xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/infrun.c (revision f8cf1a9151c7af1cb0bd8b09c13c66bca599c027)
1 /* Target-struct-independent code to start (run) and stop an inferior
2    process.
3 
4    Copyright (C) 1986-2023 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "displaced-stepping.h"
23 #include "infrun.h"
24 #include <ctype.h>
25 #include "symtab.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "breakpoint.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "target-connection.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include "inf-loop.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "observable.h"
41 #include "language.h"
42 #include "solib.h"
43 #include "main.h"
44 #include "block.h"
45 #include "mi/mi-common.h"
46 #include "event-top.h"
47 #include "record.h"
48 #include "record-full.h"
49 #include "inline-frame.h"
50 #include "jit.h"
51 #include "tracepoint.h"
52 #include "skip.h"
53 #include "probe.h"
54 #include "objfiles.h"
55 #include "completer.h"
56 #include "target-descriptions.h"
57 #include "target-dcache.h"
58 #include "terminal.h"
59 #include "solist.h"
60 #include "gdbsupport/event-loop.h"
61 #include "thread-fsm.h"
62 #include "gdbsupport/enum-flags.h"
63 #include "progspace-and-thread.h"
64 #include "gdbsupport/gdb_optional.h"
65 #include "arch-utils.h"
66 #include "gdbsupport/scope-exit.h"
67 #include "gdbsupport/forward-scope-exit.h"
68 #include "gdbsupport/gdb_select.h"
69 #include <unordered_map>
70 #include "async-event.h"
71 #include "gdbsupport/selftest.h"
72 #include "scoped-mock-context.h"
73 #include "test-target.h"
74 #include "gdbsupport/common-debug.h"
75 #include "gdbsupport/buildargv.h"
76 
77 /* Prototypes for local functions */
78 
79 static void sig_print_info (enum gdb_signal);
80 
81 static void sig_print_header (void);
82 
83 static void follow_inferior_reset_breakpoints (void);
84 
85 static bool currently_stepping (struct thread_info *tp);
86 
87 static void insert_hp_step_resume_breakpoint_at_frame (frame_info_ptr);
88 
89 static void insert_step_resume_breakpoint_at_caller (frame_info_ptr);
90 
91 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92 
93 static bool maybe_software_singlestep (struct gdbarch *gdbarch);
94 
95 static void resume (gdb_signal sig);
96 
97 static void wait_for_inferior (inferior *inf);
98 
99 static void restart_threads (struct thread_info *event_thread,
100 			     inferior *inf = nullptr);
101 
102 static bool start_step_over (void);
103 
104 static bool step_over_info_valid_p (void);
105 
106 /* Asynchronous signal handler registered as event loop source for
107    when we have pending events ready to be passed to the core.  */
108 static struct async_event_handler *infrun_async_inferior_event_token;
109 
110 /* Stores whether infrun_async was previously enabled or disabled.
111    Starts off as -1, indicating "never enabled/disabled".  */
112 static int infrun_is_async = -1;
113 
114 /* See infrun.h.  */
115 
116 void
117 infrun_async (int enable)
118 {
119   if (infrun_is_async != enable)
120     {
121       infrun_is_async = enable;
122 
123       infrun_debug_printf ("enable=%d", enable);
124 
125       if (enable)
126 	mark_async_event_handler (infrun_async_inferior_event_token);
127       else
128 	clear_async_event_handler (infrun_async_inferior_event_token);
129     }
130 }
131 
132 /* See infrun.h.  */
133 
134 void
135 mark_infrun_async_event_handler (void)
136 {
137   mark_async_event_handler (infrun_async_inferior_event_token);
138 }
139 
140 /* When set, stop the 'step' command if we enter a function which has
141    no line number information.  The normal behavior is that we step
142    over such function.  */
143 bool step_stop_if_no_debug = false;
144 static void
145 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
146 			    struct cmd_list_element *c, const char *value)
147 {
148   gdb_printf (file, _("Mode of the step operation is %s.\n"), value);
149 }
150 
151 /* proceed and normal_stop use this to notify the user when the
152    inferior stopped in a different thread than it had been running
153    in.  */
154 
155 static ptid_t previous_inferior_ptid;
156 
157 /* If set (default for legacy reasons), when following a fork, GDB
158    will detach from one of the fork branches, child or parent.
159    Exactly which branch is detached depends on 'set follow-fork-mode'
160    setting.  */
161 
162 static bool detach_fork = true;
163 
164 bool debug_infrun = false;
165 static void
166 show_debug_infrun (struct ui_file *file, int from_tty,
167 		   struct cmd_list_element *c, const char *value)
168 {
169   gdb_printf (file, _("Inferior debugging is %s.\n"), value);
170 }
171 
172 /* Support for disabling address space randomization.  */
173 
174 bool disable_randomization = true;
175 
176 static void
177 show_disable_randomization (struct ui_file *file, int from_tty,
178 			    struct cmd_list_element *c, const char *value)
179 {
180   if (target_supports_disable_randomization ())
181     gdb_printf (file,
182 		_("Disabling randomization of debuggee's "
183 		  "virtual address space is %s.\n"),
184 		value);
185   else
186     gdb_puts (_("Disabling randomization of debuggee's "
187 		"virtual address space is unsupported on\n"
188 		"this platform.\n"), file);
189 }
190 
191 static void
192 set_disable_randomization (const char *args, int from_tty,
193 			   struct cmd_list_element *c)
194 {
195   if (!target_supports_disable_randomization ())
196     error (_("Disabling randomization of debuggee's "
197 	     "virtual address space is unsupported on\n"
198 	     "this platform."));
199 }
200 
201 /* User interface for non-stop mode.  */
202 
203 bool non_stop = false;
204 static bool non_stop_1 = false;
205 
206 static void
207 set_non_stop (const char *args, int from_tty,
208 	      struct cmd_list_element *c)
209 {
210   if (target_has_execution ())
211     {
212       non_stop_1 = non_stop;
213       error (_("Cannot change this setting while the inferior is running."));
214     }
215 
216   non_stop = non_stop_1;
217 }
218 
219 static void
220 show_non_stop (struct ui_file *file, int from_tty,
221 	       struct cmd_list_element *c, const char *value)
222 {
223   gdb_printf (file,
224 	      _("Controlling the inferior in non-stop mode is %s.\n"),
225 	      value);
226 }
227 
228 /* "Observer mode" is somewhat like a more extreme version of
229    non-stop, in which all GDB operations that might affect the
230    target's execution have been disabled.  */
231 
232 static bool observer_mode = false;
233 static bool observer_mode_1 = false;
234 
235 static void
236 set_observer_mode (const char *args, int from_tty,
237 		   struct cmd_list_element *c)
238 {
239   if (target_has_execution ())
240     {
241       observer_mode_1 = observer_mode;
242       error (_("Cannot change this setting while the inferior is running."));
243     }
244 
245   observer_mode = observer_mode_1;
246 
247   may_write_registers = !observer_mode;
248   may_write_memory = !observer_mode;
249   may_insert_breakpoints = !observer_mode;
250   may_insert_tracepoints = !observer_mode;
251   /* We can insert fast tracepoints in or out of observer mode,
252      but enable them if we're going into this mode.  */
253   if (observer_mode)
254     may_insert_fast_tracepoints = true;
255   may_stop = !observer_mode;
256   update_target_permissions ();
257 
258   /* Going *into* observer mode we must force non-stop, then
259      going out we leave it that way.  */
260   if (observer_mode)
261     {
262       pagination_enabled = false;
263       non_stop = non_stop_1 = true;
264     }
265 
266   if (from_tty)
267     gdb_printf (_("Observer mode is now %s.\n"),
268 		(observer_mode ? "on" : "off"));
269 }
270 
271 static void
272 show_observer_mode (struct ui_file *file, int from_tty,
273 		    struct cmd_list_element *c, const char *value)
274 {
275   gdb_printf (file, _("Observer mode is %s.\n"), value);
276 }
277 
278 /* This updates the value of observer mode based on changes in
279    permissions.  Note that we are deliberately ignoring the values of
280    may-write-registers and may-write-memory, since the user may have
281    reason to enable these during a session, for instance to turn on a
282    debugging-related global.  */
283 
284 void
285 update_observer_mode (void)
286 {
287   bool newval = (!may_insert_breakpoints
288 		 && !may_insert_tracepoints
289 		 && may_insert_fast_tracepoints
290 		 && !may_stop
291 		 && non_stop);
292 
293   /* Let the user know if things change.  */
294   if (newval != observer_mode)
295     gdb_printf (_("Observer mode is now %s.\n"),
296 		(newval ? "on" : "off"));
297 
298   observer_mode = observer_mode_1 = newval;
299 }
300 
301 /* Tables of how to react to signals; the user sets them.  */
302 
303 static unsigned char signal_stop[GDB_SIGNAL_LAST];
304 static unsigned char signal_print[GDB_SIGNAL_LAST];
305 static unsigned char signal_program[GDB_SIGNAL_LAST];
306 
307 /* Table of signals that are registered with "catch signal".  A
308    non-zero entry indicates that the signal is caught by some "catch
309    signal" command.  */
310 static unsigned char signal_catch[GDB_SIGNAL_LAST];
311 
312 /* Table of signals that the target may silently handle.
313    This is automatically determined from the flags above,
314    and simply cached here.  */
315 static unsigned char signal_pass[GDB_SIGNAL_LAST];
316 
317 #define SET_SIGS(nsigs,sigs,flags) \
318   do { \
319     int signum = (nsigs); \
320     while (signum-- > 0) \
321       if ((sigs)[signum]) \
322 	(flags)[signum] = 1; \
323   } while (0)
324 
325 #define UNSET_SIGS(nsigs,sigs,flags) \
326   do { \
327     int signum = (nsigs); \
328     while (signum-- > 0) \
329       if ((sigs)[signum]) \
330 	(flags)[signum] = 0; \
331   } while (0)
332 
333 /* Update the target's copy of SIGNAL_PROGRAM.  The sole purpose of
334    this function is to avoid exporting `signal_program'.  */
335 
336 void
337 update_signals_program_target (void)
338 {
339   target_program_signals (signal_program);
340 }
341 
342 /* Value to pass to target_resume() to cause all threads to resume.  */
343 
344 #define RESUME_ALL minus_one_ptid
345 
346 /* Command list pointer for the "stop" placeholder.  */
347 
348 static struct cmd_list_element *stop_command;
349 
350 /* Nonzero if we want to give control to the user when we're notified
351    of shared library events by the dynamic linker.  */
352 int stop_on_solib_events;
353 
354 /* Enable or disable optional shared library event breakpoints
355    as appropriate when the above flag is changed.  */
356 
357 static void
358 set_stop_on_solib_events (const char *args,
359 			  int from_tty, struct cmd_list_element *c)
360 {
361   update_solib_breakpoints ();
362 }
363 
364 static void
365 show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 			   struct cmd_list_element *c, const char *value)
367 {
368   gdb_printf (file, _("Stopping for shared library events is %s.\n"),
369 	      value);
370 }
371 
372 /* True after stop if current stack frame should be printed.  */
373 
374 static bool stop_print_frame;
375 
376 /* This is a cached copy of the target/ptid/waitstatus of the last
377    event returned by target_wait().
378    This information is returned by get_last_target_status().  */
379 static process_stratum_target *target_last_proc_target;
380 static ptid_t target_last_wait_ptid;
381 static struct target_waitstatus target_last_waitstatus;
382 
383 void init_thread_stepping_state (struct thread_info *tss);
384 
385 static const char follow_fork_mode_child[] = "child";
386 static const char follow_fork_mode_parent[] = "parent";
387 
388 static const char *const follow_fork_mode_kind_names[] = {
389   follow_fork_mode_child,
390   follow_fork_mode_parent,
391   nullptr
392 };
393 
394 static const char *follow_fork_mode_string = follow_fork_mode_parent;
395 static void
396 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
397 			      struct cmd_list_element *c, const char *value)
398 {
399   gdb_printf (file,
400 	      _("Debugger response to a program "
401 		"call of fork or vfork is \"%s\".\n"),
402 	      value);
403 }
404 
405 
406 /* Handle changes to the inferior list based on the type of fork,
407    which process is being followed, and whether the other process
408    should be detached.  On entry inferior_ptid must be the ptid of
409    the fork parent.  At return inferior_ptid is the ptid of the
410    followed inferior.  */
411 
412 static bool
413 follow_fork_inferior (bool follow_child, bool detach_fork)
414 {
415   target_waitkind fork_kind = inferior_thread ()->pending_follow.kind ();
416   gdb_assert (fork_kind == TARGET_WAITKIND_FORKED
417 	      || fork_kind == TARGET_WAITKIND_VFORKED);
418   bool has_vforked = fork_kind == TARGET_WAITKIND_VFORKED;
419   ptid_t parent_ptid = inferior_ptid;
420   ptid_t child_ptid = inferior_thread ()->pending_follow.child_ptid ();
421 
422   if (has_vforked
423       && !non_stop /* Non-stop always resumes both branches.  */
424       && current_ui->prompt_state == PROMPT_BLOCKED
425       && !(follow_child || detach_fork || sched_multi))
426     {
427       /* The parent stays blocked inside the vfork syscall until the
428 	 child execs or exits.  If we don't let the child run, then
429 	 the parent stays blocked.  If we're telling the parent to run
430 	 in the foreground, the user will not be able to ctrl-c to get
431 	 back the terminal, effectively hanging the debug session.  */
432       gdb_printf (gdb_stderr, _("\
433 Can not resume the parent process over vfork in the foreground while\n\
434 holding the child stopped.  Try \"set detach-on-fork\" or \
435 \"set schedule-multiple\".\n"));
436       return true;
437     }
438 
439   inferior *parent_inf = current_inferior ();
440   inferior *child_inf = nullptr;
441 
442   gdb_assert (parent_inf->thread_waiting_for_vfork_done == nullptr);
443 
444   if (!follow_child)
445     {
446       /* Detach new forked process?  */
447       if (detach_fork)
448 	{
449 	  /* Before detaching from the child, remove all breakpoints
450 	     from it.  If we forked, then this has already been taken
451 	     care of by infrun.c.  If we vforked however, any
452 	     breakpoint inserted in the parent is visible in the
453 	     child, even those added while stopped in a vfork
454 	     catchpoint.  This will remove the breakpoints from the
455 	     parent also, but they'll be reinserted below.  */
456 	  if (has_vforked)
457 	    {
458 	      /* Keep breakpoints list in sync.  */
459 	      remove_breakpoints_inf (current_inferior ());
460 	    }
461 
462 	  if (print_inferior_events)
463 	    {
464 	      /* Ensure that we have a process ptid.  */
465 	      ptid_t process_ptid = ptid_t (child_ptid.pid ());
466 
467 	      target_terminal::ours_for_output ();
468 	      gdb_printf (_("[Detaching after %s from child %s]\n"),
469 			  has_vforked ? "vfork" : "fork",
470 			  target_pid_to_str (process_ptid).c_str ());
471 	    }
472 	}
473       else
474 	{
475 	  /* Add process to GDB's tables.  */
476 	  child_inf = add_inferior (child_ptid.pid ());
477 
478 	  child_inf->attach_flag = parent_inf->attach_flag;
479 	  copy_terminal_info (child_inf, parent_inf);
480 	  child_inf->gdbarch = parent_inf->gdbarch;
481 	  copy_inferior_target_desc_info (child_inf, parent_inf);
482 
483 	  child_inf->symfile_flags = SYMFILE_NO_READ;
484 
485 	  /* If this is a vfork child, then the address-space is
486 	     shared with the parent.  */
487 	  if (has_vforked)
488 	    {
489 	      child_inf->pspace = parent_inf->pspace;
490 	      child_inf->aspace = parent_inf->aspace;
491 
492 	      exec_on_vfork (child_inf);
493 
494 	      /* The parent will be frozen until the child is done
495 		 with the shared region.  Keep track of the
496 		 parent.  */
497 	      child_inf->vfork_parent = parent_inf;
498 	      child_inf->pending_detach = false;
499 	      parent_inf->vfork_child = child_inf;
500 	      parent_inf->pending_detach = false;
501 	    }
502 	  else
503 	    {
504 	      child_inf->aspace = new address_space ();
505 	      child_inf->pspace = new program_space (child_inf->aspace);
506 	      child_inf->removable = true;
507 	      clone_program_space (child_inf->pspace, parent_inf->pspace);
508 	    }
509 	}
510 
511       if (has_vforked)
512 	{
513 	  /* If we detached from the child, then we have to be careful
514 	     to not insert breakpoints in the parent until the child
515 	     is done with the shared memory region.  However, if we're
516 	     staying attached to the child, then we can and should
517 	     insert breakpoints, so that we can debug it.  A
518 	     subsequent child exec or exit is enough to know when does
519 	     the child stops using the parent's address space.  */
520 	  parent_inf->thread_waiting_for_vfork_done
521 	    = detach_fork ? inferior_thread () : nullptr;
522 	  parent_inf->pspace->breakpoints_not_allowed = detach_fork;
523 	}
524     }
525   else
526     {
527       /* Follow the child.  */
528 
529       if (print_inferior_events)
530 	{
531 	  std::string parent_pid = target_pid_to_str (parent_ptid);
532 	  std::string child_pid = target_pid_to_str (child_ptid);
533 
534 	  target_terminal::ours_for_output ();
535 	  gdb_printf (_("[Attaching after %s %s to child %s]\n"),
536 		      parent_pid.c_str (),
537 		      has_vforked ? "vfork" : "fork",
538 		      child_pid.c_str ());
539 	}
540 
541       /* Add the new inferior first, so that the target_detach below
542 	 doesn't unpush the target.  */
543 
544       child_inf = add_inferior (child_ptid.pid ());
545 
546       child_inf->attach_flag = parent_inf->attach_flag;
547       copy_terminal_info (child_inf, parent_inf);
548       child_inf->gdbarch = parent_inf->gdbarch;
549       copy_inferior_target_desc_info (child_inf, parent_inf);
550 
551       if (has_vforked)
552 	{
553 	  /* If this is a vfork child, then the address-space is shared
554 	     with the parent.  */
555 	  child_inf->aspace = parent_inf->aspace;
556 	  child_inf->pspace = parent_inf->pspace;
557 
558 	  exec_on_vfork (child_inf);
559 	}
560       else if (detach_fork)
561 	{
562 	  /* We follow the child and detach from the parent: move the parent's
563 	     program space to the child.  This simplifies some things, like
564 	     doing "next" over fork() and landing on the expected line in the
565 	     child (note, that is broken with "set detach-on-fork off").
566 
567 	     Before assigning brand new spaces for the parent, remove
568 	     breakpoints from it: because the new pspace won't match
569 	     currently inserted locations, the normal detach procedure
570 	     wouldn't remove them, and we would leave them inserted when
571 	     detaching.  */
572 	  remove_breakpoints_inf (parent_inf);
573 
574 	  child_inf->aspace = parent_inf->aspace;
575 	  child_inf->pspace = parent_inf->pspace;
576 	  parent_inf->aspace = new address_space ();
577 	  parent_inf->pspace = new program_space (parent_inf->aspace);
578 	  clone_program_space (parent_inf->pspace, child_inf->pspace);
579 
580 	  /* The parent inferior is still the current one, so keep things
581 	     in sync.  */
582 	  set_current_program_space (parent_inf->pspace);
583 	}
584       else
585 	{
586 	  child_inf->aspace = new address_space ();
587 	  child_inf->pspace = new program_space (child_inf->aspace);
588 	  child_inf->removable = true;
589 	  child_inf->symfile_flags = SYMFILE_NO_READ;
590 	  clone_program_space (child_inf->pspace, parent_inf->pspace);
591 	}
592     }
593 
594   gdb_assert (current_inferior () == parent_inf);
595 
596   /* If we are setting up an inferior for the child, target_follow_fork is
597      responsible for pushing the appropriate targets on the new inferior's
598      target stack and adding the initial thread (with ptid CHILD_PTID).
599 
600      If we are not setting up an inferior for the child (because following
601      the parent and detach_fork is true), it is responsible for detaching
602      from CHILD_PTID.  */
603   target_follow_fork (child_inf, child_ptid, fork_kind, follow_child,
604 		      detach_fork);
605 
606   /* target_follow_fork must leave the parent as the current inferior.  If we
607      want to follow the child, we make it the current one below.  */
608   gdb_assert (current_inferior () == parent_inf);
609 
610   /* If there is a child inferior, target_follow_fork must have created a thread
611      for it.  */
612   if (child_inf != nullptr)
613     gdb_assert (!child_inf->thread_list.empty ());
614 
615   /* Clear the parent thread's pending follow field.  Do this before calling
616      target_detach, so that the target can differentiate the two following
617      cases:
618 
619       - We continue past a fork with "follow-fork-mode == child" &&
620 	"detach-on-fork on", and therefore detach the parent.  In that
621 	case the target should not detach the fork child.
622       - We run to a fork catchpoint and the user types "detach".  In that
623 	case, the target should detach the fork child in addition to the
624 	parent.
625 
626      The former case will have pending_follow cleared, the later will have
627      pending_follow set.  */
628   thread_info *parent_thread = find_thread_ptid (parent_inf, parent_ptid);
629   gdb_assert (parent_thread != nullptr);
630   parent_thread->pending_follow.set_spurious ();
631 
632   /* Detach the parent if needed.  */
633   if (follow_child)
634     {
635       /* If we're vforking, we want to hold on to the parent until
636 	 the child exits or execs.  At child exec or exit time we
637 	 can remove the old breakpoints from the parent and detach
638 	 or resume debugging it.  Otherwise, detach the parent now;
639 	 we'll want to reuse it's program/address spaces, but we
640 	 can't set them to the child before removing breakpoints
641 	 from the parent, otherwise, the breakpoints module could
642 	 decide to remove breakpoints from the wrong process (since
643 	 they'd be assigned to the same address space).  */
644 
645       if (has_vforked)
646 	{
647 	  gdb_assert (child_inf->vfork_parent == nullptr);
648 	  gdb_assert (parent_inf->vfork_child == nullptr);
649 	  child_inf->vfork_parent = parent_inf;
650 	  child_inf->pending_detach = false;
651 	  parent_inf->vfork_child = child_inf;
652 	  parent_inf->pending_detach = detach_fork;
653 	}
654       else if (detach_fork)
655 	{
656 	  if (print_inferior_events)
657 	    {
658 	      /* Ensure that we have a process ptid.  */
659 	      ptid_t process_ptid = ptid_t (parent_ptid.pid ());
660 
661 	      target_terminal::ours_for_output ();
662 	      gdb_printf (_("[Detaching after fork from "
663 			    "parent %s]\n"),
664 			  target_pid_to_str (process_ptid).c_str ());
665 	    }
666 
667 	  target_detach (parent_inf, 0);
668 	}
669     }
670 
671   /* If we ended up creating a new inferior, call post_create_inferior to inform
672      the various subcomponents.  */
673   if (child_inf != nullptr)
674     {
675       /* If FOLLOW_CHILD, we leave CHILD_INF as the current inferior
676          (do not restore the parent as the current inferior).  */
677       gdb::optional<scoped_restore_current_thread> maybe_restore;
678 
679       if (!follow_child)
680 	maybe_restore.emplace ();
681 
682       switch_to_thread (*child_inf->threads ().begin ());
683       post_create_inferior (0);
684     }
685 
686   return false;
687 }
688 
689 /* Tell the target to follow the fork we're stopped at.  Returns true
690    if the inferior should be resumed; false, if the target for some
691    reason decided it's best not to resume.  */
692 
693 static bool
694 follow_fork ()
695 {
696   bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
697   bool should_resume = true;
698 
699   /* Copy user stepping state to the new inferior thread.  FIXME: the
700      followed fork child thread should have a copy of most of the
701      parent thread structure's run control related fields, not just these.
702      Initialized to avoid "may be used uninitialized" warnings from gcc.  */
703   struct breakpoint *step_resume_breakpoint = nullptr;
704   struct breakpoint *exception_resume_breakpoint = nullptr;
705   CORE_ADDR step_range_start = 0;
706   CORE_ADDR step_range_end = 0;
707   int current_line = 0;
708   symtab *current_symtab = nullptr;
709   struct frame_id step_frame_id = { 0 };
710 
711   if (!non_stop)
712     {
713       process_stratum_target *wait_target;
714       ptid_t wait_ptid;
715       struct target_waitstatus wait_status;
716 
717       /* Get the last target status returned by target_wait().  */
718       get_last_target_status (&wait_target, &wait_ptid, &wait_status);
719 
720       /* If not stopped at a fork event, then there's nothing else to
721 	 do.  */
722       if (wait_status.kind () != TARGET_WAITKIND_FORKED
723 	  && wait_status.kind () != TARGET_WAITKIND_VFORKED)
724 	return 1;
725 
726       /* Check if we switched over from WAIT_PTID, since the event was
727 	 reported.  */
728       if (wait_ptid != minus_one_ptid
729 	  && (current_inferior ()->process_target () != wait_target
730 	      || inferior_ptid != wait_ptid))
731 	{
732 	  /* We did.  Switch back to WAIT_PTID thread, to tell the
733 	     target to follow it (in either direction).  We'll
734 	     afterwards refuse to resume, and inform the user what
735 	     happened.  */
736 	  thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
737 	  switch_to_thread (wait_thread);
738 	  should_resume = false;
739 	}
740     }
741 
742   thread_info *tp = inferior_thread ();
743 
744   /* If there were any forks/vforks that were caught and are now to be
745      followed, then do so now.  */
746   switch (tp->pending_follow.kind ())
747     {
748     case TARGET_WAITKIND_FORKED:
749     case TARGET_WAITKIND_VFORKED:
750       {
751 	ptid_t parent, child;
752 	std::unique_ptr<struct thread_fsm> thread_fsm;
753 
754 	/* If the user did a next/step, etc, over a fork call,
755 	   preserve the stepping state in the fork child.  */
756 	if (follow_child && should_resume)
757 	  {
758 	    step_resume_breakpoint = clone_momentary_breakpoint
759 					 (tp->control.step_resume_breakpoint);
760 	    step_range_start = tp->control.step_range_start;
761 	    step_range_end = tp->control.step_range_end;
762 	    current_line = tp->current_line;
763 	    current_symtab = tp->current_symtab;
764 	    step_frame_id = tp->control.step_frame_id;
765 	    exception_resume_breakpoint
766 	      = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
767 	    thread_fsm = tp->release_thread_fsm ();
768 
769 	    /* For now, delete the parent's sr breakpoint, otherwise,
770 	       parent/child sr breakpoints are considered duplicates,
771 	       and the child version will not be installed.  Remove
772 	       this when the breakpoints module becomes aware of
773 	       inferiors and address spaces.  */
774 	    delete_step_resume_breakpoint (tp);
775 	    tp->control.step_range_start = 0;
776 	    tp->control.step_range_end = 0;
777 	    tp->control.step_frame_id = null_frame_id;
778 	    delete_exception_resume_breakpoint (tp);
779 	  }
780 
781 	parent = inferior_ptid;
782 	child = tp->pending_follow.child_ptid ();
783 
784 	/* If handling a vfork, stop all the inferior's threads, they will be
785 	   restarted when the vfork shared region is complete.  */
786 	if (tp->pending_follow.kind () == TARGET_WAITKIND_VFORKED
787 	    && target_is_non_stop_p ())
788 	  stop_all_threads ("handling vfork", tp->inf);
789 
790 	process_stratum_target *parent_targ = tp->inf->process_target ();
791 	/* Set up inferior(s) as specified by the caller, and tell the
792 	   target to do whatever is necessary to follow either parent
793 	   or child.  */
794 	if (follow_fork_inferior (follow_child, detach_fork))
795 	  {
796 	    /* Target refused to follow, or there's some other reason
797 	       we shouldn't resume.  */
798 	    should_resume = 0;
799 	  }
800 	else
801 	  {
802 	    /* This makes sure we don't try to apply the "Switched
803 	       over from WAIT_PID" logic above.  */
804 	    nullify_last_target_wait_ptid ();
805 
806 	    /* If we followed the child, switch to it...  */
807 	    if (follow_child)
808 	      {
809 		thread_info *child_thr = find_thread_ptid (parent_targ, child);
810 		switch_to_thread (child_thr);
811 
812 		/* ... and preserve the stepping state, in case the
813 		   user was stepping over the fork call.  */
814 		if (should_resume)
815 		  {
816 		    tp = inferior_thread ();
817 		    tp->control.step_resume_breakpoint
818 		      = step_resume_breakpoint;
819 		    tp->control.step_range_start = step_range_start;
820 		    tp->control.step_range_end = step_range_end;
821 		    tp->current_line = current_line;
822 		    tp->current_symtab = current_symtab;
823 		    tp->control.step_frame_id = step_frame_id;
824 		    tp->control.exception_resume_breakpoint
825 		      = exception_resume_breakpoint;
826 		    tp->set_thread_fsm (std::move (thread_fsm));
827 		  }
828 		else
829 		  {
830 		    /* If we get here, it was because we're trying to
831 		       resume from a fork catchpoint, but, the user
832 		       has switched threads away from the thread that
833 		       forked.  In that case, the resume command
834 		       issued is most likely not applicable to the
835 		       child, so just warn, and refuse to resume.  */
836 		    warning (_("Not resuming: switched threads "
837 			       "before following fork child."));
838 		  }
839 
840 		/* Reset breakpoints in the child as appropriate.  */
841 		follow_inferior_reset_breakpoints ();
842 	      }
843 	  }
844       }
845       break;
846     case TARGET_WAITKIND_SPURIOUS:
847       /* Nothing to follow.  */
848       break;
849     default:
850       internal_error ("Unexpected pending_follow.kind %d\n",
851 		      tp->pending_follow.kind ());
852       break;
853     }
854 
855   return should_resume;
856 }
857 
858 static void
859 follow_inferior_reset_breakpoints (void)
860 {
861   struct thread_info *tp = inferior_thread ();
862 
863   /* Was there a step_resume breakpoint?  (There was if the user
864      did a "next" at the fork() call.)  If so, explicitly reset its
865      thread number.  Cloned step_resume breakpoints are disabled on
866      creation, so enable it here now that it is associated with the
867      correct thread.
868 
869      step_resumes are a form of bp that are made to be per-thread.
