xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/jit.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2 
3    Copyright (C) 2009-2019 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observable.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42 #include "readline/tilde.h"
43 #include "completer.h"
44 
45 static const char *jit_reader_dir = NULL;
46 
47 static const struct objfile_data *jit_objfile_data;
48 
49 static const char *const jit_break_name = "__jit_debug_register_code";
50 
51 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
52 
53 static const struct program_space_data *jit_program_space_data = NULL;
54 
55 static void jit_inferior_init (struct gdbarch *gdbarch);
56 static void jit_inferior_exit_hook (struct inferior *inf);
57 
58 /* An unwinder is registered for every gdbarch.  This key is used to
59    remember if the unwinder has been registered for a particular
60    gdbarch.  */
61 
62 static struct gdbarch_data *jit_gdbarch_data;
63 
64 /* Non-zero if we want to see trace of jit level stuff.  */
65 
66 static unsigned int jit_debug = 0;
67 
68 static void
69 show_jit_debug (struct ui_file *file, int from_tty,
70 		struct cmd_list_element *c, const char *value)
71 {
72   fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
73 }
74 
75 struct target_buffer
76 {
77   CORE_ADDR base;
78   ULONGEST size;
79 };
80 
81 /* Openning the file is a no-op.  */
82 
83 static void *
84 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
85 {
86   return open_closure;
87 }
88 
89 /* Closing the file is just freeing the base/size pair on our side.  */
90 
91 static int
92 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
93 {
94   xfree (stream);
95 
96   /* Zero means success.  */
97   return 0;
98 }
99 
100 /* For reading the file, we just need to pass through to target_read_memory and
101    fix up the arguments and return values.  */
102 
103 static file_ptr
104 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
105                      file_ptr nbytes, file_ptr offset)
106 {
107   int err;
108   struct target_buffer *buffer = (struct target_buffer *) stream;
109 
110   /* If this read will read all of the file, limit it to just the rest.  */
111   if (offset + nbytes > buffer->size)
112     nbytes = buffer->size - offset;
113 
114   /* If there are no more bytes left, we've reached EOF.  */
115   if (nbytes == 0)
116     return 0;
117 
118   err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
119   if (err)
120     return -1;
121 
122   return nbytes;
123 }
124 
125 /* For statting the file, we only support the st_size attribute.  */
126 
127 static int
128 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
129 {
130   struct target_buffer *buffer = (struct target_buffer*) stream;
131 
132   memset (sb, 0, sizeof (struct stat));
133   sb->st_size = buffer->size;
134   return 0;
135 }
136 
137 /* Open a BFD from the target's memory.  */
138 
139 static gdb_bfd_ref_ptr
140 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
141 {
142   struct target_buffer *buffer = XNEW (struct target_buffer);
143 
144   buffer->base = addr;
145   buffer->size = size;
146   return gdb_bfd_openr_iovec ("<in-memory>", target,
147 			      mem_bfd_iovec_open,
148 			      buffer,
149 			      mem_bfd_iovec_pread,
150 			      mem_bfd_iovec_close,
151 			      mem_bfd_iovec_stat);
152 }
153 
154 struct jit_reader
155 {
156   jit_reader (struct gdb_reader_funcs *f, gdb_dlhandle_up &&h)
157     : functions (f), handle (std::move (h))
158   {
159   }
160 
161   ~jit_reader ()
162   {
163     functions->destroy (functions);
164   }
165 
166   DISABLE_COPY_AND_ASSIGN (jit_reader);
167 
168   struct gdb_reader_funcs *functions;
169   gdb_dlhandle_up handle;
170 };
171 
172 /* One reader that has been loaded successfully, and can potentially be used to
173    parse debug info.  */
174 
175 static struct jit_reader *loaded_jit_reader = NULL;
176 
177 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
178 static const char *reader_init_fn_sym = "gdb_init_reader";
179 
180 /* Try to load FILE_NAME as a JIT debug info reader.  */
181 
182 static struct jit_reader *
183 jit_reader_load (const char *file_name)
184 {
185   reader_init_fn_type *init_fn;
186   struct gdb_reader_funcs *funcs = NULL;
187 
188   if (jit_debug)
189     fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
190                         file_name);
191   gdb_dlhandle_up so = gdb_dlopen (file_name);
192 
193   init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
194   if (!init_fn)
195     error (_("Could not locate initialization function: %s."),
196           reader_init_fn_sym);
197 
198   if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
199     error (_("Reader not GPL compatible."));
200 
201   funcs = init_fn ();
202   if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
203     error (_("Reader version does not match GDB version."));
204 
205   return new jit_reader (funcs, std::move (so));
206 }
207 
208 /* Provides the jit-reader-load command.  */
209 
210 static void
211 jit_reader_load_command (const char *args, int from_tty)
212 {
213   if (args == NULL)
214     error (_("No reader name provided."));
215   gdb::unique_xmalloc_ptr<char> file (tilde_expand (args));
216 
217   if (loaded_jit_reader != NULL)
218     error (_("JIT reader already loaded.  Run jit-reader-unload first."));
219 
220   if (!IS_ABSOLUTE_PATH (file.get ()))
221     file.reset (xstrprintf ("%s%s%s", jit_reader_dir, SLASH_STRING,
222 			    file.get ()));
223 
224   loaded_jit_reader = jit_reader_load (file.get ());
225   reinit_frame_cache ();
226   jit_inferior_created_hook ();
227 }
228 
229 /* Provides the jit-reader-unload command.  */
230 
231 static void
232 jit_reader_unload_command (const char *args, int from_tty)
233 {
234   if (!loaded_jit_reader)
235     error (_("No JIT reader loaded."));
236 
237   reinit_frame_cache ();
238   jit_inferior_exit_hook (current_inferior ());
239 
240   delete loaded_jit_reader;
241   loaded_jit_reader = NULL;
242 }
243 
244 /* Per-program space structure recording which objfile has the JIT
245    symbols.  */
246 
247 struct jit_program_space_data
248 {
249   /* The objfile.  This is NULL if no objfile holds the JIT
250      symbols.  */
251 
252   struct objfile *objfile;
253 
254   /* If this program space has __jit_debug_register_code, this is the
255      cached address from the minimal symbol.  This is used to detect
256      relocations requiring the breakpoint to be re-created.  */
257 
258   CORE_ADDR cached_code_address;
259 
260   /* This is the JIT event breakpoint, or NULL if it has not been
261      set.  */
262 
263   struct breakpoint *jit_breakpoint;
264 };
265 
266 /* Per-objfile structure recording the addresses in the program space.
