_EXECD; 2123 ourstatus->value.execd_pathname 2124 = xstrdup (linux_child_pid_to_exec_file (NULL, pid)); 2125 2126 /* The thread that execed must have been resumed, but, when a 2127 thread execs, it changes its tid to the tgid, and the old 2128 tgid thread might have not been resumed. */ 2129 lp->resumed = 1; 2130 return 0; 2131 } 2132 2133 if (event == PTRACE_EVENT_VFORK_DONE) 2134 { 2135 if (current_inferior ()->waiting_for_vfork_done) 2136 { 2137 if (debug_linux_nat) 2138 fprintf_unfiltered (gdb_stdlog, 2139 "LHEW: Got expected PTRACE_EVENT_" 2140 "VFORK_DONE from LWP %ld: stopping\n", 2141 ptid_get_lwp (lp->ptid)); 2142 2143 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE; 2144 return 0; 2145 } 2146 2147 if (debug_linux_nat) 2148 fprintf_unfiltered (gdb_stdlog, 2149 "LHEW: Got PTRACE_EVENT_VFORK_DONE " 2150 "from LWP %ld: ignoring\n", 2151 ptid_get_lwp (lp->ptid)); 2152 return 1; 2153 } 2154 2155 internal_error (__FILE__, __LINE__, 2156 _("unknown ptrace event %d"), event); 2157 } 2158 2159 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has 2160 exited. */ 2161 2162 static int 2163 wait_lwp (struct lwp_info *lp) 2164 { 2165 pid_t pid; 2166 int status = 0; 2167 int thread_dead = 0; 2168 sigset_t prev_mask; 2169 2170 gdb_assert (!lp->stopped); 2171 gdb_assert (lp->status == 0); 2172 2173 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */ 2174 block_child_signals (&prev_mask); 2175 2176 for (;;) 2177 { 2178 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WALL | WNOHANG); 2179 if (pid == -1 && errno == ECHILD) 2180 { 2181 /* The thread has previously exited. We need to delete it 2182 now because if this was a non-leader thread execing, we 2183 won't get an exit event. See comments on exec events at 2184 the top of the file. */ 2185 thread_dead = 1; 2186 if (debug_linux_nat) 2187 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n", 2188 target_pid_to_str (lp->ptid)); 2189 } 2190 if (pid != 0) 2191 break; 2192 2193 /* Bugs 10970, 12702. 2194 Thread group leader may have exited in which case we'll lock up in 2195 waitpid if there are other threads, even if they are all zombies too. 2196 Basically, we're not supposed to use waitpid this way. 2197 tkill(pid,0) cannot be used here as it gets ESRCH for both 2198 for zombie and running processes. 2199 2200 As a workaround, check if we're waiting for the thread group leader and 2201 if it's a zombie, and avoid calling waitpid if it is. 2202 2203 This is racy, what if the tgl becomes a zombie right after we check? 2204 Therefore always use WNOHANG with sigsuspend - it is equivalent to 2205 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */ 2206 2207 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid) 2208 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid))) 2209 { 2210 thread_dead = 1; 2211 if (debug_linux_nat) 2212 fprintf_unfiltered (gdb_stdlog, 2213 "WL: Thread group leader %s vanished.\n", 2214 target_pid_to_str (lp->ptid)); 2215 break; 2216 } 2217 2218 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers 2219 get invoked despite our caller had them intentionally blocked by 2220 block_child_signals. This is sensitive only to the loop of 2221 linux_nat_wait_1 and there if we get called my_waitpid gets called 2222 again before it gets to sigsuspend so we can safely let the handlers 2223 get executed here. */ 2224 2225 if (debug_linux_nat) 2226 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n"); 2227 sigsuspend (&suspend_mask); 2228 } 2229 2230 restore_child_signals_mask (&prev_mask); 2231 2232 if (!thread_dead) 2233 { 2234 gdb_assert (pid == ptid_get_lwp (lp->ptid)); 2235 2236 if (debug_linux_nat) 2237 { 2238 fprintf_unfiltered (gdb_stdlog, 2239 "WL: waitpid %s received %s\n", 2240 target_pid_to_str (lp->ptid), 2241 status_to_str (status)); 2242 } 2243 2244 /* Check if the thread has exited. */ 2245 if (WIFEXITED (status) || WIFSIGNALED (status)) 2246 { 2247 if (report_thread_events 2248 || ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)) 2249 { 2250 if (debug_linux_nat) 2251 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n", 2252 ptid_get_pid (lp->ptid)); 2253 2254 /* If this is the leader exiting, it means the whole 2255 process is gone. Store the status to report to the 2256 core. Store it in lp->waitstatus, because lp->status 2257 would be ambiguous (W_EXITCODE(0,0) == 0). */ 2258 store_waitstatus (&lp->waitstatus, status); 2259 return 0; 2260 } 2261 2262 thread_dead = 1; 2263 if (debug_linux_nat) 2264 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n", 2265 target_pid_to_str (lp->ptid)); 2266 } 2267 } 2268 2269 if (thread_dead) 2270 { 2271 exit_lwp (lp); 2272 return 0; 2273 } 2274 2275 gdb_assert (WIFSTOPPED (status)); 2276 lp->stopped = 1; 2277 2278 if (lp->must_set_ptrace_flags) 2279 { 2280 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid)); 2281 int options = linux_nat_ptrace_options (inf->attach_flag); 2282 2283 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options); 2284 lp->must_set_ptrace_flags = 0; 2285 } 2286 2287 /* Handle GNU/Linux's syscall SIGTRAPs. */ 2288 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) 2289 { 2290 /* No longer need the sysgood bit. The ptrace event ends up 2291 recorded in lp->waitstatus if we care for it. We can carry 2292 on handling the event like a regular SIGTRAP from here 2293 on. */ 2294 status = W_STOPCODE (SIGTRAP); 2295 if (linux_handle_syscall_trap (lp, 1)) 2296 return wait_lwp (lp); 2297 } 2298 else 2299 { 2300 /* Almost all other ptrace-stops are known to be outside of system 2301 calls, with further exceptions in linux_handle_extended_wait. */ 2302 lp->syscall_state = TARGET_WAITKIND_IGNORE; 2303 } 2304 2305 /* Handle GNU/Linux's extended waitstatus for trace events. */ 2306 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP 2307 && linux_is_extended_waitstatus (status)) 2308 { 2309 if (debug_linux_nat) 2310 fprintf_unfiltered (gdb_stdlog, 2311 "WL: Handling extended status 0x%06x\n", 2312 status); 2313 linux_handle_extended_wait (lp, status); 2314 return 0; 2315 } 2316 2317 return status; 2318 } 2319 2320 /* Send a SIGSTOP to LP. */ 2321 2322 static int 2323 stop_callback (struct lwp_info *lp, void *data) 2324 { 2325 if (!lp->stopped && !lp->signalled) 2326 { 2327 int ret; 2328 2329 if (debug_linux_nat) 2330 { 2331 fprintf_unfiltered (gdb_stdlog, 2332 "SC: kill %s **<SIGSTOP>**\n", 2333 target_pid_to_str (lp->ptid)); 2334 } 2335 errno = 0; 2336 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP); 2337 if (debug_linux_nat) 2338 { 2339 fprintf_unfiltered (gdb_stdlog, 2340 "SC: lwp kill %d %s\n", 2341 ret, 2342 errno ? safe_strerror (errno) : "ERRNO-OK"); 2343 } 2344 2345 lp->signalled = 1; 2346 gdb_assert (lp->status == 0); 2347 } 2348 2349 return 0; 2350 } 2351 2352 /* Request a stop on LWP. */ 2353 2354 void 2355 linux_stop_lwp (struct lwp_info *lwp) 2356 { 2357 stop_callback (lwp, NULL); 2358 } 2359 2360 /* See linux-nat.h */ 2361 2362 void 2363 linux_stop_and_wait_all_lwps (void) 2364 { 2365 /* Stop all LWP's ... */ 2366 iterate_over_lwps (minus_one_ptid, stop_callback, NULL); 2367 2368 /* ... and wait until all of them have reported back that 2369 they're no longer running. */ 2370 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL); 2371 } 2372 2373 /* See linux-nat.h */ 2374 2375 void 2376 linux_unstop_all_lwps (void) 2377 { 2378 iterate_over_lwps (minus_one_ptid, 2379 resume_stopped_resumed_lwps, &minus_one_ptid); 2380 } 2381 2382 /* Return non-zero if LWP PID has a pending SIGINT. */ 2383 2384 static int 2385 linux_nat_has_pending_sigint (int pid) 2386 { 2387 sigset_t pending, blocked, ignored; 2388 2389 linux_proc_pending_signals (pid, &pending, &blocked, &ignored); 2390 2391 if (sigismember (&pending, SIGINT) 2392 && !sigismember (&ignored, SIGINT)) 2393 return 1; 2394 2395 return 0; 2396 } 2397 2398 /* Set a flag in LP indicating that we should ignore its next SIGINT. */ 2399 2400 static int 2401 set_ignore_sigint (struct lwp_info *lp, void *data) 2402 { 2403 /* If a thread has a pending SIGINT, consume it; otherwise, set a 2404 flag to consume the next one. */ 2405 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status) 2406 && WSTOPSIG (lp->status) == SIGINT) 2407 lp->status = 0; 2408 else 2409 lp->ignore_sigint = 1; 2410 2411 return 0; 2412 } 2413 2414 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag. 2415 This function is called after we know the LWP has stopped; if the LWP 2416 stopped before the expected SIGINT was delivered, then it will never have 2417 arrived. Also, if the signal was delivered to a shared queue and consumed 2418 by a different thread, it will never be delivered to this LWP. */ 2419 2420 static void 2421 maybe_clear_ignore_sigint (struct lwp_info *lp) 2422 { 2423 if (!lp->ignore_sigint) 2424 return; 2425 2426 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid))) 2427 { 2428 if (debug_linux_nat) 2429 fprintf_unfiltered (gdb_stdlog, 2430 "MCIS: Clearing bogus flag for %s\n", 2431 target_pid_to_str (lp->ptid)); 2432 lp->ignore_sigint = 0; 2433 } 2434 } 2435 2436 /* Fetch the possible triggered data watchpoint info and store it in 2437 LP. 2438 2439 On some archs, like x86, that use debug registers to set 2440 watchpoints, it's possible that the way to know which watched 2441 address trapped, is to check the register that is used to select 2442 which address to watch. Problem is, between setting the watchpoint 2443 and reading back which data address trapped, the user may change 2444 the set of watchpoints, and, as a consequence, GDB changes the 2445 debug registers in the inferior. To avoid reading back a stale 2446 stopped-data-address when that happens, we cache in LP the fact 2447 that a watchpoint trapped, and the corresponding data address, as 2448 soon as we see LP stop with a SIGTRAP. If GDB changes the debug 2449 registers meanwhile, we have the cached data we can rely on. */ 2450 2451 static int 2452 check_stopped_by_watchpoint (struct lwp_info *lp) 2453 { 2454 struct cleanup *old_chain; 2455 2456 if (linux_ops->to_stopped_by_watchpoint == NULL) 2457 return 0; 2458 2459 old_chain = save_inferior_ptid (); 2460 inferior_ptid = lp->ptid; 2461 2462 if (linux_ops->to_stopped_by_watchpoint (linux_ops)) 2463 { 2464 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT; 2465 2466 if (linux_ops->to_stopped_data_address != NULL) 2467 lp->stopped_data_address_p = 2468 linux_ops->to_stopped_data_address (¤t_target, 2469 &lp->stopped_data_address); 2470 else 2471 lp->stopped_data_address_p = 0; 2472 } 2473 2474 do_cleanups (old_chain); 2475 2476 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT; 2477 } 2478 2479 /* Returns true if the LWP had stopped for a watchpoint. */ 2480 2481 static int 