1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger. 2 3 Copyright (C) 2009-2019 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 22 #include "jit.h" 23 #include "jit-reader.h" 24 #include "block.h" 25 #include "breakpoint.h" 26 #include "command.h" 27 #include "dictionary.h" 28 #include "filenames.h" 29 #include "frame-unwind.h" 30 #include "gdbcmd.h" 31 #include "gdbcore.h" 32 #include "inferior.h" 33 #include "observable.h" 34 #include "objfiles.h" 35 #include "regcache.h" 36 #include "symfile.h" 37 #include "symtab.h" 38 #include "target.h" 39 #include "gdb-dlfcn.h" 40 #include <sys/stat.h> 41 #include "gdb_bfd.h" 42 #include "readline/tilde.h" 43 #include "completer.h" 44 45 static const char *jit_reader_dir = NULL; 46 47 static const struct objfile_data *jit_objfile_data; 48 49 static const char *const jit_break_name = "__jit_debug_register_code"; 50 51 static const char *const jit_descriptor_name = "__jit_debug_descriptor"; 52 53 static const struct program_space_data *jit_program_space_data = NULL; 54 55 static void jit_inferior_init (struct gdbarch *gdbarch); 56 static void jit_inferior_exit_hook (struct inferior *inf); 57 58 /* An unwinder is registered for every gdbarch. This key is used to 59 remember if the unwinder has been registered for a particular 60 gdbarch. */ 61 62 static struct gdbarch_data *jit_gdbarch_data; 63 64 /* Non-zero if we want to see trace of jit level stuff. */ 65 66 static unsigned int jit_debug = 0; 67 68 static void 69 show_jit_debug (struct ui_file *file, int from_tty, 70 struct cmd_list_element *c, const char *value) 71 { 72 fprintf_filtered (file, _("JIT debugging is %s.\n"), value); 73 } 74 75 struct target_buffer 76 { 77 CORE_ADDR base; 78 ULONGEST size; 79 }; 80 81 /* Openning the file is a no-op. */ 82 83 static void * 84 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure) 85 { 86 return open_closure; 87 } 88 89 /* Closing the file is just freeing the base/size pair on our side. */ 90 91 static int 92 mem_bfd_iovec_close (struct bfd *abfd, void *stream) 93 { 94 xfree (stream); 95 96 /* Zero means success. */ 97 return 0; 98 } 99 100 /* For reading the file, we just need to pass through to target_read_memory and 101 fix up the arguments and return values. */ 102 103 static file_ptr 104 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf, 105 file_ptr nbytes, file_ptr offset) 106 { 107 int err; 108 struct target_buffer *buffer = (struct target_buffer *) stream; 109 110 /* If this read will read all of the file, limit it to just the rest. */ 111 if (offset + nbytes > buffer->size) 112 nbytes = buffer->size - offset; 113 114 /* If there are no more bytes left, we've reached EOF. */ 115 if (nbytes == 0) 116 return 0; 117 118 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes); 119 if (err) 120 return -1; 121 122 return nbytes; 123 } 124 125 /* For statting the file, we only support the st_size attribute. */ 126 127 static int 128 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb) 129 { 130 struct target_buffer *buffer = (struct target_buffer*) stream; 131 132 memset (sb, 0, sizeof (struct stat)); 133 sb->st_size = buffer->size; 134 return 0; 135 } 136 137 /* Open a BFD from the target's memory. */ 138 139 static gdb_bfd_ref_ptr 140 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target) 141 { 142 struct target_buffer *buffer = XNEW (struct target_buffer); 143 144 buffer->base = addr; 145 buffer->size = size; 146 return gdb_bfd_openr_iovec ("<in-memory>", target, 147 mem_bfd_iovec_open, 148 buffer, 149 mem_bfd_iovec_pread, 150 mem_bfd_iovec_close, 151 mem_bfd_iovec_stat); 152 } 153 154 struct jit_reader 155 { 156 jit_reader (struct gdb_reader_funcs *f, gdb_dlhandle_up &&h) 157 : functions (f), handle (std::move (h)) 158 { 159 } 160 161 ~jit_reader () 162 { 163 functions->destroy (functions); 164 } 165 166 DISABLE_COPY_AND_ASSIGN (jit_reader); 167 168 struct gdb_reader_funcs *functions; 169 gdb_dlhandle_up handle; 170 }; 171 172 /* One reader that has been loaded successfully, and can potentially be used to 173 parse debug info. */ 174 175 static struct jit_reader *loaded_jit_reader = NULL; 176 177 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void); 178 static const char *reader_init_fn_sym = "gdb_init_reader"; 179 180 /* Try to load FILE_NAME as a JIT debug info reader. */ 181 182 static struct jit_reader * 183 jit_reader_load (const char *file_name) 184 { 185 reader_init_fn_type *init_fn; 186 struct gdb_reader_funcs *funcs = NULL; 187 188 if (jit_debug) 189 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"), 190 file_name); 191 gdb_dlhandle_up so = gdb_dlopen (file_name); 192 193 init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym); 194 if (!init_fn) 195 error (_("Could not locate initialization function: %s."), 196 reader_init_fn_sym); 197 198 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL) 199 error (_("Reader not GPL compatible.")); 200 201 funcs = init_fn (); 202 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION) 203 error (_("Reader version does not match GDB version.")); 204 205 return new jit_reader (funcs, std::move (so)); 206 } 207 208 /* Provides the jit-reader-load command. */ 209 210 static void 211 jit_reader_load_command (const char *args, int from_tty) 212 { 213 if (args == NULL) 214 error (_("No reader name provided.")); 215 gdb::unique_xmalloc_ptr<char> file (tilde_expand (args)); 216 217 if (loaded_jit_reader != NULL) 218 error (_("JIT reader already loaded. Run jit-reader-unload first.")); 219 220 if (!IS_ABSOLUTE_PATH (file.get ())) 221 file.reset (xstrprintf ("%s%s%s", jit_reader_dir, SLASH_STRING, 