267    This object serves two purposes: for ordinary objfiles, it may
268    cache some symbols related to the JIT interface; and for
269    JIT-created objfiles, it holds some information about the
270    jit_code_entry.  */
271 
272 struct jit_objfile_data
273 {
274   /* Symbol for __jit_debug_register_code.  */
275   struct minimal_symbol *register_code;
276 
277   /* Symbol for __jit_debug_descriptor.  */
278   struct minimal_symbol *descriptor;
279 
280   /* Address of struct jit_code_entry in this objfile.  This is only
281      non-zero for objfiles that represent code created by the JIT.  */
282   CORE_ADDR addr;
283 };
284 
285 /* Fetch the jit_objfile_data associated with OBJF.  If no data exists
286    yet, make a new structure and attach it.  */
287 
288 static struct jit_objfile_data *
289 get_jit_objfile_data (struct objfile *objf)
290 {
291   struct jit_objfile_data *objf_data;
292 
293   objf_data = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
294   if (objf_data == NULL)
295     {
296       objf_data = XCNEW (struct jit_objfile_data);
297       set_objfile_data (objf, jit_objfile_data, objf_data);
298     }
299 
300   return objf_data;
301 }
302 
303 /* Remember OBJFILE has been created for struct jit_code_entry located
304    at inferior address ENTRY.  */
305 
306 static void
307 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
308 {
309   struct jit_objfile_data *objf_data;
310 
311   objf_data = get_jit_objfile_data (objfile);
312   objf_data->addr = entry;
313 }
314 
315 /* Return jit_program_space_data for current program space.  Allocate
316    if not already present.  */
317 
318 static struct jit_program_space_data *
319 get_jit_program_space_data (void)
320 {
321   struct jit_program_space_data *ps_data;
322 
323   ps_data
324     = ((struct jit_program_space_data *)
325        program_space_data (current_program_space, jit_program_space_data));
326   if (ps_data == NULL)
327     {
328       ps_data = XCNEW (struct jit_program_space_data);
329       set_program_space_data (current_program_space, jit_program_space_data,
330 			      ps_data);
331     }
332 
333   return ps_data;
334 }
335 
336 static void
337 jit_program_space_data_cleanup (struct program_space *ps, void *arg)
338 {
339   xfree (arg);
340 }
341 
342 /* Helper function for reading the global JIT descriptor from remote
343    memory.  Returns 1 if all went well, 0 otherwise.  */
344 
345 static int
346 jit_read_descriptor (struct gdbarch *gdbarch,
347 		     struct jit_descriptor *descriptor,
348 		     struct jit_program_space_data *ps_data)
349 {
350   int err;
351   struct type *ptr_type;
352   int ptr_size;
353   int desc_size;
354   gdb_byte *desc_buf;
355   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
356   struct jit_objfile_data *objf_data;
357 
358   if (ps_data->objfile == NULL)
359     return 0;
360   objf_data = get_jit_objfile_data (ps_data->objfile);
361   if (objf_data->descriptor == NULL)
362     return 0;
363 
364   if (jit_debug)
365     fprintf_unfiltered (gdb_stdlog,
366 			"jit_read_descriptor, descriptor_addr = %s\n",
367 			paddress (gdbarch, MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
368 								  objf_data->descriptor)));
369 
370   /* Figure out how big the descriptor is on the remote and how to read it.  */
371   ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
372   ptr_size = TYPE_LENGTH (ptr_type);
373   desc_size = 8 + 2 * ptr_size;  /* Two 32-bit ints and two pointers.  */
374   desc_buf = (gdb_byte *) alloca (desc_size);
375 
376   /* Read the descriptor.  */
377   err = target_read_memory (MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
378 						   objf_data->descriptor),
379 			    desc_buf, desc_size);
380   if (err)
381     {
382       printf_unfiltered (_("Unable to read JIT descriptor from "
383 			   "remote memory\n"));
384       return 0;
385     }
386 
387   /* Fix the endianness to match the host.  */
388   descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
389   descriptor->action_flag =
390       extract_unsigned_integer (&desc_buf[4], 4, byte_order);
391   descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
392   descriptor->first_entry =
393       extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
394 
395   return 1;
396 }
397 
398 /* Helper function for reading a JITed code entry from remote memory.  */
399 
400 static void
401 jit_read_code_entry (struct gdbarch *gdbarch,
402 		     CORE_ADDR code_addr, struct jit_code_entry *code_entry)
403 {
404   int err, off;
405   struct type *ptr_type;
406   int ptr_size;
407   int entry_size;
408   int align_bytes;
409   gdb_byte *entry_buf;
410   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
411 
412   /* Figure out how big the entry is on the remote and how to read it.  */
413   ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
414   ptr_size = TYPE_LENGTH (ptr_type);
415 
416   /* Figure out where the uint64_t value will be.  */
417   align_bytes = type_align (builtin_type (gdbarch)->builtin_uint64);
418   off = 3 * ptr_size;
419   off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
420 
421   entry_size = off + 8;  /* Three pointers and one 64-bit int.  */
422   entry_buf = (gdb_byte *) alloca (entry_size);
423 
424   /* Read the entry.  */
425   err = target_read_memory (code_addr, entry_buf, entry_size);
426   if (err)
427     error (_("Unable to read JIT code entry from remote memory!"));
428 
429   /* Fix the endianness to match the host.  */
430   ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
431   code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
432   code_entry->prev_entry =
433       extract_typed_address (&entry_buf[ptr_size], ptr_type);
434   code_entry->symfile_addr =
435       extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
436   code_entry->symfile_size =
437       extract_unsigned_integer (&entry_buf[off], 8, byte_order);
438 }
439 
440 /* Proxy object for building a block.  */
441 
442 struct gdb_block
443 {
444   /* gdb_blocks are linked into a tree structure.  Next points to the
445      next node at the same depth as this block and parent to the
446      parent gdb_block.  */
447   struct gdb_block *next, *parent;
448 
449   /* Points to the "real" block that is being built out of this