870      Since we created the step_resume bp when the parent process
871      was being debugged, and now are switching to the child process,
872      from the breakpoint package's viewpoint, that's a switch of
873      "threads".  We must update the bp's notion of which thread
874      it is for, or it'll be ignored when it triggers.  */
875 
876   if (tp->control.step_resume_breakpoint)
877     {
878       breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
879       tp->control.step_resume_breakpoint->loc->enabled = 1;
880     }
881 
882   /* Treat exception_resume breakpoints like step_resume breakpoints.  */
883   if (tp->control.exception_resume_breakpoint)
884     {
885       breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
886       tp->control.exception_resume_breakpoint->loc->enabled = 1;
887     }
888 
889   /* Reinsert all breakpoints in the child.  The user may have set
890      breakpoints after catching the fork, in which case those
891      were never set in the child, but only in the parent.  This makes
892      sure the inserted breakpoints match the breakpoint list.  */
893 
894   breakpoint_re_set ();
895   insert_breakpoints ();
896 }
897 
898 /* The child has exited or execed: resume THREAD, a thread of the parent,
899    if it was meant to be executing.  */
900 
901 static void
902 proceed_after_vfork_done (thread_info *thread)
903 {
904   if (thread->state == THREAD_RUNNING
905       && !thread->executing ()
906       && !thread->stop_requested
907       && thread->stop_signal () == GDB_SIGNAL_0)
908     {
909       infrun_debug_printf ("resuming vfork parent thread %s",
910 			   thread->ptid.to_string ().c_str ());
911 
912       switch_to_thread (thread);
913       clear_proceed_status (0);
914       proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
915     }
916 }
917 
918 /* Called whenever we notice an exec or exit event, to handle
919    detaching or resuming a vfork parent.  */
920 
921 static void
922 handle_vfork_child_exec_or_exit (int exec)
923 {
924   struct inferior *inf = current_inferior ();
925 
926   if (inf->vfork_parent)
927     {
928       inferior *resume_parent = nullptr;
929 
930       /* This exec or exit marks the end of the shared memory region
931 	 between the parent and the child.  Break the bonds.  */
932       inferior *vfork_parent = inf->vfork_parent;
933       inf->vfork_parent->vfork_child = nullptr;
934       inf->vfork_parent = nullptr;
935 
936       /* If the user wanted to detach from the parent, now is the
937 	 time.  */
938       if (vfork_parent->pending_detach)
939 	{
940 	  struct program_space *pspace;
941 	  struct address_space *aspace;
942 
943 	  /* follow-fork child, detach-on-fork on.  */
944 
945 	  vfork_parent->pending_detach = false;
946 
947 	  scoped_restore_current_pspace_and_thread restore_thread;
948 
949 	  /* We're letting loose of the parent.  */
950 	  thread_info *tp = any_live_thread_of_inferior (vfork_parent);
951 	  switch_to_thread (tp);
952 
953 	  /* We're about to detach from the parent, which implicitly
954 	     removes breakpoints from its address space.  There's a
955 	     catch here: we want to reuse the spaces for the child,
956 	     but, parent/child are still sharing the pspace at this
957 	     point, although the exec in reality makes the kernel give
958 	     the child a fresh set of new pages.  The problem here is
959 	     that the breakpoints module being unaware of this, would
960 	     likely chose the child process to write to the parent
961 	     address space.  Swapping the child temporarily away from
962 	     the spaces has the desired effect.  Yes, this is "sort
963 	     of" a hack.  */
964 
965 	  pspace = inf->pspace;
966 	  aspace = inf->aspace;
967 	  inf->aspace = nullptr;
968 	  inf->pspace = nullptr;
969 
970 	  if (print_inferior_events)
971 	    {
972 	      std::string pidstr
973 		= target_pid_to_str (ptid_t (vfork_parent->pid));
974 
975 	      target_terminal::ours_for_output ();
976 
977 	      if (exec)
978 		{
979 		  gdb_printf (_("[Detaching vfork parent %s "
980 				"after child exec]\n"), pidstr.c_str ());
981 		}
982 	      else
983 		{
984 		  gdb_printf (_("[Detaching vfork parent %s "
985 				"after child exit]\n"), pidstr.c_str ());
986 		}
987 	    }
988 
989 	  target_detach (vfork_parent, 0);
990 
991 	  /* Put it back.  */
992 	  inf->pspace = pspace;
993 	  inf->aspace = aspace;
994 	}
995       else if (exec)
996 	{
997 	  /* We're staying attached to the parent, so, really give the
998 	     child a new address space.  */
999 	  inf->pspace = new program_space (maybe_new_address_space ());
1000 	  inf->aspace = inf->pspace->aspace;
1001 	  inf->removable = true;
1002 	  set_current_program_space (inf->pspace);
1003 
1004 	  resume_parent = vfork_parent;
1005 	}
1006       else
1007 	{
1008 	  /* If this is a vfork child exiting, then the pspace and
1009 	     aspaces were shared with the parent.  Since we're
1010 	     reporting the process exit, we'll be mourning all that is
1011 	     found in the address space, and switching to null_ptid,
1012 	     preparing to start a new inferior.  But, since we don't
1013 	     want to clobber the parent's address/program spaces, we
1014 	     go ahead and create a new one for this exiting
1015 	     inferior.  */
1016 
1017 	  /* Switch to no-thread while running clone_program_space, so
1018 	     that clone_program_space doesn't want to read the
1019 	     selected frame of a dead process.  */
1020 	  scoped_restore_current_thread restore_thread;
1021 	  switch_to_no_thread ();
1022 
1023 	  inf->pspace = new program_space (maybe_new_address_space ());
1024 	  inf->aspace = inf->pspace->aspace;
1025 	  set_current_program_space (inf->pspace);
1026 	  inf->removable = true;
1027 	  inf->symfile_flags = SYMFILE_NO_READ;
1028 	  clone_program_space (inf->pspace, vfork_parent->pspace);
1029 
1030 	  resume_parent = vfork_parent;
1031 	}
1032 
1033       gdb_assert (current_program_space == inf->pspace);
1034 
1035       if (non_stop && resume_parent != nullptr)
1036 	{
1037 	  /* If the user wanted the parent to be running, let it go
1038 	     free now.  */
1039 	  scoped_restore_current_thread restore_thread;
1040 
1041 	  infrun_debug_printf ("resuming vfork parent process %d",
1042 			       resume_parent->pid);
1043 
1044 	  for (thread_info *thread : resume_parent->threads ())
1045 	    proceed_after_vfork_done (thread);
1046 	}
1047     }
1048 }
1049 
1050 /* Handle TARGET_WAITKIND_VFORK_DONE.  */
1051 
1052 static void
1053 handle_vfork_done (thread_info *event_thread)
1054 {
1055   /* We only care about this event if inferior::thread_waiting_for_vfork_done is
1056      set, that is if we are waiting for a vfork child not under our control
1057      (because we detached it) to exec or exit.
1058 
1059      If an inferior has vforked and we are debugging the child, we don't use
1060      the vfork-done event to get notified about the end of the shared address
1061      space window.  We rely instead on the child's exec or exit event, and the
1062      inferior::vfork_{parent,child} fields are used instead.  See
1063      handle_vfork_child_exec_or_exit for that.  */
1064   if (event_thread->inf->thread_waiting_for_vfork_done == nullptr)
1065     {
1066       infrun_debug_printf ("not waiting for a vfork-done event");
1067       return;
1068     }
1069 
1070   INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1071 
1072   /* We stopped all threads (other than the vforking thread) of the inferior in
1073      follow_fork and kept them stopped until now.  It should therefore not be
1074      possible for another thread to have reported a vfork during that window.
1075      If THREAD_WAITING_FOR_VFORK_DONE is set, it has to be the same thread whose
1076      vfork-done we are handling right now.  */
1077   gdb_assert (event_thread->inf->thread_waiting_for_vfork_done == event_thread);
1078 
1079   event_thread->inf->thread_waiting_for_vfork_done = nullptr;
1080   event_thread->inf->pspace->breakpoints_not_allowed = 0;
1081 
1082   /* On non-stop targets, we stopped all the inferior's threads in follow_fork,
1083      resume them now.  On all-stop targets, everything that needs to be resumed
1084      will be when we resume the event thread.  */
1085   if (target_is_non_stop_p ())
1086     {
1087       /* restart_threads and start_step_over may change the current thread, make
1088 	 sure we leave the event thread as the current thread.  */
1089       scoped_restore_current_thread restore_thread;
1090 
1091       insert_breakpoints ();
1092       start_step_over ();
1093 
1094       if (!step_over_info_valid_p ())
1095 	restart_threads (event_thread, event_thread->inf);
1096     }
1097 }
1098 
1099 /* Enum strings for "set|show follow-exec-mode".  */
1100 
1101 static const char follow_exec_mode_new[] = "new";
1102 static const char follow_exec_mode_same[] = "same";
1103 static const char *const follow_exec_mode_names[] =
1104 {
1105   follow_exec_mode_new,
1106   follow_exec_mode_same,
1107   nullptr,
1108 };
1109 
1110 static const char *follow_exec_mode_string = follow_exec_mode_same;
1111 static void
1112 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1113 			      struct cmd_list_element *c, const char *value)
1114 {
1115   gdb_printf (file, _("Follow exec mode is \"%s\".\n"),  value);
1116 }
1117 
1118 /* EXEC_FILE_TARGET is assumed to be non-NULL.  */
1119 
1120 static void
1121 follow_exec (ptid_t ptid, const char *exec_file_target)
1122 {
1123   int pid = ptid.pid ();
1124   ptid_t process_ptid;
1125 
1126   /* Switch terminal for any messages produced e.g. by
1127      breakpoint_re_set.  */
1128   target_terminal::ours_for_output ();
1129 
1130   /* This is an exec event that we actually wish to pay attention to.
1131      Refresh our symbol table to the newly exec'd program, remove any
1132      momentary bp's, etc.
1133 
1134      If there are breakpoints, they aren't really inserted now,
1135      since the exec() transformed our inferior into a fresh set
1136      of instructions.
1137 
1138      We want to preserve symbolic breakpoints on the list, since
1139      we have hopes that they can be reset after the new a.out's
1140      symbol table is read.
1141 
1142      However, any "raw" breakpoints must be removed from the list
1143      (e.g., the solib bp's), since their address is probably invalid
1144      now.
1145 
1146      And, we DON'T want to call delete_breakpoints() here, since
1147      that may write the bp's "shadow contents" (the instruction
1148      value that was overwritten with a TRAP instruction).  Since
1149      we now have a new a.out, those shadow contents aren't valid.  */
1150 
1151   mark_breakpoints_out ();
1152 
1153   /* The target reports the exec event to the main thread, even if
1154      some other thread does the exec, and even if the main thread was
1155      stopped or already gone.  We may still have non-leader threads of
1156      the process on our list.  E.g., on targets that don't have thread
1157      exit events (like remote); or on native Linux in non-stop mode if
1158      there were only two threads in the inferior and the non-leader
1159      one is the one that execs (and nothing forces an update of the
1160      thread list up to here).  When debugging remotely, it's best to
1161      avoid extra traffic, when possible, so avoid syncing the thread
1162      list with the target, and instead go ahead and delete all threads
1163      of the process but one that reported the event.  Note this must
1164      be done before calling update_breakpoints_after_exec, as
1165      otherwise clearing the threads' resources would reference stale
1166      thread breakpoints -- it may have been one of these threads that
1167      stepped across the exec.  We could just clear their stepping
1168      states, but as long as we're iterating, might as well delete
1169      them.  Deleting them now rather than at the next user-visible
1170      stop provides a nicer sequence of events for user and MI
1171      notifications.  */
1172   for (thread_info *th : all_threads_safe ())
1173     if (th->ptid.pid () == pid && th->ptid != ptid)
1174       delete_thread (th);
1175 
1176   /* We also need to clear any left over stale state for the
1177      leader/event thread.  E.g., if there was any step-resume
1178      breakpoint or similar, it's gone now.  We cannot truly
1179      step-to-next statement through an exec().  */
1180   thread_info *th = inferior_thread ();
1181   th->control.step_resume_breakpoint = nullptr;
1182   th->control.exception_resume_breakpoint = nullptr;
1183   th->control.single_step_breakpoints = nullptr;
1184   th->control.step_range_start = 0;
1185   th->control.step_range_end = 0;
1186 
1187   /* The user may have had the main thread held stopped in the
1188      previous image (e.g., schedlock on, or non-stop).  Release
1189      it now.  */
1190   th->stop_requested = 0;
1191 
1192   update_breakpoints_after_exec ();
1193 
1194   /* What is this a.out's name?  */
1195   process_ptid = ptid_t (pid);
1196   gdb_printf (_("%s is executing new program: %s\n"),
1197 	      target_pid_to_str (process_ptid).c_str (),
1198 	      exec_file_target);
1199 
1200   /* We've followed the inferior through an exec.  Therefore, the
1201      inferior has essentially been killed & reborn.  */
1202 
1203   breakpoint_init_inferior (inf_execd);
1204 
1205   gdb::unique_xmalloc_ptr<char> exec_file_host
1206     = exec_file_find (exec_file_target, nullptr);
1207 
1208   /* If we were unable to map the executable target pathname onto a host
1209      pathname, tell the user that.  Otherwise GDB's subsequent behavior
1210      is confusing.  Maybe it would even be better to stop at this point
1211      so that the user can specify a file manually before continuing.  */
1212   if (exec_file_host == nullptr)
1213     warning (_("Could not load symbols for executable %s.\n"
1214 	       "Do you need \"set sysroot\"?"),
1215 	     exec_file_target);
1216 
1217   /* Reset the shared library package.  This ensures that we get a
1218      shlib event when the child reaches "_start", at which point the
1219      dld will have had a chance to initialize the child.  */
1220   /* Also, loading a symbol file below may trigger symbol lookups, and
1221      we don't want those to be satisfied by the libraries of the
1222      previous incarnation of this process.  */
1223   no_shared_libraries (nullptr, 0);
1224 
1225   struct inferior *inf = current_inferior ();
1226 
1227   if (follow_exec_mode_string == follow_exec_mode_new)
1228     {
1229       /* The user wants to keep the old inferior and program spaces
1230 	 around.  Create a new fresh one, and switch to it.  */
1231 
1232       /* Do exit processing for the original inferior before setting the new
1233 	 inferior's pid.  Having two inferiors with the same pid would confuse
1234 	 find_inferior_p(t)id.  Transfer the terminal state and info from the
1235 	  old to the new inferior.  */
1236       inferior *new_inferior = add_inferior_with_spaces ();
1237 
1238       swap_terminal_info (new_inferior, inf);
1239       exit_inferior_silent (inf);
1240 
1241       new_inferior->pid = pid;
1242       target_follow_exec (new_inferior, ptid, exec_file_target);
1243 
1244       /* We continue with the new inferior.  */
1245       inf = new_inferior;
1246     }
1247   else
1248     {
1249       /* The old description may no longer be fit for the new image.
1250 	 E.g, a 64-bit process exec'ed a 32-bit process.  Clear the
1251 	 old description; we'll read a new one below.  No need to do
1252 	 this on "follow-exec-mode new", as the old inferior stays
1253 	 around (its description is later cleared/refetched on
1254 	 restart).  */
1255       target_clear_description ();
1256       target_follow_exec (inf, ptid, exec_file_target);
1257     }
1258 
1259   gdb_assert (current_inferior () == inf);
1260   gdb_assert (current_program_space == inf->pspace);
1261 
1262   /* Attempt to open the exec file.  SYMFILE_DEFER_BP_RESET is used
1263      because the proper displacement for a PIE (Position Independent
1264      Executable) main symbol file will only be computed by
1265      solib_create_inferior_hook below.  breakpoint_re_set would fail
1266      to insert the breakpoints with the zero displacement.  */
1267   try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1268 
1269   /* If the target can specify a description, read it.  Must do this
1270      after flipping to the new executable (because the target supplied
1271      description must be compatible with the executable's
1272      architecture, and the old executable may e.g., be 32-bit, while
1273      the new one 64-bit), and before anything involving memory or
1274      registers.  */
1275   target_find_description ();
1276 
1277   gdb::observers::inferior_execd.notify (inf);
1278 
1279   breakpoint_re_set ();
1280 
1281   /* Reinsert all breakpoints.  (Those which were symbolic have
1282      been reset to the proper address in the new a.out, thanks
1283      to symbol_file_command...).  */
1284   insert_breakpoints ();
1285 
1286   /* The next resume of this inferior should bring it to the shlib
1287      startup breakpoints.  (If the user had also set bp's on
1288      "main" from the old (parent) process, then they'll auto-
1289      matically get reset there in the new process.).  */
1290 }
1291 
1292 /* The chain of threads that need to do a step-over operation to get
1293    past e.g., a breakpoint.  What technique is used to step over the
1294    breakpoint/watchpoint does not matter -- all threads end up in the
1295    same queue, to maintain rough temporal order of execution, in order
1296    to avoid starvation, otherwise, we could e.g., find ourselves
1297    constantly stepping the same couple threads past their breakpoints
1298    over and over, if the single-step finish fast enough.  */
1299 thread_step_over_list global_thread_step_over_list;
1300 
1301 /* Bit flags indicating what the thread needs to step over.  */
1302 
1303 enum step_over_what_flag
1304   {
1305     /* Step over a breakpoint.  */
1306     STEP_OVER_BREAKPOINT = 1,
1307 
1308     /* Step past a non-continuable watchpoint, in order to let the
1309        instruction execute so we can evaluate the watchpoint
1310        expression.  */
1311     STEP_OVER_WATCHPOINT = 2
1312   };
1313 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1314 
1315 /* Info about an instruction that is being stepped over.  */
1316 
1317 struct step_over_info
1318 {
1319   /* If we're stepping past a breakpoint, this is the address space
1320      and address of the instruction the breakpoint is set at.  We'll
1321      skip inserting all breakpoints here.  Valid iff ASPACE is
1322      non-NULL.  */
1323   const address_space *aspace = nullptr;
1324   CORE_ADDR address = 0;
1325 
1326   /* The instruction being stepped over triggers a nonsteppable
1327      watchpoint.  If true, we'll skip inserting watchpoints.  */
1328   int nonsteppable_watchpoint_p = 0;
1329 
1330   /* The thread's global number.  */
1331   int thread = -1;
1332 };
1333 
1334 /* The step-over info of the location that is being stepped over.
1335 
1336    Note that with async/breakpoint always-inserted mode, a user might
1337    set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1338    being stepped over.  As setting a new breakpoint inserts all
1339    breakpoints, we need to make sure the breakpoint being stepped over
1340    isn't inserted then.  We do that by only clearing the step-over
1341    info when the step-over is actually finished (or aborted).
1342 
1343    Presently GDB can only step over one breakpoint at any given time.
1344    Given threads that can't run code in the same address space as the
1345    breakpoint's can't really miss the breakpoint, GDB could be taught
1346    to step-over at most one breakpoint per address space (so this info
1347    could move to the address space object if/when GDB is extended).
1348    The set of breakpoints being stepped over will normally be much
1349    smaller than the set of all breakpoints, so a flag in the
1350    breakpoint location structure would be wasteful.  A separate list
1351    also saves complexity and run-time, as otherwise we'd have to go
1352    through all breakpoint locations clearing their flag whenever we
1353    start a new sequence.  Similar considerations weigh against storing
1354    this info in the thread object.  Plus, not all step overs actually
1355    have breakpoint locations -- e.g., stepping past a single-step
1356    breakpoint, or stepping to complete a non-continuable
1357    watchpoint.  */
1358 static struct step_over_info step_over_info;
1359 
1360 /* Record the address of the breakpoint/instruction we're currently
1361    stepping over.
1362    N.B. We record the aspace and address now, instead of say just the thread,
1363    because when we need the info later the thread may be running.  */
1364 
1365 static void
1366 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1367 		    int nonsteppable_watchpoint_p,
1368 		    int thread)
1369 {
1370   step_over_info.aspace = aspace;
1371   step_over_info.address = address;
1372   step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1373   step_over_info.thread = thread;
1374 }
1375 
1376 /* Called when we're not longer stepping over a breakpoint / an
1377    instruction, so all breakpoints are free to be (re)inserted.  */
1378 
1379 static void
1380 clear_step_over_info (void)
1381 {
1382   infrun_debug_printf ("clearing step over info");
1383   step_over_info.aspace = nullptr;
1384   step_over_info.address = 0;
1385   step_over_info.nonsteppable_watchpoint_p = 0;
1386   step_over_info.thread = -1;
1387 }
1388 
1389 /* See infrun.h.  */
1390 
1391 int
1392 stepping_past_instruction_at (struct address_space *aspace,
1393 			      CORE_ADDR address)
1394 {
1395   return (step_over_info.aspace != nullptr
1396 	  && breakpoint_address_match (aspace, address,
1397 				       step_over_info.aspace,
1398 				       step_over_info.address));
1399 }
1400 
1401 /* See infrun.h.  */
1402 
1403 int
1404 thread_is_stepping_over_breakpoint (int thread)
1405 {
1406   return (step_over_info.thread != -1
1407 	  && thread == step_over_info.thread);
1408 }
1409 
1410 /* See infrun.h.  */
1411 
1412 int
1413 stepping_past_nonsteppable_watchpoint (void)
1414 {
1415   return step_over_info.nonsteppable_watchpoint_p;
1416 }
1417 
1418 /* Returns true if step-over info is valid.  */
1419 
1420 static bool
1421 step_over_info_valid_p (void)
1422 {
1423   return (step_over_info.aspace != nullptr
1424 	  || stepping_past_nonsteppable_watchpoint ());
1425 }
1426 
1427 
1428 /* Displaced stepping.  */
1429 
1430 /* In non-stop debugging mode, we must take special care to manage
1431    breakpoints properly; in particular, the traditional strategy for
1432    stepping a thread past a breakpoint it has hit is unsuitable.
1433    'Displaced stepping' is a tactic for stepping one thread past a
1434    breakpoint it has hit while ensuring that other threads running
1435    concurrently will hit the breakpoint as they should.
1436 
1437    The traditional way to step a thread T off a breakpoint in a
1438    multi-threaded program in all-stop mode is as follows:
1439 
1440    a0) Initially, all threads are stopped, and breakpoints are not
1441        inserted.
1442    a1) We single-step T, leaving breakpoints uninserted.
1443    a2) We insert breakpoints, and resume all threads.
1444 
1445    In non-stop debugging, however, this strategy is unsuitable: we
1446    don't want to have to stop all threads in the system in order to
1447    continue or step T past a breakpoint.  Instead, we use displaced
1448    stepping:
1449 
1450    n0) Initially, T is stopped, other threads are running, and
1451        breakpoints are inserted.
1452    n1) We copy the instruction "under" the breakpoint to a separate
1453        location, outside the main code stream, making any adjustments
1454        to the instruction, register, and memory state as directed by
1455        T's architecture.
1456    n2) We single-step T over the instruction at its new location.
1457    n3) We adjust the resulting register and memory state as directed
1458        by T's architecture.  This includes resetting T's PC to point
1459        back into the main instruction stream.
1460    n4) We resume T.
1461 
1462    This approach depends on the following gdbarch methods:
1463 
1464    - gdbarch_max_insn_length and gdbarch_displaced_step_location
1465      indicate where to copy the instruction, and how much space must
1466      be reserved there.  We use these in step n1.
1467 
1468    - gdbarch_displaced_step_copy_insn copies a instruction to a new
1469      address, and makes any necessary adjustments to the instruction,
1470      register contents, and memory.  We use this in step n1.
1471 
1472    - gdbarch_displaced_step_fixup adjusts registers and memory after
1473      we have successfully single-stepped the instruction, to yield the
1474      same effect the instruction would have had if we had executed it
1475      at its original address.  We use this in step n3.
1476 
1477    The gdbarch_displaced_step_copy_insn and
1478    gdbarch_displaced_step_fixup functions must be written so that
1479    copying an instruction with gdbarch_displaced_step_copy_insn,
1480    single-stepping across the copied instruction, and then applying
1481    gdbarch_displaced_insn_fixup should have the same effects on the
1482    thread's memory and registers as stepping the instruction in place
1483    would have.  Exactly which responsibilities fall to the copy and
1484    which fall to the fixup is up to the author of those functions.
1485 
1486    See the comments in gdbarch.sh for details.
1487 
1488    Note that displaced stepping and software single-step cannot
1489    currently be used in combination, although with some care I think
1490    they could be made to.  Software single-step works by placing
1491    breakpoints on all possible subsequent instructions; if the
1492    displaced instruction is a PC-relative jump, those breakpoints
1493    could fall in very strange places --- on pages that aren't
1494    executable, or at addresses that are not proper instruction
1495    boundaries.  (We do generally let other threads run while we wait
1496    to hit the software single-step breakpoint, and they might
1497    encounter such a corrupted instruction.)  One way to work around
1498    this would be to have gdbarch_displaced_step_copy_insn fully
1499    simulate the effect of PC-relative instructions (and return NULL)
1500    on architectures that use software single-stepping.
1501 
1502    In non-stop mode, we can have independent and simultaneous step
1503    requests, so more than one thread may need to simultaneously step
1504    over a breakpoint.  The current implementation assumes there is
1505    only one scratch space per process.  In this case, we have to
1506    serialize access to the scratch space.  If thread A wants to step
1507    over a breakpoint, but we are currently waiting for some other
1508    thread to complete a displaced step, we leave thread A stopped and
1509    place it in the displaced_step_request_queue.  Whenever a displaced
1510    step finishes, we pick the next thread in the queue and start a new
1511    displaced step operation on it.  See displaced_step_prepare and
1512    displaced_step_finish for details.  */
1513 
1514 /* Return true if THREAD is doing a displaced step.  */
1515 
1516 static bool
1517 displaced_step_in_progress_thread (thread_info *thread)
1518 {
1519   gdb_assert (thread != nullptr);
1520 
1521   return thread->displaced_step_state.in_progress ();
1522 }
1523 
1524 /* Return true if INF has a thread doing a displaced step.  */
1525 
1526 static bool
1527 displaced_step_in_progress (inferior *inf)
1528 {
1529   return inf->displaced_step_state.in_progress_count > 0;
1530 }
1531 
1532 /* Return true if any thread is doing a displaced step.  */
1533 
1534 static bool
1535 displaced_step_in_progress_any_thread ()
1536 {
1537   for (inferior *inf : all_non_exited_inferiors ())
1538     {
1539       if (displaced_step_in_progress (inf))
1540 	return true;
1541     }
1542 
1543   return false;
1544 }
1545 
1546 static void
1547 infrun_inferior_exit (struct inferior *inf)
1548 {
1549   inf->displaced_step_state.reset ();
1550   inf->thread_waiting_for_vfork_done = nullptr;
1551 }
1552 
1553 static void
1554 infrun_inferior_execd (inferior *inf)
1555 {
1556   /* If some threads where was doing a displaced step in this inferior at the
1557      moment of the exec, they no longer exist.  Even if the exec'ing thread
1558      doing a displaced step, we don't want to to any fixup nor restore displaced
1559      stepping buffer bytes.  */
1560   inf->displaced_step_state.reset ();
1561 
1562   for (thread_info *thread : inf->threads ())
1563     thread->displaced_step_state.reset ();
1564 
1565   /* Since an in-line step is done with everything else stopped, if there was
1566      one in progress at the time of the exec, it must have been the exec'ing
1567      thread.  */
1568   clear_step_over_info ();
1569 
1570   inf->thread_waiting_for_vfork_done = nullptr;
1571 }
1572 
1573 /* If ON, and the architecture supports it, GDB will use displaced
1574    stepping to step over breakpoints.  If OFF, or if the architecture
1575    doesn't support it, GDB will instead use the traditional
1576    hold-and-step approach.  If AUTO (which is the default), GDB will
1577    decide which technique to use to step over breakpoints depending on
1578    whether the target works in a non-stop way (see use_displaced_stepping).  */
1579 
1580 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1581 
1582 static void
1583 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1584 				 struct cmd_list_element *c,
1585 				 const char *value)
1586 {
1587   if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1588     gdb_printf (file,
1589 		_("Debugger's willingness to use displaced stepping "
1590 		  "to step over breakpoints is %s (currently %s).\n"),
1591 		value, target_is_non_stop_p () ? "on" : "off");
1592   else
1593     gdb_printf (file,
1594 		_("Debugger's willingness to use displaced stepping "
1595 		  "to step over breakpoints is %s.\n"), value);
1596 }
1597 
1598 /* Return true if the gdbarch implements the required methods to use
1599    displaced stepping.  */
1600 
1601 static bool
1602 gdbarch_supports_displaced_stepping (gdbarch *arch)
1603 {
1604   /* Only check for the presence of `prepare`.  The gdbarch verification ensures
1605      that if `prepare` is provided, so is `finish`.  */
1606   return gdbarch_displaced_step_prepare_p (arch);
1607 }
1608 
1609 /* Return non-zero if displaced stepping can/should be used to step
1610    over breakpoints of thread TP.  */
1611 
1612 static bool
1613 use_displaced_stepping (thread_info *tp)
1614 {
1615   /* If the user disabled it explicitly, don't use displaced stepping.  */
1616   if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1617     return false;
1618 
1619   /* If "auto", only use displaced stepping if the target operates in a non-stop
1620      way.  */
1621   if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1622       && !target_is_non_stop_p ())
1623     return false;
1624 
1625   gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1626 
1627   /* If the architecture doesn't implement displaced stepping, don't use
1628      it.  */
1629   if (!gdbarch_supports_displaced_stepping (gdbarch))
1630     return false;
1631 
1632   /* If recording, don't use displaced stepping.  */
1633   if (find_record_target () != nullptr)
1634     return false;
1635 
1636   /* If displaced stepping failed before for this inferior, don't bother trying
1637      again.  */
1638   if (tp->inf->displaced_step_state.failed_before)
1639     return false;
1640 
1641   return true;
1642 }
1643 
1644 /* Simple function wrapper around displaced_step_thread_state::reset.  */
1645 
1646 static void
1647 displaced_step_reset (displaced_step_thread_state *displaced)
1648 {
1649   displaced->reset ();
1650 }
1651 
1652 /* A cleanup that wraps displaced_step_reset.  We use this instead of, say,
1653    SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()".  */
1654 
1655 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1656 
1657 /* See infrun.h.  */
1658 
1659 std::string
1660 displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
1661 {
1662   std::string ret;
1663 
1664   for (size_t i = 0; i < len; i++)
1665     {
1666       if (i == 0)
1667 	ret += string_printf ("%02x", buf[i]);
1668       else
1669 	ret += string_printf (" %02x", buf[i]);
1670     }
1671 
1672   return ret;
1673 }
1674 
1675 /* Prepare to single-step, using displaced stepping.
1676 
1677    Note that we cannot use displaced stepping when we have a signal to
1678    deliver.  If we have a signal to deliver and an instruction to step
1679    over, then after the step, there will be no indication from the
1680    target whether the thread entered a signal handler or ignored the
1681    signal and stepped over the instruction successfully --- both cases
1682    result in a simple SIGTRAP.  In the first case we mustn't do a
1683    fixup, and in the second case we must --- but we can't tell which.
1684    Comments in the code for 'random signals' in handle_inferior_event
1685    explain how we handle this case instead.
1686 
1687    Returns DISPLACED_STEP_PREPARE_STATUS_OK if preparing was successful -- this
1688    thread is going to be stepped now; DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE
1689    if displaced stepping this thread got queued; or
1690    DISPLACED_STEP_PREPARE_STATUS_CANT if this instruction can't be displaced
1691    stepped.  */
1692 
1693 static displaced_step_prepare_status
1694 displaced_step_prepare_throw (thread_info *tp)
1695 {
1696   regcache *regcache = get_thread_regcache (tp);
1697   struct gdbarch *gdbarch = regcache->arch ();
1698   displaced_step_thread_state &disp_step_thread_state
1699     = tp->displaced_step_state;
1700 
1701   /* We should never reach this function if the architecture does not
1702      support displaced stepping.  */
1703   gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1704 
1705   /* Nor if the thread isn't meant to step over a breakpoint.  */
1706   gdb_assert (tp->control.trap_expected);
1707 
1708   /* Disable range stepping while executing in the scratch pad.  We
1709      want a single-step even if executing the displaced instruction in
1710      the scratch buffer lands within the stepping range (e.g., a
1711      jump/branch).  */
1712   tp->control.may_range_step = 0;
1713 
1714   /* We are about to start a displaced step for this thread.  If one is already
1715      in progress, something's wrong.  */
1716   gdb_assert (!disp_step_thread_state.in_progress ());
1717 
1718   if (tp->inf->displaced_step_state.unavailable)
1719     {
1720       /* The gdbarch tells us it's not worth asking to try a prepare because
1721 	 it is likely that it will return unavailable, so don't bother asking.  */
1722 
1723       displaced_debug_printf ("deferring step of %s",
1724 			      tp->ptid.to_string ().c_str ());
1725 
1726       global_thread_step_over_chain_enqueue (tp);
1727       return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1728     }
1729 
1730   displaced_debug_printf ("displaced-stepping %s now",
1731 			  tp->ptid.to_string ().c_str ());
1732 
1733   scoped_restore_current_thread restore_thread;
1734 
1735   switch_to_thread (tp);
1736 
1737   CORE_ADDR original_pc = regcache_read_pc (regcache);
1738   CORE_ADDR displaced_pc;
1739 
1740   displaced_step_prepare_status status
1741     = gdbarch_displaced_step_prepare (gdbarch, tp, displaced_pc);
1742 
1743   if (status == DISPLACED_STEP_PREPARE_STATUS_CANT)
1744     {
1745       displaced_debug_printf ("failed to prepare (%s)",
1746 			      tp->ptid.to_string ().c_str ());
1747 
1748       return DISPLACED_STEP_PREPARE_STATUS_CANT;
1749     }
1750   else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
1751     {
1752       /* Not enough displaced stepping resources available, defer this
1753 	 request by placing it the queue.  */
1754 
1755       displaced_debug_printf ("not enough resources available, "
1756 			      "deferring step of %s",
1757 			      tp->ptid.to_string ().c_str ());
1758 
1759       global_thread_step_over_chain_enqueue (tp);
1760 
1761       return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1762     }
1763 
1764   gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1765 
1766   /* Save the information we need to fix things up if the step
1767      succeeds.  */
1768   disp_step_thread_state.set (gdbarch);
1769 
1770   tp->inf->displaced_step_state.in_progress_count++;
1771 
1772   displaced_debug_printf ("prepared successfully thread=%s, "
1773 			  "original_pc=%s, displaced_pc=%s",
1774 			  tp->ptid.to_string ().c_str (),
1775 			  paddress (gdbarch, original_pc),
1776 			  paddress (gdbarch, displaced_pc));
1777 
1778   return DISPLACED_STEP_PREPARE_STATUS_OK;
1779 }
1780 
1781 /* Wrapper for displaced_step_prepare_throw that disabled further
1782    attempts at displaced stepping if we get a memory error.  */
1783 
1784 static displaced_step_prepare_status
1785 displaced_step_prepare (thread_info *thread)
1786 {
1787   displaced_step_prepare_status status
1788     = DISPLACED_STEP_PREPARE_STATUS_CANT;
1789 
1790   try
1791     {
1792       status = displaced_step_prepare_throw (thread);
1793     }
1794   catch (const gdb_exception_error &ex)
1795     {
1796       if (ex.error != MEMORY_ERROR
1797 	  && ex.error != NOT_SUPPORTED_ERROR)
1798 	throw;
1799 
1800       infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1801 			   ex.what ());
1802 
1803       /* Be verbose if "set displaced-stepping" is "on", silent if
1804 	 "auto".  */
1805       if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1806 	{
1807 	  warning (_("disabling displaced stepping: %s"),
1808 		   ex.what ());
1809 	}
1810 
1811       /* Disable further displaced stepping attempts.  */
1812       thread->inf->displaced_step_state.failed_before = 1;
1813     }
1814 
1815   return status;
1816 }
1817 
1818 /* If we displaced stepped an instruction successfully, adjust registers and
1819    memory to yield the same effect the instruction would have had if we had
1820    executed it at its original address, and return
1821    DISPLACED_STEP_FINISH_STATUS_OK.  If the instruction didn't complete,
1822    relocate the PC and return DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED.
