xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/iq2000-tdep.c (revision 32d1c65c71fbdb65a012e8392a62a757dd6853e9)
1 /* Target-dependent code for the IQ2000 architecture, for GDB, the GNU
2    Debugger.
3 
4    Copyright (C) 2000-2023 Free Software Foundation, Inc.
5 
6    Contributed by Red Hat.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2/frame.h"
28 #include "gdbtypes.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "arch-utils.h"
32 #include "regcache.h"
33 #include "osabi.h"
34 #include "gdbcore.h"
35 
36 enum gdb_regnum
37 {
38   E_R0_REGNUM,  E_R1_REGNUM,  E_R2_REGNUM,  E_R3_REGNUM,
39   E_R4_REGNUM,  E_R5_REGNUM,  E_R6_REGNUM,  E_R7_REGNUM,
40   E_R8_REGNUM,  E_R9_REGNUM,  E_R10_REGNUM, E_R11_REGNUM,
41   E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM,
42   E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM,
43   E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM,
44   E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM,
45   E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM,
46   E_PC_REGNUM,
47   E_LR_REGNUM        = E_R31_REGNUM, /* Link register.  */
48   E_SP_REGNUM        = E_R29_REGNUM, /* Stack pointer.  */
49   E_FP_REGNUM        = E_R27_REGNUM, /* Frame pointer.  */
50   E_FN_RETURN_REGNUM = E_R2_REGNUM,  /* Function return value register.  */
51   E_1ST_ARGREG       = E_R4_REGNUM,  /* 1st  function arg register.  */
52   E_LAST_ARGREG      = E_R11_REGNUM, /* Last function arg register.  */
53   E_NUM_REGS         = E_PC_REGNUM + 1
54 };
55 
56 /* Use an invalid address value as 'not available' marker.  */
57 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
58 
59 struct iq2000_frame_cache
60 {
61   /* Base address.  */
62   CORE_ADDR  base;
63   CORE_ADDR  pc;
64   LONGEST    framesize;
65   int        using_fp;
66   CORE_ADDR  saved_sp;
67   CORE_ADDR  saved_regs [E_NUM_REGS];
68 };
69 
70 /* Harvard methods: */
71 
72 static CORE_ADDR
73 insn_ptr_from_addr (CORE_ADDR addr)	/* CORE_ADDR to target pointer.  */
74 {
75   return addr & 0x7fffffffL;
76 }
77 
78 static CORE_ADDR
79 insn_addr_from_ptr (CORE_ADDR ptr)	/* target_pointer to CORE_ADDR.  */
80 {
81   return (ptr & 0x7fffffffL) | 0x80000000L;
82 }
83 
84 /* Function: pointer_to_address
85    Convert a target pointer to an address in host (CORE_ADDR) format.  */
86 
87 static CORE_ADDR
88 iq2000_pointer_to_address (struct gdbarch *gdbarch,
89 			   struct type * type, const gdb_byte * buf)
90 {
91   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
92   enum type_code target = type->target_type ()->code ();
93   CORE_ADDR addr
94     = extract_unsigned_integer (buf, type->length (), byte_order);
95 
96   if (target == TYPE_CODE_FUNC
97       || target == TYPE_CODE_METHOD
98       || TYPE_CODE_SPACE (type->target_type ()))
99     addr = insn_addr_from_ptr (addr);
100 
101   return addr;
102 }
103 
104 /* Function: address_to_pointer
105    Convert a host-format address (CORE_ADDR) into a target pointer.  */
106 
107 static void
108 iq2000_address_to_pointer (struct gdbarch *gdbarch,
109 			   struct type *type, gdb_byte *buf, CORE_ADDR addr)
110 {
111   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
112   enum type_code target = type->target_type ()->code ();
113 
114   if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
115     addr = insn_ptr_from_addr (addr);
116   store_unsigned_integer (buf, type->length (), byte_order, addr);
117 }
118 
119 /* Real register methods: */
120 
121 /* Function: register_name
122    Returns the name of the iq2000 register number N.  */
123 
124 static const char *
125 iq2000_register_name (struct gdbarch *gdbarch, int regnum)
126 {
127   static const char * names[E_NUM_REGS] =
128     {
129       "r0",  "r1",  "r2",  "r3",  "r4",
130       "r5",  "r6",  "r7",  "r8",  "r9",
131       "r10", "r11", "r12", "r13", "r14",
132       "r15", "r16", "r17", "r18", "r19",
133       "r20", "r21", "r22", "r23", "r24",
134       "r25", "r26", "r27", "r28", "r29",