450      instance.  This block will be added to a blockvector, which will
451      then be added to a symtab.  */
452   struct block *real_block;
453 
454   /* The first and last code address corresponding to this block.  */
455   CORE_ADDR begin, end;
456 
457   /* The name of this block (if any).  If this is non-NULL, the
458      FUNCTION symbol symbol is set to this value.  */
459   const char *name;
460 };
461 
462 /* Proxy object for building a symtab.  */
463 
464 struct gdb_symtab
465 {
466   /* The list of blocks in this symtab.  These will eventually be
467      converted to real blocks.  */
468   struct gdb_block *blocks;
469 
470   /* The number of blocks inserted.  */
471   int nblocks;
472 
473   /* A mapping between line numbers to PC.  */
474   struct linetable *linetable;
475 
476   /* The source file for this symtab.  */
477   const char *file_name;
478   struct gdb_symtab *next;
479 };
480 
481 /* Proxy object for building an object.  */
482 
483 struct gdb_object
484 {
485   struct gdb_symtab *symtabs;
486 };
487 
488 /* The type of the `private' data passed around by the callback
489    functions.  */
490 
491 typedef CORE_ADDR jit_dbg_reader_data;
492 
493 /* The reader calls into this function to read data off the targets
494    address space.  */
495 
496 static enum gdb_status
497 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
498 {
499   int result = target_read_memory ((CORE_ADDR) target_mem,
500 				   (gdb_byte *) gdb_buf, len);
501   if (result == 0)
502     return GDB_SUCCESS;
503   else
504     return GDB_FAIL;
505 }
506 
507 /* The reader calls into this function to create a new gdb_object
508    which it can then pass around to the other callbacks.  Right now,
509    all that is required is allocating the memory.  */
510 
511 static struct gdb_object *
512 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
513 {
514   /* CB is not required right now, but sometime in the future we might
515      need a handle to it, and we'd like to do that without breaking
516      the ABI.  */
517   return XCNEW (struct gdb_object);
518 }
519 
520 /* Readers call into this function to open a new gdb_symtab, which,
521    again, is passed around to other callbacks.  */
522 
523 static struct gdb_symtab *
524 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
525                       struct gdb_object *object,
526                       const char *file_name)
527 {
528   struct gdb_symtab *ret;
529 
530   /* CB stays unused.  See comment in jit_object_open_impl.  */
531 
532   ret = XCNEW (struct gdb_symtab);
533   ret->file_name = file_name ? xstrdup (file_name) : xstrdup ("");
534   ret->next = object->symtabs;
535   object->symtabs = ret;
536   return ret;
537 }
538 
539 /* Returns true if the block corresponding to old should be placed
540    before the block corresponding to new in the final blockvector.  */
541 
542 static int
543 compare_block (const struct gdb_block *const old,
544                const struct gdb_block *const newobj)
545 {
546   if (old == NULL)
547     return 1;
548   if (old->begin < newobj->begin)
549     return 1;
550   else if (old->begin == newobj->begin)
551     {
552       if (old->end > newobj->end)
553         return 1;
554       else
555         return 0;
556     }
557   else
558     return 0;
559 }
560 
561 /* Called by readers to open a new gdb_block.  This function also
562    inserts the new gdb_block in the correct place in the corresponding
563    gdb_symtab.  */
564 
565 static struct gdb_block *
566 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
567                      struct gdb_symtab *symtab, struct gdb_block *parent,
568                      GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
569 {
570   struct gdb_block *block = XCNEW (struct gdb_block);
571 
572   block->next = symtab->blocks;
573   block->begin = (CORE_ADDR) begin;
574   block->end = (CORE_ADDR) end;
575   block->name = name ? xstrdup (name) : NULL;
576   block->parent = parent;
577 
578   /* Ensure that the blocks are inserted in the correct (reverse of
579      the order expected by blockvector).  */
580   if (compare_block (symtab->blocks, block))
581     {
582       symtab->blocks = block;
583     }
584   else
585     {
586       struct gdb_block *i = symtab->blocks;
587 
588       for (;; i = i->next)
589         {
590           /* Guaranteed to terminate, since compare_block (NULL, _)
591              returns 1.  */
592           if (compare_block (i->next, block))
593             {
594               block->next = i->next;
595               i->next = block;
596               break;
597             }
598         }
599     }
600   symtab->nblocks++;
601 
602   return block;
603 }
604 
605 /* Readers call this to add a line mapping (from PC to line number) to
606    a gdb_symtab.  */
607 
608 static void
609 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
610                                   struct gdb_symtab *stab, int nlines,
611                                   struct gdb_line_mapping *map)
612 {
613   int i;
614   int alloc_len;
615 
616   if (nlines < 1)
617     return;
618 
619   alloc_len = sizeof (struct linetable)
620 	      + (nlines - 1) * sizeof (struct linetable_entry);
621   stab->linetable = (struct linetable *) xmalloc (alloc_len);
622   stab->linetable->nitems = nlines;
623   for (i = 0; i < nlines; i++)
624     {
625       stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
626       stab->linetable->item[i].line = map[i].line;
627     }
628 }
629 
630 /* Called by readers to close a gdb_symtab.  Does not need to do
631    anything as of now.  */
632 
633 static void
634 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
635                        struct gdb_symtab *stab)
636 {
637   /* Right now nothing needs to be done here.  We may need to do some
638      cleanup here in the future (again, without breaking the plugin
639      ABI).  */
640 }
641 
642 /* Transform STAB to a proper symtab, and add it it OBJFILE.  */
643 
644 static void
645 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
646 {
647   struct compunit_symtab *cust;
648   struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
649   struct block *block_iter;
650   int actual_nblocks, i;
651   size_t blockvector_size;
652   CORE_ADDR begin, end;