1823 
1824    If the thread wasn't displaced stepping, return
1825    DISPLACED_STEP_FINISH_STATUS_OK as well.  */
1826 
1827 static displaced_step_finish_status
1828 displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
1829 {
1830   displaced_step_thread_state *displaced = &event_thread->displaced_step_state;
1831 
1832   /* Was this thread performing a displaced step?  */
1833   if (!displaced->in_progress ())
1834     return DISPLACED_STEP_FINISH_STATUS_OK;
1835 
1836   gdb_assert (event_thread->inf->displaced_step_state.in_progress_count > 0);
1837   event_thread->inf->displaced_step_state.in_progress_count--;
1838 
1839   /* Fixup may need to read memory/registers.  Switch to the thread
1840      that we're fixing up.  Also, target_stopped_by_watchpoint checks
1841      the current thread, and displaced_step_restore performs ptid-dependent
1842      memory accesses using current_inferior().  */
1843   switch_to_thread (event_thread);
1844 
1845   displaced_step_reset_cleanup cleanup (displaced);
1846 
1847   /* Do the fixup, and release the resources acquired to do the displaced
1848      step. */
1849   return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1850 					event_thread, signal);
1851 }
1852 
1853 /* Data to be passed around while handling an event.  This data is
1854    discarded between events.  */
1855 struct execution_control_state
1856 {
1857   explicit execution_control_state (thread_info *thr = nullptr)
1858     : ptid (thr == nullptr ? null_ptid : thr->ptid),
1859       event_thread (thr)
1860   {
1861   }
1862 
1863   process_stratum_target *target = nullptr;
1864   ptid_t ptid;
1865   /* The thread that got the event, if this was a thread event; NULL
1866      otherwise.  */
1867   struct thread_info *event_thread;
1868 
1869   struct target_waitstatus ws;
1870   int stop_func_filled_in = 0;
1871   CORE_ADDR stop_func_start = 0;
1872   CORE_ADDR stop_func_end = 0;
1873   const char *stop_func_name = nullptr;
1874   int wait_some_more = 0;
1875 
1876   /* True if the event thread hit the single-step breakpoint of
1877      another thread.  Thus the event doesn't cause a stop, the thread
1878      needs to be single-stepped past the single-step breakpoint before
1879      we can switch back to the original stepping thread.  */
1880   int hit_singlestep_breakpoint = 0;
1881 };
1882 
1883 static void keep_going_pass_signal (struct execution_control_state *ecs);
1884 static void prepare_to_wait (struct execution_control_state *ecs);
1885 static bool keep_going_stepped_thread (struct thread_info *tp);
1886 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1887 
1888 /* Are there any pending step-over requests?  If so, run all we can
1889    now and return true.  Otherwise, return false.  */
1890 
1891 static bool
1892 start_step_over (void)
1893 {
1894   INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1895 
1896   /* Don't start a new step-over if we already have an in-line
1897      step-over operation ongoing.  */
1898   if (step_over_info_valid_p ())
1899     return false;
1900 
1901   /* Steal the global thread step over chain.  As we try to initiate displaced
1902      steps, threads will be enqueued in the global chain if no buffers are
1903      available.  If we iterated on the global chain directly, we might iterate
1904      indefinitely.  */
1905   thread_step_over_list threads_to_step
1906     = std::move (global_thread_step_over_list);
1907 
1908   infrun_debug_printf ("stealing global queue of threads to step, length = %d",
1909 		       thread_step_over_chain_length (threads_to_step));
1910 
1911   bool started = false;
1912 
1913   /* On scope exit (whatever the reason, return or exception), if there are
1914      threads left in the THREADS_TO_STEP chain, put back these threads in the
1915      global list.  */
1916   SCOPE_EXIT
1917     {
1918       if (threads_to_step.empty ())
1919 	infrun_debug_printf ("step-over queue now empty");
1920       else
1921 	{
1922 	  infrun_debug_printf ("putting back %d threads to step in global queue",
1923 			       thread_step_over_chain_length (threads_to_step));
1924 
1925 	  global_thread_step_over_chain_enqueue_chain
1926 	    (std::move (threads_to_step));
1927 	}
1928     };
1929 
1930   thread_step_over_list_safe_range range
1931     = make_thread_step_over_list_safe_range (threads_to_step);
1932 
1933   for (thread_info *tp : range)
1934     {
1935       step_over_what step_what;
1936       int must_be_in_line;
1937 
1938       gdb_assert (!tp->stop_requested);
1939 
1940       if (tp->inf->displaced_step_state.unavailable)
1941 	{
1942 	  /* The arch told us to not even try preparing another displaced step
1943 	     for this inferior.  Just leave the thread in THREADS_TO_STEP, it
1944 	     will get moved to the global chain on scope exit.  */
1945 	  continue;
1946 	}
1947 
1948       if (tp->inf->thread_waiting_for_vfork_done != nullptr)
1949 	{
1950 	  /* When we stop all threads, handling a vfork, any thread in the step
1951 	     over chain remains there.  A user could also try to continue a
1952 	     thread stopped at a breakpoint while another thread is waiting for
1953 	     a vfork-done event.  In any case, we don't want to start a step
1954 	     over right now.  */
1955 	  continue;
1956 	}
1957 
1958       /* Remove thread from the THREADS_TO_STEP chain.  If anything goes wrong
1959 	 while we try to prepare the displaced step, we don't add it back to
1960 	 the global step over chain.  This is to avoid a thread staying in the
1961 	 step over chain indefinitely if something goes wrong when resuming it
1962 	 If the error is intermittent and it still needs a step over, it will
1963 	 get enqueued again when we try to resume it normally.  */
1964       threads_to_step.erase (threads_to_step.iterator_to (*tp));
1965 
1966       step_what = thread_still_needs_step_over (tp);
1967       must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1968 			 || ((step_what & STEP_OVER_BREAKPOINT)
1969 			     && !use_displaced_stepping (tp)));
1970 
1971       /* We currently stop all threads of all processes to step-over
1972 	 in-line.  If we need to start a new in-line step-over, let
1973 	 any pending displaced steps finish first.  */
1974       if (must_be_in_line && displaced_step_in_progress_any_thread ())
1975 	{
1976 	  global_thread_step_over_chain_enqueue (tp);
1977 	  continue;
1978 	}
1979 
1980       if (tp->control.trap_expected
1981 	  || tp->resumed ()
1982 	  || tp->executing ())
1983 	{
1984 	  internal_error ("[%s] has inconsistent state: "
1985 			  "trap_expected=%d, resumed=%d, executing=%d\n",
1986 			  tp->ptid.to_string ().c_str (),
1987 			  tp->control.trap_expected,
1988 			  tp->resumed (),
1989 			  tp->executing ());
1990 	}
1991 
1992       infrun_debug_printf ("resuming [%s] for step-over",
1993 			   tp->ptid.to_string ().c_str ());
1994 
1995       /* keep_going_pass_signal skips the step-over if the breakpoint
1996 	 is no longer inserted.  In all-stop, we want to keep looking
1997 	 for a thread that needs a step-over instead of resuming TP,
1998 	 because we wouldn't be able to resume anything else until the
1999 	 target stops again.  In non-stop, the resume always resumes
2000 	 only TP, so it's OK to let the thread resume freely.  */
2001       if (!target_is_non_stop_p () && !step_what)
2002 	continue;
2003 
2004       switch_to_thread (tp);
2005       execution_control_state ecs (tp);
2006       keep_going_pass_signal (&ecs);
2007 
2008       if (!ecs.wait_some_more)
2009 	error (_("Command aborted."));
2010 
2011       /* If the thread's step over could not be initiated because no buffers
2012 	 were available, it was re-added to the global step over chain.  */
2013       if (tp->resumed  ())
2014 	{
2015 	  infrun_debug_printf ("[%s] was resumed.",
2016 			       tp->ptid.to_string ().c_str ());
2017 	  gdb_assert (!thread_is_in_step_over_chain (tp));
2018 	}
2019       else
2020 	{
2021 	  infrun_debug_printf ("[%s] was NOT resumed.",
2022 			       tp->ptid.to_string ().c_str ());
2023 	  gdb_assert (thread_is_in_step_over_chain (tp));
2024 	}
2025 
2026       /* If we started a new in-line step-over, we're done.  */
2027       if (step_over_info_valid_p ())
2028 	{
2029 	  gdb_assert (tp->control.trap_expected);
2030 	  started = true;
2031 	  break;
2032 	}
2033 
2034       if (!target_is_non_stop_p ())
2035 	{
2036 	  /* On all-stop, shouldn't have resumed unless we needed a
2037 	     step over.  */
2038 	  gdb_assert (tp->control.trap_expected
2039 		      || tp->step_after_step_resume_breakpoint);
2040 
2041 	  /* With remote targets (at least), in all-stop, we can't
2042 	     issue any further remote commands until the program stops
2043 	     again.  */
2044 	  started = true;
2045 	  break;
2046 	}
2047 
2048       /* Either the thread no longer needed a step-over, or a new
2049 	 displaced stepping sequence started.  Even in the latter
2050 	 case, continue looking.  Maybe we can also start another
2051 	 displaced step on a thread of other process. */
2052     }
2053 
2054   return started;
2055 }
2056 
2057 /* Update global variables holding ptids to hold NEW_PTID if they were
2058    holding OLD_PTID.  */
2059 static void
2060 infrun_thread_ptid_changed (process_stratum_target *target,
2061 			    ptid_t old_ptid, ptid_t new_ptid)
2062 {
2063   if (inferior_ptid == old_ptid
2064       && current_inferior ()->process_target () == target)
2065     inferior_ptid = new_ptid;
2066 }
2067 
2068 
2069 
2070 static const char schedlock_off[] = "off";
2071 static const char schedlock_on[] = "on";
2072 static const char schedlock_step[] = "step";
2073 static const char schedlock_replay[] = "replay";
2074 static const char *const scheduler_enums[] = {
2075   schedlock_off,
2076   schedlock_on,
2077   schedlock_step,
2078   schedlock_replay,
2079   nullptr
2080 };
2081 static const char *scheduler_mode = schedlock_replay;
2082 static void
2083 show_scheduler_mode (struct ui_file *file, int from_tty,
2084 		     struct cmd_list_element *c, const char *value)
2085 {
2086   gdb_printf (file,
2087 	      _("Mode for locking scheduler "
2088 		"during execution is \"%s\".\n"),
2089 	      value);
2090 }
2091 
2092 static void
2093 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2094 {
2095   if (!target_can_lock_scheduler ())
2096     {
2097       scheduler_mode = schedlock_off;
2098       error (_("Target '%s' cannot support this command."),
2099 	     target_shortname ());
2100     }
2101 }
2102 
2103 /* True if execution commands resume all threads of all processes by
2104    default; otherwise, resume only threads of the current inferior
2105    process.  */
2106 bool sched_multi = false;
2107 
2108 /* Try to setup for software single stepping.  Return true if target_resume()
2109    should use hardware single step.
2110 
2111    GDBARCH the current gdbarch.  */
2112 
2113 static bool
2114 maybe_software_singlestep (struct gdbarch *gdbarch)
2115 {
2116   bool hw_step = true;
2117 
2118   if (execution_direction == EXEC_FORWARD
2119       && gdbarch_software_single_step_p (gdbarch))
2120     hw_step = !insert_single_step_breakpoints (gdbarch);
2121 
2122   return hw_step;
2123 }
2124 
2125 /* See infrun.h.  */
2126 
2127 ptid_t
2128 user_visible_resume_ptid (int step)
2129 {
2130   ptid_t resume_ptid;
2131 
2132   if (non_stop)
2133     {
2134       /* With non-stop mode on, threads are always handled
2135 	 individually.  */
2136       resume_ptid = inferior_ptid;
2137     }
2138   else if ((scheduler_mode == schedlock_on)
2139 	   || (scheduler_mode == schedlock_step && step))
2140     {
2141       /* User-settable 'scheduler' mode requires solo thread
2142 	 resume.  */
2143       resume_ptid = inferior_ptid;
2144     }
2145   else if ((scheduler_mode == schedlock_replay)
2146 	   && target_record_will_replay (minus_one_ptid, execution_direction))
2147     {
2148       /* User-settable 'scheduler' mode requires solo thread resume in replay
2149 	 mode.  */
2150       resume_ptid = inferior_ptid;
2151     }
2152   else if (!sched_multi && target_supports_multi_process ())
2153     {
2154       /* Resume all threads of the current process (and none of other
2155 	 processes).  */
2156       resume_ptid = ptid_t (inferior_ptid.pid ());
2157     }
2158   else
2159     {
2160       /* Resume all threads of all processes.  */
2161       resume_ptid = RESUME_ALL;
2162     }
2163 
2164   return resume_ptid;
2165 }
2166 
2167 /* See infrun.h.  */
2168 
2169 process_stratum_target *
2170 user_visible_resume_target (ptid_t resume_ptid)
2171 {
2172   return (resume_ptid == minus_one_ptid && sched_multi
2173 	  ? nullptr
2174 	  : current_inferior ()->process_target ());
2175 }
2176 
2177 /* Return a ptid representing the set of threads that we will resume,
2178    in the perspective of the target, assuming run control handling
2179    does not require leaving some threads stopped (e.g., stepping past
2180    breakpoint).  USER_STEP indicates whether we're about to start the
2181    target for a stepping command.  */
2182 
2183 static ptid_t
2184 internal_resume_ptid (int user_step)
2185 {
2186   /* In non-stop, we always control threads individually.  Note that
2187      the target may always work in non-stop mode even with "set
2188      non-stop off", in which case user_visible_resume_ptid could
2189      return a wildcard ptid.  */
2190   if (target_is_non_stop_p ())
2191     return inferior_ptid;
2192 
2193   /* The rest of the function assumes non-stop==off and
2194      target-non-stop==off.
2195 
2196      If a thread is waiting for a vfork-done event, it means breakpoints are out
2197      for this inferior (well, program space in fact).  We don't want to resume
2198      any thread other than the one waiting for vfork done, otherwise these other
2199      threads could miss breakpoints.  So if a thread in the resumption set is
2200      waiting for a vfork-done event, resume only that thread.
2201 
2202      The resumption set width depends on whether schedule-multiple is on or off.
2203 
2204      Note that if the target_resume interface was more flexible, we could be
2205      smarter here when schedule-multiple is on.  For example, imagine 3
2206      inferiors with 2 threads each (1.1, 1.2, 2.1, 2.2, 3.1 and 3.2).  Threads
2207      2.1 and 3.2 are both waiting for a vfork-done event.  Then we could ask the
2208      target(s) to resume:
2209 
2210       - All threads of inferior 1
2211       - Thread 2.1
2212       - Thread 3.2
2213 
2214      Since we don't have that flexibility (we can only pass one ptid), just
2215      resume the first thread waiting for a vfork-done event we find (e.g. thread
2216      2.1).  */
2217   if (sched_multi)
2218     {
2219       for (inferior *inf : all_non_exited_inferiors ())
2220 	if (inf->thread_waiting_for_vfork_done != nullptr)
2221 	  return inf->thread_waiting_for_vfork_done->ptid;
2222     }
2223   else if (current_inferior ()->thread_waiting_for_vfork_done != nullptr)
2224     return current_inferior ()->thread_waiting_for_vfork_done->ptid;
2225 
2226   return user_visible_resume_ptid (user_step);
2227 }
2228 
2229 /* Wrapper for target_resume, that handles infrun-specific
2230    bookkeeping.  */
2231 
2232 static void
2233 do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
2234 {
2235   struct thread_info *tp = inferior_thread ();
2236 
2237   gdb_assert (!tp->stop_requested);
2238 
2239   /* Install inferior's terminal modes.  */
2240   target_terminal::inferior ();
2241 
2242   /* Avoid confusing the next resume, if the next stop/resume
2243      happens to apply to another thread.  */
2244   tp->set_stop_signal (GDB_SIGNAL_0);
2245 
2246   /* Advise target which signals may be handled silently.
2247 
2248      If we have removed breakpoints because we are stepping over one
2249      in-line (in any thread), we need to receive all signals to avoid
2250      accidentally skipping a breakpoint during execution of a signal
2251      handler.
2252 
2253      Likewise if we're displaced stepping, otherwise a trap for a
2254      breakpoint in a signal handler might be confused with the
2255      displaced step finishing.  We don't make the displaced_step_finish
2256      step distinguish the cases instead, because:
2257 
2258      - a backtrace while stopped in the signal handler would show the
2259        scratch pad as frame older than the signal handler, instead of
2260        the real mainline code.
2261 
2262      - when the thread is later resumed, the signal handler would
2263        return to the scratch pad area, which would no longer be
2264        valid.  */
2265   if (step_over_info_valid_p ()
2266       || displaced_step_in_progress (tp->inf))
2267     target_pass_signals ({});
2268   else
2269     target_pass_signals (signal_pass);
2270 
2271   infrun_debug_printf ("resume_ptid=%s, step=%d, sig=%s",
2272 		       resume_ptid.to_string ().c_str (),
2273 		       step, gdb_signal_to_symbol_string (sig));
2274 
2275   target_resume (resume_ptid, step, sig);
2276 }
2277 
2278 /* Resume the inferior.  SIG is the signal to give the inferior
2279    (GDB_SIGNAL_0 for none).  Note: don't call this directly; instead
2280    call 'resume', which handles exceptions.  */
2281 
2282 static void
2283 resume_1 (enum gdb_signal sig)
2284 {
2285   struct regcache *regcache = get_current_regcache ();
2286   struct gdbarch *gdbarch = regcache->arch ();
2287   struct thread_info *tp = inferior_thread ();
2288   const address_space *aspace = regcache->aspace ();
2289   ptid_t resume_ptid;
2290   /* This represents the user's step vs continue request.  When
2291      deciding whether "set scheduler-locking step" applies, it's the
2292      user's intention that counts.  */
2293   const int user_step = tp->control.stepping_command;
2294   /* This represents what we'll actually request the target to do.
2295      This can decay from a step to a continue, if e.g., we need to
2296      implement single-stepping with breakpoints (software
2297      single-step).  */
2298   bool step;
2299 
2300   gdb_assert (!tp->stop_requested);
2301   gdb_assert (!thread_is_in_step_over_chain (tp));
2302 
2303   if (tp->has_pending_waitstatus ())
2304     {
2305       infrun_debug_printf
2306 	("thread %s has pending wait "
2307 	 "status %s (currently_stepping=%d).",
2308 	 tp->ptid.to_string ().c_str (),
2309 	 tp->pending_waitstatus ().to_string ().c_str (),
2310 	 currently_stepping (tp));
2311 
2312       tp->inf->process_target ()->threads_executing = true;
2313       tp->set_resumed (true);
2314 
2315       /* FIXME: What should we do if we are supposed to resume this
2316 	 thread with a signal?  Maybe we should maintain a queue of
2317 	 pending signals to deliver.  */
2318       if (sig != GDB_SIGNAL_0)
2319 	{
2320 	  warning (_("Couldn't deliver signal %s to %s."),
2321 		   gdb_signal_to_name (sig),
2322 		   tp->ptid.to_string ().c_str ());
2323 	}
2324 
2325       tp->set_stop_signal (GDB_SIGNAL_0);
2326 
2327       if (target_can_async_p ())
2328 	{
2329 	  target_async (true);
2330 	  /* Tell the event loop we have an event to process. */
2331 	  mark_async_event_handler (infrun_async_inferior_event_token);
2332 	}
2333       return;
2334     }
2335 
2336   tp->stepped_breakpoint = 0;
2337 
2338   /* Depends on stepped_breakpoint.  */
2339   step = currently_stepping (tp);
2340 
2341   if (current_inferior ()->thread_waiting_for_vfork_done != nullptr)
2342     {
2343       /* Don't try to single-step a vfork parent that is waiting for
2344 	 the child to get out of the shared memory region (by exec'ing
2345 	 or exiting).  This is particularly important on software
2346 	 single-step archs, as the child process would trip on the
2347 	 software single step breakpoint inserted for the parent
2348 	 process.  Since the parent will not actually execute any
2349 	 instruction until the child is out of the shared region (such
2350 	 are vfork's semantics), it is safe to simply continue it.
2351 	 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2352 	 the parent, and tell it to `keep_going', which automatically
2353 	 re-sets it stepping.  */
2354       infrun_debug_printf ("resume : clear step");
2355       step = false;
2356     }
2357 
2358   CORE_ADDR pc = regcache_read_pc (regcache);
2359 
2360   infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2361 		       "current thread [%s] at %s",
2362 		       step, gdb_signal_to_symbol_string (sig),
2363 		       tp->control.trap_expected,
2364 		       inferior_ptid.to_string ().c_str (),
2365 		       paddress (gdbarch, pc));
2366 
2367   /* Normally, by the time we reach `resume', the breakpoints are either
2368      removed or inserted, as appropriate.  The exception is if we're sitting
2369      at a permanent breakpoint; we need to step over it, but permanent
2370      breakpoints can't be removed.  So we have to test for it here.  */
2371   if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2372     {
2373       if (sig != GDB_SIGNAL_0)
2374 	{
2375 	  /* We have a signal to pass to the inferior.  The resume
2376 	     may, or may not take us to the signal handler.  If this
2377 	     is a step, we'll need to stop in the signal handler, if
2378 	     there's one, (if the target supports stepping into
2379 	     handlers), or in the next mainline instruction, if
2380 	     there's no handler.  If this is a continue, we need to be
2381 	     sure to run the handler with all breakpoints inserted.
2382 	     In all cases, set a breakpoint at the current address
2383 	     (where the handler returns to), and once that breakpoint
2384 	     is hit, resume skipping the permanent breakpoint.  If
2385 	     that breakpoint isn't hit, then we've stepped into the
2386 	     signal handler (or hit some other event).  We'll delete
2387 	     the step-resume breakpoint then.  */
2388 
2389 	  infrun_debug_printf ("resume: skipping permanent breakpoint, "
2390 			       "deliver signal first");
2391 
2392 	  clear_step_over_info ();
2393 	  tp->control.trap_expected = 0;
2394 
2395 	  if (tp->control.step_resume_breakpoint == nullptr)
2396 	    {
2397 	      /* Set a "high-priority" step-resume, as we don't want
2398 		 user breakpoints at PC to trigger (again) when this
2399 		 hits.  */
2400 	      insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2401 	      gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2402 
2403 	      tp->step_after_step_resume_breakpoint = step;
2404 	    }
2405 
2406 	  insert_breakpoints ();
2407 	}
2408       else
2409 	{
2410 	  /* There's no signal to pass, we can go ahead and skip the
2411 	     permanent breakpoint manually.  */
2412 	  infrun_debug_printf ("skipping permanent breakpoint");
2413 	  gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2414 	  /* Update pc to reflect the new address from which we will
2415 	     execute instructions.  */
2416 	  pc = regcache_read_pc (regcache);
2417 
2418 	  if (step)
2419 	    {
2420 	      /* We've already advanced the PC, so the stepping part
2421 		 is done.  Now we need to arrange for a trap to be
2422 		 reported to handle_inferior_event.  Set a breakpoint
2423 		 at the current PC, and run to it.  Don't update
2424 		 prev_pc, because if we end in
2425 		 switch_back_to_stepped_thread, we want the "expected
2426 		 thread advanced also" branch to be taken.  IOW, we
2427 		 don't want this thread to step further from PC
2428 		 (overstep).  */
2429 	      gdb_assert (!step_over_info_valid_p ());
2430 	      insert_single_step_breakpoint (gdbarch, aspace, pc);
2431 	      insert_breakpoints ();
2432 
2433 	      resume_ptid = internal_resume_ptid (user_step);
2434 	      do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2435 	      tp->set_resumed (true);
2436 	      return;
2437 	    }
2438 	}
2439     }
2440 
2441   /* If we have a breakpoint to step over, make sure to do a single
2442      step only.  Same if we have software watchpoints.  */
2443   if (tp->control.trap_expected || bpstat_should_step ())
2444     tp->control.may_range_step = 0;
2445 
2446   /* If displaced stepping is enabled, step over breakpoints by executing a
2447      copy of the instruction at a different address.
2448 
2449      We can't use displaced stepping when we have a signal to deliver;
2450      the comments for displaced_step_prepare explain why.  The
2451      comments in the handle_inferior event for dealing with 'random
2452      signals' explain what we do instead.
2453 
2454      We can't use displaced stepping when we are waiting for vfork_done
2455      event, displaced stepping breaks the vfork child similarly as single
2456      step software breakpoint.  */
2457   if (tp->control.trap_expected
2458       && use_displaced_stepping (tp)
2459       && !step_over_info_valid_p ()
2460       && sig == GDB_SIGNAL_0
2461       && current_inferior ()->thread_waiting_for_vfork_done == nullptr)
2462     {
2463       displaced_step_prepare_status prepare_status
2464 	= displaced_step_prepare (tp);
2465 
2466       if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
2467 	{
2468 	  infrun_debug_printf ("Got placed in step-over queue");
2469 
2470 	  tp->control.trap_expected = 0;
2471 	  return;
2472 	}
2473       else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_CANT)
2474 	{
2475 	  /* Fallback to stepping over the breakpoint in-line.  */
2476 
2477 	  if (target_is_non_stop_p ())
2478 	    stop_all_threads ("displaced stepping falling back on inline stepping");
2479 
2480 	  set_step_over_info (regcache->aspace (),
2481 			      regcache_read_pc (regcache), 0, tp->global_num);
2482 
2483 	  step = maybe_software_singlestep (gdbarch);
2484 
2485 	  insert_breakpoints ();
2486 	}
2487       else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
2488 	{
2489 	  /* Update pc to reflect the new address from which we will
2490 	     execute instructions due to displaced stepping.  */
2491 	  pc = regcache_read_pc (get_thread_regcache (tp));
2492 
2493 	  step = gdbarch_displaced_step_hw_singlestep (gdbarch);
2494 	}
2495       else
2496 	gdb_assert_not_reached ("Invalid displaced_step_prepare_status "
2497 				"value.");
2498     }
2499 
2500   /* Do we need to do it the hard way, w/temp breakpoints?  */
2501   else if (step)
2502     step = maybe_software_singlestep (gdbarch);
2503 
2504   /* Currently, our software single-step implementation leads to different
2505      results than hardware single-stepping in one situation: when stepping
2506      into delivering a signal which has an associated signal handler,
2507      hardware single-step will stop at the first instruction of the handler,
2508      while software single-step will simply skip execution of the handler.
2509 
2510      For now, this difference in behavior is accepted since there is no
2511      easy way to actually implement single-stepping into a signal handler
2512      without kernel support.
2513 
2514      However, there is one scenario where this difference leads to follow-on
2515      problems: if we're stepping off a breakpoint by removing all breakpoints
2516      and then single-stepping.  In this case, the software single-step
2517      behavior means that even if there is a *breakpoint* in the signal
2518      handler, GDB still would not stop.
2519 
2520      Fortunately, we can at least fix this particular issue.  We detect
2521      here the case where we are about to deliver a signal while software
2522      single-stepping with breakpoints removed.  In this situation, we
2523      revert the decisions to remove all breakpoints and insert single-
2524      step breakpoints, and instead we install a step-resume breakpoint
2525      at the current address, deliver the signal without stepping, and
2526      once we arrive back at the step-resume breakpoint, actually step
2527      over the breakpoint we originally wanted to step over.  */
2528   if (thread_has_single_step_breakpoints_set (tp)
2529       && sig != GDB_SIGNAL_0
2530       && step_over_info_valid_p ())
2531     {
2532       /* If we have nested signals or a pending signal is delivered
2533 	 immediately after a handler returns, might already have
2534 	 a step-resume breakpoint set on the earlier handler.  We cannot
2535 	 set another step-resume breakpoint; just continue on until the
2536 	 original breakpoint is hit.  */
2537       if (tp->control.step_resume_breakpoint == nullptr)
2538 	{
2539 	  insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2540 	  tp->step_after_step_resume_breakpoint = 1;
2541 	}
2542 
2543       delete_single_step_breakpoints (tp);
2544 
2545       clear_step_over_info ();
2546       tp->control.trap_expected = 0;
2547 
2548       insert_breakpoints ();
2549     }
2550 
2551   /* If STEP is set, it's a request to use hardware stepping
2552      facilities.  But in that case, we should never
2553      use singlestep breakpoint.  */
2554   gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2555 
2556   /* Decide the set of threads to ask the target to resume.  */
2557   if (tp->control.trap_expected)
2558     {
2559       /* We're allowing a thread to run past a breakpoint it has
2560 	 hit, either by single-stepping the thread with the breakpoint
2561 	 removed, or by displaced stepping, with the breakpoint inserted.
2562 	 In the former case, we need to single-step only this thread,
2563 	 and keep others stopped, as they can miss this breakpoint if
2564 	 allowed to run.  That's not really a problem for displaced
2565 	 stepping, but, we still keep other threads stopped, in case
2566 	 another thread is also stopped for a breakpoint waiting for
2567 	 its turn in the displaced stepping queue.  */
2568       resume_ptid = inferior_ptid;
2569     }
2570   else
2571     resume_ptid = internal_resume_ptid (user_step);
2572 
2573   if (execution_direction != EXEC_REVERSE
2574       && step && breakpoint_inserted_here_p (aspace, pc))
2575     {
2576       /* There are two cases where we currently need to step a
2577 	 breakpoint instruction when we have a signal to deliver:
2578 
2579 	 - See handle_signal_stop where we handle random signals that
2580 	 could take out us out of the stepping range.  Normally, in
2581 	 that case we end up continuing (instead of stepping) over the
2582 	 signal handler with a breakpoint at PC, but there are cases
2583 	 where we should _always_ single-step, even if we have a
2584 	 step-resume breakpoint, like when a software watchpoint is
2585 	 set.  Assuming single-stepping and delivering a signal at the
2586 	 same time would takes us to the signal handler, then we could
2587 	 have removed the breakpoint at PC to step over it.  However,
2588 	 some hardware step targets (like e.g., Mac OS) can't step
2589 	 into signal handlers, and for those, we need to leave the
2590 	 breakpoint at PC inserted, as otherwise if the handler
2591 	 recurses and executes PC again, it'll miss the breakpoint.
2592 	 So we leave the breakpoint inserted anyway, but we need to
2593 	 record that we tried to step a breakpoint instruction, so
2594 	 that adjust_pc_after_break doesn't end up confused.