135       "r30", "r31",
136       "pc"
137     };
138   gdb_static_assert (ARRAY_SIZE (names) == E_NUM_REGS);
139   return names[regnum];
140 }
141 
142 /* Prologue analysis methods:  */
143 
144 /* ADDIU insn (001001 rs(5) rt(5) imm(16)).  */
145 #define INSN_IS_ADDIU(X)	(((X) & 0xfc000000) == 0x24000000)
146 #define ADDIU_REG_SRC(X)	(((X) & 0x03e00000) >> 21)
147 #define ADDIU_REG_TGT(X)	(((X) & 0x001f0000) >> 16)
148 #define ADDIU_IMMEDIATE(X)	((signed short) ((X) & 0x0000ffff))
149 
150 /* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101).  */
151 #define INSN_IS_MOVE(X)		(((X) & 0xffe007ff) == 0x00000025)
152 #define MOVE_REG_SRC(X)		(((X) & 0x001f0000) >> 16)
153 #define MOVE_REG_TGT(X)		(((X) & 0x0000f800) >> 11)
154 
155 /* STORE WORD insn (101011 rs(5) rt(5) offset(16)).  */
156 #define INSN_IS_STORE_WORD(X)	(((X) & 0xfc000000) == 0xac000000)
157 #define SW_REG_INDEX(X)		(((X) & 0x03e00000) >> 21)
158 #define SW_REG_SRC(X)		(((X) & 0x001f0000) >> 16)
159 #define SW_OFFSET(X)		((signed short) ((X) & 0x0000ffff))
160 
161 /* Function: find_last_line_symbol
162 
163    Given an address range, first find a line symbol corresponding to
164    the starting address.  Then find the last line symbol within the
165    range that has a line number less than or equal to the first line.
166 
167    For optimized code with code motion, this finds the last address
168    for the lowest-numbered line within the address range.  */
169 
170 static struct symtab_and_line
171 find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent)
172 {
173   struct symtab_and_line sal = find_pc_line (start, notcurrent);
174   struct symtab_and_line best_sal = sal;
175 
176   if (sal.pc == 0 || sal.line == 0 || sal.end == 0)
177     return sal;
178 
179   do
180     {
181       if (sal.line && sal.line <= best_sal.line)
182 	best_sal = sal;
183       sal = find_pc_line (sal.end, notcurrent);
184     }
185   while (sal.pc && sal.pc < end);
186 
187   return best_sal;
188 }
189 
190 /* Function: scan_prologue
191    Decode the instructions within the given address range.
192    Decide when we must have reached the end of the function prologue.
193    If a frame_info pointer is provided, fill in its prologue information.
194 
195    Returns the address of the first instruction after the prologue.  */
196 
197 static CORE_ADDR
198 iq2000_scan_prologue (struct gdbarch *gdbarch,
199 		      CORE_ADDR scan_start,
200 		      CORE_ADDR scan_end,
201 		      frame_info_ptr fi,
202 		      struct iq2000_frame_cache *cache)
203 {
204   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
205   struct symtab_and_line sal;
206   CORE_ADDR pc;
207   CORE_ADDR loop_end;
208   int srcreg;
209   int tgtreg;
210   signed short offset;
211 
212   if (scan_end == (CORE_ADDR) 0)
213     {
214       loop_end = scan_start + 100;
215       sal.end = sal.pc = 0;
216     }
217   else
218     {
219       loop_end = scan_end;
220       if (fi)
221 	sal = find_last_line_symbol (scan_start, scan_end, 0);
222       else
223 	sal.end = 0;	/* Avoid GCC false warning.  */
224     }
225 
226   /* Saved registers:
227      We first have to save the saved register's offset, and
228      only later do we compute its actual address.  Since the
229      offset can be zero, we must first initialize all the
230      saved regs to minus one (so we can later distinguish
231      between one that's not saved, and one that's saved at zero).  */
232   for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++)
233     cache->saved_regs[srcreg] = -1;
234   cache->using_fp = 0;
235   cache->framesize = 0;
236 
237   for (pc = scan_start; pc < loop_end; pc += 4)
238     {
239       LONGEST insn = read_memory_unsigned_integer (pc, 4, byte_order);
240       /* Skip any instructions writing to (sp) or decrementing the
241 	 SP.  */
242       if ((insn & 0xffe00000) == 0xac200000)
243 	{
244 	  /* sw using SP/%1 as base.  */
245 	  /* LEGACY -- from assembly-only port.  */