653   struct blockvector *bv;
654 
655   actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
656 
657   cust = allocate_compunit_symtab (objfile, stab->file_name);
658   allocate_symtab (cust, stab->file_name);
659   add_compunit_symtab_to_objfile (cust);
660 
661   /* JIT compilers compile in memory.  */
662   COMPUNIT_DIRNAME (cust) = NULL;
663 
664   /* Copy over the linetable entry if one was provided.  */
665   if (stab->linetable)
666     {
667       size_t size = ((stab->linetable->nitems - 1)
668 		     * sizeof (struct linetable_entry)
669 		     + sizeof (struct linetable));
670       SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
671 	= (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size);
672       memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)), stab->linetable,
673 	      size);
674     }
675 
676   blockvector_size = (sizeof (struct blockvector)
677                       + (actual_nblocks - 1) * sizeof (struct block *));
678   bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
679 					     blockvector_size);
680   COMPUNIT_BLOCKVECTOR (cust) = bv;
681 
682   /* (begin, end) will contain the PC range this entire blockvector
683      spans.  */
684   BLOCKVECTOR_MAP (bv) = NULL;
685   begin = stab->blocks->begin;
686   end = stab->blocks->end;
687   BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
688 
689   /* First run over all the gdb_block objects, creating a real block
690      object for each.  Simultaneously, keep setting the real_block
691      fields.  */
692   for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
693        i >= FIRST_LOCAL_BLOCK;
694        i--, gdb_block_iter = gdb_block_iter->next)
695     {
696       struct block *new_block = allocate_block (&objfile->objfile_obstack);
697       struct symbol *block_name = allocate_symbol (objfile);
698       struct type *block_type = arch_type (get_objfile_arch (objfile),
699 					   TYPE_CODE_VOID,
700 					   TARGET_CHAR_BIT,
701 					   "void");
702 
703       BLOCK_MULTIDICT (new_block)
704 	= mdict_create_linear (&objfile->objfile_obstack, NULL);
705       /* The address range.  */
706       BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
707       BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
708 
709       /* The name.  */
710       SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
711       SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
712       symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
713       SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
714       SYMBOL_BLOCK_VALUE (block_name) = new_block;
715 
716       block_name->ginfo.name
717 	= (const char *) obstack_copy0 (&objfile->objfile_obstack,
718 					gdb_block_iter->name,
719 					strlen (gdb_block_iter->name));
720 
721       BLOCK_FUNCTION (new_block) = block_name;
722 
723       BLOCKVECTOR_BLOCK (bv, i) = new_block;
724       if (begin > BLOCK_START (new_block))
725         begin = BLOCK_START (new_block);
726       if (end < BLOCK_END (new_block))
727         end = BLOCK_END (new_block);
728 
729       gdb_block_iter->real_block = new_block;
730     }
731 
732   /* Now add the special blocks.  */
733   block_iter = NULL;
734   for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
735     {
736       struct block *new_block;
737 
738       new_block = (i == GLOBAL_BLOCK
739 		   ? allocate_global_block (&objfile->objfile_obstack)
740 		   : allocate_block (&objfile->objfile_obstack));
741       BLOCK_MULTIDICT (new_block)
742 	= mdict_create_linear (&objfile->objfile_obstack, NULL);
743       BLOCK_SUPERBLOCK (new_block) = block_iter;
744       block_iter = new_block;
745 
746       BLOCK_START (new_block) = (CORE_ADDR) begin;
747       BLOCK_END (new_block) = (CORE_ADDR) end;
748 
749       BLOCKVECTOR_BLOCK (bv, i) = new_block;
750 
751       if (i == GLOBAL_BLOCK)
752 	set_block_compunit_symtab (new_block, cust);
753     }
754 
755   /* Fill up the superblock fields for the real blocks, using the
756      real_block fields populated earlier.  */
757   for (gdb_block_iter = stab->blocks;
758        gdb_block_iter;
759        gdb_block_iter = gdb_block_iter->next)
760     {
761       if (gdb_block_iter->parent != NULL)
762 	{
763 	  /* If the plugin specifically mentioned a parent block, we
764 	     use that.  */
765 	  BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
766 	    gdb_block_iter->parent->real_block;
767 	}
768       else
769 	{
770 	  /* And if not, we set a default parent block.  */
771 	  BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
772 	    BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
773 	}
774     }
775 
776   /* Free memory.  */
777   gdb_block_iter = stab->blocks;
778 
779   for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next;
780        gdb_block_iter;
781        gdb_block_iter = gdb_block_iter_tmp)
782     {
783       xfree ((void *) gdb_block_iter->name);
784       xfree (gdb_block_iter);
785     }
786   xfree (stab->linetable);
787   xfree ((char *) stab->file_name);
788   xfree (stab);
789 }
790 
791 /* Called when closing a gdb_objfile.  Converts OBJ to a proper
792    objfile.  */
793 
794 static void
795 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
796                        struct gdb_object *obj)
797 {
798   struct gdb_symtab *i, *j;
799   struct objfile *objfile;
800   jit_dbg_reader_data *priv_data;
801 
802   priv_data = (jit_dbg_reader_data *) cb->priv_data;
803 
804   objfile = new struct objfile (NULL, "<< JIT compiled code >>",
805 				OBJF_NOT_FILENAME);
806   objfile->per_bfd->gdbarch = target_gdbarch ();
807 
808   terminate_minimal_symbol_table (objfile);
809 
810   j = NULL;
811   for (i = obj->symtabs; i; i = j)
812     {
813       j = i->next;
814       finalize_symtab (i, objfile);
815     }
816   add_objfile_entry (objfile, *priv_data);
817   xfree (obj);
818 }
819 
820 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
821    ENTRY_ADDR is the address of the struct jit_code_entry in the
822    inferior address space.  */
823 
824 static int
825 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
826                             CORE_ADDR entry_addr)
827 {
828   gdb_byte *gdb_mem;
829   int status;
830   jit_dbg_reader_data priv_data;