2595 
2596 	 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2597 	 in one thread after another thread that was stepping had been
2598 	 momentarily paused for a step-over.  When we re-resume the
2599 	 stepping thread, it may be resumed from that address with a
2600 	 breakpoint that hasn't trapped yet.  Seen with
2601 	 gdb.threads/non-stop-fair-events.exp, on targets that don't
2602 	 do displaced stepping.  */
2603 
2604       infrun_debug_printf ("resume: [%s] stepped breakpoint",
2605 			   tp->ptid.to_string ().c_str ());
2606 
2607       tp->stepped_breakpoint = 1;
2608 
2609       /* Most targets can step a breakpoint instruction, thus
2610 	 executing it normally.  But if this one cannot, just
2611 	 continue and we will hit it anyway.  */
2612       if (gdbarch_cannot_step_breakpoint (gdbarch))
2613 	step = false;
2614     }
2615 
2616   if (debug_displaced
2617       && tp->control.trap_expected
2618       && use_displaced_stepping (tp)
2619       && !step_over_info_valid_p ())
2620     {
2621       struct regcache *resume_regcache = get_thread_regcache (tp);
2622       struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2623       CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2624       gdb_byte buf[4];
2625 
2626       read_memory (actual_pc, buf, sizeof (buf));
2627       displaced_debug_printf ("run %s: %s",
2628 			      paddress (resume_gdbarch, actual_pc),
2629 			      displaced_step_dump_bytes
2630 				(buf, sizeof (buf)).c_str ());
2631     }
2632 
2633   if (tp->control.may_range_step)
2634     {
2635       /* If we're resuming a thread with the PC out of the step
2636 	 range, then we're doing some nested/finer run control
2637 	 operation, like stepping the thread out of the dynamic
2638 	 linker or the displaced stepping scratch pad.  We
2639 	 shouldn't have allowed a range step then.  */
2640       gdb_assert (pc_in_thread_step_range (pc, tp));
2641     }
2642 
2643   do_target_resume (resume_ptid, step, sig);
2644   tp->set_resumed (true);
2645 }
2646 
2647 /* Resume the inferior.  SIG is the signal to give the inferior
2648    (GDB_SIGNAL_0 for none).  This is a wrapper around 'resume_1' that
2649    rolls back state on error.  */
2650 
2651 static void
2652 resume (gdb_signal sig)
2653 {
2654   try
2655     {
2656       resume_1 (sig);
2657     }
2658   catch (const gdb_exception &ex)
2659     {
2660       /* If resuming is being aborted for any reason, delete any
2661 	 single-step breakpoint resume_1 may have created, to avoid
2662 	 confusing the following resumption, and to avoid leaving
2663 	 single-step breakpoints perturbing other threads, in case
2664 	 we're running in non-stop mode.  */
2665       if (inferior_ptid != null_ptid)
2666 	delete_single_step_breakpoints (inferior_thread ());
2667       throw;
2668     }
2669 }
2670 
2671 
2672 /* Proceeding.  */
2673 
2674 /* See infrun.h.  */
2675 
2676 /* Counter that tracks number of user visible stops.  This can be used
2677    to tell whether a command has proceeded the inferior past the
2678    current location.  This allows e.g., inferior function calls in
2679    breakpoint commands to not interrupt the command list.  When the
2680    call finishes successfully, the inferior is standing at the same
2681    breakpoint as if nothing happened (and so we don't call
2682    normal_stop).  */
2683 static ULONGEST current_stop_id;
2684 
2685 /* See infrun.h.  */
2686 
2687 ULONGEST
2688 get_stop_id (void)
2689 {
2690   return current_stop_id;
2691 }
2692 
2693 /* Called when we report a user visible stop.  */
2694 
2695 static void
2696 new_stop_id (void)
2697 {
2698   current_stop_id++;
2699 }
2700 
2701 /* Clear out all variables saying what to do when inferior is continued.
2702    First do this, then set the ones you want, then call `proceed'.  */
2703 
2704 static void
2705 clear_proceed_status_thread (struct thread_info *tp)
2706 {
2707   infrun_debug_printf ("%s", tp->ptid.to_string ().c_str ());
2708 
2709   /* If we're starting a new sequence, then the previous finished
2710      single-step is no longer relevant.  */
2711   if (tp->has_pending_waitstatus ())
2712     {
2713       if (tp->stop_reason () == TARGET_STOPPED_BY_SINGLE_STEP)
2714 	{
2715 	  infrun_debug_printf ("pending event of %s was a finished step. "
2716 			       "Discarding.",
2717 			       tp->ptid.to_string ().c_str ());
2718 
2719 	  tp->clear_pending_waitstatus ();
2720 	  tp->set_stop_reason (TARGET_STOPPED_BY_NO_REASON);
2721 	}
2722       else
2723 	{
2724 	  infrun_debug_printf
2725 	    ("thread %s has pending wait status %s (currently_stepping=%d).",
2726 	     tp->ptid.to_string ().c_str (),
2727 	     tp->pending_waitstatus ().to_string ().c_str (),
2728 	     currently_stepping (tp));
2729 	}
2730     }
2731 
2732   /* If this signal should not be seen by program, give it zero.
2733      Used for debugging signals.  */
2734   if (!signal_pass_state (tp->stop_signal ()))
2735     tp->set_stop_signal (GDB_SIGNAL_0);
2736 
2737   tp->release_thread_fsm ();
2738 
2739   tp->control.trap_expected = 0;
2740   tp->control.step_range_start = 0;
2741   tp->control.step_range_end = 0;
2742   tp->control.may_range_step = 0;
2743   tp->control.step_frame_id = null_frame_id;
2744   tp->control.step_stack_frame_id = null_frame_id;
2745   tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2746   tp->control.step_start_function = nullptr;
2747   tp->stop_requested = 0;
2748 
2749   tp->control.stop_step = 0;
2750 
2751   tp->control.proceed_to_finish = 0;
2752 
2753   tp->control.stepping_command = 0;
2754 
2755   /* Discard any remaining commands or status from previous stop.  */
2756   bpstat_clear (&tp->control.stop_bpstat);
2757 }
2758 
2759 void
2760 clear_proceed_status (int step)
2761 {
2762   /* With scheduler-locking replay, stop replaying other threads if we're
2763      not replaying the user-visible resume ptid.
2764 
2765      This is a convenience feature to not require the user to explicitly
2766      stop replaying the other threads.  We're assuming that the user's
2767      intent is to resume tracing the recorded process.  */
2768   if (!non_stop && scheduler_mode == schedlock_replay
2769       && target_record_is_replaying (minus_one_ptid)
2770       && !target_record_will_replay (user_visible_resume_ptid (step),
2771 				     execution_direction))
2772     target_record_stop_replaying ();
2773 
2774   if (!non_stop && inferior_ptid != null_ptid)
2775     {
2776       ptid_t resume_ptid = user_visible_resume_ptid (step);
2777       process_stratum_target *resume_target
2778 	= user_visible_resume_target (resume_ptid);
2779 
2780       /* In all-stop mode, delete the per-thread status of all threads
2781 	 we're about to resume, implicitly and explicitly.  */
2782       for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2783 	clear_proceed_status_thread (tp);
2784     }
2785 
2786   if (inferior_ptid != null_ptid)
2787     {
2788       struct inferior *inferior;
2789 
2790       if (non_stop)
2791 	{
2792 	  /* If in non-stop mode, only delete the per-thread status of
2793 	     the current thread.  */
2794 	  clear_proceed_status_thread (inferior_thread ());
2795 	}
2796 
2797       inferior = current_inferior ();
2798       inferior->control.stop_soon = NO_STOP_QUIETLY;
2799     }
2800 
2801   gdb::observers::about_to_proceed.notify ();
2802 }
2803 
2804 /* Returns true if TP is still stopped at a breakpoint that needs
2805    stepping-over in order to make progress.  If the breakpoint is gone
2806    meanwhile, we can skip the whole step-over dance.  */
2807 
2808 static bool
2809 thread_still_needs_step_over_bp (struct thread_info *tp)
2810 {
2811   if (tp->stepping_over_breakpoint)
2812     {
2813       struct regcache *regcache = get_thread_regcache (tp);
2814 
2815       if (breakpoint_here_p (regcache->aspace (),
2816 			     regcache_read_pc (regcache))
2817 	  == ordinary_breakpoint_here)
2818 	return true;
2819 
2820       tp->stepping_over_breakpoint = 0;
2821     }
2822 
2823   return false;
2824 }
2825 
2826 /* Check whether thread TP still needs to start a step-over in order
2827    to make progress when resumed.  Returns an bitwise or of enum
2828    step_over_what bits, indicating what needs to be stepped over.  */
2829 
2830 static step_over_what
2831 thread_still_needs_step_over (struct thread_info *tp)
2832 {
2833   step_over_what what = 0;
2834 
2835   if (thread_still_needs_step_over_bp (tp))
2836     what |= STEP_OVER_BREAKPOINT;
2837 
2838   if (tp->stepping_over_watchpoint
2839       && !target_have_steppable_watchpoint ())
2840     what |= STEP_OVER_WATCHPOINT;
2841 
2842   return what;
2843 }
2844 
2845 /* Returns true if scheduler locking applies.  STEP indicates whether
2846    we're about to do a step/next-like command to a thread.  */
2847 
2848 static bool
2849 schedlock_applies (struct thread_info *tp)
2850 {
2851   return (scheduler_mode == schedlock_on
2852 	  || (scheduler_mode == schedlock_step
2853 	      && tp->control.stepping_command)
2854 	  || (scheduler_mode == schedlock_replay
2855 	      && target_record_will_replay (minus_one_ptid,
2856 					    execution_direction)));
2857 }
2858 
2859 /* Set process_stratum_target::COMMIT_RESUMED_STATE in all target
2860    stacks that have threads executing and don't have threads with
2861    pending events.  */
2862 
2863 static void
2864 maybe_set_commit_resumed_all_targets ()
2865 {
2866   scoped_restore_current_thread restore_thread;
2867 
2868   for (inferior *inf : all_non_exited_inferiors ())
2869     {
2870       process_stratum_target *proc_target = inf->process_target ();
2871 
2872       if (proc_target->commit_resumed_state)
2873 	{
2874 	  /* We already set this in a previous iteration, via another
2875 	     inferior sharing the process_stratum target.  */
2876 	  continue;
2877 	}
2878 
2879       /* If the target has no resumed threads, it would be useless to
2880 	 ask it to commit the resumed threads.  */
2881       if (!proc_target->threads_executing)
2882 	{
2883 	  infrun_debug_printf ("not requesting commit-resumed for target "
2884 			       "%s, no resumed threads",
2885 			       proc_target->shortname ());
2886 	  continue;
2887 	}
2888 
2889       /* As an optimization, if a thread from this target has some
2890 	 status to report, handle it before requiring the target to
2891 	 commit its resumed threads: handling the status might lead to
2892 	 resuming more threads.  */
2893       if (proc_target->has_resumed_with_pending_wait_status ())
2894 	{
2895 	  infrun_debug_printf ("not requesting commit-resumed for target %s, a"
2896 			       " thread has a pending waitstatus",
2897 			       proc_target->shortname ());
2898 	  continue;
2899 	}
2900 
2901       switch_to_inferior_no_thread (inf);
2902 
2903       if (target_has_pending_events ())
2904 	{
2905 	  infrun_debug_printf ("not requesting commit-resumed for target %s, "
2906 			       "target has pending events",
2907 			       proc_target->shortname ());
2908 	  continue;
2909 	}
2910 
2911       infrun_debug_printf ("enabling commit-resumed for target %s",
2912 			   proc_target->shortname ());
2913 
2914       proc_target->commit_resumed_state = true;
2915     }
2916 }
2917 
2918 /* See infrun.h.  */
2919 
2920 void
2921 maybe_call_commit_resumed_all_targets ()
2922 {
2923   scoped_restore_current_thread restore_thread;
2924 
2925   for (inferior *inf : all_non_exited_inferiors ())
2926     {
2927       process_stratum_target *proc_target = inf->process_target ();
2928 
2929       if (!proc_target->commit_resumed_state)
2930 	continue;
2931 
2932       switch_to_inferior_no_thread (inf);
2933 
2934       infrun_debug_printf ("calling commit_resumed for target %s",
2935 			   proc_target->shortname());
2936 
2937       target_commit_resumed ();
2938     }
2939 }
2940 
2941 /* To track nesting of scoped_disable_commit_resumed objects, ensuring
2942    that only the outermost one attempts to re-enable
2943    commit-resumed.  */
2944 static bool enable_commit_resumed = true;
2945 
2946 /* See infrun.h.  */
2947 
2948 scoped_disable_commit_resumed::scoped_disable_commit_resumed
2949   (const char *reason)
2950   : m_reason (reason),
2951     m_prev_enable_commit_resumed (enable_commit_resumed)
2952 {
2953   infrun_debug_printf ("reason=%s", m_reason);
2954 
2955   enable_commit_resumed = false;
2956 
2957   for (inferior *inf : all_non_exited_inferiors ())
2958     {
2959       process_stratum_target *proc_target = inf->process_target ();
2960 
2961       if (m_prev_enable_commit_resumed)
2962 	{
2963 	  /* This is the outermost instance: force all
2964 	     COMMIT_RESUMED_STATE to false.  */
2965 	  proc_target->commit_resumed_state = false;
2966 	}
2967       else
2968 	{
2969 	  /* This is not the outermost instance, we expect
2970 	     COMMIT_RESUMED_STATE to have been cleared by the
2971 	     outermost instance.  */
2972 	  gdb_assert (!proc_target->commit_resumed_state);
2973 	}
2974     }
2975 }
2976 
2977 /* See infrun.h.  */
2978 
2979 void
2980 scoped_disable_commit_resumed::reset ()
2981 {
2982   if (m_reset)
2983     return;
2984   m_reset = true;
2985 
2986   infrun_debug_printf ("reason=%s", m_reason);
2987 
2988   gdb_assert (!enable_commit_resumed);
2989 
2990   enable_commit_resumed = m_prev_enable_commit_resumed;
2991 
2992   if (m_prev_enable_commit_resumed)
2993     {
2994       /* This is the outermost instance, re-enable
2995          COMMIT_RESUMED_STATE on the targets where it's possible.  */
2996       maybe_set_commit_resumed_all_targets ();
2997     }
2998   else
2999     {
3000       /* This is not the outermost instance, we expect
3001 	 COMMIT_RESUMED_STATE to still be false.  */
3002       for (inferior *inf : all_non_exited_inferiors ())
3003 	{
3004 	  process_stratum_target *proc_target = inf->process_target ();
3005 	  gdb_assert (!proc_target->commit_resumed_state);
3006 	}
3007     }
3008 }
3009 
3010 /* See infrun.h.  */
3011 
3012 scoped_disable_commit_resumed::~scoped_disable_commit_resumed ()
3013 {
3014   reset ();
3015 }
3016 
3017 /* See infrun.h.  */
3018 
3019 void
3020 scoped_disable_commit_resumed::reset_and_commit ()
3021 {
3022   reset ();
3023   maybe_call_commit_resumed_all_targets ();
3024 }
3025 
3026 /* See infrun.h.  */
3027 
3028 scoped_enable_commit_resumed::scoped_enable_commit_resumed
3029   (const char *reason)
3030   : m_reason (reason),
3031     m_prev_enable_commit_resumed (enable_commit_resumed)
3032 {
3033   infrun_debug_printf ("reason=%s", m_reason);
3034 
3035   if (!enable_commit_resumed)
3036     {
3037       enable_commit_resumed = true;
3038 
3039       /* Re-enable COMMIT_RESUMED_STATE on the targets where it's
3040 	 possible.  */
3041       maybe_set_commit_resumed_all_targets ();
3042 
3043       maybe_call_commit_resumed_all_targets ();
3044     }
3045 }
3046 
3047 /* See infrun.h.  */
3048 
3049 scoped_enable_commit_resumed::~scoped_enable_commit_resumed ()
3050 {
3051   infrun_debug_printf ("reason=%s", m_reason);
3052 
3053   gdb_assert (enable_commit_resumed);
3054 
3055   enable_commit_resumed = m_prev_enable_commit_resumed;
3056 
3057   if (!enable_commit_resumed)
3058     {
3059       /* Force all COMMIT_RESUMED_STATE back to false.  */
3060       for (inferior *inf : all_non_exited_inferiors ())
3061 	{
3062 	  process_stratum_target *proc_target = inf->process_target ();
3063 	  proc_target->commit_resumed_state = false;
3064 	}
3065     }
3066 }
3067 
3068 /* Check that all the targets we're about to resume are in non-stop
3069    mode.  Ideally, we'd only care whether all targets support
3070    target-async, but we're not there yet.  E.g., stop_all_threads
3071    doesn't know how to handle all-stop targets.  Also, the remote
3072    protocol in all-stop mode is synchronous, irrespective of
3073    target-async, which means that things like a breakpoint re-set
3074    triggered by one target would try to read memory from all targets
3075    and fail.  */
3076 
3077 static void
3078 check_multi_target_resumption (process_stratum_target *resume_target)
3079 {
3080   if (!non_stop && resume_target == nullptr)
3081     {
3082       scoped_restore_current_thread restore_thread;
3083 
3084       /* This is used to track whether we're resuming more than one
3085 	 target.  */
3086       process_stratum_target *first_connection = nullptr;
3087 
3088       /* The first inferior we see with a target that does not work in
3089 	 always-non-stop mode.  */
3090       inferior *first_not_non_stop = nullptr;
3091 
3092       for (inferior *inf : all_non_exited_inferiors ())
3093 	{
3094 	  switch_to_inferior_no_thread (inf);
3095 
3096 	  if (!target_has_execution ())
3097 	    continue;
3098 
3099 	  process_stratum_target *proc_target
3100 	    = current_inferior ()->process_target();
3101 
3102 	  if (!target_is_non_stop_p ())
3103 	    first_not_non_stop = inf;
3104 
3105 	  if (first_connection == nullptr)
3106 	    first_connection = proc_target;
3107 	  else if (first_connection != proc_target
3108 		   && first_not_non_stop != nullptr)
3109 	    {
3110 	      switch_to_inferior_no_thread (first_not_non_stop);
3111 
3112 	      proc_target = current_inferior ()->process_target();
3113 
3114 	      error (_("Connection %d (%s) does not support "
3115 		       "multi-target resumption."),
3116 		     proc_target->connection_number,
3117 		     make_target_connection_string (proc_target).c_str ());
3118 	    }
3119 	}
3120     }
3121 }
3122 
3123 /* Basic routine for continuing the program in various fashions.
3124 
3125    ADDR is the address to resume at, or -1 for resume where stopped.
3126    SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
3127    or GDB_SIGNAL_DEFAULT for act according to how it stopped.
3128 
3129    You should call clear_proceed_status before calling proceed.  */
3130 
3131 void
3132 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
3133 {
3134   INFRUN_SCOPED_DEBUG_ENTER_EXIT;
3135 
3136   struct regcache *regcache;
3137   struct gdbarch *gdbarch;
3138   CORE_ADDR pc;
3139 
3140   /* If we're stopped at a fork/vfork, follow the branch set by the
3141      "set follow-fork-mode" command; otherwise, we'll just proceed
3142      resuming the current thread.  */
3143   if (!follow_fork ())
3144     {
3145       /* The target for some reason decided not to resume.  */
3146       normal_stop ();
3147       if (target_can_async_p ())
3148 	inferior_event_handler (INF_EXEC_COMPLETE);
3149       return;
3150     }
3151 
3152   /* We'll update this if & when we switch to a new thread.  */
3153   previous_inferior_ptid = inferior_ptid;
3154 
3155   regcache = get_current_regcache ();
3156   gdbarch = regcache->arch ();
3157   const address_space *aspace = regcache->aspace ();
3158 
3159   pc = regcache_read_pc_protected (regcache);
3160 
3161   thread_info *cur_thr = inferior_thread ();
3162 
3163   /* Fill in with reasonable starting values.  */
3164   init_thread_stepping_state (cur_thr);
3165 
3166   gdb_assert (!thread_is_in_step_over_chain (cur_thr));
3167 
3168   ptid_t resume_ptid
3169     = user_visible_resume_ptid (cur_thr->control.stepping_command);
3170   process_stratum_target *resume_target
3171     = user_visible_resume_target (resume_ptid);
3172 
3173   check_multi_target_resumption (resume_target);
3174 
3175   if (addr == (CORE_ADDR) -1)
3176     {
3177       if (cur_thr->stop_pc_p ()
3178 	  && pc == cur_thr->stop_pc ()
3179 	  && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3180 	  && execution_direction != EXEC_REVERSE)
3181 	/* There is a breakpoint at the address we will resume at,
3182 	   step one instruction before inserting breakpoints so that
3183 	   we do not stop right away (and report a second hit at this
3184 	   breakpoint).
3185 
3186 	   Note, we don't do this in reverse, because we won't
3187 	   actually be executing the breakpoint insn anyway.
3188 	   We'll be (un-)executing the previous instruction.  */
3189 	cur_thr->stepping_over_breakpoint = 1;
3190       else if (gdbarch_single_step_through_delay_p (gdbarch)
3191 	       && gdbarch_single_step_through_delay (gdbarch,
3192 						     get_current_frame ()))
3193 	/* We stepped onto an instruction that needs to be stepped
3194 	   again before re-inserting the breakpoint, do so.  */
3195 	cur_thr->stepping_over_breakpoint = 1;
3196     }
3197   else
3198     {
3199       regcache_write_pc (regcache, addr);
3200     }
3201 
3202   if (siggnal != GDB_SIGNAL_DEFAULT)
3203     cur_thr->set_stop_signal (siggnal);
3204 
3205   /* If an exception is thrown from this point on, make sure to
3206      propagate GDB's knowledge of the executing state to the
3207      frontend/user running state.  */
3208   scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3209 
3210   /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3211      threads (e.g., we might need to set threads stepping over
3212      breakpoints first), from the user/frontend's point of view, all
3213      threads in RESUME_PTID are now running.  Unless we're calling an
3214      inferior function, as in that case we pretend the inferior
3215      doesn't run at all.  */
3216   if (!cur_thr->control.in_infcall)
3217     set_running (resume_target, resume_ptid, true);
3218 
3219   infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3220 		       gdb_signal_to_symbol_string (siggnal));
3221 
3222   annotate_starting ();
3223 
3224   /* Make sure that output from GDB appears before output from the
3225      inferior.  */
3226   gdb_flush (gdb_stdout);
3227 
3228   /* Since we've marked the inferior running, give it the terminal.  A
3229      QUIT/Ctrl-C from here on is forwarded to the target (which can
3230      still detect attempts to unblock a stuck connection with repeated
3231      Ctrl-C from within target_pass_ctrlc).  */
3232   target_terminal::inferior ();
3233 
3234   /* In a multi-threaded task we may select another thread and
3235      then continue or step.
3236 
3237      But if a thread that we're resuming had stopped at a breakpoint,
3238      it will immediately cause another breakpoint stop without any
3239      execution (i.e. it will report a breakpoint hit incorrectly).  So
3240      we must step over it first.
3241 
3242      Look for threads other than the current (TP) that reported a
3243      breakpoint hit and haven't been resumed yet since.  */
3244 
3245   /* If scheduler locking applies, we can avoid iterating over all
3246      threads.  */
3247   if (!non_stop && !schedlock_applies (cur_thr))
3248     {
3249       for (thread_info *tp : all_non_exited_threads (resume_target,
3250 						     resume_ptid))
3251 	{
3252 	  switch_to_thread_no_regs (tp);
3253 
3254 	  /* Ignore the current thread here.  It's handled
3255 	     afterwards.  */
3256 	  if (tp == cur_thr)
3257 	    continue;
3258 
3259 	  if (!thread_still_needs_step_over (tp))
3260 	    continue;
3261 
3262 	  gdb_assert (!thread_is_in_step_over_chain (tp));
3263 
3264 	  infrun_debug_printf ("need to step-over [%s] first",
3265 			       tp->ptid.to_string ().c_str ());
3266 
3267 	  global_thread_step_over_chain_enqueue (tp);
3268 	}
3269 
3270       switch_to_thread (cur_thr);
3271     }
3272 
3273   /* Enqueue the current thread last, so that we move all other
3274      threads over their breakpoints first.  */
3275   if (cur_thr->stepping_over_breakpoint)
3276     global_thread_step_over_chain_enqueue (cur_thr);
3277 
3278   /* If the thread isn't started, we'll still need to set its prev_pc,
3279      so that switch_back_to_stepped_thread knows the thread hasn't
3280      advanced.  Must do this before resuming any thread, as in
3281      all-stop/remote, once we resume we can't send any other packet
3282      until the target stops again.  */
3283   cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3284 
3285   {
3286     scoped_disable_commit_resumed disable_commit_resumed ("proceeding");
3287     bool step_over_started = start_step_over ();
3288 
3289     if (step_over_info_valid_p ())
3290       {
3291 	/* Either this thread started a new in-line step over, or some
3292 	   other thread was already doing one.  In either case, don't
3293 	   resume anything else until the step-over is finished.  */
3294       }
3295     else if (step_over_started && !target_is_non_stop_p ())
3296       {
3297 	/* A new displaced stepping sequence was started.  In all-stop,
3298 	   we can't talk to the target anymore until it next stops.  */
3299       }
3300     else if (!non_stop && target_is_non_stop_p ())
3301       {
3302 	INFRUN_SCOPED_DEBUG_START_END
3303 	  ("resuming threads, all-stop-on-top-of-non-stop");
3304 
3305 	/* In all-stop, but the target is always in non-stop mode.
3306 	   Start all other threads that are implicitly resumed too.  */
3307 	for (thread_info *tp : all_non_exited_threads (resume_target,
3308 						       resume_ptid))
3309 	  {
3310 	    switch_to_thread_no_regs (tp);
3311 
3312 	    if (!tp->inf->has_execution ())
3313 	      {
3314 		infrun_debug_printf ("[%s] target has no execution",
3315 				     tp->ptid.to_string ().c_str ());
3316 		continue;
3317 	      }
3318 
3319 	    if (tp->resumed ())
3320 	      {
3321 		infrun_debug_printf ("[%s] resumed",
3322 				     tp->ptid.to_string ().c_str ());
3323 		gdb_assert (tp->executing () || tp->has_pending_waitstatus ());
3324 		continue;
3325 	      }
3326 
3327 	    if (thread_is_in_step_over_chain (tp))
3328 	      {
3329 		infrun_debug_printf ("[%s] needs step-over",
3330 				     tp->ptid.to_string ().c_str ());
3331 		continue;
3332 	      }
3333 
3334 	    /* If a thread of that inferior is waiting for a vfork-done
3335 	       (for a detached vfork child to exec or exit), breakpoints are
3336 	       removed.  We must not resume any thread of that inferior, other
3337 	       than the one waiting for the vfork-done.  */
3338 	    if (tp->inf->thread_waiting_for_vfork_done != nullptr
3339 		&& tp != tp->inf->thread_waiting_for_vfork_done)
3340 	      {
3341 		infrun_debug_printf ("[%s] another thread of this inferior is "
3342 				     "waiting for vfork-done",
3343 				     tp->ptid.to_string ().c_str ());
3344 		continue;
3345 	      }
3346 
3347 	    infrun_debug_printf ("resuming %s",
3348 				 tp->ptid.to_string ().c_str ());
3349 
3350 	    execution_control_state ecs (tp);
3351 	    switch_to_thread (tp);
3352 	    keep_going_pass_signal (&ecs);
3353 	    if (!ecs.wait_some_more)
3354 	      error (_("Command aborted."));
3355 	  }
3356       }
3357     else if (!cur_thr->resumed ()
3358 	     && !thread_is_in_step_over_chain (cur_thr)
3359 	     /* In non-stop, forbid resuming a thread if some other thread of
3360 		that inferior is waiting for a vfork-done event (this means
3361 		breakpoints are out for this inferior).  */
3362 	     && !(non_stop
3363 		  && cur_thr->inf->thread_waiting_for_vfork_done != nullptr))
3364       {
3365 	/* The thread wasn't started, and isn't queued, run it now.  */
3366 	execution_control_state ecs (cur_thr);
3367 	switch_to_thread (cur_thr);
3368 	keep_going_pass_signal (&ecs);
3369 	if (!ecs.wait_some_more)
3370 	  error (_("Command aborted."));
3371       }
3372 
3373     disable_commit_resumed.reset_and_commit ();
3374   }
3375 
3376   finish_state.release ();
3377 
3378   /* If we've switched threads above, switch back to the previously
3379      current thread.  We don't want the user to see a different
3380      selected thread.  */
3381   switch_to_thread (cur_thr);
3382 
3383   /* Tell the event loop to wait for it to stop.  If the target
3384      supports asynchronous execution, it'll do this from within
3385      target_resume.  */
3386   if (!target_can_async_p ())
3387     mark_async_event_handler (infrun_async_inferior_event_token);
3388 }
3389 
3390 
3391 /* Start remote-debugging of a machine over a serial link.  */
3392 
3393 void
3394 start_remote (int from_tty)
3395 {
3396   inferior *inf = current_inferior ();
3397   inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3398 
3399   /* Always go on waiting for the target, regardless of the mode.  */
3400   /* FIXME: cagney/1999-09-23: At present it isn't possible to
3401      indicate to wait_for_inferior that a target should timeout if
3402      nothing is returned (instead of just blocking).  Because of this,
3403      targets expecting an immediate response need to, internally, set
3404      things up so that the target_wait() is forced to eventually
3405      timeout.  */
3406   /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3407      differentiate to its caller what the state of the target is after
3408      the initial open has been performed.  Here we're assuming that
3409      the target has stopped.  It should be possible to eventually have
3410      target_open() return to the caller an indication that the target
3411      is currently running and GDB state should be set to the same as
3412      for an async run.  */
3413   wait_for_inferior (inf);
3414 
3415   /* Now that the inferior has stopped, do any bookkeeping like
3416      loading shared libraries.  We want to do this before normal_stop,
3417      so that the displayed frame is up to date.  */
3418   post_create_inferior (from_tty);
3419 
3420   normal_stop ();
3421 }
3422 
3423 /* Initialize static vars when a new inferior begins.  */
3424 
3425 void
3426 init_wait_for_inferior (void)
3427 {
3428   /* These are meaningless until the first time through wait_for_inferior.  */
3429 
3430   breakpoint_init_inferior (inf_starting);
3431 
3432   clear_proceed_status (0);
3433 
3434   nullify_last_target_wait_ptid ();
3435 
3436   previous_inferior_ptid = inferior_ptid;
3437 }
3438 
3439 
3440 
3441 static void handle_inferior_event (struct execution_control_state *ecs);
3442 
3443 static void handle_step_into_function (struct gdbarch *gdbarch,
3444 				       struct execution_control_state *ecs);
3445 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3446 						struct execution_control_state *ecs);
3447 static void handle_signal_stop (struct execution_control_state *ecs);
3448 static void check_exception_resume (struct execution_control_state *,
3449 				    frame_info_ptr);
3450 
3451 static void end_stepping_range (struct execution_control_state *ecs);
3452 static void stop_waiting (struct execution_control_state *ecs);
3453 static void keep_going (struct execution_control_state *ecs);
3454 static void process_event_stop_test (struct execution_control_state *ecs);
3455 static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
3456 
3457 /* This function is attached as a "thread_stop_requested" observer.