222 file.get ())); 223 224 loaded_jit_reader = jit_reader_load (file.get ()); 225 reinit_frame_cache (); 226 jit_inferior_created_hook (); 227 } 228 229 /* Provides the jit-reader-unload command. */ 230 231 static void 232 jit_reader_unload_command (const char *args, int from_tty) 233 { 234 if (!loaded_jit_reader) 235 error (_("No JIT reader loaded.")); 236 237 reinit_frame_cache (); 238 jit_inferior_exit_hook (current_inferior ()); 239 240 delete loaded_jit_reader; 241 loaded_jit_reader = NULL; 242 } 243 244 /* Per-program space structure recording which objfile has the JIT 245 symbols. */ 246 247 struct jit_program_space_data 248 { 249 /* The objfile. This is NULL if no objfile holds the JIT 250 symbols. */ 251 252 struct objfile *objfile; 253 254 /* If this program space has __jit_debug_register_code, this is the 255 cached address from the minimal symbol. This is used to detect 256 relocations requiring the breakpoint to be re-created. */ 257 258 CORE_ADDR cached_code_address; 259 260 /* This is the JIT event breakpoint, or NULL if it has not been 261 set. */ 262 263 struct breakpoint *jit_breakpoint; 264 }; 265 266 /* Per-objfile structure recording the addresses in the program space. 267 This object serves two purposes: for ordinary objfiles, it may 268 cache some symbols related to the JIT interface; and for 269 JIT-created objfiles, it holds some information about the 270 jit_code_entry. */ 271 272 struct jit_objfile_data 273 { 274 /* Symbol for __jit_debug_register_code. */ 275 struct minimal_symbol *register_code; 276 277 /* Symbol for __jit_debug_descriptor. */ 278 struct minimal_symbol *descriptor; 279 280 /* Address of struct jit_code_entry in this objfile. This is only 281 non-zero for objfiles that represent code created by the JIT. */ 282 CORE_ADDR addr; 283 }; 284 285 /* Fetch the jit_objfile_data associated with OBJF. If no data exists 286 yet, make a new structure and attach it. */ 287 288 static struct jit_objfile_data * 289 get_jit_objfile_data (struct objfile *objf) 290 { 291 struct jit_objfile_data *objf_data; 292 293 objf_data = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data); 294 if (objf_data == NULL) 295 { 296 objf_data = XCNEW (struct jit_objfile_data); 297 set_objfile_data (objf, jit_objfile_data, objf_data); 298 } 299 300 return objf_data; 301 } 302 303 /* Remember OBJFILE has been created for struct jit_code_entry located 304 at inferior address ENTRY. */ 305 306 static void 307 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry) 308 { 309 struct jit_objfile_data *objf_data; 310 311 objf_data = get_jit_objfile_data (objfile); 312 objf_data->addr = entry; 313 } 314 315 /* Return jit_program_space_data for current program space. Allocate 316 if not already present. */ 317 318 static struct jit_program_space_data * 319 get_jit_program_space_data (void) 320 { 321 struct jit_program_space_data *ps_data; 322 323 ps_data 324 = ((struct jit_program_space_data *) 325 program_space_data (current_program_space, jit_program_space_data)); 326 if (ps_data == NULL) 327 { 328 ps_data = XCNEW (struct jit_program_space_data); 329 set_program_space_data (current_program_space, jit_program_space_data, 330 ps_data); 331 } 332 333 return ps_data; 334 } 335 336 static void 337 jit_program_space_data_cleanup (struct program_space *ps, void *arg) 338 { 339 xfree (arg); 340 } 341 342 /* Helper function for reading the global JIT descriptor from remote 343 memory. Returns 1 if all went well, 0 otherwise. */ 344 345 static int 346 jit_read_descriptor (struct gdbarch *gdbarch, 347 struct jit_descriptor *descriptor, 348 struct jit_program_space_data *ps_data) 349 { 350 int err; 351 struct type *ptr_type; 352 int ptr_size; 353 int desc_size; 354 gdb_byte *desc_buf; 355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 356 struct jit_objfile_data *objf_data; 357 358 if (ps_data->objfile == NULL) 359 return 0; 360 objf_data = get_jit_objfile_data (ps_data->objfile); 361 if (objf_data->descriptor == NULL) 362 return 0; 363 364 if (jit_debug) 365 fprintf_unfiltered (gdb_stdlog, 366 "jit_read_descriptor, descriptor_addr = %s\n", 367 paddress (gdbarch, MSYMBOL_VALUE_ADDRESS (ps_data->objfile, 368 objf_data->descriptor))); 369 370 /* Figure out how big the descriptor is on the remote and how to read it. */ 371 ptr_type = builtin_type (gdbarch)->builtin_data_ptr; 372 ptr_size = TYPE_LENGTH (ptr_type); 373 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */ 374 desc_buf = (gdb_byte *) alloca (desc_size); 375 376 /* Read the descriptor. */ 377 err = target_read_memory (MSYMBOL_VALUE_ADDRESS (ps_data->objfile, 378 objf_data->descriptor), 379 desc_buf, desc_size); 380 if (err) 381 { 382 printf_unfiltered (_("Unable to read JIT descriptor from " 383 "remote memory\n")); 384 return 0; 385 } 386 387 /* Fix the endianness to match the host. */ 388 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order); 389 descriptor->action_flag = 390 extract_unsigned_integer (&desc_buf[4], 4, byte_order); 391 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type); 392 descriptor->first_entry = 393 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type); 394 395 return 1; 396 } 397 398 /* Helper function for reading a JITed code entry from remote memory. */ 399 400 static void 401 jit_read_code_entry (struct gdbarch *gdbarch, 402 CORE_ADDR code_addr, struct jit_code_entry *code_entry) 403 { 404 int err, off; 405 struct type *ptr_type; 406 int ptr_size; 407 int entry_size; 408 int align_bytes; 409 gdb_byte *entry_buf; 410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 411 412 /* Figure