2482 linux_nat_stopped_by_watchpoint (struct target_ops *ops) 2483 { 2484 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2485 2486 gdb_assert (lp != NULL); 2487 2488 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT; 2489 } 2490 2491 static int 2492 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p) 2493 { 2494 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2495 2496 gdb_assert (lp != NULL); 2497 2498 *addr_p = lp->stopped_data_address; 2499 2500 return lp->stopped_data_address_p; 2501 } 2502 2503 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */ 2504 2505 static int 2506 sigtrap_is_event (int status) 2507 { 2508 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP; 2509 } 2510 2511 /* Set alternative SIGTRAP-like events recognizer. If 2512 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be 2513 applied. */ 2514 2515 void 2516 linux_nat_set_status_is_event (struct target_ops *t, 2517 int (*status_is_event) (int status)) 2518 { 2519 linux_nat_status_is_event = status_is_event; 2520 } 2521 2522 /* Wait until LP is stopped. */ 2523 2524 static int 2525 stop_wait_callback (struct lwp_info *lp, void *data) 2526 { 2527 struct inferior *inf = find_inferior_ptid (lp->ptid); 2528 2529 /* If this is a vfork parent, bail out, it is not going to report 2530 any SIGSTOP until the vfork is done with. */ 2531 if (inf->vfork_child != NULL) 2532 return 0; 2533 2534 if (!lp->stopped) 2535 { 2536 int status; 2537 2538 status = wait_lwp (lp); 2539 if (status == 0) 2540 return 0; 2541 2542 if (lp->ignore_sigint && WIFSTOPPED (status) 2543 && WSTOPSIG (status) == SIGINT) 2544 { 2545 lp->ignore_sigint = 0; 2546 2547 errno = 0; 2548 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0); 2549 lp->stopped = 0; 2550 if (debug_linux_nat) 2551 fprintf_unfiltered (gdb_stdlog, 2552 "PTRACE_CONT %s, 0, 0 (%s) " 2553 "(discarding SIGINT)\n", 2554 target_pid_to_str (lp->ptid), 2555 errno ? safe_strerror (errno) : "OK"); 2556 2557 return stop_wait_callback (lp, NULL); 2558 } 2559 2560 maybe_clear_ignore_sigint (lp); 2561 2562 if (WSTOPSIG (status) != SIGSTOP) 2563 { 2564 /* The thread was stopped with a signal other than SIGSTOP. */ 2565 2566 if (debug_linux_nat) 2567 fprintf_unfiltered (gdb_stdlog, 2568 "SWC: Pending event %s in %s\n", 2569 status_to_str ((int) status), 2570 target_pid_to_str (lp->ptid)); 2571 2572 /* Save the sigtrap event. */ 2573 lp->status = status; 2574 gdb_assert (lp->signalled); 2575 save_stop_reason (lp); 2576 } 2577 else 2578 { 2579 /* We caught the SIGSTOP that we intended to catch, so 2580 there's no SIGSTOP pending. */ 2581 2582 if (debug_linux_nat) 2583 fprintf_unfiltered (gdb_stdlog, 2584 "SWC: Expected SIGSTOP caught for %s.\n", 2585 target_pid_to_str (lp->ptid)); 2586 2587 /* Reset SIGNALLED only after the stop_wait_callback call 2588 above as it does gdb_assert on SIGNALLED. */ 2589 lp->signalled = 0; 2590 } 2591 } 2592 2593 return 0; 2594 } 2595 2596 /* Return non-zero if LP has a wait status pending. Discard the 2597 pending event and resume the LWP if the event that originally 2598 caused the stop became uninteresting. */ 2599 2600 static int 2601 status_callback (struct lwp_info *lp, void *data) 2602 { 2603 /* Only report a pending wait status if we pretend that this has 2604 indeed been resumed. */ 2605 if (!lp->resumed) 2606 return 0; 2607 2608 if (!lwp_status_pending_p (lp)) 2609 return 0; 2610 2611 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 2612 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT) 2613 { 2614 struct regcache *regcache = get_thread_regcache (lp->ptid); 2615 CORE_ADDR pc; 2616 int discard = 0; 2617 2618 pc = regcache_read_pc (regcache); 2619 2620 if (pc != lp->stop_pc) 2621 { 2622 if (debug_linux_nat) 2623 fprintf_unfiltered (gdb_stdlog, 2624 "SC: PC of %s changed. was=%s, now=%s\n", 2625 target_pid_to_str (lp->ptid), 2626 paddress (target_gdbarch (), lp->stop_pc), 2627 paddress (target_gdbarch (), pc)); 2628 discard = 1; 2629 } 2630 2631 #if !USE_SIGTRAP_SIGINFO 2632 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc)) 2633 { 2634 if (debug_linux_nat) 2635 fprintf_unfiltered (gdb_stdlog, 2636 "SC: previous breakpoint of %s, at %s gone\n", 2637 target_pid_to_str (lp->ptid), 2638 paddress (target_gdbarch (), lp->stop_pc)); 2639 2640 discard = 1; 2641 } 2642 #endif 2643 2644 if (discard) 2645 { 2646 if (debug_linux_nat) 2647 fprintf_unfiltered (gdb_stdlog, 2648 "SC: pending event of %s cancelled.\n", 2649 target_pid_to_str (lp->ptid)); 2650 2651 lp->status = 0; 2652 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 2653 return 0; 2654 } 2655 } 2656 2657 return 1; 2658 } 2659 2660 /* Count the LWP's that have had events. */ 2661 2662 static int 2663 count_events_callback (struct lwp_info *lp, void *data) 2664 { 2665 int *count = (int *) data; 2666 2667 gdb_assert (count != NULL); 2668 2669 /* Select only resumed LWPs that have an event pending. */ 2670 if (lp->resumed && lwp_status_pending_p (lp)) 2671 (*count)++; 2672 2673 return 0; 2674 } 2675 2676 /* Select the LWP (if any) that is currently being single-stepped. */ 2677 2678 static int 2679 select_singlestep_lwp_callback (struct lwp_info *lp, void *data) 2680 { 2681 if (lp->last_resume_kind == resume_step 2682 && lp->status != 0) 2683 return 1; 2684 else 2685 return 0; 2686 } 2687 2688 /* Returns true if LP has a status pending. */ 2689 2690 static int 2691 lwp_status_pending_p (struct lwp_info *lp) 2692 { 2693 /* We check for lp->waitstatus in addition to lp->status, because we 2694 can have pending process exits recorded in lp->status and 2695 W_EXITCODE(0,0) happens to be 0. */ 2696 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE; 2697 } 2698 2699 /* Select the Nth LWP that has had an event. */ 2700 2701 static int 2702 select_event_lwp_callback (struct lwp_info *lp, void *data) 2703 { 2704 int *selector = (int *) data; 2705 2706 gdb_assert (selector != NULL); 2707 2708 /* Select only resumed LWPs that have an event pending. */ 2709 if (lp->resumed && lwp_status_pending_p (lp)) 2710 if ((*selector)-- == 0) 2711 return 1; 2712 2713 return 0; 2714 } 2715 2716 /* Called when the LWP stopped for a signal/trap. If it stopped for a 2717 trap check what caused it (breakpoint, watchpoint, trace, etc.), 2718 and save the result in the LWP's stop_reason field. If it stopped 2719 for a breakpoint, decrement the PC if necessary on the lwp's 2720 architecture. */ 2721 2722 static void 2723 save_stop_reason (struct lwp_info *lp) 2724 { 2725 struct regcache *regcache; 2726 struct gdbarch *gdbarch; 2727 CORE_ADDR pc; 2728 CORE_ADDR sw_bp_pc; 2729 #if USE_SIGTRAP_SIGINFO 2730 siginfo_t siginfo; 2731 #endif 2732 2733 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON); 2734 gdb_assert (lp->status != 0); 2735 2736 if (!linux_nat_status_is_event (lp->status)) 2737 return; 2738 2739 regcache = get_thread_regcache (lp->ptid); 2740 gdbarch = get_regcache_arch (regcache); 2741 2742 pc = regcache_read_pc (regcache); 2743 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch); 2744 2745 #if USE_SIGTRAP_SIGINFO 2746 if (linux_nat_get_siginfo (lp->ptid, &siginfo)) 2747 { 2748 if (siginfo.si_signo == SIGTRAP) 2749 { 2750 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code) 2751 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code)) 2752 { 2753 /* The si_code is ambiguous on this arch -- check debug 2754 registers. */ 2755 if (!check_stopped_by_watchpoint (lp)) 2756 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2757 } 2758 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)) 2759 { 2760 /* If we determine the LWP stopped for a SW breakpoint, 2761 trust it. Particularly don't check watchpoint 2762 registers, because at least on s390, we'd find 2763 stopped-by-watchpoint as long as there's a watchpoint 2764 set. */ 2765 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2766 } 2767 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code)) 2768 { 2769 /* This can indicate either a hardware breakpoint or 2770 hardware watchpoint. Check debug registers. */ 2771 if (!check_stopped_by_watchpoint (lp)) 2772 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT; 2773 } 2774 else if (siginfo.si_code == TRAP_TRACE) 2775 { 2776 if (debug_linux_nat) 2777 fprintf_unfiltered (gdb_stdlog, 2778 "CSBB: %s stopped by trace\n", 2779 target_pid_to_str (lp->ptid)); 2780 2781 /* We may have single stepped an instruction that 2782 triggered a watchpoint. In that case, on some 2783 architectures (such as x86), instead of TRAP_HWBKPT, 2784 si_code indicates TRAP_TRACE, and we need to check 2785 the debug registers separately. */ 2786 check_stopped_by_watchpoint (lp); 2787 } 2788 } 2789 } 2790 #else 2791 if ((!lp->step || lp->stop_pc == sw_bp_pc) 2792 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache), 2793 sw_bp_pc)) 2794 { 2795 /* The LWP was either continued, or stepped a software 2796 breakpoint instruction. */ 2797 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2798 } 2799 2800 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc)) 2801 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT; 2802 2803 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON) 2804 check_stopped_by_watchpoint (lp); 2805 #endif 2806 2807 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT) 2808 { 2809 if (debug_linux_nat) 2810 fprintf_unfiltered (gdb_stdlog, 2811 "CSBB: %s stopped by software breakpoint\n", 2812 target_pid_to_str (lp->ptid)); 2813 2814 /* Back up the PC if necessary. */ 2815 if (pc != sw_bp_pc) 2816 regcache_write_pc (regcache, sw_bp_pc); 2817 2818 /* Update this so we record the correct stop PC below. */ 2819 pc = sw_bp_pc; 2820 } 2821 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT) 2822 { 2823 if (debug_linux_nat) 2824 fprintf_unfiltered (gdb_stdlog, 2825 "CSBB: %s stopped by hardware breakpoint\n", 2826 target_pid_to_str (lp->ptid)); 2827 } 2828 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT) 2829 { 2830 if (debug_linux_nat) 2831 fprintf_unfiltered (gdb_stdlog, 2832 "CSBB: %s stopped by hardware watchpoint\n", 2833 target_pid_to_str (lp->ptid)); 2834 } 2835 2836 lp->stop_pc = pc; 2837 } 2838 2839 2840 /* Returns true if the LWP had stopped for a software breakpoint. */ 2841 2842 static int 2843 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops) 2844 { 2845 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2846 2847 gdb_assert (lp != NULL); 2848 2849 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT; 2850 } 2851 2852 /* Implement the supports_stopped_by_sw_breakpoint method. */ 2853 2854 static int 2855 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops) 2856 { 2857 return USE_SIGTRAP_SIGINFO; 2858 } 2859 2860 /* Returns true if the LWP had stopped for a