246 	  tgtreg = ((insn >> 16) & 0x1f);
247 	  if (tgtreg >= 0 && tgtreg < E_NUM_REGS)
248 	    cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff));
249 
250 	  continue;
251 	}
252 
253       if ((insn & 0xffff8000) == 0x20218000)
254 	{
255 	  /* addi %1, %1, -N == addi %sp, %sp, -N */
256 	  /* LEGACY -- from assembly-only port.  */
257 	  cache->framesize = -((signed short) (insn & 0xffff));
258 	  continue;
259 	}
260 
261       if (INSN_IS_ADDIU (insn))
262 	{
263 	  srcreg = ADDIU_REG_SRC (insn);
264 	  tgtreg = ADDIU_REG_TGT (insn);
265 	  offset = ADDIU_IMMEDIATE (insn);
266 	  if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM)
267 	    cache->framesize = -offset;
268 	  continue;
269 	}
270 
271       if (INSN_IS_STORE_WORD (insn))
272 	{
273 	  srcreg = SW_REG_SRC (insn);
274 	  tgtreg = SW_REG_INDEX (insn);
275 	  offset = SW_OFFSET (insn);
276 
277 	  if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM)
278 	    {
279 	      /* "push" to stack (via SP or FP reg).  */
280 	      if (cache->saved_regs[srcreg] == -1) /* Don't save twice.  */
281 		cache->saved_regs[srcreg] = offset;
282 	      continue;
283 	    }
284 	}
285 
286       if (INSN_IS_MOVE (insn))
287 	{
288 	  srcreg = MOVE_REG_SRC (insn);
289 	  tgtreg = MOVE_REG_TGT (insn);
290 
291 	  if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM)
292 	    {
293 	      /* Copy sp to fp.  */
294 	      cache->using_fp = 1;
295 	      continue;
296 	    }
297 	}
298 
299       /* Unknown instruction encountered in frame.  Bail out?
300 	 1) If we have a subsequent line symbol, we can keep going.
301 	 2) If not, we need to bail out and quit scanning instructions.  */
302 
303       if (fi && sal.end && (pc < sal.end)) /* Keep scanning.  */
304 	continue;
305       else /* bail */
306 	break;
307     }
308 
309   return pc;
310 }
311 
312 static void
313 iq2000_init_frame_cache (struct iq2000_frame_cache *cache)
314 {
315   int i;
316 
317   cache->base = 0;
318   cache->framesize = 0;
319   cache->using_fp = 0;
320   cache->saved_sp = 0;
321   for (i = 0; i < E_NUM_REGS; i++)
322     cache->saved_regs[i] = -1;
323 }
324 
325 /* Function: iq2000_skip_prologue
326    If the input address is in a function prologue,
327    returns the address of the end of the prologue;
328    else returns the input address.
329 
330    Note: the input address is likely to be the function start,
331    since this function is mainly used for advancing a breakpoint
332    to the first line, or stepping to the first line when we have
333    stepped into a function call.  */
334 
335 static CORE_ADDR
336 iq2000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
337 {
338   CORE_ADDR func_addr = 0 , func_end = 0;
339 
340   if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
341     {
342       struct symtab_and_line sal;
343       struct iq2000_frame_cache cache;
344 
345       /* Found a function.  */
346       sal = find_pc_line (func_addr, 0);
347       if (sal.end && sal.end < func_end)
348 	/* Found a line number, use it as end of prologue.  */
349 	return sal.end;
350 
351       /* No useable line symbol.  Use prologue parsing method.  */
352       iq2000_init_frame_cache (&cache);
353       return iq2000_scan_prologue (gdbarch, func_addr, func_end, NULL, &cache);
354     }
355 
356   /* No function symbol -- just return the PC.  */
357   return (CORE_ADDR) pc;
358 }
359 
360 static struct iq2000_frame_cache *
361 iq2000_frame_cache (frame_info_ptr this_frame, void **this_cache)
362 {
363   struct gdbarch *gdbarch = get_frame_arch (this_frame);
364   struct iq2000_frame_cache *cache;
365   CORE_ADDR current_pc;
366   int i;
367 
368   if (*this_cache)
369     return (struct iq2000_frame_cache *) *this_cache;
370 
371   cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache);
372   iq2000_init_frame_cache (cache);
373   *this_cache = cache;
374 
375   cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
376 
377   current_pc = get_frame_pc (this_frame);
