1 /* Target-struct-independent code to start (run) and stop an inferior 2 process. 3 4 Copyright (C) 1986-2023 Free Software Foundation, Inc. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 20 21 #include "defs.h" 22 #include "displaced-stepping.h" 23 #include "infrun.h" 24 #include <ctype.h> 25 #include "symtab.h" 26 #include "frame.h" 27 #include "inferior.h" 28 #include "breakpoint.h" 29 #include "gdbcore.h" 30 #include "gdbcmd.h" 31 #include "target.h" 32 #include "target-connection.h" 33 #include "gdbthread.h" 34 #include "annotate.h" 35 #include "symfile.h" 36 #include "top.h" 37 #include "inf-loop.h" 38 #include "regcache.h" 39 #include "value.h" 40 #include "observable.h" 41 #include "language.h" 42 #include "solib.h" 43 #include "main.h" 44 #include "block.h" 45 #include "mi/mi-common.h" 46 #include "event-top.h" 47 #include "record.h" 48 #include "record-full.h" 49 #include "inline-frame.h" 50 #include "jit.h" 51 #include "tracepoint.h" 52 #include "skip.h" 53 #include "probe.h" 54 #include "objfiles.h" 55 #include "completer.h" 56 #include "target-descriptions.h" 57 #include "target-dcache.h" 58 #include "terminal.h" 59 #include "solist.h" 60 #include "gdbsupport/event-loop.h" 61 #include "thread-fsm.h" 62 #include "gdbsupport/enum-flags.h" 63 #include "progspace-and-thread.h" 64 #include "gdbsupport/gdb_optional.h" 65 #include "arch-utils.h" 66 #include "gdbsupport/scope-exit.h" 67 #include "gdbsupport/forward-scope-exit.h" 68 #include "gdbsupport/gdb_select.h" 69 #include <unordered_map> 70 #include "async-event.h" 71 #include "gdbsupport/selftest.h" 72 #include "scoped-mock-context.h" 73 #include "test-target.h" 74 #include "gdbsupport/common-debug.h" 75 #include "gdbsupport/buildargv.h" 76 77 /* Prototypes for local functions */ 78 79 static void sig_print_info (enum gdb_signal); 80 81 static void sig_print_header (void); 82 83 static void follow_inferior_reset_breakpoints (void); 84 85 static bool currently_stepping (struct thread_info *tp); 86 87 static void insert_hp_step_resume_breakpoint_at_frame (frame_info_ptr); 88 89 static void insert_step_resume_breakpoint_at_caller (frame_info_ptr); 90 91 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR); 92 93 static bool maybe_software_singlestep (struct gdbarch *gdbarch); 94 95 static void resume (gdb_signal sig); 96 97 static void wait_for_inferior (inferior *inf); 98 99 static void restart_threads (struct thread_info *event_thread, 100 inferior *inf = nullptr); 101 102 static bool start_step_over (void); 103 104 static bool step_over_info_valid_p (void); 105 106 /* Asynchronous signal handler registered as event loop source for 107 when we have pending events ready to be passed to the core. */ 108 static struct async_event_handler *infrun_async_inferior_event_token; 109 110 /* Stores whether infrun_async was previously enabled or disabled. 111 Starts off as -1, indicating "never enabled/disabled". */ 112 static int infrun_is_async = -1; 113 114 /* See infrun.h. */ 115 116 void 117 infrun_async (int enable) 118 { 119 if (infrun_is_async != enable) 120 { 121 infrun_is_async = enable; 122 123 infrun_debug_printf ("enable=%d", enable); 124 125 if (enable) 126 mark_async_event_handler (infrun_async_inferior_event_token); 127 else 128 clear_async_event_handler (infrun_async_inferior_event_token); 129 } 130 } 131 132 /* See infrun.h. */ 133 134 void 135 mark_infrun_async_event_handler (void) 136 { 137 mark_async_event_handler (infrun_async_inferior_event_token); 138 } 139 140 /* When set, stop the 'step' command if we enter a function which has 141 no line number information. The normal behavior is that we step 142 over such function. */ 143 bool step_stop_if_no_debug = false; 144 static void 145 show_step_stop_if_no_debug (struct ui_file *file, int from_tty, 146 struct cmd_list_element *c, const char *value) 147 { 148 gdb_printf (file, _("Mode of the step operation is %s.\n"), value); 149 } 150 151 /* proceed and normal_stop use this to notify the user when the 152 inferior stopped in a different thread than it had been running 153 in. */ 154 155 static ptid_t previous_inferior_ptid; 156 157 /* If set (default for legacy reasons), when following a fork, GDB 158 will detach from one of the fork branches, child or parent. 159 Exactly which branch is detached depends on 'set follow-fork-mode' 160 setting. */ 161 162 static bool detach_fork = true; 163 164 bool debug_infrun = false; 165 static void 166 show_debug_infrun (struct ui_file *file, int from_tty, 167 struct cmd_list_element *c, const char *value) 168 { 169 gdb_printf (file, _("Inferior debugging is %s.\n"), value); 170 } 171 172 /* Support for disabling address space randomization. */ 173 174 bool disable_randomization = true; 175 176 static void 177 show_disable_randomization (struct ui_file *file, int from_tty, 178 struct cmd_list_element *c, const char *value) 179 { 180 if (target_supports_disable_randomization ()) 181 gdb_printf (file, 182 _("Disabling randomization of debuggee's " 183 "virtual address space is %s.\n"), 184 value); 185 else 186 gdb_puts (_("Disabling randomization of debuggee's " 187 "virtual address space is unsupported on\n" 188 "this platform.\n"), file); 189 } 190 191 static void 192 set_disable_randomization (const char *args, int from_tty, 193 struct cmd_list_element *c) 194 { 195 if (!target_supports_disable_randomization ()) 196 error (_("Disabling randomization of debuggee's " 197 "virtual address space is unsupported on\n" 198 "this platform.")); 199 } 200 201 /* User interface for non-stop mode. */ 202 203 bool non_stop = false; 204 static bool non_stop_1 = false; 205 206 static void 207 set_non_stop (const char *args, int from_tty, 208 struct cmd_list_element *c) 209 { 210 if (target_has_execution ()) 211 { 212 non_stop_1 = non_stop; 213 error (_("Cannot change this setting while the inferior is running.")); 214 } 215 216 non_stop = non_stop_1; 217 } 218 219 static void 220 show_non_stop (struct ui_file *file, int from_tty, 221 struct cmd_list_element *c, const char *value) 222 { 223 gdb_printf (file, 224 _("Controlling the inferior in non-stop mode is %s.\n"), 225 value); 226 } 227 228 /* "Observer mode" is somewhat like a more extreme version of 229 non-stop, in which all GDB operations that might affect the 230 target's execution have been disabled. */ 231 232 static bool observer_mode = false; 233 static bool observer_mode_1 = false; 234 235 static void 236 set_observer_mode (const char *args, int from_tty, 237 struct cmd_list_element *c) 238 { 239 if (target_has_execution ()) 240 { 241 observer_mode_1 = observer_mode; 242 error (_("Cannot change this setting while the inferior is running.")); 243 } 244 245 observer_mode = observer_mode_1; 246 247 may_write_registers = !observer_mode; 248 may_write_memory = !observer_mode; 249 may_insert_breakpoints = !observer_mode; 250 may_insert_tracepoints = !observer_mode; 251 /* We can insert fast tracepoints in or out of observer mode, 252 but enable them if we're going into this mode. */ 253 if (observer_mode) 254 may_insert_fast_tracepoints = true; 255 may_stop = !observer_mode; 256 update_target_permissions (); 257 258 /* Going *into* observer mode we must force non-stop, then 259 going out we leave it that way. */ 260 if (observer_mode) 261 { 262 pagination_enabled = false; 263 non_stop = non_stop_1 = true; 264 } 265 266 if (from_tty) 267 gdb_printf (_("Observer mode is now %s.\n"), 268 (observer_mode ? "on" : "off")); 269 } 270 271 static void 272 show_observer_mode (struct ui_file *file, int from_tty, 273 struct cmd_list_element *c, const char *value) 274 { 275 gdb_printf (file, _("Observer mode is %s.\n"), value); 276 } 277 278 /* This updates the value of observer mode based on changes in 279 permissions. Note that we are deliberately ignoring the values of 280 may-write-registers and may-write-memory, since the user may have 281 reason to enable these during a session, for instance to turn on a 282 debugging-related global. */ 283 284 void 285 update_observer_mode (void) 286 { 287 bool newval = (!may_insert_breakpoints 288 && !may_insert_tracepoints 289 && may_insert_fast_tracepoints 290 && !may_stop 291 && non_stop); 292 293 /* Let the user know if things change. */ 294 if (newval != observer_mode) 295 gdb_printf (_("Observer mode is now %s.\n"), 296 (newval ? "on" : "off")); 297 298 observer_mode = observer_mode_1 = newval; 299 } 300 301 /* Tables of how to react to signals; the user sets them. */ 302 303 static unsigned char signal_stop[GDB_SIGNAL_LAST]; 304 static unsigned char signal_print[GDB_SIGNAL_LAST]; 305 static unsigned char signal_program[GDB_SIGNAL_LAST]; 306 307 /* Table of signals that are registered with "catch signal". A 308 non-zero entry indicates that the signal is caught by some "catch 309 signal" command. */ 310 static unsigned char signal_catch[GDB_SIGNAL_LAST]; 311 312 /* Table of signals that the target may silently handle. 313 This is automatically determined from the flags above, 314 and simply cached here. */ 315 static unsigned char signal_pass[GDB_SIGNAL_LAST]; 316 317 #define SET_SIGS(nsigs,sigs,flags) \ 318 do { \ 319 int signum = (nsigs); \ 320 while (signum-- > 0) \ 321 if ((sigs)[signum]) \ 322 (flags)[signum] = 1; \ 323 } while (0) 324 325 #define UNSET_SIGS(nsigs,sigs,flags) \ 326 do { \ 327 int signum = (nsigs); \ 328 while (signum-- > 0) \ 329 if ((sigs)[signum]) \ 330 (flags)[signum] = 0; \ 331 } while (0) 332 333 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of 334 this function is to avoid exporting `signal_program'. */ 335 336 void 337 update_signals_program_target (void) 338 { 339 target_program_signals (signal_program); 340 } 341 342 /* Value to pass to target_resume() to cause all threads to resume. */ 343 344 #define RESUME_ALL minus_one_ptid 345 346 /* Command list pointer for the "stop" placeholder. */ 347 348 static struct cmd_list_element *stop_command; 349 350 /* Nonzero if we want to give control to the user when we're notified 351 of shared library events by the dynamic linker. */ 352 int stop_on_solib_events; 353 354 /* Enable or disable optional shared library event breakpoints 355 as appropriate when the above flag is changed. */ 356 357 static void 358 set_stop_on_solib_events (const char *args, 359 int from_tty, struct cmd_list_element *c) 360 { 361 update_solib_breakpoints (); 362 } 363 364 static void 365 show_stop_on_solib_events (struct ui_file *file, int from_tty, 366 struct cmd_list_element *c, const char *value) 367 { 368 gdb_printf (file, _("Stopping for shared library events is %s.\n"), 369 value); 370 } 371 372 /* True after stop if current stack frame should be printed. */ 373 374 static bool stop_print_frame; 375 376 /* This is a cached copy of the target/ptid/waitstatus of the last 377 event returned by target_wait(). 378 This information is returned by get_last_target_status(). */ 379 static process_stratum_target *target_last_proc_target; 380 static ptid_t target_last_wait_ptid; 381 static struct target_waitstatus target_last_waitstatus; 382 383 void init_thread_stepping_state (struct thread_info *tss); 384 385 static const char follow_fork_mode_child[] = "child"; 386 static const char follow_fork_mode_parent[] = "parent"; 387 388 static const char *const follow_fork_mode_kind_names[] = { 389 follow_fork_mode_child, 390 follow_fork_mode_parent, 391 nullptr 392 }; 393 394 static const char *follow_fork_mode_string = follow_fork_mode_parent; 395 static void 396 show_follow_fork_mode_string (struct ui_file *file, int from_tty, 397 struct cmd_list_element *c, const char *value) 398 { 399 gdb_printf (file, 400 _("Debugger response to a program " 401 "call of fork or vfork is \"%s\".\n"), 402 value); 403 } 404 405 406 /* Handle changes to the inferior list based on the type of fork, 407 which process is being followed, and whether the other process 408 should be detached. On entry inferior_ptid must be the ptid of 409 the fork parent. At return inferior_ptid is the ptid of the 410 followed inferior. */ 411 412 static bool 413 follow_fork_inferior (bool follow_child, bool detach_fork) 414 { 415 target_waitkind fork_kind = inferior_thread ()->pending_follow.kind (); 416 gdb_assert (fork_kind == TARGET_WAITKIND_FORKED 417 || fork_kind == TARGET_WAITKIND_VFORKED); 418 bool has_vforked = fork_kind == TARGET_WAITKIND_VFORKED; 419 ptid_t parent_ptid = inferior_ptid; 420 ptid_t child_ptid = inferior_thread ()->pending_follow.child_ptid (); 421 422 if (has_vforked 423 && !non_stop /* Non-stop always resumes both branches. */ 424 && current_ui->prompt_state == PROMPT_BLOCKED 425 && !(follow_child || detach_fork || sched_multi)) 426 { 427 /* The parent stays blocked inside the vfork syscall until the 428 child execs or exits. If we don't let the child run, then 429 the parent stays blocked. If we're telling the parent to run 430 in the foreground, the user will not be able to ctrl-c to get 431 back the terminal, effectively hanging the debug session. */ 432 gdb_printf (gdb_stderr, _("\ 433 Can not resume the parent process over vfork in the foreground while\n\ 434 holding the child stopped. Try \"set detach-on-fork\" or \ 435 \"set schedule-multiple\".\n")); 436 return true; 437 } 438 439 inferior *parent_inf = current_inferior (); 440 inferior *child_inf = nullptr; 441 442 gdb_assert (parent_inf->thread_waiting_for_vfork_done == nullptr); 443 444 if (!follow_child) 445 { 446 /* Detach new forked process? */ 447 if (detach_fork) 448 { 449 /* Before detaching from the child, remove all breakpoints 450 from it. If we forked, then this has already been taken 451 care of by infrun.c. If we vforked however, any 452 breakpoint inserted in the parent is visible in the 453 child, even those added while stopped in a vfork 454 catchpoint. This will remove the breakpoints from the 455 parent also, but they'll be reinserted below. */ 456 if (has_vforked) 457 { 458 /* Keep breakpoints list in sync. */ 459 remove_breakpoints_inf (current_inferior ()); 460 } 461 462 if (print_inferior_events) 463 { 464 /* Ensure that we have a process ptid. */ 465 ptid_t process_ptid = ptid_t (child_ptid.pid ()); 466 467 target_terminal::ours_for_output (); 468 gdb_printf (_("[Detaching after %s from child %s]\n"), 469 has_vforked ? "vfork" : "fork", 470 target_pid_to_str (process_ptid).c_str ()); 471 } 472 } 473 else 474 { 475 /* Add process to GDB's tables. */ 476 child_inf = add_inferior (child_ptid.pid ()); 477 478 child_inf->attach_flag = parent_inf->attach_flag; 479 copy_terminal_info (child_inf, parent_inf); 480 child_inf->gdbarch = parent_inf->gdbarch; 481 copy_inferior_target_desc_info (child_inf, parent_inf); 482 483 child_inf->symfile_flags = SYMFILE_NO_READ; 484 485 /* If this is a vfork child, then the address-space is 486 shared with the parent. */ 487 if (has_vforked) 488 { 489 child_inf->pspace = parent_inf->pspace; 490 child_inf->aspace = parent_inf->aspace; 491 492 exec_on_vfork (child_inf); 493 494 /* The parent will be frozen until the child is done 495 with the shared region. Keep track of the 496 parent. */ 497 child_inf->vfork_parent = parent_inf; 498 child_inf->pending_detach = false; 499 parent_inf->vfork_child = child_inf; 500 parent_inf->pending_detach = false; 501 } 502 else 503 { 504 child_inf->aspace = new address_space (); 505 child_inf->pspace = new program_space (child_inf->aspace); 506 child_inf->removable = true; 507 clone_program_space (child_inf->pspace, parent_inf->pspace); 508 } 509 } 510 511 if (has_vforked) 512 { 513 /* If we detached from the child, then we have to be careful 514 to not insert breakpoints in the parent until the child 515 is done with the shared memory region. However, if we're 516 staying attached to the child, then we can and should 517 insert breakpoints, so that we can debug it. A 518 subsequent child exec or exit is enough to know when does 519 the child stops using the parent's address space. */ 520 parent_inf->thread_waiting_for_vfork_done 521 = detach_fork ? inferior_thread () : nullptr; 522 parent_inf->pspace->breakpoints_not_allowed = detach_fork; 523 } 524 } 525 else 526 { 527 /* Follow the child. */ 528 529 if (print_inferior_events) 530 { 531 std::string parent_pid = target_pid_to_str (parent_ptid); 532 std::string child_pid = target_pid_to_str (child_ptid); 533 534 target_terminal::ours_for_output (); 535 gdb_printf (_("[Attaching after %s %s to child %s]\n"), 536 parent_pid.c_str (), 537 has_vforked ? "vfork" : "fork", 538 child_pid.c_str ()); 539 } 540 541 /* Add the new inferior first, so that the target_detach below 542 doesn't unpush the target. */ 543 544 child_inf = add_inferior (child_ptid.pid ()); 545 546 child_inf->attach_flag = parent_inf->attach_flag; 547 copy_terminal_info (child_inf, parent_inf); 548 child_inf->gdbarch = parent_inf->gdbarch; 549 copy_inferior_target_desc_info (child_inf, parent_inf); 550 551 if (has_vforked) 552 { 553 /* If this is a vfork child, then the address-space is shared 554 with the parent. */ 555 child_inf->aspace = parent_inf->aspace; 556 child_inf->pspace = parent_inf->pspace; 557 558 exec_on_vfork (child_inf); 559 } 560 else if (detach_fork) 561 { 562 /* We follow the child and detach from the parent: move the parent's 563 program space to the child. This simplifies some things, like 564 doing "next" over fork() and landing on the expected line in the 565 child (note, that is broken with "set detach-on-fork off"). 566 567 Before assigning brand new spaces for the parent, remove 568 breakpoints from it: because the new pspace won't match 569 currently inserted locations, the normal detach procedure 570 wouldn't remove them, and we would leave them inserted when 571 detaching. */ 572 remove_breakpoints_inf (parent_inf); 573 574 child_inf->aspace = parent_inf->aspace; 575 child_inf->pspace = parent_inf->pspace; 576 parent_inf->aspace = new address_space (); 577 parent_inf->pspace = new program_space (parent_inf->aspace); 578 clone_program_space (parent_inf->pspace, child_inf->pspace); 579 580 /* The parent inferior is still the current one, so keep things 581 in sync. */ 582 set_current_program_space (parent_inf->pspace); 583 } 584 else 585 { 586 child_inf->aspace = new address_space (); 587 child_inf->pspace = new program_space (child_inf->aspace); 588 child_inf->removable = true; 589 child_inf->symfile_flags = SYMFILE_NO_READ; 590 clone_program_space (child_inf->pspace, parent_inf->pspace); 591 } 592 } 593 594 gdb_assert (current_inferior () == parent_inf); 595 596 /* If we are setting up an inferior for the child, target_follow_fork is 597 responsible for pushing the appropriate targets on the new inferior's 598 target stack and adding the initial thread (with ptid CHILD_PTID). 599 600 If we are not setting up an inferior for the child (because following 601 the parent and detach_fork is true), it is responsible for detaching 602 from CHILD_PTID. */ 603 target_follow_fork (child_inf, child_ptid, fork_kind, follow_child, 604 detach_fork); 605 606 /* target_follow_fork must leave the parent as the current inferior. If we 607 want to follow the child, we make it the current one below. */ 608 gdb_assert (current_inferior () == parent_inf); 609 610 /* If there is a child inferior, target_follow_fork must have created a thread 611 for it. */ 612 if (child_inf != nullptr) 613 gdb_assert (!child_inf->thread_list.empty ()); 614 615 /* Clear the parent thread's pending follow field. Do this before calling 616 target_detach, so that the target can differentiate the two following 617 cases: 618 619 - We continue past a fork with "follow-fork-mode == child" && 620 "detach-on-fork on", and therefore detach the parent. In that 621 case the target should not detach the fork child. 622 - We run to a fork catchpoint and the user types "detach". In that 623 case, the target should detach the fork child in addition to the 624 parent. 625 626 The former case will have pending_follow cleared, the later will have 627 pending_follow set. */ 628 thread_info *parent_thread = find_thread_ptid (parent_inf, parent_ptid); 629 gdb_assert (parent_thread != nullptr); 630 parent_thread->pending_follow.set_spurious (); 631 632 /* Detach the parent if needed. */ 633 if (follow_child) 634 { 635 /* If we're vforking, we want to hold on to the parent until 636 the child exits or execs. At child exec or exit time we 637 can remove the old breakpoints from the parent and detach 638 or resume debugging it. Otherwise, detach the parent now; 639 we'll want to reuse it's program/address spaces, but we 640 can't set them to the child before removing breakpoints 641 from the parent, otherwise, the breakpoints module could 642 decide to remove breakpoints from the wrong process (since 643 they'd be assigned to the same address space). */ 644 645 if (has_vforked) 646 { 647 gdb_assert (child_inf->vfork_parent == nullptr); 648 gdb_assert (parent_inf->vfork_child == nullptr); 649 child_inf->vfork_parent = parent_inf; 650 child_inf->pending_detach = false; 651 parent_inf->vfork_child = child_inf; 652 parent_inf->pending_detach = detach_fork; 653 } 654 else if (detach_fork) 655 { 656 if (print_inferior_events) 657 { 658 /* Ensure that we have a process ptid. */ 659 ptid_t process_ptid = ptid_t (parent_ptid.pid ()); 660 661 target_terminal::ours_for_output (); 662 gdb_printf (_("[Detaching after fork from " 663 "parent %s]\n"), 664 target_pid_to_str (process_ptid).c_str ()); 665 } 666 667 target_detach (parent_inf, 0); 668 } 669 } 670 671 /* If we ended up creating a new inferior, call post_create_inferior to inform 672 the various subcomponents. */ 673 if (child_inf != nullptr) 674 { 675 /* If FOLLOW_CHILD, we leave CHILD_INF as the current inferior 676 (do not restore the parent as the current inferior). */ 677 gdb::optional<scoped_restore_current_thread> maybe_restore; 678 679 if (!follow_child) 680 maybe_restore.emplace (); 681 682 switch_to_thread (*child_inf->threads ().begin ()); 683 post_create_inferior (0); 684 } 685 686 return false; 687 } 688 689 /* Tell the target to follow the fork we're stopped at. Returns true 690 if the inferior should be resumed; false, if the target for some 691 reason decided it's best not to resume. */ 692 693 static bool 694 follow_fork () 695 { 696 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child); 697 bool should_resume = true; 698 699 /* Copy user stepping state to the new inferior thread. FIXME: the 700 followed fork child thread should have a copy of most of the 701 parent thread structure's run control related fields, not just these. 702 Initialized to avoid "may be used uninitialized" warnings from gcc. */ 703 struct breakpoint *step_resume_breakpoint = nullptr; 704 struct breakpoint *exception_resume_breakpoint = nullptr; 705 CORE_ADDR step_range_start = 0; 706 CORE_ADDR step_range_end = 0; 707 int current_line = 0; 708 symtab *current_symtab = nullptr; 709 struct frame_id step_frame_id = { 0 }; 710 711 if (!non_stop) 712 { 713 process_stratum_target *wait_target; 714 ptid_t wait_ptid; 715 struct target_waitstatus wait_status; 716 717 /* Get the last target status returned by target_wait(). */ 718 get_last_target_status (&wait_target, &wait_ptid, &wait_status); 719 720 /* If not stopped at a fork event, then there's nothing else to 721 do. */ 722 if (wait_status.kind () != TARGET_WAITKIND_FORKED 723 && wait_status.kind () != TARGET_WAITKIND_VFORKED) 724 return 1; 725 726 /* Check if we switched over from WAIT_PTID, since the event was 727 reported. */ 728 if (wait_ptid != minus_one_ptid 729 && (current_inferior ()->process_target () != wait_target 730 || inferior_ptid != wait_ptid)) 731 { 732 /* We did. Switch back to WAIT_PTID thread, to tell the 733 target to follow it (in either direction). We'll 734 afterwards refuse to resume, and inform the user what 735 happened. */ 736 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid); 737 switch_to_thread (wait_thread); 738 should_resume = false; 739 } 740 } 741 742 thread_info *tp = inferior_thread (); 743 744 /* If there were any forks/vforks that were caught and are now to be 745 followed, then do so now. */ 746 switch (tp->pending_follow.kind ()) 747 { 748 case TARGET_WAITKIND_FORKED: 749 case TARGET_WAITKIND_VFORKED: 750 { 751 ptid_t parent, child; 752 std::unique_ptr<struct thread_fsm> thread_fsm; 753 754 /* If the user did a next/step, etc, over a fork call, 755 preserve the stepping state in the fork child. */ 756 if (follow_child && should_resume) 757 { 758 step_resume_breakpoint = clone_momentary_breakpoint 759 (tp->control.step_resume_breakpoint); 760 step_range_start = tp->control.step_range_start; 761 step_range_end = tp->control.step_range_end; 762 current_line = tp->current_line; 763 current_symtab = tp->current_symtab; 764 step_frame_id = tp->control.step_frame_id; 765 exception_resume_breakpoint 766 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint); 767 thread_fsm = tp->release_thread_fsm (); 768 769 /* For now, delete the parent's sr breakpoint, otherwise, 770 parent/child sr breakpoints are considered duplicates, 771 and the child version will not be installed. Remove 772 this when the breakpoints module becomes aware of 773 inferiors and address spaces. */ 774 delete_step_resume_breakpoint (tp); 775 tp->control.step_range_start = 0; 776 tp->control.step_range_end = 0; 777 tp->control.step_frame_id = null_frame_id; 778 delete_exception_resume_breakpoint (tp); 779 } 780 781 parent = inferior_ptid; 782 child = tp->pending_follow.child_ptid (); 783 784 /* If handling a vfork, stop all the inferior's threads, they will be 785 restarted when the vfork shared region is complete. */ 786 if (tp->pending_follow.kind () == TARGET_WAITKIND_VFORKED 787 && target_is_non_stop_p ()) 788 stop_all_threads ("handling vfork", tp->inf); 789 790 process_stratum_target *parent_targ = tp->inf->process_target (); 791 /* Set up inferior(s) as specified by the caller, and tell the 792 target to do whatever is necessary to follow either parent 793 or child. */ 794 if (follow_fork_inferior (follow_child, detach_fork)) 795 { 796 /* Target refused to follow, or there's some other reason 797 we shouldn't resume. */ 798 should_resume = 0; 799 } 800 else 801 { 802 /* This makes sure we don't try to apply the "Switched 803 over from WAIT_PID" logic above. */ 804 nullify_last_target_wait_ptid (); 805 806 /* If we followed the child, switch to it... */ 807 if (follow_child) 808 { 809 thread_info *child_thr = find_thread_ptid (parent_targ, child); 810 switch_to_thread (child_thr); 811 812 /* ... and preserve the stepping state, in case the 813 user was stepping over the fork call. */ 814 if (should_resume) 815 { 816 tp = inferior_thread (); 817 tp->control.step_resume_breakpoint 818 = step_resume_breakpoint; 819 tp->control.step_range_start = step_range_start; 820 tp->control.step_range_end = step_range_end; 821 tp->current_line = current_line; 822 tp->current_symtab = current_symtab; 823 tp->control.step_frame_id = step_frame_id; 824 tp->control.exception_resume_breakpoint 825 = exception_resume_breakpoint; 826 tp->set_thread_fsm (std::move (thread_fsm)); 827 } 828 else 829 { 830 /* If we get here, it was because we're trying to 831 resume from a fork catchpoint, but, the user 832 has switched threads away from the thread that 833 forked. In that case, the resume command 834 issued is most likely not applicable to the 835 child, so just warn, and refuse to resume. */ 836 warning (_("Not resuming: switched threads " 837 "before following fork child.")); 838 } 839 840 /* Reset breakpoints in the child as appropriate. */ 841 follow_inferior_reset_breakpoints (); 842 } 843 } 844 } 845 break; 846 case TARGET_WAITKIND_SPURIOUS: 847 /* Nothing to follow. */ 848 break; 849 default: 850 internal_error ("Unexpected pending_follow.kind %d\n", 851 tp->pending_follow.kind ()); 852 break; 853 } 854 855 return should_resume; 856 } 857 858 static void 859 follow_inferior_reset_breakpoints (void) 860 { 861 struct thread_info *tp = inferior_thread (); 862 863 /* Was there a step_resume breakpoint? (There was if the user 864 did a "next" at the fork() call.) If so, explicitly reset its 865 thread number. Cloned step_resume breakpoints are disabled on 866 creation, so enable it here now that it is associated with the 867 correct thread. 868 869 step_resumes are a form of bp that are made to be per-thread. 870 Since we created the step_resume bp when the parent process 871 was being debugged, and now are switching to the child process, 872 from the breakpoint package's viewpoint, that's a switch of 873 "threads". We must update the bp's notion of which thread 874 it is for, or it'll be ignored when it triggers. */ 875 876 if (tp->control.step_resume_breakpoint) 877 { 878 breakpoint_re_set_thread (tp->control.step_resume_breakpoint); 879 tp->control.step_resume_breakpoint->loc->enabled = 1; 880 } 881 882 /* Treat exception_resume breakpoints like step_resume breakpoints. */ 883 if (tp->control.exception_resume_breakpoint) 884 { 885 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint); 886 tp->control.exception_resume_breakpoint->loc->enabled = 1; 887 } 888 889 /* Reinsert all breakpoints in the child. The user may have set 890 breakpoints after catching the fork, in which case those 891 were never set in the child, but only in the parent. This makes 892 sure the inserted breakpoints match the breakpoint list. */ 893 894 breakpoint_re_set (); 895 insert_breakpoints (); 896 } 897 898 /* The child has exited or execed: resume THREAD, a thread of the parent, 899 if it was meant to be executing. */ 900 901 static void 902 proceed_after_vfork_done (thread_info *thread) 903 { 904 if (thread->state == THREAD_RUNNING 905 && !thread->executing () 906 && !thread->stop_requested 907 && thread->stop_signal () == GDB_SIGNAL_0) 908 { 909 infrun_debug_printf ("resuming vfork parent thread %s", 910 thread->ptid.to_string ().c_str ()); 911 912 switch_to_thread (thread); 913 clear_proceed_status (0); 914 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT); 915 } 916 } 917 918 /* Called whenever we notice an exec or exit event, to handle 919 detaching or resuming a vfork parent. */ 920 921 static void 922 handle_vfork_child_exec_or_exit (int exec) 923 { 924 struct inferior *inf = current_inferior (); 925 926 if (inf->vfork_parent) 927 { 928 inferior *resume_parent = nullptr; 929 930 /* This exec or exit marks the end of the shared memory region 931 between the parent and the child. Break the bonds. */ 932 inferior *vfork_parent = inf->vfork_parent; 933 inf->vfork_parent->vfork_child = nullptr; 934 inf->vfork_parent = nullptr; 935 936 /* If the user wanted to detach from the parent, now is the 937 time. */ 938 if (vfork_parent->pending_detach) 939 { 940 struct program_space *pspace; 941 struct address_space *aspace; 942 943 /* follow-fork child, detach-on-fork on. */ 944 945 vfork_parent->pending_detach = false; 946 947 scoped_restore_current_pspace_and_thread restore_thread; 948 949 /* We're letting loose of the parent. */ 950 thread_info *tp = any_live_thread_of_inferior (vfork_parent); 951 switch_to_thread (tp); 952 953 /* We're about to detach from the parent, which implicitly 954 removes breakpoints from its address space. There's a 955 catch here: we want to reuse the spaces for the child, 956 but, parent/child are still sharing the pspace at this 957 point, although the exec in reality makes the kernel give 958 the child a fresh set of new pages. The problem here is 959 that the breakpoints module being unaware of this, would 960 likely chose the child process to write to the parent 961 address space. Swapping the child temporarily away from 962 the spaces has the desired effect. Yes, this is "sort 963 of" a hack. */ 964 965 pspace = inf->pspace; 966 aspace = inf->aspace; 967 inf->aspace = nullptr; 968 inf->pspace = nullptr; 969 970 if (print_inferior_events) 971 { 972 std::string pidstr 973 = target_pid_to_str (ptid_t (vfork_parent->pid)); 974 975 target_terminal::ours_for_output (); 976 977 if (exec) 978 { 979 gdb_printf (_("[Detaching vfork parent %s " 980 "after child exec]\n"), pidstr.c_str ()); 981 } 982 else 983 { 984 gdb_printf (_("[Detaching vfork parent %s " 985 "after child exit]\n"), pidstr.c_str ()); 986 } 987 } 988 989 target_detach (vfork_parent, 0); 990 991 /* Put it back. */ 992 inf->pspace = pspace; 993 inf->aspace = aspace; 994 } 995 else if (exec) 996 { 997 /* We're staying attached to the parent, so, really give the 998 child a new address space. */ 999 inf->pspace = new program_space (maybe_new_address_space ()); 1000 inf->aspace = inf->pspace->aspace; 1001 inf->removable = true; 1002 set_current_program_space (inf->pspace); 1003 1004 resume_parent = vfork_parent; 1005 } 1006 else 1007 { 1008 /* If this is a vfork child exiting, then the pspace and 1009 aspaces were shared with the parent. Since we're 1010 reporting the process exit, we'll be mourning all that is 1011 found in the address space, and switching to null_ptid, 1012 preparing to start a new inferior. But, since we don't 1013 want to clobber the parent's address/program spaces, we 1014 go ahead and create a new one for this exiting 1015 inferior. */ 1016 1017 /* Switch to no-thread while running clone_program_space, so 1018 that clone_program_space doesn't want to read the 1019 selected frame of a dead process. */ 1020 scoped_restore_current_thread restore_thread; 1021 switch_to_no_thread (); 1022 1023 inf->pspace = new program_space (maybe_new_address_space ()); 1024 inf->aspace = inf->pspace->aspace; 1025 set_current_program_space (inf->pspace); 1026 inf->removable = true; 1027 inf->symfile_flags = SYMFILE_NO_READ; 1028 clone_program_space (inf->pspace, vfork_parent->pspace); 1029 1030 resume_parent = vfork_parent; 1031 } 1032 1033 gdb_assert (current_program_space == inf->pspace); 1034 1035 if (non_stop && resume_parent != nullptr) 1036 { 1037 /* If the user wanted the parent to be running, let it go 1038 free now. */ 1039 scoped_restore_current_thread restore_thread; 1040 1041 infrun_debug_printf ("resuming vfork parent process %d", 1042 resume_parent->pid); 1043 1044 for (thread_info *thread : resume_parent->threads ()) 1045 proceed_after_vfork_done (thread); 1046 } 1047 } 1048 } 1049 1050 /* Handle TARGET_WAITKIND_VFORK_DONE. */ 1051 1052 static void 1053 handle_vfork_done (thread_info *event_thread) 1054 { 1055 /* We only care about this event if inferior::thread_waiting_for_vfork_done is 1056 set, that is if we are waiting for a vfork child not under our control 1057 (because we detached it) to exec or exit. 1058 1059 If an inferior has vforked and we are debugging the child, we don't use 1060 the vfork-done event to get notified about the end of the shared address 1061 space window. We rely instead on the child's exec or exit event, and the 1062 inferior::vfork_{parent,child} fields are used instead. See 1063 handle_vfork_child_exec_or_exit for that. */ 1064 if (event_thread->inf->thread_waiting_for_vfork_done == nullptr) 1065 { 1066 infrun_debug_printf ("not waiting for a vfork-done event"); 1067 return; 1068 } 1069 1070 INFRUN_SCOPED_DEBUG_ENTER_EXIT; 1071 1072 /* We stopped all threads (other than the vforking thread) of the inferior in 1073 follow_fork and kept them stopped until now. It should therefore not be 1074 possible for another thread to have reported a vfork during that window. 1075 If THREAD_WAITING_FOR_VFORK_DONE is set, it has to be the same thread whose 1076 vfork-done we are handling right now. */ 1077 gdb_assert (event_thread->inf->thread_waiting_for_vfork_done == event_thread); 1078 1079 event_thread->inf->thread_waiting_for_vfork_done = nullptr; 1080 event_thread->inf->pspace->breakpoints_not_allowed = 0; 1081 1082 /* On non-stop targets, we stopped all the inferior's threads in follow_fork, 1083 resume them now. On all-stop targets, everything that needs to be resumed 1084 will be when we resume the event thread. */ 1085 if (target_is_non_stop_p ()) 1086 { 1087 /* restart_threads and start_step_over may change the current thread, make 1088 sure we leave the event thread as the current thread. */ 1089 scoped_restore_current_thread restore_thread; 1090 1091 insert_breakpoints (); 1092 start_step_over (); 1093 1094 if (!step_over_info_valid_p ()) 1095 restart_threads (event_thread, event_thread->inf); 1096 } 1097 } 1098 1099 /* Enum strings for "set|show follow-exec-mode". */ 1100 1101 static const char follow_exec_mode_new[] = "new"; 1102 static const char follow_exec_mode_same[] = "same"; 1103 static const char *const follow_exec_mode_names[] = 1104 { 1105 follow_exec_mode_new, 1106 follow_exec_mode_same, 1107 nullptr, 1108 }; 1109 1110 static const char *follow_exec_mode_string = follow_exec_mode_same; 1111 static void 1112 show_follow_exec_mode_string (struct ui_file *file, int from_tty, 1113 struct cmd_list_element *c, const char *value) 1114 { 1115 gdb_printf (file, _("Follow exec mode is \"%s\".\n"), value); 1116 } 1117 1118 /* EXEC_FILE_TARGET is assumed to be non-NULL. */ 1119 1120 static void 1121 follow_exec (ptid_t ptid, const char *exec_file_target) 1122 { 1123 int pid = ptid.pid (); 1124 ptid_t process_ptid; 1125 1126 /* Switch terminal for any messages produced e.g. by 1127 breakpoint_re_set. */ 1128 target_terminal::ours_for_output (); 1129 1130 /* This is an exec event that we actually wish to pay attention to. 1131 Refresh our symbol table to the newly exec'd program, remove any 1132 momentary bp's, etc. 1133 1134 If there are breakpoints, they aren't really inserted now, 1135 since the exec() transformed our inferior into a fresh set 1136 of instructions. 1137 1138 We want to preserve symbolic breakpoints on the list, since 1139 we have hopes that they can be reset after the new a.out's 1140 symbol table is read. 1141 1142 However, any "raw" breakpoints must be removed from the list 1143 (e.g., the solib bp's), since their address is probably invalid 1144 now. 1145 1146 And, we DON'T want to call delete_breakpoints() here, since 1147 that may write the bp's "shadow contents" (the instruction 1148 value that was overwritten with a TRAP instruction). Since 1149 we now have a new a.out, those shadow contents aren't valid. */ 1150 1151 mark_breakpoints_out (); 1152 1153 /* The target reports the exec event to the main thread, even if 1154 some other thread does the exec, and even if the main thread was 1155 stopped or already gone. We may still have non-leader threads of 1156 the process on our list. E.g., on targets that don't have thread 1157 exit events (like remote); or on native Linux in non-stop mode if 1158 there were only two threads in the inferior and the non-leader 1159 one is the one that execs (and nothing forces an update of the 1160 thread list up to here). When debugging remotely, it's best to 1161 avoid extra traffic, when possible, so avoid syncing the thread 1162 list with the target, and instead go ahead and delete all threads 1163 of the process but one that reported the event. Note this must 1164 be done before calling update_breakpoints_after_exec, as 1165 otherwise clearing the threads' resources would reference stale 1166 thread breakpoints -- it may have been one of these threads that 1167 stepped across the exec. We could just clear their stepping 1168 states, but as long as we're iterating, might as well delete 1169 them. Deleting them now rather than at the next user-visible 1170 stop provides a nicer sequence of events for user and MI 1171 notifications. */ 1172 for (thread_info *th : all_threads_safe ()) 1173 if (th->ptid.pid () == pid && th->ptid != ptid) 1174 delete_thread (th); 1175 1176 /* We also need to clear any left over stale state for the 1177 leader/event thread. E.g., if there was any step-resume 1178 breakpoint or similar, it's gone now. We cannot truly 1179 step-to-next statement through an exec(). */ 1180 thread_info *th = inferior_thread (); 1181 th->control.step_resume_breakpoint = nullptr; 1182 th->control.exception_resume_breakpoint = nullptr; 1183 th->control.single_step_breakpoints = nullptr; 1184 th->control.step_range_start = 0; 1185 th->control.step_range_end = 0; 1186 1187 /* The user may have had the main thread held stopped in the 1188 previous image (e.g., schedlock on, or non-stop). Release 1189 it now. */ 1190 th->stop_requested = 0; 1191 1192 update_breakpoints_after_exec (); 1193 1194 /* What is this a.out's name? */ 1195 process_ptid = ptid_t (pid); 1196 gdb_printf (_("%s is executing new program: %s\n"), 1197 target_pid_to_str (process_ptid).c_str (), 1198 exec_file_target); 1199 1200 /* We've followed the inferior through an exec. Therefore, the 1201 inferior has essentially been killed & reborn. */ 1202 1203 breakpoint_init_inferior (inf_execd); 1204 1205 gdb::unique_xmalloc_ptr<char> exec_file_host 1206 = exec_file_find (exec_file_target, nullptr); 1207 1208 /* If we were unable to map the executable target pathname onto a host 1209 pathname, tell the user that. Otherwise GDB's subsequent behavior 1210 is confusing. Maybe it would even be better to stop at this point 1211 so that the user can specify a file manually before continuing. */ 1212 if (exec_file_host == nullptr) 1213 warning (_("Could not load symbols for executable %s.\n" 1214 "Do you need \"set sysroot\"?"), 1215 exec_file_target); 1216 1217 /* Reset the shared library package. This ensures that we get a 1218 shlib event when the child reaches "_start", at which point the 1219 dld will have had a chance to initialize the child. */ 1220 /* Also, loading a symbol file below may trigger symbol lookups, and 1221 we don't want those to be satisfied by the libraries of the 1222 previous incarnation of this process. */ 1223 no_shared_libraries (nullptr, 0); 1224 1225 struct inferior *inf = current_inferior (); 1226 1227 if (follow_exec_mode_string == follow_exec_mode_new) 1228 { 1229 /* The user wants to keep the old inferior and program spaces 1230 around. Create a new fresh one, and switch to it. */ 1231 1232 /* Do exit processing for the original inferior before setting the new 1233 inferior's pid. Having two inferiors with the same pid would confuse 1234 find_inferior_p(t)id. Transfer the terminal state and info from the 1235 old to the new inferior. */ 1236 inferior *new_inferior = add_inferior_with_spaces (); 1237 1238 swap_terminal_info (new_inferior, inf); 1239 exit_inferior_silent (inf); 1240 1241 new_inferior->pid = pid; 1242 target_follow_exec (new_inferior, ptid, exec_file_target); 1243 1244 /* We continue with the new inferior. */ 1245 inf = new_inferior; 1246 } 1247 else 1248 { 1249 /* The old description may no longer be fit for the new image. 