hardware 2861 breakpoint/watchpoint. */ 2862 2863 static int 2864 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops) 2865 { 2866 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2867 2868 gdb_assert (lp != NULL); 2869 2870 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT; 2871 } 2872 2873 /* Implement the supports_stopped_by_hw_breakpoint method. */ 2874 2875 static int 2876 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops) 2877 { 2878 return USE_SIGTRAP_SIGINFO; 2879 } 2880 2881 /* Select one LWP out of those that have events pending. */ 2882 2883 static void 2884 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status) 2885 { 2886 int num_events = 0; 2887 int random_selector; 2888 struct lwp_info *event_lp = NULL; 2889 2890 /* Record the wait status for the original LWP. */ 2891 (*orig_lp)->status = *status; 2892 2893 /* In all-stop, give preference to the LWP that is being 2894 single-stepped. There will be at most one, and it will be the 2895 LWP that the core is most interested in. If we didn't do this, 2896 then we'd have to handle pending step SIGTRAPs somehow in case 2897 the core later continues the previously-stepped thread, as 2898 otherwise we'd report the pending SIGTRAP then, and the core, not 2899 having stepped the thread, wouldn't understand what the trap was 2900 for, and therefore would report it to the user as a random 2901 signal. */ 2902 if (!target_is_non_stop_p ()) 2903 { 2904 event_lp = iterate_over_lwps (filter, 2905 select_singlestep_lwp_callback, NULL); 2906 if (event_lp != NULL) 2907 { 2908 if (debug_linux_nat) 2909 fprintf_unfiltered (gdb_stdlog, 2910 "SEL: Select single-step %s\n", 2911 target_pid_to_str (event_lp->ptid)); 2912 } 2913 } 2914 2915 if (event_lp == NULL) 2916 { 2917 /* Pick one at random, out of those which have had events. */ 2918 2919 /* First see how many events we have. */ 2920 iterate_over_lwps (filter, count_events_callback, &num_events); 2921 gdb_assert (num_events > 0); 2922 2923 /* Now randomly pick a LWP out of those that have had 2924 events. */ 2925 random_selector = (int) 2926 ((num_events * (double) rand ()) / (RAND_MAX + 1.0)); 2927 2928 if (debug_linux_nat && num_events > 1) 2929 fprintf_unfiltered (gdb_stdlog, 2930 "SEL: Found %d events, selecting #%d\n", 2931 num_events, random_selector); 2932 2933 event_lp = iterate_over_lwps (filter, 2934 select_event_lwp_callback, 2935 &random_selector); 2936 } 2937 2938 if (event_lp != NULL) 2939 { 2940 /* Switch the event LWP. */ 2941 *orig_lp = event_lp; 2942 *status = event_lp->status; 2943 } 2944 2945 /* Flush the wait status for the event LWP. */ 2946 (*orig_lp)->status = 0; 2947 } 2948 2949 /* Return non-zero if LP has been resumed. */ 2950 2951 static int 2952 resumed_callback (struct lwp_info *lp, void *data) 2953 { 2954 return lp->resumed; 2955 } 2956 2957 /* Check if we should go on and pass this event to common code. 2958 Return the affected lwp if we are, or NULL otherwise. */ 2959 2960 static struct lwp_info * 2961 linux_nat_filter_event (int lwpid, int status) 2962 { 2963 struct lwp_info *lp; 2964 int event = linux_ptrace_get_extended_event (status); 2965 2966 lp = find_lwp_pid (pid_to_ptid (lwpid)); 2967 2968 /* Check for stop events reported by a process we didn't already 2969 know about - anything not already in our LWP list. 2970 2971 If we're expecting to receive stopped processes after 2972 fork, vfork, and clone events, then we'll just add the 2973 new one to our list and go back to waiting for the event 2974 to be reported - the stopped process might be returned 2975 from waitpid before or after the event is. 2976 2977 But note the case of a non-leader thread exec'ing after the 2978 leader having exited, and gone from our lists. The non-leader 2979 thread changes its tid to the tgid. */ 2980 2981 if (WIFSTOPPED (status) && lp == NULL 2982 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC)) 2983 { 2984 /* A multi-thread exec after we had seen the leader exiting. */ 2985 if (debug_linux_nat) 2986 fprintf_unfiltered (gdb_stdlog, 2987 "LLW: Re-adding thread group leader LWP %d.\n", 2988 lwpid); 2989 2990 lp = add_lwp (ptid_build (lwpid, lwpid, 0)); 2991 lp->stopped = 1; 2992 lp->resumed = 1; 2993 add_thread (lp->ptid); 2994 } 2995 2996 if (WIFSTOPPED (status) && !lp) 2997 { 2998 if (debug_linux_nat) 2999 fprintf_unfiltered (gdb_stdlog, 3000 "LHEW: saving LWP %ld status %s in stopped_pids list\n", 3001 (long) lwpid, status_to_str (status)); 3002 add_to_pid_list (&stopped_pids, lwpid, status); 3003 return NULL; 3004 } 3005 3006 /* Make sure we don't report an event for the exit of an LWP not in 3007 our list, i.e. not part of the current process. This can happen 3008 if we detach from a program we originally forked and then it 3009 exits. */ 3010 if (!WIFSTOPPED (status) && !lp) 3011 return NULL; 3012 3013 /* This LWP is stopped now. (And if dead, this prevents it from 3014 ever being continued.) */ 3015 lp->stopped = 1; 3016 3017 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags) 3018 { 3019 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid)); 3020 int options = linux_nat_ptrace_options (inf->attach_flag); 3021 3022 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options); 3023 lp->must_set_ptrace_flags = 0; 3024 } 3025 3026 /* Handle GNU/Linux's syscall SIGTRAPs. */ 3027 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) 3028 { 3029 /* No longer need the sysgood bit. The ptrace event ends up 3030 recorded in lp->waitstatus if we care for it. We can carry 3031 on handling the event like a regular SIGTRAP from here 3032 on. */ 3033 status = W_STOPCODE (SIGTRAP); 3034 if (linux_handle_syscall_trap (lp, 0)) 3035 return NULL; 3036 } 3037 else 3038 { 3039 /* Almost all other ptrace-stops are known to be outside of system 3040 calls, with further exceptions in linux_handle_extended_wait. */ 3041 lp->syscall_state = TARGET_WAITKIND_IGNORE; 3042 } 3043 3044 /* Handle GNU/Linux's extended waitstatus for trace events. */ 3045 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP 3046 && linux_is_extended_waitstatus (status)) 3047 { 3048 if (debug_linux_nat) 3049 fprintf_unfiltered (gdb_stdlog, 3050 "LLW: Handling extended status 0x%06x\n", 3051 status); 3052 if (linux_handle_extended_wait (lp, status)) 3053 return NULL; 3054 } 3055 3056 /* Check if the thread has exited. */ 3057 if (WIFEXITED (status) || WIFSIGNALED (status)) 3058 { 3059 if (!report_thread_events 3060 && num_lwps (ptid_get_pid (lp->ptid)) > 1) 3061 { 3062 if (debug_linux_nat) 3063 fprintf_unfiltered (gdb_stdlog, 3064 "LLW: %s exited.\n", 3065 target_pid_to_str (lp->ptid)); 3066 3067 /* If there is at least one more LWP, then the exit signal 3068 was not the end of the debugged application and should be 3069 ignored. */ 3070 exit_lwp (lp); 3071 return NULL; 3072 } 3073 3074 /* Note that even if the leader was ptrace-stopped, it can still 3075 exit, if e.g., some other thread brings down the whole 3076 process (calls `exit'). So don't assert that the lwp is 3077 resumed. */ 3078 if (debug_linux_nat) 3079 fprintf_unfiltered (gdb_stdlog, 3080 "LWP %ld exited (resumed=%d)\n", 3081 ptid_get_lwp (lp->ptid), lp->resumed); 3082 3083 /* Dead LWP's aren't expected to reported a pending sigstop. */ 3084 lp->signalled = 0; 3085 3086 /* Store the pending event in the waitstatus, because 3087 W_EXITCODE(0,0) == 0. */ 3088 store_waitstatus (&lp->waitstatus, status); 3089 return lp; 3090 } 3091 3092 /* Make sure we don't report a SIGSTOP that we sent ourselves in 3093 an attempt to stop an LWP. */ 3094 if (lp->signalled 3095 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP) 3096 { 3097 lp->signalled = 0; 3098 3099 if (lp->last_resume_kind == resume_stop) 3100 { 3101 if (debug_linux_nat) 3102 fprintf_unfiltered (gdb_stdlog, 3103 "LLW: resume_stop SIGSTOP caught for %s.\n", 3104 target_pid_to_str (lp->ptid)); 3105 } 3106 else 3107 { 3108 /* This is a delayed SIGSTOP. Filter out the event. */ 3109 3110 if (debug_linux_nat) 3111 fprintf_unfiltered (gdb_stdlog, 3112 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n", 3113 lp->step ? 3114 "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3115 target_pid_to_str (lp->ptid)); 3116 3117 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 3118 gdb_assert (lp->resumed); 3119 return NULL; 3120 } 3121 } 3122 3123 /* Make sure we don't report a SIGINT that we have already displayed 3124 for another thread. */ 3125 if (lp->ignore_sigint 3126 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT) 3127 { 3128 if (debug_linux_nat) 3129 fprintf_unfiltered (gdb_stdlog, 3130 "LLW: Delayed SIGINT caught for %s.\n", 3131 target_pid_to_str (lp->ptid)); 3132 3133 /* This is a delayed SIGINT. */ 3134 lp->ignore_sigint = 0; 3135 3136 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 3137 if (debug_linux_nat) 3138 fprintf_unfiltered (gdb_stdlog, 3139 "LLW: %s %s, 0, 0 (discard SIGINT)\n", 3140 lp->step ? 3141 "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3142 target_pid_to_str (lp->ptid)); 3143 gdb_assert (lp->resumed); 3144 3145 /* Discard the event. */ 3146 return NULL; 3147 } 3148 3149 /* Don't report signals that GDB isn't interested in, such as 3150 signals that are neither printed nor stopped upon. Stopping all 3151 threads can be a bit time-consuming so if we want decent 3152 performance with heavily multi-threaded programs, especially when 3153 they're using a high frequency timer, we'd better avoid it if we 3154 can. */ 3155 if (WIFSTOPPED (status)) 3156 { 3157 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status)); 3158 3159 if (!target_is_non_stop_p ()) 3160 { 3161 /* Only do the below in all-stop, as we currently use SIGSTOP 3162 to implement target_stop (see linux_nat_stop) in 3163 non-stop. */ 3164 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0) 3165 { 3166 /* If ^C/BREAK is typed at the tty/console, SIGINT gets 3167 forwarded to the entire process group, that is, all LWPs 3168 will receive it - unless they're using CLONE_THREAD to 3169 share signals. Since we only want to report it once, we 3170 mark it as ignored for all LWPs except this one. */ 3171 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)), 3172 set_ignore_sigint, NULL); 3173 lp->ignore_sigint = 0; 3174 } 3175 else 3176 maybe_clear_ignore_sigint (lp); 3177 } 3178 3179 /* When using hardware single-step, we need to report every signal. 3180 Otherwise, signals in pass_mask may be short-circuited 3181 except signals that might be caused by a breakpoint. */ 3182 if (!lp->step 3183 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)) 3184 && !linux_wstatus_maybe_breakpoint (status)) 3185 { 3186 linux_resume_one_lwp (lp, lp->step, signo); 3187 if (debug_linux_nat) 3188 fprintf_unfiltered (gdb_stdlog, 3189 "LLW: %s %s, %s (preempt 'handle')\n", 3190 lp->step ? 