831   struct gdb_reader_funcs *funcs;
832   struct gdb_symbol_callbacks callbacks =
833     {
834       jit_object_open_impl,
835       jit_symtab_open_impl,
836       jit_block_open_impl,
837       jit_symtab_close_impl,
838       jit_object_close_impl,
839 
840       jit_symtab_line_mapping_add_impl,
841       jit_target_read_impl,
842 
843       &priv_data
844     };
845 
846   priv_data = entry_addr;
847 
848   if (!loaded_jit_reader)
849     return 0;
850 
851   gdb_mem = (gdb_byte *) xmalloc (code_entry->symfile_size);
852 
853   status = 1;
854   TRY
855     {
856       if (target_read_memory (code_entry->symfile_addr, gdb_mem,
857 			      code_entry->symfile_size))
858 	status = 0;
859     }
860   CATCH (e, RETURN_MASK_ALL)
861     {
862       status = 0;
863     }
864   END_CATCH
865 
866   if (status)
867     {
868       funcs = loaded_jit_reader->functions;
869       if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size)
870           != GDB_SUCCESS)
871         status = 0;
872     }
873 
874   xfree (gdb_mem);
875   if (jit_debug && status == 0)
876     fprintf_unfiltered (gdb_stdlog,
877                         "Could not read symtab using the loaded JIT reader.\n");
878   return status;
879 }
880 
881 /* Try to read CODE_ENTRY using BFD.  ENTRY_ADDR is the address of the
882    struct jit_code_entry in the inferior address space.  */
883 
884 static void
885 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
886                          CORE_ADDR entry_addr,
887                          struct gdbarch *gdbarch)
888 {
889   struct bfd_section *sec;
890   struct objfile *objfile;
891   const struct bfd_arch_info *b;
892 
893   if (jit_debug)
894     fprintf_unfiltered (gdb_stdlog,
895 			"jit_register_code, symfile_addr = %s, "
896 			"symfile_size = %s\n",
897 			paddress (gdbarch, code_entry->symfile_addr),
898 			pulongest (code_entry->symfile_size));
899 
900   gdb_bfd_ref_ptr nbfd (bfd_open_from_target_memory (code_entry->symfile_addr,
901 						     code_entry->symfile_size,
902 						     gnutarget));
903   if (nbfd == NULL)
904     {
905       puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
906       return;
907     }
908 
909   /* Check the format.  NOTE: This initializes important data that GDB uses!
910      We would segfault later without this line.  */
911   if (!bfd_check_format (nbfd.get (), bfd_object))
912     {
913       printf_unfiltered (_("\
914 JITed symbol file is not an object file, ignoring it.\n"));
915       return;
916     }
917 
918   /* Check bfd arch.  */
919   b = gdbarch_bfd_arch_info (gdbarch);
920   if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b)
921     warning (_("JITed object file architecture %s is not compatible "
922                "with target architecture %s."),
923 	     bfd_get_arch_info (nbfd.get ())->printable_name,
924 	     b->printable_name);
925 
926   /* Read the section address information out of the symbol file.  Since the
927      file is generated by the JIT at runtime, it should all of the absolute
928      addresses that we care about.  */
929   section_addr_info sai;
930   for (sec = nbfd->sections; sec != NULL; sec = sec->next)
931     if ((bfd_get_section_flags (nbfd.get (), sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
932       {
933         /* We assume that these virtual addresses are absolute, and do not
934            treat them as offsets.  */
935 	sai.emplace_back (bfd_get_section_vma (nbfd.get (), sec),
936 			  bfd_get_section_name (nbfd.get (), sec),
937 			  sec->index);
938       }
939 
940   /* This call does not take ownership of SAI.  */
941   objfile = symbol_file_add_from_bfd (nbfd.get (),
942 				      bfd_get_filename (nbfd.get ()), 0,
943 				      &sai,
944 				      OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
945 
946   add_objfile_entry (objfile, entry_addr);
947 }
948 
949 /* This function registers code associated with a JIT code entry.  It uses the
950    pointer and size pair in the entry to read the symbol file from the remote
951    and then calls symbol_file_add_from_local_memory to add it as though it were
952    a symbol file added by the user.  */
953 
954 static void
955 jit_register_code (struct gdbarch *gdbarch,
956                    CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
957 {
958   int success;
959 
960   if (jit_debug)
961     fprintf_unfiltered (gdb_stdlog,
962                         "jit_register_code, symfile_addr = %s, "
963                         "symfile_size = %s\n",
964                         paddress (gdbarch, code_entry->symfile_addr),
965                         pulongest (code_entry->symfile_size));
966 
967   success = jit_reader_try_read_symtab (code_entry, entry_addr);
968 
969   if (!success)
970     jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
971 }
972 
973 /* This function unregisters JITed code and frees the corresponding
974    objfile.  */
975 
976 static void
977 jit_unregister_code (struct objfile *objfile)
978 {
979   delete objfile;
980 }
981 
982 /* Look up the objfile with this code entry address.  */
983 
984 static struct objfile *
985 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
986 {
987   for (objfile *objf : current_program_space->objfiles ())
988     {
989       struct jit_objfile_data *objf_data;
990 
991       objf_data
992 	= (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
993       if (objf_data != NULL && objf_data->addr == entry_addr)
994         return objf;
995     }
996   return NULL;
997 }
998 
999 /* This is called when a breakpoint is deleted.  It updates the
1000    inferior's cache, if needed.  */
1001 
1002 static void
1003 jit_breakpoint_deleted (struct breakpoint *b)
1004 {
1005   struct bp_location *iter;
1006 
1007   if (b->type != bp_jit_event)
1008     return;
1009 
1010   for (iter = b->loc; iter != NULL; iter = iter->next)
1011     {
1012       struct jit_program_space_data *ps_data;
1013 
1014       ps_data = ((struct jit_program_space_data *)
1015 		 program_space_data (iter->pspace, jit_program_space_data));
1016       if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner)
1017 	{
1018 	  ps_data->cached_code_address = 0;
1019 	  ps_data->jit_breakpoint = NULL;
1020 	}
1021     }
1022 }
1023 
1024 /* (Re-)Initialize the jit breakpoint if necessary.