1250 E.g, a 64-bit process exec'ed a 32-bit process. Clear the 1251 old description; we'll read a new one below. No need to do 1252 this on "follow-exec-mode new", as the old inferior stays 1253 around (its description is later cleared/refetched on 1254 restart). */ 1255 target_clear_description (); 1256 target_follow_exec (inf, ptid, exec_file_target); 1257 } 1258 1259 gdb_assert (current_inferior () == inf); 1260 gdb_assert (current_program_space == inf->pspace); 1261 1262 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used 1263 because the proper displacement for a PIE (Position Independent 1264 Executable) main symbol file will only be computed by 1265 solib_create_inferior_hook below. breakpoint_re_set would fail 1266 to insert the breakpoints with the zero displacement. */ 1267 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET); 1268 1269 /* If the target can specify a description, read it. Must do this 1270 after flipping to the new executable (because the target supplied 1271 description must be compatible with the executable's 1272 architecture, and the old executable may e.g., be 32-bit, while 1273 the new one 64-bit), and before anything involving memory or 1274 registers. */ 1275 target_find_description (); 1276 1277 gdb::observers::inferior_execd.notify (inf); 1278 1279 breakpoint_re_set (); 1280 1281 /* Reinsert all breakpoints. (Those which were symbolic have 1282 been reset to the proper address in the new a.out, thanks 1283 to symbol_file_command...). */ 1284 insert_breakpoints (); 1285 1286 /* The next resume of this inferior should bring it to the shlib 1287 startup breakpoints. (If the user had also set bp's on 1288 "main" from the old (parent) process, then they'll auto- 1289 matically get reset there in the new process.). */ 1290 } 1291 1292 /* The chain of threads that need to do a step-over operation to get 1293 past e.g., a breakpoint. What technique is used to step over the 1294 breakpoint/watchpoint does not matter -- all threads end up in the 1295 same queue, to maintain rough temporal order of execution, in order 1296 to avoid starvation, otherwise, we could e.g., find ourselves 1297 constantly stepping the same couple threads past their breakpoints 1298 over and over, if the single-step finish fast enough. */ 1299 thread_step_over_list global_thread_step_over_list; 1300 1301 /* Bit flags indicating what the thread needs to step over. */ 1302 1303 enum step_over_what_flag 1304 { 1305 /* Step over a breakpoint. */ 1306 STEP_OVER_BREAKPOINT = 1, 1307 1308 /* Step past a non-continuable watchpoint, in order to let the 1309 instruction execute so we can evaluate the watchpoint 1310 expression. */ 1311 STEP_OVER_WATCHPOINT = 2 1312 }; 1313 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what); 1314 1315 /* Info about an instruction that is being stepped over. */ 1316 1317 struct step_over_info 1318 { 1319 /* If we're stepping past a breakpoint, this is the address space 1320 and address of the instruction the breakpoint is set at. We'll 1321 skip inserting all breakpoints here. Valid iff ASPACE is 1322 non-NULL. */ 1323 const address_space *aspace = nullptr; 1324 CORE_ADDR address = 0; 1325 1326 /* The instruction being stepped over triggers a nonsteppable 1327 watchpoint. If true, we'll skip inserting watchpoints. */ 1328 int nonsteppable_watchpoint_p = 0; 1329 1330 /* The thread's global number. */ 1331 int thread = -1; 1332 }; 1333 1334 /* The step-over info of the location that is being stepped over. 1335 1336 Note that with async/breakpoint always-inserted mode, a user might 1337 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is 1338 being stepped over. As setting a new breakpoint inserts all 1339 breakpoints, we need to make sure the breakpoint being stepped over 1340 isn't inserted then. We do that by only clearing the step-over 1341 info when the step-over is actually finished (or aborted). 1342 1343 Presently GDB can only step over one breakpoint at any given time. 1344 Given threads that can't run code in the same address space as the 1345 breakpoint's can't really miss the breakpoint, GDB could be taught 1346 to step-over at most one breakpoint per address space (so this info 1347 could move to the address space object if/when GDB is extended). 1348 The set of breakpoints being stepped over will normally be much 1349 smaller than the set of all breakpoints, so a flag in the 1350 breakpoint location structure would be wasteful. A separate list 1351 also saves complexity and run-time, as otherwise we'd have to go 1352 through all breakpoint locations clearing their flag whenever we 1353 start a new sequence. Similar considerations weigh against storing 1354 this info in the thread object. Plus, not all step overs actually 1355 have breakpoint locations -- e.g., stepping past a single-step 1356 breakpoint, or stepping to complete a non-continuable 1357 watchpoint. */ 1358 static struct step_over_info step_over_info; 1359 1360 /* Record the address of the breakpoint/instruction we're currently 1361 stepping over. 1362 N.B. We record the aspace and address now, instead of say just the thread, 1363 because when we need the info later the thread may be running. */ 1364 1365 static void 1366 set_step_over_info (const address_space *aspace, CORE_ADDR address, 1367 int nonsteppable_watchpoint_p, 1368 int thread) 1369 { 1370 step_over_info.aspace = aspace; 1371 step_over_info.address = address; 1372 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p; 1373 step_over_info.thread = thread; 1374 } 1375 1376 /* Called when we're not longer stepping over a breakpoint / an 1377 instruction, so all breakpoints are free to be (re)inserted. */ 1378 1379 static void 1380 clear_step_over_info (void) 1381 { 1382 infrun_debug_printf ("clearing step over info"); 1383 step_over_info.aspace = nullptr; 1384 step_over_info.address = 0; 1385 step_over_info.nonsteppable_watchpoint_p = 0; 1386 step_over_info.thread = -1; 1387 } 1388 1389 /* See infrun.h. */ 1390 1391 int 1392 stepping_past_instruction_at (struct address_space *aspace, 1393 CORE_ADDR address) 1394 { 1395 return (step_over_info.aspace != nullptr 1396 && breakpoint_address_match (aspace, address, 1397 step_over_info.aspace, 1398 step_over_info.address)); 1399 } 1400 1401 /* See infrun.h. */ 1402 1403 int 1404 thread_is_stepping_over_breakpoint (int thread) 1405 { 1406 return (step_over_info.thread != -1 1407 && thread == step_over_info.thread); 1408 } 1409 1410 /* See infrun.h. */ 1411 1412 int 1413 stepping_past_nonsteppable_watchpoint (void) 1414 { 1415 return step_over_info.nonsteppable_watchpoint_p; 1416 } 1417 1418 /* Returns true if step-over info is valid. */ 1419 1420 static bool 1421 step_over_info_valid_p (void) 1422 { 1423 return (step_over_info.aspace != nullptr 1424 || stepping_past_nonsteppable_watchpoint ()); 1425 } 1426 1427 1428 /* Displaced stepping. */ 1429 1430 /* In non-stop debugging mode, we must take special care to manage 1431 breakpoints properly; in particular, the traditional strategy for 1432 stepping a thread past a breakpoint it has hit is unsuitable. 1433 'Displaced stepping' is a tactic for stepping one thread past a 1434 breakpoint it has hit while ensuring that other threads running 1435 concurrently will hit the breakpoint as they should. 1436 1437 The traditional way to step a thread T off a breakpoint in a 1438 multi-threaded program in all-stop mode is as follows: 1439 1440 a0) Initially, all threads are stopped, and breakpoints are not 1441 inserted. 1442 a1) We single-step T, leaving breakpoints uninserted. 1443 a2) We insert breakpoints, and resume all threads. 1444 1445 In non-stop debugging, however, this strategy is unsuitable: we 1446 don't want to have to stop all threads in the system in order to 1447 continue or step T past a breakpoint. Instead, we use displaced 1448 stepping: 1449 1450 n0) Initially, T is stopped, other threads are running, and 1451 breakpoints are inserted. 1452 n1) We copy the instruction "under" the breakpoint to a separate 1453 location, outside the main code stream, making any adjustments 1454 to the instruction, register, and memory state as directed by 1455 T's architecture. 1456 n2) We single-step T over the instruction at its new location. 1457 n3) We adjust the resulting register and memory state as directed 1458 by T's architecture. This includes resetting T's PC to point 1459 back into the main instruction stream. 1460 n4) We resume T. 1461 1462 This approach depends on the following gdbarch methods: 1463 1464 - gdbarch_max_insn_length and gdbarch_displaced_step_location 1465 indicate where to copy the instruction, and how much space must 1466 be reserved there. We use these in step n1. 1467 1468 - gdbarch_displaced_step_copy_insn copies a instruction to a new 1469 address, and makes any necessary adjustments to the instruction, 1470 register contents, and memory. We use this in step n1. 1471 1472 - gdbarch_displaced_step_fixup adjusts registers and memory after 1473 we have successfully single-stepped the instruction, to yield the 1474 same effect the instruction would have had if we had executed it 1475 at its original address. We use this in step n3. 1476 1477 The gdbarch_displaced_step_copy_insn and 1478 gdbarch_displaced_step_fixup functions must be written so that 1479 copying an instruction with gdbarch_displaced_step_copy_insn, 1480 single-stepping across the copied instruction, and then applying 1481 gdbarch_displaced_insn_fixup should have the same effects on the 1482 thread's memory and registers as stepping the instruction in place 1483 would have. Exactly which responsibilities fall to the copy and 1484 which fall to the fixup is up to the author of those functions. 1485 1486 See the comments in gdbarch.sh for details. 1487 1488 Note that displaced stepping and software single-step cannot 1489 currently be used in combination, although with some care I think 1490 they could be made to. Software single-step works by placing 1491 breakpoints on all possible subsequent instructions; if the 1492 displaced instruction is a PC-relative jump, those breakpoints 1493 could fall in very strange places --- on pages that aren't 1494 executable, or at addresses that are not proper instruction 1495 boundaries. (We do generally let other threads run while we wait 1496 to hit the software single-step breakpoint, and they might 1497 encounter such a corrupted instruction.) One way to work around 1498 this would be to have gdbarch_displaced_step_copy_insn fully 1499 simulate the effect of PC-relative instructions (and return NULL) 1500 on architectures that use software single-stepping. 1501 1502 In non-stop mode, we can have independent and simultaneous step 1503 requests, so more than one thread may need to simultaneously step 1504 over a breakpoint. The current implementation assumes there is 1505 only one scratch space per process. In this case, we have to 1506 serialize access to the scratch space. If thread A wants to step 1507 over a breakpoint, but we are currently waiting for some other 1508 thread to complete a displaced step, we leave thread A stopped and 1509 place it in the displaced_step_request_queue. Whenever a displaced 1510 step finishes, we pick the next thread in the queue and start a new 1511 displaced step operation on it. See displaced_step_prepare and 1512 displaced_step_finish for details. */ 1513 1514 /* Return true if THREAD is doing a displaced step. */ 1515 1516 static bool 1517 displaced_step_in_progress_thread (thread_info *thread) 1518 { 1519 gdb_assert (thread != nullptr); 1520 1521 return thread->displaced_step_state.in_progress (); 1522 } 1523 1524 /* Return true if INF has a thread doing a displaced step. */ 1525 1526 static bool 1527 displaced_step_in_progress (inferior *inf) 1528 { 1529 return inf->displaced_step_state.in_progress_count > 0; 1530 } 1531 1532 /* Return true if any thread is doing a displaced step. */ 1533 1534 static bool 1535 displaced_step_in_progress_any_thread () 1536 { 1537 for (inferior *inf : all_non_exited_inferiors ()) 1538 { 1539 if (displaced_step_in_progress (inf)) 1540 return true; 1541 } 1542 1543 return false; 1544 } 1545 1546 static void 1547 infrun_inferior_exit (struct inferior *inf) 1548 { 1549 inf->displaced_step_state.reset (); 1550 inf->thread_waiting_for_vfork_done = nullptr; 1551 } 1552 1553 static void 1554 infrun_inferior_execd (inferior *inf) 1555 { 1556 /* If some threads where was doing a displaced step in this inferior at the 1557 moment of the exec, they no longer exist. Even if the exec'ing thread 1558 doing a displaced step, we don't want to to any fixup nor restore displaced 1559 stepping buffer bytes. */ 1560 inf->displaced_step_state.reset (); 1561 1562 for (thread_info *thread : inf->threads ()) 1563 thread->displaced_step_state.reset (); 1564 1565 /* Since an in-line step is done with everything else stopped, if there was 1566 one in progress at the time of the exec, it must have been the exec'ing 1567 thread. */ 1568 clear_step_over_info (); 1569 1570 inf->thread_waiting_for_vfork_done = nullptr; 1571 } 1572 1573 /* If ON, and the architecture supports it, GDB will use displaced 1574 stepping to step over breakpoints. If OFF, or if the architecture 1575 doesn't support it, GDB will instead use the traditional 1576 hold-and-step approach. If AUTO (which is the default), GDB will 1577 decide which technique to use to step over breakpoints depending on 1578 whether the target works in a non-stop way (see use_displaced_stepping). */ 1579 1580 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO; 1581 1582 static void 1583 show_can_use_displaced_stepping (struct ui_file *file, int from_tty, 1584 struct cmd_list_element *c, 1585 const char *value) 1586 { 1587 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO) 1588 gdb_printf (file, 1589 _("Debugger's willingness to use displaced stepping " 1590 "to step over breakpoints is %s (currently %s).\n"), 1591 value, target_is_non_stop_p () ? "on" : "off"); 1592 else 1593 gdb_printf (file, 1594 _("Debugger's willingness to use displaced stepping " 1595 "to step over breakpoints is %s.\n"), value); 1596 } 1597 1598 /* Return true if the gdbarch implements the required methods to use 1599 displaced stepping. */ 1600 1601 static bool 1602 gdbarch_supports_displaced_stepping (gdbarch *arch) 1603 { 1604 /* Only check for the presence of `prepare`. The gdbarch verification ensures 1605 that if `prepare` is provided, so is `finish`. */ 1606 return gdbarch_displaced_step_prepare_p (arch); 1607 } 1608 1609 /* Return non-zero if displaced stepping can/should be used to step 1610 over breakpoints of thread TP. */ 1611 1612 static bool 1613 use_displaced_stepping (thread_info *tp) 1614 { 1615 /* If the user disabled it explicitly, don't use displaced stepping. */ 1616 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE) 1617 return false; 1618 1619 /* If "auto", only use displaced stepping if the target operates in a non-stop 1620 way. */ 1621 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO 1622 && !target_is_non_stop_p ()) 1623 return false; 1624 1625 gdbarch *gdbarch = get_thread_regcache (tp)->arch (); 1626 1627 /* If the architecture doesn't implement displaced stepping, don't use 1628 it. */ 1629 if (!gdbarch_supports_displaced_stepping (gdbarch)) 1630 return false; 1631 1632 /* If recording, don't use displaced stepping. */ 1633 if (find_record_target () != nullptr) 1634 return false; 1635 1636 /* If displaced stepping failed before for this inferior, don't bother trying 1637 again. */ 1638 if (tp->inf->displaced_step_state.failed_before) 1639 return false; 1640 1641 return true; 1642 } 1643 1644 /* Simple function wrapper around displaced_step_thread_state::reset. */ 1645 1646 static void 1647 displaced_step_reset (displaced_step_thread_state *displaced) 1648 { 1649 displaced->reset (); 1650 } 1651 1652 /* A cleanup that wraps displaced_step_reset. We use this instead of, say, 1653 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */ 1654 1655 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset); 1656 1657 /* See infrun.h. */ 1658 1659 std::string 1660 displaced_step_dump_bytes (const gdb_byte *buf, size_t len) 1661 { 1662 std::string ret; 1663 1664 for (size_t i = 0; i < len; i++) 1665 { 1666 if (i == 0) 1667 ret += string_printf ("%02x", buf[i]); 1668 else 1669 ret += string_printf (" %02x", buf[i]); 1670 } 1671 1672 return ret; 1673 } 1674 1675 /* Prepare to single-step, using displaced stepping. 1676 1677 Note that we cannot use displaced stepping when we have a signal to 1678 deliver. If we have a signal to deliver and an instruction to step 1679 over, then after the step, there will be no indication from the 1680 target whether the thread entered a signal handler or ignored the 1681 signal and stepped over the instruction successfully --- both cases 1682 result in a simple SIGTRAP. In the first case we mustn't do a 1683 fixup, and in the second case we must --- but we can't tell which. 1684 Comments in the code for 'random signals' in handle_inferior_event 1685 explain how we handle this case instead. 1686 1687 Returns DISPLACED_STEP_PREPARE_STATUS_OK if preparing was successful -- this 1688 thread is going to be stepped now; DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE 1689 if displaced stepping this thread got queued; or 1690 DISPLACED_STEP_PREPARE_STATUS_CANT if this instruction can't be displaced 1691 stepped. */ 1692 1693 static displaced_step_prepare_status 1694 displaced_step_prepare_throw (thread_info *tp) 1695 { 1696 regcache *regcache = get_thread_regcache (tp); 1697 struct gdbarch *gdbarch = regcache->arch (); 1698 displaced_step_thread_state &disp_step_thread_state 1699 = tp->displaced_step_state; 1700 1701 /* We should never reach this function if the architecture does not 1702 support displaced stepping. */ 1703 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch)); 1704 1705 /* Nor if the thread isn't meant to step over a breakpoint. */ 1706 gdb_assert (tp->control.trap_expected); 1707 1708 /* Disable range stepping while executing in the scratch pad. We 1709 want a single-step even if executing the displaced instruction in 1710 the scratch buffer lands within the stepping range (e.g., a 1711 jump/branch). */ 1712 tp->control.may_range_step = 0; 1713 1714 /* We are about to start a displaced step for this thread. If one is already 1715 in progress, something's wrong. */ 1716 gdb_assert (!disp_step_thread_state.in_progress ()); 1717 1718 if (tp->inf->displaced_step_state.unavailable) 1719 { 1720 /* The gdbarch tells us it's not worth asking to try a prepare because 1721 it is likely that it will return unavailable, so don't bother asking. */ 1722 1723 displaced_debug_printf ("deferring step of %s", 1724 tp->ptid.to_string ().c_str ()); 1725 1726 global_thread_step_over_chain_enqueue (tp); 1727 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE; 1728 } 1729 1730 displaced_debug_printf ("displaced-stepping %s now", 1731 tp->ptid.to_string ().c_str ()); 1732 1733 scoped_restore_current_thread restore_thread; 1734 1735 switch_to_thread (tp); 1736 1737 CORE_ADDR original_pc = regcache_read_pc (regcache); 1738 CORE_ADDR displaced_pc; 1739 1740 displaced_step_prepare_status status 1741 = gdbarch_displaced_step_prepare (gdbarch, tp, displaced_pc); 1742 1743 if (status == DISPLACED_STEP_PREPARE_STATUS_CANT) 1744 { 1745 displaced_debug_printf ("failed to prepare (%s)", 1746 tp->ptid.to_string ().c_str ()); 1747 1748 return DISPLACED_STEP_PREPARE_STATUS_CANT; 1749 } 1750 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE) 1751 { 1752 /* Not enough displaced stepping resources available, defer this 1753 request by placing it the queue. */ 1754 1755 displaced_debug_printf ("not enough resources available, " 1756 "deferring step of %s", 1757 tp->ptid.to_string ().c_str ()); 1758 1759 global_thread_step_over_chain_enqueue (tp); 1760 1761 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE; 1762 } 1763 1764 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK); 1765 1766 /* Save the information we need to fix things up if the step 1767 succeeds. */ 1768 disp_step_thread_state.set (gdbarch); 1769 1770 tp->inf->displaced_step_state.in_progress_count++; 1771 1772 displaced_debug_printf ("prepared successfully thread=%s, " 1773 "original_pc=%s, displaced_pc=%s", 1774 tp->ptid.to_string ().c_str (), 1775 paddress (gdbarch, original_pc), 1776 paddress (gdbarch, displaced_pc)); 1777 1778 return DISPLACED_STEP_PREPARE_STATUS_OK; 1779 } 1780 1781 /* Wrapper for displaced_step_prepare_throw that disabled further 1782 attempts at displaced stepping if we get a memory error. */ 1783 1784 static displaced_step_prepare_status 1785 displaced_step_prepare (thread_info *thread) 1786 { 1787 displaced_step_prepare_status status 1788 = DISPLACED_STEP_PREPARE_STATUS_CANT; 1789 1790 try 1791 { 1792 status = displaced_step_prepare_throw (thread); 1793 } 1794 catch (const gdb_exception_error &ex) 1795 { 1796 if (ex.error != MEMORY_ERROR 1797 && ex.error != NOT_SUPPORTED_ERROR) 1798 throw; 1799 1800 infrun_debug_printf ("caught exception, disabling displaced stepping: %s", 1801 ex.what ()); 1802 1803 /* Be verbose if "set displaced-stepping" is "on", silent if 1804 "auto". */ 1805 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) 1806 { 1807 warning (_("disabling displaced stepping: %s"), 1808 ex.what ()); 1809 } 1810 1811 /* Disable further displaced stepping attempts. */ 1812 thread->inf->displaced_step_state.failed_before = 1; 1813 } 1814 1815 return status; 1816 } 1817 1818 /* If we displaced stepped an instruction successfully, adjust registers and 1819 memory to yield the same effect the instruction would have had if we had 1820 executed it at its original address, and return 1821 DISPLACED_STEP_FINISH_STATUS_OK. If the instruction didn't complete, 1822 relocate the PC and return DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED. 1823 1824 If the thread wasn't displaced stepping, return 1825 DISPLACED_STEP_FINISH_STATUS_OK as well. */ 1826 1827 static displaced_step_finish_status 1828 displaced_step_finish (thread_info *event_thread, enum gdb_signal signal) 1829 { 1830 displaced_step_thread_state *displaced = &event_thread->displaced_step_state; 1831 1832 /* Was this thread performing a displaced step? */ 1833 if (!displaced->in_progress ()) 1834 return DISPLACED_STEP_FINISH_STATUS_OK; 1835 1836 gdb_assert (event_thread->inf->displaced_step_state.in_progress_count > 0); 1837 event_thread->inf->displaced_step_state.in_progress_count--; 1838 1839 /* Fixup may need to read memory/registers. Switch to the thread 1840 that we're fixing up. Also, target_stopped_by_watchpoint checks 1841 the current thread, and displaced_step_restore performs ptid-dependent 1842 memory accesses using current_inferior(). */ 1843 switch_to_thread (event_thread); 1844 1845 displaced_step_reset_cleanup cleanup (displaced); 1846 1847 /* Do the fixup, and release the resources acquired to do the displaced 1848 step. */ 1849 return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (), 1850 event_thread, signal); 1851 } 1852 1853 /* Data to be passed around while handling an event. This data is 1854 discarded between events. */ 1855 struct execution_control_state 1856 { 1857 explicit execution_control_state (thread_info *thr = nullptr) 1858 : ptid (thr == nullptr ? null_ptid : thr->ptid), 1859 event_thread (thr) 1860 { 1861 } 1862 1863 process_stratum_target *target = nullptr; 1864 ptid_t ptid; 1865 /* The thread that got the event, if this was a thread event; NULL 1866 otherwise. */ 1867 struct thread_info *event_thread; 1868 1869 struct target_waitstatus ws; 1870 int stop_func_filled_in = 0; 1871 CORE_ADDR stop_func_start = 0; 1872 CORE_ADDR stop_func_end = 0; 1873 const char *stop_func_name = nullptr; 1874 int wait_some_more = 0; 1875 1876 /* True if the event thread hit the single-step breakpoint of 1877 another thread. Thus the event doesn't cause a stop, the thread 1878 needs to be single-stepped past the single-step breakpoint before 1879 we can switch back to the original stepping thread. */ 1880 int hit_singlestep_breakpoint = 0; 1881 }; 1882 1883 static void keep_going_pass_signal (struct execution_control_state *ecs); 1884 static void prepare_to_wait (struct execution_control_state *ecs); 1885 static bool keep_going_stepped_thread (struct thread_info *tp); 1886 static step_over_what thread_still_needs_step_over (struct thread_info *tp); 1887 1888 /* Are there any pending step-over requests? If so, run all we can 1889 now and return true. Otherwise, return false. */ 1890 1891 static bool 1892 start_step_over (void) 1893 { 1894 INFRUN_SCOPED_DEBUG_ENTER_EXIT; 1895 1896 /* Don't start a new step-over if we already have an in-line 1897 step-over operation ongoing. */ 1898 if (step_over_info_valid_p ()) 1899 return false; 1900 1901 /* Steal the global thread step over chain. As we try to initiate displaced 1902 steps, threads will be enqueued in the global chain if no buffers are 1903 available. If we iterated on the global chain directly, we might iterate 1904 indefinitely. */ 1905 thread_step_over_list threads_to_step 1906 = std::move (global_thread_step_over_list); 1907 1908 infrun_debug_printf ("stealing global queue of threads to step, length = %d", 1909 thread_step_over_chain_length (threads_to_step)); 1910 1911 bool started = false; 1912 1913 /* On scope exit (whatever the reason, return or exception), if there are 1914 threads left in the THREADS_TO_STEP chain, put back these threads in the 1915 global list. */ 1916 SCOPE_EXIT 1917 { 1918 if (threads_to_step.empty ()) 1919 infrun_debug_printf ("step-over queue now empty"); 1920 else 1921 { 1922 infrun_debug_printf ("putting back %d threads to step in global queue", 1923 thread_step_over_chain_length (threads_to_step)); 1924 1925 global_thread_step_over_chain_enqueue_chain 1926 (std::move (threads_to_step)); 1927 } 1928 }; 1929 1930 thread_step_over_list_safe_range range 1931 = make_thread_step_over_list_safe_range (threads_to_step); 1932 1933 for (thread_info *tp : range) 1934 { 1935 step_over_what step_what; 1936 int must_be_in_line; 1937 1938 gdb_assert (!tp->stop_requested); 1939 1940 if (tp->inf->displaced_step_state.unavailable) 1941 { 1942 /* The arch told us to not even try preparing another displaced step 1943 for this inferior. Just leave the thread in THREADS_TO_STEP, it 1944 will get moved to the global chain on scope exit. */ 1945 continue; 1946 } 1947 1948 if (tp->inf->thread_waiting_for_vfork_done != nullptr) 1949 { 1950 /* When we stop all threads, handling a vfork, any thread in the step 1951 over chain remains there. A user could also try to continue a 1952 thread stopped at a breakpoint while another thread is waiting for 1953 a vfork-done event. In any case, we don't want to start a step 1954 over right now. */ 1955 continue; 1956 } 1957 1958 /* Remove thread from the THREADS_TO_STEP chain. If anything goes wrong 1959 while we try to prepare the displaced step, we don't add it back to 1960 the global step over chain. This is to avoid a thread staying in the 1961 step over chain indefinitely if something goes wrong when resuming it 1962 If the error is intermittent and it still needs a step over, it will 1963 get enqueued again when we try to resume it normally. */ 1964 threads_to_step.erase (threads_to_step.iterator_to (*tp)); 1965 1966 step_what = thread_still_needs_step_over (tp); 1967 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT) 1968 || ((step_what & STEP_OVER_BREAKPOINT) 1969 && !use_displaced_stepping (tp))); 1970 1971 /* We currently stop all threads of all processes to step-over 1972 in-line. If we need to start a new in-line step-over, let 1973 any pending displaced steps finish first. */ 1974 if (must_be_in_line && displaced_step_in_progress_any_thread ()) 1975 { 1976 global_thread_step_over_chain_enqueue (tp); 1977 continue; 1978 } 1979 1980 if (tp->control.trap_expected 1981 || tp->resumed () 1982 || tp->executing ()) 1983 { 1984 internal_error ("[%s] has inconsistent state: " 1985 "trap_expected=%d, resumed=%d, executing=%d\n", 1986 tp->ptid.to_string ().c_str (), 1987 tp->control.trap_expected, 1988 tp->resumed (), 1989 tp->executing ()); 1990 } 1991 1992 infrun_debug_printf ("resuming [%s] for step-over", 1993 tp->ptid.to_string ().c_str ()); 1994 1995 /* keep_going_pass_signal skips the step-over if the breakpoint 1996 is no longer inserted. In all-stop, we want to keep looking 1997 for a thread that needs a step-over instead of resuming TP, 1998 because we wouldn't be able to resume anything else until the 1999 target stops again. In non-stop, the resume always resumes 2000 only TP, so it's OK to let the thread resume freely. */ 2001 if (!target_is_non_stop_p () && !step_what) 2002 continue; 2003 2004 switch_to_thread (tp); 2005 execution_control_state ecs (tp); 2006 keep_going_pass_signal (&ecs); 2007 2008 if (!ecs.wait_some_more) 2009 error (_("Command aborted.")); 2010 2011 /* If the thread's step over could not be initiated because no buffers 2012 were available, it was re-added to the global step over chain. */ 2013 if (tp->resumed ()) 2014 { 2015 infrun_debug_printf ("[%s] was resumed.", 2016 tp->ptid.to_string ().c_str ()); 2017 gdb_assert (!thread_is_in_step_over_chain (tp)); 2018 } 2019 else 2020 { 2021 infrun_debug_printf ("[%s] was NOT resumed.", 2022 tp->ptid.to_string ().c_str ()); 2023 gdb_assert (thread_is_in_step_over_chain (tp)); 2024 } 2025 2026 /* If we started a new in-line step-over, we're done. */ 2027 if (step_over_info_valid_p ()) 2028 { 2029 gdb_assert (tp->control.trap_expected); 2030 started = true; 2031 break; 2032 } 2033 2034 if (!target_is_non_stop_p ()) 2035 { 2036 /* On all-stop, shouldn't have resumed unless we needed a 2037 step over. */ 2038 gdb_assert (tp->control.trap_expected 2039 || tp->step_after_step_resume_breakpoint); 2040 2041 /* With remote targets (at least), in all-stop, we can't 2042 issue any further remote commands until the program stops 2043 again. */ 2044 started = true; 2045 break; 2046 } 2047 2048 /* Either the thread no longer needed a step-over, or a new 2049 displaced stepping sequence started. Even in the latter 2050 case, continue looking. Maybe we can also start another 2051 displaced step on a thread of other process. */ 2052 } 2053 2054 return started; 2055 } 2056 2057 /* Update global variables holding ptids to hold NEW_PTID if they were 2058 holding OLD_PTID. */ 2059 static void 2060 infrun_thread_ptid_changed (process_stratum_target *target, 2061 ptid_t old_ptid, ptid_t new_ptid) 2062 { 2063 if (inferior_ptid == old_ptid 2064 && current_inferior ()->process_target () == target) 2065 inferior_ptid = new_ptid; 2066 } 2067 2068 2069 2070 static const char schedlock_off[] = "off"; 2071 static const char schedlock_on[] = "on"; 2072 static const char schedlock_step[] = "step"; 2073 static const char schedlock_replay[] = "replay"; 2074 static const char *const scheduler_enums[] = { 2075 schedlock_off, 2076 schedlock_on, 2077 schedlock_step, 2078 schedlock_replay, 2079 nullptr 2080 }; 2081 static const char *scheduler_mode = schedlock_replay; 2082 static void 2083 show_scheduler_mode (struct ui_file *file, int from_tty, 2084 struct cmd_list_element *c, const char *value) 2085 { 2086 gdb_printf (file, 2087 _("Mode for locking scheduler " 2088 "during execution is \"%s\".\n"), 2089 value); 2090 } 2091 2092 static void 2093 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c) 2094 { 2095 if (!target_can_lock_scheduler ()) 2096 { 2097 scheduler_mode = schedlock_off; 2098 error (_("Target '%s' cannot support this command."), 2099 target_shortname ()); 2100 } 2101 } 2102 2103 /* True if execution commands resume all threads of all processes by 2104 default; otherwise, resume only threads of the current inferior 2105 process. */ 2106 bool sched_multi = false; 2107 2108 /* Try to setup for software single stepping. Return true if target_resume() 2109 should use hardware single step. 2110 2111 GDBARCH the current gdbarch. */ 2112 2113 static bool 2114 maybe_software_singlestep (struct gdbarch *gdbarch) 2115 { 2116 bool hw_step = true; 2117 2118 if (execution_direction == EXEC_FORWARD 2119 && gdbarch_software_single_step_p (gdbarch)) 2120 hw_step = !insert_single_step_breakpoints (gdbarch); 2121 2122 return hw_step; 2123 } 2124 2125 /* See infrun.h. */ 2126 2127 ptid_t 2128 user_visible_resume_ptid (int step) 2129 { 2130 ptid_t resume_ptid; 2131 2132 if (non_stop) 2133 { 2134 /* With non-stop mode on, threads are always handled 2135 individually. */ 2136 resume_ptid = inferior_ptid; 2137 } 2138 else if ((scheduler_mode == schedlock_on) 2139 || (scheduler_mode == schedlock_step && step)) 2140 { 2141 /* User-settable 'scheduler' mode requires solo thread 2142 resume. */ 2143 resume_ptid = inferior_ptid; 2144 } 2145 else if ((scheduler_mode == schedlock_replay) 2146 && target_record_will_replay (minus_one_ptid, execution_direction)) 2147 { 2148 /* User-settable 'scheduler' mode requires solo thread resume in replay 2149 mode. */ 2150 resume_ptid = inferior_ptid; 2151 } 2152 else if (!sched_multi && target_supports_multi_process ()) 2153 { 2154 /* Resume all threads of the current process (and none of other 2155 processes). */ 2156 resume_ptid = ptid_t (inferior_ptid.pid ()); 2157 } 2158 else 2159 { 2160 /* Resume all threads of all processes. */ 2161 resume_ptid = RESUME_ALL; 2162 } 2163 2164 return resume_ptid; 2165 } 2166 2167 /* See infrun.h. */ 2168 2169 process_stratum_target * 2170 user_visible_resume_target (ptid_t resume_ptid) 2171 { 2172 return (resume_ptid == minus_one_ptid && sched_multi 2173 ? nullptr 2174 : current_inferior ()->process_target ()); 2175 } 2176 2177 /* Return a ptid representing the set of threads that we will resume, 2178 in the perspective of the target, assuming run control handling 2179 does not require leaving some threads stopped (e.g., stepping past 2180 breakpoint). USER_STEP indicates whether we're about to start the 2181 target for a stepping command. */ 2182 2183 static ptid_t 2184 internal_resume_ptid (int user_step) 2185 { 2186 /* In non-stop, we always control threads individually. Note that 2187 the target may always work in non-stop mode even with "set 2188 non-stop off", in which case user_visible_resume_ptid could 2189 return a wildcard ptid. */ 2190 if (target_is_non_stop_p ()) 2191 return inferior_ptid; 2192 2193 /* The rest of the function assumes non-stop==off and 2194 target-non-stop==off. 2195 2196 If a thread is waiting for a vfork-done event, it means breakpoints are out 2197 for this inferior (well, program space in fact). We don't want to resume 2198 any thread other than the one waiting for vfork done, otherwise these other 2199 threads could miss breakpoints. So if a thread in the resumption set is 2200 waiting for a vfork-done event, resume only that thread. 2201 2202 The resumption set width depends on whether schedule-multiple is on or off. 2203 2204 Note that if the target_resume interface was more flexible, we could be 2205 smarter here when schedule-multiple is on. For example, imagine 3 2206 inferiors with 2 threads each (1.1, 1.2, 2.1, 2.2, 3.1 and 3.2). Threads 2207 2.1 and 3.2 are both waiting for a vfork-done event. Then we could ask the 2208 target(s) to resume: 2209 2210 - All threads of inferior 1 2211 - Thread 2.1 2212 - Thread 3.2 2213 2214 Since we don't have that flexibility (we can only pass one ptid), just 2215 resume the first thread waiting for a vfork-done event we find (e.g. thread 2216 2.1). */ 2217 if (sched_multi) 2218 { 2219 for (inferior *inf : all_non_exited_inferiors ()) 2220 if (inf->thread_waiting_for_vfork_done != nullptr) 2221 return inf->thread_waiting_for_vfork_done->ptid; 2222 } 2223 else if (current_inferior ()->thread_waiting_for_vfork_done != nullptr) 2224 return current_inferior ()->thread_waiting_for_vfork_done->ptid; 2225 2226 return user_visible_resume_ptid (user_step); 2227 } 2228 2229 /* Wrapper for target_resume, that handles infrun-specific 2230 bookkeeping. */ 2231 2232 static void 2233 do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig) 2234 { 2235 struct thread_info *tp = inferior_thread (); 2236 2237 gdb_assert (!tp->stop_requested); 2238 2239 /* Install inferior's terminal modes. */ 2240 target_terminal::inferior (); 2241 2242 /* Avoid confusing the next resume, if the next stop/resume 2243 happens to apply to another thread. */ 2244 tp->set_stop_signal (GDB_SIGNAL_0); 2245 2246 /* Advise target which signals may be handled silently. 2247 2248 If we have removed breakpoints because we are stepping over one 2249 in-line (in any thread), we need to receive all signals to avoid 2250 accidentally skipping a breakpoint during execution of a signal 2251 handler. 2252 2253 Likewise if we're displaced stepping, otherwise a trap for a 2254 breakpoint in a signal handler might be confused with the 2255 displaced step finishing. We don't make the displaced_step_finish 2256 step distinguish the cases instead, because: 2257 2258 - a backtrace while stopped in the signal handler would show the 2259 scratch pad as frame older than the signal handler, instead of 2260 the real mainline code. 2261 2262 - when the thread is later resumed, the signal handler would 2263 return to the scratch pad area, which would no longer be 2264 valid. */ 2265 if (step_over_info_valid_p () 2266 || displaced_step_in_progress (tp->inf)) 2267 target_pass_signals ({}); 2268 else 2269 target_pass_signals (signal_pass); 2270 2271 infrun_debug_printf ("resume_ptid=%s, step=%d, sig=%s", 2272 resume_ptid.to_string ().c_str (), 2273 step, gdb_signal_to_symbol_string (sig)); 2274 2275 target_resume (resume_ptid, step, sig); 2276 } 2277 2278 /* Resume the inferior. SIG is the signal to give the inferior 2279 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead 2280 call 'resume', which handles exceptions. */ 2281 2282 static void 2283 resume_1 (enum gdb_signal sig) 2284 { 2285 struct regcache *regcache = get_current_regcache (); 2286 struct gdbarch *gdbarch = regcache->arch (); 2287 struct thread_info *tp = inferior_thread (); 2288 const address_space *aspace = regcache->aspace (); 2289 ptid_t resume_ptid; 2290 /* This represents the user's step vs continue request. When 2291 deciding whether "set scheduler-locking step" applies, it's the 2292 user's intention that counts. */ 2293 const int user_step = tp->control.stepping_command; 2294 /* This represents what we'll actually request the target to do. 2295 This can decay from a step to a continue, if e.g., we need to 2296 implement single-stepping with breakpoints (software 2297 single-step). */ 2298 bool step; 2299 2300 gdb_assert (!tp->stop_requested); 2301 gdb_assert (!thread_is_in_step_over_chain (tp)); 2302 2303 if (tp->has_pending_waitstatus ()) 2304 { 2305 infrun_debug_printf 2306 ("thread %s has pending wait " 2307 "status %s (currently_stepping=%d).", 2308 tp->ptid.to_string ().c_str (), 2309 tp->pending_waitstatus ().to_string ().c_str (), 2310 currently_stepping (tp)); 2311 2312 tp->inf->process_target ()->threads_executing = true; 2313 tp->set_resumed (true); 2314 2315 /* FIXME: What should we do if we are supposed to resume this 2316 thread with a signal? Maybe we should maintain a queue of 2317 pending signals to deliver. */ 2318 if (sig != GDB_SIGNAL_0) 2319 { 2320 warning (_("Couldn't deliver signal %s to %s."), 2321 gdb_signal_to_name (sig), 2322 tp->ptid.to_string ().c_str ()); 2323 } 2324 2325 tp->set_stop_signal (GDB_SIGNAL_0); 2326 2327 if (target_can_async_p ()) 2328 { 2329 target_async (true); 2330 /* Tell the event loop we have an event to process. */ 2331 mark_async_event_handler (infrun_async_inferior_event_token); 2332 } 2333 return; 2334 } 2335 2336 tp->stepped_breakpoint = 0; 2337 2338 /* Depends on stepped_breakpoint. */ 2339 step = currently_stepping (tp); 2340 2341 if (current_inferior ()->thread_waiting_for_vfork_done != nullptr) 2342 { 2343 /* Don't try to single-step a vfork parent that is waiting for 2344 the child to get out of the shared memory region (by exec'ing 2345 or exiting). This is particularly important on software 2346 single-step archs, as the child process would trip on the 2347 software single step breakpoint inserted for the parent 2348 process. Since the parent will not actually execute any 2349 instruction until the child is out of the shared region (such 2350 are vfork's semantics), it is safe to simply continue it. 2351 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for 2352 the parent, and tell it to `keep_going', which automatically 2353 re-sets it stepping. */ 2354 infrun_debug_printf ("resume : clear step"); 2355 step = false; 2356 } 2357 2358 CORE_ADDR pc = regcache_read_pc (regcache); 2359 2360 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, " 2361 "current thread [%s] at %s", 2362 step, gdb_signal_to_symbol_string (sig), 2363 tp->control.trap_expected, 2364 inferior_ptid.to_string ().c_str (), 2365 paddress (gdbarch, pc)); 2366 2367 /* Normally, by the time we reach `resume', the breakpoints are either 2368 removed or inserted, as appropriate. The exception is if we're sitting 2369 at a permanent breakpoint; we need to step over it, but permanent 2370 breakpoints can't be removed. So we have to test for it here. */ 2371 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) 2372 { 2373 if (sig != GDB_SIGNAL_0) 2374 { 2375 /* We have a signal to pass to the inferior. The resume 2376 may, or may not take us to the signal handler. If this 2377 is a step, we'll need to stop in the signal handler, if 2378 there's one, (if the target supports stepping into 2379 handlers), or in the next mainline instruction, if 2380 there's no handler. If this is a continue, we need to be 2381 sure to run the handler with all breakpoints inserted. 