3191 "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3192 target_pid_to_str (lp->ptid), 3193 (signo != GDB_SIGNAL_0 3194 ? strsignal (gdb_signal_to_host (signo)) 3195 : "0")); 3196 return NULL; 3197 } 3198 } 3199 3200 /* An interesting event. */ 3201 gdb_assert (lp); 3202 lp->status = status; 3203 save_stop_reason (lp); 3204 return lp; 3205 } 3206 3207 /* Detect zombie thread group leaders, and "exit" them. We can't reap 3208 their exits until all other threads in the group have exited. */ 3209 3210 static void 3211 check_zombie_leaders (void) 3212 { 3213 struct inferior *inf; 3214 3215 ALL_INFERIORS (inf) 3216 { 3217 struct lwp_info *leader_lp; 3218 3219 if (inf->pid == 0) 3220 continue; 3221 3222 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid)); 3223 if (leader_lp != NULL 3224 /* Check if there are other threads in the group, as we may 3225 have raced with the inferior simply exiting. */ 3226 && num_lwps (inf->pid) > 1 3227 && linux_proc_pid_is_zombie (inf->pid)) 3228 { 3229 if (debug_linux_nat) 3230 fprintf_unfiltered (gdb_stdlog, 3231 "CZL: Thread group leader %d zombie " 3232 "(it exited, or another thread execd).\n", 3233 inf->pid); 3234 3235 /* A leader zombie can mean one of two things: 3236 3237 - It exited, and there's an exit status pending 3238 available, or only the leader exited (not the whole 3239 program). In the latter case, we can't waitpid the 3240 leader's exit status until all other threads are gone. 3241 3242 - There are 3 or more threads in the group, and a thread 3243 other than the leader exec'd. See comments on exec 3244 events at the top of the file. We could try 3245 distinguishing the exit and exec cases, by waiting once 3246 more, and seeing if something comes out, but it doesn't 3247 sound useful. The previous leader _does_ go away, and 3248 we'll re-add the new one once we see the exec event 3249 (which is just the same as what would happen if the 3250 previous leader did exit voluntarily before some other 3251 thread execs). */ 3252 3253 if (debug_linux_nat) 3254 fprintf_unfiltered (gdb_stdlog, 3255 "CZL: Thread group leader %d vanished.\n", 3256 inf->pid); 3257 exit_lwp (leader_lp); 3258 } 3259 } 3260 } 3261 3262 /* Convenience function that is called when the kernel reports an exit 3263 event. This decides whether to report the event to GDB as a 3264 process exit event, a thread exit event, or to suppress the 3265 event. */ 3266 3267 static ptid_t 3268 filter_exit_event (struct lwp_info *event_child, 3269 struct target_waitstatus *ourstatus) 3270 { 3271 ptid_t ptid = event_child->ptid; 3272 3273 if (num_lwps (ptid_get_pid (ptid)) > 1) 3274 { 3275 if (report_thread_events) 3276 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED; 3277 else 3278 ourstatus->kind = TARGET_WAITKIND_IGNORE; 3279 3280 exit_lwp (event_child); 3281 } 3282 3283 return ptid; 3284 } 3285 3286 static ptid_t 3287 linux_nat_wait_1 (struct target_ops *ops, 3288 ptid_t ptid, struct target_waitstatus *ourstatus, 3289 int target_options) 3290 { 3291 sigset_t prev_mask; 3292 enum resume_kind last_resume_kind; 3293 struct lwp_info *lp; 3294 int status; 3295 3296 if (debug_linux_nat) 3297 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n"); 3298 3299 /* The first time we get here after starting a new inferior, we may 3300 not have added it to the LWP list yet - this is the earliest 3301 moment at which we know its PID. */ 3302 if (ptid_is_pid (inferior_ptid)) 3303 { 3304 /* Upgrade the main thread's ptid. */ 3305 thread_change_ptid (inferior_ptid, 3306 ptid_build (ptid_get_pid (inferior_ptid), 3307 ptid_get_pid (inferior_ptid), 0)); 3308 3309 lp = add_initial_lwp (inferior_ptid); 3310 lp->resumed = 1; 3311 } 3312 3313 /* Make sure SIGCHLD is blocked until the sigsuspend below. */ 3314 block_child_signals (&prev_mask); 3315 3316 /* First check if there is a LWP with a wait status pending. */ 3317 lp = iterate_over_lwps (ptid, status_callback, NULL); 3318 if (lp != NULL) 3319 { 3320 if (debug_linux_nat) 3321 fprintf_unfiltered (gdb_stdlog, 3322 "LLW: Using pending wait status %s for %s.\n", 3323 status_to_str (lp->status), 3324 target_pid_to_str (lp->ptid)); 3325 } 3326 3327 /* But if we don't find a pending event, we'll have to wait. Always 3328 pull all events out of the kernel. We'll randomly select an 3329 event LWP out of all that have events, to prevent starvation. */ 3330 3331 while (lp == NULL) 3332 { 3333 pid_t lwpid; 3334 3335 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace 3336 quirks: 3337 3338 - If the thread group leader exits while other threads in the 3339 thread group still exist, waitpid(TGID, ...) hangs. That 3340 waitpid won't return an exit status until the other threads 3341 in the group are reapped. 3342 3343 - When a non-leader thread execs, that thread just vanishes 3344 without reporting an exit (so we'd hang if we waited for it 3345 explicitly in that case). The exec event is reported to 3346 the TGID pid. */ 3347 3348 errno = 0; 3349 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG); 3350 3351 if (debug_linux_nat) 3352 fprintf_unfiltered (gdb_stdlog, 3353 "LNW: waitpid(-1, ...) returned %d, %s\n", 3354 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK"); 3355 3356 if (lwpid > 0) 3357 { 3358 if (debug_linux_nat) 3359 { 3360 fprintf_unfiltered (gdb_stdlog, 3361 "LLW: waitpid %ld received %s\n", 3362 (long) lwpid, status_to_str (status)); 3363 } 3364 3365 linux_nat_filter_event (lwpid, status); 3366 /* Retry until nothing comes out of waitpid. A single 3367 SIGCHLD can indicate more than one child stopped. */ 3368 continue; 3369 } 3370 3371 /* Now that we've pulled all events out of the kernel, resume 3372 LWPs that don't have an interesting event to report. */ 3373 iterate_over_lwps (minus_one_ptid, 3374 resume_stopped_resumed_lwps, &minus_one_ptid); 3375 3376 /* ... and find an LWP with a status to report to the core, if 3377 any. */ 3378 lp = iterate_over_lwps (ptid, status_callback, NULL); 3379 if (lp != NULL) 3380 break; 3381 3382 /* Check for zombie thread group leaders. Those can't be reaped 3383 until all other threads in the thread group are. */ 3384 check_zombie_leaders (); 3385 3386 /* If there are no resumed children left, bail. We'd be stuck 3387 forever in the sigsuspend call below otherwise. */ 3388 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL) 3389 { 3390 if (debug_linux_nat) 3391 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n"); 3392 3393 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED; 3394 3395 restore_child_signals_mask (&prev_mask); 3396 return minus_one_ptid; 3397 } 3398 3399 /* No interesting event to report to the core. */ 3400 3401 if (target_options & TARGET_WNOHANG) 3402 { 3403 if (debug_linux_nat) 3404 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n"); 3405 3406 ourstatus->kind = TARGET_WAITKIND_IGNORE; 3407 restore_child_signals_mask (&prev_mask); 3408 return minus_one_ptid; 3409 } 3410 3411 /* We shouldn't end up here unless we want to try again. */ 3412 gdb_assert (lp == NULL); 3413 3414 /* Block until we get an event reported with SIGCHLD. */ 3415 if (debug_linux_nat) 3416 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n"); 3417 sigsuspend (&suspend_mask); 3418 } 3419 3420 gdb_assert (lp); 3421 3422 status = lp->status; 3423 lp->status = 0; 3424 3425 if (!target_is_non_stop_p ()) 3426 { 3427 /* Now stop all other LWP's ... */ 3428 iterate_over_lwps (minus_one_ptid, stop_callback, NULL); 3429 3430 /* ... and wait until all of them have reported back that 3431 they're no longer running. */ 3432 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL); 3433 } 3434 3435 /* If we're not waiting for a specific LWP, choose an event LWP from 3436 among those that have had events. Giving equal priority to all 3437 LWPs that have had events helps prevent starvation. */ 3438 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid)) 3439 select_event_lwp (ptid, &lp, &status); 3440 3441 gdb_assert (lp != NULL); 3442 3443 /* Now that we've selected our final event LWP, un-adjust its PC if 3444 it was a software breakpoint, and we can't reliably support the 3445 "stopped by software breakpoint" stop reason. */ 3446 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 3447 && !USE_SIGTRAP_SIGINFO) 3448 { 3449 struct regcache *regcache = get_thread_regcache (lp->ptid); 3450 struct gdbarch *gdbarch = get_regcache_arch (regcache); 3451 int decr_pc = gdbarch_decr_pc_after_break (gdbarch); 3452 3453 if (decr_pc != 0) 3454 { 3455 CORE_ADDR pc; 3456 3457 pc = regcache_read_pc (regcache); 3458 regcache_write_pc (regcache, pc + decr_pc); 3459 } 3460 } 3461 3462 /* We'll need this to determine whether to report a SIGSTOP as 3463 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback 3464 clears it. */ 3465 last_resume_kind = lp->last_resume_kind; 3466 3467 if (!target_is_non_stop_p ()) 3468 { 3469 /* In all-stop, from the core's perspective, all LWPs are now 3470 stopped until a new resume action is sent over. */ 3471 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL); 3472 } 3473 else 3474 { 3475 resume_clear_callback (lp, NULL); 3476 } 3477 3478 if (linux_nat_status_is_event (status)) 3479 { 3480 if (debug_linux_nat) 3481 fprintf_unfiltered (gdb_stdlog, 3482 "LLW: trap ptid is %s.