1025    Return 0 if the jit breakpoint has been successfully initialized.  */
1026 
1027 static int
1028 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
1029 				struct jit_program_space_data *ps_data)
1030 {
1031   struct bound_minimal_symbol reg_symbol;
1032   struct bound_minimal_symbol desc_symbol;
1033   struct jit_objfile_data *objf_data;
1034   CORE_ADDR addr;
1035 
1036   if (ps_data->objfile == NULL)
1037     {
1038       /* Lookup the registration symbol.  If it is missing, then we
1039 	 assume we are not attached to a JIT.  */
1040       reg_symbol = lookup_bound_minimal_symbol (jit_break_name);
1041       if (reg_symbol.minsym == NULL
1042 	  || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
1043 	return 1;
1044 
1045       desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL,
1046 					   reg_symbol.objfile);
1047       if (desc_symbol.minsym == NULL
1048 	  || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
1049 	return 1;
1050 
1051       objf_data = get_jit_objfile_data (reg_symbol.objfile);
1052       objf_data->register_code = reg_symbol.minsym;
1053       objf_data->descriptor = desc_symbol.minsym;
1054 
1055       ps_data->objfile = reg_symbol.objfile;
1056     }
1057   else
1058     objf_data = get_jit_objfile_data (ps_data->objfile);
1059 
1060   addr = MSYMBOL_VALUE_ADDRESS (ps_data->objfile, objf_data->register_code);
1061 
1062   if (jit_debug)
1063     fprintf_unfiltered (gdb_stdlog,
1064 			"jit_breakpoint_re_set_internal, "
1065 			"breakpoint_addr = %s\n",
1066 			paddress (gdbarch, addr));
1067 
1068   if (ps_data->cached_code_address == addr)
1069     return 0;
1070 
1071   /* Delete the old breakpoint.  */
1072   if (ps_data->jit_breakpoint != NULL)
1073     delete_breakpoint (ps_data->jit_breakpoint);
1074 
1075   /* Put a breakpoint in the registration symbol.  */
1076   ps_data->cached_code_address = addr;
1077   ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
1078 
1079   return 0;
1080 }
1081 
1082 /* The private data passed around in the frame unwind callback
1083    functions.  */
1084 
1085 struct jit_unwind_private
1086 {
1087   /* Cached register values.  See jit_frame_sniffer to see how this
1088      works.  */
1089   detached_regcache *regcache;
1090 
1091   /* The frame being unwound.  */
1092   struct frame_info *this_frame;
1093 };
1094 
1095 /* Sets the value of a particular register in this frame.  */
1096 
1097 static void
1098 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1099                          struct gdb_reg_value *value)
1100 {
1101   struct jit_unwind_private *priv;
1102   int gdb_reg;
1103 
1104   priv = (struct jit_unwind_private *) cb->priv_data;
1105 
1106   gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1107                                           dwarf_regnum);
1108   if (gdb_reg == -1)
1109     {
1110       if (jit_debug)
1111         fprintf_unfiltered (gdb_stdlog,
1112                             _("Could not recognize DWARF regnum %d"),
1113                             dwarf_regnum);
1114       value->free (value);
1115       return;
1116     }
1117 
1118   priv->regcache->raw_supply (gdb_reg, value->value);
1119   value->free (value);
1120 }
1121 
1122 static void
1123 reg_value_free_impl (struct gdb_reg_value *value)
1124 {
1125   xfree (value);
1126 }
1127 
1128 /* Get the value of register REGNUM in the previous frame.  */
1129 
1130 static struct gdb_reg_value *
1131 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1132 {
1133   struct jit_unwind_private *priv;
1134   struct gdb_reg_value *value;
1135   int gdb_reg, size;
1136   struct gdbarch *frame_arch;
1137 
1138   priv = (struct jit_unwind_private *) cb->priv_data;
1139   frame_arch = get_frame_arch (priv->this_frame);
1140 
1141   gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1142   size = register_size (frame_arch, gdb_reg);
1143   value = ((struct gdb_reg_value *)
1144 	   xmalloc (sizeof (struct gdb_reg_value) + size - 1));
1145   value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1146 						   value->value);
1147   value->size = size;
1148   value->free = reg_value_free_impl;
1149   return value;
1150 }
1151 
1152 /* gdb_reg_value has a free function, which must be called on each
1153    saved register value.  */
1154 
1155 static void
1156 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1157 {
1158   struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
1159 
1160   gdb_assert (priv_data->regcache != NULL);
1161   delete priv_data->regcache;
1162   xfree (priv_data);
1163 }
1164 
1165 /* The frame sniffer for the pseudo unwinder.