2382 In all cases, set a breakpoint at the current address 2383 (where the handler returns to), and once that breakpoint 2384 is hit, resume skipping the permanent breakpoint. If 2385 that breakpoint isn't hit, then we've stepped into the 2386 signal handler (or hit some other event). We'll delete 2387 the step-resume breakpoint then. */ 2388 2389 infrun_debug_printf ("resume: skipping permanent breakpoint, " 2390 "deliver signal first"); 2391 2392 clear_step_over_info (); 2393 tp->control.trap_expected = 0; 2394 2395 if (tp->control.step_resume_breakpoint == nullptr) 2396 { 2397 /* Set a "high-priority" step-resume, as we don't want 2398 user breakpoints at PC to trigger (again) when this 2399 hits. */ 2400 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); 2401 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent); 2402 2403 tp->step_after_step_resume_breakpoint = step; 2404 } 2405 2406 insert_breakpoints (); 2407 } 2408 else 2409 { 2410 /* There's no signal to pass, we can go ahead and skip the 2411 permanent breakpoint manually. */ 2412 infrun_debug_printf ("skipping permanent breakpoint"); 2413 gdbarch_skip_permanent_breakpoint (gdbarch, regcache); 2414 /* Update pc to reflect the new address from which we will 2415 execute instructions. */ 2416 pc = regcache_read_pc (regcache); 2417 2418 if (step) 2419 { 2420 /* We've already advanced the PC, so the stepping part 2421 is done. Now we need to arrange for a trap to be 2422 reported to handle_inferior_event. Set a breakpoint 2423 at the current PC, and run to it. Don't update 2424 prev_pc, because if we end in 2425 switch_back_to_stepped_thread, we want the "expected 2426 thread advanced also" branch to be taken. IOW, we 2427 don't want this thread to step further from PC 2428 (overstep). */ 2429 gdb_assert (!step_over_info_valid_p ()); 2430 insert_single_step_breakpoint (gdbarch, aspace, pc); 2431 insert_breakpoints (); 2432 2433 resume_ptid = internal_resume_ptid (user_step); 2434 do_target_resume (resume_ptid, false, GDB_SIGNAL_0); 2435 tp->set_resumed (true); 2436 return; 2437 } 2438 } 2439 } 2440 2441 /* If we have a breakpoint to step over, make sure to do a single 2442 step only. Same if we have software watchpoints. */ 2443 if (tp->control.trap_expected || bpstat_should_step ()) 2444 tp->control.may_range_step = 0; 2445 2446 /* If displaced stepping is enabled, step over breakpoints by executing a 2447 copy of the instruction at a different address. 2448 2449 We can't use displaced stepping when we have a signal to deliver; 2450 the comments for displaced_step_prepare explain why. The 2451 comments in the handle_inferior event for dealing with 'random 2452 signals' explain what we do instead. 2453 2454 We can't use displaced stepping when we are waiting for vfork_done 2455 event, displaced stepping breaks the vfork child similarly as single 2456 step software breakpoint. */ 2457 if (tp->control.trap_expected 2458 && use_displaced_stepping (tp) 2459 && !step_over_info_valid_p () 2460 && sig == GDB_SIGNAL_0 2461 && current_inferior ()->thread_waiting_for_vfork_done == nullptr) 2462 { 2463 displaced_step_prepare_status prepare_status 2464 = displaced_step_prepare (tp); 2465 2466 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE) 2467 { 2468 infrun_debug_printf ("Got placed in step-over queue"); 2469 2470 tp->control.trap_expected = 0; 2471 return; 2472 } 2473 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_CANT) 2474 { 2475 /* Fallback to stepping over the breakpoint in-line. */ 2476 2477 if (target_is_non_stop_p ()) 2478 stop_all_threads ("displaced stepping falling back on inline stepping"); 2479 2480 set_step_over_info (regcache->aspace (), 2481 regcache_read_pc (regcache), 0, tp->global_num); 2482 2483 step = maybe_software_singlestep (gdbarch); 2484 2485 insert_breakpoints (); 2486 } 2487 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK) 2488 { 2489 /* Update pc to reflect the new address from which we will 2490 execute instructions due to displaced stepping. */ 2491 pc = regcache_read_pc (get_thread_regcache (tp)); 2492 2493 step = gdbarch_displaced_step_hw_singlestep (gdbarch); 2494 } 2495 else 2496 gdb_assert_not_reached ("Invalid displaced_step_prepare_status " 2497 "value."); 2498 } 2499 2500 /* Do we need to do it the hard way, w/temp breakpoints? */ 2501 else if (step) 2502 step = maybe_software_singlestep (gdbarch); 2503 2504 /* Currently, our software single-step implementation leads to different 2505 results than hardware single-stepping in one situation: when stepping 2506 into delivering a signal which has an associated signal handler, 2507 hardware single-step will stop at the first instruction of the handler, 2508 while software single-step will simply skip execution of the handler. 2509 2510 For now, this difference in behavior is accepted since there is no 2511 easy way to actually implement single-stepping into a signal handler 2512 without kernel support. 2513 2514 However, there is one scenario where this difference leads to follow-on 2515 problems: if we're stepping off a breakpoint by removing all breakpoints 2516 and then single-stepping. In this case, the software single-step 2517 behavior means that even if there is a *breakpoint* in the signal 2518 handler, GDB still would not stop. 2519 2520 Fortunately, we can at least fix this particular issue. We detect 2521 here the case where we are about to deliver a signal while software 2522 single-stepping with breakpoints removed. In this situation, we 2523 revert the decisions to remove all breakpoints and insert single- 2524 step breakpoints, and instead we install a step-resume breakpoint 2525 at the current address, deliver the signal without stepping, and 2526 once we arrive back at the step-resume breakpoint, actually step 2527 over the breakpoint we originally wanted to step over. */ 2528 if (thread_has_single_step_breakpoints_set (tp) 2529 && sig != GDB_SIGNAL_0 2530 && step_over_info_valid_p ()) 2531 { 2532 /* If we have nested signals or a pending signal is delivered 2533 immediately after a handler returns, might already have 2534 a step-resume breakpoint set on the earlier handler. We cannot 2535 set another step-resume breakpoint; just continue on until the 2536 original breakpoint is hit. */ 2537 if (tp->control.step_resume_breakpoint == nullptr) 2538 { 2539 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); 2540 tp->step_after_step_resume_breakpoint = 1; 2541 } 2542 2543 delete_single_step_breakpoints (tp); 2544 2545 clear_step_over_info (); 2546 tp->control.trap_expected = 0; 2547 2548 insert_breakpoints (); 2549 } 2550 2551 /* If STEP is set, it's a request to use hardware stepping 2552 facilities. But in that case, we should never 2553 use singlestep breakpoint. */ 2554 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step)); 2555 2556 /* Decide the set of threads to ask the target to resume. */ 2557 if (tp->control.trap_expected) 2558 { 2559 /* We're allowing a thread to run past a breakpoint it has 2560 hit, either by single-stepping the thread with the breakpoint 2561 removed, or by displaced stepping, with the breakpoint inserted. 2562 In the former case, we need to single-step only this thread, 2563 and keep others stopped, as they can miss this breakpoint if 2564 allowed to run. That's not really a problem for displaced 2565 stepping, but, we still keep other threads stopped, in case 2566 another thread is also stopped for a breakpoint waiting for 2567 its turn in the displaced stepping queue. */ 2568 resume_ptid = inferior_ptid; 2569 } 2570 else 2571 resume_ptid = internal_resume_ptid (user_step); 2572 2573 if (execution_direction != EXEC_REVERSE 2574 && step && breakpoint_inserted_here_p (aspace, pc)) 2575 { 2576 /* There are two cases where we currently need to step a 2577 breakpoint instruction when we have a signal to deliver: 2578 2579 - See handle_signal_stop where we handle random signals that 2580 could take out us out of the stepping range. Normally, in 2581 that case we end up continuing (instead of stepping) over the 2582 signal handler with a breakpoint at PC, but there are cases 2583 where we should _always_ single-step, even if we have a 2584 step-resume breakpoint, like when a software watchpoint is 2585 set. Assuming single-stepping and delivering a signal at the 2586 same time would takes us to the signal handler, then we could 2587 have removed the breakpoint at PC to step over it. However, 2588 some hardware step targets (like e.g., Mac OS) can't step 2589 into signal handlers, and for those, we need to leave the 2590 breakpoint at PC inserted, as otherwise if the handler 2591 recurses and executes PC again, it'll miss the breakpoint. 2592 So we leave the breakpoint inserted anyway, but we need to 2593 record that we tried to step a breakpoint instruction, so 2594 that adjust_pc_after_break doesn't end up confused. 2595 2596 - In non-stop if we insert a breakpoint (e.g., a step-resume) 2597 in one thread after another thread that was stepping had been 2598 momentarily paused for a step-over. When we re-resume the 2599 stepping thread, it may be resumed from that address with a 2600 breakpoint that hasn't trapped yet. Seen with 2601 gdb.threads/non-stop-fair-events.exp, on targets that don't 2602 do displaced stepping. */ 2603 2604 infrun_debug_printf ("resume: [%s] stepped breakpoint", 2605 tp->ptid.to_string ().c_str ()); 2606 2607 tp->stepped_breakpoint = 1; 2608 2609 /* Most targets can step a breakpoint instruction, thus 2610 executing it normally. But if this one cannot, just 2611 continue and we will hit it anyway. */ 2612 if (gdbarch_cannot_step_breakpoint (gdbarch)) 2613 step = false; 2614 } 2615 2616 if (debug_displaced 2617 && tp->control.trap_expected 2618 && use_displaced_stepping (tp) 2619 && !step_over_info_valid_p ()) 2620 { 2621 struct regcache *resume_regcache = get_thread_regcache (tp); 2622 struct gdbarch *resume_gdbarch = resume_regcache->arch (); 2623 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache); 2624 gdb_byte buf[4]; 2625 2626 read_memory (actual_pc, buf, sizeof (buf)); 2627 displaced_debug_printf ("run %s: %s", 2628 paddress (resume_gdbarch, actual_pc), 2629 displaced_step_dump_bytes 2630 (buf, sizeof (buf)).c_str ()); 2631 } 2632 2633 if (tp->control.may_range_step) 2634 { 2635 /* If we're resuming a thread with the PC out of the step 2636 range, then we're doing some nested/finer run control 2637 operation, like stepping the thread out of the dynamic 2638 linker or the displaced stepping scratch pad. We 2639 shouldn't have allowed a range step then. */ 2640 gdb_assert (pc_in_thread_step_range (pc, tp)); 2641 } 2642 2643 do_target_resume (resume_ptid, step, sig); 2644 tp->set_resumed (true); 2645 } 2646 2647 /* Resume the inferior. SIG is the signal to give the inferior 2648 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that 2649 rolls back state on error. */ 2650 2651 static void 2652 resume (gdb_signal sig) 2653 { 2654 try 2655 { 2656 resume_1 (sig); 2657 } 2658 catch (const gdb_exception &ex) 2659 { 2660 /* If resuming is being aborted for any reason, delete any 2661 single-step breakpoint resume_1 may have created, to avoid 2662 confusing the following resumption, and to avoid leaving 2663 single-step breakpoints perturbing other threads, in case 2664 we're running in non-stop mode. */ 2665 if (inferior_ptid != null_ptid) 2666 delete_single_step_breakpoints (inferior_thread ()); 2667 throw; 2668 } 2669 } 2670 2671 2672 /* Proceeding. */ 2673 2674 /* See infrun.h. */ 2675 2676 /* Counter that tracks number of user visible stops. This can be used 2677 to tell whether a command has proceeded the inferior past the 2678 current location. This allows e.g., inferior function calls in 2679 breakpoint commands to not interrupt the command list. When the 2680 call finishes successfully, the inferior is standing at the same 2681 breakpoint as if nothing happened (and so we don't call 2682 normal_stop). */ 2683 static ULONGEST current_stop_id; 2684 2685 /* See infrun.h. */ 2686 2687 ULONGEST 2688 get_stop_id (void) 2689 { 2690 return current_stop_id; 2691 } 2692 2693 /* Called when we report a user visible stop. */ 2694 2695 static void 2696 new_stop_id (void) 2697 { 2698 current_stop_id++; 2699 } 2700 2701 /* Clear out all variables saying what to do when inferior is continued. 2702 First do this, then set the ones you want, then call `proceed'. */ 2703 2704 static void 2705 clear_proceed_status_thread (struct thread_info *tp) 2706 { 2707 infrun_debug_printf ("%s", tp->ptid.to_string ().c_str ()); 2708 2709 /* If we're starting a new sequence, then the previous finished 2710 single-step is no longer relevant. */ 2711 if (tp->has_pending_waitstatus ()) 2712 { 2713 if (tp->stop_reason () == TARGET_STOPPED_BY_SINGLE_STEP) 2714 { 2715 infrun_debug_printf ("pending event of %s was a finished step. " 2716 "Discarding.", 2717 tp->ptid.to_string ().c_str ()); 2718 2719 tp->clear_pending_waitstatus (); 2720 tp->set_stop_reason (TARGET_STOPPED_BY_NO_REASON); 2721 } 2722 else 2723 { 2724 infrun_debug_printf 2725 ("thread %s has pending wait status %s (currently_stepping=%d).", 2726 tp->ptid.to_string ().c_str (), 2727 tp->pending_waitstatus ().to_string ().c_str (), 2728 currently_stepping (tp)); 2729 } 2730 } 2731 2732 /* If this signal should not be seen by program, give it zero. 2733 Used for debugging signals. */ 2734 if (!signal_pass_state (tp->stop_signal ())) 2735 tp->set_stop_signal (GDB_SIGNAL_0); 2736 2737 tp->release_thread_fsm (); 2738 2739 tp->control.trap_expected = 0; 2740 tp->control.step_range_start = 0; 2741 tp->control.step_range_end = 0; 2742 tp->control.may_range_step = 0; 2743 tp->control.step_frame_id = null_frame_id; 2744 tp->control.step_stack_frame_id = null_frame_id; 2745 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE; 2746 tp->control.step_start_function = nullptr; 2747 tp->stop_requested = 0; 2748 2749 tp->control.stop_step = 0; 2750 2751 tp->control.proceed_to_finish = 0; 2752 2753 tp->control.stepping_command = 0; 2754 2755 /* Discard any remaining commands or status from previous stop. */ 2756 bpstat_clear (&tp->control.stop_bpstat); 2757 } 2758 2759 void 2760 clear_proceed_status (int step) 2761 { 2762 /* With scheduler-locking replay, stop replaying other threads if we're 2763 not replaying the user-visible resume ptid. 2764 2765 This is a convenience feature to not require the user to explicitly 2766 stop replaying the other threads. We're assuming that the user's 2767 intent is to resume tracing the recorded process. */ 2768 if (!non_stop && scheduler_mode == schedlock_replay 2769 && target_record_is_replaying (minus_one_ptid) 2770 && !target_record_will_replay (user_visible_resume_ptid (step), 2771 execution_direction)) 2772 target_record_stop_replaying (); 2773 2774 if (!non_stop && inferior_ptid != null_ptid) 2775 { 2776 ptid_t resume_ptid = user_visible_resume_ptid (step); 2777 process_stratum_target *resume_target 2778 = user_visible_resume_target (resume_ptid); 2779 2780 /* In all-stop mode, delete the per-thread status of all threads 2781 we're about to resume, implicitly and explicitly. */ 2782 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid)) 2783 clear_proceed_status_thread (tp); 2784 } 2785 2786 if (inferior_ptid != null_ptid) 2787 { 2788 struct inferior *inferior; 2789 2790 if (non_stop) 2791 { 2792 /* If in non-stop mode, only delete the per-thread status of 2793 the current thread. */ 2794 clear_proceed_status_thread (inferior_thread ()); 2795 } 2796 2797 inferior = current_inferior (); 2798 inferior->control.stop_soon = NO_STOP_QUIETLY; 2799 } 2800 2801 gdb::observers::about_to_proceed.notify (); 2802 } 2803 2804 /* Returns true if TP is still stopped at a breakpoint that needs 2805 stepping-over in order to make progress. If the breakpoint is gone 2806 meanwhile, we can skip the whole step-over dance. */ 2807 2808 static bool 2809 thread_still_needs_step_over_bp (struct thread_info *tp) 2810 { 2811 if (tp->stepping_over_breakpoint) 2812 { 2813 struct regcache *regcache = get_thread_regcache (tp); 2814 2815 if (breakpoint_here_p (regcache->aspace (), 2816 regcache_read_pc (regcache)) 2817 == ordinary_breakpoint_here) 2818 return true; 2819 2820 tp->stepping_over_breakpoint = 0; 2821 } 2822 2823 return false; 2824 } 2825 2826 /* Check whether thread TP still needs to start a step-over in order 2827 to make progress when resumed. Returns an bitwise or of enum 2828 step_over_what bits, indicating what needs to be stepped over. */ 2829 2830 static step_over_what 2831 thread_still_needs_step_over (struct thread_info *tp) 2832 { 2833 step_over_what what = 0; 2834 2835 if (thread_still_needs_step_over_bp (tp)) 2836 what |= STEP_OVER_BREAKPOINT; 2837 2838 if (tp->stepping_over_watchpoint 2839 && !target_have_steppable_watchpoint ()) 2840 what |= STEP_OVER_WATCHPOINT; 2841 2842 return what; 2843 } 2844 2845 /* Returns true if scheduler locking applies. STEP indicates whether 2846 we're about to do a step/next-like command to a thread. */ 2847 2848 static bool 2849 schedlock_applies (struct thread_info *tp) 2850 { 2851 return (scheduler_mode == schedlock_on 2852 || (scheduler_mode == schedlock_step 2853 && tp->control.stepping_command) 2854 || (scheduler_mode == schedlock_replay 2855 && target_record_will_replay (minus_one_ptid, 2856 execution_direction))); 2857 } 2858 2859 /* Set process_stratum_target::COMMIT_RESUMED_STATE in all target 2860 stacks that have threads executing and don't have threads with 2861 pending events. */ 2862 2863 static void 2864 maybe_set_commit_resumed_all_targets () 2865 { 2866 scoped_restore_current_thread restore_thread; 2867 2868 for (inferior *inf : all_non_exited_inferiors ()) 2869 { 2870 process_stratum_target *proc_target = inf->process_target (); 2871 2872 if (proc_target->commit_resumed_state) 2873 { 2874 /* We already set this in a previous iteration, via another 2875 inferior sharing the process_stratum target. */ 2876 continue; 2877 } 2878 2879 /* If the target has no resumed threads, it would be useless to 2880 ask it to commit the resumed threads. */ 2881 if (!proc_target->threads_executing) 2882 { 2883 infrun_debug_printf ("not requesting commit-resumed for target " 2884 "%s, no resumed threads", 2885 proc_target->shortname ()); 2886 continue; 2887 } 2888 2889 /* As an optimization, if a thread from this target has some 2890 status to report, handle it before requiring the target to 2891 commit its resumed threads: handling the status might lead to 2892 resuming more threads. */ 2893 if (proc_target->has_resumed_with_pending_wait_status ()) 2894 { 2895 infrun_debug_printf ("not requesting commit-resumed for target %s, a" 2896 " thread has a pending waitstatus", 2897 proc_target->shortname ()); 2898 continue; 2899 } 2900 2901 switch_to_inferior_no_thread (inf); 2902 2903 if (target_has_pending_events ()) 2904 { 2905 infrun_debug_printf ("not requesting commit-resumed for target %s, " 2906 "target has pending events", 2907 proc_target->shortname ()); 2908 continue; 2909 } 2910 2911 infrun_debug_printf ("enabling commit-resumed for target %s", 2912 proc_target->shortname ()); 2913 2914 proc_target->commit_resumed_state = true; 2915 } 2916 } 2917 2918 /* See infrun.h. */ 2919 2920 void 2921 maybe_call_commit_resumed_all_targets () 2922 { 2923 scoped_restore_current_thread restore_thread; 2924 2925 for (inferior *inf : all_non_exited_inferiors ()) 2926 { 2927 process_stratum_target *proc_target = inf->process_target (); 2928 2929 if (!proc_target->commit_resumed_state) 2930 continue; 2931 2932 switch_to_inferior_no_thread (inf); 2933 2934 infrun_debug_printf ("calling commit_resumed for target %s", 2935 proc_target->shortname()); 2936 2937 target_commit_resumed (); 2938 } 2939 } 2940 2941 /* To track nesting of scoped_disable_commit_resumed objects, ensuring 2942 that only the outermost one attempts to re-enable 2943 commit-resumed. */ 2944 static bool enable_commit_resumed = true; 2945 2946 /* See infrun.h. */ 2947 2948 scoped_disable_commit_resumed::scoped_disable_commit_resumed 2949 (const char *reason) 2950 : m_reason (reason), 2951 m_prev_enable_commit_resumed (enable_commit_resumed) 2952 { 2953 infrun_debug_printf ("reason=%s", m_reason); 2954 2955 enable_commit_resumed = false; 2956 2957 for (inferior *inf : all_non_exited_inferiors ()) 2958 { 2959 process_stratum_target *proc_target = inf->process_target (); 2960 2961 if (m_prev_enable_commit_resumed) 2962 { 2963 /* This is the outermost instance: force all 2964 COMMIT_RESUMED_STATE to false. */ 2965 proc_target->commit_resumed_state = false; 2966 } 2967 else 2968 { 2969 /* This is not the outermost instance, we expect 2970 COMMIT_RESUMED_STATE to have been cleared by the 2971 outermost instance. */ 2972 gdb_assert (!proc_target->commit_resumed_state); 2973 } 2974 } 2975 } 2976 2977 /* See infrun.h. */ 2978 2979 void 2980 scoped_disable_commit_resumed::reset () 2981 { 2982 if (m_reset) 2983 return; 2984 m_reset = true; 2985 2986 infrun_debug_printf ("reason=%s", m_reason); 2987 2988 gdb_assert (!enable_commit_resumed); 2989 2990 enable_commit_resumed = m_prev_enable_commit_resumed; 2991 2992 if (m_prev_enable_commit_resumed) 2993 { 2994 /* This is the outermost instance, re-enable 2995 COMMIT_RESUMED_STATE on the targets where it's possible. */ 2996 maybe_set_commit_resumed_all_targets (); 2997 } 2998 else 2999 { 3000 /* This is not the outermost instance, we expect 3001 COMMIT_RESUMED_STATE to still be false. */ 3002 for (inferior *inf : all_non_exited_inferiors ()) 3003 { 3004 process_stratum_target *proc_target = inf->process_target (); 3005 gdb_assert (!proc_target->commit_resumed_state); 3006 } 3007 } 3008 } 3009 3010 /* See infrun.h. */ 3011 3012 scoped_disable_commit_resumed::~scoped_disable_commit_resumed () 3013 { 3014 reset (); 3015 } 3016 3017 /* See infrun.h. */ 3018 3019 void 3020 scoped_disable_commit_resumed::reset_and_commit () 3021 { 3022 reset (); 3023 maybe_call_commit_resumed_all_targets (); 3024 } 3025 3026 /* See infrun.h. */ 3027 3028 scoped_enable_commit_resumed::scoped_enable_commit_resumed 3029 (const char *reason) 3030 : m_reason (reason), 3031 m_prev_enable_commit_resumed (enable_commit_resumed) 3032 { 3033 infrun_debug_printf ("reason=%s", m_reason); 3034 3035 if (!enable_commit_resumed) 3036 { 3037 enable_commit_resumed = true; 3038 3039 /* Re-enable COMMIT_RESUMED_STATE on the targets where it's 3040 possible. */ 3041 maybe_set_commit_resumed_all_targets (); 3042 3043 maybe_call_commit_resumed_all_targets (); 3044 } 3045 } 3046 3047 /* See infrun.h. */ 3048 3049 scoped_enable_commit_resumed::~scoped_enable_commit_resumed () 3050 { 3051 infrun_debug_printf ("reason=%s", m_reason); 3052 3053 gdb_assert (enable_commit_resumed); 3054 3055 enable_commit_resumed = m_prev_enable_commit_resumed; 3056 3057 if (!enable_commit_resumed) 3058 { 3059 /* Force all COMMIT_RESUMED_STATE back to false. */ 3060 for (inferior *inf : all_non_exited_inferiors ()) 3061 { 3062 process_stratum_target *proc_target = inf->process_target (); 3063 proc_target->commit_resumed_state = false; 3064 } 3065 } 3066 } 3067 3068 /* Check that all the targets we're about to resume are in non-stop 3069 mode. Ideally, we'd only care whether all targets support 3070 target-async, but we're not there yet. E.g., stop_all_threads 3071 doesn't know how to handle all-stop targets. Also, the remote 3072 protocol in all-stop mode is synchronous, irrespective of 3073 target-async, which means that things like a breakpoint re-set 3074 triggered by one target would try to read memory from all targets 3075 and fail. */ 3076 3077 static void 3078 check_multi_target_resumption (process_stratum_target *resume_target) 3079 { 3080 if (!non_stop && resume_target == nullptr) 3081 { 3082 scoped_restore_current_thread restore_thread; 3083 3084 /* This is used to track whether we're resuming more than one 3085 target. */ 3086 process_stratum_target *first_connection = nullptr; 3087 3088 /* The first inferior we see with a target that does not work in 3089 always-non-stop mode. */ 3090 inferior *first_not_non_stop = nullptr; 3091 3092 for (inferior *inf : all_non_exited_inferiors ()) 3093 { 3094 switch_to_inferior_no_thread (inf); 3095 3096 if (!target_has_execution ()) 3097 continue; 3098 3099 process_stratum_target *proc_target 3100 = current_inferior ()->process_target(); 3101 3102 if (!target_is_non_stop_p ()) 3103 first_not_non_stop = inf; 3104 3105 if (first_connection == nullptr) 3106 first_connection = proc_target; 3107 else if (first_connection != proc_target 3108 && first_not_non_stop != nullptr) 3109 { 3110 switch_to_inferior_no_thread (first_not_non_stop); 3111 3112 proc_target = current_inferior ()->process_target(); 3113 3114 error (_("Connection %d (%s) does not support " 3115 "multi-target resumption."), 3116 proc_target->connection_number, 3117 make_target_connection_string (proc_target).c_str ()); 3118 } 3119 } 3120 } 3121 } 3122 3123 /* Basic routine for continuing the program in various fashions. 3124 3125 ADDR is the address to resume at, or -1 for resume where stopped. 3126 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none, 3127 or GDB_SIGNAL_DEFAULT for act according to how it stopped. 3128 3129 You should call clear_proceed_status before calling proceed. */ 3130 3131 void 3132 proceed (CORE_ADDR addr, enum gdb_signal siggnal) 3133 { 3134 INFRUN_SCOPED_DEBUG_ENTER_EXIT; 3135 3136 struct regcache *regcache; 3137 struct gdbarch *gdbarch; 3138 CORE_ADDR pc; 3139 3140 /* If we're stopped at a fork/vfork, follow the branch set by the 3141 "set follow-fork-mode" command; otherwise, we'll just proceed 3142 resuming the current thread. */ 3143 if (!follow_fork ()) 3144 { 3145 /* The target for some reason decided not to resume. */ 3146 normal_stop (); 3147 if (target_can_async_p ()) 3148 inferior_event_handler (INF_EXEC_COMPLETE); 3149 return; 3150 } 3151 3152 /* We'll update this if & when we switch to a new thread. */ 3153 previous_inferior_ptid = inferior_ptid; 3154 3155 regcache = get_current_regcache (); 3156 gdbarch = regcache->arch (); 3157 const address_space *aspace = regcache->aspace (); 3158 3159 pc = regcache_read_pc_protected (regcache); 3160 3161 thread_info *cur_thr = inferior_thread (); 3162 3163 /* Fill in with reasonable starting values. */ 3164 init_thread_stepping_state (cur_thr); 3165 3166 gdb_assert (!thread_is_in_step_over_chain (cur_thr)); 3167 3168 ptid_t resume_ptid 3169 = user_visible_resume_ptid (cur_thr->control.stepping_command); 3170 process_stratum_target *resume_target 3171 = user_visible_resume_target (resume_ptid); 3172 3173 check_multi_target_resumption (resume_target); 3174 3175 if (addr == (CORE_ADDR) -1) 3176 { 3177 if (cur_thr->stop_pc_p () 3178 && pc == cur_thr->stop_pc () 3179 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here 3180 && execution_direction != EXEC_REVERSE) 3181 /* There is a breakpoint at the address we will resume at, 3182 step one instruction before inserting breakpoints so that 3183 we do not stop right away (and report a second hit at this 3184 breakpoint). 3185 3186 Note, we don't do this in reverse, because we won't 3187 actually be executing the breakpoint insn anyway. 3188 We'll be (un-)executing the previous instruction. */ 3189 cur_thr->stepping_over_breakpoint = 1; 3190 else if (gdbarch_single_step_through_delay_p (gdbarch) 3191 && gdbarch_single_step_through_delay (gdbarch, 3192 get_current_frame ())) 3193 /* We stepped onto an instruction that needs to be stepped 3194 again before re-inserting the breakpoint, do so. */ 3195 cur_thr->stepping_over_breakpoint = 1; 3196 } 3197 else 3198 { 3199 regcache_write_pc (regcache, addr); 3200 } 3201 3202 if (siggnal != GDB_SIGNAL_DEFAULT) 3203 cur_thr->set_stop_signal (siggnal); 3204 3205 /* If an exception is thrown from this point on, make sure to 3206 propagate GDB's knowledge of the executing state to the 3207 frontend/user running state. */ 3208 scoped_finish_thread_state finish_state (resume_target, resume_ptid); 3209 3210 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer 3211 threads (e.g., we might need to set threads stepping over 3212 breakpoints first), from the user/frontend's point of view, all 3213 threads in RESUME_PTID are now running. Unless we're calling an 3214 inferior function, as in that case we pretend the inferior 3215 doesn't run at all. */ 3216 if (!cur_thr->control.in_infcall) 3217 set_running (resume_target, resume_ptid, true); 3218 3219 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr), 3220 gdb_signal_to_symbol_string (siggnal)); 3221 3222 annotate_starting (); 3223 3224 /* Make sure that output from GDB appears before output from the 3225 inferior. */ 3226 gdb_flush (gdb_stdout); 3227 3228 /* Since we've marked the inferior running, give it the terminal. A 3229 QUIT/Ctrl-C from here on is forwarded to the target (which can 3230 still detect attempts to unblock a stuck connection with repeated 3231 Ctrl-C from within target_pass_ctrlc). */ 3232 target_terminal::inferior (); 3233 3234 /* In a multi-threaded task we may select another thread and 3235 then continue or step. 3236 3237 But if a thread that we're resuming had stopped at a breakpoint, 3238 it will immediately cause another breakpoint stop without any 3239 execution (i.e. it will report a breakpoint hit incorrectly). So 3240 we must step over it first. 3241 3242 Look for threads other than the current (TP) that reported a 3243 breakpoint hit and haven't been resumed yet since. */ 3244 3245 /* If scheduler locking applies, we can avoid iterating over all 3246 threads. */ 3247 if (!non_stop && !schedlock_applies (cur_thr)) 3248 { 3249 for (thread_info *tp : all_non_exited_threads (resume_target, 3250 resume_ptid)) 3251 { 3252 switch_to_thread_no_regs (tp); 3253 3254 /* Ignore the current thread here. It's handled 3255 afterwards. */ 3256 if (tp == cur_thr) 3257 continue; 3258 3259 if (!thread_still_needs_step_over (tp)) 3260 continue; 3261 3262 gdb_assert (!thread_is_in_step_over_chain (tp)); 3263 3264 infrun_debug_printf ("need to step-over [%s] first", 3265 tp->ptid.to_string ().c_str ()); 3266 3267 global_thread_step_over_chain_enqueue (tp); 3268 } 3269 3270 switch_to_thread (cur_thr); 3271 } 3272 3273 /* Enqueue the current thread last, so that we move all other 3274 threads over their breakpoints first. */ 3275 if (cur_thr->stepping_over_breakpoint) 3276 global_thread_step_over_chain_enqueue (cur_thr); 3277 3278 /* If the thread isn't started, we'll still need to set its prev_pc, 3279 so that switch_back_to_stepped_thread knows the thread hasn't 3280 advanced. Must do this before resuming any thread, as in 3281 all-stop/remote, once we resume we can't send any other packet 3282 until the target stops again. */ 3283 cur_thr->prev_pc = regcache_read_pc_protected (regcache); 3284 3285 { 3286 scoped_disable_commit_resumed disable_commit_resumed ("proceeding"); 3287 bool step_over_started = start_step_over (); 3288 3289 if (step_over_info_valid_p ()) 3290 { 3291 /* Either this thread started a new in-line step over, or some 3292 other thread was already doing one. In either case, don't 3293 resume anything else until the step-over is finished. */ 3294 } 3295 else if (step_over_started && !target_is_non_stop_p ()) 3296 { 3297 /* A new displaced stepping sequence was started. In all-stop, 3298 we can't talk to the target anymore until it next stops. */ 3299 } 3300 else if (!non_stop && target_is_non_stop_p ()) 3301 { 3302 INFRUN_SCOPED_DEBUG_START_END 3303 ("resuming threads, all-stop-on-top-of-non-stop"); 3304 3305 /* In all-stop, but the target is always in non-stop mode. 3306 Start all other threads that are implicitly resumed too. */ 3307 for (thread_info *tp : all_non_exited_threads (resume_target, 3308 resume_ptid)) 3309 { 3310 switch_to_thread_no_regs (tp); 3311 3312 if (!tp->inf->has_execution ()) 3313 { 3314 infrun_debug_printf ("[%s] target has no execution", 3315 tp->ptid.to_string ().c_str ()); 3316 continue; 3317 } 3318 3319 if (tp->resumed ()) 3320 { 3321 infrun_debug_printf ("[%s] resumed", 3322 tp->ptid.to_string ().c_str ()); 3323 gdb_assert (tp->executing () || tp->has_pending_waitstatus ()); 3324 continue; 3325 } 3326 3327 if (thread_is_in_step_over_chain (tp)) 3328 { 3329 infrun_debug_printf ("[%s] needs step-over", 3330 tp->ptid.to_string ().c_str ()); 3331 continue; 3332 } 3333 3334 /* If a thread of that inferior is waiting for a vfork-done 3335 (for a detached vfork child to exec or exit), breakpoints are 3336 removed. We must not resume any thread of that inferior, other 3337 than the one waiting for the vfork-done. */ 3338 if (tp->inf->thread_waiting_for_vfork_done != nullptr 3339 && tp != tp->inf->thread_waiting_for_vfork_done) 3340 { 3341 infrun_debug_printf ("[%s] another thread of this inferior is " 3342 "waiting for vfork-done", 3343 tp->ptid.to_string ().c_str ()); 3344 continue; 3345 } 3346 3347 infrun_debug_printf ("resuming %s", 3348 tp->ptid.to_string ().c_str ()); 3349 3350 execution_control_state ecs (tp); 3351 switch_to_thread (tp); 3352 keep_going_pass_signal (&ecs); 3353 if (!ecs.wait_some_more) 3354 error (_("Command aborted.")); 3355 } 3356 } 3357 else if (!cur_thr->resumed () 3358 && !thread_is_in_step_over_chain (cur_thr) 3359 /* In non-stop, forbid resuming a thread if some other thread of 3360 that inferior is waiting for a vfork-done event (this means 3361 breakpoints are out for this inferior). */ 3362 && !(non_stop 3363 && cur_thr->inf->thread_waiting_for_vfork_done != nullptr)) 3364 { 3365 /* The thread wasn't started, and isn't queued, run it now. */ 3366 execution_control_state ecs (cur_thr); 3367 switch_to_thread (cur_thr); 3368 keep_going_pass_signal (&ecs); 3369 if (!ecs.wait_some_more) 3370 error (_("Command aborted.")); 3371 } 3372 3373 disable_commit_resumed.reset_and_commit (); 3374 } 3375 3376 finish_state.release (); 3377 3378 /* If we've switched threads above, switch back to the previously 3379 current thread. We don't want the user to see a different 3380 selected thread. */ 3381 switch_to_thread (cur_thr); 3382 3383 /* Tell the event loop to wait for it to stop. If the target 3384 supports asynchronous execution, it'll do this from within 3385 target_resume. */ 3386 if (!target_can_async_p ()) 3387 mark_async_event_handler (infrun_async_inferior_event_token); 3388 } 3389 3390 3391 /* Start remote-debugging of a machine over a serial link. */ 3392 3393 void 3394 start_remote (int from_tty) 3395 { 3396 inferior *inf = current_inferior (); 3397 inf->control.stop_soon = STOP_QUIETLY_REMOTE; 3398 3399 /* Always go on waiting for the target, regardless of the mode. */ 3400 /* FIXME: cagney/1999-09-23: At present it isn't possible to 3401 indicate to wait_for_inferior that a target should timeout if 3402 nothing is returned (instead of just blocking). Because of this, 3403 targets expecting an immediate response need to, internally, set 3404 things up so that the target_wait() is forced to eventually 3405 timeout. */ 3406 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to 3407 differentiate to its caller what the state of the target is after 3408 the initial open has been performed. Here we're assuming that 3409 the target has stopped. It should be possible to eventually have 3410 target_open() return to the caller an indication that the target 3411 is currently running and GDB state should be set to the same as 3412 for an async run. */ 3413 wait_for_inferior (inf); 3414 3415 /* Now that the inferior has stopped, do any bookkeeping like 3416 loading shared libraries. We want to do this before normal_stop, 3417 so that the displayed frame is up to date. */ 3418 post_create_inferior (from_tty); 3419 3420 normal_stop (); 3421 } 3422 3423 /* Initialize static vars when a new inferior begins. */ 3424 3425 void 3426 init_wait_for_inferior (void) 3427 { 3428 /* These are meaningless until the first time through wait_for_inferior. */ 3429 3430 breakpoint_init_inferior (inf_starting); 3431 3432 clear_proceed_status (0); 3433 3434 nullify_last_target_wait_ptid (); 3435 3436 previous_inferior_ptid = inferior_ptid; 3437 } 3438 3439 3440 3441 static void handle_inferior_event (struct execution_control_state *ecs); 3442 3443 static void handle_step_into_function (struct gdbarch *gdbarch, 3444 struct execution_control_state *ecs); 3445 static void handle_step_into_function_backward (struct gdbarch *gdbarch, 3446 struct execution_control_state *ecs); 3447 static void handle_signal_stop (struct execution_control_state *ecs); 3448 static void check_exception_resume (struct execution_control_state *, 3449 frame_info_ptr); 3450 3451 static void end_stepping_range (struct execution_control_state *ecs); 3452 static void stop_waiting (struct execution_control_state *ecs); 3453 static void keep_going (struct execution_control_state *ecs); 3454 static void process_event_stop_test (struct execution_control_state *ecs); 3455 static bool switch_back_to_stepped_thread (struct execution_control_state *ecs); 3456 3457 /* This function is attached as a "thread_stop_requested" observer. 