\n", 3483 target_pid_to_str (lp->ptid)); 3484 } 3485 3486 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) 3487 { 3488 *ourstatus = lp->waitstatus; 3489 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 3490 } 3491 else 3492 store_waitstatus (ourstatus, status); 3493 3494 if (debug_linux_nat) 3495 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n"); 3496 3497 restore_child_signals_mask (&prev_mask); 3498 3499 if (last_resume_kind == resume_stop 3500 && ourstatus->kind == TARGET_WAITKIND_STOPPED 3501 && WSTOPSIG (status) == SIGSTOP) 3502 { 3503 /* A thread that has been requested to stop by GDB with 3504 target_stop, and it stopped cleanly, so report as SIG0. The 3505 use of SIGSTOP is an implementation detail. */ 3506 ourstatus->value.sig = GDB_SIGNAL_0; 3507 } 3508 3509 if (ourstatus->kind == TARGET_WAITKIND_EXITED 3510 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED) 3511 lp->core = -1; 3512 else 3513 lp->core = linux_common_core_of_thread (lp->ptid); 3514 3515 if (ourstatus->kind == TARGET_WAITKIND_EXITED) 3516 return filter_exit_event (lp, ourstatus); 3517 3518 return lp->ptid; 3519 } 3520 3521 /* Resume LWPs that are currently stopped without any pending status 3522 to report, but are resumed from the core's perspective. */ 3523 3524 static int 3525 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data) 3526 { 3527 ptid_t *wait_ptid_p = (ptid_t *) data; 3528 3529 if (!lp->stopped) 3530 { 3531 if (debug_linux_nat) 3532 fprintf_unfiltered (gdb_stdlog, 3533 "RSRL: NOT resuming LWP %s, not stopped\n", 3534 target_pid_to_str (lp->ptid)); 3535 } 3536 else if (!lp->resumed) 3537 { 3538 if (debug_linux_nat) 3539 fprintf_unfiltered (gdb_stdlog, 3540 "RSRL: NOT resuming LWP %s, not resumed\n", 3541 target_pid_to_str (lp->ptid)); 3542 } 3543 else if (lwp_status_pending_p (lp)) 3544 { 3545 if (debug_linux_nat) 3546 fprintf_unfiltered (gdb_stdlog, 3547 "RSRL: NOT resuming LWP %s, has pending status\n", 3548 target_pid_to_str (lp->ptid)); 3549 } 3550 else 3551 { 3552 struct regcache *regcache = get_thread_regcache (lp->ptid); 3553 struct gdbarch *gdbarch = get_regcache_arch (regcache); 3554 3555 TRY 3556 { 3557 CORE_ADDR pc = regcache_read_pc (regcache); 3558 int leave_stopped = 0; 3559 3560 /* Don't bother if there's a breakpoint at PC that we'd hit 3561 immediately, and we're not waiting for this LWP. */ 3562 if (!ptid_match (lp->ptid, *wait_ptid_p)) 3563 { 3564 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc)) 3565 leave_stopped = 1; 3566 } 3567 3568 if (!leave_stopped) 3569 { 3570 if (debug_linux_nat) 3571 fprintf_unfiltered (gdb_stdlog, 3572 "RSRL: resuming stopped-resumed LWP %s at " 3573 "%s: step=%d\n", 3574 target_pid_to_str (lp->ptid), 3575 paddress (gdbarch, pc), 3576 lp->step); 3577 3578 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0); 3579 } 3580 } 3581 CATCH (ex, RETURN_MASK_ERROR) 3582 { 3583 if (!check_ptrace_stopped_lwp_gone (lp)) 3584 throw_exception (ex); 3585 } 3586 END_CATCH 3587 } 3588 3589 return 0; 3590 } 3591 3592 static ptid_t 3593 linux_nat_wait (struct target_ops *ops, 3594 ptid_t ptid, struct target_waitstatus *ourstatus, 3595 int target_options) 3596 { 3597 ptid_t event_ptid; 3598 3599 if (debug_linux_nat) 3600 { 3601 char *options_string; 3602 3603 options_string = target_options_to_string (target_options); 3604 fprintf_unfiltered (gdb_stdlog, 3605 "linux_nat_wait: [%s], [%s]\n", 3606 target_pid_to_str (ptid), 3607 options_string); 3608 xfree (options_string); 3609 } 3610 3611 /* Flush the async file first. */ 3612 if (target_is_async_p ()) 3613 async_file_flush (); 3614 3615 /* Resume LWPs that are currently stopped without any pending status 3616 to report, but are resumed from the core's perspective. LWPs get 3617 in this state if we find them stopping at a time we're not 3618 interested in reporting the event (target_wait on a 3619 specific_process, for example, see linux_nat_wait_1), and 3620 meanwhile the event became uninteresting. Don't bother resuming 3621 LWPs we're not going to wait for if they'd stop immediately. */ 3622 if (target_is_non_stop_p ()) 3623 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid); 3624 3625 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options); 3626 3627 /* If we requested any event, and something came out, assume there 3628 may be more. If we requested a specific lwp or process, also 3629 assume there may be more. */ 3630 if (target_is_async_p () 3631 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE 3632 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED) 3633 || !ptid_equal (ptid, minus_one_ptid))) 3634 async_file_mark (); 3635 3636 return event_ptid; 3637 } 3638 3639 /* Kill one LWP. */ 3640 3641 static void 3642 kill_one_lwp (pid_t pid) 3643 { 3644 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */ 3645 3646 errno = 0; 3647 kill_lwp (pid, SIGKILL); 3648 if (debug_linux_nat) 3649 { 3650 int save_errno = errno; 3651 3652 fprintf_unfiltered (gdb_stdlog, 3653 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid, 3654 save_errno ? safe_strerror (save_errno) : "OK"); 3655 } 3656 3657 /* Some kernels ignore even SIGKILL for processes under ptrace. */ 3658 3659 errno = 0; 3660 ptrace (PTRACE_KILL, pid, 0, 0); 3661 if (debug_linux_nat) 3662 { 3663 int save_errno = errno; 3664 3665 fprintf_unfiltered (gdb_stdlog, 3666 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid, 3667 save_errno ? safe_strerror (save_errno) : "OK"); 3668 } 3669 } 3670 3671 /* Wait for an LWP to die. */ 3672 3673 static void 3674 kill_wait_one_lwp (pid_t pid) 3675 { 3676 pid_t res; 3677 3678 /* We must make sure that there are no pending events (delayed 3679 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current 3680 program doesn't interfere with any following debugging session. */ 3681 3682 do 3683 { 3684 res = my_waitpid (pid, NULL, __WALL); 3685 if (res != (pid_t) -1) 3686 { 3687 if (debug_linux_nat) 3688 fprintf_unfiltered (gdb_stdlog, 3689 "KWC: wait %ld received unknown.\n", 3690 (long) pid); 3691 /* The Linux kernel sometimes fails to kill a thread 3692 completely after PTRACE_KILL; that goes from the stop 3693 point in do_fork out to the one in get_signal_to_deliver 3694 and waits again. So kill it again. */ 3695 kill_one_lwp (pid); 3696 } 3697 } 3698 while (res == pid); 3699 3700 gdb_assert (res == -1 && errno == ECHILD); 3701 } 3702 3703 /* Callback for iterate_over_lwps. */ 3704 3705 static int 3706 kill_callback (struct lwp_info *lp, void *data) 3707 { 3708 kill_one_lwp (ptid_get_lwp (lp->ptid)); 3709 return 0; 3710 } 3711 3712 /* Callback for iterate_over_lwps. */ 3713 3714 static int 3715 kill_wait_callback (struct lwp_info *lp, void *data) 3716 { 3717 kill_wait_one_lwp (ptid_get_lwp (lp->ptid)); 3718 return 0; 3719 } 3720 3721 /* Kill the fork children of any threads of inferior INF that are 3722 stopped at a fork event. */ 3723 3724 static void 3725 kill_unfollowed_fork_children (struct inferior *inf) 3726 { 3727 struct thread_info *thread; 3728 3729 ALL_NON_EXITED_THREADS (thread) 3730 if (thread->inf == inf) 3731 { 3732 struct target_waitstatus *ws = &thread->pending_follow; 3733 3734 if (ws->kind == TARGET_WAITKIND_FORKED 3735 || ws->kind == TARGET_WAITKIND_VFORKED) 3736 { 3737 ptid_t child_ptid = ws->value.related_pid; 3738 int child_pid = ptid_get_pid (child_ptid); 3739 int child_lwp = ptid_get_lwp (child_ptid); 3740 3741 kill_one_lwp (child_lwp); 3742 kill_wait_one_lwp (child_lwp); 3743 3744 /* Let the arch-specific native code know this process is 3745 gone. */ 3746 linux_nat_forget_process (child_pid); 3747 } 3748 } 3749 } 3750 3751 static void 3752 linux_nat_kill (struct target_ops *ops) 3753 { 3754 /* If we're stopped while forking and we haven't followed yet, 3755 kill the other task. We need to do this first because the 3756 parent will be sleeping if this is a vfork. */ 3757 kill_unfollowed_fork_children (current_inferior ()); 3758 3759 if (forks_exist_p ()) 3760 linux_fork_killall (); 3761 else 3762 { 3763 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); 3764 3765 /* Stop all threads before killing them, since ptrace requires 3766 that the thread is stopped to sucessfully PTRACE_KILL. */ 3767 iterate_over_lwps (ptid, stop_callback, NULL); 3768 /* ... and wait until all of them have reported back that 3769 they're no longer running. */ 3770 iterate_over_lwps (ptid, stop_wait_callback, NULL); 3771 3772 /* Kill all LWP's ... */ 3773 iterate_over_lwps (ptid, kill_callback, NULL); 3774 3775 /* ... and wait until we've flushed all events. */ 3776 iterate_over_lwps (ptid, kill_wait_callback, NULL); 3777 } 3778 3779 target_mourn_inferior (); 3780 } 3781 3782 static void 3783 linux_nat_mourn_inferior (struct target_ops *ops) 3784 { 3785 int pid = ptid_get_pid (inferior_ptid); 3786 3787 purge_lwp_list (pid); 3788 3789 if (! forks_exist_p ()) 3790 /* Normal case, no other forks available. */ 3791 linux_ops->to_mourn_inferior (ops); 3792 else 3793 /* Multi-fork case. The current inferior_ptid has exited, but 3794 there are other viable forks to debug. Delete the exiting 3795 one and context-switch to the first available. */ 3796 linux_fork_mourn_inferior (); 3797 3798 /* Let the arch-specific native code know this process is gone. */ 3799 linux_nat_forget_process (pid); 3800 } 3801 3802 /* Convert a native/host siginfo object, into/from the siginfo in the 3803 layout of the inferiors' architecture. */ 3804 3805 static void 3806 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction) 3807 { 3808 int done = 0; 3809 3810 if (linux_nat_siginfo_fixup != NULL) 3811 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction); 3812 3813 /* If there was no callback, or the callback didn't do anything, 3814 then just do a straight memcpy. */ 3815 if (!done) 3816 { 3817 if (direction == 1) 3818 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t)); 3819 else 3820 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t)); 3821 } 3822 } 3823 3824 static enum target_xfer_status 3825 linux_xfer_siginfo (struct target_ops *ops, enum target_object object, 3826 const char *annex, gdb_byte *readbuf, 3827 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 3828 ULONGEST *xfered_len) 3829 { 3830 int pid; 3831 siginfo_t siginfo; 3832 gdb_byte inf_siginfo[sizeof (siginfo_t)]; 3833 3834 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO); 3835 gdb_assert (readbuf || writebuf); 3836 3837 pid = ptid_get_lwp (inferior_ptid); 3838 if (pid == 0) 3839 pid = ptid_get_pid (inferior_ptid); 3840 3841 if (offset > sizeof (siginfo)) 3842 return TARGET_XFER_E_IO; 3843 3844 errno = 0; 3845 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo); 3846 if (errno != 0) 3847 return TARGET_XFER_E_IO; 3848 3849 /* When GDB is built as a 64-bit application, ptrace writes into 3850 SIGINFO an object with 64-bit layout. Since debugging a 32-bit 3851 inferior with a 64-bit GDB should look the same as debugging it 3852 with a 32-bit GDB, we need to convert it. GDB core always sees 3853 the converted layout, so any read/write will have to be done 3854 post-conversion. */ 3855 siginfo_fixup (&siginfo, inf_siginfo, 0); 3856 3857 if (offset + len > sizeof (siginfo)) 3858 len = sizeof (siginfo) - offset; 3859 3860 if (readbuf != NULL) 3861 memcpy (readbuf, inf_siginfo + offset, len); 3862 else 3863 { 3864 memcpy (inf_siginfo + offset, writebuf, len); 3865 3866 /* Convert back to ptrace layout before flushing it out. */ 3867 siginfo_fixup (&siginfo, inf_siginfo, 1); 3868 3869 errno = 0; 3870 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo); 3871 if (errno != 0) 3872 return TARGET_XFER_E_IO; 3873 } 3874 3875 *xfered_len = len; 3876 return TARGET_XFER_OK; 3877 } 3878 3879 static enum target_xfer_status 3880 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object, 3881 const char *annex, gdb_byte *readbuf, 3882 const gdb_byte *writebuf, 3883 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) 3884 { 3885 struct cleanup *old_chain; 3886 enum target_xfer_status xfer; 3887 3888 if (object == TARGET_OBJECT_SIGNAL_INFO) 3889 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf, 3890 