out how big the entry is on the remote and how to read it. */ 413 ptr_type = builtin_type (gdbarch)->builtin_data_ptr; 414 ptr_size = TYPE_LENGTH (ptr_type); 415 416 /* Figure out where the uint64_t value will be. */ 417 align_bytes = type_align (builtin_type (gdbarch)->builtin_uint64); 418 off = 3 * ptr_size; 419 off = (off + (align_bytes - 1)) & ~(align_bytes - 1); 420 421 entry_size = off + 8; /* Three pointers and one 64-bit int. */ 422 entry_buf = (gdb_byte *) alloca (entry_size); 423 424 /* Read the entry. */ 425 err = target_read_memory (code_addr, entry_buf, entry_size); 426 if (err) 427 error (_("Unable to read JIT code entry from remote memory!")); 428 429 /* Fix the endianness to match the host. */ 430 ptr_type = builtin_type (gdbarch)->builtin_data_ptr; 431 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type); 432 code_entry->prev_entry = 433 extract_typed_address (&entry_buf[ptr_size], ptr_type); 434 code_entry->symfile_addr = 435 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type); 436 code_entry->symfile_size = 437 extract_unsigned_integer (&entry_buf[off], 8, byte_order); 438 } 439 440 /* Proxy object for building a block. */ 441 442 struct gdb_block 443 { 444 /* gdb_blocks are linked into a tree structure. Next points to the 445 next node at the same depth as this block and parent to the 446 parent gdb_block. */ 447 struct gdb_block *next, *parent; 448 449 /* Points to the "real" block that is being built out of this 450 instance. This block will be added to a blockvector, which will 451 then be added to a symtab. */ 452 struct block *real_block; 453 454 /* The first and last code address corresponding to this block. */ 455 CORE_ADDR begin, end; 456 457 /* The name of this block (if any). If this is non-NULL, the 458 FUNCTION symbol symbol is set to this value. */ 459 const char *name; 460 }; 461 462 /* Proxy object for building a symtab. */ 463 464 struct gdb_symtab 465 { 466 /* The list of blocks in this symtab. These will eventually be 467 converted to real blocks. */ 468 struct gdb_block *blocks; 469 470 /* The number of blocks inserted. */ 471 int nblocks; 472 473 /* A mapping between line numbers to PC. */ 474 struct linetable *linetable; 475 476 /* The source file for this symtab. */ 477 const char *file_name; 478 struct gdb_symtab *next; 479 }; 480 481 /* Proxy object for building an object. */ 482 483 struct gdb_object 484 { 485 struct gdb_symtab *symtabs; 486 }; 487 488 /* The type of the `private' data passed around by the callback 489 functions. */ 490 491 typedef CORE_ADDR jit_dbg_reader_data; 492 493 /* The reader calls into this function to read data off the targets 494 address space. */ 495 496 static enum gdb_status 497 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len) 498 { 499 int result = target_read_memory ((CORE_ADDR) target_mem, 500 (gdb_byte *) gdb_buf, len); 501 if (result == 0) 502 return GDB_SUCCESS; 503 else 504 return GDB_FAIL; 505 } 506 507 /* The reader calls into this function to create a new gdb_object 508 which it can then pass around to the other callbacks. Right now, 509 all that is required is allocating the memory. */ 510 511 static struct gdb_object * 512 jit_object_open_impl (struct gdb_symbol_callbacks *cb) 513 { 514 /* CB is not required right now, but sometime in the future we might 515 need a handle to it, and we'd like to do that without breaking 516 the ABI. */ 517 return XCNEW (struct gdb_object); 518 } 519 520 /* Readers call into this function to open a new gdb_symtab, which, 521 again, is passed around to other callbacks. */ 522 523 static struct gdb_symtab * 524 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb, 525 struct gdb_object *object, 526 const char *file_name) 527 { 528 struct gdb_symtab *ret; 529 530 /* CB stays unused. See comment in jit_object_open_impl. */ 531 532 ret = XCNEW (struct gdb_symtab); 533 ret->file_name = file_name ? xstrdup (file_name) : xstrdup (""); 534 ret->next = object->symtabs; 535 object->symtabs = ret; 536 return ret; 537 } 538 539 /* Returns true if the block corresponding to old should be placed 540 before the block corresponding to new in the final blockvector. */ 541 542 static int 543 compare_block (const struct gdb_block *const old, 544 const struct gdb_block *const newobj) 545 { 546 if (old == NULL) 547 return 1; 548 if (old->begin < newobj->begin) 549 return 1; 550 else if (old->begin == newobj->begin) 551 { 552 if (old->end > newobj->end) 553 return 1; 554 else 555 return 0; 556 } 557 else 558 return 0; 559 } 560 561 /* Called by readers to open a new gdb_block. This function also 562 inserts the new gdb_block in the correct place in the corresponding 563 gdb_symtab. */ 564 565 static struct gdb_block * 566 jit_block_open_impl (struct gdb_symbol_callbacks *cb, 567 struct gdb_symtab *symtab, struct gdb_block *parent, 568 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name) 569 { 570 struct gdb_block *block = XCNEW (struct gdb_block); 571 572 block->next = symtab->blocks; 573 block->begin = (CORE_ADDR) begin; 574 block->end = (CORE_ADDR) end; 575 block->name = name ? xstrdup (name) : NULL; 576 block->parent = parent; 577 578 /* Ensure that the blocks are inserted in the correct (reverse of 579 the order expected by blockvector). */ 580 if (compare_block (symtab->blocks, block)) 581 { 582 symtab->blocks = block; 583 } 584 else 585 { 586 struct gdb_block *i = symtab->blocks; 587 588 for (;; i = i->next) 589 { 590 /* Guaranteed to terminate, since compare_block (NULL, _) 591 returns 1. */ 592 if (compare_block (i->next, block)) 593 { 594 block->next = i->next; 595 i->next = block; 596 break; 597 } 598 } 599 } 600 symtab->nblocks++; 601 602 return block; 603 } 604 605 /* Readers call this to add a line mapping (from PC to line number) to 606 a gdb_symtab. */ 607 608 static void 609 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb, 610 struct gdb_symtab *stab, int nlines, 611 struct gdb_line_mapping *map) 612 { 613 int i; 614 int alloc_len; 615 616 if (nlines < 1) 617 return; 618 619 alloc_len = sizeof (struct linetable) 620 + (nlines - 1) * sizeof (struct linetable_entry); 621 stab->linetable = (struct linetable *) xmalloc (alloc_len); 622 stab->linetable->nitems = nlines; 623 for (i = 0; i < nlines; i++) 624 { 625 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc; 626 stab->linetable->item[i].line = map[i].line; 627 } 628 } 629 630 /* Called by readers to close a gdb_symtab. Does not need to do 631 anything as of now. */ 632 633 static void 634 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb, 635 struct gdb_symtab *stab) 636 { 637 /* Right now nothing needs to be done here. We may need to do some 638 cleanup here in the future (again, without breaking the plugin 639 ABI). */ 640 } 641 642 /* Transform STAB to a proper symtab, and add it it OBJFILE. */ 643 644 static void 645 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile) 646 { 647 struct compunit_symtab *cust; 648 struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp; 649 struct block *block_iter; 650 int actual_nblocks, i; 651 size_t blockvector_size; 652 CORE_ADDR begin, end; 653 struct blockvector *bv; 654 655 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks; 656 657 cust = allocate_compunit_symtab (objfile, stab->file_name); 658 allocate_symtab (cust, stab->file_name); 659 add_compunit_symtab_to_objfile (cust); 660 661 /* JIT compilers compile in memory. */ 662 COMPUNIT_DIRNAME (cust) = NULL; 663 664 /* Copy over the linetable entry if one was provided. */ 665 if (stab->linetable) 666 { 667 size_t size = ((stab->linetable->nitems - 1) 668 * sizeof (struct linetable_entry) 669 + sizeof (struct linetable)); 670 SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)) 671 = (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size); 672 memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)), stab->linetable, 673 size); 674 } 675 676 blockvector_size = (sizeof (struct blockvector) 677 + (actual_nblocks - 1) * sizeof (struct block *)); 678 bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack, 679 blockvector_size); 680 COMPUNIT_BLOCKVECTOR (cust) = bv; 681 682 /* (begin, end) will contain the PC range this entire blockvector 683 spans. */ 684 BLOCKVECTOR_MAP (bv) = NULL; 685 begin = stab->blocks->begin; 686 end = stab->blocks->end; 687 BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks; 688 689 /* First run over all the gdb_block objects, creating a real block 690 object for each. Simultaneously, keep setting the real_block 691 fields. */ 692 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks; 693 i >= FIRST_LOCAL_BLOCK; 694 i--, gdb_block_iter = gdb_block_iter->next) 695 { 696 struct block *new_block = allocate_block (&objfile->objfile_obstack); 697 struct symbol *block_name = allocate_symbol (objfile); 698 struct type *block_type = arch_type (get_objfile_arch (objfile), 699 TYPE_CODE_VOID, 700 TARGET_CHAR_BIT, 701 "void"); 702 703 BLOCK_MULTIDICT (new_block) 704 = mdict_create_linear (&objfile->objfile_obstack, NULL); 705 /* The address range. */ 706 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin; 707 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end; 708 709 /* The name. */ 710 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN; 711 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK; 712 symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust)); 713 SYMBOL_TYPE (block_name) = lookup_function_type (block_type); 714 SYMBOL_BLOCK_VALUE (block_name) = new_block; 715 716 block_name->ginfo.name 717 = (const char *) obstack_copy0 (&objfile->objfile_obstack, 718 gdb_block_iter->name, 719 strlen (gdb_block_iter->name)); 720 721 BLOCK_FUNCTION (new_block) = block_name; 722 723 BLOCKVECTOR_BLOCK (bv, i) = new_block; 724 if (begin > BLOCK_START (new_block)) 725 begin = BLOCK_START (new_block); 726 if (end < BLOCK_END (new_block)) 727 end = BLOCK_END (new_block); 728 729 gdb_block_iter->real_block = new_block; 730 } 731 732 /* Now add the special blocks. */ 733 block_iter = NULL; 734 for (i = 0; i < FIRST_LOCAL_BLOCK; i++) 735 { 736 struct block *new_block; 737 738 new_block = (i == GLOBAL_BLOCK 739 ? allocate_global_block (&objfile->objfile_obstack) 740 : allocate_block (&objfile->objfile_obstack)); 741 BLOCK_MULTIDICT (new_block) 742 = mdict_create_linear (&objfile->objfile_obstack, NULL); 743 BLOCK_SUPERBLOCK (new_block) = block_iter; 744 block_iter = new_block; 745 746 BLOCK_START (new_block) = (CORE_ADDR) begin; 747 BLOCK_END (new_block) = (CORE_ADDR) end; 748 749 BLOCKVECTOR_BLOCK (bv, i) = new_block; 750 751 if (i == GLOBAL_BLOCK) 752 set_block_compunit_symtab (new_block, cust); 753 } 754 755 /* Fill up the superblock fields for the real blocks, using the 756 real_block fields populated earlier. */ 757 for (gdb_block_iter = stab->blocks; 758 gdb_block_iter; 759 gdb_block_iter = gdb_block_iter->next) 760 { 761 if (gdb_block_iter->parent != NULL) 762 { 763 /* If the plugin specifically mentioned a parent block, we 764 use that. */ 765 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) = 766 gdb_block_iter->parent->real_block; 767 } 768 else 769 { 770 /* And if not, we set a default parent block. */ 771 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) = 