3458 Cleanup local state that assumed the PTID was to be resumed, and 3459 report the stop to the frontend. */ 3460 3461 static void 3462 infrun_thread_stop_requested (ptid_t ptid) 3463 { 3464 process_stratum_target *curr_target = current_inferior ()->process_target (); 3465 3466 /* PTID was requested to stop. If the thread was already stopped, 3467 but the user/frontend doesn't know about that yet (e.g., the 3468 thread had been temporarily paused for some step-over), set up 3469 for reporting the stop now. */ 3470 for (thread_info *tp : all_threads (curr_target, ptid)) 3471 { 3472 if (tp->state != THREAD_RUNNING) 3473 continue; 3474 if (tp->executing ()) 3475 continue; 3476 3477 /* Remove matching threads from the step-over queue, so 3478 start_step_over doesn't try to resume them 3479 automatically. */ 3480 if (thread_is_in_step_over_chain (tp)) 3481 global_thread_step_over_chain_remove (tp); 3482 3483 /* If the thread is stopped, but the user/frontend doesn't 3484 know about that yet, queue a pending event, as if the 3485 thread had just stopped now. Unless the thread already had 3486 a pending event. */ 3487 if (!tp->has_pending_waitstatus ()) 3488 { 3489 target_waitstatus ws; 3490 ws.set_stopped (GDB_SIGNAL_0); 3491 tp->set_pending_waitstatus (ws); 3492 } 3493 3494 /* Clear the inline-frame state, since we're re-processing the 3495 stop. */ 3496 clear_inline_frame_state (tp); 3497 3498 /* If this thread was paused because some other thread was 3499 doing an inline-step over, let that finish first. Once 3500 that happens, we'll restart all threads and consume pending 3501 stop events then. */ 3502 if (step_over_info_valid_p ()) 3503 continue; 3504 3505 /* Otherwise we can process the (new) pending event now. Set 3506 it so this pending event is considered by 3507 do_target_wait. */ 3508 tp->set_resumed (true); 3509 } 3510 } 3511 3512 static void 3513 infrun_thread_thread_exit (struct thread_info *tp, int silent) 3514 { 3515 if (target_last_proc_target == tp->inf->process_target () 3516 && target_last_wait_ptid == tp->ptid) 3517 nullify_last_target_wait_ptid (); 3518 } 3519 3520 /* Delete the step resume, single-step and longjmp/exception resume 3521 breakpoints of TP. */ 3522 3523 static void 3524 delete_thread_infrun_breakpoints (struct thread_info *tp) 3525 { 3526 delete_step_resume_breakpoint (tp); 3527 delete_exception_resume_breakpoint (tp); 3528 delete_single_step_breakpoints (tp); 3529 } 3530 3531 /* If the target still has execution, call FUNC for each thread that 3532 just stopped. In all-stop, that's all the non-exited threads; in 3533 non-stop, that's the current thread, only. */ 3534 3535 typedef void (*for_each_just_stopped_thread_callback_func) 3536 (struct thread_info *tp); 3537 3538 static void 3539 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func) 3540 { 3541 if (!target_has_execution () || inferior_ptid == null_ptid) 3542 return; 3543 3544 if (target_is_non_stop_p ()) 3545 { 3546 /* If in non-stop mode, only the current thread stopped. */ 3547 func (inferior_thread ()); 3548 } 3549 else 3550 { 3551 /* In all-stop mode, all threads have stopped. */ 3552 for (thread_info *tp : all_non_exited_threads ()) 3553 func (tp); 3554 } 3555 } 3556 3557 /* Delete the step resume and longjmp/exception resume breakpoints of 3558 the threads that just stopped. */ 3559 3560 static void 3561 delete_just_stopped_threads_infrun_breakpoints (void) 3562 { 3563 for_each_just_stopped_thread (delete_thread_infrun_breakpoints); 3564 } 3565 3566 /* Delete the single-step breakpoints of the threads that just 3567 stopped. */ 3568 3569 static void 3570 delete_just_stopped_threads_single_step_breakpoints (void) 3571 { 3572 for_each_just_stopped_thread (delete_single_step_breakpoints); 3573 } 3574 3575 /* See infrun.h. */ 3576 3577 void 3578 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid, 3579 const struct target_waitstatus &ws) 3580 { 3581 infrun_debug_printf ("target_wait (%s [%s], status) =", 3582 waiton_ptid.to_string ().c_str (), 3583 target_pid_to_str (waiton_ptid).c_str ()); 3584 infrun_debug_printf (" %s [%s],", 3585 result_ptid.to_string ().c_str (), 3586 target_pid_to_str (result_ptid).c_str ()); 3587 infrun_debug_printf (" %s", ws.to_string ().c_str ()); 3588 } 3589 3590 /* Select a thread at random, out of those which are resumed and have 3591 had events. */ 3592 3593 static struct thread_info * 3594 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid) 3595 { 3596 process_stratum_target *proc_target = inf->process_target (); 3597 thread_info *thread 3598 = proc_target->random_resumed_with_pending_wait_status (inf, waiton_ptid); 3599 3600 if (thread == nullptr) 3601 { 3602 infrun_debug_printf ("None found."); 3603 return nullptr; 3604 } 3605 3606 infrun_debug_printf ("Found %s.", thread->ptid.to_string ().c_str ()); 3607 gdb_assert (thread->resumed ()); 3608 gdb_assert (thread->has_pending_waitstatus ()); 3609 3610 return thread; 3611 } 3612 3613 /* Wrapper for target_wait that first checks whether threads have 3614 pending statuses to report before actually asking the target for 3615 more events. INF is the inferior we're using to call target_wait 3616 on. */ 3617 3618 static ptid_t 3619 do_target_wait_1 (inferior *inf, ptid_t ptid, 3620 target_waitstatus *status, target_wait_flags options) 3621 { 3622 struct thread_info *tp; 3623 3624 /* We know that we are looking for an event in the target of inferior 3625 INF, but we don't know which thread the event might come from. As 3626 such we want to make sure that INFERIOR_PTID is reset so that none of 3627 the wait code relies on it - doing so is always a mistake. */ 3628 switch_to_inferior_no_thread (inf); 3629 3630 /* First check if there is a resumed thread with a wait status 3631 pending. */ 3632 if (ptid == minus_one_ptid || ptid.is_pid ()) 3633 { 3634 tp = random_pending_event_thread (inf, ptid); 3635 } 3636 else 3637 { 3638 infrun_debug_printf ("Waiting for specific thread %s.", 3639 ptid.to_string ().c_str ()); 3640 3641 /* We have a specific thread to check. */ 3642 tp = find_thread_ptid (inf, ptid); 3643 gdb_assert (tp != nullptr); 3644 if (!tp->has_pending_waitstatus ()) 3645 tp = nullptr; 3646 } 3647 3648 if (tp != nullptr 3649 && (tp->stop_reason () == TARGET_STOPPED_BY_SW_BREAKPOINT 3650 || tp->stop_reason () == TARGET_STOPPED_BY_HW_BREAKPOINT)) 3651 { 3652 struct regcache *regcache = get_thread_regcache (tp); 3653 struct gdbarch *gdbarch = regcache->arch (); 3654 CORE_ADDR pc; 3655 int discard = 0; 3656 3657 pc = regcache_read_pc (regcache); 3658 3659 if (pc != tp->stop_pc ()) 3660 { 3661 infrun_debug_printf ("PC of %s changed. was=%s, now=%s", 3662 tp->ptid.to_string ().c_str (), 3663 paddress (gdbarch, tp->stop_pc ()), 3664 paddress (gdbarch, pc)); 3665 discard = 1; 3666 } 3667 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc)) 3668 { 3669 infrun_debug_printf ("previous breakpoint of %s, at %s gone", 3670 tp->ptid.to_string ().c_str (), 3671 paddress (gdbarch, pc)); 3672 3673 discard = 1; 3674 } 3675 3676 if (discard) 3677 { 3678 infrun_debug_printf ("pending event of %s cancelled.", 3679 tp->ptid.to_string ().c_str ()); 3680 3681 tp->clear_pending_waitstatus (); 3682 target_waitstatus ws; 3683 ws.set_spurious (); 3684 tp->set_pending_waitstatus (ws); 3685 tp->set_stop_reason (TARGET_STOPPED_BY_NO_REASON); 3686 } 3687 } 3688 3689 if (tp != nullptr) 3690 { 3691 infrun_debug_printf ("Using pending wait status %s for %s.", 3692 tp->pending_waitstatus ().to_string ().c_str (), 3693 tp->ptid.to_string ().c_str ()); 3694 3695 /* Now that we've selected our final event LWP, un-adjust its PC 3696 if it was a software breakpoint (and the target doesn't 3697 always adjust the PC itself). */ 3698 if (tp->stop_reason () == TARGET_STOPPED_BY_SW_BREAKPOINT 3699 && !target_supports_stopped_by_sw_breakpoint ()) 3700 { 3701 struct regcache *regcache; 3702 struct gdbarch *gdbarch; 3703 int decr_pc; 3704 3705 regcache = get_thread_regcache (tp); 3706 gdbarch = regcache->arch (); 3707 3708 decr_pc = gdbarch_decr_pc_after_break (gdbarch); 3709 if (decr_pc != 0) 3710 { 3711 CORE_ADDR pc; 3712 3713 pc = regcache_read_pc (regcache); 3714 regcache_write_pc (regcache, pc + decr_pc); 3715 } 3716 } 3717 3718 tp->set_stop_reason (TARGET_STOPPED_BY_NO_REASON); 3719 *status = tp->pending_waitstatus (); 3720 tp->clear_pending_waitstatus (); 3721 3722 /* Wake up the event loop again, until all pending events are 3723 processed. */ 3724 if (target_is_async_p ()) 3725 mark_async_event_handler (infrun_async_inferior_event_token); 3726 return tp->ptid; 3727 } 3728 3729 /* But if we don't find one, we'll have to wait. */ 3730 3731 /* We can't ask a non-async target to do a non-blocking wait, so this will be 3732 a blocking wait. */ 3733 if (!target_can_async_p ()) 3734 options &= ~TARGET_WNOHANG; 3735 3736 return target_wait (ptid, status, options); 3737 } 3738 3739 /* Wrapper for target_wait that first checks whether threads have 3740 pending statuses to report before actually asking the target for 3741 more events. Polls for events from all inferiors/targets. */ 3742 3743 static bool 3744 do_target_wait (execution_control_state *ecs, target_wait_flags options) 3745 { 3746 int num_inferiors = 0; 3747 int random_selector; 3748 3749 /* For fairness, we pick the first inferior/target to poll at random 3750 out of all inferiors that may report events, and then continue 3751 polling the rest of the inferior list starting from that one in a 3752 circular fashion until the whole list is polled once. */ 3753 3754 auto inferior_matches = [] (inferior *inf) 3755 { 3756 return inf->process_target () != nullptr; 3757 }; 3758 3759 /* First see how many matching inferiors we have. */ 3760 for (inferior *inf : all_inferiors ()) 3761 if (inferior_matches (inf)) 3762 num_inferiors++; 3763 3764 if (num_inferiors == 0) 3765 { 3766 ecs->ws.set_ignore (); 3767 return false; 3768 } 3769 3770 /* Now randomly pick an inferior out of those that matched. */ 3771 random_selector = (int) 3772 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0)); 3773 3774 if (num_inferiors > 1) 3775 infrun_debug_printf ("Found %d inferiors, starting at #%d", 3776 num_inferiors, random_selector); 3777 3778 /* Select the Nth inferior that matched. */ 3779 3780 inferior *selected = nullptr; 3781 3782 for (inferior *inf : all_inferiors ()) 3783 if (inferior_matches (inf)) 3784 if (random_selector-- == 0) 3785 { 3786 selected = inf; 3787 break; 3788 } 3789 3790 /* Now poll for events out of each of the matching inferior's 3791 targets, starting from the selected one. */ 3792 3793 auto do_wait = [&] (inferior *inf) 3794 { 3795 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, options); 3796 ecs->target = inf->process_target (); 3797 return (ecs->ws.kind () != TARGET_WAITKIND_IGNORE); 3798 }; 3799 3800 /* Needed in 'all-stop + target-non-stop' mode, because we end up 3801 here spuriously after the target is all stopped and we've already 3802 reported the stop to the user, polling for events. */ 3803 scoped_restore_current_thread restore_thread; 3804 3805 intrusive_list_iterator<inferior> start 3806 = inferior_list.iterator_to (*selected); 3807 3808 for (intrusive_list_iterator<inferior> it = start; 3809 it != inferior_list.end (); 3810 ++it) 3811 { 3812 inferior *inf = &*it; 3813 3814 if (inferior_matches (inf) && do_wait (inf)) 3815 return true; 3816 } 3817 3818 for (intrusive_list_iterator<inferior> it = inferior_list.begin (); 3819 it != start; 3820 ++it) 3821 { 3822 inferior *inf = &*it; 3823 3824 if (inferior_matches (inf) && do_wait (inf)) 3825 return true; 3826 } 3827 3828 ecs->ws.set_ignore (); 3829 return false; 3830 } 3831 3832 /* An event reported by wait_one. */ 3833 3834 struct wait_one_event 3835 { 3836 /* The target the event came out of. */ 3837 process_stratum_target *target; 3838 3839 /* The PTID the event was for. */ 3840 ptid_t ptid; 3841 3842 /* The waitstatus. */ 3843 target_waitstatus ws; 3844 }; 3845 3846 static bool handle_one (const wait_one_event &event); 3847 3848 /* Prepare and stabilize the inferior for detaching it. E.g., 3849 detaching while a thread is displaced stepping is a recipe for 3850 crashing it, as nothing would readjust the PC out of the scratch 3851 pad. */ 3852 3853 void 3854 prepare_for_detach (void) 3855 { 3856 struct inferior *inf = current_inferior (); 3857 ptid_t pid_ptid = ptid_t (inf->pid); 3858 scoped_restore_current_thread restore_thread; 3859 3860 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true); 3861 3862 /* Remove all threads of INF from the global step-over chain. We 3863 want to stop any ongoing step-over, not start any new one. */ 3864 thread_step_over_list_safe_range range 3865 = make_thread_step_over_list_safe_range (global_thread_step_over_list); 3866 3867 for (thread_info *tp : range) 3868 if (tp->inf == inf) 3869 { 3870 infrun_debug_printf ("removing thread %s from global step over chain", 3871 tp->ptid.to_string ().c_str ()); 3872 global_thread_step_over_chain_remove (tp); 3873 } 3874 3875 /* If we were already in the middle of an inline step-over, and the 3876 thread stepping belongs to the inferior we're detaching, we need 3877 to restart the threads of other inferiors. */ 3878 if (step_over_info.thread != -1) 3879 { 3880 infrun_debug_printf ("inline step-over in-process while detaching"); 3881 3882 thread_info *thr = find_thread_global_id (step_over_info.thread); 3883 if (thr->inf == inf) 3884 { 3885 /* Since we removed threads of INF from the step-over chain, 3886 we know this won't start a step-over for INF. */ 3887 clear_step_over_info (); 3888 3889 if (target_is_non_stop_p ()) 3890 { 3891 /* Start a new step-over in another thread if there's 3892 one that needs it. */ 3893 start_step_over (); 3894 3895 /* Restart all other threads (except the 3896 previously-stepping thread, since that one is still 3897 running). */ 3898 if (!step_over_info_valid_p ()) 3899 restart_threads (thr); 3900 } 3901 } 3902 } 3903 3904 if (displaced_step_in_progress (inf)) 3905 { 3906 infrun_debug_printf ("displaced-stepping in-process while detaching"); 3907 3908 /* Stop threads currently displaced stepping, aborting it. */ 3909 3910 for (thread_info *thr : inf->non_exited_threads ()) 3911 { 3912 if (thr->displaced_step_state.in_progress ()) 3913 { 3914 if (thr->executing ()) 3915 { 3916 if (!thr->stop_requested) 3917 { 3918 target_stop (thr->ptid); 3919 thr->stop_requested = true; 3920 } 3921 } 3922 else 3923 thr->set_resumed (false); 3924 } 3925 } 3926 3927 while (displaced_step_in_progress (inf)) 3928 { 3929 wait_one_event event; 3930 3931 event.target = inf->process_target (); 3932 event.ptid = do_target_wait_1 (inf, pid_ptid, &event.ws, 0); 3933 3934 if (debug_infrun) 3935 print_target_wait_results (pid_ptid, event.ptid, event.ws); 3936 3937 handle_one (event); 3938 } 3939 3940 /* It's OK to leave some of the threads of INF stopped, since 3941 they'll be detached shortly. */ 3942 } 3943 } 3944 3945 /* If all-stop, but there exists a non-stop target, stop all threads 3946 now that we're presenting the stop to the user. */ 3947 3948 static void 3949 stop_all_threads_if_all_stop_mode () 3950 { 3951 if (!non_stop && exists_non_stop_target ()) 3952 stop_all_threads ("presenting stop to user in all-stop"); 3953 } 3954 3955 /* Wait for control to return from inferior to debugger. 3956 3957 If inferior gets a signal, we may decide to start it up again 3958 instead of returning. That is why there is a loop in this function. 3959 When this function actually returns it means the inferior 3960 should be left stopped and GDB should read more commands. */ 3961 3962 static void 3963 wait_for_inferior (inferior *inf) 3964 { 3965 infrun_debug_printf ("wait_for_inferior ()"); 3966 3967 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); }; 3968 3969 /* If an error happens while handling the event, propagate GDB's 3970 knowledge of the executing state to the frontend/user running 3971 state. */ 3972 scoped_finish_thread_state finish_state 3973 (inf->process_target (), minus_one_ptid); 3974 3975 while (1) 3976 { 3977 execution_control_state ecs; 3978 3979 overlay_cache_invalid = 1; 3980 3981 /* Flush target cache before starting to handle each event. 3982 Target was running and cache could be stale. This is just a 3983 heuristic. Running threads may modify target memory, but we 3984 don't get any event. */ 3985 target_dcache_invalidate (); 3986 3987 ecs.ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs.ws, 0); 3988 ecs.target = inf->process_target (); 3989 3990 if (debug_infrun) 3991 print_target_wait_results (minus_one_ptid, ecs.ptid, ecs.ws); 3992 3993 /* Now figure out what to do with the result of the result. */ 3994 handle_inferior_event (&ecs); 3995 3996 if (!ecs.wait_some_more) 3997 break; 3998 } 3999 4000 stop_all_threads_if_all_stop_mode (); 4001 4002 /* No error, don't finish the state yet. */ 4003 finish_state.release (); 4004 } 4005 4006 /* Cleanup that reinstalls the readline callback handler, if the 4007 target is running in the background. If while handling the target 4008 event something triggered a secondary prompt, like e.g., a 4009 pagination prompt, we'll have removed the callback handler (see 4010 gdb_readline_wrapper_line). Need to do this as we go back to the 4011 event loop, ready to process further input. Note this has no 4012 effect if the handler hasn't actually been removed, because calling 4013 rl_callback_handler_install resets the line buffer, thus losing 4014 input. */ 4015 4016 static void 4017 reinstall_readline_callback_handler_cleanup () 4018 { 4019 struct ui *ui = current_ui; 4020 4021 if (!ui->async) 4022 { 4023 /* We're not going back to the top level event loop yet. Don't 4024 install the readline callback, as it'd prep the terminal, 4025 readline-style (raw, noecho) (e.g., --batch). We'll install 4026 it the next time the prompt is displayed, when we're ready 4027 for input. */ 4028 return; 4029 } 4030 4031 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED) 4032 gdb_rl_callback_handler_reinstall (); 4033 } 4034 4035 /* Clean up the FSMs of threads that are now stopped. In non-stop, 4036 that's just the event thread. In all-stop, that's all threads. */ 4037 4038 static void 4039 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs) 4040 { 4041 /* The first clean_up call below assumes the event thread is the current 4042 one. */ 4043 if (ecs->event_thread != nullptr) 4044 gdb_assert (ecs->event_thread == inferior_thread ()); 4045 4046 if (ecs->event_thread != nullptr 4047 && ecs->event_thread->thread_fsm () != nullptr) 4048 ecs->event_thread->thread_fsm ()->clean_up (ecs->event_thread); 4049 4050 if (!non_stop) 4051 { 4052 scoped_restore_current_thread restore_thread; 4053 4054 for (thread_info *thr : all_non_exited_threads ()) 4055 { 4056 if (thr->thread_fsm () == nullptr) 4057 continue; 4058 if (thr == ecs->event_thread) 4059 continue; 4060 4061 switch_to_thread (thr); 4062 thr->thread_fsm ()->clean_up (thr); 4063 } 4064 } 4065 } 4066 4067 /* Helper for all_uis_check_sync_execution_done that works on the 4068 current UI. */ 4069 4070 static void 4071 check_curr_ui_sync_execution_done (void) 4072 { 4073 struct ui *ui = current_ui; 4074 4075 if (ui->prompt_state == PROMPT_NEEDED 4076 && ui->async 4077 && !gdb_in_secondary_prompt_p (ui)) 4078 { 4079 target_terminal::ours (); 4080 gdb::observers::sync_execution_done.notify (); 4081 ui->register_file_handler (); 4082 } 4083 } 4084 4085 /* See infrun.h. */ 4086 4087 void 4088 all_uis_check_sync_execution_done (void) 4089 { 4090 SWITCH_THRU_ALL_UIS () 4091 { 4092 check_curr_ui_sync_execution_done (); 4093 } 4094 } 4095 4096 /* See infrun.h. */ 4097 4098 void 4099 all_uis_on_sync_execution_starting (void) 4100 { 4101 SWITCH_THRU_ALL_UIS () 4102 { 4103 if (current_ui->prompt_state == PROMPT_NEEDED) 4104 async_disable_stdin (); 4105 } 4106 } 4107 4108 /* Asynchronous version of wait_for_inferior. It is called by the 4109 event loop whenever a change of state is detected on the file 4110 descriptor corresponding to the target. It can be called more than 4111 once to complete a single execution command. In such cases we need 4112 to keep the state in a global variable ECSS. If it is the last time 4113 that this function is called for a single execution command, then 4114 report to the user that the inferior has stopped, and do the 4115 necessary cleanups. */ 4116 4117 void 4118 fetch_inferior_event () 4119 { 4120 INFRUN_SCOPED_DEBUG_ENTER_EXIT; 4121 4122 execution_control_state ecs; 4123 int cmd_done = 0; 4124 4125 /* Events are always processed with the main UI as current UI. This 4126 way, warnings, debug output, etc. are always consistently sent to 4127 the main console. */ 4128 scoped_restore save_ui = make_scoped_restore (¤t_ui, main_ui); 4129 4130 /* Temporarily disable pagination. Otherwise, the user would be 4131 given an option to press 'q' to quit, which would cause an early 4132 exit and could leave GDB in a half-baked state. */ 4133 scoped_restore save_pagination 4134 = make_scoped_restore (&pagination_enabled, false); 4135 4136 /* End up with readline processing input, if necessary. */ 4137 { 4138 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); }; 4139 4140 /* We're handling a live event, so make sure we're doing live 4141 debugging. If we're looking at traceframes while the target is 4142 running, we're going to need to get back to that mode after 4143 handling the event. */ 4144 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe; 4145 if (non_stop) 4146 { 4147 maybe_restore_traceframe.emplace (); 4148 set_current_traceframe (-1); 4149 } 4150 4151 /* The user/frontend should not notice a thread switch due to 4152 internal events. Make sure we revert to the user selected 4153 thread and frame after handling the event and running any 4154 breakpoint commands. */ 4155 scoped_restore_current_thread restore_thread; 4156 4157 overlay_cache_invalid = 1; 4158 /* Flush target cache before starting to handle each event. Target 4159 was running and cache could be stale. This is just a heuristic. 4160 Running threads may modify target memory, but we don't get any 4161 event. */ 4162 target_dcache_invalidate (); 4163 4164 scoped_restore save_exec_dir 4165 = make_scoped_restore (&execution_direction, 4166 target_execution_direction ()); 4167 4168 /* Allow targets to pause their resumed threads while we handle 4169 the event. */ 4170 scoped_disable_commit_resumed disable_commit_resumed ("handling event"); 4171 4172 if (!do_target_wait (&ecs, TARGET_WNOHANG)) 4173 { 4174 infrun_debug_printf ("do_target_wait returned no event"); 4175 disable_commit_resumed.reset_and_commit (); 4176 return; 4177 } 4178 4179 gdb_assert (ecs.ws.kind () != TARGET_WAITKIND_IGNORE); 4180 4181 /* Switch to the target that generated the event, so we can do 4182 target calls. */ 4183 switch_to_target_no_thread (ecs.target); 4184 4185 if (debug_infrun) 4186 print_target_wait_results (minus_one_ptid, ecs.ptid, ecs.ws); 4187 4188 /* If an error happens while handling the event, propagate GDB's 4189 knowledge of the executing state to the frontend/user running 4190 state. */ 4191 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs.ptid; 4192 scoped_finish_thread_state finish_state (ecs.target, finish_ptid); 4193 4194 /* Get executed before scoped_restore_current_thread above to apply 4195 still for the thread which has thrown the exception. */ 4196 auto defer_bpstat_clear 4197 = make_scope_exit (bpstat_clear_actions); 4198 auto defer_delete_threads 4199 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints); 4200 4201 /* Now figure out what to do with the result of the result. */ 4202 handle_inferior_event (&ecs); 4203 4204 if (!ecs.wait_some_more) 4205 { 4206 struct inferior *inf = find_inferior_ptid (ecs.target, ecs.ptid); 4207 bool should_stop = true; 4208 struct thread_info *thr = ecs.event_thread; 4209 4210 delete_just_stopped_threads_infrun_breakpoints (); 4211 4212 if (thr != nullptr && thr->thread_fsm () != nullptr) 4213 should_stop = thr->thread_fsm ()->should_stop (thr); 4214 4215 if (!should_stop) 4216 { 4217 keep_going (&ecs); 4218 } 4219 else 4220 { 4221 bool should_notify_stop = true; 4222 int proceeded = 0; 4223 4224 stop_all_threads_if_all_stop_mode (); 4225 4226 clean_up_just_stopped_threads_fsms (&ecs); 4227 4228 if (thr != nullptr && thr->thread_fsm () != nullptr) 4229 should_notify_stop 4230 = thr->thread_fsm ()->should_notify_stop (); 4231 4232 if (should_notify_stop) 4233 { 4234 /* We may not find an inferior if this was a process exit. */ 4235 if (inf == nullptr || inf->control.stop_soon == NO_STOP_QUIETLY) 4236 proceeded = normal_stop (); 4237 } 4238 4239 if (!proceeded) 4240 { 4241 inferior_event_handler (INF_EXEC_COMPLETE); 4242 cmd_done = 1; 4243 } 4244 4245 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the 4246 previously selected thread is gone. We have two 4247 choices - switch to no thread selected, or restore the 4248 previously selected thread (now exited). We chose the 4249 later, just because that's what GDB used to do. After 4250 this, "info threads" says "The current thread <Thread 4251 ID 2> has terminated." instead of "No thread 4252 selected.". */ 4253 if (!non_stop 4254 && cmd_done 4255 && ecs.ws.kind () != TARGET_WAITKIND_NO_RESUMED) 4256 restore_thread.dont_restore (); 4257 } 4258 } 4259 4260 defer_delete_threads.release (); 4261 defer_bpstat_clear.release (); 4262 4263 /* No error, don't finish the thread states yet. */ 4264 finish_state.release (); 4265 4266 disable_commit_resumed.reset_and_commit (); 4267 4268 /* This scope is used to ensure that readline callbacks are 4269 reinstalled here. */ 4270 } 4271 4272 /* Handling this event might have caused some inferiors to become prunable. 4273 For example, the exit of an inferior that was automatically added. Try 4274 to get rid of them. Keeping those around slows down things linearly. 4275 4276 Note that this never removes the current inferior. Therefore, call this 4277 after RESTORE_THREAD went out of scope, in case the event inferior (which was 4278 temporarily made the current inferior) is meant to be deleted. 4279 4280 Call this before all_uis_check_sync_execution_done, so that notifications about 4281 removed inferiors appear before the prompt. */ 4282 prune_inferiors (); 4283 4284 /* If a UI was in sync execution mode, and now isn't, restore its 4285 prompt (a synchronous execution command has finished, and we're 4286 ready for input). */ 4287 all_uis_check_sync_execution_done (); 4288 4289 if (cmd_done 4290 && exec_done_display_p 4291 && (inferior_ptid == null_ptid 4292 || inferior_thread ()->state != THREAD_RUNNING)) 4293 gdb_printf (_("completed.\n")); 4294 } 4295 4296 /* See infrun.h. */ 4297 4298 void 4299 set_step_info (thread_info *tp, frame_info_ptr frame, 4300 struct symtab_and_line sal) 4301 { 4302 /* This can be removed once this function no longer implicitly relies on the 4303 inferior_ptid value. */ 4304 gdb_assert (inferior_ptid == tp->ptid); 4305 4306 tp->control.step_frame_id = get_frame_id (frame); 4307 tp->control.step_stack_frame_id = get_stack_frame_id (frame); 4308 4309 tp->current_symtab = sal.symtab; 4310 tp->current_line = sal.line; 4311 4312 infrun_debug_printf 4313 ("symtab = %s, line = %d, step_frame_id = %s, step_stack_frame_id = %s", 4314 tp->current_symtab != nullptr ? tp->current_symtab->filename : "<null>", 4315 tp->current_line, 4316 tp->control.step_frame_id.to_string ().c_str (), 4317 tp->control.step_stack_frame_id.to_string ().c_str ()); 4318 } 4319 4320 /* Clear context switchable stepping state. */ 4321 4322 void 4323 init_thread_stepping_state (struct thread_info *tss) 4324 { 4325 tss->stepped_breakpoint = 0; 4326 tss->stepping_over_breakpoint = 0; 4327 tss->stepping_over_watchpoint = 0; 4328 tss->step_after_step_resume_breakpoint = 0; 4329 } 4330 4331 /* See infrun.h. */ 4332 4333 void 4334 set_last_target_status (process_stratum_target *target, ptid_t ptid, 4335 const target_waitstatus &status) 4336 { 4337 target_last_proc_target = target; 4338 target_last_wait_ptid = ptid; 4339 target_last_waitstatus = status; 4340 } 4341 4342 /* See infrun.h. */ 4343 4344 void 4345 get_last_target_status (process_stratum_target **target, ptid_t *ptid, 4346 target_waitstatus *status) 4347 { 4348 if (target != nullptr) 4349 *target = target_last_proc_target; 4350 if (ptid != nullptr) 4351 *ptid = target_last_wait_ptid; 4352 if (status != nullptr) 4353 *status = target_last_waitstatus; 4354 } 4355 4356 /* See infrun.h. */ 4357 4358 void 4359 nullify_last_target_wait_ptid (void) 4360 { 4361 target_last_proc_target = nullptr; 4362 target_last_wait_ptid = minus_one_ptid; 4363 target_last_waitstatus = {}; 4364 } 4365 4366 /* Switch thread contexts. */ 4367 4368 static void 4369 context_switch (execution_control_state *ecs) 4370 { 4371 if (ecs->ptid != inferior_ptid 4372 && (inferior_ptid == null_ptid 4373 || ecs->event_thread != inferior_thread ())) 4374 { 4375 infrun_debug_printf ("Switching context from %s to %s", 4376 inferior_ptid.to_string ().c_str (), 4377 ecs->ptid.to_string ().c_str ()); 4378 } 4379 4380 switch_to_thread (ecs->event_thread); 4381 } 4382 4383 /* If the target can't tell whether we've hit breakpoints 4384 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP, 4385 check whether that could have been caused by a breakpoint. If so, 4386 adjust the PC, per gdbarch_decr_pc_after_break. */ 4387 4388 static void 4389 adjust_pc_after_break (struct thread_info *thread, 4390 const target_waitstatus &ws) 4391 { 4392 struct regcache *regcache; 4393 struct gdbarch *gdbarch; 4394 CORE_ADDR breakpoint_pc, decr_pc; 4395 4396 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If 4397 we aren't, just return. 4398 4399 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not 4400 affected by gdbarch_decr_pc_after_break. Other waitkinds which are 4401 implemented by software breakpoints should be handled through the normal 4402 breakpoint layer. 4403 4404 NOTE drow/2004-01-31: On some targets, breakpoints may generate 4405 different signals (SIGILL or SIGEMT for instance), but it is less 4406 clear where the PC is pointing afterwards. It may not match 4407 gdbarch_decr_pc_after_break. I don't know any specific target that 4408 generates these signals at breakpoints (the code has been in GDB since at 4409 least 1992) so I can not guess how to handle them here. 4410 4411 In earlier versions of GDB, a target with 4412 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a 4413 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any 4414 target with both of these set in GDB history, and it seems unlikely to be 4415 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ 4416 4417 if (ws.kind () != TARGET_WAITKIND_STOPPED) 4418 return; 4419 4420 if (ws.sig () != GDB_SIGNAL_TRAP) 4421 return; 4422 4423 /* In reverse execution, when a breakpoint is hit, the instruction 4424 under it has already been de-executed. The reported PC always 4425 points at the breakpoint address, so adjusting it further would 4426 be wrong. E.g., consider this case on a decr_pc_after_break == 1 4427 architecture: 4428 4429 B1 0x08000000 : INSN1 4430 B2 0x08000001 : INSN2 4431 0x08000002 : INSN3 4432 PC -> 0x08000003 : INSN4 4433 4434 Say you're stopped at 0x08000003 as above. Reverse continuing 4435 from that point should hit B2 as below. Reading the PC when the 4436 SIGTRAP is reported should read 0x08000001 and INSN2 should have 4437 been de-executed already. 4438 4439 B1 0x08000000 : INSN1 4440 B2 PC -> 0x08000001 : INSN2 4441 0x08000002 : INSN3 4442 0x08000003 : INSN4 4443 4444 We can't apply the same logic as for forward execution, because 4445 we would wrongly adjust the PC to 0x08000000, since there's a 4446 breakpoint at PC - 1. We'd then report a hit on B1, although 4447 INSN1 hadn't been de-executed yet. Doing nothing is the correct 4448 behaviour. */ 4449 if (execution_direction == EXEC_REVERSE) 4450 return; 4451 4452 /* If the target can tell whether the thread hit a SW breakpoint, 4453 trust it. Targets that can tell also adjust the PC 4454 themselves. */ 4455 if (target_supports_stopped_by_sw_breakpoint ()) 4456 return; 4457 4458 /* Note that relying on whether a breakpoint is planted in memory to 4459 determine this can fail. E.g,. the breakpoint could have been 4460 removed since. Or the thread could have been told to step an 4461 instruction the size of a breakpoint instruction, and only 4462 _after_ was a breakpoint inserted at its address. */ 4463 4464 /* If this target does not decrement the PC after breakpoints, then 4465 we have nothing to do. */ 4466 regcache = get_thread_regcache (thread); 4467 gdbarch = regcache->arch (); 4468 4469 decr_pc = gdbarch_decr_pc_after_break (gdbarch); 4470 if (decr_pc == 0) 4471 return; 4472 4473 const address_space *aspace = regcache->aspace (); 4474 4475 /* Find the location where (if we've hit a breakpoint) the 4476 breakpoint would be. */ 4477 breakpoint_pc = regcache_read_pc (regcache) - decr_pc; 4478 4479 /* If the target can't tell whether a software breakpoint triggered, 4480 fallback to figuring it out based on breakpoints we think were 4481 inserted in the target, and on whether the thread was stepped or 4482 continued. */ 4483 4484 /* Check whether there actually is a software breakpoint inserted at 4485 that location. 4486 4487 If in non-stop mode, a race condition is possible where we've 4488 removed a breakpoint, but stop events for that breakpoint were 4489 already queued and arrive later. To suppress those spurious 4490 SIGTRAPs, we keep a list of such breakpoint locations for a bit, 4491 and retire them after a number of stop events are reported. Note 4492 this is an heuristic and can thus get confused. The real fix is 4493 to get the "stopped by SW BP and needs adjustment" info out of 4494 the target/kernel (and thus never reach here; see above). */ 4495 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc) 4496 || (target_is_non_stop_p () 4497 && moribund_breakpoint_here_p (aspace, breakpoint_pc))) 4498 { 4499 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable; 4500 4501 if (record_full_is_used ()) 4502 restore_operation_disable.emplace 4503 (record_full_gdb_operation_disable_set ()); 4504 4505 /* When using hardware single-step, a SIGTRAP is reported for both 4506 a completed single-step and a software breakpoint. Need to 4507 differentiate between the two, as the latter needs adjusting 4508 but the former does not. 4509 4510 The SIGTRAP can be due to a completed hardware single-step only if 4511 - we didn't insert software single-step breakpoints 4512 - this thread is currently being stepped 4513 4514 If any of these events did not occur, we must have stopped due 4515 to hitting a software breakpoint, and have to back up to the 4516 breakpoint address. 4517 4518 As a special case, we could have hardware single-stepped a 4519 software breakpoint. In this case (prev_pc == breakpoint_pc), 4520 we also need to back up to the breakpoint address. */ 4521 4522 if (thread_has_single_step_breakpoints_set (thread) 4523 || !currently_stepping (thread) 4524 || (thread->stepped_breakpoint 4525 && thread->prev_pc == breakpoint_pc)) 4526 regcache_write_pc (regcache, breakpoint_pc); 4527 } 4528 } 4529 4530 static bool 4531 stepped_in_from (frame_info_ptr frame, struct frame_id step_frame_id) 4532 { 4533 for (frame = get_prev_frame (frame); 4534 frame != nullptr; 4535 frame = get_prev_frame (frame)) 4536 { 4537 if (get_frame_id (frame) == step_frame_id) 4538 return true; 4539 4540 if (get_frame_type (frame) != INLINE_FRAME) 4541 break; 4542 } 4543 4544 return false; 4545 } 4546 4547 /* Look for an inline frame that is marked for skip. 4548 If PREV_FRAME is TRUE start at the previous frame, 4549 otherwise start at the current frame. Stop at the 4550 first non-inline frame, or at the frame where the 4551 step started. */ 4552 4553 static bool 4554 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp) 4555 { 4556 frame_info_ptr frame = get_current_frame (); 4557 4558 if (prev_frame) 4559 frame = get_prev_frame (frame); 4560 4561 for (; frame != nullptr; frame = get_prev_frame (frame)) 4562 { 4563 const char *fn = nullptr; 4564 symtab_and_line sal; 4565 struct symbol *sym; 4566 4567 if (get_frame_id (frame) == tp->control.step_frame_id) 4568 break; 4569 if (get_frame_type (frame) != INLINE_FRAME) 4570 break; 4571 4572 sal = find_frame_sal (frame); 4573 sym = get_frame_function (frame); 4574 4575 if (sym != nullptr) 4576 fn = sym->print_name (); 4577 4578 if (sal.line != 0 4579 && function_name_is_marked_for_skip (fn, sal)) 4580 return true; 4581 } 4582 4583 return false; 4584 } 4585 4586 /* If the event thread has the stop requested flag set, pretend it 4587 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to 4588 target_stop). */ 4589 4590 static bool 4591 handle_stop_requested (struct execution_control_state *ecs) 4592 { 4593 if (ecs->event_thread->stop_requested) 4594 { 4595 ecs->ws.set_stopped (GDB_SIGNAL_0); 4596 handle_signal_stop (ecs); 4597 return true; 4598 } 4599 return false; 4600 } 4601 4602 /* Auxiliary function that handles syscall entry/return events. 4603 It returns true if the inferior should keep going (and GDB 4604 should ignore the event), or false if the event deserves to be 4605 processed. */ 4606 4607 static bool 4608 handle_syscall_event (struct execution_control_state *ecs) 4609 { 4610 struct regcache *regcache; 4611 int syscall_number; 4612 4613 context_switch (ecs); 4614 4615 regcache = get_thread_regcache (ecs->event_thread); 4616 syscall_number = ecs->ws.syscall_number (); 4617 ecs->event_thread->set_stop_pc (regcache_read_pc (regcache)); 4618 4619 if (catch_syscall_enabled () > 0 4620 && catching_syscall_number (syscall_number)) 4621 { 4622 infrun_debug_printf ("syscall number=%d", syscall_number); 4623 4624 ecs->event_thread->control.stop_bpstat 4625 = bpstat_stop_status_nowatch (regcache->aspace (), 4626 ecs->event_thread->stop_pc (), 4627 ecs->event_thread, ecs->ws); 4628 4629 if (handle_stop_requested (ecs)) 4630 return false; 4631 4632 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) 4633 { 4634 /* Catchpoint hit. */ 4635 return false; 4636 } 4637 } 4638 4639 if (handle_stop_requested (ecs)) 4640 return false; 4641 4642 /* If no catchpoint triggered for this, then keep going. */ 4643 keep_going (ecs); 4644 4645 return true; 4646 } 4647 4648 /* Lazily fill in the execution_control_state's stop_func_* fields. */ 4649 4650 static void 4651 fill_in_stop_func (struct gdbarch *gdbarch, 4652 struct execution_control_state *ecs) 4653 { 4654 if (!ecs->stop_func_filled_in) 4655 { 4656 const block *block; 4657 const general_symbol_info *gsi; 4658 4659 /* Don't care about return value; stop_func_start and stop_func_name 4660 will both be 0 if it doesn't work. */ 4661 find_pc_partial_function_sym (ecs->event_thread->stop_pc (), 4662 &gsi, 4663 &ecs->stop_func_start, 4664 &ecs->stop_func_end, 4665 &block); 4666 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name (); 4667 4668 /* The call to find_pc_partial_function, above, will set 4669 stop_func_start and stop_func_end to the start and end 4670 of the range containing the stop pc. If this range 4671 contains the entry pc for the block (which is always the 4672 case for contiguous blocks), advance stop_func_start past 4673 the function's start offset and entrypoint. Note that 4674 stop_func_start is NOT advanced when in a range of a 4675 non-contiguous block that does not contain the entry pc. */ 4676 if (block != nullptr 4677 && ecs->stop_func_start <= block->entry_pc () 4678 && block->entry_pc () < ecs->stop_func_end) 4679 { 4680 ecs->stop_func_start 4681 += gdbarch_deprecated_function_start_offset (gdbarch); 4682 4683 if (gdbarch_skip_entrypoint_p (gdbarch)) 4684 ecs->stop_func_start 4685 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start); 4686 } 4687 4688 ecs->stop_func_filled_in = 1; 4689 } 4690 } 4691 4692 4693 /* Return the STOP_SOON field of the inferior pointed at by ECS. */ 4694 4695 static enum stop_kind 4696 get_inferior_stop_soon (execution_control_state *ecs) 4697 { 4698 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid); 4699 4700 gdb_assert (inf != nullptr); 4701 return inf->control.stop_soon; 4702 } 4703 4704 /* Poll for one event out of the current target. Store the resulting 4705 waitstatus in WS, and return the event ptid. Does not block. */ 4706 4707 static ptid_t 4708 poll_one_curr_target (struct target_waitstatus *ws) 4709 { 4710 ptid_t event_ptid; 4711 4712 overlay_cache_invalid = 1; 4713 4714 /* Flush target cache before starting to handle each event. 4715 Target was running and cache could be stale. This is just a 4716 heuristic. Running threads may modify target memory, but we 4717 don't get any event. */ 4718 target_dcache_invalidate (); 4719 4720 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG); 4721 4722 if (debug_infrun) 4723 print_target_wait_results (minus_one_ptid, event_ptid, *ws); 4724 4725 return event_ptid; 4726 } 4727 4728 /* Wait for one event out of any target. */ 4729 4730 static wait_one_event 4731 wait_one () 4732 { 4733 while (1) 4734 { 4735 for (inferior *inf : all_inferiors ()) 4736 { 4737 process_stratum_target *target = inf->process_target (); 4738 if (target == nullptr 4739 || !target->is_async_p () 4740 || !target->threads_executing) 4741 continue; 4742 4743 switch_to_inferior_no_thread (inf); 4744 4745 wait_one_event event; 4746 event.target = target; 4747 event.ptid = poll_one_curr_target (&event.ws); 4748 4749 if (event.ws.kind () == TARGET_WAITKIND_NO_RESUMED) 4750 { 4751 /* If nothing is resumed, remove the target from the 4752 event loop. */ 4753 target_async (false); 4754 } 4755 else if (event.ws.kind () != TARGET_WAITKIND_IGNORE) 4756 return event; 4757 } 4758 4759 /* Block waiting for some event. */ 4760 4761 fd_set readfds; 4762 int nfds = 0; 4763 4764 FD_ZERO (&readfds); 4765 4766 for (inferior *inf : all_inferiors ()) 4767 { 4768 process_stratum_target *target = inf->process_target (); 4769 if (target == nullptr 4770 || !target->is_async_p () 4771 || !target->threads_executing) 4772 continue; 4773 4774 int fd = target->async_wait_fd (); 4775 FD_SET (fd, &readfds); 4776 if (nfds <= fd) 4777 nfds = fd + 1; 4778 } 4779 4780 if (nfds == 0) 4781 { 4782 /* No waitable targets left. All must be stopped. */ 4783 target_waitstatus ws; 4784 ws.set_no_resumed (); 4785 return {nullptr, minus_one_ptid, std::move (ws)}; 4786 } 4787 4788 QUIT; 4789 4790 int numfds = interruptible_select (nfds, &readfds, 0, nullptr, 0); 4791 if (numfds < 0) 4792 { 4793 if (errno == EINTR) 4794 continue; 4795 else 4796 perror_with_name ("interruptible_select"); 4797 } 4798 } 4799 } 4800 4801 /* Save the thread's event and stop reason to process it later. */ 4802 4803 static void 4804 save_waitstatus (struct thread_info *tp, const target_waitstatus &ws) 4805 { 4806 infrun_debug_printf ("saving status %s for %s", 4807 ws.to_string ().c_str (), 4808 tp->ptid.to_string ().c_str ()); 4809 4810 /* Record for later. */ 4811 tp->set_pending_waitstatus (ws); 4812 4813 if (ws.kind () == TARGET_WAITKIND_STOPPED 4814 && ws.sig () == GDB_SIGNAL_TRAP) 4815 { 4816 struct regcache *regcache = get_thread_regcache (tp); 4817 const address_space *aspace = regcache->aspace (); 4818 CORE_ADDR pc = regcache_read_pc (regcache); 4819 4820 adjust_pc_after_break (tp, tp->pending_waitstatus ()); 4821 4822 scoped_restore_current_thread restore_thread; 4823 switch_to_thread (tp); 4824 4825 if (target_stopped_by_watchpoint ()) 4826 tp->set_stop_reason (TARGET_STOPPED_BY_WATCHPOINT); 4827 else if (target_supports_stopped_by_sw_breakpoint () 4828 && target_stopped_by_sw_breakpoint ()) 4829 tp->set_stop_reason (TARGET_STOPPED_BY_SW_BREAKPOINT); 4830 else if (target_supports_stopped_by_hw_breakpoint () 4831 && target_stopped_by_hw_breakpoint ()) 4832 tp->set_stop_reason (TARGET_STOPPED_BY_HW_BREAKPOINT); 4833 else if (!target_supports_stopped_by_hw_breakpoint () 4834 && hardware_breakpoint_inserted_here_p (aspace, pc)) 4835 tp->set_stop_reason (TARGET_STOPPED_BY_HW_BREAKPOINT); 4836 else if (!target_supports_stopped_by_sw_breakpoint () 4837 && software_breakpoint_inserted_here_p (aspace, pc)) 4838 tp->set_stop_reason (TARGET_STOPPED_BY_SW_BREAKPOINT); 4839 else if (!thread_has_single_step_breakpoints_set (tp) 4840 && currently_stepping (tp)) 4841 tp->set_stop_reason (TARGET_STOPPED_BY_SINGLE_STEP); 4842 } 4843 } 4844 4845 /* Mark the non-executing threads accordingly. In all-stop, all 4846 threads of all processes are stopped when we get any event 4847 reported. In non-stop mode, only the event thread stops. */ 4848 4849 static void 4850 mark_non_executing_threads (process_stratum_target *target, 4851 ptid_t event_ptid, 4852 const target_waitstatus &ws) 4853 { 4854 ptid_t mark_ptid; 4855 4856 if (!target_is_non_stop_p ()) 4857 mark_ptid = minus_one_ptid; 4858 else if (ws.kind () == TARGET_WAITKIND_SIGNALLED 4859 || ws.kind () == TARGET_WAITKIND_EXITED) 4860 { 4861 /* If we're handling a process exit in non-stop mode, even 4862 though threads haven't been deleted yet, one would think 4863 that there is nothing to do, as threads of the dead process 4864 will be soon deleted, and threads of any other process were 4865 left running. However, on some targets, threads survive a 4866 process exit event. E.g., for the "checkpoint" command, 4867 when the current checkpoint/fork exits, linux-fork.c 4868 automatically switches to another fork from within 4869 target_mourn_inferior, by associating the same 4870 inferior/thread to another fork. We haven't mourned yet at 4871 this point, but we must mark any threads left in the 4872 process as not-executing so that finish_thread_state marks 4873 them stopped (in the user's perspective) if/when we present 4874 the stop to the user. */ 4875 mark_ptid = ptid_t (event_ptid.pid ()); 4876 } 4877 else 4878 mark_ptid = event_ptid; 4879 4880 set_executing (target, mark_ptid, false); 4881 4882 /* Likewise the resumed flag. */ 4883 set_resumed (target, mark_ptid, false); 4884 } 4885 4886 /* Handle one event after stopping threads. If the eventing thread 4887 reports back any interesting event, we leave it pending. If the 4888 eventing thread was in the middle of a displaced step, we 4889 cancel/finish it, and unless the thread's inferior is being 4890 detached, put the thread back in the step-over chain. Returns true 4891 if there are no resumed threads left in the target (thus there's no 4892 point in waiting further), false otherwise. */ 4893 4894 static bool 4895 handle_one (const wait_one_event &event) 4896 { 4897 infrun_debug_printf 4898 ("%s %s", event.ws.to_string ().c_str (), 4899 event.ptid.to_string ().c_str ()); 4900 4901 if (event.ws.kind () == TARGET_WAITKIND_NO_RESUMED) 4902 { 4903 /* All resumed threads exited. */ 4904 return true; 4905 } 4906 else if (event.ws.kind () == TARGET_WAITKIND_THREAD_EXITED 4907 || event.ws.kind () == TARGET_WAITKIND_EXITED 4908 || event.ws.kind () == TARGET_WAITKIND_SIGNALLED) 4909 { 4910 /* One thread/process exited/signalled. */ 4911 4912 thread_info *t = nullptr; 4913 4914 /* The target may have reported just a pid. If so, try 4915 the first non-exited thread. */ 4916 if (event.ptid.is_pid ()) 4917 { 4918 int pid = event.ptid.pid (); 4919 inferior *inf = find_inferior_pid (event.target, pid); 4920 for (thread_info *tp : inf->non_exited_threads ()) 4921 { 4922 t = tp; 4923 break; 4924 } 4925 4926 /* If there is no available thread, the event would 4927 have to be appended to a per-inferior event list, 4928 which does not exist (and if it did, we'd have 4929 to adjust run control command to be able to 4930 resume such an inferior). We assert here instead 4931 of going into an infinite loop. */ 4932 gdb_assert (t != nullptr); 4933 4934 infrun_debug_printf 4935 ("using %s", t->ptid.to_string ().c_str ()); 4936 } 4937 else 4938 { 4939 t = find_thread_ptid (event.target, event.ptid); 4940 /* Check if this is the first time we see this thread. 