offset, len, xfered_len); 3891 3892 /* The target is connected but no live inferior is selected. Pass 3893 this request down to a lower stratum (e.g., the executable 3894 file). */ 3895 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid)) 3896 return TARGET_XFER_EOF; 3897 3898 old_chain = save_inferior_ptid (); 3899 3900 if (ptid_lwp_p (inferior_ptid)) 3901 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid)); 3902 3903 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf, 3904 offset, len, xfered_len); 3905 3906 do_cleanups (old_chain); 3907 return xfer; 3908 } 3909 3910 static int 3911 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid) 3912 { 3913 /* As long as a PTID is in lwp list, consider it alive. */ 3914 return find_lwp_pid (ptid) != NULL; 3915 } 3916 3917 /* Implement the to_update_thread_list target method for this 3918 target. */ 3919 3920 static void 3921 linux_nat_update_thread_list (struct target_ops *ops) 3922 { 3923 struct lwp_info *lwp; 3924 3925 /* We add/delete threads from the list as clone/exit events are 3926 processed, so just try deleting exited threads still in the 3927 thread list. */ 3928 delete_exited_threads (); 3929 3930 /* Update the processor core that each lwp/thread was last seen 3931 running on. */ 3932 ALL_LWPS (lwp) 3933 { 3934 /* Avoid accessing /proc if the thread hasn't run since we last 3935 time we fetched the thread's core. Accessing /proc becomes 3936 noticeably expensive when we have thousands of LWPs. */ 3937 if (lwp->core == -1) 3938 lwp->core = linux_common_core_of_thread (lwp->ptid); 3939 } 3940 } 3941 3942 static char * 3943 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid) 3944 { 3945 static char buf[64]; 3946 3947 if (ptid_lwp_p (ptid) 3948 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid) 3949 || num_lwps (ptid_get_pid (ptid)) > 1)) 3950 { 3951 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid)); 3952 return buf; 3953 } 3954 3955 return normal_pid_to_str (ptid); 3956 } 3957 3958 static const char * 3959 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr) 3960 { 3961 return linux_proc_tid_get_name (thr->ptid); 3962 } 3963 3964 /* Accepts an integer PID; Returns a string representing a file that 3965 can be opened to get the symbols for the child process. */ 3966 3967 static char * 3968 linux_child_pid_to_exec_file (struct target_ops *self, int pid) 3969 { 3970 return linux_proc_pid_to_exec_file (pid); 3971 } 3972 3973 /* Implement the to_xfer_partial interface for memory reads using the /proc 3974 filesystem. Because we can use a single read() call for /proc, this 3975 can be much more efficient than banging away at PTRACE_PEEKTEXT, 3976 but it doesn't support writes. */ 3977 3978 static enum target_xfer_status 3979 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object, 3980 const char *annex, gdb_byte *readbuf, 3981 const gdb_byte *writebuf, 3982 ULONGEST offset, LONGEST len, ULONGEST *xfered_len) 3983 { 3984 LONGEST ret; 3985 int fd; 3986 char filename[64]; 3987 3988 if (object != TARGET_OBJECT_MEMORY || !readbuf) 3989 return TARGET_XFER_EOF; 3990 3991 /* Don't bother for one word. */ 3992 if (len < 3 * sizeof (long)) 3993 return TARGET_XFER_EOF; 3994 3995 /* We could keep this file open and cache it - possibly one per 3996 thread. That requires some juggling, but is even faster. */ 3997 xsnprintf (filename, sizeof filename, "/proc/%d/mem", 3998 ptid_get_pid (inferior_ptid)); 3999 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0); 4000 if (fd == -1) 4001 return TARGET_XFER_EOF; 4002 4003 /* If pread64 is available, use it. It's faster if the kernel 4004 supports it (only one syscall), and it's 64-bit safe even on 4005 32-bit platforms (for instance, SPARC debugging a SPARC64 4006 application). */ 4007 #ifdef HAVE_PREAD64 4008 if (pread64 (fd, readbuf, len, offset) != len) 4009 #else 4010 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len) 4011 #endif 4012 ret = 0; 4013 else 4014 ret = len; 4015 4016 close (fd); 4017 4018 if (ret == 0) 4019 return TARGET_XFER_EOF; 4020 else 4021 { 4022 *xfered_len = ret; 4023 return TARGET_XFER_OK; 4024 } 4025 } 4026 4027 4028 /* Enumerate spufs IDs for process PID. */ 4029 static LONGEST 4030 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len) 4031 { 4032 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 4033 LONGEST pos = 0; 4034 LONGEST written = 0; 4035 char path[128]; 4036 DIR *dir; 4037 struct dirent *entry; 4038 4039 xsnprintf (path, sizeof path, "/proc/%d/fd", pid); 4040 dir = opendir (path); 4041 if (!dir) 4042 return -1; 4043 4044 rewinddir (dir); 4045 while ((entry = readdir (dir)) != NULL) 4046 { 4047 struct stat st; 4048 struct statfs stfs; 4049 int fd; 4050 4051 fd = atoi (entry->d_name); 4052 if (!fd) 4053 continue; 4054 4055 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd); 4056 if (stat (path, &st) != 0) 4057 continue; 4058 if (!S_ISDIR (st.st_mode)) 4059 continue; 4060 4061 if (statfs (path, &stfs) != 0) 4062 continue; 4063 if (stfs.f_type != SPUFS_MAGIC) 4064 continue; 4065 4066 if (pos >= offset && pos + 4 <= offset + len) 4067 { 4068 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd); 4069 written += 4; 4070 } 4071 pos += 4; 4072 } 4073 4074 closedir (dir); 4075 return written; 4076 } 4077 4078 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU 4079 object type, using the /proc file system. */ 4080 4081 static enum target_xfer_status 4082 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object, 4083 const char *annex, gdb_byte *readbuf, 4084 const gdb_byte *writebuf, 4085 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) 4086 { 4087 char buf[128]; 4088 int fd = 0; 4089 int ret = -1; 4090 int pid = ptid_get_pid (inferior_ptid); 4091 4092 if (!annex) 4093 { 4094 if (!readbuf) 4095 return TARGET_XFER_E_IO; 4096 else 4097 { 4098 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len); 4099 4100 if (l < 0) 4101 return TARGET_XFER_E_IO; 4102 else if (l == 0) 4103 return TARGET_XFER_EOF; 4104 else 4105 { 4106 *xfered_len = (ULONGEST) l; 4107 return TARGET_XFER_OK; 4108 } 4109 } 4110 } 4111 4112 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex); 4113 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0); 4114 if (fd <= 0) 4115 return TARGET_XFER_E_IO; 4116 4117 if (offset != 0 4118 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset) 4119 { 4120 close (fd); 4121 return TARGET_XFER_EOF; 4122 } 4123 4124 if (writebuf) 4125 ret = write (fd, writebuf, (size_t) len); 4126 else if (readbuf) 4127 ret = read (fd, readbuf, (size_t) len); 4128 4129 close (fd); 4130 4131 if (ret < 0) 4132 return TARGET_XFER_E_IO; 4133 else if (ret == 0) 4134 return TARGET_XFER_EOF; 4135 else 4136 { 4137 *xfered_len = (ULONGEST) ret; 4138 return TARGET_XFER_OK; 4139 } 4140 } 4141 4142 4143 /* Parse LINE as a signal set and add its set bits to SIGS. */ 4144 4145 static void 4146 add_line_to_sigset (const char *line, sigset_t *sigs) 4147 { 4148 int len = strlen (line) - 1; 4149 const char *p; 4150 int signum; 4151 4152 if (line[len] != '\n') 4153 error (_("Could not parse signal set: %s"), line); 4154 4155 p = line; 4156 signum = len * 4; 4157 while (len-- > 0) 4158 { 4159 int digit; 4160 4161 if (*p >= '0' && *p <= '9') 4162 digit = *p - '0'; 4163 else if (*p >= 'a' && *p <= 'f') 4164 digit = *p - 'a' + 10; 4165 else 4166 error (_("Could not parse signal set: %s"), line); 4167 4168 signum -= 4; 4169 4170 if (digit & 1) 4171 sigaddset (sigs, signum + 1); 4172 if (digit & 2) 4173 sigaddset (sigs, signum + 2); 4174 if (digit & 4) 4175 sigaddset (sigs, signum + 3); 4176 if (digit & 8) 4177 sigaddset (sigs, signum + 4); 4178 4179 p++; 4180 } 4181 } 4182 4183 /* Find process PID's pending signals from /proc/pid/status and set 4184 SIGS to match. */ 4185 4186 void 4187 linux_proc_pending_signals (int pid, sigset_t *pending, 4188 sigset_t *blocked, sigset_t *ignored) 4189 { 4190 FILE *procfile; 4191 char buffer[PATH_MAX], fname[PATH_MAX]; 4192 struct cleanup *cleanup; 4193 4194 sigemptyset (pending); 4195 sigemptyset (blocked); 4196 sigemptyset (ignored); 4197 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid); 4198 procfile = gdb_fopen_cloexec (fname, "r"); 4199 if (procfile == NULL) 4200 error (_("Could not open %s"), fname); 4201 cleanup = make_cleanup_fclose (procfile); 4202 4203 while (fgets (buffer, PATH_MAX, procfile) != NULL) 4204 { 4205 /* Normal queued signals are on the SigPnd line in the status 4206 file. However, 2.6 kernels also have a "shared" pending 4207 queue for delivering signals to a thread group, so check for 4208 a ShdPnd line also. 4209 4210 Unfortunately some Red Hat kernels include the shared pending 4211 queue but not the ShdPnd status field. */ 4212 4213 if (startswith (buffer, "SigPnd:\t")) 4214 add_line_to_sigset (buffer + 8, pending); 4215 else if (startswith (buffer, "ShdPnd:\t")) 4216 add_line_to_sigset (buffer + 8, pending); 4217 else if (startswith (buffer, "SigBlk:\t")) 4218 add_line_to_sigset (buffer + 8, blocked); 4219 else if (startswith (buffer, "SigIgn:\t")) 4220 add_line_to_sigset (buffer + 8, ignored); 4221 } 4222 4223 do_cleanups (cleanup); 4224 } 4225 4226 static enum target_xfer_status 4227 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object, 4228 const char *annex, gdb_byte *readbuf, 4229 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 4230 ULONGEST *xfered_len) 4231 { 4232 gdb_assert (object == TARGET_OBJECT_OSDATA); 4233 4234 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len); 4235 if (*xfered_len == 0) 4236 return TARGET_XFER_EOF; 4237 else 4238 return TARGET_XFER_OK; 4239 } 4240 4241 static enum target_xfer_status 4242 linux_xfer_partial (struct target_ops *ops, enum target_object object, 4243 const char *annex, gdb_byte *readbuf, 4244 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 4245 ULONGEST *xfered_len) 4246 { 4247 enum target_xfer_status xfer; 4248 4249 if (object == TARGET_OBJECT_AUXV) 4250 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf, 4251 offset, len, xfered_len); 4252 4253 if (object == TARGET_OBJECT_OSDATA) 4254 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf, 4255 offset, len, xfered_len); 4256 4257 if (object == TARGET_OBJECT_SPU) 4258 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf, 4259 offset, len, xfered_len); 4260 4261 /* GDB calculates all the addresses in possibly larget width of the address. 4262 Address width needs to be masked before its final use - either by 4263 linux_proc_xfer_partial or inf_ptrace_xfer_partial. 