378   find_pc_partial_function (current_pc, NULL, &cache->pc, NULL);
379   if (cache->pc != 0)
380     iq2000_scan_prologue (gdbarch, cache->pc, current_pc, this_frame, cache);
381   if (!cache->using_fp)
382     cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
383 
384   cache->saved_sp = cache->base + cache->framesize;
385 
386   for (i = 0; i < E_NUM_REGS; i++)
387     if (cache->saved_regs[i] != -1)
388       cache->saved_regs[i] += cache->base;
389 
390   return cache;
391 }
392 
393 static struct value *
394 iq2000_frame_prev_register (frame_info_ptr this_frame, void **this_cache,
395 			    int regnum)
396 {
397   struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
398 							 this_cache);
399 
400   if (regnum == E_SP_REGNUM && cache->saved_sp)
401     return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
402 
403   if (regnum == E_PC_REGNUM)
404     regnum = E_LR_REGNUM;
405 
406   if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1)
407     return frame_unwind_got_memory (this_frame, regnum,
408 				    cache->saved_regs[regnum]);
409 
410   return frame_unwind_got_register (this_frame, regnum, regnum);
411 }
412 
413 static void
414 iq2000_frame_this_id (frame_info_ptr this_frame, void **this_cache,
415 		      struct frame_id *this_id)
416 {
417   struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
418 							 this_cache);
419 
420   /* This marks the outermost frame.  */
421   if (cache->base == 0)
422     return;
423 
424   *this_id = frame_id_build (cache->saved_sp, cache->pc);
425 }
426 
427 static const struct frame_unwind iq2000_frame_unwind = {
428   "iq2000 prologue",
429   NORMAL_FRAME,
430   default_frame_unwind_stop_reason,
431   iq2000_frame_this_id,
432   iq2000_frame_prev_register,
433   NULL,
434   default_frame_sniffer
435 };
436 
437 static CORE_ADDR
438 iq2000_frame_base_address (frame_info_ptr this_frame, void **this_cache)
439 {
440   struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
441 							 this_cache);
442 
443   return cache->base;
444 }
445 
446 static const struct frame_base iq2000_frame_base = {
447   &iq2000_frame_unwind,
448   iq2000_frame_base_address,
449   iq2000_frame_base_address,
450   iq2000_frame_base_address
451 };
452 
453 static int
454 iq2000_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
455 {
456   if ((*pcptr & 3) != 0)
457     error (_("breakpoint_from_pc: invalid breakpoint address 0x%lx"),
458 	   (long) *pcptr);
459 
460   return 4;
461 }
462 
463 static const gdb_byte *
464 iq2000_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
465 {
466   static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d };
467   static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 };
468   *size = kind;
469 
470   return (gdbarch_byte_order (gdbarch)
471 	  == BFD_ENDIAN_BIG) ? big_breakpoint : little_breakpoint;
472 }
473 
474 /* Target function return value methods: */
475 
476 /* Function: store_return_value
477    Copy the function return value from VALBUF into the
478    proper location for a function return.  */
479 
480 static void
481 iq2000_store_return_value (struct type *type, struct regcache *regcache,
482 			   const void *valbuf)
483 {
484   int len = type->length ();
485   int regno = E_FN_RETURN_REGNUM;
486 
487   while (len > 0)
488     {
489       gdb_byte buf[4];
490       int size = len % 4 ?: 4;
491 
492       memset (buf, 0, 4);
493       memcpy (buf + 4 - size, valbuf, size);
494       regcache->raw_write (regno++, buf);
495       len -= size;
496       valbuf = ((char *) valbuf) + size;
497     }
498 }
499 
500 /* Function: use_struct_convention
501    Returns non-zero if the given struct type will be returned using
502    a special convention, rather than the normal function return method.  */
503 
504 static int
505 iq2000_use_struct_convention (struct type *type)
506 {
507   return ((type->code () == TYPE_CODE_STRUCT)
508 	  || (type->code () == TYPE_CODE_UNION))
509 	 && type->length () > 8;