4941 Don't bother adding if it individually exited. */ 4942 if (t == nullptr 4943 && event.ws.kind () != TARGET_WAITKIND_THREAD_EXITED) 4944 t = add_thread (event.target, event.ptid); 4945 } 4946 4947 if (t != nullptr) 4948 { 4949 /* Set the threads as non-executing to avoid 4950 another stop attempt on them. */ 4951 switch_to_thread_no_regs (t); 4952 mark_non_executing_threads (event.target, event.ptid, 4953 event.ws); 4954 save_waitstatus (t, event.ws); 4955 t->stop_requested = false; 4956 } 4957 } 4958 else 4959 { 4960 thread_info *t = find_thread_ptid (event.target, event.ptid); 4961 if (t == nullptr) 4962 t = add_thread (event.target, event.ptid); 4963 4964 t->stop_requested = 0; 4965 t->set_executing (false); 4966 t->set_resumed (false); 4967 t->control.may_range_step = 0; 4968 4969 /* This may be the first time we see the inferior report 4970 a stop. */ 4971 if (t->inf->needs_setup) 4972 { 4973 switch_to_thread_no_regs (t); 4974 setup_inferior (0); 4975 } 4976 4977 if (event.ws.kind () == TARGET_WAITKIND_STOPPED 4978 && event.ws.sig () == GDB_SIGNAL_0) 4979 { 4980 /* We caught the event that we intended to catch, so 4981 there's no event to save as pending. */ 4982 4983 if (displaced_step_finish (t, GDB_SIGNAL_0) 4984 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED) 4985 { 4986 /* Add it back to the step-over queue. */ 4987 infrun_debug_printf 4988 ("displaced-step of %s canceled", 4989 t->ptid.to_string ().c_str ()); 4990 4991 t->control.trap_expected = 0; 4992 if (!t->inf->detaching) 4993 global_thread_step_over_chain_enqueue (t); 4994 } 4995 } 4996 else 4997 { 4998 enum gdb_signal sig; 4999 struct regcache *regcache; 5000 5001 infrun_debug_printf 5002 ("target_wait %s, saving status for %s", 5003 event.ws.to_string ().c_str (), 5004 t->ptid.to_string ().c_str ()); 5005 5006 /* Record for later. */ 5007 save_waitstatus (t, event.ws); 5008 5009 sig = (event.ws.kind () == TARGET_WAITKIND_STOPPED 5010 ? event.ws.sig () : GDB_SIGNAL_0); 5011 5012 if (displaced_step_finish (t, sig) 5013 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED) 5014 { 5015 /* Add it back to the step-over queue. */ 5016 t->control.trap_expected = 0; 5017 if (!t->inf->detaching) 5018 global_thread_step_over_chain_enqueue (t); 5019 } 5020 5021 regcache = get_thread_regcache (t); 5022 t->set_stop_pc (regcache_read_pc (regcache)); 5023 5024 infrun_debug_printf ("saved stop_pc=%s for %s " 5025 "(currently_stepping=%d)", 5026 paddress (target_gdbarch (), t->stop_pc ()), 5027 t->ptid.to_string ().c_str (), 5028 currently_stepping (t)); 5029 } 5030 } 5031 5032 return false; 5033 } 5034 5035 /* See infrun.h. */ 5036 5037 void 5038 stop_all_threads (const char *reason, inferior *inf) 5039 { 5040 /* We may need multiple passes to discover all threads. */ 5041 int pass; 5042 int iterations = 0; 5043 5044 gdb_assert (exists_non_stop_target ()); 5045 5046 INFRUN_SCOPED_DEBUG_START_END ("reason=%s, inf=%d", reason, 5047 inf != nullptr ? inf->num : -1); 5048 5049 infrun_debug_show_threads ("non-exited threads", 5050 all_non_exited_threads ()); 5051 5052 scoped_restore_current_thread restore_thread; 5053 5054 /* Enable thread events on relevant targets. */ 5055 for (auto *target : all_non_exited_process_targets ()) 5056 { 5057 if (inf != nullptr && inf->process_target () != target) 5058 continue; 5059 5060 switch_to_target_no_thread (target); 5061 target_thread_events (true); 5062 } 5063 5064 SCOPE_EXIT 5065 { 5066 /* Disable thread events on relevant targets. */ 5067 for (auto *target : all_non_exited_process_targets ()) 5068 { 5069 if (inf != nullptr && inf->process_target () != target) 5070 continue; 5071 5072 switch_to_target_no_thread (target); 5073 target_thread_events (false); 5074 } 5075 5076 /* Use debug_prefixed_printf directly to get a meaningful function 5077 name. */ 5078 if (debug_infrun) 5079 debug_prefixed_printf ("infrun", "stop_all_threads", "done"); 5080 }; 5081 5082 /* Request threads to stop, and then wait for the stops. Because 5083 threads we already know about can spawn more threads while we're 5084 trying to stop them, and we only learn about new threads when we 5085 update the thread list, do this in a loop, and keep iterating 5086 until two passes find no threads that need to be stopped. */ 5087 for (pass = 0; pass < 2; pass++, iterations++) 5088 { 5089 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations); 5090 while (1) 5091 { 5092 int waits_needed = 0; 5093 5094 for (auto *target : all_non_exited_process_targets ()) 5095 { 5096 if (inf != nullptr && inf->process_target () != target) 5097 continue; 5098 5099 switch_to_target_no_thread (target); 5100 update_thread_list (); 5101 } 5102 5103 /* Go through all threads looking for threads that we need 5104 to tell the target to stop. */ 5105 for (thread_info *t : all_non_exited_threads ()) 5106 { 5107 if (inf != nullptr && t->inf != inf) 5108 continue; 5109 5110 /* For a single-target setting with an all-stop target, 5111 we would not even arrive here. For a multi-target 5112 setting, until GDB is able to handle a mixture of 5113 all-stop and non-stop targets, simply skip all-stop 5114 targets' threads. This should be fine due to the 5115 protection of 'check_multi_target_resumption'. */ 5116 5117 switch_to_thread_no_regs (t); 5118 if (!target_is_non_stop_p ()) 5119 continue; 5120 5121 if (t->executing ()) 5122 { 5123 /* If already stopping, don't request a stop again. 5124 We just haven't seen the notification yet. */ 5125 if (!t->stop_requested) 5126 { 5127 infrun_debug_printf (" %s executing, need stop", 5128 t->ptid.to_string ().c_str ()); 5129 target_stop (t->ptid); 5130 t->stop_requested = 1; 5131 } 5132 else 5133 { 5134 infrun_debug_printf (" %s executing, already stopping", 5135 t->ptid.to_string ().c_str ()); 5136 } 5137 5138 if (t->stop_requested) 5139 waits_needed++; 5140 } 5141 else 5142 { 5143 infrun_debug_printf (" %s not executing", 5144 t->ptid.to_string ().c_str ()); 5145 5146 /* The thread may be not executing, but still be 5147 resumed with a pending status to process. */ 5148 t->set_resumed (false); 5149 } 5150 } 5151 5152 if (waits_needed == 0) 5153 break; 5154 5155 /* If we find new threads on the second iteration, restart 5156 over. We want to see two iterations in a row with all 5157 threads stopped. */ 5158 if (pass > 0) 5159 pass = -1; 5160 5161 for (int i = 0; i < waits_needed; i++) 5162 { 5163 wait_one_event event = wait_one (); 5164 if (handle_one (event)) 5165 break; 5166 } 5167 } 5168 } 5169 } 5170 5171 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */ 5172 5173 static bool 5174 handle_no_resumed (struct execution_control_state *ecs) 5175 { 5176 if (target_can_async_p ()) 5177 { 5178 bool any_sync = false; 5179 5180 for (ui *ui : all_uis ()) 5181 { 5182 if (ui->prompt_state == PROMPT_BLOCKED) 5183 { 5184 any_sync = true; 5185 break; 5186 } 5187 } 5188 if (!any_sync) 5189 { 5190 /* There were no unwaited-for children left in the target, but, 5191 we're not synchronously waiting for events either. Just 5192 ignore. */ 5193 5194 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)"); 5195 prepare_to_wait (ecs); 5196 return true; 5197 } 5198 } 5199 5200 /* Otherwise, if we were running a synchronous execution command, we 5201 may need to cancel it and give the user back the terminal. 5202 5203 In non-stop mode, the target can't tell whether we've already 5204 consumed previous stop events, so it can end up sending us a 5205 no-resumed event like so: 5206 5207 #0 - thread 1 is left stopped 5208 5209 #1 - thread 2 is resumed and hits breakpoint 5210 -> TARGET_WAITKIND_STOPPED 5211 5212 #2 - thread 3 is resumed and exits 5213 this is the last resumed thread, so 5214 -> TARGET_WAITKIND_NO_RESUMED 5215 5216 #3 - gdb processes stop for thread 2 and decides to re-resume 5217 it. 5218 5219 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event. 5220 thread 2 is now resumed, so the event should be ignored. 5221 5222 IOW, if the stop for thread 2 doesn't end a foreground command, 5223 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED 5224 event. But it could be that the event meant that thread 2 itself 5225 (or whatever other thread was the last resumed thread) exited. 5226 5227 To address this we refresh the thread list and check whether we 5228 have resumed threads _now_. In the example above, this removes 5229 thread 3 from the thread list. If thread 2 was re-resumed, we 5230 ignore this event. If we find no thread resumed, then we cancel 5231 the synchronous command and show "no unwaited-for " to the 5232 user. */ 5233 5234 inferior *curr_inf = current_inferior (); 5235 5236 scoped_restore_current_thread restore_thread; 5237 update_thread_list (); 5238 5239 /* If: 5240 5241 - the current target has no thread executing, and 5242 - the current inferior is native, and 5243 - the current inferior is the one which has the terminal, and 5244 - we did nothing, 5245 5246 then a Ctrl-C from this point on would remain stuck in the 5247 kernel, until a thread resumes and dequeues it. That would 5248 result in the GDB CLI not reacting to Ctrl-C, not able to 5249 interrupt the program. To address this, if the current inferior 5250 no longer has any thread executing, we give the terminal to some 5251 other inferior that has at least one thread executing. */ 5252 bool swap_terminal = true; 5253 5254 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or 5255 whether to report it to the user. */ 5256 bool ignore_event = false; 5257 5258 for (thread_info *thread : all_non_exited_threads ()) 5259 { 5260 if (swap_terminal && thread->executing ()) 5261 { 5262 if (thread->inf != curr_inf) 5263 { 5264 target_terminal::ours (); 5265 5266 switch_to_thread (thread); 5267 target_terminal::inferior (); 5268 } 5269 swap_terminal = false; 5270 } 5271 5272 if (!ignore_event && thread->resumed ()) 5273 { 5274 /* Either there were no unwaited-for children left in the 5275 target at some point, but there are now, or some target 5276 other than the eventing one has unwaited-for children 5277 left. Just ignore. */ 5278 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED " 5279 "(ignoring: found resumed)"); 5280 5281 ignore_event = true; 5282 } 5283 5284 if (ignore_event && !swap_terminal) 5285 break; 5286 } 5287 5288 if (ignore_event) 5289 { 5290 switch_to_inferior_no_thread (curr_inf); 5291 prepare_to_wait (ecs); 5292 return true; 5293 } 5294 5295 /* Go ahead and report the event. */ 5296 return false; 5297 } 5298 5299 /* Given an execution control state that has been freshly filled in by 5300 an event from the inferior, figure out what it means and take 5301 appropriate action. 5302 5303 The alternatives are: 5304 5305 1) stop_waiting and return; to really stop and return to the 5306 debugger. 5307 5308 2) keep_going and return; to wait for the next event (set 5309 ecs->event_thread->stepping_over_breakpoint to 1 to single step 5310 once). */ 5311 5312 static void 5313 handle_inferior_event (struct execution_control_state *ecs) 5314 { 5315 /* Make sure that all temporary struct value objects that were 5316 created during the handling of the event get deleted at the 5317 end. */ 5318 scoped_value_mark free_values; 5319 5320 infrun_debug_printf ("%s", ecs->ws.to_string ().c_str ()); 5321 5322 if (ecs->ws.kind () == TARGET_WAITKIND_IGNORE) 5323 { 5324 /* We had an event in the inferior, but we are not interested in 5325 handling it at this level. The lower layers have already 5326 done what needs to be done, if anything. 5327 5328 One of the possible circumstances for this is when the 5329 inferior produces output for the console. The inferior has 5330 not stopped, and we are ignoring the event. Another possible 5331 circumstance is any event which the lower level knows will be 5332 reported multiple times without an intervening resume. */ 5333 prepare_to_wait (ecs); 5334 return; 5335 } 5336 5337 if (ecs->ws.kind () == TARGET_WAITKIND_THREAD_EXITED) 5338 { 5339 prepare_to_wait (ecs); 5340 return; 5341 } 5342 5343 if (ecs->ws.kind () == TARGET_WAITKIND_NO_RESUMED 5344 && handle_no_resumed (ecs)) 5345 return; 5346 5347 /* Cache the last target/ptid/waitstatus. */ 5348 set_last_target_status (ecs->target, ecs->ptid, ecs->ws); 5349 5350 /* Always clear state belonging to the previous time we stopped. */ 5351 stop_stack_dummy = STOP_NONE; 5352 5353 if (ecs->ws.kind () == TARGET_WAITKIND_NO_RESUMED) 5354 { 5355 /* No unwaited-for children left. IOW, all resumed children 5356 have exited. */ 5357 stop_print_frame = false; 5358 stop_waiting (ecs); 5359 return; 5360 } 5361 5362 if (ecs->ws.kind () != TARGET_WAITKIND_EXITED 5363 && ecs->ws.kind () != TARGET_WAITKIND_SIGNALLED) 5364 { 5365 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid); 5366 /* If it's a new thread, add it to the thread database. */ 5367 if (ecs->event_thread == nullptr) 5368 ecs->event_thread = add_thread (ecs->target, ecs->ptid); 5369 5370 /* Disable range stepping. If the next step request could use a 5371 range, this will be end up re-enabled then. */ 5372 ecs->event_thread->control.may_range_step = 0; 5373 } 5374 5375 /* Dependent on valid ECS->EVENT_THREAD. */ 5376 adjust_pc_after_break (ecs->event_thread, ecs->ws); 5377 5378 /* Dependent on the current PC value modified by adjust_pc_after_break. */ 5379 reinit_frame_cache (); 5380 5381 breakpoint_retire_moribund (); 5382 5383 /* First, distinguish signals caused by the debugger from signals 5384 that have to do with the program's own actions. Note that 5385 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending 5386 on the operating system version. Here we detect when a SIGILL or 5387 SIGEMT is really a breakpoint and change it to SIGTRAP. We do 5388 something similar for SIGSEGV, since a SIGSEGV will be generated 5389 when we're trying to execute a breakpoint instruction on a 5390 non-executable stack. This happens for call dummy breakpoints 5391 for architectures like SPARC that place call dummies on the 5392 stack. */ 5393 if (ecs->ws.kind () == TARGET_WAITKIND_STOPPED 5394 && (ecs->ws.sig () == GDB_SIGNAL_ILL 5395 || ecs->ws.sig () == GDB_SIGNAL_SEGV 5396 || ecs->ws.sig () == GDB_SIGNAL_EMT)) 5397 { 5398 struct regcache *regcache = get_thread_regcache (ecs->event_thread); 5399 5400 if (breakpoint_inserted_here_p (regcache->aspace (), 5401 regcache_read_pc (regcache))) 5402 { 5403 infrun_debug_printf ("Treating signal as SIGTRAP"); 5404 ecs->ws.set_stopped (GDB_SIGNAL_TRAP); 5405 } 5406 } 5407 5408 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws); 5409 5410 switch (ecs->ws.kind ()) 5411 { 5412 case TARGET_WAITKIND_LOADED: 5413 { 5414 context_switch (ecs); 5415 /* Ignore gracefully during startup of the inferior, as it might 5416 be the shell which has just loaded some objects, otherwise 5417 add the symbols for the newly loaded objects. Also ignore at 5418 the beginning of an attach or remote session; we will query 5419 the full list of libraries once the connection is 5420 established. */ 5421 5422 stop_kind stop_soon = get_inferior_stop_soon (ecs); 5423 if (stop_soon == NO_STOP_QUIETLY) 5424 { 5425 struct regcache *regcache; 5426 5427 regcache = get_thread_regcache (ecs->event_thread); 5428 5429 handle_solib_event (); 5430 5431 ecs->event_thread->set_stop_pc (regcache_read_pc (regcache)); 5432 ecs->event_thread->control.stop_bpstat 5433 = bpstat_stop_status_nowatch (regcache->aspace (), 5434 ecs->event_thread->stop_pc (), 5435 ecs->event_thread, ecs->ws); 5436 5437 if (handle_stop_requested (ecs)) 5438 return; 5439 5440 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) 5441 { 5442 /* A catchpoint triggered. */ 5443 process_event_stop_test (ecs); 5444 return; 5445 } 5446 5447 /* If requested, stop when the dynamic linker notifies 5448 gdb of events. This allows the user to get control 5449 and place breakpoints in initializer routines for 5450 dynamically loaded objects (among other things). */ 5451 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0); 5452 if (stop_on_solib_events) 5453 { 5454 /* Make sure we print "Stopped due to solib-event" in 5455 normal_stop. */ 5456 stop_print_frame = true; 5457 5458 stop_waiting (ecs); 5459 return; 5460 } 5461 } 5462 5463 /* If we are skipping through a shell, or through shared library 5464 loading that we aren't interested in, resume the program. If 5465 we're running the program normally, also resume. */ 5466 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY) 5467 { 5468 /* Loading of shared libraries might have changed breakpoint 5469 addresses. Make sure new breakpoints are inserted. */ 5470 if (stop_soon == NO_STOP_QUIETLY) 5471 insert_breakpoints (); 5472 resume (GDB_SIGNAL_0); 5473 prepare_to_wait (ecs); 5474 return; 5475 } 5476 5477 /* But stop if we're attaching or setting up a remote 5478 connection. */ 5479 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP 5480 || stop_soon == STOP_QUIETLY_REMOTE) 5481 { 5482 infrun_debug_printf ("quietly stopped"); 5483 stop_waiting (ecs); 5484 return; 5485 } 5486 5487 internal_error (_("unhandled stop_soon: %d"), (int) stop_soon); 5488 } 5489 5490 case TARGET_WAITKIND_SPURIOUS: 5491 if (handle_stop_requested (ecs)) 5492 return; 5493 context_switch (ecs); 5494 resume (GDB_SIGNAL_0); 5495 prepare_to_wait (ecs); 5496 return; 5497 5498 case TARGET_WAITKIND_THREAD_CREATED: 5499 if (handle_stop_requested (ecs)) 5500 return; 5501 context_switch (ecs); 5502 if (!switch_back_to_stepped_thread (ecs)) 5503 keep_going (ecs); 5504 return; 5505 5506 case TARGET_WAITKIND_EXITED: 5507 case TARGET_WAITKIND_SIGNALLED: 5508 { 5509 /* Depending on the system, ecs->ptid may point to a thread or 5510 to a process. On some targets, target_mourn_inferior may 5511 need to have access to the just-exited thread. That is the 5512 case of GNU/Linux's "checkpoint" support, for example. 5513 Call the switch_to_xxx routine as appropriate. */ 5514 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid); 5515 if (thr != nullptr) 5516 switch_to_thread (thr); 5517 else 5518 { 5519 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid); 5520 switch_to_inferior_no_thread (inf); 5521 } 5522 } 5523 handle_vfork_child_exec_or_exit (0); 5524 target_terminal::ours (); /* Must do this before mourn anyway. */ 5525 5526 /* Clearing any previous state of convenience variables. */ 5527 clear_exit_convenience_vars (); 5528 5529 if (ecs->ws.kind () == TARGET_WAITKIND_EXITED) 5530 { 5531 /* Record the exit code in the convenience variable $_exitcode, so 5532 that the user can inspect this again later. */ 5533 set_internalvar_integer (lookup_internalvar ("_exitcode"), 5534 (LONGEST) ecs->ws.exit_status ()); 5535 5536 /* Also record this in the inferior itself. */ 5537 current_inferior ()->has_exit_code = true; 5538 current_inferior ()->exit_code = (LONGEST) ecs->ws.exit_status (); 5539 5540 /* Support the --return-child-result option. */ 5541 return_child_result_value = ecs->ws.exit_status (); 5542 5543 gdb::observers::exited.notify (ecs->ws.exit_status ()); 5544 } 5545 else 5546 { 5547 struct gdbarch *gdbarch = current_inferior ()->gdbarch; 5548 5549 if (gdbarch_gdb_signal_to_target_p (gdbarch)) 5550 { 5551 /* Set the value of the internal variable $_exitsignal, 5552 which holds the signal uncaught by the inferior. */ 5553 set_internalvar_integer (lookup_internalvar ("_exitsignal"), 5554 gdbarch_gdb_signal_to_target (gdbarch, 5555 ecs->ws.sig ())); 5556 } 5557 else 5558 { 5559 /* We don't have access to the target's method used for 5560 converting between signal numbers (GDB's internal 5561 representation <-> target's representation). 5562 Therefore, we cannot do a good job at displaying this 5563 information to the user. It's better to just warn 5564 her about it (if infrun debugging is enabled), and 5565 give up. */ 5566 infrun_debug_printf ("Cannot fill $_exitsignal with the correct " 5567 "signal number."); 5568 } 5569 5570 gdb::observers::signal_exited.notify (ecs->ws.sig ()); 5571 } 5572 5573 gdb_flush (gdb_stdout); 5574 target_mourn_inferior (inferior_ptid); 5575 stop_print_frame = false; 5576 stop_waiting (ecs); 5577 return; 5578 5579 case TARGET_WAITKIND_FORKED: 5580 case TARGET_WAITKIND_VFORKED: 5581 /* Check whether the inferior is displaced stepping. */ 5582 { 5583 struct regcache *regcache = get_thread_regcache (ecs->event_thread); 5584 struct gdbarch *gdbarch = regcache->arch (); 5585 inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid); 5586 5587 /* If this is a fork (child gets its own address space copy) 5588 and some displaced step buffers were in use at the time of 5589 the fork, restore the displaced step buffer bytes in the 5590 child process. 5591 5592 Architectures which support displaced stepping and fork 5593 events must supply an implementation of 5594 gdbarch_displaced_step_restore_all_in_ptid. This is not 5595 enforced during gdbarch validation to support architectures 5596 which support displaced stepping but not forks. */ 5597 if (ecs->ws.kind () == TARGET_WAITKIND_FORKED 5598 && gdbarch_supports_displaced_stepping (gdbarch)) 5599 gdbarch_displaced_step_restore_all_in_ptid 5600 (gdbarch, parent_inf, ecs->ws.child_ptid ()); 5601 5602 /* If displaced stepping is supported, and thread ecs->ptid is 5603 displaced stepping. */ 5604 if (displaced_step_in_progress_thread (ecs->event_thread)) 5605 { 5606 struct regcache *child_regcache; 5607 CORE_ADDR parent_pc; 5608 5609 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED, 5610 indicating that the displaced stepping of syscall instruction 5611 has been done. Perform cleanup for parent process here. Note 5612 that this operation also cleans up the child process for vfork, 5613 because their pages are shared. */ 5614 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP); 5615 /* Start a new step-over in another thread if there's one 5616 that needs it. */ 5617 start_step_over (); 5618 5619 /* Since the vfork/fork syscall instruction was executed in the scratchpad, 5620 the child's PC is also within the scratchpad. Set the child's PC 5621 to the parent's PC value, which has already been fixed up. 5622 FIXME: we use the parent's aspace here, although we're touching 5623 the child, because the child hasn't been added to the inferior 5624 list yet at this point. */ 5625 5626 child_regcache 5627 = get_thread_arch_aspace_regcache (parent_inf->process_target (), 5628 ecs->ws.child_ptid (), 5629 gdbarch, 5630 parent_inf->aspace); 5631 /* Read PC value of parent process. */ 5632 parent_pc = regcache_read_pc (regcache); 5633 5634 displaced_debug_printf ("write child pc from %s to %s", 5635 paddress (gdbarch, 5636 regcache_read_pc (child_regcache)), 5637 paddress (gdbarch, parent_pc)); 5638 5639 regcache_write_pc (child_regcache, parent_pc); 5640 } 5641 } 5642 5643 context_switch (ecs); 5644 5645 /* Immediately detach breakpoints from the child before there's 5646 any chance of letting the user delete breakpoints from the 5647 breakpoint lists. If we don't do this early, it's easy to 5648 leave left over traps in the child, vis: "break foo; catch 5649 fork; c; <fork>; del; c; <child calls foo>". We only follow 5650 the fork on the last `continue', and by that time the 5651 breakpoint at "foo" is long gone from the breakpoint table. 5652 If we vforked, then we don't need to unpatch here, since both 5653 parent and child are sharing the same memory pages; we'll 5654 need to unpatch at follow/detach time instead to be certain 5655 that new breakpoints added between catchpoint hit time and 5656 vfork follow are detached. */ 5657 if (ecs->ws.kind () != TARGET_WAITKIND_VFORKED) 5658 { 5659 /* This won't actually modify the breakpoint list, but will 5660 physically remove the breakpoints from the child. */ 5661 detach_breakpoints (ecs->ws.child_ptid ()); 5662 } 5663 5664 delete_just_stopped_threads_single_step_breakpoints (); 5665 5666 /* In case the event is caught by a catchpoint, remember that 5667 the event is to be followed at the next resume of the thread, 5668 and not immediately. */ 5669 ecs->event_thread->pending_follow = ecs->ws; 5670 5671 ecs->event_thread->set_stop_pc 5672 (regcache_read_pc (get_thread_regcache (ecs->event_thread))); 5673 5674 ecs->event_thread->control.stop_bpstat 5675 = bpstat_stop_status_nowatch (get_current_regcache ()->aspace (), 5676 ecs->event_thread->stop_pc (), 5677 ecs->event_thread, ecs->ws); 5678 5679 if (handle_stop_requested (ecs)) 5680 return; 5681 5682 /* If no catchpoint triggered for this, then keep going. Note 5683 that we're interested in knowing the bpstat actually causes a 5684 stop, not just if it may explain the signal. Software 5685 watchpoints, for example, always appear in the bpstat. */ 5686 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) 5687 { 5688 bool follow_child 5689 = (follow_fork_mode_string == follow_fork_mode_child); 5690 5691 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0); 5692 5693 process_stratum_target *targ 5694 = ecs->event_thread->inf->process_target (); 5695 5696 bool should_resume = follow_fork (); 5697 5698 /* Note that one of these may be an invalid pointer, 5699 depending on detach_fork. */ 5700 thread_info *parent = ecs->event_thread; 5701 thread_info *child = find_thread_ptid (targ, ecs->ws.child_ptid ()); 5702 5703 /* At this point, the parent is marked running, and the 5704 child is marked stopped. */ 5705 5706 /* If not resuming the parent, mark it stopped. */ 5707 if (follow_child && !detach_fork && !non_stop && !sched_multi) 5708 parent->set_running (false); 5709 5710 /* If resuming the child, mark it running. */ 5711 if (follow_child || (!detach_fork && (non_stop || sched_multi))) 5712 child->set_running (true); 5713 5714 /* In non-stop mode, also resume the other branch. */ 5715 if (!detach_fork && (non_stop 5716 || (sched_multi && target_is_non_stop_p ()))) 5717 { 5718 if (follow_child) 5719 switch_to_thread (parent); 5720 else 5721 switch_to_thread (child); 5722 5723 ecs->event_thread = inferior_thread (); 5724 ecs->ptid = inferior_ptid; 5725 keep_going (ecs); 5726 } 5727 5728 if (follow_child) 5729 switch_to_thread (child); 5730 else 5731 switch_to_thread (parent); 5732 5733 ecs->event_thread = inferior_thread (); 5734 ecs->ptid = inferior_ptid; 5735 5736 if (should_resume) 5737 { 5738 /* Never call switch_back_to_stepped_thread if we are waiting for 5739 vfork-done (waiting for an external vfork child to exec or 5740 exit). We will resume only the vforking thread for the purpose 5741 of collecting the vfork-done event, and we will restart any 5742 step once the critical shared address space window is done. */ 5743 if ((!follow_child 5744 && detach_fork 5745 && parent->inf->thread_waiting_for_vfork_done != nullptr) 5746 || !switch_back_to_stepped_thread (ecs)) 5747 keep_going (ecs); 5748 } 5749 else 5750 stop_waiting (ecs); 5751 return; 5752 } 5753 process_event_stop_test (ecs); 5754 return; 5755 5756 case TARGET_WAITKIND_VFORK_DONE: 5757 /* Done with the shared memory region. Re-insert breakpoints in 5758 the parent, and keep going. */ 5759 5760 context_switch (ecs); 5761 5762 handle_vfork_done (ecs->event_thread); 5763 gdb_assert (inferior_thread () == ecs->event_thread); 5764 5765 if (handle_stop_requested (ecs)) 5766 return; 5767 5768 if (!switch_back_to_stepped_thread (ecs)) 5769 { 5770 gdb_assert (inferior_thread () == ecs->event_thread); 5771 /* This also takes care of reinserting breakpoints in the 5772 previously locked inferior. */ 5773 keep_going (ecs); 5774 } 5775 return; 5776 5777 case TARGET_WAITKIND_EXECD: 5778 5779 /* Note we can't read registers yet (the stop_pc), because we 5780 don't yet know the inferior's post-exec architecture. 5781 'stop_pc' is explicitly read below instead. */ 5782 switch_to_thread_no_regs (ecs->event_thread); 5783 5784 /* Do whatever is necessary to the parent branch of the vfork. */ 5785 handle_vfork_child_exec_or_exit (1); 5786 5787 /* This causes the eventpoints and symbol table to be reset. 5788 Must do this now, before trying to determine whether to 5789 stop. */ 5790 follow_exec (inferior_ptid, ecs->ws.execd_pathname ()); 5791 5792 /* In follow_exec we may have deleted the original thread and 5793 created a new one. Make sure that the event thread is the 5794 execd thread for that case (this is a nop otherwise). */ 5795 ecs->event_thread = inferior_thread (); 5796 5797 ecs->event_thread->set_stop_pc 5798 (regcache_read_pc (get_thread_regcache (ecs->event_thread))); 5799 5800 ecs->event_thread->control.stop_bpstat 5801 = bpstat_stop_status_nowatch (get_current_regcache ()->aspace (), 5802 ecs->event_thread->stop_pc (), 5803 ecs->event_thread, ecs->ws); 5804 5805 if (handle_stop_requested (ecs)) 5806 return; 5807 5808 /* If no catchpoint triggered for this, then keep going. */ 5809 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) 5810 { 5811 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0); 5812 keep_going (ecs); 5813 return; 5814 } 5815 process_event_stop_test (ecs); 5816 return; 5817 5818 /* Be careful not to try to gather much state about a thread 5819 that's in a syscall. It's frequently a losing proposition. */ 5820 case TARGET_WAITKIND_SYSCALL_ENTRY: 5821 /* Getting the current syscall number. */ 5822 if (handle_syscall_event (ecs) == 0) 5823 process_event_stop_test (ecs); 5824 return; 5825 5826 /* Before examining the threads further, step this thread to 5827 get it entirely out of the syscall. (We get notice of the 5828 event when the thread is just on the verge of exiting a 5829 syscall. Stepping one instruction seems to get it back 5830 into user code.) */ 5831 case TARGET_WAITKIND_SYSCALL_RETURN: 5832 if (handle_syscall_event (ecs) == 0) 5833 process_event_stop_test (ecs); 5834 return; 5835 5836 case TARGET_WAITKIND_STOPPED: 5837 handle_signal_stop (ecs); 5838 return; 5839 5840 case TARGET_WAITKIND_NO_HISTORY: 5841 /* Reverse execution: target ran out of history info. */ 5842 5843 /* Switch to the stopped thread. */ 5844 context_switch (ecs); 5845 infrun_debug_printf ("stopped"); 5846 5847 delete_just_stopped_threads_single_step_breakpoints (); 5848 ecs->event_thread->set_stop_pc 5849 (regcache_read_pc (get_thread_regcache (inferior_thread ()))); 5850 5851 if (handle_stop_requested (ecs)) 5852 return; 5853 5854 gdb::observers::no_history.notify (); 5855 stop_waiting (ecs); 5856 return; 5857 } 5858 } 5859 5860 /* Restart threads back to what they were trying to do back when we 5861 paused them (because of an in-line step-over or vfork, for example). 5862 The EVENT_THREAD thread is ignored (not restarted). 5863 5864 If INF is non-nullptr, only resume threads from INF. */ 5865 5866 static void 5867 restart_threads (struct thread_info *event_thread, inferior *inf) 5868 { 5869 INFRUN_SCOPED_DEBUG_START_END ("event_thread=%s, inf=%d", 5870 event_thread->ptid.to_string ().c_str (), 5871 inf != nullptr ? inf->num : -1); 5872 5873 gdb_assert (!step_over_info_valid_p ()); 5874 5875 /* In case the instruction just stepped spawned a new thread. */ 5876 update_thread_list (); 5877 5878 for (thread_info *tp : all_non_exited_threads ()) 5879 { 5880 if (inf != nullptr && tp->inf != inf) 5881 continue; 5882 5883 if (tp->inf->detaching) 5884 { 5885 infrun_debug_printf ("restart threads: [%s] inferior detaching", 5886 tp->ptid.to_string ().c_str ()); 5887 continue; 5888 } 5889 5890 switch_to_thread_no_regs (tp); 5891 5892 if (tp == event_thread) 5893 { 5894 infrun_debug_printf ("restart threads: [%s] is event thread", 5895 tp->ptid.to_string ().c_str ()); 5896 continue; 5897 } 5898 5899 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall)) 5900 { 5901 infrun_debug_printf ("restart threads: [%s] not meant to be running", 5902 tp->ptid.to_string ().c_str ()); 5903 continue; 5904 } 5905 5906 if (tp->resumed ()) 5907 { 5908 infrun_debug_printf ("restart threads: [%s] resumed", 5909 tp->ptid.to_string ().c_str ()); 5910 gdb_assert (tp->executing () || tp->has_pending_waitstatus ()); 5911 continue; 5912 } 5913 5914 if (thread_is_in_step_over_chain (tp)) 5915 { 5916 infrun_debug_printf ("restart threads: [%s] needs step-over", 5917 tp->ptid.to_string ().c_str ()); 5918 gdb_assert (!tp->resumed ()); 5919 continue; 5920 } 5921 5922 5923 if (tp->has_pending_waitstatus ()) 5924 { 5925 infrun_debug_printf ("restart threads: [%s] has pending status", 5926 tp->ptid.to_string ().c_str ()); 5927 tp->set_resumed (true); 5928 continue; 5929 } 5930 5931 gdb_assert (!tp->stop_requested); 5932 5933 /* If some thread needs to start a step-over at this point, it 5934 should still be in the step-over queue, and thus skipped 5935 above. */ 5936 if (thread_still_needs_step_over (tp)) 5937 { 5938 internal_error ("thread [%s] needs a step-over, but not in " 5939 "step-over queue\n", 5940 tp->ptid.to_string ().c_str ()); 5941 } 5942 5943 if (currently_stepping (tp)) 5944 { 5945 infrun_debug_printf ("restart threads: [%s] was stepping", 5946 tp->ptid.to_string ().c_str ()); 5947 keep_going_stepped_thread (tp); 5948 } 5949 else 5950 { 5951 infrun_debug_printf ("restart threads: [%s] continuing", 5952 tp->ptid.to_string ().c_str ()); 5953 execution_control_state ecs (tp); 5954 switch_to_thread (tp); 5955 keep_going_pass_signal (&ecs); 5956 } 5957 } 5958 } 5959 5960 /* Callback for iterate_over_threads. Find a resumed thread that has 5961 a pending waitstatus. */ 5962 5963 static int 5964 resumed_thread_with_pending_status (struct thread_info *tp, 5965 void *arg) 5966 { 5967 return tp->resumed () && tp->has_pending_waitstatus (); 5968 } 5969 5970 /* Called when we get an event that may finish an in-line or 5971 out-of-line (displaced stepping) step-over started previously. 5972 Return true if the event is processed and we should go back to the 5973 event loop; false if the caller should continue processing the 5974 event. */ 5975 5976 static int 5977 finish_step_over (struct execution_control_state *ecs) 5978 { 5979 displaced_step_finish (ecs->event_thread, ecs->event_thread->stop_signal ()); 5980 5981 bool had_step_over_info = step_over_info_valid_p (); 5982 5983 if (had_step_over_info) 5984 { 5985 /* If we're stepping over a breakpoint with all threads locked, 5986 then only the thread that was stepped should be reporting 5987 back an event. */ 5988 gdb_assert (ecs->event_thread->control.trap_expected); 5989 5990 clear_step_over_info (); 5991 } 5992 5993 if (!target_is_non_stop_p ()) 5994 return 0; 5995 5996 /* Start a new step-over in another thread if there's one that 5997 needs it. */ 5998 start_step_over (); 5999 6000 /* If we were stepping over a breakpoint before, and haven't started 6001 a new in-line step-over sequence, then restart all other threads 6002 (except the event thread). We can't do this in all-stop, as then 6003 e.g., we wouldn't be able to issue any other remote packet until 6004 these other threads stop. */ 6005 if (had_step_over_info && !step_over_info_valid_p ()) 6006 { 6007 struct thread_info *pending; 6008 6009 /* If we only have threads with pending statuses, the restart 6010 below won't restart any thread and so nothing re-inserts the 6011 breakpoint we just stepped over. But we need it inserted 6012 when we later process the pending events, otherwise if 6013 another thread has a pending event for this breakpoint too, 6014 we'd discard its event (because the breakpoint that 6015 originally caused the event was no longer inserted). */ 6016 context_switch (ecs); 6017 insert_breakpoints (); 6018 6019 restart_threads (ecs->event_thread); 6020 6021 /* If we have events pending, go through handle_inferior_event 6022 again, picking up a pending event at random. This avoids 6023 thread starvation. */ 6024 6025 /* But not if we just stepped over a watchpoint in order to let 6026 the instruction execute so we can evaluate its expression. 6027 The set of watchpoints that triggered is recorded in the 6028 breakpoint objects themselves (see bp->watchpoint_triggered). 6029 If we processed another event first, that other event could 6030 clobber this info. */ 6031 if (ecs->event_thread->stepping_over_watchpoint) 6032 return 0; 6033 6034 pending = iterate_over_threads (resumed_thread_with_pending_status, 6035 nullptr); 6036 if (pending != nullptr) 6037 { 6038 struct thread_info *tp = ecs->event_thread; 6039 struct regcache *regcache; 6040 6041 infrun_debug_printf ("found resumed threads with " 6042 "pending events, saving status"); 6043 6044 gdb_assert (pending != tp); 6045 6046 /* Record the event thread's event for later. */ 6047 save_waitstatus (tp, ecs->ws); 6048 /* This was cleared early, by handle_inferior_event. Set it 6049 so this pending event is considered by 6050 do_target_wait. */ 6051 tp->set_resumed (true); 6052 6053 gdb_assert (!tp->executing ()); 6054 6055 regcache = get_thread_regcache (tp); 6056 tp->set_stop_pc (regcache_read_pc (regcache)); 6057 6058 infrun_debug_printf ("saved stop_pc=%s for %s " 6059 "(currently_stepping=%d)", 6060 paddress (target_gdbarch (), tp->stop_pc ()), 6061 tp->ptid.to_string ().c_str (), 6062 currently_stepping (tp)); 6063 6064 /* This in-line step-over finished; clear this so we won't 6065 start a new one. This is what handle_signal_stop would 6066 do, if we returned false. */ 6067 tp->stepping_over_breakpoint = 0; 6068 6069 /* Wake up the event loop again. */ 6070 mark_async_event_handler (infrun_async_inferior_event_token); 6071 6072 prepare_to_wait (ecs); 6073 return 1; 6074 } 6075 } 6076 6077 return 0; 6078 } 6079 6080 /* Come here when the program has stopped with a signal. */ 6081 6082 static void 6083 handle_signal_stop (struct execution_control_state *ecs) 6084 { 6085 frame_info_ptr frame; 6086 struct gdbarch *gdbarch; 6087 int stopped_by_watchpoint; 6088 enum stop_kind stop_soon; 6089 int random_signal; 6090 6091 gdb_assert (ecs->ws.kind () == TARGET_WAITKIND_STOPPED); 6092 6093 ecs->event_thread->set_stop_signal (ecs->ws.sig ()); 6094 6095 /* Do we need to clean up the state of a thread that has 6096 completed a displaced single-step? (Doing so usually affects 6097 the PC, so do it here, before we set stop_pc.) */ 6098 if (finish_step_over (ecs)) 6099 return; 6100 6101 /* If we either finished a single-step or hit a breakpoint, but 6102 the user wanted this thread to be stopped, pretend we got a 6103 SIG0 (generic unsignaled stop). */ 6104 if (ecs->event_thread->stop_requested 6105 && ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP) 6106 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0); 6107 6108 ecs->event_thread->set_stop_pc 6109 (regcache_read_pc (get_thread_regcache (ecs->event_thread))); 6110 6111 context_switch (ecs); 6112 6113 if (deprecated_context_hook) 6114 deprecated_context_hook (ecs->event_thread->global_num); 6115 6116 if (debug_infrun) 6117 { 6118 struct regcache *regcache = get_thread_regcache (ecs->event_thread); 6119 struct gdbarch *reg_gdbarch = regcache->arch (); 6120 6121 infrun_debug_printf 6122 ("stop_pc=%s", paddress (reg_gdbarch, ecs->event_thread->stop_pc ())); 6123 if (target_stopped_by_watchpoint ()) 6124 { 6125 CORE_ADDR addr; 6126 6127 infrun_debug_printf ("stopped by watchpoint"); 6128 6129 if (target_stopped_data_address (current_inferior ()->top_target (), 6130 &addr)) 6131 infrun_debug_printf ("stopped data address=%s", 6132 paddress (reg_gdbarch, addr)); 6133 else 6134 infrun_debug_printf ("(no data address available)"); 6135 } 6136 } 6137 6138 /* This is originated from start_remote(), start_inferior() and 6139 shared libraries hook functions. */ 6140 stop_soon = get_inferior_stop_soon (ecs); 6141 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) 6142 { 6143 infrun_debug_printf ("quietly stopped"); 6144 stop_print_frame = true; 6145 stop_waiting (ecs); 6146 return; 6147 } 6148 6149 /* This originates from attach_command(). We need to overwrite 6150 the stop_signal here, because some kernels don't ignore a 6151 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call. 6152 See more comments in inferior.h. On the other hand, if we 6153 get a non-SIGSTOP, report it to the user - assume the backend 6154 will handle the SIGSTOP if it should show up later. 6155 6156 Also consider that the attach is complete when we see a 6157 SIGTRAP. Some systems (e.g. Windows), and stubs supporting 6158 target extended-remote report it instead of a SIGSTOP 6159 (e.g. gdbserver). We already rely on SIGTRAP being our 6160 signal, so this is no exception. 6161 6162 Also consider that the attach is complete when we see a 6163 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell 6164 the target to stop all threads of the inferior, in case the 6165 low level attach operation doesn't stop them implicitly. If 6166 they weren't stopped implicitly, then the stub will report a 6167 GDB_SIGNAL_0, meaning: stopped for no particular reason 6168 other than GDB's request. */ 6169 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP 6170 && (ecs->event_thread->stop_signal () == GDB_SIGNAL_STOP 6171 || ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP 6172 || ecs->event_thread->stop_signal () == GDB_SIGNAL_0)) 6173 { 6174 stop_print_frame = true; 6175 stop_waiting (ecs); 6176 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0); 6177 return; 6178 } 6179 6180 /* At this point, get hold of the now-current thread's frame. */ 6181 frame = get_current_frame (); 6182 gdbarch = get_frame_arch (frame); 6183 6184 /* Pull the single step breakpoints out of the target. */ 6185 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP) 6186 { 6187 struct regcache *regcache; 6188 CORE_ADDR pc; 6189 6190 regcache = get_thread_regcache (ecs->event_thread); 6191 const address_space *aspace = regcache->aspace (); 6192 6193 pc = regcache_read_pc (regcache); 6194 6195 /* However, before doing so, if this single-step breakpoint was 6196 actually for another thread, set this thread up for moving 6197 past it. */ 6198 if (!thread_has_single_step_breakpoint_here (ecs->event_thread, 6199 aspace, pc)) 6200 { 6201 if (single_step_breakpoint_inserted_here_p (aspace, pc)) 6202 { 6203 infrun_debug_printf ("[%s] hit another thread's single-step " 6204 "breakpoint", 6205 ecs->ptid.to_string ().c_str ()); 6206 ecs->hit_singlestep_breakpoint = 1; 6207 } 6208 } 6209 else 6210 { 6211 infrun_debug_printf ("[%s] hit its single-step breakpoint", 6212 ecs->ptid.to_string ().c_str ()); 6213 } 6214 } 6215 delete_just_stopped_threads_single_step_breakpoints (); 6216 6217 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP 6218 && ecs->event_thread->control.trap_expected 6219 && ecs->event_thread->stepping_over_watchpoint) 6220 stopped_by_watchpoint = 0; 6221 else 6222 stopped_by_watchpoint = watchpoints_triggered (ecs->ws); 6223 6224 /* If necessary, step over this watchpoint. We'll be back to display 6225 it in a moment. */ 6226 if (stopped_by_watchpoint 6227 && (target_have_steppable_watchpoint () 6228 || gdbarch_have_nonsteppable_watchpoint (gdbarch))) 6229 { 6230 /* At this point, we are stopped at an instruction which has 6231 attempted to write to a piece of memory under control of 6232 a watchpoint. The instruction hasn't actually executed 6233 yet. If we were to evaluate the watchpoint expression 6234 now, we would get the old value, and therefore no change 6235 would seem to have occurred. 