772 BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); 773 } 774 } 775 776 /* Free memory. */ 777 gdb_block_iter = stab->blocks; 778 779 for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next; 780 gdb_block_iter; 781 gdb_block_iter = gdb_block_iter_tmp) 782 { 783 xfree ((void *) gdb_block_iter->name); 784 xfree (gdb_block_iter); 785 } 786 xfree (stab->linetable); 787 xfree ((char *) stab->file_name); 788 xfree (stab); 789 } 790 791 /* Called when closing a gdb_objfile. Converts OBJ to a proper 792 objfile. */ 793 794 static void 795 jit_object_close_impl (struct gdb_symbol_callbacks *cb, 796 struct gdb_object *obj) 797 { 798 struct gdb_symtab *i, *j; 799 struct objfile *objfile; 800 jit_dbg_reader_data *priv_data; 801 802 priv_data = (jit_dbg_reader_data *) cb->priv_data; 803 804 objfile = new struct objfile (NULL, "<< JIT compiled code >>", 805 OBJF_NOT_FILENAME); 806 objfile->per_bfd->gdbarch = target_gdbarch (); 807 808 terminate_minimal_symbol_table (objfile); 809 810 j = NULL; 811 for (i = obj->symtabs; i; i = j) 812 { 813 j = i->next; 814 finalize_symtab (i, objfile); 815 } 816 add_objfile_entry (objfile, *priv_data); 817 xfree (obj); 818 } 819 820 /* Try to read CODE_ENTRY using the loaded jit reader (if any). 821 ENTRY_ADDR is the address of the struct jit_code_entry in the 822 inferior address space. */ 823 824 static int 825 jit_reader_try_read_symtab (struct jit_code_entry *code_entry, 826 CORE_ADDR entry_addr) 827 { 828 gdb_byte *gdb_mem; 829 int status; 830 jit_dbg_reader_data priv_data; 831 struct gdb_reader_funcs *funcs; 832 struct gdb_symbol_callbacks callbacks = 833 { 834 jit_object_open_impl, 835 jit_symtab_open_impl, 836 jit_block_open_impl, 837 jit_symtab_close_impl, 838 jit_object_close_impl, 839 840 jit_symtab_line_mapping_add_impl, 841 jit_target_read_impl, 842 843 &priv_data 844 }; 845 846 priv_data = entry_addr; 847 848 if (!loaded_jit_reader) 849 return 0; 850 851 gdb_mem = (gdb_byte *) xmalloc (code_entry->symfile_size); 852 853 status = 1; 854 TRY 855 { 856 if (target_read_memory (code_entry->symfile_addr, gdb_mem, 857 code_entry->symfile_size)) 858 status = 0; 859 } 860 CATCH (e, RETURN_MASK_ALL) 861 { 862 status = 0; 863 } 864 END_CATCH 865 866 if (status) 867 { 868 funcs = loaded_jit_reader->functions; 869 if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size) 870 != GDB_SUCCESS) 871 status = 0; 872 } 873 874 xfree (gdb_mem); 875 if (jit_debug && status == 0) 876 fprintf_unfiltered (gdb_stdlog, 877 "Could not read symtab using the loaded JIT reader.\n"); 878 return status; 879 } 880 881 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the 882 struct jit_code_entry in the inferior address space. */ 883 884 static void 885 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry, 886 CORE_ADDR entry_addr, 887 struct gdbarch *gdbarch) 888 { 889 struct bfd_section *sec; 890 struct objfile *objfile; 891 const struct bfd_arch_info *b; 892 893 if (jit_debug) 894 fprintf_unfiltered (gdb_stdlog, 895 "jit_register_code, symfile_addr = %s, " 896 "symfile_size = %s\n", 897 paddress (gdbarch, code_entry->symfile_addr), 898 pulongest (code_entry->symfile_size)); 899 900 gdb_bfd_ref_ptr nbfd (bfd_open_from_target_memory (code_entry->symfile_addr, 901 code_entry->symfile_size, 902 gnutarget)); 903 if (nbfd == NULL) 904 { 905 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n")); 906 return; 907 } 908 909 /* Check the format. NOTE: This initializes important data that GDB uses! 910 We would segfault later without this line. */ 911 if (!bfd_check_format (nbfd.get (), bfd_object)) 912 { 913 printf_unfiltered (_("\ 914 JITed symbol file is not an object file, ignoring it.\n")); 915 return; 916 } 917 918 /* Check bfd arch. */ 919 b = gdbarch_bfd_arch_info (gdbarch); 920 if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b) 921 warning (_("JITed object file architecture %s is not compatible " 922 "with target architecture %s."), 923 bfd_get_arch_info (nbfd.get ())->printable_name, 924 b->printable_name); 925 926 /* Read the section address information out of the symbol file. Since the 927 file is generated by the JIT at runtime, it should all of the absolute 928 addresses that we care about. */ 929 section_addr_info sai; 930 for (sec = nbfd->sections; sec != NULL; sec = sec->next) 931 if ((bfd_get_section_flags (nbfd.get (), sec) & (SEC_ALLOC|SEC_LOAD)) != 0) 932 { 933 /* We assume that these virtual addresses are absolute, and do not 934 treat them as offsets. */ 935 sai.emplace_back (bfd_get_section_vma (nbfd.get (), sec), 936 bfd_get_section_name (nbfd.get (), sec), 937 sec->index); 938 } 939 940 /* This call does not take ownership of SAI. */ 941 objfile = symbol_file_add_from_bfd (nbfd.get (), 942 bfd_get_filename (nbfd.get ()), 0, 943 &sai, 944 OBJF_SHARED | OBJF_NOT_FILENAME, NULL); 945 946 add_objfile_entry (objfile, entry_addr); 947 } 948 949 /* This function registers code associated with a JIT code entry. It uses the 950 pointer and size pair in the entry to read the symbol file from the remote 951 and then calls symbol_file_add_from_local_memory to add it as though it were 952 a symbol file added by the user. */ 953 954 static void 955 jit_register_code (struct gdbarch *gdbarch, 956 CORE_ADDR entry_addr, struct jit_code_entry *code_entry) 957 { 958 int success; 959 960 if (jit_debug) 961 fprintf_unfiltered (gdb_stdlog, 962 "jit_register_code, symfile_addr = %s, " 963 "symfile_size = %s\n", 964 paddress (gdbarch, code_entry->symfile_addr), 965 pulongest (code_entry->symfile_size)); 966 967 success = jit_reader_try_read_symtab (code_entry, entry_addr); 