3458    Cleanup local state that assumed the PTID was to be resumed, and
3459    report the stop to the frontend.  */
3460 
3461 static void
3462 infrun_thread_stop_requested (ptid_t ptid)
3463 {
3464   process_stratum_target *curr_target = current_inferior ()->process_target ();
3465 
3466   /* PTID was requested to stop.  If the thread was already stopped,
3467      but the user/frontend doesn't know about that yet (e.g., the
3468      thread had been temporarily paused for some step-over), set up
3469      for reporting the stop now.  */
3470   for (thread_info *tp : all_threads (curr_target, ptid))
3471     {
3472       if (tp->state != THREAD_RUNNING)
3473 	continue;
3474       if (tp->executing ())
3475 	continue;
3476 
3477       /* Remove matching threads from the step-over queue, so
3478 	 start_step_over doesn't try to resume them
3479 	 automatically.  */
3480       if (thread_is_in_step_over_chain (tp))
3481 	global_thread_step_over_chain_remove (tp);
3482 
3483       /* If the thread is stopped, but the user/frontend doesn't
3484 	 know about that yet, queue a pending event, as if the
3485 	 thread had just stopped now.  Unless the thread already had
3486 	 a pending event.  */
3487       if (!tp->has_pending_waitstatus ())
3488 	{
3489 	  target_waitstatus ws;
3490 	  ws.set_stopped (GDB_SIGNAL_0);
3491 	  tp->set_pending_waitstatus (ws);
3492 	}
3493 
3494       /* Clear the inline-frame state, since we're re-processing the
3495 	 stop.  */
3496       clear_inline_frame_state (tp);
3497 
3498       /* If this thread was paused because some other thread was
3499 	 doing an inline-step over, let that finish first.  Once
3500 	 that happens, we'll restart all threads and consume pending
3501 	 stop events then.  */
3502       if (step_over_info_valid_p ())
3503 	continue;
3504 
3505       /* Otherwise we can process the (new) pending event now.  Set
3506 	 it so this pending event is considered by
3507 	 do_target_wait.  */
3508       tp->set_resumed (true);
3509     }
3510 }
3511 
3512 static void
3513 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3514 {
3515   if (target_last_proc_target == tp->inf->process_target ()
3516       && target_last_wait_ptid == tp->ptid)
3517     nullify_last_target_wait_ptid ();
3518 }
3519 
3520 /* Delete the step resume, single-step and longjmp/exception resume
3521    breakpoints of TP.  */
3522 
3523 static void
3524 delete_thread_infrun_breakpoints (struct thread_info *tp)
3525 {
3526   delete_step_resume_breakpoint (tp);
3527   delete_exception_resume_breakpoint (tp);
3528   delete_single_step_breakpoints (tp);
3529 }
3530 
3531 /* If the target still has execution, call FUNC for each thread that
3532    just stopped.  In all-stop, that's all the non-exited threads; in
3533    non-stop, that's the current thread, only.  */
3534 
3535 typedef void (*for_each_just_stopped_thread_callback_func)
3536   (struct thread_info *tp);
3537 
3538 static void
3539 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3540 {
3541   if (!target_has_execution () || inferior_ptid == null_ptid)
3542     return;
3543 
3544   if (target_is_non_stop_p ())
3545     {
3546       /* If in non-stop mode, only the current thread stopped.  */
3547       func (inferior_thread ());
3548     }
3549   else
3550     {
3551       /* In all-stop mode, all threads have stopped.  */
3552       for (thread_info *tp : all_non_exited_threads ())
3553 	func (tp);
3554     }
3555 }
3556 
3557 /* Delete the step resume and longjmp/exception resume breakpoints of
3558    the threads that just stopped.  */
3559 
3560 static void
3561 delete_just_stopped_threads_infrun_breakpoints (void)
3562 {
3563   for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3564 }
3565 
3566 /* Delete the single-step breakpoints of the threads that just
3567    stopped.  */
3568 
3569 static void
3570 delete_just_stopped_threads_single_step_breakpoints (void)
3571 {
3572   for_each_just_stopped_thread (delete_single_step_breakpoints);
3573 }
3574 
3575 /* See infrun.h.  */
3576 
3577 void
3578 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3579 			   const struct target_waitstatus &ws)
3580 {
3581   infrun_debug_printf ("target_wait (%s [%s], status) =",
3582 		       waiton_ptid.to_string ().c_str (),
3583 		       target_pid_to_str (waiton_ptid).c_str ());
3584   infrun_debug_printf ("  %s [%s],",
3585 		       result_ptid.to_string ().c_str (),
3586 		       target_pid_to_str (result_ptid).c_str ());
3587   infrun_debug_printf ("  %s", ws.to_string ().c_str ());
3588 }
3589 
3590 /* Select a thread at random, out of those which are resumed and have
3591    had events.  */
3592 
3593 static struct thread_info *
3594 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3595 {
3596   process_stratum_target *proc_target = inf->process_target ();
3597   thread_info *thread
3598     = proc_target->random_resumed_with_pending_wait_status (inf, waiton_ptid);
3599 
3600   if (thread == nullptr)
3601     {
3602       infrun_debug_printf ("None found.");
3603       return nullptr;
3604     }
3605 
3606   infrun_debug_printf ("Found %s.", thread->ptid.to_string ().c_str ());
3607   gdb_assert (thread->resumed ());
3608   gdb_assert (thread->has_pending_waitstatus ());
3609 
3610   return thread;
3611 }
3612 
3613 /* Wrapper for target_wait that first checks whether threads have
3614    pending statuses to report before actually asking the target for
3615    more events.  INF is the inferior we're using to call target_wait
3616    on.  */
3617 
3618 static ptid_t
3619 do_target_wait_1 (inferior *inf, ptid_t ptid,
3620 		  target_waitstatus *status, target_wait_flags options)
3621 {
3622   struct thread_info *tp;
3623 
3624   /* We know that we are looking for an event in the target of inferior
3625      INF, but we don't know which thread the event might come from.  As
3626      such we want to make sure that INFERIOR_PTID is reset so that none of
3627      the wait code relies on it - doing so is always a mistake.  */
3628   switch_to_inferior_no_thread (inf);
3629 
3630   /* First check if there is a resumed thread with a wait status
3631      pending.  */
3632   if (ptid == minus_one_ptid || ptid.is_pid ())
3633     {
3634       tp = random_pending_event_thread (inf, ptid);
3635     }
3636   else
3637     {
3638       infrun_debug_printf ("Waiting for specific thread %s.",
3639 			   ptid.to_string ().c_str ());
3640 
3641       /* We have a specific thread to check.  */
3642       tp = find_thread_ptid (inf, ptid);
3643       gdb_assert (tp != nullptr);
3644       if (!tp->has_pending_waitstatus ())
3645 	tp = nullptr;
3646     }
3647 
3648   if (tp != nullptr
3649       && (tp->stop_reason () == TARGET_STOPPED_BY_SW_BREAKPOINT
3650 	  || tp->stop_reason () == TARGET_STOPPED_BY_HW_BREAKPOINT))
3651     {
3652       struct regcache *regcache = get_thread_regcache (tp);
3653       struct gdbarch *gdbarch = regcache->arch ();
3654       CORE_ADDR pc;
3655       int discard = 0;
3656 
3657       pc = regcache_read_pc (regcache);
3658 
3659       if (pc != tp->stop_pc ())
3660 	{
3661 	  infrun_debug_printf ("PC of %s changed.  was=%s, now=%s",
3662 			       tp->ptid.to_string ().c_str (),
3663 			       paddress (gdbarch, tp->stop_pc ()),
3664 			       paddress (gdbarch, pc));
3665 	  discard = 1;
3666 	}
3667       else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3668 	{
3669 	  infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3670 			       tp->ptid.to_string ().c_str (),
3671 			       paddress (gdbarch, pc));
3672 
3673 	  discard = 1;
3674 	}
3675 
3676       if (discard)
3677 	{
3678 	  infrun_debug_printf ("pending event of %s cancelled.",
3679 			       tp->ptid.to_string ().c_str ());
3680 
3681 	  tp->clear_pending_waitstatus ();
3682 	  target_waitstatus ws;
3683 	  ws.set_spurious ();
3684 	  tp->set_pending_waitstatus (ws);
3685 	  tp->set_stop_reason (TARGET_STOPPED_BY_NO_REASON);
3686 	}
3687     }
3688 
3689   if (tp != nullptr)
3690     {
3691       infrun_debug_printf ("Using pending wait status %s for %s.",
3692 			   tp->pending_waitstatus ().to_string ().c_str (),
3693 			   tp->ptid.to_string ().c_str ());
3694 
3695       /* Now that we've selected our final event LWP, un-adjust its PC
3696 	 if it was a software breakpoint (and the target doesn't
3697 	 always adjust the PC itself).  */
3698       if (tp->stop_reason () == TARGET_STOPPED_BY_SW_BREAKPOINT
3699 	  && !target_supports_stopped_by_sw_breakpoint ())
3700 	{
3701 	  struct regcache *regcache;
3702 	  struct gdbarch *gdbarch;
3703 	  int decr_pc;
3704 
3705 	  regcache = get_thread_regcache (tp);
3706 	  gdbarch = regcache->arch ();
3707 
3708 	  decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3709 	  if (decr_pc != 0)
3710 	    {
3711 	      CORE_ADDR pc;
3712 
3713 	      pc = regcache_read_pc (regcache);
3714 	      regcache_write_pc (regcache, pc + decr_pc);
3715 	    }
3716 	}
3717 
3718       tp->set_stop_reason (TARGET_STOPPED_BY_NO_REASON);
3719       *status = tp->pending_waitstatus ();
3720       tp->clear_pending_waitstatus ();
3721 
3722       /* Wake up the event loop again, until all pending events are
3723 	 processed.  */
3724       if (target_is_async_p ())
3725 	mark_async_event_handler (infrun_async_inferior_event_token);
3726       return tp->ptid;
3727     }
3728 
3729   /* But if we don't find one, we'll have to wait.  */
3730 
3731   /* We can't ask a non-async target to do a non-blocking wait, so this will be
3732      a blocking wait.  */
3733   if (!target_can_async_p ())
3734     options &= ~TARGET_WNOHANG;
3735 
3736   return target_wait (ptid, status, options);
3737 }
3738 
3739 /* Wrapper for target_wait that first checks whether threads have
3740    pending statuses to report before actually asking the target for
3741    more events.  Polls for events from all inferiors/targets.  */
3742 
3743 static bool
3744 do_target_wait (execution_control_state *ecs, target_wait_flags options)
3745 {
3746   int num_inferiors = 0;
3747   int random_selector;
3748 
3749   /* For fairness, we pick the first inferior/target to poll at random
3750      out of all inferiors that may report events, and then continue
3751      polling the rest of the inferior list starting from that one in a
3752      circular fashion until the whole list is polled once.  */
3753 
3754   auto inferior_matches = [] (inferior *inf)
3755     {
3756       return inf->process_target () != nullptr;
3757     };
3758 
3759   /* First see how many matching inferiors we have.  */
3760   for (inferior *inf : all_inferiors ())
3761     if (inferior_matches (inf))
3762       num_inferiors++;
3763 
3764   if (num_inferiors == 0)
3765     {
3766       ecs->ws.set_ignore ();
3767       return false;
3768     }
3769 
3770   /* Now randomly pick an inferior out of those that matched.  */
3771   random_selector = (int)
3772     ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3773 
3774   if (num_inferiors > 1)
3775     infrun_debug_printf ("Found %d inferiors, starting at #%d",
3776 			 num_inferiors, random_selector);
3777 
3778   /* Select the Nth inferior that matched.  */
3779 
3780   inferior *selected = nullptr;
3781 
3782   for (inferior *inf : all_inferiors ())
3783     if (inferior_matches (inf))
3784       if (random_selector-- == 0)
3785 	{
3786 	  selected = inf;
3787 	  break;
3788 	}
3789 
3790   /* Now poll for events out of each of the matching inferior's
3791      targets, starting from the selected one.  */
3792 
3793   auto do_wait = [&] (inferior *inf)
3794   {
3795     ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, options);
3796     ecs->target = inf->process_target ();
3797     return (ecs->ws.kind () != TARGET_WAITKIND_IGNORE);
3798   };
3799 
3800   /* Needed in 'all-stop + target-non-stop' mode, because we end up
3801      here spuriously after the target is all stopped and we've already
3802      reported the stop to the user, polling for events.  */
3803   scoped_restore_current_thread restore_thread;
3804 
3805   intrusive_list_iterator<inferior> start
3806     = inferior_list.iterator_to (*selected);
3807 
3808   for (intrusive_list_iterator<inferior> it = start;
3809        it != inferior_list.end ();
3810        ++it)
3811     {
3812       inferior *inf = &*it;
3813 
3814       if (inferior_matches (inf) && do_wait (inf))
3815 	return true;
3816     }
3817 
3818   for (intrusive_list_iterator<inferior> it = inferior_list.begin ();
3819        it != start;
3820        ++it)
3821     {
3822       inferior *inf = &*it;
3823 
3824       if (inferior_matches (inf) && do_wait (inf))
3825 	return true;
3826     }
3827 
3828   ecs->ws.set_ignore ();
3829   return false;
3830 }
3831 
3832 /* An event reported by wait_one.  */
3833 
3834 struct wait_one_event
3835 {
3836   /* The target the event came out of.  */
3837   process_stratum_target *target;
3838 
3839   /* The PTID the event was for.  */
3840   ptid_t ptid;
3841 
3842   /* The waitstatus.  */
3843   target_waitstatus ws;
3844 };
3845 
3846 static bool handle_one (const wait_one_event &event);
3847 
3848 /* Prepare and stabilize the inferior for detaching it.  E.g.,
3849    detaching while a thread is displaced stepping is a recipe for
3850    crashing it, as nothing would readjust the PC out of the scratch
3851    pad.  */
3852 
3853 void
3854 prepare_for_detach (void)
3855 {
3856   struct inferior *inf = current_inferior ();
3857   ptid_t pid_ptid = ptid_t (inf->pid);
3858   scoped_restore_current_thread restore_thread;
3859 
3860   scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3861 
3862   /* Remove all threads of INF from the global step-over chain.  We
3863      want to stop any ongoing step-over, not start any new one.  */
3864   thread_step_over_list_safe_range range
3865     = make_thread_step_over_list_safe_range (global_thread_step_over_list);
3866 
3867   for (thread_info *tp : range)
3868     if (tp->inf == inf)
3869       {
3870 	infrun_debug_printf ("removing thread %s from global step over chain",
3871 			     tp->ptid.to_string ().c_str ());
3872 	global_thread_step_over_chain_remove (tp);
3873       }
3874 
3875   /* If we were already in the middle of an inline step-over, and the
3876      thread stepping belongs to the inferior we're detaching, we need
3877      to restart the threads of other inferiors.  */
3878   if (step_over_info.thread != -1)
3879     {
3880       infrun_debug_printf ("inline step-over in-process while detaching");
3881 
3882       thread_info *thr = find_thread_global_id (step_over_info.thread);
3883       if (thr->inf == inf)
3884 	{
3885 	  /* Since we removed threads of INF from the step-over chain,
3886 	     we know this won't start a step-over for INF.  */
3887 	  clear_step_over_info ();
3888 
3889 	  if (target_is_non_stop_p ())
3890 	    {
3891 	      /* Start a new step-over in another thread if there's
3892 		 one that needs it.  */
3893 	      start_step_over ();
3894 
3895 	      /* Restart all other threads (except the
3896 		 previously-stepping thread, since that one is still
3897 		 running).  */
3898 	      if (!step_over_info_valid_p ())
3899 		restart_threads (thr);
3900 	    }
3901 	}
3902     }
3903 
3904   if (displaced_step_in_progress (inf))
3905     {
3906       infrun_debug_printf ("displaced-stepping in-process while detaching");
3907 
3908       /* Stop threads currently displaced stepping, aborting it.  */
3909 
3910       for (thread_info *thr : inf->non_exited_threads ())
3911 	{
3912 	  if (thr->displaced_step_state.in_progress ())
3913 	    {
3914 	      if (thr->executing ())
3915 		{
3916 		  if (!thr->stop_requested)
3917 		    {
3918 		      target_stop (thr->ptid);
3919 		      thr->stop_requested = true;
3920 		    }
3921 		}
3922 	      else
3923 		thr->set_resumed (false);
3924 	    }
3925 	}
3926 
3927       while (displaced_step_in_progress (inf))
3928 	{
3929 	  wait_one_event event;
3930 
3931 	  event.target = inf->process_target ();
3932 	  event.ptid = do_target_wait_1 (inf, pid_ptid, &event.ws, 0);
3933 
3934 	  if (debug_infrun)
3935 	    print_target_wait_results (pid_ptid, event.ptid, event.ws);
3936 
3937 	  handle_one (event);
3938 	}
3939 
3940       /* It's OK to leave some of the threads of INF stopped, since
3941 	 they'll be detached shortly.  */
3942     }
3943 }
3944 
3945 /* If all-stop, but there exists a non-stop target, stop all threads
3946    now that we're presenting the stop to the user.  */
3947 
3948 static void
3949 stop_all_threads_if_all_stop_mode ()
3950 {
3951   if (!non_stop && exists_non_stop_target ())
3952     stop_all_threads ("presenting stop to user in all-stop");
3953 }
3954 
3955 /* Wait for control to return from inferior to debugger.
3956 
3957    If inferior gets a signal, we may decide to start it up again
3958    instead of returning.  That is why there is a loop in this function.
3959    When this function actually returns it means the inferior
3960    should be left stopped and GDB should read more commands.  */
3961 
3962 static void
3963 wait_for_inferior (inferior *inf)
3964 {
3965   infrun_debug_printf ("wait_for_inferior ()");
3966 
3967   SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3968 
3969   /* If an error happens while handling the event, propagate GDB's
3970      knowledge of the executing state to the frontend/user running
3971      state.  */
3972   scoped_finish_thread_state finish_state
3973     (inf->process_target (), minus_one_ptid);
3974 
3975   while (1)
3976     {
3977       execution_control_state ecs;
3978 
3979       overlay_cache_invalid = 1;
3980 
3981       /* Flush target cache before starting to handle each event.
3982 	 Target was running and cache could be stale.  This is just a
3983 	 heuristic.  Running threads may modify target memory, but we
3984 	 don't get any event.  */
3985       target_dcache_invalidate ();
3986 
3987       ecs.ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs.ws, 0);
3988       ecs.target = inf->process_target ();
3989 
3990       if (debug_infrun)
3991 	print_target_wait_results (minus_one_ptid, ecs.ptid, ecs.ws);
3992 
3993       /* Now figure out what to do with the result of the result.  */
3994       handle_inferior_event (&ecs);
3995 
3996       if (!ecs.wait_some_more)
3997 	break;
3998     }
3999 
4000   stop_all_threads_if_all_stop_mode ();
4001 
4002   /* No error, don't finish the state yet.  */
4003   finish_state.release ();
4004 }
4005 
4006 /* Cleanup that reinstalls the readline callback handler, if the
4007    target is running in the background.  If while handling the target
4008    event something triggered a secondary prompt, like e.g., a
4009    pagination prompt, we'll have removed the callback handler (see
4010    gdb_readline_wrapper_line).  Need to do this as we go back to the
4011    event loop, ready to process further input.  Note this has no
4012    effect if the handler hasn't actually been removed, because calling
4013    rl_callback_handler_install resets the line buffer, thus losing
4014    input.  */
4015 
4016 static void
4017 reinstall_readline_callback_handler_cleanup ()
4018 {
4019   struct ui *ui = current_ui;
4020 
4021   if (!ui->async)
4022     {
4023       /* We're not going back to the top level event loop yet.  Don't
4024 	 install the readline callback, as it'd prep the terminal,
4025 	 readline-style (raw, noecho) (e.g., --batch).  We'll install
4026 	 it the next time the prompt is displayed, when we're ready
4027 	 for input.  */
4028       return;
4029     }
4030 
4031   if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
4032     gdb_rl_callback_handler_reinstall ();
4033 }
4034 
4035 /* Clean up the FSMs of threads that are now stopped.  In non-stop,
4036    that's just the event thread.  In all-stop, that's all threads.  */
4037 
4038 static void
4039 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
4040 {
4041   /* The first clean_up call below assumes the event thread is the current
4042      one.  */
4043   if (ecs->event_thread != nullptr)
4044     gdb_assert (ecs->event_thread == inferior_thread ());
4045 
4046   if (ecs->event_thread != nullptr
4047       && ecs->event_thread->thread_fsm () != nullptr)
4048     ecs->event_thread->thread_fsm ()->clean_up (ecs->event_thread);
4049 
4050   if (!non_stop)
4051     {
4052       scoped_restore_current_thread restore_thread;
4053 
4054       for (thread_info *thr : all_non_exited_threads ())
4055 	{
4056 	  if (thr->thread_fsm () == nullptr)
4057 	    continue;
4058 	  if (thr == ecs->event_thread)
4059 	    continue;
4060 
4061 	  switch_to_thread (thr);
4062 	  thr->thread_fsm ()->clean_up (thr);
4063 	}
4064     }
4065 }
4066 
4067 /* Helper for all_uis_check_sync_execution_done that works on the
4068    current UI.  */
4069 
4070 static void
4071 check_curr_ui_sync_execution_done (void)
4072 {
4073   struct ui *ui = current_ui;
4074 
4075   if (ui->prompt_state == PROMPT_NEEDED
4076       && ui->async
4077       && !gdb_in_secondary_prompt_p (ui))
4078     {
4079       target_terminal::ours ();
4080       gdb::observers::sync_execution_done.notify ();
4081       ui->register_file_handler ();
4082     }
4083 }
4084 
4085 /* See infrun.h.  */
4086 
4087 void
4088 all_uis_check_sync_execution_done (void)
4089 {
4090   SWITCH_THRU_ALL_UIS ()
4091     {
4092       check_curr_ui_sync_execution_done ();
4093     }
4094 }
4095 
4096 /* See infrun.h.  */
4097 
4098 void
4099 all_uis_on_sync_execution_starting (void)
4100 {
4101   SWITCH_THRU_ALL_UIS ()
4102     {
4103       if (current_ui->prompt_state == PROMPT_NEEDED)
4104 	async_disable_stdin ();
4105     }
4106 }
4107 
4108 /* Asynchronous version of wait_for_inferior.  It is called by the
4109    event loop whenever a change of state is detected on the file
4110    descriptor corresponding to the target.  It can be called more than
4111    once to complete a single execution command.  In such cases we need
4112    to keep the state in a global variable ECSS.  If it is the last time
4113    that this function is called for a single execution command, then
4114    report to the user that the inferior has stopped, and do the
4115    necessary cleanups.  */
4116 
4117 void
4118 fetch_inferior_event ()
4119 {
4120   INFRUN_SCOPED_DEBUG_ENTER_EXIT;
4121 
4122   execution_control_state ecs;
4123   int cmd_done = 0;
4124 
4125   /* Events are always processed with the main UI as current UI.  This
4126      way, warnings, debug output, etc. are always consistently sent to
4127      the main console.  */
4128   scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
4129 
4130   /* Temporarily disable pagination.  Otherwise, the user would be
4131      given an option to press 'q' to quit, which would cause an early
4132      exit and could leave GDB in a half-baked state.  */
4133   scoped_restore save_pagination
4134     = make_scoped_restore (&pagination_enabled, false);
4135 
4136   /* End up with readline processing input, if necessary.  */
4137   {
4138     SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
4139 
4140     /* We're handling a live event, so make sure we're doing live
4141        debugging.  If we're looking at traceframes while the target is
4142        running, we're going to need to get back to that mode after
4143        handling the event.  */
4144     gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
4145     if (non_stop)
4146       {
4147 	maybe_restore_traceframe.emplace ();
4148 	set_current_traceframe (-1);
4149       }
4150 
4151     /* The user/frontend should not notice a thread switch due to
4152        internal events.  Make sure we revert to the user selected
4153        thread and frame after handling the event and running any
4154        breakpoint commands.  */
4155     scoped_restore_current_thread restore_thread;
4156 
4157     overlay_cache_invalid = 1;
4158     /* Flush target cache before starting to handle each event.  Target
4159        was running and cache could be stale.  This is just a heuristic.
4160        Running threads may modify target memory, but we don't get any
4161        event.  */
4162     target_dcache_invalidate ();
4163 
4164     scoped_restore save_exec_dir
4165       = make_scoped_restore (&execution_direction,
4166 			     target_execution_direction ());
4167 
4168     /* Allow targets to pause their resumed threads while we handle
4169        the event.  */
4170     scoped_disable_commit_resumed disable_commit_resumed ("handling event");
4171 
4172     if (!do_target_wait (&ecs, TARGET_WNOHANG))
4173       {
4174 	infrun_debug_printf ("do_target_wait returned no event");
4175 	disable_commit_resumed.reset_and_commit ();
4176 	return;
4177       }
4178 
4179     gdb_assert (ecs.ws.kind () != TARGET_WAITKIND_IGNORE);
4180 
4181     /* Switch to the target that generated the event, so we can do
4182        target calls.  */
4183     switch_to_target_no_thread (ecs.target);
4184 
4185     if (debug_infrun)
4186       print_target_wait_results (minus_one_ptid, ecs.ptid, ecs.ws);
4187 
4188     /* If an error happens while handling the event, propagate GDB's
4189        knowledge of the executing state to the frontend/user running
4190        state.  */
4191     ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs.ptid;
4192     scoped_finish_thread_state finish_state (ecs.target, finish_ptid);
4193 
4194     /* Get executed before scoped_restore_current_thread above to apply
4195        still for the thread which has thrown the exception.  */
4196     auto defer_bpstat_clear
4197       = make_scope_exit (bpstat_clear_actions);
4198     auto defer_delete_threads
4199       = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4200 
4201     /* Now figure out what to do with the result of the result.  */
4202     handle_inferior_event (&ecs);
4203 
4204     if (!ecs.wait_some_more)
4205       {
4206 	struct inferior *inf = find_inferior_ptid (ecs.target, ecs.ptid);
4207 	bool should_stop = true;
4208 	struct thread_info *thr = ecs.event_thread;
4209 
4210 	delete_just_stopped_threads_infrun_breakpoints ();
4211 
4212 	if (thr != nullptr && thr->thread_fsm () != nullptr)
4213 	  should_stop = thr->thread_fsm ()->should_stop (thr);
4214 
4215 	if (!should_stop)
4216 	  {
4217 	    keep_going (&ecs);
4218 	  }
4219 	else
4220 	  {
4221 	    bool should_notify_stop = true;
4222 	    int proceeded = 0;
4223 
4224 	    stop_all_threads_if_all_stop_mode ();
4225 
4226 	    clean_up_just_stopped_threads_fsms (&ecs);
4227 
4228 	    if (thr != nullptr && thr->thread_fsm () != nullptr)
4229 	      should_notify_stop
4230 	       = thr->thread_fsm ()->should_notify_stop ();
4231 
4232 	    if (should_notify_stop)
4233 	      {
4234 		/* We may not find an inferior if this was a process exit.  */
4235 		if (inf == nullptr || inf->control.stop_soon == NO_STOP_QUIETLY)
4236 		  proceeded = normal_stop ();
4237 	      }
4238 
4239 	    if (!proceeded)
4240 	      {
4241 		inferior_event_handler (INF_EXEC_COMPLETE);
4242 		cmd_done = 1;
4243 	      }
4244 
4245 	    /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4246 	       previously selected thread is gone.  We have two
4247 	       choices - switch to no thread selected, or restore the
4248 	       previously selected thread (now exited).  We chose the
4249 	       later, just because that's what GDB used to do.  After
4250 	       this, "info threads" says "The current thread <Thread
4251 	       ID 2> has terminated." instead of "No thread
4252 	       selected.".  */
4253 	    if (!non_stop
4254 		&& cmd_done
4255 		&& ecs.ws.kind () != TARGET_WAITKIND_NO_RESUMED)
4256 	      restore_thread.dont_restore ();
4257 	  }
4258       }
4259 
4260     defer_delete_threads.release ();
4261     defer_bpstat_clear.release ();
4262 
4263     /* No error, don't finish the thread states yet.  */
4264     finish_state.release ();
4265 
4266     disable_commit_resumed.reset_and_commit ();
4267 
4268     /* This scope is used to ensure that readline callbacks are
4269        reinstalled here.  */
4270   }
4271 
4272   /* Handling this event might have caused some inferiors to become prunable.
4273      For example, the exit of an inferior that was automatically added.  Try
4274      to get rid of them.  Keeping those around slows down things linearly.
4275 
4276      Note that this never removes the current inferior.  Therefore, call this
4277      after RESTORE_THREAD went out of scope, in case the event inferior (which was
4278      temporarily made the current inferior) is meant to be deleted.
4279 
4280      Call this before all_uis_check_sync_execution_done, so that notifications about
4281      removed inferiors appear before the prompt.  */
4282   prune_inferiors ();
4283 
4284   /* If a UI was in sync execution mode, and now isn't, restore its
4285      prompt (a synchronous execution command has finished, and we're
4286      ready for input).  */
4287   all_uis_check_sync_execution_done ();
4288 
4289   if (cmd_done
4290       && exec_done_display_p
4291       && (inferior_ptid == null_ptid
4292 	  || inferior_thread ()->state != THREAD_RUNNING))
4293     gdb_printf (_("completed.\n"));
4294 }
4295 
4296 /* See infrun.h.  */
4297 
4298 void
4299 set_step_info (thread_info *tp, frame_info_ptr frame,
4300 	       struct symtab_and_line sal)
4301 {
4302   /* This can be removed once this function no longer implicitly relies on the
4303      inferior_ptid value.  */
4304   gdb_assert (inferior_ptid == tp->ptid);
4305 
4306   tp->control.step_frame_id = get_frame_id (frame);
4307   tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4308 
4309   tp->current_symtab = sal.symtab;
4310   tp->current_line = sal.line;
4311 
4312   infrun_debug_printf
4313     ("symtab = %s, line = %d, step_frame_id = %s, step_stack_frame_id = %s",
4314      tp->current_symtab != nullptr ? tp->current_symtab->filename : "<null>",
4315      tp->current_line,
4316      tp->control.step_frame_id.to_string ().c_str (),
4317      tp->control.step_stack_frame_id.to_string ().c_str ());
4318 }
4319 
4320 /* Clear context switchable stepping state.  */
4321 
4322 void
4323 init_thread_stepping_state (struct thread_info *tss)
4324 {
4325   tss->stepped_breakpoint = 0;
4326   tss->stepping_over_breakpoint = 0;
4327   tss->stepping_over_watchpoint = 0;
4328   tss->step_after_step_resume_breakpoint = 0;
4329 }
4330 
4331 /* See infrun.h.  */
4332 
4333 void
4334 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4335 			const target_waitstatus &status)
4336 {
4337   target_last_proc_target = target;
4338   target_last_wait_ptid = ptid;
4339   target_last_waitstatus = status;
4340 }
4341 
4342 /* See infrun.h.  */
4343 
4344 void
4345 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4346 			target_waitstatus *status)
4347 {
4348   if (target != nullptr)
4349     *target = target_last_proc_target;
4350   if (ptid != nullptr)
4351     *ptid = target_last_wait_ptid;
4352   if (status != nullptr)
4353     *status = target_last_waitstatus;
4354 }
4355 
4356 /* See infrun.h.  */
4357 
4358 void
4359 nullify_last_target_wait_ptid (void)
4360 {
4361   target_last_proc_target = nullptr;
4362   target_last_wait_ptid = minus_one_ptid;
4363   target_last_waitstatus = {};
4364 }
4365 
4366 /* Switch thread contexts.  */
4367 
4368 static void
4369 context_switch (execution_control_state *ecs)
4370 {
4371   if (ecs->ptid != inferior_ptid
4372       && (inferior_ptid == null_ptid
4373 	  || ecs->event_thread != inferior_thread ()))
4374     {
4375       infrun_debug_printf ("Switching context from %s to %s",
4376 			   inferior_ptid.to_string ().c_str (),
4377 			   ecs->ptid.to_string ().c_str ());
4378     }
4379 
4380   switch_to_thread (ecs->event_thread);
4381 }
4382 
4383 /* If the target can't tell whether we've hit breakpoints
4384    (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4385    check whether that could have been caused by a breakpoint.  If so,
4386    adjust the PC, per gdbarch_decr_pc_after_break.  */
4387 
4388 static void
4389 adjust_pc_after_break (struct thread_info *thread,
4390 		       const target_waitstatus &ws)
4391 {
4392   struct regcache *regcache;
4393   struct gdbarch *gdbarch;
4394   CORE_ADDR breakpoint_pc, decr_pc;
4395 
4396   /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP.  If
4397      we aren't, just return.
4398 
4399      We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4400      affected by gdbarch_decr_pc_after_break.  Other waitkinds which are
4401      implemented by software breakpoints should be handled through the normal
4402      breakpoint layer.
4403 
4404      NOTE drow/2004-01-31: On some targets, breakpoints may generate
4405      different signals (SIGILL or SIGEMT for instance), but it is less
4406      clear where the PC is pointing afterwards.  It may not match
4407      gdbarch_decr_pc_after_break.  I don't know any specific target that
4408      generates these signals at breakpoints (the code has been in GDB since at
4409      least 1992) so I can not guess how to handle them here.