6236 6237 In order to make watchpoints work `right', we really need 6238 to complete the memory write, and then evaluate the 6239 watchpoint expression. We do this by single-stepping the 6240 target. 6241 6242 It may not be necessary to disable the watchpoint to step over 6243 it. For example, the PA can (with some kernel cooperation) 6244 single step over a watchpoint without disabling the watchpoint. 6245 6246 It is far more common to need to disable a watchpoint to step 6247 the inferior over it. If we have non-steppable watchpoints, 6248 we must disable the current watchpoint; it's simplest to 6249 disable all watchpoints. 6250 6251 Any breakpoint at PC must also be stepped over -- if there's 6252 one, it will have already triggered before the watchpoint 6253 triggered, and we either already reported it to the user, or 6254 it didn't cause a stop and we called keep_going. In either 6255 case, if there was a breakpoint at PC, we must be trying to 6256 step past it. */ 6257 ecs->event_thread->stepping_over_watchpoint = 1; 6258 keep_going (ecs); 6259 return; 6260 } 6261 6262 ecs->event_thread->stepping_over_breakpoint = 0; 6263 ecs->event_thread->stepping_over_watchpoint = 0; 6264 bpstat_clear (&ecs->event_thread->control.stop_bpstat); 6265 ecs->event_thread->control.stop_step = 0; 6266 stop_print_frame = true; 6267 stopped_by_random_signal = 0; 6268 bpstat *stop_chain = nullptr; 6269 6270 /* Hide inlined functions starting here, unless we just performed stepi or 6271 nexti. After stepi and nexti, always show the innermost frame (not any 6272 inline function call sites). */ 6273 if (ecs->event_thread->control.step_range_end != 1) 6274 { 6275 const address_space *aspace 6276 = get_thread_regcache (ecs->event_thread)->aspace (); 6277 6278 /* skip_inline_frames is expensive, so we avoid it if we can 6279 determine that the address is one where functions cannot have 6280 been inlined. This improves performance with inferiors that 6281 load a lot of shared libraries, because the solib event 6282 breakpoint is defined as the address of a function (i.e. not 6283 inline). Note that we have to check the previous PC as well 6284 as the current one to catch cases when we have just 6285 single-stepped off a breakpoint prior to reinstating it. 6286 Note that we're assuming that the code we single-step to is 6287 not inline, but that's not definitive: there's nothing 6288 preventing the event breakpoint function from containing 6289 inlined code, and the single-step ending up there. If the 6290 user had set a breakpoint on that inlined code, the missing 6291 skip_inline_frames call would break things. Fortunately 6292 that's an extremely unlikely scenario. */ 6293 if (!pc_at_non_inline_function (aspace, 6294 ecs->event_thread->stop_pc (), 6295 ecs->ws) 6296 && !(ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP 6297 && ecs->event_thread->control.trap_expected 6298 && pc_at_non_inline_function (aspace, 6299 ecs->event_thread->prev_pc, 6300 ecs->ws))) 6301 { 6302 stop_chain = build_bpstat_chain (aspace, 6303 ecs->event_thread->stop_pc (), 6304 ecs->ws); 6305 skip_inline_frames (ecs->event_thread, stop_chain); 6306 6307 /* Re-fetch current thread's frame in case that invalidated 6308 the frame cache. */ 6309 frame = get_current_frame (); 6310 gdbarch = get_frame_arch (frame); 6311 } 6312 } 6313 6314 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP 6315 && ecs->event_thread->control.trap_expected 6316 && gdbarch_single_step_through_delay_p (gdbarch) 6317 && currently_stepping (ecs->event_thread)) 6318 { 6319 /* We're trying to step off a breakpoint. Turns out that we're 6320 also on an instruction that needs to be stepped multiple 6321 times before it's been fully executing. E.g., architectures 6322 with a delay slot. It needs to be stepped twice, once for 6323 the instruction and once for the delay slot. */ 6324 int step_through_delay 6325 = gdbarch_single_step_through_delay (gdbarch, frame); 6326 6327 if (step_through_delay) 6328 infrun_debug_printf ("step through delay"); 6329 6330 if (ecs->event_thread->control.step_range_end == 0 6331 && step_through_delay) 6332 { 6333 /* The user issued a continue when stopped at a breakpoint. 6334 Set up for another trap and get out of here. */ 6335 ecs->event_thread->stepping_over_breakpoint = 1; 6336 keep_going (ecs); 6337 return; 6338 } 6339 else if (step_through_delay) 6340 { 6341 /* The user issued a step when stopped at a breakpoint. 6342 Maybe we should stop, maybe we should not - the delay 6343 slot *might* correspond to a line of source. In any 6344 case, don't decide that here, just set 6345 ecs->stepping_over_breakpoint, making sure we 6346 single-step again before breakpoints are re-inserted. */ 6347 ecs->event_thread->stepping_over_breakpoint = 1; 6348 } 6349 } 6350 6351 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that 6352 handles this event. */ 6353 ecs->event_thread->control.stop_bpstat 6354 = bpstat_stop_status (get_current_regcache ()->aspace (), 6355 ecs->event_thread->stop_pc (), 6356 ecs->event_thread, ecs->ws, stop_chain); 6357 6358 /* Following in case break condition called a 6359 function. */ 6360 stop_print_frame = true; 6361 6362 /* This is where we handle "moribund" watchpoints. Unlike 6363 software breakpoints traps, hardware watchpoint traps are 6364 always distinguishable from random traps. If no high-level 6365 watchpoint is associated with the reported stop data address 6366 anymore, then the bpstat does not explain the signal --- 6367 simply make sure to ignore it if `stopped_by_watchpoint' is 6368 set. */ 6369 6370 if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP 6371 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, 6372 GDB_SIGNAL_TRAP) 6373 && stopped_by_watchpoint) 6374 { 6375 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, " 6376 "ignoring"); 6377 } 6378 6379 /* NOTE: cagney/2003-03-29: These checks for a random signal 6380 at one stage in the past included checks for an inferior 6381 function call's call dummy's return breakpoint. The original 6382 comment, that went with the test, read: 6383 6384 ``End of a stack dummy. Some systems (e.g. Sony news) give 6385 another signal besides SIGTRAP, so check here as well as 6386 above.'' 6387 6388 If someone ever tries to get call dummys on a 6389 non-executable stack to work (where the target would stop 6390 with something like a SIGSEGV), then those tests might need 6391 to be re-instated. Given, however, that the tests were only 6392 enabled when momentary breakpoints were not being used, I 6393 suspect that it won't be the case. 6394 6395 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to 6396 be necessary for call dummies on a non-executable stack on 6397 SPARC. */ 6398 6399 /* See if the breakpoints module can explain the signal. */ 6400 random_signal 6401 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, 6402 ecs->event_thread->stop_signal ()); 6403 6404 /* Maybe this was a trap for a software breakpoint that has since 6405 been removed. */ 6406 if (random_signal && target_stopped_by_sw_breakpoint ()) 6407 { 6408 if (gdbarch_program_breakpoint_here_p (gdbarch, 6409 ecs->event_thread->stop_pc ())) 6410 { 6411 struct regcache *regcache; 6412 int decr_pc; 6413 6414 /* Re-adjust PC to what the program would see if GDB was not 6415 debugging it. */ 6416 regcache = get_thread_regcache (ecs->event_thread); 6417 decr_pc = gdbarch_decr_pc_after_break (gdbarch); 6418 if (decr_pc != 0) 6419 { 6420 gdb::optional<scoped_restore_tmpl<int>> 6421 restore_operation_disable; 6422 6423 if (record_full_is_used ()) 6424 restore_operation_disable.emplace 6425 (record_full_gdb_operation_disable_set ()); 6426 6427 regcache_write_pc (regcache, 6428 ecs->event_thread->stop_pc () + decr_pc); 6429 } 6430 } 6431 else 6432 { 6433 /* A delayed software breakpoint event. Ignore the trap. */ 6434 infrun_debug_printf ("delayed software breakpoint trap, ignoring"); 6435 random_signal = 0; 6436 } 6437 } 6438 6439 /* Maybe this was a trap for a hardware breakpoint/watchpoint that 6440 has since been removed. */ 6441 if (random_signal && target_stopped_by_hw_breakpoint ()) 6442 { 6443 /* A delayed hardware breakpoint event. Ignore the trap. */ 6444 infrun_debug_printf ("delayed hardware breakpoint/watchpoint " 6445 "trap, ignoring"); 6446 random_signal = 0; 6447 } 6448 6449 /* If not, perhaps stepping/nexting can. */ 6450 if (random_signal) 6451 random_signal = !(ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP 6452 && currently_stepping (ecs->event_thread)); 6453 6454 /* Perhaps the thread hit a single-step breakpoint of _another_ 6455 thread. Single-step breakpoints are transparent to the 6456 breakpoints module. */ 6457 if (random_signal) 6458 random_signal = !ecs->hit_singlestep_breakpoint; 6459 6460 /* No? Perhaps we got a moribund watchpoint. */ 6461 if (random_signal) 6462 random_signal = !stopped_by_watchpoint; 6463 6464 /* Always stop if the user explicitly requested this thread to 6465 remain stopped. */ 6466 if (ecs->event_thread->stop_requested) 6467 { 6468 random_signal = 1; 6469 infrun_debug_printf ("user-requested stop"); 6470 } 6471 6472 /* For the program's own signals, act according to 6473 the signal handling tables. */ 6474 6475 if (random_signal) 6476 { 6477 /* Signal not for debugging purposes. */ 6478 enum gdb_signal stop_signal = ecs->event_thread->stop_signal (); 6479 6480 infrun_debug_printf ("random signal (%s)", 6481 gdb_signal_to_symbol_string (stop_signal)); 6482 6483 stopped_by_random_signal = 1; 6484 6485 /* Always stop on signals if we're either just gaining control 6486 of the program, or the user explicitly requested this thread 6487 to remain stopped. */ 6488 if (stop_soon != NO_STOP_QUIETLY 6489 || ecs->event_thread->stop_requested 6490 || signal_stop_state (ecs->event_thread->stop_signal ())) 6491 { 6492 stop_waiting (ecs); 6493 return; 6494 } 6495 6496 /* Notify observers the signal has "handle print" set. Note we 6497 returned early above if stopping; normal_stop handles the 6498 printing in that case. */ 6499 if (signal_print[ecs->event_thread->stop_signal ()]) 6500 { 6501 /* The signal table tells us to print about this signal. */ 6502 target_terminal::ours_for_output (); 6503 gdb::observers::signal_received.notify (ecs->event_thread->stop_signal ()); 6504 target_terminal::inferior (); 6505 } 6506 6507 /* Clear the signal if it should not be passed. */ 6508 if (signal_program[ecs->event_thread->stop_signal ()] == 0) 6509 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0); 6510 6511 if (ecs->event_thread->prev_pc == ecs->event_thread->stop_pc () 6512 && ecs->event_thread->control.trap_expected 6513 && ecs->event_thread->control.step_resume_breakpoint == nullptr) 6514 { 6515 /* We were just starting a new sequence, attempting to 6516 single-step off of a breakpoint and expecting a SIGTRAP. 6517 Instead this signal arrives. This signal will take us out 6518 of the stepping range so GDB needs to remember to, when 6519 the signal handler returns, resume stepping off that 6520 breakpoint. */ 6521 /* To simplify things, "continue" is forced to use the same 6522 code paths as single-step - set a breakpoint at the 6523 signal return address and then, once hit, step off that 6524 breakpoint. */ 6525 infrun_debug_printf ("signal arrived while stepping over breakpoint"); 6526 6527 insert_hp_step_resume_breakpoint_at_frame (frame); 6528 ecs->event_thread->step_after_step_resume_breakpoint = 1; 6529 /* Reset trap_expected to ensure breakpoints are re-inserted. */ 6530 ecs->event_thread->control.trap_expected = 0; 6531 6532 /* If we were nexting/stepping some other thread, switch to 6533 it, so that we don't continue it, losing control. */ 6534 if (!switch_back_to_stepped_thread (ecs)) 6535 keep_going (ecs); 6536 return; 6537 } 6538 6539 if (ecs->event_thread->stop_signal () != GDB_SIGNAL_0 6540 && (pc_in_thread_step_range (ecs->event_thread->stop_pc (), 6541 ecs->event_thread) 6542 || ecs->event_thread->control.step_range_end == 1) 6543 && (get_stack_frame_id (frame) 6544 == ecs->event_thread->control.step_stack_frame_id) 6545 && ecs->event_thread->control.step_resume_breakpoint == nullptr) 6546 { 6547 /* The inferior is about to take a signal that will take it 6548 out of the single step range. Set a breakpoint at the 6549 current PC (which is presumably where the signal handler 6550 will eventually return) and then allow the inferior to 6551 run free. 6552 6553 Note that this is only needed for a signal delivered 6554 while in the single-step range. Nested signals aren't a 6555 problem as they eventually all return. */ 6556 infrun_debug_printf ("signal may take us out of single-step range"); 6557 6558 clear_step_over_info (); 6559 insert_hp_step_resume_breakpoint_at_frame (frame); 6560 ecs->event_thread->step_after_step_resume_breakpoint = 1; 6561 /* Reset trap_expected to ensure breakpoints are re-inserted. */ 6562 ecs->event_thread->control.trap_expected = 0; 6563 keep_going (ecs); 6564 return; 6565 } 6566 6567 /* Note: step_resume_breakpoint may be non-NULL. This occurs 6568 when either there's a nested signal, or when there's a 6569 pending signal enabled just as the signal handler returns 6570 (leaving the inferior at the step-resume-breakpoint without 6571 actually executing it). Either way continue until the 6572 breakpoint is really hit. */ 6573 6574 if (!switch_back_to_stepped_thread (ecs)) 6575 { 6576 infrun_debug_printf ("random signal, keep going"); 6577 6578 keep_going (ecs); 6579 } 6580 return; 6581 } 6582 6583 process_event_stop_test (ecs); 6584 } 6585 6586 /* Come here when we've got some debug event / signal we can explain 6587 (IOW, not a random signal), and test whether it should cause a 6588 stop, or whether we should resume the inferior (transparently). 6589 E.g., could be a breakpoint whose condition evaluates false; we 6590 could be still stepping within the line; etc. */ 6591 6592 static void 6593 process_event_stop_test (struct execution_control_state *ecs) 6594 { 6595 struct symtab_and_line stop_pc_sal; 6596 frame_info_ptr frame; 6597 struct gdbarch *gdbarch; 6598 CORE_ADDR jmp_buf_pc; 6599 struct bpstat_what what; 6600 6601 /* Handle cases caused by hitting a breakpoint. */ 6602 6603 frame = get_current_frame (); 6604 gdbarch = get_frame_arch (frame); 6605 6606 what = bpstat_what (ecs->event_thread->control.stop_bpstat); 6607 6608 if (what.call_dummy) 6609 { 6610 stop_stack_dummy = what.call_dummy; 6611 } 6612 6613 /* A few breakpoint types have callbacks associated (e.g., 6614 bp_jit_event). Run them now. */ 6615 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat); 6616 6617 /* If we hit an internal event that triggers symbol changes, the 6618 current frame will be invalidated within bpstat_what (e.g., if we 6619 hit an internal solib event). Re-fetch it. */ 6620 frame = get_current_frame (); 6621 gdbarch = get_frame_arch (frame); 6622 6623 switch (what.main_action) 6624 { 6625 case BPSTAT_WHAT_SET_LONGJMP_RESUME: 6626 /* If we hit the breakpoint at longjmp while stepping, we 6627 install a momentary breakpoint at the target of the 6628 jmp_buf. */ 6629 6630 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME"); 6631 6632 ecs->event_thread->stepping_over_breakpoint = 1; 6633 6634 if (what.is_longjmp) 6635 { 6636 struct value *arg_value; 6637 6638 /* If we set the longjmp breakpoint via a SystemTap probe, 6639 then use it to extract the arguments. The destination PC 6640 is the third argument to the probe. */ 6641 arg_value = probe_safe_evaluate_at_pc (frame, 2); 6642 if (arg_value) 6643 { 6644 jmp_buf_pc = value_as_address (arg_value); 6645 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc); 6646 } 6647 else if (!gdbarch_get_longjmp_target_p (gdbarch) 6648 || !gdbarch_get_longjmp_target (gdbarch, 6649 frame, &jmp_buf_pc)) 6650 { 6651 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME " 6652 "(!gdbarch_get_longjmp_target)"); 6653 keep_going (ecs); 6654 return; 6655 } 6656 6657 /* Insert a breakpoint at resume address. */ 6658 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc); 6659 } 6660 else 6661 check_exception_resume (ecs, frame); 6662 keep_going (ecs); 6663 return; 6664 6665 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: 6666 { 6667 frame_info_ptr init_frame; 6668 6669 /* There are several cases to consider. 6670 6671 1. The initiating frame no longer exists. In this case we 6672 must stop, because the exception or longjmp has gone too 6673 far. 6674 6675 2. The initiating frame exists, and is the same as the 6676 current frame. We stop, because the exception or longjmp 6677 has been caught. 6678 6679 3. The initiating frame exists and is different from the 6680 current frame. This means the exception or longjmp has 6681 been caught beneath the initiating frame, so keep going. 6682 6683 4. longjmp breakpoint has been placed just to protect 6684 against stale dummy frames and user is not interested in 6685 stopping around longjmps. */ 6686 6687 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME"); 6688 6689 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint 6690 != nullptr); 6691 delete_exception_resume_breakpoint (ecs->event_thread); 6692 6693 if (what.is_longjmp) 6694 { 6695 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread); 6696 6697 if (!frame_id_p (ecs->event_thread->initiating_frame)) 6698 { 6699 /* Case 4. */ 6700 keep_going (ecs); 6701 return; 6702 } 6703 } 6704 6705 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame); 6706 6707 if (init_frame) 6708 { 6709 struct frame_id current_id 6710 = get_frame_id (get_current_frame ()); 6711 if (current_id == ecs->event_thread->initiating_frame) 6712 { 6713 /* Case 2. Fall through. */ 6714 } 6715 else 6716 { 6717 /* Case 3. */ 6718 keep_going (ecs); 6719 return; 6720 } 6721 } 6722 6723 /* For Cases 1 and 2, remove the step-resume breakpoint, if it 6724 exists. */ 6725 delete_step_resume_breakpoint (ecs->event_thread); 6726 6727 end_stepping_range (ecs); 6728 } 6729 return; 6730 6731 case BPSTAT_WHAT_SINGLE: 6732 infrun_debug_printf ("BPSTAT_WHAT_SINGLE"); 6733 ecs->event_thread->stepping_over_breakpoint = 1; 6734 /* Still need to check other stuff, at least the case where we 6735 are stepping and step out of the right range. */ 6736 break; 6737 6738 case BPSTAT_WHAT_STEP_RESUME: 6739 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME"); 6740 6741 delete_step_resume_breakpoint (ecs->event_thread); 6742 if (ecs->event_thread->control.proceed_to_finish 6743 && execution_direction == EXEC_REVERSE) 6744 { 6745 struct thread_info *tp = ecs->event_thread; 6746 6747 /* We are finishing a function in reverse, and just hit the 6748 step-resume breakpoint at the start address of the 6749 function, and we're almost there -- just need to back up 6750 by one more single-step, which should take us back to the 6751 function call. */ 6752 tp->control.step_range_start = tp->control.step_range_end = 1; 6753 keep_going (ecs); 6754 return; 6755 } 6756 fill_in_stop_func (gdbarch, ecs); 6757 if (ecs->event_thread->stop_pc () == ecs->stop_func_start 6758 && execution_direction == EXEC_REVERSE) 6759 { 6760 /* We are stepping over a function call in reverse, and just 6761 hit the step-resume breakpoint at the start address of 6762 the function. Go back to single-stepping, which should 6763 take us back to the function call. */ 6764 ecs->event_thread->stepping_over_breakpoint = 1; 6765 keep_going (ecs); 6766 return; 6767 } 6768 break; 6769 6770 case BPSTAT_WHAT_STOP_NOISY: 6771 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY"); 6772 stop_print_frame = true; 6773 6774 /* Assume the thread stopped for a breakpoint. We'll still check 6775 whether a/the breakpoint is there when the thread is next 6776 resumed. */ 6777 ecs->event_thread->stepping_over_breakpoint = 1; 6778 6779 stop_waiting (ecs); 6780 return; 6781 6782 case BPSTAT_WHAT_STOP_SILENT: 6783 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT"); 6784 stop_print_frame = false; 6785 6786 /* Assume the thread stopped for a breakpoint. We'll still check 6787 whether a/the breakpoint is there when the thread is next 6788 resumed. */ 6789 ecs->event_thread->stepping_over_breakpoint = 1; 6790 stop_waiting (ecs); 6791 return; 6792 6793 case BPSTAT_WHAT_HP_STEP_RESUME: 6794 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME"); 6795 6796 delete_step_resume_breakpoint (ecs->event_thread); 6797 if (ecs->event_thread->step_after_step_resume_breakpoint) 6798 { 6799 /* Back when the step-resume breakpoint was inserted, we 6800 were trying to single-step off a breakpoint. Go back to 6801 doing that. */ 6802 ecs->event_thread->step_after_step_resume_breakpoint = 0; 6803 ecs->event_thread->stepping_over_breakpoint = 1; 6804 keep_going (ecs); 6805 return; 6806 } 6807 break; 6808 6809 case BPSTAT_WHAT_KEEP_CHECKING: 6810 break; 6811 } 6812 6813 /* If we stepped a permanent breakpoint and we had a high priority 6814 step-resume breakpoint for the address we stepped, but we didn't 6815 hit it, then we must have stepped into the signal handler. The 6816 step-resume was only necessary to catch the case of _not_ 6817 stepping into the handler, so delete it, and fall through to 6818 checking whether the step finished. */ 6819 if (ecs->event_thread->stepped_breakpoint) 6820 { 6821 struct breakpoint *sr_bp 6822 = ecs->event_thread->control.step_resume_breakpoint; 6823 6824 if (sr_bp != nullptr 6825 && sr_bp->loc->permanent 6826 && sr_bp->type == bp_hp_step_resume 6827 && sr_bp->loc->address == ecs->event_thread->prev_pc) 6828 { 6829 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler"); 6830 delete_step_resume_breakpoint (ecs->event_thread); 6831 ecs->event_thread->step_after_step_resume_breakpoint = 0; 6832 } 6833 } 6834 6835 /* We come here if we hit a breakpoint but should not stop for it. 6836 Possibly we also were stepping and should stop for that. So fall 6837 through and test for stepping. But, if not stepping, do not 6838 stop. */ 6839 6840 /* In all-stop mode, if we're currently stepping but have stopped in 6841 some other thread, we need to switch back to the stepped thread. */ 6842 if (switch_back_to_stepped_thread (ecs)) 6843 return; 6844 6845 if (ecs->event_thread->control.step_resume_breakpoint) 6846 { 6847 infrun_debug_printf ("step-resume breakpoint is inserted"); 6848 6849 /* Having a step-resume breakpoint overrides anything 6850 else having to do with stepping commands until 6851 that breakpoint is reached. */ 6852 keep_going (ecs); 6853 return; 6854 } 6855 6856 if (ecs->event_thread->control.step_range_end == 0) 6857 { 6858 infrun_debug_printf ("no stepping, continue"); 6859 /* Likewise if we aren't even stepping. */ 6860 keep_going (ecs); 6861 return; 6862 } 6863 6864 /* Re-fetch current thread's frame in case the code above caused 6865 the frame cache to be re-initialized, making our FRAME variable 6866 a dangling pointer. */ 6867 frame = get_current_frame (); 6868 gdbarch = get_frame_arch (frame); 6869 fill_in_stop_func (gdbarch, ecs); 6870 6871 /* If stepping through a line, keep going if still within it. 6872 6873 Note that step_range_end is the address of the first instruction 6874 beyond the step range, and NOT the address of the last instruction 6875 within it! 6876 6877 Note also that during reverse execution, we may be stepping 6878 through a function epilogue and therefore must detect when 6879 the current-frame changes in the middle of a line. */ 6880 6881 if (pc_in_thread_step_range (ecs->event_thread->stop_pc (), 6882 ecs->event_thread) 6883 && (execution_direction != EXEC_REVERSE 6884 || get_frame_id (frame) == ecs->event_thread->control.step_frame_id)) 6885 { 6886 infrun_debug_printf 6887 ("stepping inside range [%s-%s]", 6888 paddress (gdbarch, ecs->event_thread->control.step_range_start), 6889 paddress (gdbarch, ecs->event_thread->control.step_range_end)); 6890 6891 /* Tentatively re-enable range stepping; `resume' disables it if 6892 necessary (e.g., if we're stepping over a breakpoint or we 6893 have software watchpoints). */ 6894 ecs->event_thread->control.may_range_step = 1; 6895 6896 /* When stepping backward, stop at beginning of line range 6897 (unless it's the function entry point, in which case 6898 keep going back to the call point). */ 6899 CORE_ADDR stop_pc = ecs->event_thread->stop_pc (); 6900 if (stop_pc == ecs->event_thread->control.step_range_start 6901 && stop_pc != ecs->stop_func_start 6902 && execution_direction == EXEC_REVERSE) 6903 end_stepping_range (ecs); 6904 else 6905 keep_going (ecs); 6906 6907 return; 6908 } 6909 6910 /* We stepped out of the stepping range. */ 6911 6912 /* If we are stepping at the source level and entered the runtime 6913 loader dynamic symbol resolution code... 6914 6915 EXEC_FORWARD: we keep on single stepping until we exit the run 6916 time loader code and reach the callee's address. 6917 6918 EXEC_REVERSE: we've already executed the callee (backward), and 6919 the runtime loader code is handled just like any other 6920 undebuggable function call. Now we need only keep stepping 6921 backward through the trampoline code, and that's handled further 6922 down, so there is nothing for us to do here. */ 6923 6924 if (execution_direction != EXEC_REVERSE 6925 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE 6926 && in_solib_dynsym_resolve_code (ecs->event_thread->stop_pc ()) 6927 && (ecs->event_thread->control.step_start_function == nullptr 6928 || !in_solib_dynsym_resolve_code ( 6929 ecs->event_thread->control.step_start_function->value_block () 6930 ->entry_pc ()))) 6931 { 6932 CORE_ADDR pc_after_resolver = 6933 gdbarch_skip_solib_resolver (gdbarch, ecs->event_thread->stop_pc ()); 6934 6935 infrun_debug_printf ("stepped into dynsym resolve code"); 6936 6937 if (pc_after_resolver) 6938 { 6939 /* Set up a step-resume breakpoint at the address 6940 indicated by SKIP_SOLIB_RESOLVER. */ 6941 symtab_and_line sr_sal; 6942 sr_sal.pc = pc_after_resolver; 6943 sr_sal.pspace = get_frame_program_space (frame); 6944 6945 insert_step_resume_breakpoint_at_sal (gdbarch, 6946 sr_sal, null_frame_id); 6947 } 6948 6949 keep_going (ecs); 6950 return; 6951 } 6952 6953 /* Step through an indirect branch thunk. */ 6954 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE 6955 && gdbarch_in_indirect_branch_thunk (gdbarch, 6956 ecs->event_thread->stop_pc ())) 6957 { 6958 infrun_debug_printf ("stepped into indirect branch thunk"); 6959 keep_going (ecs); 6960 return; 6961 } 6962 6963 if (ecs->event_thread->control.step_range_end != 1 6964 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE 6965 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) 6966 && get_frame_type (frame) == SIGTRAMP_FRAME) 6967 { 6968 infrun_debug_printf ("stepped into signal trampoline"); 6969 /* The inferior, while doing a "step" or "next", has ended up in 6970 a signal trampoline (either by a signal being delivered or by 6971 the signal handler returning). Just single-step until the 6972 inferior leaves the trampoline (either by calling the handler 6973 or returning). */ 6974 keep_going (ecs); 6975 return; 6976 } 6977 6978 /* If we're in the return path from a shared library trampoline, 6979 we want to proceed through the trampoline when stepping. */ 6980 /* macro/2012-04-25: This needs to come before the subroutine 6981 call check below as on some targets return trampolines look 6982 like subroutine calls (MIPS16 return thunks). */ 6983 if (gdbarch_in_solib_return_trampoline (gdbarch, 6984 ecs->event_thread->stop_pc (), 6985 ecs->stop_func_name) 6986 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) 6987 { 6988 /* Determine where this trampoline returns. */ 6989 CORE_ADDR stop_pc = ecs->event_thread->stop_pc (); 6990 CORE_ADDR real_stop_pc 6991 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); 6992 6993 infrun_debug_printf ("stepped into solib return tramp"); 6994 6995 /* Only proceed through if we know where it's going. */ 6996 if (real_stop_pc) 6997 { 6998 /* And put the step-breakpoint there and go until there. */ 6999 symtab_and_line sr_sal; 7000 sr_sal.pc = real_stop_pc; 7001 sr_sal.section = find_pc_overlay (sr_sal.pc); 7002 sr_sal.pspace = get_frame_program_space (frame); 7003 7004 /* Do not specify what the fp should be when we stop since 7005 on some machines the prologue is where the new fp value 7006 is established. */ 7007 insert_step_resume_breakpoint_at_sal (gdbarch, 7008 sr_sal, null_frame_id); 7009 7010 /* Restart without fiddling with the step ranges or 7011 other state. */ 7012 keep_going (ecs); 7013 return; 7014 } 7015 } 7016 7017 /* Check for subroutine calls. The check for the current frame 7018 equalling the step ID is not necessary - the check of the 7019 previous frame's ID is sufficient - but it is a common case and 7020 cheaper than checking the previous frame's ID. 7021 7022 NOTE: frame_id::operator== will never report two invalid frame IDs as 7023 being equal, so to get into this block, both the current and 7024 previous frame must have valid frame IDs. */ 7025 /* The outer_frame_id check is a heuristic to detect stepping 7026 through startup code. If we step over an instruction which 7027 sets the stack pointer from an invalid value to a valid value, 7028 we may detect that as a subroutine call from the mythical 7029 "outermost" function. This could be fixed by marking 7030 outermost frames as !stack_p,code_p,special_p. Then the 7031 initial outermost frame, before sp was valid, would 7032 have code_addr == &_start. See the comment in frame_id::operator== 7033 for more. */ 7034 if ((get_stack_frame_id (frame) 7035 != ecs->event_thread->control.step_stack_frame_id) 7036 && ((frame_unwind_caller_id (get_current_frame ()) 7037 == ecs->event_thread->control.step_stack_frame_id) 7038 && ((ecs->event_thread->control.step_stack_frame_id 7039 != outer_frame_id) 7040 || (ecs->event_thread->control.step_start_function 7041 != find_pc_function (ecs->event_thread->stop_pc ()))))) 7042 { 7043 CORE_ADDR stop_pc = ecs->event_thread->stop_pc (); 7044 CORE_ADDR real_stop_pc; 7045 7046 infrun_debug_printf ("stepped into subroutine"); 7047 7048 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE) 7049 { 7050 /* I presume that step_over_calls is only 0 when we're 7051 supposed to be stepping at the assembly language level 7052 ("stepi"). Just stop. */ 7053 /* And this works the same backward as frontward. MVS */ 7054 end_stepping_range (ecs); 7055 return; 7056 } 7057 7058 /* Reverse stepping through solib trampolines. */ 7059 7060 if (execution_direction == EXEC_REVERSE 7061 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE 7062 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) 7063 || (ecs->stop_func_start == 0 7064 && in_solib_dynsym_resolve_code (stop_pc)))) 7065 { 7066 /* Any solib trampoline code can be handled in reverse 7067 by simply continuing to single-step. We have already 7068 executed the solib function (backwards), and a few 7069 steps will take us back through the trampoline to the 7070 caller. */ 7071 keep_going (ecs); 7072 return; 7073 } 7074 7075 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) 7076 { 7077 /* We're doing a "next". 7078 7079 Normal (forward) execution: set a breakpoint at the 7080 callee's return address (the address at which the caller 7081 will resume). 7082 7083 Reverse (backward) execution. set the step-resume 7084 breakpoint at the start of the function that we just 7085 stepped into (backwards), and continue to there. When we 7086 get there, we'll need to single-step back to the caller. */ 7087 7088 if (execution_direction == EXEC_REVERSE) 7089 { 7090 /* If we're already at the start of the function, we've either 7091 just stepped backward into a single instruction function, 7092 or stepped back out of a signal handler to the first instruction 7093 of the function. Just keep going, which will single-step back 7094 to the caller. */ 7095 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0) 7096 { 7097 /* Normal function call return (static or dynamic). */ 7098 symtab_and_line sr_sal; 7099 sr_sal.pc = ecs->stop_func_start; 7100 sr_sal.pspace = get_frame_program_space (frame); 7101 insert_step_resume_breakpoint_at_sal (gdbarch, 7102 sr_sal, get_stack_frame_id (frame)); 7103 } 7104 } 7105 else 7106 insert_step_resume_breakpoint_at_caller (frame); 7107 7108 keep_going (ecs); 7109 return; 7110 } 7111 7112 /* If we are in a function call trampoline (a stub between the 7113 calling routine and the real function), locate the real 7114 function. That's what tells us (a) whether we want to step 7115 into it at all, and (b) what prologue we want to run to the 7116 end of, if we do step into it. */ 7117 real_stop_pc = skip_language_trampoline (frame, stop_pc); 7118 if (real_stop_pc == 0) 7119 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); 7120 if (real_stop_pc != 0) 7121 ecs->stop_func_start = real_stop_pc; 7122 7123 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc)) 7124 { 7125 symtab_and_line sr_sal; 7126 sr_sal.pc = ecs->stop_func_start; 7127 sr_sal.pspace = get_frame_program_space (frame); 7128 7129 insert_step_resume_breakpoint_at_sal (gdbarch, 7130 sr_sal, null_frame_id); 7131 keep_going (ecs); 7132 return; 7133 } 7134 7135 /* If we have line number information for the function we are 7136 thinking of stepping into and the function isn't on the skip 7137 list, step into it. 7138 7139 If there are several symtabs at that PC (e.g. with include 7140 files), just want to know whether *any* of them have line 7141 numbers. find_pc_line handles this. */ 7142 { 7143 struct symtab_and_line tmp_sal; 7144 7145 tmp_sal = find_pc_line (ecs->stop_func_start, 0); 7146 if (tmp_sal.line != 0 7147 && !function_name_is_marked_for_skip (ecs->stop_func_name, 7148 tmp_sal) 7149 && !inline_frame_is_marked_for_skip (true, ecs->event_thread)) 7150 { 7151 if (execution_direction == EXEC_REVERSE) 7152 handle_step_into_function_backward (gdbarch, ecs); 7153 else 7154 handle_step_into_function (gdbarch, ecs); 7155 return; 7156 } 7157 } 7158 7159 /* If we have no line number and the step-stop-if-no-debug is 7160 set, we stop the step so that the user has a chance to switch 7161 in assembly mode. */ 7162 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE 7163 && step_stop_if_no_debug) 7164 { 7165 end_stepping_range (ecs); 7166 return; 7167 } 7168 7169 if (execution_direction == EXEC_REVERSE) 7170 { 7171 /* If we're already at the start of the function, we've either just 7172 stepped backward into a single instruction function without line 7173 number info, or stepped back out of a signal handler to the first 7174 instruction of the function without line number info. Just keep 7175 going, which will single-step back to the caller. */ 7176 if (ecs->stop_func_start != stop_pc) 7177 { 7178 /* Set a breakpoint at callee's start address. 7179 From there we can step once and be back in the caller. */ 7180 symtab_and_line sr_sal; 7181 sr_sal.pc = ecs->stop_func_start; 7182 sr_sal.pspace = get_frame_program_space (frame); 7183 insert_step_resume_breakpoint_at_sal (gdbarch, 7184 sr_sal, null_frame_id); 7185 } 7186 } 7187 else 7188 /* Set a breakpoint at callee's return address (the address 7189 at which the caller will resume). */ 7190 insert_step_resume_breakpoint_at_caller (frame); 7191 7192 keep_going (ecs); 7193 return; 7194 } 7195 7196 /* Reverse stepping through solib trampolines. */ 7197 7198 if (execution_direction == EXEC_REVERSE 7199 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) 7200 { 7201 CORE_ADDR stop_pc = ecs->event_thread->stop_pc (); 7202 7203 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) 7204 || (ecs->stop_func_start == 0 7205 && in_solib_dynsym_resolve_code (stop_pc))) 7206 { 7207 /* Any solib trampoline code can be handled in reverse 7208 by simply continuing to single-step. We have already 7209 executed the solib function (backwards), and a few 7210 steps will take us back through the trampoline to the 7211 caller. */ 7212 keep_going (ecs); 7213 return; 7214 } 7215 else if (in_solib_dynsym_resolve_code (stop_pc)) 7216 { 7217 /* Stepped backward into the solib dynsym resolver. 7218 Set a breakpoint at its start and continue, then 7219 one more step will take us out. */ 7220 symtab_and_line sr_sal; 7221 sr_sal.pc = ecs->stop_func_start; 7222 sr_sal.pspace = get_frame_program_space (frame); 7223 insert_step_resume_breakpoint_at_sal (gdbarch, 7224 sr_sal, null_frame_id); 7225 keep_going (ecs); 7226 return; 7227 } 7228 } 7229 7230 /* This always returns the sal for the inner-most frame when we are in a 7231 stack of inlined frames, even if GDB actually believes that it is in a 7232 more outer frame. This is checked for below by calls to 7233 inline_skipped_frames. */ 7234 stop_pc_sal = find_pc_line (ecs->event_thread->stop_pc (), 0); 7235 7236 /* NOTE: tausq/2004-05-24: This if block used to be done before all 7237 the trampoline processing logic, however, there are some trampolines 7238 that have no names, so we should do trampoline handling first. */ 7239 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE 7240 && ecs->stop_func_name == nullptr 7241 && stop_pc_sal.line == 0) 7242 { 7243 infrun_debug_printf ("stepped into undebuggable function"); 7244 7245 /* The inferior just stepped into, or returned to, an 7246 undebuggable function (where there is no debugging information 7247 and no line number corresponding to the address where the 7248 inferior stopped). Since we want to skip this kind of code, 7249 we keep going until the inferior returns from this 7250 function - unless the user has asked us not to (via 7251 set step-mode) or we no longer know how to get back 7252 to the call site. */ 7253 if (step_stop_if_no_debug 7254 || !frame_id_p (frame_unwind_caller_id (frame))) 7255 { 7256 /* If we have no line number and the step-stop-if-no-debug 7257 is set, we stop the step so that the user has a chance to 7258 switch in assembly mode. */ 7259 end_stepping_range (ecs); 7260 return; 7261 } 7262 else 7263 { 7264 /* Set a breakpoint at callee's return address (the address 7265 at which the caller will resume). */ 7266 insert_step_resume_breakpoint_at_caller (frame); 7267 keep_going (ecs); 7268 return; 7269 } 7270 } 7271 7272 if (ecs->event_thread->control.step_range_end == 1) 7273 { 7274 /* It is stepi or nexti. We always want to stop stepping after 7275 one instruction. */ 7276 infrun_debug_printf ("stepi/nexti"); 7277 end_stepping_range (ecs); 7278 return; 7279 } 7280 7281 if (stop_pc_sal.line == 0) 7282 { 7283 /* We have no line number information. That means to stop 7284 stepping (does this always happen right after one instruction, 7285 when we do "s" in a function with no line numbers, 7286 or can this happen as a result of a return or longjmp?). */ 7287 infrun_debug_printf ("line number info"); 7288 end_stepping_range (ecs); 7289 return; 7290 } 7291 7292 /* Look for "calls" to inlined functions, part one. If the inline 7293 frame machinery detected some skipped call sites, we have entered 7294 a new inline function. */ 7295 7296 if ((get_frame_id (get_current_frame ()) 7297 == ecs->event_thread->control.step_frame_id) 7298 && inline_skipped_frames (ecs->event_thread)) 7299 { 7300 infrun_debug_printf ("stepped into inlined function"); 7301 7302 symtab_and_line call_sal = find_frame_sal (get_current_frame ()); 7303 7304 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL) 7305 { 7306 /* For "step", we're going to stop. But if the call site 7307 for this inlined function is on the same source line as 7308 we were previously stepping, go down into the function 7309 first. Otherwise stop at the call site. */ 7310 7311 if (call_sal.line == ecs->event_thread->current_line 7312 && call_sal.symtab == ecs->event_thread->current_symtab) 7313 { 7314 step_into_inline_frame (ecs->event_thread); 7315 if (inline_frame_is_marked_for_skip (false, ecs->event_thread)) 7316 { 7317 keep_going (ecs); 7318 return; 7319 } 7320 } 7321 7322 end_stepping_range (ecs); 7323 return; 7324 } 7325 else 7326 { 7327 /* For "next", we should stop at the call site if it is on a 7328 different source line. Otherwise continue through the 7329 inlined function. */ 7330 if (call_sal.line == ecs->event_thread->current_line 7331 && call_sal.symtab == ecs->event_thread->current_symtab) 7332 keep_going (ecs); 7333 else 7334 end_stepping_range (ecs); 7335 return; 7336 } 7337 } 7338 7339 /* Look for "calls" to inlined functions, part two. If we are still 7340 in the same real function we were stepping through, but we have 7341 to go further up to find the exact frame ID, we are stepping 7342 through a more inlined call beyond its call site. */ 7343 7344 if (get_frame_type (get_current_frame ()) == INLINE_FRAME 7345 && (get_frame_id (get_current_frame ()) 7346 != ecs->event_thread->control.step_frame_id) 7347 && stepped_in_from (get_current_frame (), 7348 ecs->event_thread->control.step_frame_id)) 7349 { 7350 infrun_debug_printf ("stepping through inlined function"); 7351 7352 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL 7353 || inline_frame_is_marked_for_skip (false, ecs->event_thread)) 7354 keep_going (ecs); 7355 else 7356 end_stepping_range (ecs); 7357 return; 7358 } 7359 7360 bool refresh_step_info = true; 7361 if ((ecs->event_thread->stop_pc () == stop_pc_sal.pc) 7362 && (ecs->event_thread->current_line != stop_pc_sal.line 7363 || ecs->event_thread->current_symtab != stop_pc_sal.symtab)) 7364 { 7365 /* We are at a different line. */ 7366 7367 if (stop_pc_sal.is_stmt) 7368 { 7369 /* We are at the start of a statement. 7370 7371 So stop. Note that we don't stop if we step into the middle of a 7372 statement. That is said to make things like for (;;) statements 7373 work better. */ 7374 infrun_debug_printf ("stepped to a different line"); 7375 end_stepping_range (ecs); 7376 return; 7377 } 7378 else if (get_frame_id (get_current_frame ()) 7379 == ecs->event_thread->control.step_frame_id) 7380 { 7381 /* We are not at the start of a statement, and we have not changed 7382 frame. 