968 969 if (!success) 970 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch); 971 } 972 973 /* This function unregisters JITed code and frees the corresponding 974 objfile. */ 975 976 static void 977 jit_unregister_code (struct objfile *objfile) 978 { 979 delete objfile; 980 } 981 982 /* Look up the objfile with this code entry address. */ 983 984 static struct objfile * 985 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr) 986 { 987 for (objfile *objf : current_program_space->objfiles ()) 988 { 989 struct jit_objfile_data *objf_data; 990 991 objf_data 992 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data); 993 if (objf_data != NULL && objf_data->addr == entry_addr) 994 return objf; 995 } 996 return NULL; 997 } 998 999 /* This is called when a breakpoint is deleted. It updates the 1000 inferior's cache, if needed. */ 1001 1002 static void 1003 jit_breakpoint_deleted (struct breakpoint *b) 1004 { 1005 struct bp_location *iter; 1006 1007 if (b->type != bp_jit_event) 1008 return; 1009 1010 for (iter = b->loc; iter != NULL; iter = iter->next) 1011 { 1012 struct jit_program_space_data *ps_data; 1013 1014 ps_data = ((struct jit_program_space_data *) 1015 program_space_data (iter->pspace, jit_program_space_data)); 1016 if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner) 1017 { 1018 ps_data->cached_code_address = 0; 1019 ps_data->jit_breakpoint = NULL; 1020 } 1021 } 1022 } 1023 1024 /* (Re-)Initialize the jit breakpoint if necessary. 1025 Return 0 if the jit breakpoint has been successfully initialized. */ 1026 1027 static int 1028 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch, 1029 struct jit_program_space_data *ps_data) 1030 { 1031 struct bound_minimal_symbol reg_symbol; 1032 struct bound_minimal_symbol desc_symbol; 1033 struct jit_objfile_data *objf_data; 1034 CORE_ADDR addr; 1035 1036 if (ps_data->objfile == NULL) 1037 { 1038 /* Lookup the registration symbol. If it is missing, then we 1039 assume we are not attached to a JIT. */ 1040 reg_symbol = lookup_bound_minimal_symbol (jit_break_name); 1041 if (reg_symbol.minsym == NULL 1042 || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0) 1043 return 1; 1044 1045 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL, 1046 reg_symbol.objfile); 1047 if (desc_symbol.minsym == NULL 1048 || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0) 1049 return 1; 1050 1051 objf_data = get_jit_objfile_data (reg_symbol.objfile); 1052 objf_data->register_code = reg_symbol.minsym; 1053 objf_data->descriptor = desc_symbol.minsym; 1054 1055 ps_data->objfile = reg_symbol.objfile; 1056 } 1057 else 1058 objf_data = get_jit_objfile_data (ps_data->objfile); 1059 1060 addr = MSYMBOL_VALUE_ADDRESS (ps_data->objfile, objf_data->register_code); 1061 1062 if (jit_debug) 1063 fprintf_unfiltered (gdb_stdlog, 1064 "jit_breakpoint_re_set_internal, " 1065 "breakpoint_addr = %s\n", 1066 paddress (gdbarch, addr)); 1067 1068 if (ps_data->cached_code_address == addr) 1069 return 0; 1070 1071 /* Delete the old breakpoint. */ 1072 if (ps_data->jit_breakpoint != NULL) 1073 delete_breakpoint (ps_data->jit_breakpoint); 1074 1075 /* Put a breakpoint in the registration symbol. */ 1076 ps_data->cached_code_address = addr; 1077 ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr); 1078 1079 return 0; 1080 } 1081 1082 /* The private data passed around in the frame unwind callback 1083 functions. */ 1084 1085 struct jit_unwind_private 1086 { 1087 /* Cached register values. See jit_frame_sniffer to see how this 1088 works. */ 1089 detached_regcache *regcache; 1090 1091 /* The frame being unwound. */ 1092 struct frame_info *this_frame; 1093 }; 1094 1095 /* Sets the value of a particular register in this frame. */ 1096 1097 static void 1098 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum, 1099 struct gdb_reg_value *value) 1100 { 1101 struct jit_unwind_private *priv; 1102 int gdb_reg; 1103 1104 priv = (struct jit_unwind_private *) cb->priv_data; 1105 1106 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame), 1107 dwarf_regnum); 1108 if (gdb_reg == -1) 1109 { 1110 if (jit_debug) 1111 fprintf_unfiltered (gdb_stdlog, 1112 _("Could not recognize DWARF regnum %d"), 1113 dwarf_regnum); 1114 value->free (value); 1115 return; 1116 } 1117 1118 priv->regcache->raw_supply (gdb_reg, value->value); 1119 value->free (value); 1120 } 1121 1122 static void 1123 reg_value_free_impl (struct gdb_reg_value *value) 1124 { 1125 xfree (value); 1126 } 1127 1128 /* Get the value of register REGNUM in the previous frame. */ 1129 1130 static struct gdb_reg_value * 1131 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum) 1132 { 1133 struct jit_unwind_private *priv; 1134 struct gdb_reg_value *value; 1135 int gdb_reg, size; 1136 struct gdbarch *frame_arch; 1137 1138 priv = (struct jit_unwind_private *) cb->priv_data; 1139 frame_arch = get_frame_arch (priv->this_frame); 1140 1141 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum); 1142 size = register_size (frame_arch, gdb_reg); 1143 value = ((struct gdb_reg_value *) 1144 xmalloc (sizeof (struct gdb_reg_value) + size - 1)); 1145 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg, 1146 value->value); 1147 value->size = size; 1148 value->free = reg_value_free_impl; 1149 return value; 1150 } 1151 1152 /* gdb_reg_value has a free function, which must be called on each 1153 saved register value. */ 1154 1155 static void 1156 jit_dealloc_cache (struct frame_info *this_frame, void *cache) 1157 { 1158 struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache; 1159 1160 gdb_assert (priv_data->regcache != NULL); 1161 delete priv_data->regcache; 1162 xfree (priv_data); 1163 } 1164 1165 /* The frame sniffer for the pseudo unwinder. 