510 }
511 
512 /* Function: extract_return_value
513    Copy the function's return value into VALBUF.
514    This function is called only in the context of "target function calls",
515    ie. when the debugger forces a function to be called in the child, and
516    when the debugger forces a function to return prematurely via the
517    "return" command.  */
518 
519 static void
520 iq2000_extract_return_value (struct type *type, struct regcache *regcache,
521 			     gdb_byte *valbuf)
522 {
523   struct gdbarch *gdbarch = regcache->arch ();
524   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
525 
526   /* If the function's return value is 8 bytes or less, it is
527      returned in a register, and if larger than 8 bytes, it is
528      returned in a stack location which is pointed to by the same
529      register.  */
530   int len = type->length ();
531 
532   if (len <= (2 * 4))
533     {
534       int regno = E_FN_RETURN_REGNUM;
535 
536       /* Return values of <= 8 bytes are returned in
537 	 FN_RETURN_REGNUM.  */
538       while (len > 0)
539 	{
540 	  ULONGEST tmp;
541 	  int size = len % 4 ?: 4;
542 
543 	  /* By using store_unsigned_integer we avoid having to
544 	     do anything special for small big-endian values.  */
545 	  regcache_cooked_read_unsigned (regcache, regno++, &tmp);
546 	  store_unsigned_integer (valbuf, size, byte_order, tmp);
547 	  len -= size;
548 	  valbuf += size;
549 	}
550     }
551   else
552     {
553       /* Return values > 8 bytes are returned in memory,
554 	 pointed to by FN_RETURN_REGNUM.  */
555       ULONGEST return_buffer;
556       regcache_cooked_read_unsigned (regcache, E_FN_RETURN_REGNUM,
557 				     &return_buffer);
558       read_memory (return_buffer, valbuf, type->length ());
559     }
560 }
561 
562 static enum return_value_convention
563 iq2000_return_value (struct gdbarch *gdbarch, struct value *function,
564 		     struct type *type, struct regcache *regcache,
565 		     gdb_byte *readbuf, const gdb_byte *writebuf)
566 {
567   if (iq2000_use_struct_convention (type))
568     return RETURN_VALUE_STRUCT_CONVENTION;
569   if (writebuf)
570     iq2000_store_return_value (type, regcache, writebuf);
571   else if (readbuf)
572     iq2000_extract_return_value (type, regcache, readbuf);
573   return RETURN_VALUE_REGISTER_CONVENTION;
574 }
575 
576 /* Function: register_virtual_type
577    Returns the default type for register N.  */
578 
579 static struct type *
580 iq2000_register_type (struct gdbarch *gdbarch, int regnum)
581 {
582   return builtin_type (gdbarch)->builtin_int32;
583 }
584 
585 static CORE_ADDR
586 iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
587 {
588   /* This is the same frame alignment used by gcc.  */
589   return ((sp + 7) & ~7);
590 }
591 
592 /* Convenience function to check 8-byte types for being a scalar type
593    or a struct with only one long long or double member.  */
594 static int
595 iq2000_pass_8bytetype_by_address (struct type *type)
596 {
597   struct type *ftype;
598 
599   /* Skip typedefs.  */
600   while (type->code () == TYPE_CODE_TYPEDEF)
601     type = type->target_type ();
602   /* Non-struct and non-union types are always passed by value.  */
603   if (type->code () != TYPE_CODE_STRUCT
604       && type->code () != TYPE_CODE_UNION)
605     return 0;
606   /* Structs with more than 1 field are always passed by address.  */
607   if (type->num_fields () != 1)
608     return 1;
609   /* Get field type.  */
610   ftype = type->field (0).type ();
611   /* The field type must have size 8, otherwise pass by address.  */
612   if (ftype->length () != 8)
613     return 1;
614   /* Skip typedefs of field type.  */
615   while (ftype->code () == TYPE_CODE_TYPEDEF)
616     ftype = ftype->target_type ();
617   /* If field is int or float, pass by value.  */
618   if (ftype->code () == TYPE_CODE_FLT
619       || ftype->code () == TYPE_CODE_INT)
620     return 0;
621   /* Everything else, pass by address.  */
622   return 1;
623 }
624 
625 static CORE_ADDR
626 iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
627 			struct regcache *regcache, CORE_ADDR bp_addr,
628 			int nargs, struct value **args, CORE_ADDR sp,
629 			function_call_return_method return_method,
630 			CORE_ADDR struct_addr)
631 {
632   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
633   const bfd_byte *val;
634   bfd_byte buf[4];
635   struct type *type;
636   int i, argreg, typelen, slacklen;
637   int stackspace = 0;
638   /* Used to copy struct arguments into the stack.  */
639   CORE_ADDR struct_ptr;
640 