4410 
4411      In earlier versions of GDB, a target with
4412      gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4413      watchpoint affected by gdbarch_decr_pc_after_break.  I haven't found any
4414      target with both of these set in GDB history, and it seems unlikely to be
4415      correct, so gdbarch_have_nonsteppable_watchpoint is not checked here.  */
4416 
4417   if (ws.kind () != TARGET_WAITKIND_STOPPED)
4418     return;
4419 
4420   if (ws.sig () != GDB_SIGNAL_TRAP)
4421     return;
4422 
4423   /* In reverse execution, when a breakpoint is hit, the instruction
4424      under it has already been de-executed.  The reported PC always
4425      points at the breakpoint address, so adjusting it further would
4426      be wrong.  E.g., consider this case on a decr_pc_after_break == 1
4427      architecture:
4428 
4429        B1         0x08000000 :   INSN1
4430        B2         0x08000001 :   INSN2
4431 		  0x08000002 :   INSN3
4432 	    PC -> 0x08000003 :   INSN4
4433 
4434      Say you're stopped at 0x08000003 as above.  Reverse continuing
4435      from that point should hit B2 as below.  Reading the PC when the
4436      SIGTRAP is reported should read 0x08000001 and INSN2 should have
4437      been de-executed already.
4438 
4439        B1         0x08000000 :   INSN1
4440        B2   PC -> 0x08000001 :   INSN2
4441 		  0x08000002 :   INSN3
4442 		  0x08000003 :   INSN4
4443 
4444      We can't apply the same logic as for forward execution, because
4445      we would wrongly adjust the PC to 0x08000000, since there's a
4446      breakpoint at PC - 1.  We'd then report a hit on B1, although
4447      INSN1 hadn't been de-executed yet.  Doing nothing is the correct
4448      behaviour.  */
4449   if (execution_direction == EXEC_REVERSE)
4450     return;
4451 
4452   /* If the target can tell whether the thread hit a SW breakpoint,
4453      trust it.  Targets that can tell also adjust the PC
4454      themselves.  */
4455   if (target_supports_stopped_by_sw_breakpoint ())
4456     return;
4457 
4458   /* Note that relying on whether a breakpoint is planted in memory to
4459      determine this can fail.  E.g,. the breakpoint could have been
4460      removed since.  Or the thread could have been told to step an
4461      instruction the size of a breakpoint instruction, and only
4462      _after_ was a breakpoint inserted at its address.  */
4463 
4464   /* If this target does not decrement the PC after breakpoints, then
4465      we have nothing to do.  */
4466   regcache = get_thread_regcache (thread);
4467   gdbarch = regcache->arch ();
4468 
4469   decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4470   if (decr_pc == 0)
4471     return;
4472 
4473   const address_space *aspace = regcache->aspace ();
4474 
4475   /* Find the location where (if we've hit a breakpoint) the
4476      breakpoint would be.  */
4477   breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4478 
4479   /* If the target can't tell whether a software breakpoint triggered,
4480      fallback to figuring it out based on breakpoints we think were
4481      inserted in the target, and on whether the thread was stepped or
4482      continued.  */
4483 
4484   /* Check whether there actually is a software breakpoint inserted at
4485      that location.
4486 
4487      If in non-stop mode, a race condition is possible where we've
4488      removed a breakpoint, but stop events for that breakpoint were
4489      already queued and arrive later.  To suppress those spurious
4490      SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4491      and retire them after a number of stop events are reported.  Note
4492      this is an heuristic and can thus get confused.  The real fix is
4493      to get the "stopped by SW BP and needs adjustment" info out of
4494      the target/kernel (and thus never reach here; see above).  */
4495   if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4496       || (target_is_non_stop_p ()
4497 	  && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4498     {
4499       gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4500 
4501       if (record_full_is_used ())
4502 	restore_operation_disable.emplace
4503 	  (record_full_gdb_operation_disable_set ());
4504 
4505       /* When using hardware single-step, a SIGTRAP is reported for both
4506 	 a completed single-step and a software breakpoint.  Need to
4507 	 differentiate between the two, as the latter needs adjusting
4508 	 but the former does not.
4509 
4510 	 The SIGTRAP can be due to a completed hardware single-step only if
4511 	  - we didn't insert software single-step breakpoints
4512 	  - this thread is currently being stepped
4513 
4514 	 If any of these events did not occur, we must have stopped due
4515 	 to hitting a software breakpoint, and have to back up to the
4516 	 breakpoint address.
4517 
4518 	 As a special case, we could have hardware single-stepped a
4519 	 software breakpoint.  In this case (prev_pc == breakpoint_pc),
4520 	 we also need to back up to the breakpoint address.  */
4521 
4522       if (thread_has_single_step_breakpoints_set (thread)
4523 	  || !currently_stepping (thread)
4524 	  || (thread->stepped_breakpoint
4525 	      && thread->prev_pc == breakpoint_pc))
4526 	regcache_write_pc (regcache, breakpoint_pc);
4527     }
4528 }
4529 
4530 static bool
4531 stepped_in_from (frame_info_ptr frame, struct frame_id step_frame_id)
4532 {
4533   for (frame = get_prev_frame (frame);
4534        frame != nullptr;
4535        frame = get_prev_frame (frame))
4536     {
4537       if (get_frame_id (frame) == step_frame_id)
4538 	return true;
4539 
4540       if (get_frame_type (frame) != INLINE_FRAME)
4541 	break;
4542     }
4543 
4544   return false;
4545 }
4546 
4547 /* Look for an inline frame that is marked for skip.
4548    If PREV_FRAME is TRUE start at the previous frame,
4549    otherwise start at the current frame.  Stop at the
4550    first non-inline frame, or at the frame where the
4551    step started.  */
4552 
4553 static bool
4554 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4555 {
4556   frame_info_ptr frame = get_current_frame ();
4557 
4558   if (prev_frame)
4559     frame = get_prev_frame (frame);
4560 
4561   for (; frame != nullptr; frame = get_prev_frame (frame))
4562     {
4563       const char *fn = nullptr;
4564       symtab_and_line sal;
4565       struct symbol *sym;
4566 
4567       if (get_frame_id (frame) == tp->control.step_frame_id)
4568 	break;
4569       if (get_frame_type (frame) != INLINE_FRAME)
4570 	break;
4571 
4572       sal = find_frame_sal (frame);
4573       sym = get_frame_function (frame);
4574 
4575       if (sym != nullptr)
4576 	fn = sym->print_name ();
4577 
4578       if (sal.line != 0
4579 	  && function_name_is_marked_for_skip (fn, sal))
4580 	return true;
4581     }
4582 
4583   return false;
4584 }
4585 
4586 /* If the event thread has the stop requested flag set, pretend it
4587    stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4588    target_stop).  */
4589 
4590 static bool
4591 handle_stop_requested (struct execution_control_state *ecs)
4592 {
4593   if (ecs->event_thread->stop_requested)
4594     {
4595       ecs->ws.set_stopped (GDB_SIGNAL_0);
4596       handle_signal_stop (ecs);
4597       return true;
4598     }
4599   return false;
4600 }
4601 
4602 /* Auxiliary function that handles syscall entry/return events.
4603    It returns true if the inferior should keep going (and GDB
4604    should ignore the event), or false if the event deserves to be
4605    processed.  */
4606 
4607 static bool
4608 handle_syscall_event (struct execution_control_state *ecs)
4609 {
4610   struct regcache *regcache;
4611   int syscall_number;
4612 
4613   context_switch (ecs);
4614 
4615   regcache = get_thread_regcache (ecs->event_thread);
4616   syscall_number = ecs->ws.syscall_number ();
4617   ecs->event_thread->set_stop_pc (regcache_read_pc (regcache));
4618 
4619   if (catch_syscall_enabled () > 0
4620       && catching_syscall_number (syscall_number))
4621     {
4622       infrun_debug_printf ("syscall number=%d", syscall_number);
4623 
4624       ecs->event_thread->control.stop_bpstat
4625 	= bpstat_stop_status_nowatch (regcache->aspace (),
4626 				      ecs->event_thread->stop_pc (),
4627 				      ecs->event_thread, ecs->ws);
4628 
4629       if (handle_stop_requested (ecs))
4630 	return false;
4631 
4632       if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4633 	{
4634 	  /* Catchpoint hit.  */
4635 	  return false;
4636 	}
4637     }
4638 
4639   if (handle_stop_requested (ecs))
4640     return false;
4641 
4642   /* If no catchpoint triggered for this, then keep going.  */
4643   keep_going (ecs);
4644 
4645   return true;
4646 }
4647 
4648 /* Lazily fill in the execution_control_state's stop_func_* fields.  */
4649 
4650 static void
4651 fill_in_stop_func (struct gdbarch *gdbarch,
4652 		   struct execution_control_state *ecs)
4653 {
4654   if (!ecs->stop_func_filled_in)
4655     {
4656       const block *block;
4657       const general_symbol_info *gsi;
4658 
4659       /* Don't care about return value; stop_func_start and stop_func_name
4660 	 will both be 0 if it doesn't work.  */
4661       find_pc_partial_function_sym (ecs->event_thread->stop_pc (),
4662 				    &gsi,
4663 				    &ecs->stop_func_start,
4664 				    &ecs->stop_func_end,
4665 				    &block);
4666       ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4667 
4668       /* The call to find_pc_partial_function, above, will set
4669 	 stop_func_start and stop_func_end to the start and end
4670 	 of the range containing the stop pc.  If this range
4671 	 contains the entry pc for the block (which is always the
4672 	 case for contiguous blocks), advance stop_func_start past
4673 	 the function's start offset and entrypoint.  Note that
4674 	 stop_func_start is NOT advanced when in a range of a
4675 	 non-contiguous block that does not contain the entry pc.  */
4676       if (block != nullptr
4677 	  && ecs->stop_func_start <= block->entry_pc ()
4678 	  && block->entry_pc () < ecs->stop_func_end)
4679 	{
4680 	  ecs->stop_func_start
4681 	    += gdbarch_deprecated_function_start_offset (gdbarch);
4682 
4683 	  if (gdbarch_skip_entrypoint_p (gdbarch))
4684 	    ecs->stop_func_start
4685 	      = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4686 	}
4687 
4688       ecs->stop_func_filled_in = 1;
4689     }
4690 }
4691 
4692 
4693 /* Return the STOP_SOON field of the inferior pointed at by ECS.  */
4694 
4695 static enum stop_kind
4696 get_inferior_stop_soon (execution_control_state *ecs)
4697 {
4698   struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4699 
4700   gdb_assert (inf != nullptr);
4701   return inf->control.stop_soon;
4702 }
4703 
4704 /* Poll for one event out of the current target.  Store the resulting
4705    waitstatus in WS, and return the event ptid.  Does not block.  */
4706 
4707 static ptid_t
4708 poll_one_curr_target (struct target_waitstatus *ws)
4709 {
4710   ptid_t event_ptid;
4711 
4712   overlay_cache_invalid = 1;
4713 
4714   /* Flush target cache before starting to handle each event.
4715      Target was running and cache could be stale.  This is just a
4716      heuristic.  Running threads may modify target memory, but we
4717      don't get any event.  */
4718   target_dcache_invalidate ();
4719 
4720   event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4721 
4722   if (debug_infrun)
4723     print_target_wait_results (minus_one_ptid, event_ptid, *ws);
4724 
4725   return event_ptid;
4726 }
4727 
4728 /* Wait for one event out of any target.  */
4729 
4730 static wait_one_event
4731 wait_one ()
4732 {
4733   while (1)
4734     {
4735       for (inferior *inf : all_inferiors ())
4736 	{
4737 	  process_stratum_target *target = inf->process_target ();
4738 	  if (target == nullptr
4739 	      || !target->is_async_p ()
4740 	      || !target->threads_executing)
4741 	    continue;
4742 
4743 	  switch_to_inferior_no_thread (inf);
4744 
4745 	  wait_one_event event;
4746 	  event.target = target;
4747 	  event.ptid = poll_one_curr_target (&event.ws);
4748 
4749 	  if (event.ws.kind () == TARGET_WAITKIND_NO_RESUMED)
4750 	    {
4751 	      /* If nothing is resumed, remove the target from the
4752 		 event loop.  */
4753 	      target_async (false);
4754 	    }
4755 	  else if (event.ws.kind () != TARGET_WAITKIND_IGNORE)
4756 	    return event;
4757 	}
4758 
4759       /* Block waiting for some event.  */
4760 
4761       fd_set readfds;
4762       int nfds = 0;
4763 
4764       FD_ZERO (&readfds);
4765 
4766       for (inferior *inf : all_inferiors ())
4767 	{
4768 	  process_stratum_target *target = inf->process_target ();
4769 	  if (target == nullptr
4770 	      || !target->is_async_p ()
4771 	      || !target->threads_executing)
4772 	    continue;
4773 
4774 	  int fd = target->async_wait_fd ();
4775 	  FD_SET (fd, &readfds);
4776 	  if (nfds <= fd)
4777 	    nfds = fd + 1;
4778 	}
4779 
4780       if (nfds == 0)
4781 	{
4782 	  /* No waitable targets left.  All must be stopped.  */
4783 	  target_waitstatus ws;
4784 	  ws.set_no_resumed ();
4785 	  return {nullptr, minus_one_ptid, std::move (ws)};
4786 	}
4787 
4788       QUIT;
4789 
4790       int numfds = interruptible_select (nfds, &readfds, 0, nullptr, 0);
4791       if (numfds < 0)
4792 	{
4793 	  if (errno == EINTR)
4794 	    continue;
4795 	  else
4796 	    perror_with_name ("interruptible_select");
4797 	}
4798     }
4799 }
4800 
4801 /* Save the thread's event and stop reason to process it later.  */
4802 
4803 static void
4804 save_waitstatus (struct thread_info *tp, const target_waitstatus &ws)
4805 {
4806   infrun_debug_printf ("saving status %s for %s",
4807 		       ws.to_string ().c_str (),
4808 		       tp->ptid.to_string ().c_str ());
4809 
4810   /* Record for later.  */
4811   tp->set_pending_waitstatus (ws);
4812 
4813   if (ws.kind () == TARGET_WAITKIND_STOPPED
4814       && ws.sig () == GDB_SIGNAL_TRAP)
4815     {
4816       struct regcache *regcache = get_thread_regcache (tp);
4817       const address_space *aspace = regcache->aspace ();
4818       CORE_ADDR pc = regcache_read_pc (regcache);
4819 
4820       adjust_pc_after_break (tp, tp->pending_waitstatus ());
4821 
4822       scoped_restore_current_thread restore_thread;
4823       switch_to_thread (tp);
4824 
4825       if (target_stopped_by_watchpoint ())
4826 	tp->set_stop_reason (TARGET_STOPPED_BY_WATCHPOINT);
4827       else if (target_supports_stopped_by_sw_breakpoint ()
4828 	       && target_stopped_by_sw_breakpoint ())
4829 	tp->set_stop_reason (TARGET_STOPPED_BY_SW_BREAKPOINT);
4830       else if (target_supports_stopped_by_hw_breakpoint ()
4831 	       && target_stopped_by_hw_breakpoint ())
4832 	tp->set_stop_reason (TARGET_STOPPED_BY_HW_BREAKPOINT);
4833       else if (!target_supports_stopped_by_hw_breakpoint ()
4834 	       && hardware_breakpoint_inserted_here_p (aspace, pc))
4835 	tp->set_stop_reason (TARGET_STOPPED_BY_HW_BREAKPOINT);
4836       else if (!target_supports_stopped_by_sw_breakpoint ()
4837 	       && software_breakpoint_inserted_here_p (aspace, pc))
4838 	tp->set_stop_reason (TARGET_STOPPED_BY_SW_BREAKPOINT);
4839       else if (!thread_has_single_step_breakpoints_set (tp)
4840 	       && currently_stepping (tp))
4841 	tp->set_stop_reason (TARGET_STOPPED_BY_SINGLE_STEP);
4842     }
4843 }
4844 
4845 /* Mark the non-executing threads accordingly.  In all-stop, all
4846    threads of all processes are stopped when we get any event
4847    reported.  In non-stop mode, only the event thread stops.  */
4848 
4849 static void
4850 mark_non_executing_threads (process_stratum_target *target,
4851 			    ptid_t event_ptid,
4852 			    const target_waitstatus &ws)
4853 {
4854   ptid_t mark_ptid;
4855 
4856   if (!target_is_non_stop_p ())
4857     mark_ptid = minus_one_ptid;
4858   else if (ws.kind () == TARGET_WAITKIND_SIGNALLED
4859 	   || ws.kind () == TARGET_WAITKIND_EXITED)
4860     {
4861       /* If we're handling a process exit in non-stop mode, even
4862 	 though threads haven't been deleted yet, one would think
4863 	 that there is nothing to do, as threads of the dead process
4864 	 will be soon deleted, and threads of any other process were
4865 	 left running.  However, on some targets, threads survive a
4866 	 process exit event.  E.g., for the "checkpoint" command,
4867 	 when the current checkpoint/fork exits, linux-fork.c
4868 	 automatically switches to another fork from within
4869 	 target_mourn_inferior, by associating the same
4870 	 inferior/thread to another fork.  We haven't mourned yet at
4871 	 this point, but we must mark any threads left in the
4872 	 process as not-executing so that finish_thread_state marks
4873 	 them stopped (in the user's perspective) if/when we present
4874 	 the stop to the user.  */
4875       mark_ptid = ptid_t (event_ptid.pid ());
4876     }
4877   else
4878     mark_ptid = event_ptid;
4879 
4880   set_executing (target, mark_ptid, false);
4881 
4882   /* Likewise the resumed flag.  */
4883   set_resumed (target, mark_ptid, false);
4884 }
4885 
4886 /* Handle one event after stopping threads.  If the eventing thread
4887    reports back any interesting event, we leave it pending.  If the
4888    eventing thread was in the middle of a displaced step, we
4889    cancel/finish it, and unless the thread's inferior is being
4890    detached, put the thread back in the step-over chain.  Returns true
4891    if there are no resumed threads left in the target (thus there's no
4892    point in waiting further), false otherwise.  */
4893 
4894 static bool
4895 handle_one (const wait_one_event &event)
4896 {
4897   infrun_debug_printf
4898     ("%s %s", event.ws.to_string ().c_str (),
4899      event.ptid.to_string ().c_str ());
4900 
4901   if (event.ws.kind () == TARGET_WAITKIND_NO_RESUMED)
4902     {
4903       /* All resumed threads exited.  */
4904       return true;
4905     }
4906   else if (event.ws.kind () == TARGET_WAITKIND_THREAD_EXITED
4907 	   || event.ws.kind () == TARGET_WAITKIND_EXITED
4908 	   || event.ws.kind () == TARGET_WAITKIND_SIGNALLED)
4909     {
4910       /* One thread/process exited/signalled.  */
4911 
4912       thread_info *t = nullptr;
4913 
4914       /* The target may have reported just a pid.  If so, try
4915 	 the first non-exited thread.  */
4916       if (event.ptid.is_pid ())
4917 	{
4918 	  int pid  = event.ptid.pid ();
4919 	  inferior *inf = find_inferior_pid (event.target, pid);
4920 	  for (thread_info *tp : inf->non_exited_threads ())
4921 	    {
4922 	      t = tp;
4923 	      break;
4924 	    }
4925 
4926 	  /* If there is no available thread, the event would
4927 	     have to be appended to a per-inferior event list,
4928 	     which does not exist (and if it did, we'd have
4929 	     to adjust run control command to be able to
4930 	     resume such an inferior).  We assert here instead
4931 	     of going into an infinite loop.  */
4932 	  gdb_assert (t != nullptr);
4933 
4934 	  infrun_debug_printf
4935 	    ("using %s", t->ptid.to_string ().c_str ());
4936 	}
4937       else
4938 	{
4939 	  t = find_thread_ptid (event.target, event.ptid);
4940 	  /* Check if this is the first time we see this thread.
4941 	     Don't bother adding if it individually exited.  */
4942 	  if (t == nullptr
4943 	      && event.ws.kind () != TARGET_WAITKIND_THREAD_EXITED)
4944 	    t = add_thread (event.target, event.ptid);
4945 	}
4946 
4947       if (t != nullptr)
4948 	{
4949 	  /* Set the threads as non-executing to avoid
4950 	     another stop attempt on them.  */
4951 	  switch_to_thread_no_regs (t);
4952 	  mark_non_executing_threads (event.target, event.ptid,
4953 				      event.ws);
4954 	  save_waitstatus (t, event.ws);
4955 	  t->stop_requested = false;
4956 	}
4957     }
4958   else
4959     {
4960       thread_info *t = find_thread_ptid (event.target, event.ptid);
4961       if (t == nullptr)
4962 	t = add_thread (event.target, event.ptid);
4963 
4964       t->stop_requested = 0;
4965       t->set_executing (false);
4966       t->set_resumed (false);
4967       t->control.may_range_step = 0;
4968 
4969       /* This may be the first time we see the inferior report
4970 	 a stop.  */
4971       if (t->inf->needs_setup)
4972 	{
4973 	  switch_to_thread_no_regs (t);
4974 	  setup_inferior (0);
4975 	}
4976 
4977       if (event.ws.kind () == TARGET_WAITKIND_STOPPED
4978 	  && event.ws.sig () == GDB_SIGNAL_0)
4979 	{
4980 	  /* We caught the event that we intended to catch, so
4981 	     there's no event to save as pending.  */
4982 
4983 	  if (displaced_step_finish (t, GDB_SIGNAL_0)
4984 	      == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4985 	    {
4986 	      /* Add it back to the step-over queue.  */
4987 	      infrun_debug_printf
4988 		("displaced-step of %s canceled",
4989 		 t->ptid.to_string ().c_str ());
4990 
4991 	      t->control.trap_expected = 0;
4992 	      if (!t->inf->detaching)
4993 		global_thread_step_over_chain_enqueue (t);
4994 	    }
4995 	}
4996       else
4997 	{
4998 	  enum gdb_signal sig;
4999 	  struct regcache *regcache;
5000 
5001 	  infrun_debug_printf
5002 	    ("target_wait %s, saving status for %s",
5003 	     event.ws.to_string ().c_str (),
5004 	     t->ptid.to_string ().c_str ());
5005 
5006 	  /* Record for later.  */
5007 	  save_waitstatus (t, event.ws);
5008 
5009 	  sig = (event.ws.kind () == TARGET_WAITKIND_STOPPED
5010 		 ? event.ws.sig () : GDB_SIGNAL_0);
5011 
5012 	  if (displaced_step_finish (t, sig)
5013 	      == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
5014 	    {
5015 	      /* Add it back to the step-over queue.  */
5016 	      t->control.trap_expected = 0;
5017 	      if (!t->inf->detaching)
5018 		global_thread_step_over_chain_enqueue (t);
5019 	    }
5020 
5021 	  regcache = get_thread_regcache (t);
5022 	  t->set_stop_pc (regcache_read_pc (regcache));
5023 
5024 	  infrun_debug_printf ("saved stop_pc=%s for %s "
5025 			       "(currently_stepping=%d)",
5026 			       paddress (target_gdbarch (), t->stop_pc ()),
5027 			       t->ptid.to_string ().c_str (),
5028 			       currently_stepping (t));
5029 	}
5030     }
5031 
5032   return false;
5033 }
5034 
5035 /* See infrun.h.  */
5036 
5037 void
5038 stop_all_threads (const char *reason, inferior *inf)
5039 {
5040   /* We may need multiple passes to discover all threads.  */
5041   int pass;
5042   int iterations = 0;
5043 
5044   gdb_assert (exists_non_stop_target ());
5045 
5046   INFRUN_SCOPED_DEBUG_START_END ("reason=%s, inf=%d", reason,
5047 				 inf != nullptr ? inf->num : -1);
5048 
5049   infrun_debug_show_threads ("non-exited threads",
5050 			     all_non_exited_threads ());
5051 
5052   scoped_restore_current_thread restore_thread;
5053 
5054   /* Enable thread events on relevant targets.  */
5055   for (auto *target : all_non_exited_process_targets ())
5056     {
5057       if (inf != nullptr && inf->process_target () != target)
5058 	continue;
5059 
5060       switch_to_target_no_thread (target);
5061       target_thread_events (true);
5062     }
5063 
5064   SCOPE_EXIT
5065     {
5066       /* Disable thread events on relevant targets.  */
5067       for (auto *target : all_non_exited_process_targets ())
5068 	{
5069 	  if (inf != nullptr && inf->process_target () != target)
5070 	    continue;
5071 
5072 	  switch_to_target_no_thread (target);
5073 	  target_thread_events (false);
5074 	}
5075 
5076       /* Use debug_prefixed_printf directly to get a meaningful function
5077 	 name.  */
5078       if (debug_infrun)
5079 	debug_prefixed_printf ("infrun", "stop_all_threads", "done");
5080     };
5081 
5082   /* Request threads to stop, and then wait for the stops.  Because
5083      threads we already know about can spawn more threads while we're
5084      trying to stop them, and we only learn about new threads when we
5085      update the thread list, do this in a loop, and keep iterating
5086      until two passes find no threads that need to be stopped.  */
5087   for (pass = 0; pass < 2; pass++, iterations++)
5088     {
5089       infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
5090       while (1)
5091 	{
5092 	  int waits_needed = 0;
5093 
5094 	  for (auto *target : all_non_exited_process_targets ())
5095 	    {
5096 	      if (inf != nullptr && inf->process_target () != target)
5097 		continue;
5098 
5099 	      switch_to_target_no_thread (target);
5100 	      update_thread_list ();
5101 	    }
5102 
5103 	  /* Go through all threads looking for threads that we need
5104 	     to tell the target to stop.  */
5105 	  for (thread_info *t : all_non_exited_threads ())
5106 	    {
5107 	      if (inf != nullptr && t->inf != inf)
5108 		continue;
5109 
5110 	      /* For a single-target setting with an all-stop target,
5111 		 we would not even arrive here.  For a multi-target
5112 		 setting, until GDB is able to handle a mixture of
5113 		 all-stop and non-stop targets, simply skip all-stop
5114 		 targets' threads.  This should be fine due to the
5115 		 protection of 'check_multi_target_resumption'.  */
5116 
5117 	      switch_to_thread_no_regs (t);
5118 	      if (!target_is_non_stop_p ())
5119 		continue;
5120 
5121 	      if (t->executing ())
5122 		{
5123 		  /* If already stopping, don't request a stop again.
5124 		     We just haven't seen the notification yet.  */
5125 		  if (!t->stop_requested)
5126 		    {
5127 		      infrun_debug_printf ("  %s executing, need stop",
5128 					   t->ptid.to_string ().c_str ());
5129 		      target_stop (t->ptid);
5130 		      t->stop_requested = 1;
5131 		    }
5132 		  else
5133 		    {
5134 		      infrun_debug_printf ("  %s executing, already stopping",
5135 					   t->ptid.to_string ().c_str ());
5136 		    }
5137 
5138 		  if (t->stop_requested)
5139 		    waits_needed++;
5140 		}
5141 	      else
5142 		{
5143 		  infrun_debug_printf ("  %s not executing",
5144 				       t->ptid.to_string ().c_str ());
5145 
5146 		  /* The thread may be not executing, but still be
5147 		     resumed with a pending status to process.  */
5148 		  t->set_resumed (false);
5149 		}
5150 	    }
5151 
5152 	  if (waits_needed == 0)
5153 	    break;
5154 
5155 	  /* If we find new threads on the second iteration, restart
5156 	     over.  We want to see two iterations in a row with all
5157 	     threads stopped.  */
5158 	  if (pass > 0)
5159 	    pass = -1;
5160 
5161 	  for (int i = 0; i < waits_needed; i++)
5162 	    {
5163 	      wait_one_event event = wait_one ();
5164 	      if (handle_one (event))
5165 		break;
5166 	    }
5167 	}
5168     }
5169 }
5170 
5171 /* Handle a TARGET_WAITKIND_NO_RESUMED event.  */
5172 
5173 static bool
5174 handle_no_resumed (struct execution_control_state *ecs)
5175 {
5176   if (target_can_async_p ())
5177     {
5178       bool any_sync = false;
5179 
5180       for (ui *ui : all_uis ())
5181 	{
5182 	  if (ui->prompt_state == PROMPT_BLOCKED)
5183 	    {
5184 	      any_sync = true;
5185 	      break;
5186 	    }
5187 	}
5188       if (!any_sync)
5189 	{
5190 	  /* There were no unwaited-for children left in the target, but,
5191 	     we're not synchronously waiting for events either.  Just
5192 	     ignore.  */
5193 
5194 	  infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
5195 	  prepare_to_wait (ecs);
5196 	  return true;
5197 	}
5198     }
5199 
5200   /* Otherwise, if we were running a synchronous execution command, we
5201      may need to cancel it and give the user back the terminal.
5202 
5203      In non-stop mode, the target can't tell whether we've already
5204      consumed previous stop events, so it can end up sending us a
5205      no-resumed event like so:
5206 
5207        #0 - thread 1 is left stopped
5208 
5209        #1 - thread 2 is resumed and hits breakpoint
5210 	       -> TARGET_WAITKIND_STOPPED
5211 
5212        #2 - thread 3 is resumed and exits
5213 	    this is the last resumed thread, so
5214 	       -> TARGET_WAITKIND_NO_RESUMED
5215 
5216        #3 - gdb processes stop for thread 2 and decides to re-resume
5217 	    it.
5218 
5219        #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
5220 	    thread 2 is now resumed, so the event should be ignored.
5221 
5222      IOW, if the stop for thread 2 doesn't end a foreground command,
5223      then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5224      event.  But it could be that the event meant that thread 2 itself
5225      (or whatever other thread was the last resumed thread) exited.
5226 
5227      To address this we refresh the thread list and check whether we
5228      have resumed threads _now_.  In the example above, this removes
5229      thread 3 from the thread list.  If thread 2 was re-resumed, we
5230      ignore this event.  If we find no thread resumed, then we cancel
5231      the synchronous command and show "no unwaited-for " to the
5232      user.  */
5233 
5234   inferior *curr_inf = current_inferior ();
5235 
5236   scoped_restore_current_thread restore_thread;
5237   update_thread_list ();
5238 
5239   /* If:
5240 
5241        - the current target has no thread executing, and
5242        - the current inferior is native, and
5243        - the current inferior is the one which has the terminal, and
5244        - we did nothing,
5245 
5246      then a Ctrl-C from this point on would remain stuck in the
5247      kernel, until a thread resumes and dequeues it.  That would
5248      result in the GDB CLI not reacting to Ctrl-C, not able to
5249      interrupt the program.  To address this, if the current inferior
5250      no longer has any thread executing, we give the terminal to some
5251      other inferior that has at least one thread executing.  */
5252   bool swap_terminal = true;
5253 
5254   /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
5255      whether to report it to the user.  */
5256   bool ignore_event = false;
5257 
5258   for (thread_info *thread : all_non_exited_threads ())
5259     {
5260       if (swap_terminal && thread->executing ())
5261 	{
5262 	  if (thread->inf != curr_inf)
5263 	    {
5264 	      target_terminal::ours ();
5265 
5266 	      switch_to_thread (thread);
5267 	      target_terminal::inferior ();
5268 	    }
5269 	  swap_terminal = false;
5270 	}
5271 
5272       if (!ignore_event && thread->resumed ())
5273 	{
5274 	  /* Either there were no unwaited-for children left in the
5275 	     target at some point, but there are now, or some target
5276 	     other than the eventing one has unwaited-for children
5277 	     left.  Just ignore.  */
5278 	  infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5279 			       "(ignoring: found resumed)");
5280 
5281 	  ignore_event = true;
5282 	}
5283 
5284       if (ignore_event && !swap_terminal)
5285 	break;
5286     }
5287 
5288   if (ignore_event)
5289     {
5290       switch_to_inferior_no_thread (curr_inf);
5291       prepare_to_wait (ecs);
5292       return true;
5293     }
5294 
5295   /* Go ahead and report the event.  */
5296   return false;
5297 }
5298 
5299 /* Given an execution control state that has been freshly filled in by
5300    an event from the inferior, figure out what it means and take
5301    appropriate action.
5302 
5303    The alternatives are:
5304 
5305    1) stop_waiting and return; to really stop and return to the
5306    debugger.