1166 
1167    While this is nominally a frame sniffer, in the case where the JIT
1168    reader actually recognizes the frame, it does a lot more work -- it
1169    unwinds the frame and saves the corresponding register values in
1170    the cache.  jit_frame_prev_register simply returns the saved
1171    register values.  */
1172 
1173 static int
1174 jit_frame_sniffer (const struct frame_unwind *self,
1175                    struct frame_info *this_frame, void **cache)
1176 {
1177   struct jit_unwind_private *priv_data;
1178   struct gdb_unwind_callbacks callbacks;
1179   struct gdb_reader_funcs *funcs;
1180 
1181   callbacks.reg_get = jit_unwind_reg_get_impl;
1182   callbacks.reg_set = jit_unwind_reg_set_impl;
1183   callbacks.target_read = jit_target_read_impl;
1184 
1185   if (loaded_jit_reader == NULL)
1186     return 0;
1187 
1188   funcs = loaded_jit_reader->functions;
1189 
1190   gdb_assert (!*cache);
1191 
1192   *cache = XCNEW (struct jit_unwind_private);
1193   priv_data = (struct jit_unwind_private *) *cache;
1194   /* Take a snapshot of current regcache.  */
1195   priv_data->regcache = new detached_regcache (get_frame_arch (this_frame),
1196 					       true);
1197   priv_data->this_frame = this_frame;
1198 
1199   callbacks.priv_data = priv_data;
1200 
1201   /* Try to coax the provided unwinder to unwind the stack */
1202   if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1203     {
1204       if (jit_debug)
1205         fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1206                                           "JIT reader.\n"));
1207       return 1;
1208     }
1209   if (jit_debug)
1210     fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1211                                       "JIT reader.\n"));
1212 
1213   jit_dealloc_cache (this_frame, *cache);
1214   *cache = NULL;
1215 
1216   return 0;
1217 }
1218 
1219 
1220 /* The frame_id function for the pseudo unwinder.  Relays the call to
1221    the loaded plugin.  */
1222 
1223 static void
1224 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1225                    struct frame_id *this_id)
1226 {
1227   struct jit_unwind_private priv;
1228   struct gdb_frame_id frame_id;
1229   struct gdb_reader_funcs *funcs;
1230   struct gdb_unwind_callbacks callbacks;
1231 
1232   priv.regcache = NULL;
1233   priv.this_frame = this_frame;
1234 
1235   /* We don't expect the frame_id function to set any registers, so we
1236      set reg_set to NULL.  */
1237   callbacks.reg_get = jit_unwind_reg_get_impl;
1238   callbacks.reg_set = NULL;
1239   callbacks.target_read = jit_target_read_impl;
1240   callbacks.priv_data = &priv;
1241 
1242   gdb_assert (loaded_jit_reader);
1243   funcs = loaded_jit_reader->functions;
1244 
1245   frame_id = funcs->get_frame_id (funcs, &callbacks);
1246   *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1247 }
1248 
1249 /* Pseudo unwinder function.  Reads the previously fetched value for
1250    the register from the cache.  */
1251 
1252 static struct value *
1253 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1254 {
1255   struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
1256   struct gdbarch *gdbarch;
1257 
1258   if (priv == NULL)
1259     return frame_unwind_got_optimized (this_frame, reg);
1260 
1261   gdbarch = priv->regcache->arch ();
1262   gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
1263   enum register_status status = priv->regcache->cooked_read (reg, buf);
1264 
1265   if (status == REG_VALID)
1266     return frame_unwind_got_bytes (this_frame, reg, buf);
1267   else
1268     return frame_unwind_got_optimized (this_frame, reg);
1269 }
1270 
1271 /* Relay everything back to the unwinder registered by the JIT debug
1272    info reader.*/
1273 
1274 static const struct frame_unwind jit_frame_unwind =
1275 {
1276   NORMAL_FRAME,
1277   default_frame_unwind_stop_reason,
1278   jit_frame_this_id,
1279   jit_frame_prev_register,
1280   NULL,
1281   jit_frame_sniffer,
1282   jit_dealloc_cache
1283 };
1284 
1285 
1286 /* This is the information that is stored at jit_gdbarch_data for each
1287    architecture.  */
1288 
1289 struct jit_gdbarch_data_type
1290 {
1291   /* Has the (pseudo) unwinder been prepended? */
1292   int unwinder_registered;
1293 };
1294 
1295 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed.  */
1296 
1297 static void
1298 jit_prepend_unwinder (struct gdbarch *gdbarch)
1299 {
1300   struct jit_gdbarch_data_type *data;
1301 
1302   data
1303     = (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data);
1304   if (!data->unwinder_registered)
1305     {
1306       frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1307       data->unwinder_registered = 1;
1308     }
1309 }
1310 
1311 /* Register any already created translations.  */
1312 
1313 static void
1314 jit_inferior_init (struct gdbarch *gdbarch)
1315 {
1316   struct jit_descriptor descriptor;
1317   struct jit_code_entry cur_entry;
1318   struct jit_program_space_data *ps_data;
1319   CORE_ADDR cur_entry_addr;
1320 
1321   if (jit_debug)
1322     fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1323 
1324   jit_prepend_unwinder (gdbarch);
1325 
1326   ps_data = get_jit_program_space_data ();
1327   if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0)
1328     return;
1329 
1330   /* Read the descriptor so we can check the version number and load
1331      any already JITed functions.  */
1332   if (!jit_read_descriptor (gdbarch, &descriptor, ps_data))
1333     return;
1334 
1335   /* Check that the version number agrees with that we support.  */
1336   if (descriptor.version != 1)
1337     {
1338       printf_unfiltered (_("Unsupported JIT protocol version %ld "
1339 			   "in descriptor (expected 1)\n"),
1340 			 (long) descriptor.version);
1341       return;
1342     }
1343 
1344   /* If we've attached to a running program, we need to check the descriptor
1345      to register any functions that were already generated.  */
1346   for (cur_entry_addr = descriptor.first_entry;