641   /* First determine how much stack space we will need.  */
642   for (i = 0, argreg = E_1ST_ARGREG + (return_method == return_method_struct);
643        i < nargs;
644        i++)
645     {
646       type = value_type (args[i]);
647       typelen = type->length ();
648       if (typelen <= 4)
649 	{
650 	  /* Scalars of up to 4 bytes,
651 	     structs of up to 4 bytes, and
652 	     pointers.  */
653 	  if (argreg <= E_LAST_ARGREG)
654 	    argreg++;
655 	  else
656 	    stackspace += 4;
657 	}
658       else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
659 	{
660 	  /* long long,
661 	     double, and possibly
662 	     structs with a single field of long long or double.  */
663 	  if (argreg <= E_LAST_ARGREG - 1)
664 	    {
665 	      /* 8-byte arg goes into a register pair
666 		 (must start with an even-numbered reg).  */
667 	      if (((argreg - E_1ST_ARGREG) % 2) != 0)
668 		argreg ++;
669 	      argreg += 2;
670 	    }
671 	  else
672 	    {
673 	      argreg = E_LAST_ARGREG + 1;       /* no more argregs.  */
674 	      /* 8-byte arg goes on stack, must be 8-byte aligned.  */
675 	      stackspace = ((stackspace + 7) & ~7);
676 	      stackspace += 8;
677 	    }
678 	}
679       else
680 	{
681 	  /* Structs are passed as pointer to a copy of the struct.
682 	     So we need room on the stack for a copy of the struct
683 	     plus for the argument pointer.  */
684 	  if (argreg <= E_LAST_ARGREG)
685 	    argreg++;
686 	  else
687 	    stackspace += 4;
688 	  /* Care for 8-byte alignment of structs saved on stack.  */
689 	  stackspace += ((typelen + 7) & ~7);
690 	}
691     }
692 
693   /* Now copy params, in ascending order, into their assigned location
694      (either in a register or on the stack).  */
695 
696   sp -= (sp % 8);       /* align */
697   struct_ptr = sp;
698   sp -= stackspace;
699   sp -= (sp % 8);       /* align again */
700   stackspace = 0;
701 
702   argreg = E_1ST_ARGREG;
703   if (return_method == return_method_struct)
704     {
705       /* A function that returns a struct will consume one argreg to do so.
706        */
707       regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
708     }
709 
710   for (i = 0; i < nargs; i++)
711     {
712       type = value_type (args[i]);
713       typelen = type->length ();
714       val = value_contents (args[i]).data ();
715       if (typelen <= 4)
716 	{
717 	  /* Char, short, int, float, pointer, and structs <= four bytes.  */
718 	  slacklen = (4 - (typelen % 4)) % 4;
719 	  memset (buf, 0, sizeof (buf));
720 	  memcpy (buf + slacklen, val, typelen);
721 	  if (argreg <= E_LAST_ARGREG)
722 	    {
723 	      /* Passed in a register.  */
724 	      regcache->raw_write (argreg++, buf);
725 	    }
726 	  else
727 	    {
728 	      /* Passed on the stack.  */
729 	      write_memory (sp + stackspace, buf, 4);
730 	      stackspace += 4;
731 	    }
732 	}
733       else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
734 	{
735 	  /* (long long), (double), or struct consisting of
736 	     a single (long long) or (double).  */
737 	  if (argreg <= E_LAST_ARGREG - 1)
738 	    {
739 	      /* 8-byte arg goes into a register pair
740 		 (must start with an even-numbered reg).  */
741 	      if (((argreg - E_1ST_ARGREG) % 2) != 0)
742 		argreg++;
743 	      regcache->raw_write (argreg++, val);
744 	      regcache->raw_write (argreg++, val + 4);
745 	    }
746 	  else
747 	    {
748 	      /* 8-byte arg goes on stack, must be 8-byte aligned.  */
749 	      argreg = E_LAST_ARGREG + 1;       /* no more argregs.  */
750 	      stackspace = ((stackspace + 7) & ~7);
751 	      write_memory (sp + stackspace, val, typelen);
752 	      stackspace += 8;
753 	    }
754 	}
755       else
756 	{
757 	  /* Store struct beginning at the upper end of the previously
758 	     computed stack space.  Then store the address of the struct
759 	     using the usual rules for a 4 byte value.  */
760 	  struct_ptr -= ((typelen + 7) & ~7);
761 	  write_memory (struct_ptr, val, typelen);
762 	  if (argreg <= E_LAST_ARGREG)
763 	    regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr);
764 	  else
765 	    {
766 	      store_unsigned_integer (buf, 4, byte_order, struct_ptr);
767 	      write_memory (sp + stackspace, buf, 4);
768 	      stackspace += 4;
769 	    }
770 	}
771     }
772 
773   /* Store return address.  */
774   regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr);
775 
776   /* Update stack pointer.  */
777   regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
778 
779   /* And that should do it.  Return the new stack pointer.  */
780   return sp;