4264 4265 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */ 4266 4267 if (object == TARGET_OBJECT_MEMORY) 4268 { 4269 int addr_bit = gdbarch_addr_bit (target_gdbarch ()); 4270 4271 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT)) 4272 offset &= ((ULONGEST) 1 << addr_bit) - 1; 4273 } 4274 4275 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf, 4276 offset, len, xfered_len); 4277 if (xfer != TARGET_XFER_EOF) 4278 return xfer; 4279 4280 return super_xfer_partial (ops, object, annex, readbuf, writebuf, 4281 offset, len, xfered_len); 4282 } 4283 4284 static void 4285 cleanup_target_stop (void *arg) 4286 { 4287 ptid_t *ptid = (ptid_t *) arg; 4288 4289 gdb_assert (arg != NULL); 4290 4291 /* Unpause all */ 4292 target_resume (*ptid, 0, GDB_SIGNAL_0); 4293 } 4294 4295 static VEC(static_tracepoint_marker_p) * 4296 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self, 4297 const char *strid) 4298 { 4299 char s[IPA_CMD_BUF_SIZE]; 4300 struct cleanup *old_chain; 4301 int pid = ptid_get_pid (inferior_ptid); 4302 VEC(static_tracepoint_marker_p) *markers = NULL; 4303 struct static_tracepoint_marker *marker = NULL; 4304 char *p = s; 4305 ptid_t ptid = ptid_build (pid, 0, 0); 4306 4307 /* Pause all */ 4308 target_stop (ptid); 4309 4310 memcpy (s, "qTfSTM", sizeof ("qTfSTM")); 4311 s[sizeof ("qTfSTM")] = 0; 4312 4313 agent_run_command (pid, s, strlen (s) + 1); 4314 4315 old_chain = make_cleanup (free_current_marker, &marker); 4316 make_cleanup (cleanup_target_stop, &ptid); 4317 4318 while (*p++ == 'm') 4319 { 4320 if (marker == NULL) 4321 marker = XCNEW (struct static_tracepoint_marker); 4322 4323 do 4324 { 4325 parse_static_tracepoint_marker_definition (p, &p, marker); 4326 4327 if (strid == NULL || strcmp (strid, marker->str_id) == 0) 4328 { 4329 VEC_safe_push (static_tracepoint_marker_p, 4330 markers, marker); 4331 marker = NULL; 4332 } 4333 else 4334 { 4335 release_static_tracepoint_marker (marker); 4336 memset (marker, 0, sizeof (*marker)); 4337 } 4338 } 4339 while (*p++ == ','); /* comma-separated list */ 4340 4341 memcpy (s, "qTsSTM", sizeof ("qTsSTM")); 4342 s[sizeof ("qTsSTM")] = 0; 4343 agent_run_command (pid, s, strlen (s) + 1); 4344 p = s; 4345 } 4346 4347 do_cleanups (old_chain); 4348 4349 return markers; 4350 } 4351 4352 /* Create a prototype generic GNU/Linux target. The client can override 4353 it with local methods. */ 4354 4355 static void 4356 linux_target_install_ops (struct target_ops *t) 4357 { 4358 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint; 4359 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint; 4360 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint; 4361 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint; 4362 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint; 4363 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint; 4364 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint; 4365 t->to_pid_to_exec_file = linux_child_pid_to_exec_file; 4366 t->to_post_startup_inferior = linux_child_post_startup_inferior; 4367 t->to_post_attach = linux_child_post_attach; 4368 t->to_follow_fork = linux_child_follow_fork; 4369 4370 super_xfer_partial = t->to_xfer_partial; 4371 t->to_xfer_partial = linux_xfer_partial; 4372 4373 t->to_static_tracepoint_markers_by_strid 4374 = linux_child_static_tracepoint_markers_by_strid; 4375 } 4376 4377 struct target_ops * 4378 linux_target (void) 4379 { 4380 struct target_ops *t; 4381 4382 t = inf_ptrace_target (); 4383 linux_target_install_ops (t); 4384 4385 return t; 4386 } 4387 4388 struct target_ops * 4389 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int)) 4390 { 4391 struct target_ops *t; 4392 4393 t = inf_ptrace_trad_target (register_u_offset); 4394 linux_target_install_ops (t); 4395 4396 return t; 4397 } 4398 4399 /* target_is_async_p implementation. */ 4400 4401 static int 4402 linux_nat_is_async_p (struct target_ops *ops) 4403 { 4404 return linux_is_async_p (); 4405 } 4406 4407 /* target_can_async_p implementation. */ 4408 4409 static int 4410 linux_nat_can_async_p (struct target_ops *ops) 4411 { 4412 /* NOTE: palves 2008-03-21: We're only async when the user requests 4413 it explicitly with the "set target-async" command. 4414 Someday, linux will always be async. */ 4415 return target_async_permitted; 4416 } 4417 4418 static int 4419 linux_nat_supports_non_stop (struct target_ops *self) 4420 { 4421 return 1; 4422 } 4423 4424 /* to_always_non_stop_p implementation. */ 4425 4426 static int 4427 linux_nat_always_non_stop_p (struct target_ops *self) 4428 { 4429 return 1; 4430 } 4431 4432 /* True if we want to support multi-process. To be removed when GDB 4433 supports multi-exec. */ 4434 4435 int linux_multi_process = 1; 4436 4437 static int 4438 linux_nat_supports_multi_process (struct target_ops *self) 4439 { 4440 return linux_multi_process; 4441 } 4442 4443 static int 4444 linux_nat_supports_disable_randomization (struct target_ops *self) 4445 { 4446 #ifdef HAVE_PERSONALITY 4447 return 1; 4448 #else 4449 return 0; 4450 #endif 4451 } 4452 4453 static int async_terminal_is_ours = 1; 4454 4455 /* target_terminal_inferior implementation. 4456 4457 This is a wrapper around child_terminal_inferior to add async support. */ 4458 4459 static void 4460 linux_nat_terminal_inferior (struct target_ops *self) 4461 { 4462 child_terminal_inferior (self); 4463 4464 /* Calls to target_terminal_*() are meant to be idempotent. */ 4465 if (!async_terminal_is_ours) 4466 return; 4467 4468 async_terminal_is_ours = 0; 4469 set_sigint_trap (); 4470 } 4471 4472 /* target_terminal_ours implementation. 4473 4474 This is a wrapper around child_terminal_ours to add async support (and 4475 implement the target_terminal_ours vs target_terminal_ours_for_output 4476 distinction). child_terminal_ours is currently no different than 4477 child_terminal_ours_for_output. 4478 We leave target_terminal_ours_for_output alone, leaving it to 4479 child_terminal_ours_for_output. */ 4480 4481 static void 4482 linux_nat_terminal_ours (struct target_ops *self) 4483 { 4484 /* GDB should never give the terminal to the inferior if the 4485 inferior is running in the background (run&, continue&, etc.), 4486 but claiming it sure should. */ 4487 child_terminal_ours (self); 4488 4489 if (async_terminal_is_ours) 4490 return; 4491 4492 clear_sigint_trap (); 4493 async_terminal_is_ours = 1; 4494 } 4495 4496 /* SIGCHLD handler that serves two purposes: In non-stop/async mode, 4497 so we notice when any child changes state, and notify the 4498 event-loop; it allows us to use sigsuspend in linux_nat_wait_1 4499 above to wait for the arrival of a SIGCHLD. */ 4500 4501 static void 4502 sigchld_handler (int signo) 4503 { 4504 int old_errno = errno; 4505 4506 if (debug_linux_nat) 4507 ui_file_write_async_safe (gdb_stdlog, 4508 "sigchld\n", sizeof ("sigchld\n") - 1); 4509 4510 if (signo == SIGCHLD 4511 && linux_nat_event_pipe[0] != -1) 4512 async_file_mark (); /* Let the event loop know that there are 4513 events to handle. */ 4514 4515 errno = old_errno; 4516 } 4517 4518 /* Callback registered with the target events file descriptor. */ 4519 4520 static void 4521 handle_target_event (int error, gdb_client_data client_data) 4522 { 4523 inferior_event_handler (INF_REG_EVENT, NULL); 4524 } 4525 4526 /* Create/destroy the target events pipe. Returns previous state. */ 4527 4528 static int 4529 linux_async_pipe (int enable) 4530 { 4531 int previous = linux_is_async_p (); 4532 4533 if (previous != enable) 4534 { 4535 sigset_t prev_mask; 4536 4537 /* Block child signals while we create/destroy the pipe, as 4538 their handler writes to it. */ 4539 block_child_signals (&prev_mask); 4540 4541 if (enable) 4542 { 4543 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1) 4544 internal_error (__FILE__, __LINE__, 4545 "creating event pipe failed."); 4546 4547 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK); 4548 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK); 4549 } 4550 else 4551 { 4552 close (linux_nat_event_pipe[0]); 4553 close (linux_nat_event_pipe[1]); 4554 linux_nat_event_pipe[0] = -1; 4555 linux_nat_event_pipe[1] = -1; 4556 } 4557 4558 restore_child_signals_mask (&prev_mask); 4559 } 4560 4561 return previous; 4562 } 4563 4564 /* target_async implementation. */ 4565 4566 static void 4567 linux_nat_async (struct target_ops *ops, int enable) 4568 { 4569 if (enable) 4570 { 4571 if (!linux_async_pipe (1)) 4572 { 4573 add_file_handler (linux_nat_event_pipe[0], 4574 handle_target_event, NULL); 4575 /* There may be pending events to handle. Tell the event loop 4576 to poll them. */ 4577 async_file_mark (); 4578 } 4579 } 4580 else 4581 { 4582 delete_file_handler (linux_nat_event_pipe[0]); 4583 linux_async_pipe (0); 4584 } 4585 return; 4586 } 4587 4588 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other 4589 event came out. */ 4590 4591 static int 4592 linux_nat_stop_lwp (struct lwp_info *lwp, void *data) 4593 { 4594 if (!lwp->stopped) 4595 { 4596 if (debug_linux_nat) 4597 fprintf_unfiltered (gdb_stdlog, 4598 "LNSL: running -> suspending %s\n", 4599 target_pid_to_str (lwp->ptid)); 4600 4601 4602 if (lwp->last_resume_kind == resume_stop) 4603 { 4604 if (debug_linux_nat) 4605 fprintf_unfiltered (gdb_stdlog, 4606 "linux-nat: already stopping LWP %ld at " 4607 "GDB's request\n", 4608 ptid_get_lwp (lwp->ptid)); 4609 return 0; 4610 } 4611 4612 stop_callback (lwp, NULL); 4613 lwp->last_resume_kind = resume_stop; 4614 } 4615 else 4616 { 4617 /* Already known to be stopped; do nothing. */ 4618 4619 if (debug_linux_nat) 4620 { 4621 if (find_thread_ptid (lwp->ptid)->stop_requested) 4622 fprintf_unfiltered (gdb_stdlog, 4623 "LNSL: already stopped/stop_requested %s\n", 4624 target_pid_to_str (lwp->ptid)); 4625 else 4626 fprintf_unfiltered (gdb_stdlog, 4627 "LNSL: already stopped/no " 4628 "stop_requested yet %s\n", 4629 target_pid_to_str (lwp->ptid)); 4630 } 4631 } 4632 return 0; 4633 } 4634 4635 static void 4636 linux_nat_stop (struct target_ops *self, ptid_t ptid) 4637 { 4638 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL); 4639 } 4640 4641 static void 4642 linux_nat_close (struct target_ops *self) 4643 { 4644 /* Unregister from the event loop. */ 4645 if (linux_nat_is_async_p (self)) 4646 linux_nat_async (self, 0); 4647 4648 if (linux_ops->to_close) 4649 linux_ops->to_close (linux_ops); 4650 4651 super_close (self); 4652 } 4653 4654 /* When requests are passed down from the linux-nat layer to the 4655 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are 4656 used. The address space pointer is stored in the inferior object, 4657 but the common code that is passed such ptid can't tell whether 4658 lwpid is a "main" process id or not (it assumes so). We reverse 4659 look up the "main" process id from the lwp here. */ 4660 4661 static struct address_space * 4662 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid) 4663 { 4664 struct lwp_info *lwp; 4665 struct inferior *inf; 4666 int pid; 4667 4668 if (ptid_get_lwp (ptid) == 0) 4669 { 4670 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the 4671 tgid. */ 4672 lwp = find_lwp_pid (ptid); 4673 pid = ptid_get_pid (lwp->ptid); 4674 } 4675 else 4676 { 4677 /* A (pid,lwpid,0) ptid. */ 4678 pid = ptid_get_pid (ptid); 4679 } 4680 4681 inf = find_inferior_pid (pid); 4682 gdb_assert (inf != NULL); 4683 return inf->aspace; 4684 } 4685 4686 /* Return the cached value of the processor core for thread PTID. */ 4687 4688 static int 4689 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid) 4690 { 4691 struct lwp_info *info = find_lwp_pid (ptid); 4692 4693 if (info) 4694 return info->core; 4695 return -1; 4696 } 4697 4698 /* Implementation of to_filesystem_is_local. */ 4699 4700 static int 4701 linux_nat_filesystem_is_local (struct target_ops *ops) 4702 { 4703 struct inferior *inf = current_inferior (); 4704 4705 if (inf->fake_pid_p || inf->pid == 0) 4706 return 1; 4707 4708 return linux_ns_same (inf->pid, LINUX_NS_MNT); 4709 } 4710 4711 /* Convert the INF argument passed to a to_fileio_* method 4712 to a process ID suitable for passing to its corresponding 4713 linux_mntns_* function. If INF is non-NULL then the 4714 caller is requesting the filesystem seen by INF. If INF 4715 is NULL then the caller is requesting the filesystem seen 4716 by the GDB. We fall back to GDB's filesystem in the case 4717 that INF is non-NULL but its PID is unknown. */ 4718 4719 static pid_t 4720 linux_nat_fileio_pid_of (struct inferior *inf) 4721 { 4722 if (inf == NULL || inf->fake_pid_p || inf->pid == 0) 4723 return getpid (); 4724 else 4725 return inf->pid; 4726 } 4727 4728 /* Implementation of to_fileio_open. */ 4729 4730 static int 4731 linux_nat_fileio_open (struct target_ops *self, 4732 struct inferior *inf, const char *filename, 4733 int flags, int mode, int warn_if_slow, 4734 int *target_errno) 4735 { 4736 int nat_flags; 4737 mode_t nat_mode; 4738 int fd; 4739 4740 if (fileio_to_host_openflags (flags, &nat_flags) == -1 4741 || fileio_to_host_mode (mode, &nat_mode) == -1) 4742 { 4743 *target_errno = FILEIO_EINVAL; 4744 return -1; 4745 } 4746 4747 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf), 4748 filename, nat_flags, nat_mode); 4749 if (fd == -1) 4750 *target_errno = host_to_fileio_error (errno); 4751 4752 return fd; 4753 } 4754 4755 /* Implementation of to_fileio_readlink. */ 4756 4757 static char * 4758 linux_nat_fileio_readlink (struct target_ops *self, 4759 struct inferior *inf, const char *filename, 4760 int *target_errno) 4761 { 4762 char buf[PATH_MAX]; 4763 int len; 4764 char *ret; 4765 4766 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf), 4767 filename, buf, sizeof (buf)); 4768 if (len < 0) 4769 { 4770 *target_errno = host_to_fileio_error (errno); 4771 return NULL; 4772 } 4773 4774 ret = (char *) xmalloc (len + 1); 4775 memcpy (ret, buf, len); 4776 ret[len] = '\0'; 4777 return ret; 4778 } 4779 4780 /* Implementation of to_fileio_unlink. */ 4781 4782 static int 4783 linux_nat_fileio_unlink (struct target_ops *self, 4784 struct inferior *inf, const char *filename, 4785 int *target_errno) 4786 { 4787 int ret; 4788 4789 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf), 4790 filename); 4791 if (ret == -1) 4792 *target_errno = host_to_fileio_error (errno); 4793 4794 return ret; 4795 } 4796 4797 /* Implementation of the to_thread_events method. */ 4798 4799 static void 4800 linux_nat_thread_events (struct target_ops *ops, int enable) 4801 { 4802 report_thread_events = enable; 4803 } 4804 4805 void 4806 linux_nat_add_target (struct target_ops *t) 4807 { 4808 /* Save the provided single-threaded target. We save this in a separate 4809 variable because another target we've inherited from (e.g. inf-ptrace) 4810 may have saved a pointer to T; we want to use it for the final 4811 process stratum target. */ 4812 linux_ops_saved = *t; 4813 linux_ops = &linux_ops_saved; 4814 4815 /* Override some methods for multithreading. */ 4816 t->to_create_inferior = linux_nat_create_inferior; 4817 t->to_attach = linux_nat_attach; 4818 t->to_detach = linux_nat_detach; 4819 t->to_resume = linux_nat_resume; 4820 t->to_wait = linux_nat_wait; 4821 t->to_pass_signals = linux_nat_pass_signals; 4822 t->to_xfer_partial = linux_nat_xfer_partial; 4823 t->to_kill = linux_nat_kill; 4824 t->to_mourn_inferior = linux_nat_mourn_inferior; 4825 t->to_thread_alive = linux_nat_thread_alive; 4826 t->to_update_thread_list = linux_nat_update_thread_list; 4827 t->to_pid_to_str = linux_nat_pid_to_str; 4828 t->to_thread_name = linux_nat_thread_name; 4829 t->to_has_thread_control = tc_schedlock; 4830 t->to_thread_address_space = linux_nat_thread_address_space; 4831 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint; 4832 t->to_stopped_data_address = linux_nat_stopped_data_address; 4833 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint; 4834 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint; 4835 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint; 4836 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint; 4837 t->to_thread_events = linux_nat_thread_events; 4838 4839 t->to_can_async_p = linux_nat_can_async_p; 4840 t->to_is_async_p = linux_nat_is_async_p; 4841 t->to_supports_non_stop = linux_nat_supports_non_stop; 4842 t->to_always_non_stop_p = linux_nat_always_non_stop_p; 4843 t->to_async = linux_nat_async; 4844 t->to_terminal_inferior = linux_nat_terminal_inferior; 4845 t->to_terminal_ours = linux_nat_terminal_ours; 4846 4847 super_close = t->to_close; 4848 t->to_close = linux_nat_close; 4849 4850 t->to_stop = linux_nat_stop; 4851 4852 t->to_supports_multi_process = linux_nat_supports_multi_process; 4853 4854 t->to_supports_disable_randomization 4855 = linux_nat_supports_disable_randomization; 4856 4857 t->to_core_of_thread = linux_nat_core_of_thread; 4858 4859 t->to_filesystem_is_local = linux_nat_filesystem_is_local; 4860 t->to_fileio_open = linux_nat_fileio_open; 4861 t->to_fileio_readlink = linux_nat_fileio_readlink; 4862 t->to_fileio_unlink = linux_nat_fileio_unlink; 4863 4864 /* We don't change the stratum; this target will sit at 4865 process_stratum and thread_db will set at thread_stratum. This 4866 is a little strange, since this is a multi-threaded-capable 4867 target, but we want to be on the stack below thread_db, and we 4868 also want to be used for single-threaded processes. */ 4869 4870 add_target (t); 4871 } 4872 4873 /* Register a method to call whenever a new thread is attached. */ 4874 void 4875 linux_nat_set_new_thread (struct target_ops *t, 4876 void (*new_thread) (struct lwp_info *)) 4877 { 4878 /* Save the pointer. We only support a single registered instance 4879 of the GNU/Linux native target, so we do not need to map this to 4880 T. */ 4881 linux_nat_new_thread = new_thread; 4882 } 4883 4884 /* See declaration in linux-nat.h. */ 4885 4886 void 4887 linux_nat_set_new_fork (struct target_ops *t, 4888 linux_nat_new_fork_ftype *new_fork) 4889 { 4890 /* Save the pointer. */ 4891 linux_nat_new_fork = new_fork; 4892 } 4893 4894 /* See declaration in linux-nat.h. */ 4895 4896 void 4897 linux_nat_set_forget_process (struct target_ops *t, 4898 linux_nat_forget_process_ftype *fn) 4899 { 4900 /* Save the pointer. */ 4901 linux_nat_forget_process_hook = fn; 4902 } 4903 4904 /* See declaration in linux-nat.h. */ 4905 4906 void 4907 linux_nat_forget_process (pid_t pid) 4908 { 4909 if (linux_nat_forget_process_hook != NULL) 4910 linux_nat_forget_process_hook (pid); 4911 } 4912 4913 /* Register a method that converts a siginfo object between the layout 4914 that ptrace returns, and the layout in the architecture of the 4915 inferior. */ 4916 void 4917 linux_nat_set_siginfo_fixup (struct target_ops *t, 4918 int (*siginfo_fixup) (siginfo_t *, 4919 gdb_byte *, 4920 int)) 4921 { 4922 /* Save the pointer. */ 4923 linux_nat_siginfo_fixup = siginfo_fixup; 4924 } 4925 4926 /* Register a method to call prior to resuming a thread. */ 4927 4928 void 4929 linux_nat_set_prepare_to_resume (struct target_ops *t, 4930 void (*prepare_to_resume) (struct lwp_info *)) 4931 { 4932 /* Save the pointer. */ 4933 linux_nat_prepare_to_resume = prepare_to_resume; 4934 } 4935 4936 /* See linux-nat.h. */ 4937 4938 int 4939 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo) 4940 { 4941 int pid; 4942 4943 pid = ptid_get_lwp (ptid); 4944 if (pid == 0) 4945 pid = ptid_get_pid (ptid); 4946 4947 errno = 0; 4948 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo); 4949 if (errno != 0) 4950 { 4951 memset (siginfo, 0, sizeof (*siginfo)); 4952 return 0; 4953 } 4954 return 1; 4955 } 4956 4957 /* See nat/linux-nat.h. */ 4958 4959 ptid_t 4960 current_lwp_ptid (void) 4961 { 4962 gdb_assert (ptid_lwp_p (inferior_ptid)); 4963 return inferior_ptid; 4964 } 4965 4966 /* Provide a prototype to silence -Wmissing-prototypes. */ 4967 extern initialize_file_ftype _initialize_linux_nat; 4968 4969 void 4970 _initialize_linux_nat (void) 4971 { 4972 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance, 4973 &debug_linux_nat, _("\ 4974 Set debugging of GNU/Linux lwp module."), _("\ 4975 Show debugging of GNU/Linux lwp module."), _("\ 4976 Enables printf debugging output."), 4977 NULL, 4978 show_debug_linux_nat, 4979 &setdebuglist, &showdebuglist); 4980 4981 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance, 4982 &debug_linux_namespaces, _("\ 4983 Set debugging of GNU/Linux namespaces module."), _("\ 4984 Show debugging of GNU/Linux namespaces module."), _("\ 4985 Enables printf debugging output."), 4986 NULL, 4987 NULL, 4988 &setdebuglist, &showdebuglist); 4989 4990 /* Save this mask as the default. */ 4991 sigprocmask (SIG_SETMASK, NULL, &normal_mask); 4992 4993 /* Install a SIGCHLD handler. */ 4994 sigchld_action.sa_handler = sigchld_handler; 4995 sigemptyset (&sigchld_action.sa_mask); 4996 sigchld_action.sa_flags = SA_RESTART; 4997 4998 /* Make it the default. */ 4999 sigaction (SIGCHLD, &sigchld_action, NULL); 5000 5001 /* Make sure we don't block SIGCHLD during a sigsuspend. */ 5002 sigprocmask (SIG_SETMASK, NULL, &suspend_mask); 5003 sigdelset (&suspend_mask, SIGCHLD); 5004 5005 sigemptyset (&blocked_mask); 5006 5007 lwp_lwpid_htab_create (); 5008 } 5009 5010 5011 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to 5012 the GNU/Linux Threads library and therefore doesn't really belong 5013 here. */ 5014 5015 /* Return the set of signals used by the threads library in *SET. */ 5016 5017 void 5018 lin_thread_get_thread_signals (sigset_t *set) 5019 { 5020 sigemptyset (set); 5021 5022 /* NPTL reserves the first two RT signals, but does not provide any 5023 way for the debugger to query the signal numbers - fortunately 5024 they don't change. */ 5025 sigaddset (set, __SIGRTMIN); 5026 sigaddset (set, __SIGRTMIN + 1); 5027 } 5028