5307 
5308    2) keep_going and return; to wait for the next event (set
5309    ecs->event_thread->stepping_over_breakpoint to 1 to single step
5310    once).  */
5311 
5312 static void
5313 handle_inferior_event (struct execution_control_state *ecs)
5314 {
5315   /* Make sure that all temporary struct value objects that were
5316      created during the handling of the event get deleted at the
5317      end.  */
5318   scoped_value_mark free_values;
5319 
5320   infrun_debug_printf ("%s", ecs->ws.to_string ().c_str ());
5321 
5322   if (ecs->ws.kind () == TARGET_WAITKIND_IGNORE)
5323     {
5324       /* We had an event in the inferior, but we are not interested in
5325 	 handling it at this level.  The lower layers have already
5326 	 done what needs to be done, if anything.
5327 
5328 	 One of the possible circumstances for this is when the
5329 	 inferior produces output for the console.  The inferior has
5330 	 not stopped, and we are ignoring the event.  Another possible
5331 	 circumstance is any event which the lower level knows will be
5332 	 reported multiple times without an intervening resume.  */
5333       prepare_to_wait (ecs);
5334       return;
5335     }
5336 
5337   if (ecs->ws.kind () == TARGET_WAITKIND_THREAD_EXITED)
5338     {
5339       prepare_to_wait (ecs);
5340       return;
5341     }
5342 
5343   if (ecs->ws.kind () == TARGET_WAITKIND_NO_RESUMED
5344       && handle_no_resumed (ecs))
5345     return;
5346 
5347   /* Cache the last target/ptid/waitstatus.  */
5348   set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5349 
5350   /* Always clear state belonging to the previous time we stopped.  */
5351   stop_stack_dummy = STOP_NONE;
5352 
5353   if (ecs->ws.kind () == TARGET_WAITKIND_NO_RESUMED)
5354     {
5355       /* No unwaited-for children left.  IOW, all resumed children
5356 	 have exited.  */
5357       stop_print_frame = false;
5358       stop_waiting (ecs);
5359       return;
5360     }
5361 
5362   if (ecs->ws.kind () != TARGET_WAITKIND_EXITED
5363       && ecs->ws.kind () != TARGET_WAITKIND_SIGNALLED)
5364     {
5365       ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5366       /* If it's a new thread, add it to the thread database.  */
5367       if (ecs->event_thread == nullptr)
5368 	ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5369 
5370       /* Disable range stepping.  If the next step request could use a
5371 	 range, this will be end up re-enabled then.  */
5372       ecs->event_thread->control.may_range_step = 0;
5373     }
5374 
5375   /* Dependent on valid ECS->EVENT_THREAD.  */
5376   adjust_pc_after_break (ecs->event_thread, ecs->ws);
5377 
5378   /* Dependent on the current PC value modified by adjust_pc_after_break.  */
5379   reinit_frame_cache ();
5380 
5381   breakpoint_retire_moribund ();
5382 
5383   /* First, distinguish signals caused by the debugger from signals
5384      that have to do with the program's own actions.  Note that
5385      breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5386      on the operating system version.  Here we detect when a SIGILL or
5387      SIGEMT is really a breakpoint and change it to SIGTRAP.  We do
5388      something similar for SIGSEGV, since a SIGSEGV will be generated
5389      when we're trying to execute a breakpoint instruction on a
5390      non-executable stack.  This happens for call dummy breakpoints
5391      for architectures like SPARC that place call dummies on the
5392      stack.  */
5393   if (ecs->ws.kind () == TARGET_WAITKIND_STOPPED
5394       && (ecs->ws.sig () == GDB_SIGNAL_ILL
5395 	  || ecs->ws.sig () == GDB_SIGNAL_SEGV
5396 	  || ecs->ws.sig () == GDB_SIGNAL_EMT))
5397     {
5398       struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5399 
5400       if (breakpoint_inserted_here_p (regcache->aspace (),
5401 				      regcache_read_pc (regcache)))
5402 	{
5403 	  infrun_debug_printf ("Treating signal as SIGTRAP");
5404 	  ecs->ws.set_stopped (GDB_SIGNAL_TRAP);
5405 	}
5406     }
5407 
5408   mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5409 
5410   switch (ecs->ws.kind ())
5411     {
5412     case TARGET_WAITKIND_LOADED:
5413       {
5414 	context_switch (ecs);
5415 	/* Ignore gracefully during startup of the inferior, as it might
5416 	   be the shell which has just loaded some objects, otherwise
5417 	   add the symbols for the newly loaded objects.  Also ignore at
5418 	   the beginning of an attach or remote session; we will query
5419 	   the full list of libraries once the connection is
5420 	   established.  */
5421 
5422 	stop_kind stop_soon = get_inferior_stop_soon (ecs);
5423 	if (stop_soon == NO_STOP_QUIETLY)
5424 	  {
5425 	    struct regcache *regcache;
5426 
5427 	    regcache = get_thread_regcache (ecs->event_thread);
5428 
5429 	    handle_solib_event ();
5430 
5431 	    ecs->event_thread->set_stop_pc (regcache_read_pc (regcache));
5432 	    ecs->event_thread->control.stop_bpstat
5433 	      = bpstat_stop_status_nowatch (regcache->aspace (),
5434 					    ecs->event_thread->stop_pc (),
5435 					    ecs->event_thread, ecs->ws);
5436 
5437 	    if (handle_stop_requested (ecs))
5438 	      return;
5439 
5440 	    if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5441 	      {
5442 		/* A catchpoint triggered.  */
5443 		process_event_stop_test (ecs);
5444 		return;
5445 	      }
5446 
5447 	    /* If requested, stop when the dynamic linker notifies
5448 	       gdb of events.  This allows the user to get control
5449 	       and place breakpoints in initializer routines for
5450 	       dynamically loaded objects (among other things).  */
5451 	    ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
5452 	    if (stop_on_solib_events)
5453 	      {
5454 		/* Make sure we print "Stopped due to solib-event" in
5455 		   normal_stop.  */
5456 		stop_print_frame = true;
5457 
5458 		stop_waiting (ecs);
5459 		return;
5460 	      }
5461 	  }
5462 
5463 	/* If we are skipping through a shell, or through shared library
5464 	   loading that we aren't interested in, resume the program.  If
5465 	   we're running the program normally, also resume.  */
5466 	if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5467 	  {
5468 	    /* Loading of shared libraries might have changed breakpoint
5469 	       addresses.  Make sure new breakpoints are inserted.  */
5470 	    if (stop_soon == NO_STOP_QUIETLY)
5471 	      insert_breakpoints ();
5472 	    resume (GDB_SIGNAL_0);
5473 	    prepare_to_wait (ecs);
5474 	    return;
5475 	  }
5476 
5477 	/* But stop if we're attaching or setting up a remote
5478 	   connection.  */
5479 	if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5480 	    || stop_soon == STOP_QUIETLY_REMOTE)
5481 	  {
5482 	    infrun_debug_printf ("quietly stopped");
5483 	    stop_waiting (ecs);
5484 	    return;
5485 	  }
5486 
5487 	internal_error (_("unhandled stop_soon: %d"), (int) stop_soon);
5488       }
5489 
5490     case TARGET_WAITKIND_SPURIOUS:
5491       if (handle_stop_requested (ecs))
5492 	return;
5493       context_switch (ecs);
5494       resume (GDB_SIGNAL_0);
5495       prepare_to_wait (ecs);
5496       return;
5497 
5498     case TARGET_WAITKIND_THREAD_CREATED:
5499       if (handle_stop_requested (ecs))
5500 	return;
5501       context_switch (ecs);
5502       if (!switch_back_to_stepped_thread (ecs))
5503 	keep_going (ecs);
5504       return;
5505 
5506     case TARGET_WAITKIND_EXITED:
5507     case TARGET_WAITKIND_SIGNALLED:
5508       {
5509 	/* Depending on the system, ecs->ptid may point to a thread or
5510 	   to a process.  On some targets, target_mourn_inferior may
5511 	   need to have access to the just-exited thread.  That is the
5512 	   case of GNU/Linux's "checkpoint" support, for example.
5513 	   Call the switch_to_xxx routine as appropriate.  */
5514 	thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5515 	if (thr != nullptr)
5516 	  switch_to_thread (thr);
5517 	else
5518 	  {
5519 	    inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5520 	    switch_to_inferior_no_thread (inf);
5521 	  }
5522       }
5523       handle_vfork_child_exec_or_exit (0);
5524       target_terminal::ours ();	/* Must do this before mourn anyway.  */
5525 
5526       /* Clearing any previous state of convenience variables.  */
5527       clear_exit_convenience_vars ();
5528 
5529       if (ecs->ws.kind () == TARGET_WAITKIND_EXITED)
5530 	{
5531 	  /* Record the exit code in the convenience variable $_exitcode, so
5532 	     that the user can inspect this again later.  */
5533 	  set_internalvar_integer (lookup_internalvar ("_exitcode"),
5534 				   (LONGEST) ecs->ws.exit_status ());
5535 
5536 	  /* Also record this in the inferior itself.  */
5537 	  current_inferior ()->has_exit_code = true;
5538 	  current_inferior ()->exit_code = (LONGEST) ecs->ws.exit_status ();
5539 
5540 	  /* Support the --return-child-result option.  */
5541 	  return_child_result_value = ecs->ws.exit_status ();
5542 
5543 	  gdb::observers::exited.notify (ecs->ws.exit_status ());
5544 	}
5545       else
5546 	{
5547 	  struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5548 
5549 	  if (gdbarch_gdb_signal_to_target_p (gdbarch))
5550 	    {
5551 	      /* Set the value of the internal variable $_exitsignal,
5552 		 which holds the signal uncaught by the inferior.  */
5553 	      set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5554 				       gdbarch_gdb_signal_to_target (gdbarch,
5555 							  ecs->ws.sig ()));
5556 	    }
5557 	  else
5558 	    {
5559 	      /* We don't have access to the target's method used for
5560 		 converting between signal numbers (GDB's internal
5561 		 representation <-> target's representation).
5562 		 Therefore, we cannot do a good job at displaying this
5563 		 information to the user.  It's better to just warn
5564 		 her about it (if infrun debugging is enabled), and
5565 		 give up.  */
5566 	      infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5567 				   "signal number.");
5568 	    }
5569 
5570 	  gdb::observers::signal_exited.notify (ecs->ws.sig ());
5571 	}
5572 
5573       gdb_flush (gdb_stdout);
5574       target_mourn_inferior (inferior_ptid);
5575       stop_print_frame = false;
5576       stop_waiting (ecs);
5577       return;
5578 
5579     case TARGET_WAITKIND_FORKED:
5580     case TARGET_WAITKIND_VFORKED:
5581       /* Check whether the inferior is displaced stepping.  */
5582       {
5583 	struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5584 	struct gdbarch *gdbarch = regcache->arch ();
5585 	inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
5586 
5587 	/* If this is a fork (child gets its own address space copy)
5588 	   and some displaced step buffers were in use at the time of
5589 	   the fork, restore the displaced step buffer bytes in the
5590 	   child process.
5591 
5592 	   Architectures which support displaced stepping and fork
5593 	   events must supply an implementation of
5594 	   gdbarch_displaced_step_restore_all_in_ptid.  This is not
5595 	   enforced during gdbarch validation to support architectures
5596 	   which support displaced stepping but not forks.  */
5597 	if (ecs->ws.kind () == TARGET_WAITKIND_FORKED
5598 	    && gdbarch_supports_displaced_stepping (gdbarch))
5599 	  gdbarch_displaced_step_restore_all_in_ptid
5600 	    (gdbarch, parent_inf, ecs->ws.child_ptid ());
5601 
5602 	/* If displaced stepping is supported, and thread ecs->ptid is
5603 	   displaced stepping.  */
5604 	if (displaced_step_in_progress_thread (ecs->event_thread))
5605 	  {
5606 	    struct regcache *child_regcache;
5607 	    CORE_ADDR parent_pc;
5608 
5609 	    /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5610 	       indicating that the displaced stepping of syscall instruction
5611 	       has been done.  Perform cleanup for parent process here.  Note
5612 	       that this operation also cleans up the child process for vfork,
5613 	       because their pages are shared.  */
5614 	    displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
5615 	    /* Start a new step-over in another thread if there's one
5616 	       that needs it.  */
5617 	    start_step_over ();
5618 
5619 	    /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5620 	       the child's PC is also within the scratchpad.  Set the child's PC
5621 	       to the parent's PC value, which has already been fixed up.
5622 	       FIXME: we use the parent's aspace here, although we're touching
5623 	       the child, because the child hasn't been added to the inferior
5624 	       list yet at this point.  */
5625 
5626 	    child_regcache
5627 	      = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5628 						 ecs->ws.child_ptid (),
5629 						 gdbarch,
5630 						 parent_inf->aspace);
5631 	    /* Read PC value of parent process.  */
5632 	    parent_pc = regcache_read_pc (regcache);
5633 
5634 	    displaced_debug_printf ("write child pc from %s to %s",
5635 				    paddress (gdbarch,
5636 					      regcache_read_pc (child_regcache)),
5637 				    paddress (gdbarch, parent_pc));
5638 
5639 	    regcache_write_pc (child_regcache, parent_pc);
5640 	  }
5641       }
5642 
5643       context_switch (ecs);
5644 
5645       /* Immediately detach breakpoints from the child before there's
5646 	 any chance of letting the user delete breakpoints from the
5647 	 breakpoint lists.  If we don't do this early, it's easy to
5648 	 leave left over traps in the child, vis: "break foo; catch
5649 	 fork; c; <fork>; del; c; <child calls foo>".  We only follow
5650 	 the fork on the last `continue', and by that time the
5651 	 breakpoint at "foo" is long gone from the breakpoint table.
5652 	 If we vforked, then we don't need to unpatch here, since both
5653 	 parent and child are sharing the same memory pages; we'll
5654 	 need to unpatch at follow/detach time instead to be certain
5655 	 that new breakpoints added between catchpoint hit time and
5656 	 vfork follow are detached.  */
5657       if (ecs->ws.kind () != TARGET_WAITKIND_VFORKED)
5658 	{
5659 	  /* This won't actually modify the breakpoint list, but will
5660 	     physically remove the breakpoints from the child.  */
5661 	  detach_breakpoints (ecs->ws.child_ptid ());
5662 	}
5663 
5664       delete_just_stopped_threads_single_step_breakpoints ();
5665 
5666       /* In case the event is caught by a catchpoint, remember that
5667 	 the event is to be followed at the next resume of the thread,
5668 	 and not immediately.  */
5669       ecs->event_thread->pending_follow = ecs->ws;
5670 
5671       ecs->event_thread->set_stop_pc
5672 	(regcache_read_pc (get_thread_regcache (ecs->event_thread)));
5673 
5674       ecs->event_thread->control.stop_bpstat
5675 	= bpstat_stop_status_nowatch (get_current_regcache ()->aspace (),
5676 				      ecs->event_thread->stop_pc (),
5677 				      ecs->event_thread, ecs->ws);
5678 
5679       if (handle_stop_requested (ecs))
5680 	return;
5681 
5682       /* If no catchpoint triggered for this, then keep going.  Note
5683 	 that we're interested in knowing the bpstat actually causes a
5684 	 stop, not just if it may explain the signal.  Software
5685 	 watchpoints, for example, always appear in the bpstat.  */
5686       if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5687 	{
5688 	  bool follow_child
5689 	    = (follow_fork_mode_string == follow_fork_mode_child);
5690 
5691 	  ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
5692 
5693 	  process_stratum_target *targ
5694 	    = ecs->event_thread->inf->process_target ();
5695 
5696 	  bool should_resume = follow_fork ();
5697 
5698 	  /* Note that one of these may be an invalid pointer,
5699 	     depending on detach_fork.  */
5700 	  thread_info *parent = ecs->event_thread;
5701 	  thread_info *child = find_thread_ptid (targ, ecs->ws.child_ptid ());
5702 
5703 	  /* At this point, the parent is marked running, and the
5704 	     child is marked stopped.  */
5705 
5706 	  /* If not resuming the parent, mark it stopped.  */
5707 	  if (follow_child && !detach_fork && !non_stop && !sched_multi)
5708 	    parent->set_running (false);
5709 
5710 	  /* If resuming the child, mark it running.  */
5711 	  if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5712 	    child->set_running (true);
5713 
5714 	  /* In non-stop mode, also resume the other branch.  */
5715 	  if (!detach_fork && (non_stop
5716 			       || (sched_multi && target_is_non_stop_p ())))
5717 	    {
5718 	      if (follow_child)
5719 		switch_to_thread (parent);
5720 	      else
5721 		switch_to_thread (child);
5722 
5723 	      ecs->event_thread = inferior_thread ();
5724 	      ecs->ptid = inferior_ptid;
5725 	      keep_going (ecs);
5726 	    }
5727 
5728 	  if (follow_child)
5729 	    switch_to_thread (child);
5730 	  else
5731 	    switch_to_thread (parent);
5732 
5733 	  ecs->event_thread = inferior_thread ();
5734 	  ecs->ptid = inferior_ptid;
5735 
5736 	  if (should_resume)
5737 	    {
5738 	      /* Never call switch_back_to_stepped_thread if we are waiting for
5739 	         vfork-done (waiting for an external vfork child to exec or
5740 		 exit).  We will resume only the vforking thread for the purpose
5741 		 of collecting the vfork-done event, and we will restart any
5742 		 step once the critical shared address space window is done.  */
5743 	      if ((!follow_child
5744 		   && detach_fork
5745 		   && parent->inf->thread_waiting_for_vfork_done != nullptr)
5746 		  || !switch_back_to_stepped_thread (ecs))
5747 		keep_going (ecs);
5748 	    }
5749 	  else
5750 	    stop_waiting (ecs);
5751 	  return;
5752 	}
5753       process_event_stop_test (ecs);
5754       return;
5755 
5756     case TARGET_WAITKIND_VFORK_DONE:
5757       /* Done with the shared memory region.  Re-insert breakpoints in
5758 	 the parent, and keep going.  */
5759 
5760       context_switch (ecs);
5761 
5762       handle_vfork_done (ecs->event_thread);
5763       gdb_assert (inferior_thread () == ecs->event_thread);
5764 
5765       if (handle_stop_requested (ecs))
5766 	return;
5767 
5768       if (!switch_back_to_stepped_thread (ecs))
5769 	{
5770 	  gdb_assert (inferior_thread () == ecs->event_thread);
5771 	  /* This also takes care of reinserting breakpoints in the
5772 	     previously locked inferior.  */
5773 	  keep_going (ecs);
5774 	}
5775       return;
5776 
5777     case TARGET_WAITKIND_EXECD:
5778 
5779       /* Note we can't read registers yet (the stop_pc), because we
5780 	 don't yet know the inferior's post-exec architecture.
5781 	 'stop_pc' is explicitly read below instead.  */
5782       switch_to_thread_no_regs (ecs->event_thread);
5783 
5784       /* Do whatever is necessary to the parent branch of the vfork.  */
5785       handle_vfork_child_exec_or_exit (1);
5786 
5787       /* This causes the eventpoints and symbol table to be reset.
5788 	 Must do this now, before trying to determine whether to
5789 	 stop.  */
5790       follow_exec (inferior_ptid, ecs->ws.execd_pathname ());
5791 
5792       /* In follow_exec we may have deleted the original thread and
5793 	 created a new one.  Make sure that the event thread is the
5794 	 execd thread for that case (this is a nop otherwise).  */
5795       ecs->event_thread = inferior_thread ();
5796 
5797       ecs->event_thread->set_stop_pc
5798 	(regcache_read_pc (get_thread_regcache (ecs->event_thread)));
5799 
5800       ecs->event_thread->control.stop_bpstat
5801 	= bpstat_stop_status_nowatch (get_current_regcache ()->aspace (),
5802 				      ecs->event_thread->stop_pc (),
5803 				      ecs->event_thread, ecs->ws);
5804 
5805       if (handle_stop_requested (ecs))
5806 	return;
5807 
5808       /* If no catchpoint triggered for this, then keep going.  */
5809       if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5810 	{
5811 	  ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
5812 	  keep_going (ecs);
5813 	  return;
5814 	}
5815       process_event_stop_test (ecs);
5816       return;
5817 
5818       /* Be careful not to try to gather much state about a thread
5819 	 that's in a syscall.  It's frequently a losing proposition.  */
5820     case TARGET_WAITKIND_SYSCALL_ENTRY:
5821       /* Getting the current syscall number.  */
5822       if (handle_syscall_event (ecs) == 0)
5823 	process_event_stop_test (ecs);
5824       return;
5825 
5826       /* Before examining the threads further, step this thread to
5827 	 get it entirely out of the syscall.  (We get notice of the
5828 	 event when the thread is just on the verge of exiting a
5829 	 syscall.  Stepping one instruction seems to get it back
5830 	 into user code.)  */
5831     case TARGET_WAITKIND_SYSCALL_RETURN:
5832       if (handle_syscall_event (ecs) == 0)
5833 	process_event_stop_test (ecs);
5834       return;
5835 
5836     case TARGET_WAITKIND_STOPPED:
5837       handle_signal_stop (ecs);
5838       return;
5839 
5840     case TARGET_WAITKIND_NO_HISTORY:
5841       /* Reverse execution: target ran out of history info.  */
5842 
5843       /* Switch to the stopped thread.  */
5844       context_switch (ecs);
5845       infrun_debug_printf ("stopped");
5846 
5847       delete_just_stopped_threads_single_step_breakpoints ();
5848       ecs->event_thread->set_stop_pc
5849 	(regcache_read_pc (get_thread_regcache (inferior_thread ())));
5850 
5851       if (handle_stop_requested (ecs))
5852 	return;
5853 
5854       gdb::observers::no_history.notify ();
5855       stop_waiting (ecs);
5856       return;
5857     }
5858 }
5859 
5860 /* Restart threads back to what they were trying to do back when we
5861    paused them (because of an in-line step-over or vfork, for example).
5862    The EVENT_THREAD thread is ignored (not restarted).
5863 
5864    If INF is non-nullptr, only resume threads from INF.  */
5865 
5866 static void
5867 restart_threads (struct thread_info *event_thread, inferior *inf)
5868 {
5869   INFRUN_SCOPED_DEBUG_START_END ("event_thread=%s, inf=%d",
5870 				 event_thread->ptid.to_string ().c_str (),
5871 				 inf != nullptr ? inf->num : -1);
5872 
5873   gdb_assert (!step_over_info_valid_p ());
5874 
5875   /* In case the instruction just stepped spawned a new thread.  */
5876   update_thread_list ();
5877 
5878   for (thread_info *tp : all_non_exited_threads ())
5879     {
5880       if (inf != nullptr && tp->inf != inf)
5881 	continue;
5882 
5883       if (tp->inf->detaching)
5884 	{
5885 	  infrun_debug_printf ("restart threads: [%s] inferior detaching",
5886 			       tp->ptid.to_string ().c_str ());
5887 	  continue;
5888 	}
5889 
5890       switch_to_thread_no_regs (tp);
5891 
5892       if (tp == event_thread)
5893 	{
5894 	  infrun_debug_printf ("restart threads: [%s] is event thread",
5895 			       tp->ptid.to_string ().c_str ());
5896 	  continue;
5897 	}
5898 
5899       if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5900 	{
5901 	  infrun_debug_printf ("restart threads: [%s] not meant to be running",
5902 			       tp->ptid.to_string ().c_str ());
5903 	  continue;
5904 	}
5905 
5906       if (tp->resumed ())
5907 	{
5908 	  infrun_debug_printf ("restart threads: [%s] resumed",
5909 			      tp->ptid.to_string ().c_str ());
5910 	  gdb_assert (tp->executing () || tp->has_pending_waitstatus ());
5911 	  continue;
5912 	}
5913 
5914       if (thread_is_in_step_over_chain (tp))
5915 	{
5916 	  infrun_debug_printf ("restart threads: [%s] needs step-over",
5917 			       tp->ptid.to_string ().c_str ());
5918 	  gdb_assert (!tp->resumed ());
5919 	  continue;
5920 	}
5921 
5922 
5923       if (tp->has_pending_waitstatus ())
5924 	{
5925 	  infrun_debug_printf ("restart threads: [%s] has pending status",
5926 			       tp->ptid.to_string ().c_str ());
5927 	  tp->set_resumed (true);
5928 	  continue;
5929 	}
5930 
5931       gdb_assert (!tp->stop_requested);
5932 
5933       /* If some thread needs to start a step-over at this point, it
5934 	 should still be in the step-over queue, and thus skipped
5935 	 above.  */
5936       if (thread_still_needs_step_over (tp))
5937 	{
5938 	  internal_error ("thread [%s] needs a step-over, but not in "
5939 			  "step-over queue\n",
5940 			  tp->ptid.to_string ().c_str ());
5941 	}
5942 
5943       if (currently_stepping (tp))
5944 	{
5945 	  infrun_debug_printf ("restart threads: [%s] was stepping",
5946 			       tp->ptid.to_string ().c_str ());
5947 	  keep_going_stepped_thread (tp);
5948 	}
5949       else
5950 	{
5951 	  infrun_debug_printf ("restart threads: [%s] continuing",
5952 			       tp->ptid.to_string ().c_str ());
5953 	  execution_control_state ecs (tp);
5954 	  switch_to_thread (tp);
5955 	  keep_going_pass_signal (&ecs);
5956 	}
5957     }
5958 }
5959 
5960 /* Callback for iterate_over_threads.  Find a resumed thread that has
5961    a pending waitstatus.  */
5962 
5963 static int
5964 resumed_thread_with_pending_status (struct thread_info *tp,
5965 				    void *arg)
5966 {
5967   return tp->resumed () && tp->has_pending_waitstatus ();
5968 }
5969 
5970 /* Called when we get an event that may finish an in-line or
5971    out-of-line (displaced stepping) step-over started previously.
5972    Return true if the event is processed and we should go back to the
5973    event loop; false if the caller should continue processing the
5974    event.  */
5975 
5976 static int
5977 finish_step_over (struct execution_control_state *ecs)
5978 {
5979   displaced_step_finish (ecs->event_thread, ecs->event_thread->stop_signal ());
5980 
5981   bool had_step_over_info = step_over_info_valid_p ();
5982 
5983   if (had_step_over_info)
5984     {
5985       /* If we're stepping over a breakpoint with all threads locked,
5986 	 then only the thread that was stepped should be reporting
5987 	 back an event.  */
5988       gdb_assert (ecs->event_thread->control.trap_expected);
5989 
5990       clear_step_over_info ();
5991     }
5992 
5993   if (!target_is_non_stop_p ())
5994     return 0;
5995 
5996   /* Start a new step-over in another thread if there's one that
5997      needs it.  */
5998   start_step_over ();
5999 
6000   /* If we were stepping over a breakpoint before, and haven't started
6001      a new in-line step-over sequence, then restart all other threads
6002      (except the event thread).  We can't do this in all-stop, as then
6003      e.g., we wouldn't be able to issue any other remote packet until
6004      these other threads stop.  */
6005   if (had_step_over_info && !step_over_info_valid_p ())
6006     {
6007       struct thread_info *pending;
6008 
6009       /* If we only have threads with pending statuses, the restart
6010 	 below won't restart any thread and so nothing re-inserts the
6011 	 breakpoint we just stepped over.  But we need it inserted
6012 	 when we later process the pending events, otherwise if
6013 	 another thread has a pending event for this breakpoint too,
6014 	 we'd discard its event (because the breakpoint that
6015 	 originally caused the event was no longer inserted).  */
6016       context_switch (ecs);
6017       insert_breakpoints ();
6018 
6019       restart_threads (ecs->event_thread);
6020 
6021       /* If we have events pending, go through handle_inferior_event
6022 	 again, picking up a pending event at random.  This avoids
6023 	 thread starvation.  */
6024 
6025       /* But not if we just stepped over a watchpoint in order to let
6026 	 the instruction execute so we can evaluate its expression.
6027 	 The set of watchpoints that triggered is recorded in the
6028 	 breakpoint objects themselves (see bp->watchpoint_triggered).
6029 	 If we processed another event first, that other event could
6030 	 clobber this info.  */
6031       if (ecs->event_thread->stepping_over_watchpoint)
6032 	return 0;
6033 
6034       pending = iterate_over_threads (resumed_thread_with_pending_status,
6035 				      nullptr);
6036       if (pending != nullptr)
6037 	{
6038 	  struct thread_info *tp = ecs->event_thread;
6039 	  struct regcache *regcache;
6040 
6041 	  infrun_debug_printf ("found resumed threads with "
6042 			       "pending events, saving status");
6043 
6044 	  gdb_assert (pending != tp);
6045 
6046 	  /* Record the event thread's event for later.  */
6047 	  save_waitstatus (tp, ecs->ws);
6048 	  /* This was cleared early, by handle_inferior_event.  Set it
6049 	     so this pending event is considered by
6050 	     do_target_wait.  */
6051 	  tp->set_resumed (true);
6052 
6053 	  gdb_assert (!tp->executing ());
6054 
6055 	  regcache = get_thread_regcache (tp);
6056 	  tp->set_stop_pc (regcache_read_pc (regcache));
6057 
6058 	  infrun_debug_printf ("saved stop_pc=%s for %s "
6059 			       "(currently_stepping=%d)",
6060 			       paddress (target_gdbarch (), tp->stop_pc ()),
6061 			       tp->ptid.to_string ().c_str (),
6062 			       currently_stepping (tp));
6063 
6064 	  /* This in-line step-over finished; clear this so we won't
6065 	     start a new one.  This is what handle_signal_stop would
6066 	     do, if we returned false.  */
6067 	  tp->stepping_over_breakpoint = 0;
6068 
6069 	  /* Wake up the event loop again.  */
6070 	  mark_async_event_handler (infrun_async_inferior_event_token);
6071 
6072 	  prepare_to_wait (ecs);
6073 	  return 1;
6074 	}
6075     }
6076 
6077   return 0;
6078 }
6079 
6080 /* Come here when the program has stopped with a signal.  */
6081 
6082 static void
6083 handle_signal_stop (struct execution_control_state *ecs)
6084 {
6085   frame_info_ptr frame;
6086   struct gdbarch *gdbarch;
6087   int stopped_by_watchpoint;
6088   enum stop_kind stop_soon;
6089   int random_signal;
6090 
6091   gdb_assert (ecs->ws.kind () == TARGET_WAITKIND_STOPPED);
6092 
6093   ecs->event_thread->set_stop_signal (ecs->ws.sig ());
6094 
6095   /* Do we need to clean up the state of a thread that has
6096      completed a displaced single-step?  (Doing so usually affects
6097      the PC, so do it here, before we set stop_pc.)  */
6098   if (finish_step_over (ecs))
6099     return;
6100 
6101   /* If we either finished a single-step or hit a breakpoint, but
6102      the user wanted this thread to be stopped, pretend we got a
6103      SIG0 (generic unsignaled stop).  */
6104   if (ecs->event_thread->stop_requested
6105       && ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP)
6106     ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
6107 
6108   ecs->event_thread->set_stop_pc
6109     (regcache_read_pc (get_thread_regcache (ecs->event_thread)));
6110 
6111   context_switch (ecs);
6112 
6113   if (deprecated_context_hook)
6114     deprecated_context_hook (ecs->event_thread->global_num);
6115 
6116   if (debug_infrun)
6117     {
6118       struct regcache *regcache = get_thread_regcache (ecs->event_thread);
6119       struct gdbarch *reg_gdbarch = regcache->arch ();
6120 
6121       infrun_debug_printf
6122 	("stop_pc=%s", paddress (reg_gdbarch, ecs->event_thread->stop_pc ()));
6123       if (target_stopped_by_watchpoint ())
6124 	{
6125 	  CORE_ADDR addr;
6126 
6127 	  infrun_debug_printf ("stopped by watchpoint");
6128 
6129 	  if (target_stopped_data_address (current_inferior ()->top_target (),
6130 					   &addr))
6131 	    infrun_debug_printf ("stopped data address=%s",
6132 				 paddress (reg_gdbarch, addr));
6133 	  else
6134 	    infrun_debug_printf ("(no data address available)");
6135 	}
6136     }
6137 
6138   /* This is originated from start_remote(), start_inferior() and
6139      shared libraries hook functions.  */
6140   stop_soon = get_inferior_stop_soon (ecs);
6141   if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
6142     {
6143       infrun_debug_printf ("quietly stopped");
6144       stop_print_frame = true;
6145       stop_waiting (ecs);
6146       return;
6147     }
6148 
6149   /* This originates from attach_command().  We need to overwrite
6150      the stop_signal here, because some kernels don't ignore a
6151      SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
6152      See more comments in inferior.h.  On the other hand, if we
6153      get a non-SIGSTOP, report it to the user - assume the backend
6154      will handle the SIGSTOP if it should show up later.