1166 1167 While this is nominally a frame sniffer, in the case where the JIT 1168 reader actually recognizes the frame, it does a lot more work -- it 1169 unwinds the frame and saves the corresponding register values in 1170 the cache. jit_frame_prev_register simply returns the saved 1171 register values. */ 1172 1173 static int 1174 jit_frame_sniffer (const struct frame_unwind *self, 1175 struct frame_info *this_frame, void **cache) 1176 { 1177 struct jit_unwind_private *priv_data; 1178 struct gdb_unwind_callbacks callbacks; 1179 struct gdb_reader_funcs *funcs; 1180 1181 callbacks.reg_get = jit_unwind_reg_get_impl; 1182 callbacks.reg_set = jit_unwind_reg_set_impl; 1183 callbacks.target_read = jit_target_read_impl; 1184 1185 if (loaded_jit_reader == NULL) 1186 return 0; 1187 1188 funcs = loaded_jit_reader->functions; 1189 1190 gdb_assert (!*cache); 1191 1192 *cache = XCNEW (struct jit_unwind_private); 1193 priv_data = (struct jit_unwind_private *) *cache; 1194 /* Take a snapshot of current regcache. */ 1195 priv_data->regcache = new detached_regcache (get_frame_arch (this_frame), 1196 true); 1197 priv_data->this_frame = this_frame; 1198 1199 callbacks.priv_data = priv_data; 1200 1201 /* Try to coax the provided unwinder to unwind the stack */ 1202 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS) 1203 { 1204 if (jit_debug) 1205 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using " 1206 "JIT reader.\n")); 1207 return 1; 1208 } 1209 if (jit_debug) 1210 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using " 1211 "JIT reader.\n")); 1212 1213 jit_dealloc_cache (this_frame, *cache); 1214 *cache = NULL; 1215 1216 return 0; 1217 } 1218 1219 1220 /* The frame_id function for the pseudo unwinder. Relays the call to 1221 the loaded plugin. */ 1222 1223 static void 1224 jit_frame_this_id (struct frame_info *this_frame, void **cache, 1225 struct frame_id *this_id) 1226 { 1227 struct jit_unwind_private priv; 1228 struct gdb_frame_id frame_id; 1229 struct gdb_reader_funcs *funcs; 1230 struct gdb_unwind_callbacks callbacks; 1231 1232 priv.regcache = NULL; 1233 priv.this_frame = this_frame; 1234 1235 /* We don't expect the frame_id function to set any registers, so we 1236 set reg_set to NULL. */ 1237 callbacks.reg_get = jit_unwind_reg_get_impl; 1238 callbacks.reg_set = NULL; 1239 callbacks.target_read = jit_target_read_impl; 1240 callbacks.priv_data = &priv; 1241 1242 gdb_assert (loaded_jit_reader); 1243 funcs = loaded_jit_reader->functions; 1244 1245 frame_id = funcs->get_frame_id (funcs, &callbacks); 1246 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address); 1247 } 1248 1249 /* Pseudo unwinder function. Reads the previously fetched value for 1250 the register from the cache. */ 1251 1252 static struct value * 1253 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg) 1254 { 1255 struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache; 1256 struct gdbarch *gdbarch; 1257 1258 if (priv == NULL) 1259 return frame_unwind_got_optimized (this_frame, reg); 1260 1261 gdbarch = priv->regcache->arch (); 1262 gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg)); 1263 enum register_status status = priv->regcache->cooked_read (reg, buf); 1264 1265 if (status == REG_VALID) 1266 return frame_unwind_got_bytes (this_frame, reg, buf); 1267 else 1268 return frame_unwind_got_optimized (this_frame, reg); 1269 } 1270 1271 /* Relay everything back to the unwinder registered by the JIT debug 1272 info reader.*/ 1273 1274 static const struct frame_unwind jit_frame_unwind = 1275 { 1276 NORMAL_FRAME, 1277 default_frame_unwind_stop_reason, 1278 jit_frame_this_id, 1279 jit_frame_prev_register, 1280 NULL, 1281 jit_frame_sniffer, 1282 jit_dealloc_cache 1283 }; 1284 1285 1286 /* This is the information that is stored at jit_gdbarch_data for each 1287 architecture. */ 1288 1289 struct jit_gdbarch_data_type 1290 { 1291 /* Has the (pseudo) unwinder been prepended? */ 1292 int unwinder_registered; 1293 }; 1294 1295 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */ 1296 1297 static void 1298 jit_prepend_unwinder (struct gdbarch *gdbarch) 1299 { 1300 struct jit_gdbarch_data_type *data; 1301 1302 data 1303 = (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data); 1304 if (!data->unwinder_registered) 1305 { 1306 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind); 1307 data->unwinder_registered = 1; 1308 } 1309 } 1310 1311 /* Register any already created translations. */ 1312 1313 static void 1314 jit_inferior_init (struct gdbarch *gdbarch) 1315 { 1316 struct jit_descriptor descriptor; 1317 struct jit_code_entry cur_entry; 1318 struct jit_program_space_data *ps_data; 1319 CORE_ADDR cur_entry_addr; 1320 1321 if (jit_debug) 1322 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n"); 1323 1324 jit_prepend_unwinder (gdbarch); 1325 1326 ps_data = get_jit_program_space_data (); 1327 if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0) 1328 return; 1329 1330 /* Read the descriptor so we can check the version number and load 1331 any already JITed functions. */ 1332 if (!jit_read_descriptor (gdbarch, &descriptor, ps_data)) 1333 return; 1334 1335 /* Check that the version number agrees with that we support. */ 1336 if (descriptor.version != 1) 1337 { 1338 printf_unfiltered (_("Unsupported JIT protocol version %ld " 1339 "in descriptor (expected 1)\n"), 1340 (long) descriptor.version); 1341 return; 1342 } 1343 1344 /* If we've attached to a running program, we need to check the descriptor 1345 to