781 }
782 
783 /* Function: gdbarch_init
784    Initializer function for the iq2000 gdbarch vector.
785    Called by gdbarch.  Sets up the gdbarch vector(s) for this target.  */
786 
787 static struct gdbarch *
788 iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
789 {
790   struct gdbarch *gdbarch;
791 
792   /* Look up list for candidates - only one.  */
793   arches = gdbarch_list_lookup_by_info (arches, &info);
794   if (arches != NULL)
795     return arches->gdbarch;
796 
797   gdbarch = gdbarch_alloc (&info, NULL);
798 
799   set_gdbarch_num_regs             (gdbarch, E_NUM_REGS);
800   set_gdbarch_num_pseudo_regs      (gdbarch, 0);
801   set_gdbarch_sp_regnum            (gdbarch, E_SP_REGNUM);
802   set_gdbarch_pc_regnum            (gdbarch, E_PC_REGNUM);
803   set_gdbarch_register_name        (gdbarch, iq2000_register_name);
804   set_gdbarch_address_to_pointer   (gdbarch, iq2000_address_to_pointer);
805   set_gdbarch_pointer_to_address   (gdbarch, iq2000_pointer_to_address);
806   set_gdbarch_ptr_bit              (gdbarch, 4 * TARGET_CHAR_BIT);
807   set_gdbarch_short_bit            (gdbarch, 2 * TARGET_CHAR_BIT);
808   set_gdbarch_int_bit              (gdbarch, 4 * TARGET_CHAR_BIT);
809   set_gdbarch_long_bit             (gdbarch, 4 * TARGET_CHAR_BIT);
810   set_gdbarch_long_long_bit        (gdbarch, 8 * TARGET_CHAR_BIT);
811   set_gdbarch_float_bit            (gdbarch, 4 * TARGET_CHAR_BIT);
812   set_gdbarch_double_bit           (gdbarch, 8 * TARGET_CHAR_BIT);
813   set_gdbarch_long_double_bit      (gdbarch, 8 * TARGET_CHAR_BIT);
814   set_gdbarch_float_format         (gdbarch, floatformats_ieee_single);
815   set_gdbarch_double_format        (gdbarch, floatformats_ieee_double);
816   set_gdbarch_long_double_format   (gdbarch, floatformats_ieee_double);
817   set_gdbarch_return_value	   (gdbarch, iq2000_return_value);
818   set_gdbarch_breakpoint_kind_from_pc (gdbarch,
819 				       iq2000_breakpoint_kind_from_pc);
820   set_gdbarch_sw_breakpoint_from_kind (gdbarch,
821 				       iq2000_sw_breakpoint_from_kind);
822   set_gdbarch_frame_args_skip      (gdbarch, 0);
823   set_gdbarch_skip_prologue        (gdbarch, iq2000_skip_prologue);
824   set_gdbarch_inner_than           (gdbarch, core_addr_lessthan);
825   set_gdbarch_register_type (gdbarch, iq2000_register_type);
826   set_gdbarch_frame_align (gdbarch, iq2000_frame_align);
827   frame_base_set_default (gdbarch, &iq2000_frame_base);
828   set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call);
829 
830   gdbarch_init_osabi (info, gdbarch);
831 
832   dwarf2_append_unwinders (gdbarch);
833   frame_unwind_append_unwinder (gdbarch, &iq2000_frame_unwind);
834 
835   return gdbarch;
836 }
837 
838 /* Function: _initialize_iq2000_tdep
839    Initializer function for the iq2000 module.
840    Called by gdb at start-up.  */
841 
842 void _initialize_iq2000_tdep ();
843 void
844 _initialize_iq2000_tdep ()
845 {
846   gdbarch_register (bfd_arch_iq2000, iq2000_gdbarch_init);
847 }
848