7383 7384 We ignore this line table entry, and continue stepping forward, 7385 looking for a better place to stop. */ 7386 refresh_step_info = false; 7387 infrun_debug_printf ("stepped to a different line, but " 7388 "it's not the start of a statement"); 7389 } 7390 else 7391 { 7392 /* We are not the start of a statement, and we have changed frame. 7393 7394 We ignore this line table entry, and continue stepping forward, 7395 looking for a better place to stop. Keep refresh_step_info at 7396 true to note that the frame has changed, but ignore the line 7397 number to make sure we don't ignore a subsequent entry with the 7398 same line number. */ 7399 stop_pc_sal.line = 0; 7400 infrun_debug_printf ("stepped to a different frame, but " 7401 "it's not the start of a statement"); 7402 } 7403 } 7404 7405 /* We aren't done stepping. 7406 7407 Optimize by setting the stepping range to the line. 7408 (We might not be in the original line, but if we entered a 7409 new line in mid-statement, we continue stepping. This makes 7410 things like for(;;) statements work better.) 7411 7412 If we entered a SAL that indicates a non-statement line table entry, 7413 then we update the stepping range, but we don't update the step info, 7414 which includes things like the line number we are stepping away from. 7415 This means we will stop when we find a line table entry that is marked 7416 as is-statement, even if it matches the non-statement one we just 7417 stepped into. */ 7418 7419 ecs->event_thread->control.step_range_start = stop_pc_sal.pc; 7420 ecs->event_thread->control.step_range_end = stop_pc_sal.end; 7421 ecs->event_thread->control.may_range_step = 1; 7422 infrun_debug_printf 7423 ("updated step range, start = %s, end = %s, may_range_step = %d", 7424 paddress (gdbarch, ecs->event_thread->control.step_range_start), 7425 paddress (gdbarch, ecs->event_thread->control.step_range_end), 7426 ecs->event_thread->control.may_range_step); 7427 if (refresh_step_info) 7428 set_step_info (ecs->event_thread, frame, stop_pc_sal); 7429 7430 infrun_debug_printf ("keep going"); 7431 keep_going (ecs); 7432 } 7433 7434 static bool restart_stepped_thread (process_stratum_target *resume_target, 7435 ptid_t resume_ptid); 7436 7437 /* In all-stop mode, if we're currently stepping but have stopped in 7438 some other thread, we may need to switch back to the stepped 7439 thread. Returns true we set the inferior running, false if we left 7440 it stopped (and the event needs further processing). */ 7441 7442 static bool 7443 switch_back_to_stepped_thread (struct execution_control_state *ecs) 7444 { 7445 if (!target_is_non_stop_p ()) 7446 { 7447 /* If any thread is blocked on some internal breakpoint, and we 7448 simply need to step over that breakpoint to get it going 7449 again, do that first. */ 7450 7451 /* However, if we see an event for the stepping thread, then we 7452 know all other threads have been moved past their breakpoints 7453 already. Let the caller check whether the step is finished, 7454 etc., before deciding to move it past a breakpoint. */ 7455 if (ecs->event_thread->control.step_range_end != 0) 7456 return false; 7457 7458 /* Check if the current thread is blocked on an incomplete 7459 step-over, interrupted by a random signal. */ 7460 if (ecs->event_thread->control.trap_expected 7461 && ecs->event_thread->stop_signal () != GDB_SIGNAL_TRAP) 7462 { 7463 infrun_debug_printf 7464 ("need to finish step-over of [%s]", 7465 ecs->event_thread->ptid.to_string ().c_str ()); 7466 keep_going (ecs); 7467 return true; 7468 } 7469 7470 /* Check if the current thread is blocked by a single-step 7471 breakpoint of another thread. */ 7472 if (ecs->hit_singlestep_breakpoint) 7473 { 7474 infrun_debug_printf ("need to step [%s] over single-step breakpoint", 7475 ecs->ptid.to_string ().c_str ()); 7476 keep_going (ecs); 7477 return true; 7478 } 7479 7480 /* If this thread needs yet another step-over (e.g., stepping 7481 through a delay slot), do it first before moving on to 7482 another thread. */ 7483 if (thread_still_needs_step_over (ecs->event_thread)) 7484 { 7485 infrun_debug_printf 7486 ("thread [%s] still needs step-over", 7487 ecs->event_thread->ptid.to_string ().c_str ()); 7488 keep_going (ecs); 7489 return true; 7490 } 7491 7492 /* If scheduler locking applies even if not stepping, there's no 7493 need to walk over threads. Above we've checked whether the 7494 current thread is stepping. If some other thread not the 7495 event thread is stepping, then it must be that scheduler 7496 locking is not in effect. */ 7497 if (schedlock_applies (ecs->event_thread)) 7498 return false; 7499 7500 /* Otherwise, we no longer expect a trap in the current thread. 7501 Clear the trap_expected flag before switching back -- this is 7502 what keep_going does as well, if we call it. */ 7503 ecs->event_thread->control.trap_expected = 0; 7504 7505 /* Likewise, clear the signal if it should not be passed. */ 7506 if (!signal_program[ecs->event_thread->stop_signal ()]) 7507 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0); 7508 7509 if (restart_stepped_thread (ecs->target, ecs->ptid)) 7510 { 7511 prepare_to_wait (ecs); 7512 return true; 7513 } 7514 7515 switch_to_thread (ecs->event_thread); 7516 } 7517 7518 return false; 7519 } 7520 7521 /* Look for the thread that was stepping, and resume it. 7522 RESUME_TARGET / RESUME_PTID indicate the set of threads the caller 7523 is resuming. Return true if a thread was started, false 7524 otherwise. */ 7525 7526 static bool 7527 restart_stepped_thread (process_stratum_target *resume_target, 7528 ptid_t resume_ptid) 7529 { 7530 /* Do all pending step-overs before actually proceeding with 7531 step/next/etc. */ 7532 if (start_step_over ()) 7533 return true; 7534 7535 for (thread_info *tp : all_threads_safe ()) 7536 { 7537 if (tp->state == THREAD_EXITED) 7538 continue; 7539 7540 if (tp->has_pending_waitstatus ()) 7541 continue; 7542 7543 /* Ignore threads of processes the caller is not 7544 resuming. */ 7545 if (!sched_multi 7546 && (tp->inf->process_target () != resume_target 7547 || tp->inf->pid != resume_ptid.pid ())) 7548 continue; 7549 7550 if (tp->control.trap_expected) 7551 { 7552 infrun_debug_printf ("switching back to stepped thread (step-over)"); 7553 7554 if (keep_going_stepped_thread (tp)) 7555 return true; 7556 } 7557 } 7558 7559 for (thread_info *tp : all_threads_safe ()) 7560 { 7561 if (tp->state == THREAD_EXITED) 7562 continue; 7563 7564 if (tp->has_pending_waitstatus ()) 7565 continue; 7566 7567 /* Ignore threads of processes the caller is not 7568 resuming. */ 7569 if (!sched_multi 7570 && (tp->inf->process_target () != resume_target 7571 || tp->inf->pid != resume_ptid.pid ())) 7572 continue; 7573 7574 /* Did we find the stepping thread? */ 7575 if (tp->control.step_range_end) 7576 { 7577 infrun_debug_printf ("switching back to stepped thread (stepping)"); 7578 7579 if (keep_going_stepped_thread (tp)) 7580 return true; 7581 } 7582 } 7583 7584 return false; 7585 } 7586 7587 /* See infrun.h. */ 7588 7589 void 7590 restart_after_all_stop_detach (process_stratum_target *proc_target) 7591 { 7592 /* Note we don't check target_is_non_stop_p() here, because the 7593 current inferior may no longer have a process_stratum target 7594 pushed, as we just detached. */ 7595 7596 /* See if we have a THREAD_RUNNING thread that need to be 7597 re-resumed. If we have any thread that is already executing, 7598 then we don't need to resume the target -- it is already been 7599 resumed. With the remote target (in all-stop), it's even 7600 impossible to issue another resumption if the target is already 7601 resumed, until the target reports a stop. */ 7602 for (thread_info *thr : all_threads (proc_target)) 7603 { 7604 if (thr->state != THREAD_RUNNING) 7605 continue; 7606 7607 /* If we have any thread that is already executing, then we 7608 don't need to resume the target -- it is already been 7609 resumed. */ 7610 if (thr->executing ()) 7611 return; 7612 7613 /* If we have a pending event to process, skip resuming the 7614 target and go straight to processing it. */ 7615 if (thr->resumed () && thr->has_pending_waitstatus ()) 7616 return; 7617 } 7618 7619 /* Alright, we need to re-resume the target. If a thread was 7620 stepping, we need to restart it stepping. */ 7621 if (restart_stepped_thread (proc_target, minus_one_ptid)) 7622 return; 7623 7624 /* Otherwise, find the first THREAD_RUNNING thread and resume 7625 it. */ 7626 for (thread_info *thr : all_threads (proc_target)) 7627 { 7628 if (thr->state != THREAD_RUNNING) 7629 continue; 7630 7631 execution_control_state ecs (thr); 7632 switch_to_thread (thr); 7633 keep_going (&ecs); 7634 return; 7635 } 7636 } 7637 7638 /* Set a previously stepped thread back to stepping. Returns true on 7639 success, false if the resume is not possible (e.g., the thread 7640 vanished). */ 7641 7642 static bool 7643 keep_going_stepped_thread (struct thread_info *tp) 7644 { 7645 frame_info_ptr frame; 7646 7647 /* If the stepping thread exited, then don't try to switch back and 7648 resume it, which could fail in several different ways depending 7649 on the target. Instead, just keep going. 7650 7651 We can find a stepping dead thread in the thread list in two 7652 cases: 7653 7654 - The target supports thread exit events, and when the target 7655 tries to delete the thread from the thread list, inferior_ptid 7656 pointed at the exiting thread. In such case, calling 7657 delete_thread does not really remove the thread from the list; 7658 instead, the thread is left listed, with 'exited' state. 7659 7660 - The target's debug interface does not support thread exit 7661 events, and so we have no idea whatsoever if the previously 7662 stepping thread is still alive. For that reason, we need to 7663 synchronously query the target now. */ 7664 7665 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid)) 7666 { 7667 infrun_debug_printf ("not resuming previously stepped thread, it has " 7668 "vanished"); 7669 7670 delete_thread (tp); 7671 return false; 7672 } 7673 7674 infrun_debug_printf ("resuming previously stepped thread"); 7675 7676 execution_control_state ecs (tp); 7677 switch_to_thread (tp); 7678 7679 tp->set_stop_pc (regcache_read_pc (get_thread_regcache (tp))); 7680 frame = get_current_frame (); 7681 7682 /* If the PC of the thread we were trying to single-step has 7683 changed, then that thread has trapped or been signaled, but the 7684 event has not been reported to GDB yet. Re-poll the target 7685 looking for this particular thread's event (i.e. temporarily 7686 enable schedlock) by: 7687 7688 - setting a break at the current PC 7689 - resuming that particular thread, only (by setting trap 7690 expected) 7691 7692 This prevents us continuously moving the single-step breakpoint 7693 forward, one instruction at a time, overstepping. */ 7694 7695 if (tp->stop_pc () != tp->prev_pc) 7696 { 7697 ptid_t resume_ptid; 7698 7699 infrun_debug_printf ("expected thread advanced also (%s -> %s)", 7700 paddress (target_gdbarch (), tp->prev_pc), 7701 paddress (target_gdbarch (), tp->stop_pc ())); 7702 7703 /* Clear the info of the previous step-over, as it's no longer 7704 valid (if the thread was trying to step over a breakpoint, it 7705 has already succeeded). It's what keep_going would do too, 7706 if we called it. Do this before trying to insert the sss 7707 breakpoint, otherwise if we were previously trying to step 7708 over this exact address in another thread, the breakpoint is 7709 skipped. */ 7710 clear_step_over_info (); 7711 tp->control.trap_expected = 0; 7712 7713 insert_single_step_breakpoint (get_frame_arch (frame), 7714 get_frame_address_space (frame), 7715 tp->stop_pc ()); 7716 7717 tp->set_resumed (true); 7718 resume_ptid = internal_resume_ptid (tp->control.stepping_command); 7719 do_target_resume (resume_ptid, false, GDB_SIGNAL_0); 7720 } 7721 else 7722 { 7723 infrun_debug_printf ("expected thread still hasn't advanced"); 7724 7725 keep_going_pass_signal (&ecs); 7726 } 7727 7728 return true; 7729 } 7730 7731 /* Is thread TP in the middle of (software or hardware) 7732 single-stepping? (Note the result of this function must never be 7733 passed directly as target_resume's STEP parameter.) */ 7734 7735 static bool 7736 currently_stepping (struct thread_info *tp) 7737 { 7738 return ((tp->control.step_range_end 7739 && tp->control.step_resume_breakpoint == nullptr) 7740 || tp->control.trap_expected 7741 || tp->stepped_breakpoint 7742 || bpstat_should_step ()); 7743 } 7744 7745 /* Inferior has stepped into a subroutine call with source code that 7746 we should not step over. Do step to the first line of code in 7747 it. */ 7748 7749 static void 7750 handle_step_into_function (struct gdbarch *gdbarch, 7751 struct execution_control_state *ecs) 7752 { 7753 fill_in_stop_func (gdbarch, ecs); 7754 7755 compunit_symtab *cust 7756 = find_pc_compunit_symtab (ecs->event_thread->stop_pc ()); 7757 if (cust != nullptr && cust->language () != language_asm) 7758 ecs->stop_func_start 7759 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); 7760 7761 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0); 7762 /* Use the step_resume_break to step until the end of the prologue, 7763 even if that involves jumps (as it seems to on the vax under 7764 4.2). */ 7765 /* If the prologue ends in the middle of a source line, continue to 7766 the end of that source line (if it is still within the function). 7767 Otherwise, just go to end of prologue. */ 7768 if (stop_func_sal.end 7769 && stop_func_sal.pc != ecs->stop_func_start 7770 && stop_func_sal.end < ecs->stop_func_end) 7771 ecs->stop_func_start = stop_func_sal.end; 7772 7773 /* Architectures which require breakpoint adjustment might not be able 7774 to place a breakpoint at the computed address. If so, the test 7775 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust 7776 ecs->stop_func_start to an address at which a breakpoint may be 7777 legitimately placed. 7778 7779 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not 7780 made, GDB will enter an infinite loop when stepping through 7781 optimized code consisting of VLIW instructions which contain 7782 subinstructions corresponding to different source lines. On 7783 FR-V, it's not permitted to place a breakpoint on any but the 7784 first subinstruction of a VLIW instruction. When a breakpoint is 7785 set, GDB will adjust the breakpoint address to the beginning of 7786 the VLIW instruction. Thus, we need to make the corresponding 7787 adjustment here when computing the stop address. */ 7788 7789 if (gdbarch_adjust_breakpoint_address_p (gdbarch)) 7790 { 7791 ecs->stop_func_start 7792 = gdbarch_adjust_breakpoint_address (gdbarch, 7793 ecs->stop_func_start); 7794 } 7795 7796 if (ecs->stop_func_start == ecs->event_thread->stop_pc ()) 7797 { 7798 /* We are already there: stop now. */ 7799 end_stepping_range (ecs); 7800 return; 7801 } 7802 else 7803 { 7804 /* Put the step-breakpoint there and go until there. */ 7805 symtab_and_line sr_sal; 7806 sr_sal.pc = ecs->stop_func_start; 7807 sr_sal.section = find_pc_overlay (ecs->stop_func_start); 7808 sr_sal.pspace = get_frame_program_space (get_current_frame ()); 7809 7810 /* Do not specify what the fp should be when we stop since on 7811 some machines the prologue is where the new fp value is 7812 established. */ 7813 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id); 7814 7815 /* And make sure stepping stops right away then. */ 7816 ecs->event_thread->control.step_range_end 7817 = ecs->event_thread->control.step_range_start; 7818 } 7819 keep_going (ecs); 7820 } 7821 7822 /* Inferior has stepped backward into a subroutine call with source 7823 code that we should not step over. Do step to the beginning of the 7824 last line of code in it. */ 7825 7826 static void 7827 handle_step_into_function_backward (struct gdbarch *gdbarch, 7828 struct execution_control_state *ecs) 7829 { 7830 struct compunit_symtab *cust; 7831 struct symtab_and_line stop_func_sal; 7832 7833 fill_in_stop_func (gdbarch, ecs); 7834 7835 cust = find_pc_compunit_symtab (ecs->event_thread->stop_pc ()); 7836 if (cust != nullptr && cust->language () != language_asm) 7837 ecs->stop_func_start 7838 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); 7839 7840 stop_func_sal = find_pc_line (ecs->event_thread->stop_pc (), 0); 7841 7842 /* OK, we're just going to keep stepping here. */ 7843 if (stop_func_sal.pc == ecs->event_thread->stop_pc ()) 7844 { 7845 /* We're there already. Just stop stepping now. */ 7846 end_stepping_range (ecs); 7847 } 7848 else 7849 { 7850 /* Else just reset the step range and keep going. 7851 No step-resume breakpoint, they don't work for 7852 epilogues, which can have multiple entry paths. */ 7853 ecs->event_thread->control.step_range_start = stop_func_sal.pc; 7854 ecs->event_thread->control.step_range_end = stop_func_sal.end; 7855 keep_going (ecs); 7856 } 7857 return; 7858 } 7859 7860 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. 7861 This is used to both functions and to skip over code. */ 7862 7863 static void 7864 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch, 7865 struct symtab_and_line sr_sal, 7866 struct frame_id sr_id, 7867 enum bptype sr_type) 7868 { 7869 /* There should never be more than one step-resume or longjmp-resume 7870 breakpoint per thread, so we should never be setting a new 7871 step_resume_breakpoint when one is already active. */ 7872 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == nullptr); 7873 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume); 7874 7875 infrun_debug_printf ("inserting step-resume breakpoint at %s", 7876 paddress (gdbarch, sr_sal.pc)); 7877 7878 inferior_thread ()->control.step_resume_breakpoint 7879 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release (); 7880 } 7881 7882 void 7883 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, 7884 struct symtab_and_line sr_sal, 7885 struct frame_id sr_id) 7886 { 7887 insert_step_resume_breakpoint_at_sal_1 (gdbarch, 7888 sr_sal, sr_id, 7889 bp_step_resume); 7890 } 7891 7892 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc. 7893 This is used to skip a potential signal handler. 7894 7895 This is called with the interrupted function's frame. The signal 7896 handler, when it returns, will resume the interrupted function at 7897 RETURN_FRAME.pc. */ 7898 7899 static void 7900 insert_hp_step_resume_breakpoint_at_frame (frame_info_ptr return_frame) 7901 { 7902 gdb_assert (return_frame != nullptr); 7903 7904 struct gdbarch *gdbarch = get_frame_arch (return_frame); 7905 7906 symtab_and_line sr_sal; 7907 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame)); 7908 sr_sal.section = find_pc_overlay (sr_sal.pc); 7909 sr_sal.pspace = get_frame_program_space (return_frame); 7910 7911 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal, 7912 get_stack_frame_id (return_frame), 7913 bp_hp_step_resume); 7914 } 7915 7916 /* Insert a "step-resume breakpoint" at the previous frame's PC. This 7917 is used to skip a function after stepping into it (for "next" or if 7918 the called function has no debugging information). 7919 7920 The current function has almost always been reached by single 7921 stepping a call or return instruction. NEXT_FRAME belongs to the 7922 current function, and the breakpoint will be set at the caller's 7923 resume address. 7924 7925 This is a separate function rather than reusing 7926 insert_hp_step_resume_breakpoint_at_frame in order to avoid 7927 get_prev_frame, which may stop prematurely (see the implementation 7928 of frame_unwind_caller_id for an example). */ 7929 7930 static void 7931 insert_step_resume_breakpoint_at_caller (frame_info_ptr next_frame) 7932 { 7933 /* We shouldn't have gotten here if we don't know where the call site 7934 is. */ 7935 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame))); 7936 7937 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame); 7938 7939 symtab_and_line sr_sal; 7940 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, 7941 frame_unwind_caller_pc (next_frame)); 7942 sr_sal.section = find_pc_overlay (sr_sal.pc); 7943 sr_sal.pspace = frame_unwind_program_space (next_frame); 7944 7945 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, 7946 frame_unwind_caller_id (next_frame)); 7947 } 7948 7949 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a 7950 new breakpoint at the target of a jmp_buf. The handling of 7951 longjmp-resume uses the same mechanisms used for handling 7952 "step-resume" breakpoints. */ 7953 7954 static void 7955 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc) 7956 { 7957 /* There should never be more than one longjmp-resume breakpoint per 7958 thread, so we should never be setting a new 7959 longjmp_resume_breakpoint when one is already active. */ 7960 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == nullptr); 7961 7962 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s", 7963 paddress (gdbarch, pc)); 7964 7965 inferior_thread ()->control.exception_resume_breakpoint = 7966 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release (); 7967 } 7968 7969 /* Insert an exception resume breakpoint. TP is the thread throwing 7970 the exception. The block B is the block of the unwinder debug hook 7971 function. FRAME is the frame corresponding to the call to this 7972 function. SYM is the symbol of the function argument holding the 7973 target PC of the exception. */ 7974 7975 static void 7976 insert_exception_resume_breakpoint (struct thread_info *tp, 7977 const struct block *b, 7978 frame_info_ptr frame, 7979 struct symbol *sym) 7980 { 7981 try 7982 { 7983 struct block_symbol vsym; 7984 struct value *value; 7985 CORE_ADDR handler; 7986 struct breakpoint *bp; 7987 7988 vsym = lookup_symbol_search_name (sym->search_name (), 7989 b, VAR_DOMAIN); 7990 value = read_var_value (vsym.symbol, vsym.block, frame); 7991 /* If the value was optimized out, revert to the old behavior. */ 7992 if (! value_optimized_out (value)) 7993 { 7994 handler = value_as_address (value); 7995 7996 infrun_debug_printf ("exception resume at %lx", 7997 (unsigned long) handler); 7998 7999 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), 8000 handler, 8001 bp_exception_resume).release (); 8002 8003 /* set_momentary_breakpoint_at_pc invalidates FRAME. */ 8004 frame = nullptr; 8005 8006 bp->thread = tp->global_num; 8007 inferior_thread ()->control.exception_resume_breakpoint = bp; 8008 } 8009 } 8010 catch (const gdb_exception_error &e) 8011 { 8012 /* We want to ignore errors here. */ 8013 } 8014 } 8015 8016 /* A helper for check_exception_resume that sets an 8017 exception-breakpoint based on a SystemTap probe. */ 8018 8019 static void 8020 insert_exception_resume_from_probe (struct thread_info *tp, 8021 const struct bound_probe *probe, 8022 frame_info_ptr frame) 8023 { 8024 struct value *arg_value; 8025 CORE_ADDR handler; 8026 struct breakpoint *bp; 8027 8028 arg_value = probe_safe_evaluate_at_pc (frame, 1); 8029 if (!arg_value) 8030 return; 8031 8032 handler = value_as_address (arg_value); 8033 8034 infrun_debug_printf ("exception resume at %s", 8035 paddress (probe->objfile->arch (), handler)); 8036 8037 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), 8038 handler, bp_exception_resume).release (); 8039 bp->thread = tp->global_num; 8040 inferior_thread ()->control.exception_resume_breakpoint = bp; 8041 } 8042 8043 /* This is called when an exception has been intercepted. Check to 8044 see whether the exception's destination is of interest, and if so, 8045 set an exception resume breakpoint there. */ 8046 8047 static void 8048 check_exception_resume (struct execution_control_state *ecs, 8049 frame_info_ptr frame) 8050 { 8051 struct bound_probe probe; 8052 struct symbol *func; 8053 8054 /* First see if this exception unwinding breakpoint was set via a 8055 SystemTap probe point. If so, the probe has two arguments: the 8056 CFA and the HANDLER. We ignore the CFA, extract the handler, and 8057 set a breakpoint there. */ 8058 probe = find_probe_by_pc (get_frame_pc (frame)); 8059 if (probe.prob) 8060 { 8061 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame); 8062 return; 8063 } 8064 8065 func = get_frame_function (frame); 8066 if (!func) 8067 return; 8068 8069 try 8070 { 8071 const struct block *b; 8072 struct block_iterator iter; 8073 struct symbol *sym; 8074 int argno = 0; 8075 8076 /* The exception breakpoint is a thread-specific breakpoint on 8077 the unwinder's debug hook, declared as: 8078 8079 void _Unwind_DebugHook (void *cfa, void *handler); 8080 8081 The CFA argument indicates the frame to which control is 8082 about to be transferred. HANDLER is the destination PC. 8083 8084 We ignore the CFA and set a temporary breakpoint at HANDLER. 8085 This is not extremely efficient but it avoids issues in gdb 8086 with computing the DWARF CFA, and it also works even in weird 8087 cases such as throwing an exception from inside a signal 8088 handler. */ 8089 8090 b = func->value_block (); 8091 ALL_BLOCK_SYMBOLS (b, iter, sym) 8092 { 8093 if (!sym->is_argument ()) 8094 continue; 8095 8096 if (argno == 0) 8097 ++argno; 8098 else 8099 { 8100 insert_exception_resume_breakpoint (ecs->event_thread, 8101 b, frame, sym); 8102 break; 8103 } 8104 } 8105 } 8106 catch (const gdb_exception_error &e) 8107 { 8108 } 8109 } 8110 8111 static void 8112 stop_waiting (struct execution_control_state *ecs) 8113 { 8114 infrun_debug_printf ("stop_waiting"); 8115 8116 /* Let callers know we don't want to wait for the inferior anymore. */ 8117 ecs->wait_some_more = 0; 8118 } 8119 8120 /* Like keep_going, but passes the signal to the inferior, even if the 8121 signal is set to nopass. */ 8122 8123 static void 8124 keep_going_pass_signal (struct execution_control_state *ecs) 8125 { 8126 gdb_assert (ecs->event_thread->ptid == inferior_ptid); 8127 gdb_assert (!ecs->event_thread->resumed ()); 8128 8129 /* Save the pc before execution, to compare with pc after stop. */ 8130 ecs->event_thread->prev_pc 8131 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread)); 8132 8133 if (ecs->event_thread->control.trap_expected) 8134 { 8135 struct thread_info *tp = ecs->event_thread; 8136 8137 infrun_debug_printf ("%s has trap_expected set, " 8138 "resuming to collect trap", 8139 tp->ptid.to_string ().c_str ()); 8140 8141 /* We haven't yet gotten our trap, and either: intercepted a 8142 non-signal event (e.g., a fork); or took a signal which we 8143 are supposed to pass through to the inferior. Simply 8144 continue. */ 8145 resume (ecs->event_thread->stop_signal ()); 8146 } 8147 else if (step_over_info_valid_p ()) 8148 { 8149 /* Another thread is stepping over a breakpoint in-line. If 8150 this thread needs a step-over too, queue the request. In 8151 either case, this resume must be deferred for later. */ 8152 struct thread_info *tp = ecs->event_thread; 8153 8154 if (ecs->hit_singlestep_breakpoint 8155 || thread_still_needs_step_over (tp)) 8156 { 8157 infrun_debug_printf ("step-over already in progress: " 8158 "step-over for %s deferred", 8159 tp->ptid.to_string ().c_str ()); 8160 global_thread_step_over_chain_enqueue (tp); 8161 } 8162 else 8163 infrun_debug_printf ("step-over in progress: resume of %s deferred", 8164 tp->ptid.to_string ().c_str ()); 8165 } 8166 else 8167 { 8168 struct regcache *regcache = get_current_regcache (); 8169 int remove_bp; 8170 int remove_wps; 8171 step_over_what step_what; 8172 8173 /* Either the trap was not expected, but we are continuing 8174 anyway (if we got a signal, the user asked it be passed to 8175 the child) 8176 -- or -- 8177 We got our expected trap, but decided we should resume from 8178 it. 8179 8180 We're going to run this baby now! 8181 8182 Note that insert_breakpoints won't try to re-insert 8183 already inserted breakpoints. Therefore, we don't 8184 care if breakpoints were already inserted, or not. */ 8185 8186 /* If we need to step over a breakpoint, and we're not using 8187 displaced stepping to do so, insert all breakpoints 8188 (watchpoints, etc.) but the one we're stepping over, step one 8189 instruction, and then re-insert the breakpoint when that step 8190 is finished. */ 8191 8192 step_what = thread_still_needs_step_over (ecs->event_thread); 8193 8194 remove_bp = (ecs->hit_singlestep_breakpoint 8195 || (step_what & STEP_OVER_BREAKPOINT)); 8196 remove_wps = (step_what & STEP_OVER_WATCHPOINT); 8197 8198 /* We can't use displaced stepping if we need to step past a 8199 watchpoint. The instruction copied to the scratch pad would 8200 still trigger the watchpoint. */ 8201 if (remove_bp 8202 && (remove_wps || !use_displaced_stepping (ecs->event_thread))) 8203 { 8204 set_step_over_info (regcache->aspace (), 8205 regcache_read_pc (regcache), remove_wps, 8206 ecs->event_thread->global_num); 8207 } 8208 else if (remove_wps) 8209 set_step_over_info (nullptr, 0, remove_wps, -1); 8210 8211 /* If we now need to do an in-line step-over, we need to stop 8212 all other threads. Note this must be done before 8213 insert_breakpoints below, because that removes the breakpoint 8214 we're about to step over, otherwise other threads could miss 8215 it. */ 8216 if (step_over_info_valid_p () && target_is_non_stop_p ()) 8217 stop_all_threads ("starting in-line step-over"); 8218 8219 /* Stop stepping if inserting breakpoints fails. */ 8220 try 8221 { 8222 insert_breakpoints (); 8223 } 8224 catch (const gdb_exception_error &e) 8225 { 8226 exception_print (gdb_stderr, e); 8227 stop_waiting (ecs); 8228 clear_step_over_info (); 8229 return; 8230 } 8231 8232 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps); 8233 8234 resume (ecs->event_thread->stop_signal ()); 8235 } 8236 8237 prepare_to_wait (ecs); 8238 } 8239 8240 /* Called when we should continue running the inferior, because the 8241 current event doesn't cause a user visible stop. This does the 8242 resuming part; waiting for the next event is done elsewhere. */ 8243 8244 static void 8245 keep_going (struct execution_control_state *ecs) 8246 { 8247 if (ecs->event_thread->control.trap_expected 8248 && ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP) 8249 ecs->event_thread->control.trap_expected = 0; 8250 8251 if (!signal_program[ecs->event_thread->stop_signal ()]) 8252 ecs->event_thread->set_stop_signal (GDB_SIGNAL_0); 8253 keep_going_pass_signal (ecs); 8254 } 8255 8256 /* This function normally comes after a resume, before 8257 handle_inferior_event exits. It takes care of any last bits of 8258 housekeeping, and sets the all-important wait_some_more flag. */ 8259 8260 static void 8261 prepare_to_wait (struct execution_control_state *ecs) 8262 { 8263 infrun_debug_printf ("prepare_to_wait"); 8264 8265 ecs->wait_some_more = 1; 8266 8267 /* If the target can't async, emulate it by marking the infrun event 8268 handler such that as soon as we get back to the event-loop, we 8269 immediately end up in fetch_inferior_event again calling 8270 target_wait. */ 8271 if (!target_can_async_p ()) 8272 mark_infrun_async_event_handler (); 8273 } 8274 8275 /* We are done with the step range of a step/next/si/ni command. 8276 Called once for each n of a "step n" operation. */ 8277 8278 static void 8279 end_stepping_range (struct execution_control_state *ecs) 8280 { 8281 ecs->event_thread->control.stop_step = 1; 8282 stop_waiting (ecs); 8283 } 8284 8285 /* Several print_*_reason functions to print why the inferior has stopped. 8286 We always print something when the inferior exits, or receives a signal. 8287 The rest of the cases are dealt with later on in normal_stop and 8288 print_it_typical. Ideally there should be a call to one of these 8289 print_*_reason functions functions from handle_inferior_event each time 8290 stop_waiting is called. 8291 8292 Note that we don't call these directly, instead we delegate that to 8293 the interpreters, through observers. Interpreters then call these 8294 with whatever uiout is right. */ 8295 8296 void 8297 print_end_stepping_range_reason (struct ui_out *uiout) 8298 { 8299 /* For CLI-like interpreters, print nothing. */ 8300 8301 if (uiout->is_mi_like_p ()) 8302 { 8303 uiout->field_string ("reason", 8304 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); 8305 } 8306 } 8307 8308 void 8309 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal) 8310 { 8311 annotate_signalled (); 8312 if (uiout->is_mi_like_p ()) 8313 uiout->field_string 8314 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); 8315 uiout->text ("\nProgram terminated with signal "); 8316 annotate_signal_name (); 8317 uiout->field_string ("signal-name", 8318 gdb_signal_to_name (siggnal)); 8319 annotate_signal_name_end (); 8320 uiout->text (", "); 8321 annotate_signal_string (); 8322 uiout->field_string ("signal-meaning", 8323 gdb_signal_to_string (siggnal)); 8324 annotate_signal_string_end (); 8325 uiout->text (".\n"); 8326 uiout->text ("The program no longer exists.\n"); 8327 } 8328 8329 void 8330 print_exited_reason (struct ui_out *uiout, int exitstatus) 8331 { 8332 struct inferior *inf = current_inferior (); 8333 std::string pidstr = target_pid_to_str (ptid_t (inf->pid)); 8334 8335 annotate_exited (exitstatus); 8336 if (exitstatus) 8337 { 8338 if (uiout->is_mi_like_p ()) 8339 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED)); 8340 std::string exit_code_str 8341 = string_printf ("0%o", (unsigned int) exitstatus); 8342 uiout->message ("[Inferior %s (%s) exited with code %pF]\n", 8343 plongest (inf->num), pidstr.c_str (), 8344 string_field ("exit-code", exit_code_str.c_str ())); 8345 } 8346 else 8347 { 8348 if (uiout->is_mi_like_p ()) 8349 uiout->field_string 8350 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); 8351 uiout->message ("[Inferior %s (%s) exited normally]\n", 8352 plongest (inf->num), pidstr.c_str ()); 8353 } 8354 } 8355 8356 void 8357 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal) 8358 { 8359 struct thread_info *thr = inferior_thread (); 8360 8361 annotate_signal (); 8362 8363 if (uiout->is_mi_like_p ()) 8364 ; 8365 else if (show_thread_that_caused_stop ()) 8366 { 8367 uiout->text ("\nThread "); 8368 uiout->field_string ("thread-id", print_thread_id (thr)); 8369 8370 const char *name = thread_name (thr); 8371 if (name != nullptr) 8372 { 8373 uiout->text (" \""); 8374 uiout->field_string ("name", name); 8375 uiout->text ("\""); 8376 } 8377 } 8378 else 8379 uiout->text ("\nProgram"); 8380 8381 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ()) 8382 uiout->text (" stopped"); 8383 else 8384 { 8385 uiout->text (" received signal "); 8386 annotate_signal_name (); 8387 if (uiout->is_mi_like_p ()) 8388 uiout->field_string 8389 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); 8390 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal)); 8391 annotate_signal_name_end (); 8392 uiout->text (", "); 8393 annotate_signal_string (); 8394 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal)); 8395 8396 struct regcache *regcache = get_current_regcache (); 8397 struct gdbarch *gdbarch = regcache->arch (); 8398 if (gdbarch_report_signal_info_p (gdbarch)) 8399 gdbarch_report_signal_info (gdbarch, uiout, siggnal); 8400 8401 annotate_signal_string_end (); 8402 } 8403 uiout->text (".\n"); 8404 } 8405 8406 void 8407 print_no_history_reason (struct ui_out *uiout) 8408 { 8409 uiout->text ("\nNo more reverse-execution history.\n"); 8410 } 8411 8412 /* Print current location without a level number, if we have changed 8413 functions or hit a breakpoint. Print source line if we have one. 8414 bpstat_print contains the logic deciding in detail what to print, 8415 based on the event(s) that just occurred. */ 8416 8417 static void 8418 print_stop_location (const target_waitstatus &ws) 8419 { 8420 int bpstat_ret; 8421 enum print_what source_flag; 8422 int do_frame_printing = 1; 8423 struct thread_info *tp = inferior_thread (); 8424 8425 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws.kind ()); 8426 switch (bpstat_ret) 8427 { 8428 case PRINT_UNKNOWN: 8429 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or 8430 should) carry around the function and does (or should) use 8431 that when doing a frame comparison. */ 8432 if (tp->control.stop_step 8433 && (tp->control.step_frame_id 8434 == get_frame_id (get_current_frame ())) 8435 && (tp->control.step_start_function 8436 == find_pc_function (tp->stop_pc ()))) 8437 { 8438 /* Finished step, just print source line. */ 8439 source_flag = SRC_LINE; 8440 } 8441 else 8442 { 8443 /* Print location and source line. */ 8444 source_flag = SRC_AND_LOC; 8445 } 8446 break; 8447 case PRINT_SRC_AND_LOC: 8448 /* Print location and source line. */ 8449 source_flag = SRC_AND_LOC; 8450 break; 8451 case PRINT_SRC_ONLY: 8452 source_flag = SRC_LINE; 8453 break; 8454 case PRINT_NOTHING: 8455 /* Something bogus. */ 8456 source_flag = SRC_LINE; 8457 do_frame_printing = 0; 8458 break; 8459 default: 8460 internal_error (_("Unknown value.")); 8461 } 8462 8463 /* The behavior of this routine with respect to the source 8464 flag is: 8465 SRC_LINE: Print only source line 8466 LOCATION: Print only location 8467 SRC_AND_LOC: Print location and source line. */ 8468 if (do_frame_printing) 8469 print_stack_frame (get_selected_frame (nullptr), 0, source_flag, 1); 8470 } 8471 8472 /* See infrun.h. */ 8473 8474 void 8475 print_stop_event (struct ui_out *uiout, bool displays) 8476 { 8477 struct target_waitstatus last; 8478 struct thread_info *tp; 8479 8480 get_last_target_status (nullptr, nullptr, &last); 8481 8482 { 8483 scoped_restore save_uiout = make_scoped_restore (¤t_uiout, uiout); 8484 8485 print_stop_location (last); 8486 8487 /* Display the auto-display expressions. */ 8488 if (displays) 8489 do_displays (); 8490 } 8491 8492 tp = inferior_thread (); 8493 if (tp->thread_fsm () != nullptr 8494 && tp->thread_fsm ()->finished_p ()) 8495 { 8496 struct return_value_info *rv; 8497 8498 rv = tp->thread_fsm ()->return_value (); 8499 if (rv != nullptr) 8500 print_return_value (uiout, rv); 8501 } 8502 } 8503 8504 /* See infrun.h. */ 8505 8506 void 8507 maybe_remove_breakpoints (void) 8508 { 8509 if (!breakpoints_should_be_inserted_now () && target_has_execution ()) 8510 { 8511 if (remove_breakpoints ()) 8512 { 8513 target_terminal::ours_for_output (); 8514 gdb_printf (_("Cannot remove breakpoints because " 8515 "program is no longer writable.\nFurther " 8516 "execution is probably impossible.\n")); 8517 } 8518 } 8519 } 8520 8521 /* The execution context that just caused a normal stop. */ 8522 8523 struct stop_context 8524 { 8525 stop_context (); 8526 8527 DISABLE_COPY_AND_ASSIGN (stop_context); 8528 8529 bool changed () const; 8530 8531 /* The stop ID. */ 8532 ULONGEST stop_id; 8533 8534 /* The event PTID. */ 8535 8536 ptid_t ptid; 8537 8538 /* If stopp for a thread event, this is the thread that caused the 8539 stop. */ 8540 thread_info_ref thread; 8541 8542 /* The inferior that caused the stop. */ 8543 int inf_num; 8544 }; 8545 8546 /* Initializes a new stop context. If stopped for a thread event, this 8547 takes a strong reference to the thread. */ 8548 8549 stop_context::stop_context () 8550 { 8551 stop_id = get_stop_id (); 8552 ptid = inferior_ptid; 8553 inf_num = current_inferior ()->num; 8554 8555 if (inferior_ptid != null_ptid) 8556 { 8557 /* Take a strong reference so that the thread can't be deleted 8558 yet. */ 8559 thread = thread_info_ref::new_reference (inferior_thread ()); 8560 } 8561 } 8562 8563 /* Return true if the current context no longer matches the saved stop 8564 context. */ 8565 8566 bool 8567 stop_context::changed () const 8568 { 8569 if (ptid != inferior_ptid) 8570 return true; 8571 if (inf_num != current_inferior ()->num) 8572 return true; 8573 if (thread != nullptr && thread->state != THREAD_STOPPED) 8574 return true; 8575 if (get_stop_id () != stop_id) 8576 return true; 8577 return false; 8578 } 8579 8580 /* See infrun.h. */ 8581 8582 int 8583 normal_stop (void) 8584 { 8585 struct target_waitstatus last; 8586 8587 get_last_target_status (nullptr, nullptr, &last); 8588 8589 new_stop_id (); 8590 8591 /* If an exception is thrown from this point on, make sure to 8592 propagate GDB's knowledge of the executing state to the 8593 frontend/user running state. A QUIT is an easy exception to see 8594 here, so do this before any filtered output. */ 8595 8596 ptid_t finish_ptid = null_ptid; 8597 8598 if (!non_stop) 8599 finish_ptid = minus_one_ptid; 8600 else if (last.kind () == TARGET_WAITKIND_SIGNALLED 8601 || last.kind () == TARGET_WAITKIND_EXITED) 8602 { 8603 /* On some targets, we may still have live threads in the 8604 inferior when we get a process exit event. E.g., for 8605 "checkpoint", when the current checkpoint/fork exits, 8606 linux-fork.c automatically switches to another fork from 8607 within target_mourn_inferior. */ 8608 if (inferior_ptid != null_ptid) 8609 finish_ptid = ptid_t (inferior_ptid.pid ()); 8610 } 8611 else if (last.kind () != TARGET_WAITKIND_NO_RESUMED) 8612 finish_ptid = inferior_ptid; 8613 8614 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state; 8615 if (finish_ptid != null_ptid) 8616 { 8617 maybe_finish_thread_state.emplace 8618 (user_visible_resume_target (finish_ptid), finish_ptid); 8619 } 8620 8621 /* As we're presenting a stop, and potentially removing breakpoints, 8622 update the thread list so we can tell whether there are threads 8623 running on the target. With target remote, for example, we can 8624 only learn about new threads when we explicitly update the thread 8625 list. Do this before notifying the interpreters about signal 8626 stops, end of stepping ranges, etc., so that the "new thread" 8627 output is emitted before e.g., "Program received signal FOO", 8628 instead of after. */ 8629 update_thread_list (); 8630 8631 if (last.kind () == TARGET_WAITKIND_STOPPED && stopped_by_random_signal) 8632 gdb::observers::signal_received.notify (inferior_thread ()->stop_signal ()); 8633 8634 /* As with the notification of thread events, we want to delay 8635 notifying the user that we've switched thread context until 8636 the inferior actually stops. 8637 8638 There's no point in saying anything if the inferior has exited. 8639 Note that SIGNALLED here means "exited with a signal", not 8640 "received a signal". 