register any functions that were already generated. */ 1346 for (cur_entry_addr = descriptor.first_entry; 1347 cur_entry_addr != 0; 1348 cur_entry_addr = cur_entry.next_entry) 1349 { 1350 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry); 1351 1352 /* This hook may be called many times during setup, so make sure we don't 1353 add the same symbol file twice. */ 1354 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL) 1355 continue; 1356 1357 jit_register_code (gdbarch, cur_entry_addr, &cur_entry); 1358 } 1359 } 1360 1361 /* inferior_created observer. */ 1362 1363 static void 1364 jit_inferior_created (struct target_ops *ops, int from_tty) 1365 { 1366 jit_inferior_created_hook (); 1367 } 1368 1369 /* Exported routine to call when an inferior has been created. */ 1370 1371 void 1372 jit_inferior_created_hook (void) 1373 { 1374 jit_inferior_init (target_gdbarch ()); 1375 } 1376 1377 /* Exported routine to call to re-set the jit breakpoints, 1378 e.g. when a program is rerun. */ 1379 1380 void 1381 jit_breakpoint_re_set (void) 1382 { 1383 jit_breakpoint_re_set_internal (target_gdbarch (), 1384 get_jit_program_space_data ()); 1385 } 1386 1387 /* This function cleans up any code entries left over when the 1388 inferior exits. We get left over code when the inferior exits 1389 without unregistering its code, for example when it crashes. */ 1390 1391 static void 1392 jit_inferior_exit_hook (struct inferior *inf) 1393 { 1394 for (objfile *objf : current_program_space->objfiles_safe ()) 1395 { 1396 struct jit_objfile_data *objf_data 1397 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data); 1398 1399 if (objf_data != NULL && objf_data->addr != 0) 1400 jit_unregister_code (objf); 1401 } 1402 } 1403 1404 void 1405 jit_event_handler (struct gdbarch *gdbarch) 1406 { 1407 struct jit_descriptor descriptor; 1408 struct jit_code_entry code_entry; 1409 CORE_ADDR entry_addr; 1410 struct objfile *objf; 1411 1412 /* Read the descriptor from remote memory. */ 1413 if (!jit_read_descriptor (gdbarch, &descriptor, 1414 get_jit_program_space_data ())) 1415 return; 1416 entry_addr = descriptor.relevant_entry; 1417 1418 /* Do the corresponding action. */ 1419 switch (descriptor.action_flag) 1420 { 1421 case JIT_NOACTION: 1422 break; 1423 case JIT_REGISTER: 1424 jit_read_code_entry (gdbarch, entry_addr, &code_entry); 1425 jit_register_code (gdbarch, entry_addr, &code_entry); 1426 break; 1427 case JIT_UNREGISTER: 1428 objf = jit_find_objf_with_entry_addr (entry_addr); 1429 if (objf == NULL) 1430 printf_unfiltered (_("Unable to find JITed code " 1431 "entry at address: %s\n"), 1432 paddress (gdbarch, entry_addr)); 1433 else 1434 jit_unregister_code (objf); 1435 1436 break; 1437 default: 1438 error (_("Unknown action_flag value in JIT descriptor!")); 1439 break; 1440 } 1441 } 1442 1443 /* Called to free the data allocated to the jit_program_space_data slot. */ 1444 1445 static void 1446 free_objfile_data (struct objfile *objfile, void *data) 1447 { 1448 struct jit_objfile_data *objf_data = (struct jit_objfile_data *) data; 1449 1450 if (objf_data->register_code != NULL) 1451 { 1452 struct jit_program_space_data *ps_data; 1453 1454 ps_data 1455 = ((struct jit_program_space_data *) 1456 program_space_data (objfile->pspace, jit_program_space_data)); 1457 if (ps_data != NULL && ps_data->objfile == objfile) 1458 { 1459 ps_data->objfile = NULL; 1460 if (ps_data->jit_breakpoint != NULL) 1461 delete_breakpoint (ps_data->jit_breakpoint); 1462 ps_data->cached_code_address = 0; 1463 } 1464 } 1465 1466 xfree (data); 1467 } 1468 1469 /* Initialize the jit_gdbarch_data slot with an instance of struct 1470 jit_gdbarch_data_type */ 1471 1472 static void * 1473 jit_gdbarch_data_init (struct obstack *obstack) 1474 { 1475 struct jit_gdbarch_data_type *data = 1476 XOBNEW (obstack, struct jit_gdbarch_data_type); 1477 1478 data->unwinder_registered = 0; 1479 1480 return data; 1481 } 1482 1483 void 1484 _initialize_jit (void) 1485 { 1486 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR, 1487 JIT_READER_DIR_RELOCATABLE); 1488 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug, 1489 _("Set JIT debugging."), 1490 _("Show JIT debugging."), 1491 _("When non-zero, JIT debugging is enabled."), 1492 NULL, 1493 show_jit_debug, 1494 &setdebuglist, &showdebuglist); 1495 1496 gdb::observers::inferior_created.attach (jit_inferior_created); 1497 gdb::observers::inferior_exit.attach (jit_inferior_exit_hook); 1498 gdb::observers::breakpoint_deleted.attach (jit_breakpoint_deleted); 1499 1500 jit_objfile_data = 1501 register_objfile_data_with_cleanup (NULL, free_objfile_data); 1502 jit_program_space_data = 1503 register_program_space_data_with_cleanup (NULL, 1504 jit_program_space_data_cleanup); 1505 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init); 1506 if (is_dl_available ()) 1507 { 1508 struct cmd_list_element *c; 1509 1510 c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\ 1511 Load FILE as debug info reader and unwinder for JIT compiled code.\n\ 1512 Usage: jit-reader-load FILE\n\ 1513 Try to load file FILE as a debug info reader (and unwinder) for\n\ 1514 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\ 1515 relocated relative to the GDB executable if required.")); 1516 set_cmd_completer (c, filename_completer); 1517 1518 c = add_com ("jit-reader-unload", no_class, 1519 jit_reader_unload_command, _("\ 1520 Unload the currently loaded JIT debug info reader.\n\ 1521 Usage: jit-reader-unload\n\n\ 1522 Do \"help jit-reader-load\" for info on loading debug info readers.")); 1523 set_cmd_completer (c, noop_completer); 1524 } 1525 } 1526