1347        cur_entry_addr != 0;
1348        cur_entry_addr = cur_entry.next_entry)
1349     {
1350       jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1351 
1352       /* This hook may be called many times during setup, so make sure we don't
1353          add the same symbol file twice.  */
1354       if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1355         continue;
1356 
1357       jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1358     }
1359 }
1360 
1361 /* inferior_created observer.  */
1362 
1363 static void
1364 jit_inferior_created (struct target_ops *ops, int from_tty)
1365 {
1366   jit_inferior_created_hook ();
1367 }
1368 
1369 /* Exported routine to call when an inferior has been created.  */
1370 
1371 void
1372 jit_inferior_created_hook (void)
1373 {
1374   jit_inferior_init (target_gdbarch ());
1375 }
1376 
1377 /* Exported routine to call to re-set the jit breakpoints,
1378    e.g. when a program is rerun.  */
1379 
1380 void
1381 jit_breakpoint_re_set (void)
1382 {
1383   jit_breakpoint_re_set_internal (target_gdbarch (),
1384 				  get_jit_program_space_data ());
1385 }
1386 
1387 /* This function cleans up any code entries left over when the
1388    inferior exits.  We get left over code when the inferior exits
1389    without unregistering its code, for example when it crashes.  */
1390 
1391 static void
1392 jit_inferior_exit_hook (struct inferior *inf)
1393 {
1394   for (objfile *objf : current_program_space->objfiles_safe ())
1395     {
1396       struct jit_objfile_data *objf_data
1397 	= (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1398 
1399       if (objf_data != NULL && objf_data->addr != 0)
1400 	jit_unregister_code (objf);
1401     }
1402 }
1403 
1404 void
1405 jit_event_handler (struct gdbarch *gdbarch)
1406 {
1407   struct jit_descriptor descriptor;
1408   struct jit_code_entry code_entry;
1409   CORE_ADDR entry_addr;
1410   struct objfile *objf;
1411 
1412   /* Read the descriptor from remote memory.  */
1413   if (!jit_read_descriptor (gdbarch, &descriptor,
1414 			    get_jit_program_space_data ()))
1415     return;
1416   entry_addr = descriptor.relevant_entry;
1417 
1418   /* Do the corresponding action.  */
1419   switch (descriptor.action_flag)
1420     {
1421     case JIT_NOACTION:
1422       break;
1423     case JIT_REGISTER:
1424       jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1425       jit_register_code (gdbarch, entry_addr, &code_entry);
1426       break;
1427     case JIT_UNREGISTER:
1428       objf = jit_find_objf_with_entry_addr (entry_addr);
1429       if (objf == NULL)
1430 	printf_unfiltered (_("Unable to find JITed code "
1431 			     "entry at address: %s\n"),
1432 			   paddress (gdbarch, entry_addr));
1433       else
1434         jit_unregister_code (objf);
1435 
1436       break;
1437     default:
1438       error (_("Unknown action_flag value in JIT descriptor!"));
1439       break;
1440     }
1441 }
1442 
1443 /* Called to free the data allocated to the jit_program_space_data slot.  */
1444 
1445 static void
1446 free_objfile_data (struct objfile *objfile, void *data)
1447 {
1448   struct jit_objfile_data *objf_data = (struct jit_objfile_data *) data;
1449 
1450   if (objf_data->register_code != NULL)
1451     {
1452       struct jit_program_space_data *ps_data;
1453 
1454       ps_data
1455 	= ((struct jit_program_space_data *)
1456 	   program_space_data (objfile->pspace, jit_program_space_data));
1457       if (ps_data != NULL && ps_data->objfile == objfile)
1458 	{
1459 	  ps_data->objfile = NULL;
1460 	  if (ps_data->jit_breakpoint != NULL)
1461 	    delete_breakpoint (ps_data->jit_breakpoint);
1462 	  ps_data->cached_code_address = 0;
1463 	}
1464     }
1465 
1466   xfree (data);
1467 }
1468 
1469 /* Initialize the jit_gdbarch_data slot with an instance of struct
1470    jit_gdbarch_data_type */
1471 
1472 static void *
1473 jit_gdbarch_data_init (struct obstack *obstack)
1474 {
1475   struct jit_gdbarch_data_type *data =
1476     XOBNEW (obstack, struct jit_gdbarch_data_type);
1477 
1478   data->unwinder_registered = 0;
1479 
1480   return data;
1481 }
1482 
1483 void
1484 _initialize_jit (void)
1485 {
1486   jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1487                                            JIT_READER_DIR_RELOCATABLE);
1488   add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1489 			     _("Set JIT debugging."),
1490 			     _("Show JIT debugging."),
1491 			     _("When non-zero, JIT debugging is enabled."),
1492 			     NULL,
1493 			     show_jit_debug,
1494 			     &setdebuglist, &showdebuglist);
1495 
1496   gdb::observers::inferior_created.attach (jit_inferior_created);
1497   gdb::observers::inferior_exit.attach (jit_inferior_exit_hook);
1498   gdb::observers::breakpoint_deleted.attach (jit_breakpoint_deleted);
1499 
1500   jit_objfile_data =
1501     register_objfile_data_with_cleanup (NULL, free_objfile_data);
1502   jit_program_space_data =
1503     register_program_space_data_with_cleanup (NULL,
1504 					      jit_program_space_data_cleanup);
1505   jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1506   if (is_dl_available ())
1507     {
1508       struct cmd_list_element *c;
1509 
1510       c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1511 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1512 Usage: jit-reader-load FILE\n\
1513 Try to load file FILE as a debug info reader (and unwinder) for\n\
1514 JIT compiled code.  The file is loaded from " JIT_READER_DIR ",\n\
1515 relocated relative to the GDB executable if required."));
1516       set_cmd_completer (c, filename_completer);
1517 
1518       c = add_com ("jit-reader-unload", no_class,
1519 		   jit_reader_unload_command, _("\
1520 Unload the currently loaded JIT debug info reader.\n\
1521 Usage: jit-reader-unload\n\n\
1522 Do \"help jit-reader-load\" for info on loading debug info readers."));
1523       set_cmd_completer (c, noop_completer);
1524     }
1525 }
1526