8641 8642 Also skip saying anything in non-stop mode. In that mode, as we 8643 don't want GDB to switch threads behind the user's back, to avoid 8644 races where the user is typing a command to apply to thread x, 8645 but GDB switches to thread y before the user finishes entering 8646 the command, fetch_inferior_event installs a cleanup to restore 8647 the current thread back to the thread the user had selected right 8648 after this event is handled, so we're not really switching, only 8649 informing of a stop. */ 8650 if (!non_stop 8651 && previous_inferior_ptid != inferior_ptid 8652 && target_has_execution () 8653 && last.kind () != TARGET_WAITKIND_SIGNALLED 8654 && last.kind () != TARGET_WAITKIND_EXITED 8655 && last.kind () != TARGET_WAITKIND_NO_RESUMED) 8656 { 8657 SWITCH_THRU_ALL_UIS () 8658 { 8659 target_terminal::ours_for_output (); 8660 gdb_printf (_("[Switching to %s]\n"), 8661 target_pid_to_str (inferior_ptid).c_str ()); 8662 annotate_thread_changed (); 8663 } 8664 previous_inferior_ptid = inferior_ptid; 8665 } 8666 8667 if (last.kind () == TARGET_WAITKIND_NO_RESUMED) 8668 { 8669 SWITCH_THRU_ALL_UIS () 8670 if (current_ui->prompt_state == PROMPT_BLOCKED) 8671 { 8672 target_terminal::ours_for_output (); 8673 gdb_printf (_("No unwaited-for children left.\n")); 8674 } 8675 } 8676 8677 /* Note: this depends on the update_thread_list call above. */ 8678 maybe_remove_breakpoints (); 8679 8680 /* If an auto-display called a function and that got a signal, 8681 delete that auto-display to avoid an infinite recursion. */ 8682 8683 if (stopped_by_random_signal) 8684 disable_current_display (); 8685 8686 SWITCH_THRU_ALL_UIS () 8687 { 8688 async_enable_stdin (); 8689 } 8690 8691 /* Let the user/frontend see the threads as stopped. */ 8692 maybe_finish_thread_state.reset (); 8693 8694 /* Select innermost stack frame - i.e., current frame is frame 0, 8695 and current location is based on that. Handle the case where the 8696 dummy call is returning after being stopped. E.g. the dummy call 8697 previously hit a breakpoint. (If the dummy call returns 8698 normally, we won't reach here.) Do this before the stop hook is 8699 run, so that it doesn't get to see the temporary dummy frame, 8700 which is not where we'll present the stop. */ 8701 if (has_stack_frames ()) 8702 { 8703 if (stop_stack_dummy == STOP_STACK_DUMMY) 8704 { 8705 /* Pop the empty frame that contains the stack dummy. This 8706 also restores inferior state prior to the call (struct 8707 infcall_suspend_state). */ 8708 frame_info_ptr frame = get_current_frame (); 8709 8710 gdb_assert (get_frame_type (frame) == DUMMY_FRAME); 8711 frame_pop (frame); 8712 /* frame_pop calls reinit_frame_cache as the last thing it 8713 does which means there's now no selected frame. */ 8714 } 8715 8716 select_frame (get_current_frame ()); 8717 8718 /* Set the current source location. */ 8719 set_current_sal_from_frame (get_current_frame ()); 8720 } 8721 8722 /* Look up the hook_stop and run it (CLI internally handles problem 8723 of stop_command's pre-hook not existing). */ 8724 stop_context saved_context; 8725 8726 try 8727 { 8728 execute_cmd_pre_hook (stop_command); 8729 } 8730 catch (const gdb_exception &ex) 8731 { 8732 exception_fprintf (gdb_stderr, ex, 8733 "Error while running hook_stop:\n"); 8734 } 8735 8736 /* If the stop hook resumes the target, then there's no point in 8737 trying to notify about the previous stop; its context is 8738 gone. Likewise if the command switches thread or inferior -- 8739 the observers would print a stop for the wrong 8740 thread/inferior. */ 8741 if (saved_context.changed ()) 8742 return 1; 8743 8744 /* Notify observers about the stop. This is where the interpreters 8745 print the stop event. */ 8746 if (inferior_ptid != null_ptid) 8747 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat, 8748 stop_print_frame); 8749 else 8750 gdb::observers::normal_stop.notify (nullptr, stop_print_frame); 8751 8752 annotate_stopped (); 8753 8754 if (target_has_execution ()) 8755 { 8756 if (last.kind () != TARGET_WAITKIND_SIGNALLED 8757 && last.kind () != TARGET_WAITKIND_EXITED 8758 && last.kind () != TARGET_WAITKIND_NO_RESUMED) 8759 /* Delete the breakpoint we stopped at, if it wants to be deleted. 8760 Delete any breakpoint that is to be deleted at the next stop. */ 8761 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat); 8762 } 8763 8764 return 0; 8765 } 8766 8767 int 8768 signal_stop_state (int signo) 8769 { 8770 return signal_stop[signo]; 8771 } 8772 8773 int 8774 signal_print_state (int signo) 8775 { 8776 return signal_print[signo]; 8777 } 8778 8779 int 8780 signal_pass_state (int signo) 8781 { 8782 return signal_program[signo]; 8783 } 8784 8785 static void 8786 signal_cache_update (int signo) 8787 { 8788 if (signo == -1) 8789 { 8790 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++) 8791 signal_cache_update (signo); 8792 8793 return; 8794 } 8795 8796 signal_pass[signo] = (signal_stop[signo] == 0 8797 && signal_print[signo] == 0 8798 && signal_program[signo] == 1 8799 && signal_catch[signo] == 0); 8800 } 8801 8802 int 8803 signal_stop_update (int signo, int state) 8804 { 8805 int ret = signal_stop[signo]; 8806 8807 signal_stop[signo] = state; 8808 signal_cache_update (signo); 8809 return ret; 8810 } 8811 8812 int 8813 signal_print_update (int signo, int state) 8814 { 8815 int ret = signal_print[signo]; 8816 8817 signal_print[signo] = state; 8818 signal_cache_update (signo); 8819 return ret; 8820 } 8821 8822 int 8823 signal_pass_update (int signo, int state) 8824 { 8825 int ret = signal_program[signo]; 8826 8827 signal_program[signo] = state; 8828 signal_cache_update (signo); 8829 return ret; 8830 } 8831 8832 /* Update the global 'signal_catch' from INFO and notify the 8833 target. */ 8834 8835 void 8836 signal_catch_update (const unsigned int *info) 8837 { 8838 int i; 8839 8840 for (i = 0; i < GDB_SIGNAL_LAST; ++i) 8841 signal_catch[i] = info[i] > 0; 8842 signal_cache_update (-1); 8843 target_pass_signals (signal_pass); 8844 } 8845 8846 static void 8847 sig_print_header (void) 8848 { 8849 gdb_printf (_("Signal Stop\tPrint\tPass " 8850 "to program\tDescription\n")); 8851 } 8852 8853 static void 8854 sig_print_info (enum gdb_signal oursig) 8855 { 8856 const char *name = gdb_signal_to_name (oursig); 8857 int name_padding = 13 - strlen (name); 8858 8859 if (name_padding <= 0) 8860 name_padding = 0; 8861 8862 gdb_printf ("%s", name); 8863 gdb_printf ("%*.*s ", name_padding, name_padding, " "); 8864 gdb_printf ("%s\t", signal_stop[oursig] ? "Yes" : "No"); 8865 gdb_printf ("%s\t", signal_print[oursig] ? "Yes" : "No"); 8866 gdb_printf ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); 8867 gdb_printf ("%s\n", gdb_signal_to_string (oursig)); 8868 } 8869 8870 /* Specify how various signals in the inferior should be handled. */ 8871 8872 static void 8873 handle_command (const char *args, int from_tty) 8874 { 8875 int digits, wordlen; 8876 int sigfirst, siglast; 8877 enum gdb_signal oursig; 8878 int allsigs; 8879 8880 if (args == nullptr) 8881 { 8882 error_no_arg (_("signal to handle")); 8883 } 8884 8885 /* Allocate and zero an array of flags for which signals to handle. */ 8886 8887 const size_t nsigs = GDB_SIGNAL_LAST; 8888 unsigned char sigs[nsigs] {}; 8889 8890 /* Break the command line up into args. */ 8891 8892 gdb_argv built_argv (args); 8893 8894 /* Walk through the args, looking for signal oursigs, signal names, and 8895 actions. Signal numbers and signal names may be interspersed with 8896 actions, with the actions being performed for all signals cumulatively 8897 specified. Signal ranges can be specified as <LOW>-<HIGH>. */ 8898 8899 for (char *arg : built_argv) 8900 { 8901 wordlen = strlen (arg); 8902 for (digits = 0; isdigit (arg[digits]); digits++) 8903 {; 8904 } 8905 allsigs = 0; 8906 sigfirst = siglast = -1; 8907 8908 if (wordlen >= 1 && !strncmp (arg, "all", wordlen)) 8909 { 8910 /* Apply action to all signals except those used by the 8911 debugger. Silently skip those. */ 8912 allsigs = 1; 8913 sigfirst = 0; 8914 siglast = nsigs - 1; 8915 } 8916 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen)) 8917 { 8918 SET_SIGS (nsigs, sigs, signal_stop); 8919 SET_SIGS (nsigs, sigs, signal_print); 8920 } 8921 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen)) 8922 { 8923 UNSET_SIGS (nsigs, sigs, signal_program); 8924 } 8925 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen)) 8926 { 8927 SET_SIGS (nsigs, sigs, signal_print); 8928 } 8929 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen)) 8930 { 8931 SET_SIGS (nsigs, sigs, signal_program); 8932 } 8933 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen)) 8934 { 8935 UNSET_SIGS (nsigs, sigs, signal_stop); 8936 } 8937 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen)) 8938 { 8939 SET_SIGS (nsigs, sigs, signal_program); 8940 } 8941 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen)) 8942 { 8943 UNSET_SIGS (nsigs, sigs, signal_print); 8944 UNSET_SIGS (nsigs, sigs, signal_stop); 8945 } 8946 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen)) 8947 { 8948 UNSET_SIGS (nsigs, sigs, signal_program); 8949 } 8950 else if (digits > 0) 8951 { 8952 /* It is numeric. The numeric signal refers to our own 8953 internal signal numbering from target.h, not to host/target 8954 signal number. This is a feature; users really should be 8955 using symbolic names anyway, and the common ones like 8956 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ 8957 8958 sigfirst = siglast = (int) 8959 gdb_signal_from_command (atoi (arg)); 8960 if (arg[digits] == '-') 8961 { 8962 siglast = (int) 8963 gdb_signal_from_command (atoi (arg + digits + 1)); 8964 } 8965 if (sigfirst > siglast) 8966 { 8967 /* Bet he didn't figure we'd think of this case... */ 8968 std::swap (sigfirst, siglast); 8969 } 8970 } 8971 else 8972 { 8973 oursig = gdb_signal_from_name (arg); 8974 if (oursig != GDB_SIGNAL_UNKNOWN) 8975 { 8976 sigfirst = siglast = (int) oursig; 8977 } 8978 else 8979 { 8980 /* Not a number and not a recognized flag word => complain. */ 8981 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg); 8982 } 8983 } 8984 8985 /* If any signal numbers or symbol names were found, set flags for 8986 which signals to apply actions to. */ 8987 8988 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++) 8989 { 8990 switch ((enum gdb_signal) signum) 8991 { 8992 case GDB_SIGNAL_TRAP: 8993 case GDB_SIGNAL_INT: 8994 if (!allsigs && !sigs[signum]) 8995 { 8996 if (query (_("%s is used by the debugger.\n\ 8997 Are you sure you want to change it? "), 8998 gdb_signal_to_name ((enum gdb_signal) signum))) 8999 { 9000 sigs[signum] = 1; 9001 } 9002 else 9003 gdb_printf (_("Not confirmed, unchanged.\n")); 9004 } 9005 break; 9006 case GDB_SIGNAL_0: 9007 case GDB_SIGNAL_DEFAULT: 9008 case GDB_SIGNAL_UNKNOWN: 9009 /* Make sure that "all" doesn't print these. */ 9010 break; 9011 default: 9012 sigs[signum] = 1; 9013 break; 9014 } 9015 } 9016 } 9017 9018 for (int signum = 0; signum < nsigs; signum++) 9019 if (sigs[signum]) 9020 { 9021 signal_cache_update (-1); 9022 target_pass_signals (signal_pass); 9023 target_program_signals (signal_program); 9024 9025 if (from_tty) 9026 { 9027 /* Show the results. */ 9028 sig_print_header (); 9029 for (; signum < nsigs; signum++) 9030 if (sigs[signum]) 9031 sig_print_info ((enum gdb_signal) signum); 9032 } 9033 9034 break; 9035 } 9036 } 9037 9038 /* Complete the "handle" command. */ 9039 9040 static void 9041 handle_completer (struct cmd_list_element *ignore, 9042 completion_tracker &tracker, 9043 const char *text, const char *word) 9044 { 9045 static const char * const keywords[] = 9046 { 9047 "all", 9048 "stop", 9049 "ignore", 9050 "print", 9051 "pass", 9052 "nostop", 9053 "noignore", 9054 "noprint", 9055 "nopass", 9056 nullptr, 9057 }; 9058 9059 signal_completer (ignore, tracker, text, word); 9060 complete_on_enum (tracker, keywords, word, word); 9061 } 9062 9063 enum gdb_signal 9064 gdb_signal_from_command (int num) 9065 { 9066 if (num >= 1 && num <= 15) 9067 return (enum gdb_signal) num; 9068 error (_("Only signals 1-15 are valid as numeric signals.\n\ 9069 Use \"info signals\" for a list of symbolic signals.")); 9070 } 9071 9072 /* Print current contents of the tables set by the handle command. 9073 It is possible we should just be printing signals actually used 9074 by the current target (but for things to work right when switching 9075 targets, all signals should be in the signal tables). */ 9076 9077 static void 9078 info_signals_command (const char *signum_exp, int from_tty) 9079 { 9080 enum gdb_signal oursig; 9081 9082 sig_print_header (); 9083 9084 if (signum_exp) 9085 { 9086 /* First see if this is a symbol name. */ 9087 oursig = gdb_signal_from_name (signum_exp); 9088 if (oursig == GDB_SIGNAL_UNKNOWN) 9089 { 9090 /* No, try numeric. */ 9091 oursig = 9092 gdb_signal_from_command (parse_and_eval_long (signum_exp)); 9093 } 9094 sig_print_info (oursig); 9095 return; 9096 } 9097 9098 gdb_printf ("\n"); 9099 /* These ugly casts brought to you by the native VAX compiler. */ 9100 for (oursig = GDB_SIGNAL_FIRST; 9101 (int) oursig < (int) GDB_SIGNAL_LAST; 9102 oursig = (enum gdb_signal) ((int) oursig + 1)) 9103 { 9104 QUIT; 9105 9106 if (oursig != GDB_SIGNAL_UNKNOWN 9107 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0) 9108 sig_print_info (oursig); 9109 } 9110 9111 gdb_printf (_("\nUse the \"handle\" command " 9112 "to change these tables.\n")); 9113 } 9114 9115 /* The $_siginfo convenience variable is a bit special. We don't know 9116 for sure the type of the value until we actually have a chance to 9117 fetch the data. The type can change depending on gdbarch, so it is 9118 also dependent on which thread you have selected. 9119 9120 1. making $_siginfo be an internalvar that creates a new value on 9121 access. 9122 9123 2. making the value of $_siginfo be an lval_computed value. */ 9124 9125 /* This function implements the lval_computed support for reading a 9126 $_siginfo value. */ 9127 9128 static void 9129 siginfo_value_read (struct value *v) 9130 { 9131 LONGEST transferred; 9132 9133 /* If we can access registers, so can we access $_siginfo. Likewise 9134 vice versa. */ 9135 validate_registers_access (); 9136 9137 transferred = 9138 target_read (current_inferior ()->top_target (), 9139 TARGET_OBJECT_SIGNAL_INFO, 9140 nullptr, 9141 value_contents_all_raw (v).data (), 9142 value_offset (v), 9143 value_type (v)->length ()); 9144 9145 if (transferred != value_type (v)->length ()) 9146 error (_("Unable to read siginfo")); 9147 } 9148 9149 /* This function implements the lval_computed support for writing a 9150 $_siginfo value. */ 9151 9152 static void 9153 siginfo_value_write (struct value *v, struct value *fromval) 9154 { 9155 LONGEST transferred; 9156 9157 /* If we can access registers, so can we access $_siginfo. Likewise 9158 vice versa. */ 9159 validate_registers_access (); 9160 9161 transferred = target_write (current_inferior ()->top_target (), 9162 TARGET_OBJECT_SIGNAL_INFO, 9163 nullptr, 9164 value_contents_all_raw (fromval).data (), 9165 value_offset (v), 9166 value_type (fromval)->length ()); 9167 9168 if (transferred != value_type (fromval)->length ()) 9169 error (_("Unable to write siginfo")); 9170 } 9171 9172 static const struct lval_funcs siginfo_value_funcs = 9173 { 9174 siginfo_value_read, 9175 siginfo_value_write 9176 }; 9177 9178 /* Return a new value with the correct type for the siginfo object of 9179 the current thread using architecture GDBARCH. Return a void value 9180 if there's no object available. */ 9181 9182 static struct value * 9183 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var, 9184 void *ignore) 9185 { 9186 if (target_has_stack () 9187 && inferior_ptid != null_ptid 9188 && gdbarch_get_siginfo_type_p (gdbarch)) 9189 { 9190 struct type *type = gdbarch_get_siginfo_type (gdbarch); 9191 9192 return allocate_computed_value (type, &siginfo_value_funcs, nullptr); 9193 } 9194 9195 return allocate_value (builtin_type (gdbarch)->builtin_void); 9196 } 9197 9198 9199 /* infcall_suspend_state contains state about the program itself like its 9200 registers and any signal it received when it last stopped. 9201 This state must be restored regardless of how the inferior function call 9202 ends (either successfully, or after it hits a breakpoint or signal) 9203 if the program is to properly continue where it left off. */ 9204 9205 class infcall_suspend_state 9206 { 9207 public: 9208 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored 9209 once the inferior function call has finished. */ 9210 infcall_suspend_state (struct gdbarch *gdbarch, 9211 const struct thread_info *tp, 9212 struct regcache *regcache) 9213 : m_registers (new readonly_detached_regcache (*regcache)) 9214 { 9215 tp->save_suspend_to (m_thread_suspend); 9216 9217 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data; 9218 9219 if (gdbarch_get_siginfo_type_p (gdbarch)) 9220 { 9221 struct type *type = gdbarch_get_siginfo_type (gdbarch); 9222 size_t len = type->length (); 9223 9224 siginfo_data.reset ((gdb_byte *) xmalloc (len)); 9225 9226 if (target_read (current_inferior ()->top_target (), 9227 TARGET_OBJECT_SIGNAL_INFO, nullptr, 9228 siginfo_data.get (), 0, len) != len) 9229 { 9230 /* Errors ignored. */ 9231 siginfo_data.reset (nullptr); 9232 } 9233 } 9234 9235 if (siginfo_data) 9236 { 9237 m_siginfo_gdbarch = gdbarch; 9238 m_siginfo_data = std::move (siginfo_data); 9239 } 9240 } 9241 9242 /* Return a pointer to the stored register state. */ 9243 9244 readonly_detached_regcache *registers () const 9245 { 9246 return m_registers.get (); 9247 } 9248 9249 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */ 9250 9251 void restore (struct gdbarch *gdbarch, 9252 struct thread_info *tp, 9253 struct regcache *regcache) const 9254 { 9255 tp->restore_suspend_from (m_thread_suspend); 9256 9257 if (m_siginfo_gdbarch == gdbarch) 9258 { 9259 struct type *type = gdbarch_get_siginfo_type (gdbarch); 9260 9261 /* Errors ignored. */ 9262 target_write (current_inferior ()->top_target (), 9263 TARGET_OBJECT_SIGNAL_INFO, nullptr, 9264 m_siginfo_data.get (), 0, type->length ()); 9265 } 9266 9267 /* The inferior can be gone if the user types "print exit(0)" 9268 (and perhaps other times). */ 9269 if (target_has_execution ()) 9270 /* NB: The register write goes through to the target. */ 9271 regcache->restore (registers ()); 9272 } 9273 9274 private: 9275 /* How the current thread stopped before the inferior function call was 9276 executed. */ 9277 struct thread_suspend_state m_thread_suspend; 9278 9279 /* The registers before the inferior function call was executed. */ 9280 std::unique_ptr<readonly_detached_regcache> m_registers; 9281 9282 /* Format of SIGINFO_DATA or NULL if it is not present. */ 9283 struct gdbarch *m_siginfo_gdbarch = nullptr; 9284 9285 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of 9286 gdbarch_get_siginfo_type ()->length (). For different gdbarch the 9287 content would be invalid. */ 9288 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data; 9289 }; 9290 9291 infcall_suspend_state_up 9292 save_infcall_suspend_state () 9293 { 9294 struct thread_info *tp = inferior_thread (); 9295 struct regcache *regcache = get_current_regcache (); 9296 struct gdbarch *gdbarch = regcache->arch (); 9297 9298 infcall_suspend_state_up inf_state 9299 (new struct infcall_suspend_state (gdbarch, tp, regcache)); 9300 9301 /* Having saved the current state, adjust the thread state, discarding 9302 any stop signal information. The stop signal is not useful when 9303 starting an inferior function call, and run_inferior_call will not use 9304 the signal due to its `proceed' call with GDB_SIGNAL_0. */ 9305 tp->set_stop_signal (GDB_SIGNAL_0); 9306 9307 return inf_state; 9308 } 9309 9310 /* Restore inferior session state to INF_STATE. */ 9311 9312 void 9313 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state) 9314 { 9315 struct thread_info *tp = inferior_thread (); 9316 struct regcache *regcache = get_current_regcache (); 9317 struct gdbarch *gdbarch = regcache->arch (); 9318 9319 inf_state->restore (gdbarch, tp, regcache); 9320 discard_infcall_suspend_state (inf_state); 9321 } 9322 9323 void 9324 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state) 9325 { 9326 delete inf_state; 9327 } 9328 9329 readonly_detached_regcache * 9330 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state) 9331 { 9332 return inf_state->registers (); 9333 } 9334 9335 /* infcall_control_state contains state regarding gdb's control of the 9336 inferior itself like stepping control. It also contains session state like 9337 the user's currently selected frame. */ 9338 9339 struct infcall_control_state 9340 { 9341 struct thread_control_state thread_control; 9342 struct inferior_control_state inferior_control; 9343 9344 /* Other fields: */ 9345 enum stop_stack_kind stop_stack_dummy = STOP_NONE; 9346 int stopped_by_random_signal = 0; 9347 9348 /* ID and level of the selected frame when the inferior function 9349 call was made. */ 9350 struct frame_id selected_frame_id {}; 9351 int selected_frame_level = -1; 9352 }; 9353 9354 /* Save all of the information associated with the inferior<==>gdb 9355 connection. */ 9356 9357 infcall_control_state_up 9358 save_infcall_control_state () 9359 { 9360 infcall_control_state_up inf_status (new struct infcall_control_state); 9361 struct thread_info *tp = inferior_thread (); 9362 struct inferior *inf = current_inferior (); 9363 9364 inf_status->thread_control = tp->control; 9365 inf_status->inferior_control = inf->control; 9366 9367 tp->control.step_resume_breakpoint = nullptr; 9368 tp->control.exception_resume_breakpoint = nullptr; 9369 9370 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of 9371 chain. If caller's caller is walking the chain, they'll be happier if we 9372 hand them back the original chain when restore_infcall_control_state is 9373 called. */ 9374 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat); 9375 9376 /* Other fields: */ 9377 inf_status->stop_stack_dummy = stop_stack_dummy; 9378 inf_status->stopped_by_random_signal = stopped_by_random_signal; 9379 9380 save_selected_frame (&inf_status->selected_frame_id, 9381 &inf_status->selected_frame_level); 9382 9383 return inf_status; 9384 } 9385 9386 /* Restore inferior session state to INF_STATUS. */ 9387 9388 void 9389 restore_infcall_control_state (struct infcall_control_state *inf_status) 9390 { 9391 struct thread_info *tp = inferior_thread (); 9392 struct inferior *inf = current_inferior (); 9393 9394 if (tp->control.step_resume_breakpoint) 9395 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop; 9396 9397 if (tp->control.exception_resume_breakpoint) 9398 tp->control.exception_resume_breakpoint->disposition 9399 = disp_del_at_next_stop; 9400 9401 /* Handle the bpstat_copy of the chain. */ 9402 bpstat_clear (&tp->control.stop_bpstat); 9403 9404 tp->control = inf_status->thread_control; 9405 inf->control = inf_status->inferior_control; 9406 9407 /* Other fields: */ 9408 stop_stack_dummy = inf_status->stop_stack_dummy; 9409 stopped_by_random_signal = inf_status->stopped_by_random_signal; 9410 9411 if (target_has_stack ()) 9412 { 9413 restore_selected_frame (inf_status->selected_frame_id, 9414 inf_status->selected_frame_level); 9415 } 9416 9417 delete inf_status; 9418 } 9419 9420 void 9421 discard_infcall_control_state (struct infcall_control_state *inf_status) 9422 { 9423 if (inf_status->thread_control.step_resume_breakpoint) 9424 inf_status->thread_control.step_resume_breakpoint->disposition 9425 = disp_del_at_next_stop; 9426 9427 if (inf_status->thread_control.exception_resume_breakpoint) 9428 inf_status->thread_control.exception_resume_breakpoint->disposition 9429 = disp_del_at_next_stop; 9430 9431 /* See save_infcall_control_state for info on stop_bpstat. */ 9432 bpstat_clear (&inf_status->thread_control.stop_bpstat); 9433 9434 delete inf_status; 9435 } 9436 9437 /* See infrun.h. */ 9438 9439 void 9440 clear_exit_convenience_vars (void) 9441 { 9442 clear_internalvar (lookup_internalvar ("_exitsignal")); 9443 clear_internalvar (lookup_internalvar ("_exitcode")); 9444 } 9445 9446 9447 /* User interface for reverse debugging: 9448 Set exec-direction / show exec-direction commands 9449 (returns error unless target implements to_set_exec_direction method). */ 9450 9451 enum exec_direction_kind execution_direction = EXEC_FORWARD; 9452 static const char exec_forward[] = "forward"; 9453 static const char exec_reverse[] = "reverse"; 9454 static const char *exec_direction = exec_forward; 9455 static const char *const exec_direction_names[] = { 9456 exec_forward, 9457 exec_reverse, 9458 nullptr 9459 }; 9460 9461 static void 9462 set_exec_direction_func (const char *args, int from_tty, 9463 struct cmd_list_element *cmd) 9464 { 9465 if (target_can_execute_reverse ()) 9466 { 9467 if (!strcmp (exec_direction, exec_forward)) 9468 execution_direction = EXEC_FORWARD; 9469 else if (!strcmp (exec_direction, exec_reverse)) 9470 execution_direction = EXEC_REVERSE; 9471 } 9472 else 9473 { 9474 exec_direction = exec_forward; 9475 error (_("Target does not support this operation.")); 9476 } 9477 } 9478 9479 static void 9480 show_exec_direction_func (struct ui_file *out, int from_tty, 9481 struct cmd_list_element *cmd, const char *value) 9482 { 9483 switch (execution_direction) { 9484 case EXEC_FORWARD: 9485 gdb_printf (out, _("Forward.\n")); 9486 break; 9487 case EXEC_REVERSE: 9488 gdb_printf (out, _("Reverse.\n")); 9489 break; 9490 default: 9491 internal_error (_("bogus execution_direction value: %d"), 9492 (int) execution_direction); 9493 } 9494 } 9495 9496 static void 9497 show_schedule_multiple (struct ui_file *file, int from_tty, 9498 struct cmd_list_element *c, const char *value) 9499 { 9500 gdb_printf (file, _("Resuming the execution of threads " 9501 "of all processes is %s.\n"), value); 9502 } 9503 9504 /* Implementation of `siginfo' variable. */ 9505 9506 static const struct internalvar_funcs siginfo_funcs = 9507 { 9508 siginfo_make_value, 9509 nullptr, 9510 }; 9511 9512 /* Callback for infrun's target events source. This is marked when a 9513 thread has a pending status to process. */ 9514 9515 static void 9516 infrun_async_inferior_event_handler (gdb_client_data data) 9517 { 9518 clear_async_event_handler (infrun_async_inferior_event_token); 9519 inferior_event_handler (INF_REG_EVENT); 9520 } 9521 9522 #if GDB_SELF_TEST 9523 namespace selftests 9524 { 9525 9526 /* Verify that when two threads with the same ptid exist (from two different 9527 targets) and one of them changes ptid, we only update inferior_ptid if 9528 it is appropriate. */ 9529 9530 static void 9531 infrun_thread_ptid_changed () 9532 { 9533 gdbarch *arch = current_inferior ()->gdbarch; 9534 9535 /* The thread which inferior_ptid represents changes ptid. */ 9536 { 9537 scoped_restore_current_pspace_and_thread restore; 9538 9539 scoped_mock_context<test_target_ops> target1 (arch); 9540 scoped_mock_context<test_target_ops> target2 (arch); 9541 9542 ptid_t old_ptid (111, 222); 9543 ptid_t new_ptid (111, 333); 9544 9545 target1.mock_inferior.pid = old_ptid.pid (); 9546 target1.mock_thread.ptid = old_ptid; 9547 target1.mock_inferior.ptid_thread_map.clear (); 9548 target1.mock_inferior.ptid_thread_map[old_ptid] = &target1.mock_thread; 9549 9550 target2.mock_inferior.pid = old_ptid.pid (); 9551 target2.mock_thread.ptid = old_ptid; 9552 target2.mock_inferior.ptid_thread_map.clear (); 9553 target2.mock_inferior.ptid_thread_map[old_ptid] = &target2.mock_thread; 9554 9555 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid); 9556 set_current_inferior (&target1.mock_inferior); 9557 9558 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid); 9559 9560 gdb_assert (inferior_ptid == new_ptid); 9561 } 9562 9563 /* A thread with the same ptid as inferior_ptid, but from another target, 9564 changes ptid. */ 9565 { 9566 scoped_restore_current_pspace_and_thread restore; 9567 9568 scoped_mock_context<test_target_ops> target1 (arch); 9569 scoped_mock_context<test_target_ops> target2 (arch); 9570 9571 ptid_t old_ptid (111, 222); 9572 ptid_t new_ptid (111, 333); 9573 9574 target1.mock_inferior.pid = old_ptid.pid (); 9575 target1.mock_thread.ptid = old_ptid; 9576 target1.mock_inferior.ptid_thread_map.clear (); 9577 target1.mock_inferior.ptid_thread_map[old_ptid] = &target1.mock_thread; 9578 9579 target2.mock_inferior.pid = old_ptid.pid (); 9580 target2.mock_thread.ptid = old_ptid; 9581 target2.mock_inferior.ptid_thread_map.clear (); 9582 target2.mock_inferior.ptid_thread_map[old_ptid] = &target2.mock_thread; 9583 9584 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid); 9585 set_current_inferior (&target2.mock_inferior); 9586 9587 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid); 9588 9589 gdb_assert (inferior_ptid == old_ptid); 9590 } 9591 } 9592 9593 } /* namespace selftests */ 9594 9595 #endif /* GDB_SELF_TEST */ 9596 9597 void _initialize_infrun (); 9598 void 9599 _initialize_infrun () 9600 { 9601 struct cmd_list_element *c; 9602 9603 /* Register extra event sources in the event loop. */ 9604 infrun_async_inferior_event_token 9605 = create_async_event_handler (infrun_async_inferior_event_handler, nullptr, 9606 "infrun"); 9607 9608 cmd_list_element *info_signals_cmd 9609 = add_info ("signals", info_signals_command, _("\ 9610 What debugger does when program gets various signals.\n\ 9611 Specify a signal as argument to print info on that signal only.")); 9612 add_info_alias ("handle", info_signals_cmd, 0); 9613 9614 c = add_com ("handle", class_run, handle_command, _("\ 9615 Specify how to handle signals.\n\ 9616 Usage: handle SIGNAL [ACTIONS]\n\ 9617 Args are signals and actions to apply to those signals.\n\ 9618 If no actions are specified, the current settings for the specified signals\n\ 9619 will be displayed instead.\n\ 9620 \n\ 9621 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ 9622 from 1-15 are allowed for compatibility with old versions of GDB.\n\ 9623 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ 9624 The special arg \"all\" is recognized to mean all signals except those\n\ 9625 used by the debugger, typically SIGTRAP and SIGINT.\n\ 9626 \n\ 9627 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ 9628 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ 9629 Stop means reenter debugger if this signal happens (implies print).\n\ 9630 Print means print a message if this signal happens.\n\ 9631 Pass means let program see this signal; otherwise program doesn't know.\n\ 9632 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ 9633 Pass and Stop may be combined.\n\ 9634 \n\ 9635 Multiple signals may be specified. Signal numbers and signal names\n\ 9636 may be interspersed with actions, with the actions being performed for\n\ 9637 all signals cumulatively specified.")); 9638 set_cmd_completer (c, handle_completer); 9639 9640 stop_command = add_cmd ("stop", class_obscure, 9641 not_just_help_class_command, _("\ 9642 There is no `stop' command, but you can set a hook on `stop'.\n\ 9643 This allows you to set a list of commands to be run each time execution\n\ 9644 of the program stops."), &cmdlist); 9645 9646 add_setshow_boolean_cmd 9647 ("infrun", class_maintenance, &debug_infrun, 9648 _("Set inferior debugging."), 9649 _("Show inferior debugging."), 9650 _("When non-zero, inferior specific debugging is enabled."), 9651 nullptr, show_debug_infrun, &setdebuglist, &showdebuglist); 9652 9653 add_setshow_boolean_cmd ("non-stop", no_class, 9654 &non_stop_1, _("\ 9655 Set whether gdb controls the inferior in non-stop mode."), _("\ 9656 Show whether gdb controls the inferior in non-stop mode."), _("\ 9657 When debugging a multi-threaded program and this setting is\n\ 9658 off (the default, also called all-stop mode), when one thread stops\n\ 9659 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\ 9660 all other threads in the program while you interact with the thread of\n\ 9661 interest. When you continue or step a thread, you can allow the other\n\ 9662 threads to run, or have them remain stopped, but while you inspect any\n\ 9663 thread's state, all threads stop.\n\ 9664 \n\ 9665 In non-stop mode, when one thread stops, other threads can continue\n\ 9666 to run freely. You'll be able to step each thread independently,\n\ 9667 leave it stopped or free to run as needed."), 9668 set_non_stop, 9669 show_non_stop, 9670 &setlist, 9671 &showlist); 9672 9673 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++) 9674 { 9675 signal_stop[i] = 1; 9676 signal_print[i] = 1; 9677 signal_program[i] = 1; 9678 signal_catch[i] = 0; 9679 } 9680 9681 /* Signals caused by debugger's own actions should not be given to 9682 the program afterwards. 9683 9684 Do not deliver GDB_SIGNAL_TRAP by default, except when the user 9685 explicitly specifies that it should be delivered to the target 9686 program. Typically, that would occur when a user is debugging a 9687 target monitor on a simulator: the target monitor sets a 9688 breakpoint; the simulator encounters this breakpoint and halts 9689 the simulation handing control to GDB; GDB, noting that the stop 9690 address doesn't map to any known breakpoint, returns control back 9691 to the simulator; the simulator then delivers the hardware 9692 equivalent of a GDB_SIGNAL_TRAP to the program being 9693 debugged. */ 9694 signal_program[GDB_SIGNAL_TRAP] = 0; 9695 signal_program[GDB_SIGNAL_INT] = 0; 9696 9697 /* Signals that are not errors should not normally enter the debugger. */ 9698 signal_stop[GDB_SIGNAL_ALRM] = 0; 9699 signal_print[GDB_SIGNAL_ALRM] = 0; 9700 signal_stop[GDB_SIGNAL_VTALRM] = 0; 9701 signal_print[GDB_SIGNAL_VTALRM] = 0; 9702 signal_stop[GDB_SIGNAL_PROF] = 0; 9703 signal_print[GDB_SIGNAL_PROF] = 0; 9704 signal_stop[GDB_SIGNAL_CHLD] = 0; 9705 signal_print[GDB_SIGNAL_CHLD] = 0; 9706 signal_stop[GDB_SIGNAL_IO] = 0; 9707 signal_print[GDB_SIGNAL_IO] = 0; 9708 signal_stop[GDB_SIGNAL_POLL] = 0; 9709 signal_print[GDB_SIGNAL_POLL] = 0; 9710 signal_stop[GDB_SIGNAL_URG] = 0; 9711 signal_print[GDB_SIGNAL_URG] = 0; 9712 signal_stop[GDB_SIGNAL_WINCH] = 0; 9713 signal_print[GDB_SIGNAL_WINCH] = 0; 9714 signal_stop[GDB_SIGNAL_PRIO] = 0; 9715 signal_print[GDB_SIGNAL_PRIO] = 0; 9716 9717 /* These signals are used internally by user-level thread 9718 implementations. (See signal(5) on Solaris.) Like the above 9719 signals, a healthy program receives and handles them as part of 9720 its normal operation. */ 9721 signal_stop[GDB_SIGNAL_LWP] = 0; 9722 signal_print[GDB_SIGNAL_LWP] = 0; 9723 signal_stop[GDB_SIGNAL_WAITING] = 0; 9724 signal_print[GDB_SIGNAL_WAITING] = 0; 9725 signal_stop[GDB_SIGNAL_CANCEL] = 0; 9726 signal_print[GDB_SIGNAL_CANCEL] = 0; 9727 signal_stop[GDB_SIGNAL_LIBRT] = 0; 9728 signal_print[GDB_SIGNAL_LIBRT] = 0; 9729 9730 /* Update cached state. */ 9731 signal_cache_update (-1); 9732 9733 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, 9734 &stop_on_solib_events, _("\ 9735 Set stopping for shared library events."), _("\ 9736 Show stopping for shared library events."), _("\ 9737 If nonzero, gdb will give control to the user when the dynamic linker\n\ 9738 notifies gdb of shared library events. The most common event of interest\n\ 9739 to the user would be loading/unloading of a new library."), 9740 set_stop_on_solib_events, 9741 show_stop_on_solib_events, 9742 &setlist, &showlist); 9743 9744 add_setshow_enum_cmd ("follow-fork-mode", class_run, 9745 follow_fork_mode_kind_names, 9746 &follow_fork_mode_string, _("\ 9747 Set debugger response to a program call of fork or vfork."), _("\ 9748 Show debugger response to a program call of fork or vfork."), _("\ 9749 A fork or vfork creates a new process. follow-fork-mode can be:\n\ 9750 parent - the original process is debugged after a fork\n\ 9751 child - the new process is debugged after a fork\n\ 9752 The unfollowed process will continue to run.\n\ 9753 By default, the debugger will follow the parent process."), 9754 nullptr, 9755 show_follow_fork_mode_string, 9756 &setlist, &showlist); 9757 9758 add_setshow_enum_cmd ("follow-exec-mode", class_run, 9759 follow_exec_mode_names, 9760 &follow_exec_mode_string, _("\ 9761 Set debugger response to a program call of exec."), _("\ 9762 Show debugger response to a program call of exec."), _("\ 9763 An exec call replaces the program image of a process.\n\ 9764 \n\ 9765 follow-exec-mode can be:\n\ 9766 \n\ 9767 new - the debugger creates a new inferior and rebinds the process\n\ 9768 to this new inferior. The program the process was running before\n\ 9769 the exec call can be restarted afterwards by restarting the original\n\ 9770 inferior.\n\ 9771 \n\ 9772 same - the debugger keeps the process bound to the same inferior.\n\ 9773 The new executable image replaces the previous executable loaded in\n\ 9774 the inferior. Restarting the inferior after the exec call restarts\n\ 9775 the executable the process was running after the exec call.\n\ 9776 \n\ 9777 By default, the debugger will use the same inferior."), 9778 nullptr, 9779 show_follow_exec_mode_string, 9780 &setlist, &showlist); 9781 9782 add_setshow_enum_cmd ("scheduler-locking", class_run, 9783 scheduler_enums, &scheduler_mode, _("\ 9784 Set mode for locking scheduler during execution."), _("\ 9785 Show mode for locking scheduler during execution."), _("\ 9786 off == no locking (threads may preempt at any time)\n\ 9787 on == full locking (no thread except the current thread may run)\n\ 9788 This applies to both normal execution and replay mode.\n\ 9789 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\ 9790 In this mode, other threads may run during other commands.\n\ 9791 This applies to both normal execution and replay mode.\n\ 9792 replay == scheduler locked in replay mode and unlocked during normal execution."), 9793 set_schedlock_func, /* traps on target vector */ 9794 show_scheduler_mode, 9795 &setlist, &showlist); 9796 9797 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\ 9798 Set mode for resuming threads of all processes."), _("\ 9799 Show mode for resuming threads of all processes."), _("\ 9800 When on, execution commands (such as 'continue' or 'next') resume all\n\ 9801 threads of all processes. When off (which is the default), execution\n\ 9802 commands only resume the threads of the current process. The set of\n\ 9803 threads that are resumed is further refined by the scheduler-locking\n\ 9804 mode (see help set scheduler-locking)."), 9805 nullptr, 9806 show_schedule_multiple, 9807 &setlist, &showlist); 9808 9809 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ 9810 Set mode of the step operation."), _("\ 9811 Show mode of the step operation."), _("\ 9812 When set, doing a step over a function without debug line information\n\ 9813 will stop at the first instruction of that function. Otherwise, the\n\ 9814 function is skipped and the step command stops at a different source line."), 9815 nullptr, 9816 show_step_stop_if_no_debug, 9817 &setlist, &showlist); 9818 9819 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run, 9820 &can_use_displaced_stepping, _("\ 9821 Set debugger's willingness to use displaced stepping."), _("\ 9822 Show debugger's willingness to use displaced stepping."), _("\ 9823 If on, gdb will use displaced stepping to step over breakpoints if it is\n\ 9824 supported by the target architecture. If off, gdb will not use displaced\n\ 9825 stepping to step over breakpoints, even if such is supported by the target\n\ 9826 architecture. If auto (which is the default), gdb will use displaced stepping\n\ 9827 if the target architecture supports it and non-stop mode is active, but will not\n\ 9828 use it in all-stop mode (see help set non-stop)."), 9829 nullptr, 9830 show_can_use_displaced_stepping, 9831 &setlist, &showlist); 9832 9833 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names, 9834 &exec_direction, _("Set direction of execution.\n\ 9835 Options are 'forward' or 'reverse'."), 9836 _("Show direction of execution (forward/reverse)."), 9837 _("Tells gdb whether to execute forward or backward."), 9838 set_exec_direction_func, show_exec_direction_func, 9839 &setlist, &showlist); 9840 9841 /* Set/show detach-on-fork: user-settable mode. */ 9842 9843 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\ 9844 Set whether gdb will detach the child of a fork."), _("\ 9845 Show whether gdb will detach the child of a fork."), _("\ 9846 Tells gdb whether to detach the child of a fork."), 9847 nullptr, nullptr, &setlist, &showlist); 9848 9849 /* Set/show disable address space randomization mode. */ 9850 9851 add_setshow_boolean_cmd ("disable-randomization", class_support, 9852 &disable_randomization, _("\ 9853 Set disabling of debuggee's virtual address space randomization."), _("\ 9854 Show disabling of debuggee's virtual address space randomization."), _("\ 9855 When this mode is on (which is the default), randomization of the virtual\n\ 9856 address space is disabled. Standalone programs run with the randomization\n\ 9857 enabled by default on some platforms."), 9858 &set_disable_randomization, 9859 &show_disable_randomization, 9860 &setlist, &showlist); 9861 9862 /* ptid initializations */ 9863 inferior_ptid = null_ptid; 9864 target_last_wait_ptid = minus_one_ptid; 9865 9866 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed, 9867 "infrun"); 9868 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested, 9869 "infrun"); 9870 gdb::observers::thread_exit.attach (infrun_thread_thread_exit, "infrun"); 9871 gdb::observers::inferior_exit.attach (infrun_inferior_exit, "infrun"); 9872 gdb::observers::inferior_execd.attach (infrun_inferior_execd, "infrun"); 9873 9874 /* Explicitly create without lookup, since that tries to create a 9875 value with a void typed value, and when we get here, gdbarch 9876 isn't initialized yet. At this point, we're quite sure there 9877 isn't another convenience variable of the same name. */ 9878 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, nullptr); 9879 9880 add_setshow_boolean_cmd ("observer", no_class, 9881 &observer_mode_1, _("\ 9882 Set whether gdb controls the inferior in observer mode."), _("\ 9883 Show whether gdb controls the inferior in observer mode."), _("\ 9884 In observer mode, GDB can get data from the inferior, but not\n\ 9885 affect its execution. Registers and memory may not be changed,\n\ 9886 breakpoints may not be set, and the program cannot be interrupted\n\ 9887 or signalled."), 9888 set_observer_mode, 9889 show_observer_mode, 9890 &setlist, 9891 &showlist); 9892 9893 #if GDB_SELF_TEST 9894 selftests::register_test ("infrun_thread_ptid_changed", 9895 selftests::infrun_thread_ptid_changed); 9896 #endif 9897 } 9898