6155 
6156      Also consider that the attach is complete when we see a
6157      SIGTRAP.  Some systems (e.g. Windows), and stubs supporting
6158      target extended-remote report it instead of a SIGSTOP
6159      (e.g. gdbserver).  We already rely on SIGTRAP being our
6160      signal, so this is no exception.
6161 
6162      Also consider that the attach is complete when we see a
6163      GDB_SIGNAL_0.  In non-stop mode, GDB will explicitly tell
6164      the target to stop all threads of the inferior, in case the
6165      low level attach operation doesn't stop them implicitly.  If
6166      they weren't stopped implicitly, then the stub will report a
6167      GDB_SIGNAL_0, meaning: stopped for no particular reason
6168      other than GDB's request.  */
6169   if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
6170       && (ecs->event_thread->stop_signal () == GDB_SIGNAL_STOP
6171 	  || ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6172 	  || ecs->event_thread->stop_signal () == GDB_SIGNAL_0))
6173     {
6174       stop_print_frame = true;
6175       stop_waiting (ecs);
6176       ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
6177       return;
6178     }
6179 
6180   /* At this point, get hold of the now-current thread's frame.  */
6181   frame = get_current_frame ();
6182   gdbarch = get_frame_arch (frame);
6183 
6184   /* Pull the single step breakpoints out of the target.  */
6185   if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP)
6186     {
6187       struct regcache *regcache;
6188       CORE_ADDR pc;
6189 
6190       regcache = get_thread_regcache (ecs->event_thread);
6191       const address_space *aspace = regcache->aspace ();
6192 
6193       pc = regcache_read_pc (regcache);
6194 
6195       /* However, before doing so, if this single-step breakpoint was
6196 	 actually for another thread, set this thread up for moving
6197 	 past it.  */
6198       if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6199 						   aspace, pc))
6200 	{
6201 	  if (single_step_breakpoint_inserted_here_p (aspace, pc))
6202 	    {
6203 	      infrun_debug_printf ("[%s] hit another thread's single-step "
6204 				   "breakpoint",
6205 				   ecs->ptid.to_string ().c_str ());
6206 	      ecs->hit_singlestep_breakpoint = 1;
6207 	    }
6208 	}
6209       else
6210 	{
6211 	  infrun_debug_printf ("[%s] hit its single-step breakpoint",
6212 			       ecs->ptid.to_string ().c_str ());
6213 	}
6214     }
6215   delete_just_stopped_threads_single_step_breakpoints ();
6216 
6217   if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6218       && ecs->event_thread->control.trap_expected
6219       && ecs->event_thread->stepping_over_watchpoint)
6220     stopped_by_watchpoint = 0;
6221   else
6222     stopped_by_watchpoint = watchpoints_triggered (ecs->ws);
6223 
6224   /* If necessary, step over this watchpoint.  We'll be back to display
6225      it in a moment.  */
6226   if (stopped_by_watchpoint
6227       && (target_have_steppable_watchpoint ()
6228 	  || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6229     {
6230       /* At this point, we are stopped at an instruction which has
6231 	 attempted to write to a piece of memory under control of
6232 	 a watchpoint.  The instruction hasn't actually executed
6233 	 yet.  If we were to evaluate the watchpoint expression
6234 	 now, we would get the old value, and therefore no change
6235 	 would seem to have occurred.
6236 
6237 	 In order to make watchpoints work `right', we really need
6238 	 to complete the memory write, and then evaluate the
6239 	 watchpoint expression.  We do this by single-stepping the
6240 	 target.
6241 
6242 	 It may not be necessary to disable the watchpoint to step over
6243 	 it.  For example, the PA can (with some kernel cooperation)
6244 	 single step over a watchpoint without disabling the watchpoint.
6245 
6246 	 It is far more common to need to disable a watchpoint to step
6247 	 the inferior over it.  If we have non-steppable watchpoints,
6248 	 we must disable the current watchpoint; it's simplest to
6249 	 disable all watchpoints.
6250 
6251 	 Any breakpoint at PC must also be stepped over -- if there's
6252 	 one, it will have already triggered before the watchpoint
6253 	 triggered, and we either already reported it to the user, or
6254 	 it didn't cause a stop and we called keep_going.  In either
6255 	 case, if there was a breakpoint at PC, we must be trying to
6256 	 step past it.  */
6257       ecs->event_thread->stepping_over_watchpoint = 1;
6258       keep_going (ecs);
6259       return;
6260     }
6261 
6262   ecs->event_thread->stepping_over_breakpoint = 0;
6263   ecs->event_thread->stepping_over_watchpoint = 0;
6264   bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6265   ecs->event_thread->control.stop_step = 0;
6266   stop_print_frame = true;
6267   stopped_by_random_signal = 0;
6268   bpstat *stop_chain = nullptr;
6269 
6270   /* Hide inlined functions starting here, unless we just performed stepi or
6271      nexti.  After stepi and nexti, always show the innermost frame (not any
6272      inline function call sites).  */
6273   if (ecs->event_thread->control.step_range_end != 1)
6274     {
6275       const address_space *aspace
6276 	= get_thread_regcache (ecs->event_thread)->aspace ();
6277 
6278       /* skip_inline_frames is expensive, so we avoid it if we can
6279 	 determine that the address is one where functions cannot have
6280 	 been inlined.  This improves performance with inferiors that
6281 	 load a lot of shared libraries, because the solib event
6282 	 breakpoint is defined as the address of a function (i.e. not
6283 	 inline).  Note that we have to check the previous PC as well
6284 	 as the current one to catch cases when we have just
6285 	 single-stepped off a breakpoint prior to reinstating it.
6286 	 Note that we're assuming that the code we single-step to is
6287 	 not inline, but that's not definitive: there's nothing
6288 	 preventing the event breakpoint function from containing
6289 	 inlined code, and the single-step ending up there.  If the
6290 	 user had set a breakpoint on that inlined code, the missing
6291 	 skip_inline_frames call would break things.  Fortunately
6292 	 that's an extremely unlikely scenario.  */
6293       if (!pc_at_non_inline_function (aspace,
6294 				      ecs->event_thread->stop_pc (),
6295 				      ecs->ws)
6296 	  && !(ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6297 	       && ecs->event_thread->control.trap_expected
6298 	       && pc_at_non_inline_function (aspace,
6299 					     ecs->event_thread->prev_pc,
6300 					     ecs->ws)))
6301 	{
6302 	  stop_chain = build_bpstat_chain (aspace,
6303 					   ecs->event_thread->stop_pc (),
6304 					   ecs->ws);
6305 	  skip_inline_frames (ecs->event_thread, stop_chain);
6306 
6307 	  /* Re-fetch current thread's frame in case that invalidated
6308 	     the frame cache.  */
6309 	  frame = get_current_frame ();
6310 	  gdbarch = get_frame_arch (frame);
6311 	}
6312     }
6313 
6314   if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6315       && ecs->event_thread->control.trap_expected
6316       && gdbarch_single_step_through_delay_p (gdbarch)
6317       && currently_stepping (ecs->event_thread))
6318     {
6319       /* We're trying to step off a breakpoint.  Turns out that we're
6320 	 also on an instruction that needs to be stepped multiple
6321 	 times before it's been fully executing.  E.g., architectures
6322 	 with a delay slot.  It needs to be stepped twice, once for
6323 	 the instruction and once for the delay slot.  */
6324       int step_through_delay
6325 	= gdbarch_single_step_through_delay (gdbarch, frame);
6326 
6327       if (step_through_delay)
6328 	infrun_debug_printf ("step through delay");
6329 
6330       if (ecs->event_thread->control.step_range_end == 0
6331 	  && step_through_delay)
6332 	{
6333 	  /* The user issued a continue when stopped at a breakpoint.
6334 	     Set up for another trap and get out of here.  */
6335 	 ecs->event_thread->stepping_over_breakpoint = 1;
6336 	 keep_going (ecs);
6337 	 return;
6338 	}
6339       else if (step_through_delay)
6340 	{
6341 	  /* The user issued a step when stopped at a breakpoint.
6342 	     Maybe we should stop, maybe we should not - the delay
6343 	     slot *might* correspond to a line of source.  In any
6344 	     case, don't decide that here, just set
6345 	     ecs->stepping_over_breakpoint, making sure we
6346 	     single-step again before breakpoints are re-inserted.  */
6347 	  ecs->event_thread->stepping_over_breakpoint = 1;
6348 	}
6349     }
6350 
6351   /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6352      handles this event.  */
6353   ecs->event_thread->control.stop_bpstat
6354     = bpstat_stop_status (get_current_regcache ()->aspace (),
6355 			  ecs->event_thread->stop_pc (),
6356 			  ecs->event_thread, ecs->ws, stop_chain);
6357 
6358   /* Following in case break condition called a
6359      function.  */
6360   stop_print_frame = true;
6361 
6362   /* This is where we handle "moribund" watchpoints.  Unlike
6363      software breakpoints traps, hardware watchpoint traps are
6364      always distinguishable from random traps.  If no high-level
6365      watchpoint is associated with the reported stop data address
6366      anymore, then the bpstat does not explain the signal ---
6367      simply make sure to ignore it if `stopped_by_watchpoint' is
6368      set.  */
6369 
6370   if (ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6371       && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6372 				  GDB_SIGNAL_TRAP)
6373       && stopped_by_watchpoint)
6374     {
6375       infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6376 			   "ignoring");
6377     }
6378 
6379   /* NOTE: cagney/2003-03-29: These checks for a random signal
6380      at one stage in the past included checks for an inferior
6381      function call's call dummy's return breakpoint.  The original
6382      comment, that went with the test, read:
6383 
6384      ``End of a stack dummy.  Some systems (e.g. Sony news) give
6385      another signal besides SIGTRAP, so check here as well as
6386      above.''
6387 
6388      If someone ever tries to get call dummys on a
6389      non-executable stack to work (where the target would stop
6390      with something like a SIGSEGV), then those tests might need
6391      to be re-instated.  Given, however, that the tests were only
6392      enabled when momentary breakpoints were not being used, I
6393      suspect that it won't be the case.
6394 
6395      NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6396      be necessary for call dummies on a non-executable stack on
6397      SPARC.  */
6398 
6399   /* See if the breakpoints module can explain the signal.  */
6400   random_signal
6401     = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6402 			       ecs->event_thread->stop_signal ());
6403 
6404   /* Maybe this was a trap for a software breakpoint that has since
6405      been removed.  */
6406   if (random_signal && target_stopped_by_sw_breakpoint ())
6407     {
6408       if (gdbarch_program_breakpoint_here_p (gdbarch,
6409 					     ecs->event_thread->stop_pc ()))
6410 	{
6411 	  struct regcache *regcache;
6412 	  int decr_pc;
6413 
6414 	  /* Re-adjust PC to what the program would see if GDB was not
6415 	     debugging it.  */
6416 	  regcache = get_thread_regcache (ecs->event_thread);
6417 	  decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6418 	  if (decr_pc != 0)
6419 	    {
6420 	      gdb::optional<scoped_restore_tmpl<int>>
6421 		restore_operation_disable;
6422 
6423 	      if (record_full_is_used ())
6424 		restore_operation_disable.emplace
6425 		  (record_full_gdb_operation_disable_set ());
6426 
6427 	      regcache_write_pc (regcache,
6428 				 ecs->event_thread->stop_pc () + decr_pc);
6429 	    }
6430 	}
6431       else
6432 	{
6433 	  /* A delayed software breakpoint event.  Ignore the trap.  */
6434 	  infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6435 	  random_signal = 0;
6436 	}
6437     }
6438 
6439   /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6440      has since been removed.  */
6441   if (random_signal && target_stopped_by_hw_breakpoint ())
6442     {
6443       /* A delayed hardware breakpoint event.  Ignore the trap.  */
6444       infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6445 			   "trap, ignoring");
6446       random_signal = 0;
6447     }
6448 
6449   /* If not, perhaps stepping/nexting can.  */
6450   if (random_signal)
6451     random_signal = !(ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP
6452 		      && currently_stepping (ecs->event_thread));
6453 
6454   /* Perhaps the thread hit a single-step breakpoint of _another_
6455      thread.  Single-step breakpoints are transparent to the
6456      breakpoints module.  */
6457   if (random_signal)
6458     random_signal = !ecs->hit_singlestep_breakpoint;
6459 
6460   /* No?  Perhaps we got a moribund watchpoint.  */
6461   if (random_signal)
6462     random_signal = !stopped_by_watchpoint;
6463 
6464   /* Always stop if the user explicitly requested this thread to
6465      remain stopped.  */
6466   if (ecs->event_thread->stop_requested)
6467     {
6468       random_signal = 1;
6469       infrun_debug_printf ("user-requested stop");
6470     }
6471 
6472   /* For the program's own signals, act according to
6473      the signal handling tables.  */
6474 
6475   if (random_signal)
6476     {
6477       /* Signal not for debugging purposes.  */
6478       enum gdb_signal stop_signal = ecs->event_thread->stop_signal ();
6479 
6480       infrun_debug_printf ("random signal (%s)",
6481 			   gdb_signal_to_symbol_string (stop_signal));
6482 
6483       stopped_by_random_signal = 1;
6484 
6485       /* Always stop on signals if we're either just gaining control
6486 	 of the program, or the user explicitly requested this thread
6487 	 to remain stopped.  */
6488       if (stop_soon != NO_STOP_QUIETLY
6489 	  || ecs->event_thread->stop_requested
6490 	  || signal_stop_state (ecs->event_thread->stop_signal ()))
6491 	{
6492 	  stop_waiting (ecs);
6493 	  return;
6494 	}
6495 
6496       /* Notify observers the signal has "handle print" set.  Note we
6497 	 returned early above if stopping; normal_stop handles the
6498 	 printing in that case.  */
6499       if (signal_print[ecs->event_thread->stop_signal ()])
6500 	{
6501 	  /* The signal table tells us to print about this signal.  */
6502 	  target_terminal::ours_for_output ();
6503 	  gdb::observers::signal_received.notify (ecs->event_thread->stop_signal ());
6504 	  target_terminal::inferior ();
6505 	}
6506 
6507       /* Clear the signal if it should not be passed.  */
6508       if (signal_program[ecs->event_thread->stop_signal ()] == 0)
6509 	ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
6510 
6511       if (ecs->event_thread->prev_pc == ecs->event_thread->stop_pc ()
6512 	  && ecs->event_thread->control.trap_expected
6513 	  && ecs->event_thread->control.step_resume_breakpoint == nullptr)
6514 	{
6515 	  /* We were just starting a new sequence, attempting to
6516 	     single-step off of a breakpoint and expecting a SIGTRAP.
6517 	     Instead this signal arrives.  This signal will take us out
6518 	     of the stepping range so GDB needs to remember to, when
6519 	     the signal handler returns, resume stepping off that
6520 	     breakpoint.  */
6521 	  /* To simplify things, "continue" is forced to use the same
6522 	     code paths as single-step - set a breakpoint at the
6523 	     signal return address and then, once hit, step off that
6524 	     breakpoint.  */
6525 	  infrun_debug_printf ("signal arrived while stepping over breakpoint");
6526 
6527 	  insert_hp_step_resume_breakpoint_at_frame (frame);
6528 	  ecs->event_thread->step_after_step_resume_breakpoint = 1;
6529 	  /* Reset trap_expected to ensure breakpoints are re-inserted.  */
6530 	  ecs->event_thread->control.trap_expected = 0;
6531 
6532 	  /* If we were nexting/stepping some other thread, switch to
6533 	     it, so that we don't continue it, losing control.  */
6534 	  if (!switch_back_to_stepped_thread (ecs))
6535 	    keep_going (ecs);
6536 	  return;
6537 	}
6538 
6539       if (ecs->event_thread->stop_signal () != GDB_SIGNAL_0
6540 	  && (pc_in_thread_step_range (ecs->event_thread->stop_pc (),
6541 				       ecs->event_thread)
6542 	      || ecs->event_thread->control.step_range_end == 1)
6543 	  && (get_stack_frame_id (frame)
6544 	      == ecs->event_thread->control.step_stack_frame_id)
6545 	  && ecs->event_thread->control.step_resume_breakpoint == nullptr)
6546 	{
6547 	  /* The inferior is about to take a signal that will take it
6548 	     out of the single step range.  Set a breakpoint at the
6549 	     current PC (which is presumably where the signal handler
6550 	     will eventually return) and then allow the inferior to
6551 	     run free.
6552 
6553 	     Note that this is only needed for a signal delivered
6554 	     while in the single-step range.  Nested signals aren't a
6555 	     problem as they eventually all return.  */
6556 	  infrun_debug_printf ("signal may take us out of single-step range");
6557 
6558 	  clear_step_over_info ();
6559 	  insert_hp_step_resume_breakpoint_at_frame (frame);
6560 	  ecs->event_thread->step_after_step_resume_breakpoint = 1;
6561 	  /* Reset trap_expected to ensure breakpoints are re-inserted.  */
6562 	  ecs->event_thread->control.trap_expected = 0;
6563 	  keep_going (ecs);
6564 	  return;
6565 	}
6566 
6567       /* Note: step_resume_breakpoint may be non-NULL.  This occurs
6568 	 when either there's a nested signal, or when there's a
6569 	 pending signal enabled just as the signal handler returns
6570 	 (leaving the inferior at the step-resume-breakpoint without
6571 	 actually executing it).  Either way continue until the
6572 	 breakpoint is really hit.  */
6573 
6574       if (!switch_back_to_stepped_thread (ecs))
6575 	{
6576 	  infrun_debug_printf ("random signal, keep going");
6577 
6578 	  keep_going (ecs);
6579 	}
6580       return;
6581     }
6582 
6583   process_event_stop_test (ecs);
6584 }
6585 
6586 /* Come here when we've got some debug event / signal we can explain
6587    (IOW, not a random signal), and test whether it should cause a
6588    stop, or whether we should resume the inferior (transparently).
6589    E.g., could be a breakpoint whose condition evaluates false; we
6590    could be still stepping within the line; etc.  */
6591 
6592 static void
6593 process_event_stop_test (struct execution_control_state *ecs)
6594 {
6595   struct symtab_and_line stop_pc_sal;
6596   frame_info_ptr frame;
6597   struct gdbarch *gdbarch;
6598   CORE_ADDR jmp_buf_pc;
6599   struct bpstat_what what;
6600 
6601   /* Handle cases caused by hitting a breakpoint.  */
6602 
6603   frame = get_current_frame ();
6604   gdbarch = get_frame_arch (frame);
6605 
6606   what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6607 
6608   if (what.call_dummy)
6609     {
6610       stop_stack_dummy = what.call_dummy;
6611     }
6612 
6613   /* A few breakpoint types have callbacks associated (e.g.,
6614      bp_jit_event).  Run them now.  */
6615   bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6616 
6617   /* If we hit an internal event that triggers symbol changes, the
6618      current frame will be invalidated within bpstat_what (e.g., if we
6619      hit an internal solib event).  Re-fetch it.  */
6620   frame = get_current_frame ();
6621   gdbarch = get_frame_arch (frame);
6622 
6623   switch (what.main_action)
6624     {
6625     case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6626       /* If we hit the breakpoint at longjmp while stepping, we
6627 	 install a momentary breakpoint at the target of the
6628 	 jmp_buf.  */
6629 
6630       infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6631 
6632       ecs->event_thread->stepping_over_breakpoint = 1;
6633 
6634       if (what.is_longjmp)
6635 	{
6636 	  struct value *arg_value;
6637 
6638 	  /* If we set the longjmp breakpoint via a SystemTap probe,
6639 	     then use it to extract the arguments.  The destination PC
6640 	     is the third argument to the probe.  */
6641 	  arg_value = probe_safe_evaluate_at_pc (frame, 2);
6642 	  if (arg_value)
6643 	    {
6644 	      jmp_buf_pc = value_as_address (arg_value);
6645 	      jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6646 	    }
6647 	  else if (!gdbarch_get_longjmp_target_p (gdbarch)
6648 		   || !gdbarch_get_longjmp_target (gdbarch,
6649 						   frame, &jmp_buf_pc))
6650 	    {
6651 	      infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6652 				   "(!gdbarch_get_longjmp_target)");
6653 	      keep_going (ecs);
6654 	      return;
6655 	    }
6656 
6657 	  /* Insert a breakpoint at resume address.  */
6658 	  insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6659 	}
6660       else
6661 	check_exception_resume (ecs, frame);
6662       keep_going (ecs);
6663       return;
6664 
6665     case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6666       {
6667 	frame_info_ptr init_frame;
6668 
6669 	/* There are several cases to consider.
6670 
6671 	   1. The initiating frame no longer exists.  In this case we
6672 	   must stop, because the exception or longjmp has gone too
6673 	   far.
6674 
6675 	   2. The initiating frame exists, and is the same as the
6676 	   current frame.  We stop, because the exception or longjmp
6677 	   has been caught.
6678 
6679 	   3. The initiating frame exists and is different from the
6680 	   current frame.  This means the exception or longjmp has
6681 	   been caught beneath the initiating frame, so keep going.
6682 
6683 	   4. longjmp breakpoint has been placed just to protect
6684 	   against stale dummy frames and user is not interested in
6685 	   stopping around longjmps.  */
6686 
6687 	infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6688 
6689 	gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6690 		    != nullptr);
6691 	delete_exception_resume_breakpoint (ecs->event_thread);
6692 
6693 	if (what.is_longjmp)
6694 	  {
6695 	    check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6696 
6697 	    if (!frame_id_p (ecs->event_thread->initiating_frame))
6698 	      {
6699 		/* Case 4.  */
6700 		keep_going (ecs);
6701 		return;
6702 	      }
6703 	  }
6704 
6705 	init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6706 
6707 	if (init_frame)
6708 	  {
6709 	    struct frame_id current_id
6710 	      = get_frame_id (get_current_frame ());
6711 	    if (current_id == ecs->event_thread->initiating_frame)
6712 	      {
6713 		/* Case 2.  Fall through.  */
6714 	      }
6715 	    else
6716 	      {
6717 		/* Case 3.  */
6718 		keep_going (ecs);
6719 		return;
6720 	      }
6721 	  }
6722 
6723 	/* For Cases 1 and 2, remove the step-resume breakpoint, if it
6724 	   exists.  */
6725 	delete_step_resume_breakpoint (ecs->event_thread);
6726 
6727 	end_stepping_range (ecs);
6728       }
6729       return;
6730 
6731     case BPSTAT_WHAT_SINGLE:
6732       infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6733       ecs->event_thread->stepping_over_breakpoint = 1;
6734       /* Still need to check other stuff, at least the case where we
6735 	 are stepping and step out of the right range.  */
6736       break;
6737 
6738     case BPSTAT_WHAT_STEP_RESUME:
6739       infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6740 
6741       delete_step_resume_breakpoint (ecs->event_thread);
6742       if (ecs->event_thread->control.proceed_to_finish
6743 	  && execution_direction == EXEC_REVERSE)
6744 	{
6745 	  struct thread_info *tp = ecs->event_thread;
6746 
6747 	  /* We are finishing a function in reverse, and just hit the
6748 	     step-resume breakpoint at the start address of the
6749 	     function, and we're almost there -- just need to back up
6750 	     by one more single-step, which should take us back to the
6751 	     function call.  */
6752 	  tp->control.step_range_start = tp->control.step_range_end = 1;
6753 	  keep_going (ecs);
6754 	  return;
6755 	}
6756       fill_in_stop_func (gdbarch, ecs);
6757       if (ecs->event_thread->stop_pc () == ecs->stop_func_start
6758 	  && execution_direction == EXEC_REVERSE)
6759 	{
6760 	  /* We are stepping over a function call in reverse, and just
6761 	     hit the step-resume breakpoint at the start address of
6762 	     the function.  Go back to single-stepping, which should
6763 	     take us back to the function call.  */
6764 	  ecs->event_thread->stepping_over_breakpoint = 1;
6765 	  keep_going (ecs);
6766 	  return;
6767 	}
6768       break;
6769 
6770     case BPSTAT_WHAT_STOP_NOISY:
6771       infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6772       stop_print_frame = true;
6773 
6774       /* Assume the thread stopped for a breakpoint.  We'll still check
6775 	 whether a/the breakpoint is there when the thread is next
6776 	 resumed.  */
6777       ecs->event_thread->stepping_over_breakpoint = 1;
6778 
6779       stop_waiting (ecs);
6780       return;
6781 
6782     case BPSTAT_WHAT_STOP_SILENT:
6783       infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6784       stop_print_frame = false;
6785 
6786       /* Assume the thread stopped for a breakpoint.  We'll still check
6787 	 whether a/the breakpoint is there when the thread is next
6788 	 resumed.  */
6789       ecs->event_thread->stepping_over_breakpoint = 1;
6790       stop_waiting (ecs);
6791       return;
6792 
6793     case BPSTAT_WHAT_HP_STEP_RESUME:
6794       infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6795 
6796       delete_step_resume_breakpoint (ecs->event_thread);
6797       if (ecs->event_thread->step_after_step_resume_breakpoint)
6798 	{
6799 	  /* Back when the step-resume breakpoint was inserted, we
6800 	     were trying to single-step off a breakpoint.  Go back to
6801 	     doing that.  */
6802 	  ecs->event_thread->step_after_step_resume_breakpoint = 0;
6803 	  ecs->event_thread->stepping_over_breakpoint = 1;
6804 	  keep_going (ecs);
6805 	  return;
6806 	}
6807       break;
6808 
6809     case BPSTAT_WHAT_KEEP_CHECKING:
6810       break;
6811     }
6812 
6813   /* If we stepped a permanent breakpoint and we had a high priority
6814      step-resume breakpoint for the address we stepped, but we didn't
6815      hit it, then we must have stepped into the signal handler.  The
6816      step-resume was only necessary to catch the case of _not_
6817      stepping into the handler, so delete it, and fall through to
6818      checking whether the step finished.  */
6819   if (ecs->event_thread->stepped_breakpoint)
6820     {
6821       struct breakpoint *sr_bp
6822 	= ecs->event_thread->control.step_resume_breakpoint;
6823 
6824       if (sr_bp != nullptr
6825 	  && sr_bp->loc->permanent
6826 	  && sr_bp->type == bp_hp_step_resume
6827 	  && sr_bp->loc->address == ecs->event_thread->prev_pc)
6828 	{
6829 	  infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6830 	  delete_step_resume_breakpoint (ecs->event_thread);
6831 	  ecs->event_thread->step_after_step_resume_breakpoint = 0;
6832 	}
6833     }
6834 
6835   /* We come here if we hit a breakpoint but should not stop for it.
6836      Possibly we also were stepping and should stop for that.  So fall
6837      through and test for stepping.  But, if not stepping, do not
6838      stop.  */
6839 
6840   /* In all-stop mode, if we're currently stepping but have stopped in
6841      some other thread, we need to switch back to the stepped thread.  */
6842   if (switch_back_to_stepped_thread (ecs))
6843     return;
6844 
6845   if (ecs->event_thread->control.step_resume_breakpoint)
6846     {
6847       infrun_debug_printf ("step-resume breakpoint is inserted");
6848 
6849       /* Having a step-resume breakpoint overrides anything
6850 	 else having to do with stepping commands until
6851 	 that breakpoint is reached.  */
6852       keep_going (ecs);
6853       return;
6854     }
6855 
6856   if (ecs->event_thread->control.step_range_end == 0)
6857     {
6858       infrun_debug_printf ("no stepping, continue");
6859       /* Likewise if we aren't even stepping.  */
6860       keep_going (ecs);
6861       return;
6862     }
6863 
6864   /* Re-fetch current thread's frame in case the code above caused
6865      the frame cache to be re-initialized, making our FRAME variable
6866      a dangling pointer.  */
6867   frame = get_current_frame ();
6868   gdbarch = get_frame_arch (frame);
6869   fill_in_stop_func (gdbarch, ecs);
6870 
6871   /* If stepping through a line, keep going if still within it.
6872 
6873      Note that step_range_end is the address of the first instruction
6874      beyond the step range, and NOT the address of the last instruction
6875      within it!
6876 
6877      Note also that during reverse execution, we may be stepping
6878      through a function epilogue and therefore must detect when
6879      the current-frame changes in the middle of a line.  */
6880 
6881   if (pc_in_thread_step_range (ecs->event_thread->stop_pc (),
6882 			       ecs->event_thread)
6883       && (execution_direction != EXEC_REVERSE
6884 	  || get_frame_id (frame) == ecs->event_thread->control.step_frame_id))
6885     {
6886       infrun_debug_printf
6887 	("stepping inside range [%s-%s]",
6888 	 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6889 	 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6890 
6891       /* Tentatively re-enable range stepping; `resume' disables it if
6892 	 necessary (e.g., if we're stepping over a breakpoint or we
6893 	 have software watchpoints).  */
6894       ecs->event_thread->control.may_range_step = 1;
6895 
6896       /* When stepping backward, stop at beginning of line range
6897 	 (unless it's the function entry point, in which case
6898 	 keep going back to the call point).  */
6899       CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
6900       if (stop_pc == ecs->event_thread->control.step_range_start
6901 	  && stop_pc != ecs->stop_func_start
6902 	  && execution_direction == EXEC_REVERSE)
6903 	end_stepping_range (ecs);
6904       else
6905 	keep_going (ecs);
6906 
6907       return;
6908     }
6909 
6910   /* We stepped out of the stepping range.  */
6911 
6912   /* If we are stepping at the source level and entered the runtime
6913      loader dynamic symbol resolution code...
6914 
6915      EXEC_FORWARD: we keep on single stepping until we exit the run
6916      time loader code and reach the callee's address.
6917 
6918      EXEC_REVERSE: we've already executed the callee (backward), and
6919      the runtime loader code is handled just like any other
6920      undebuggable function call.  Now we need only keep stepping
6921      backward through the trampoline code, and that's handled further
6922      down, so there is nothing for us to do here.  */
6923 
6924   if (execution_direction != EXEC_REVERSE
6925       && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6926       && in_solib_dynsym_resolve_code (ecs->event_thread->stop_pc ())
6927       && (ecs->event_thread->control.step_start_function == nullptr
6928 	  || !in_solib_dynsym_resolve_code (
6929 	       ecs->event_thread->control.step_start_function->value_block ()
6930 		->entry_pc ())))
6931     {
6932       CORE_ADDR pc_after_resolver =
6933 	gdbarch_skip_solib_resolver (gdbarch, ecs->event_thread->stop_pc ());
6934 
6935       infrun_debug_printf ("stepped into dynsym resolve code");
6936 
6937       if (pc_after_resolver)
6938 	{
6939 	  /* Set up a step-resume breakpoint at the address
6940 	     indicated by SKIP_SOLIB_RESOLVER.  */
6941 	  symtab_and_line sr_sal;
6942 	  sr_sal.pc = pc_after_resolver;
6943 	  sr_sal.pspace = get_frame_program_space (frame);
6944 
6945 	  insert_step_resume_breakpoint_at_sal (gdbarch,
6946 						sr_sal, null_frame_id);
6947 	}
6948 
6949       keep_going (ecs);
6950       return;
6951     }
6952 
6953   /* Step through an indirect branch thunk.  */
6954   if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6955       && gdbarch_in_indirect_branch_thunk (gdbarch,
6956 					   ecs->event_thread->stop_pc ()))
6957     {
6958       infrun_debug_printf ("stepped into indirect branch thunk");
6959       keep_going (ecs);
6960       return;
6961     }
6962 
6963   if (ecs->event_thread->control.step_range_end != 1
6964       && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6965 	  || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6966       && get_frame_type (frame) == SIGTRAMP_FRAME)
6967     {
6968       infrun_debug_printf ("stepped into signal trampoline");
6969       /* The inferior, while doing a "step" or "next", has ended up in
6970 	 a signal trampoline (either by a signal being delivered or by
6971 	 the signal handler returning).  Just single-step until the
6972 	 inferior leaves the trampoline (either by calling the handler
6973 	 or returning).  */
6974       keep_going (ecs);
6975       return;
6976     }
6977 
6978   /* If we're in the return path from a shared library trampoline,
6979      we want to proceed through the trampoline when stepping.  */
6980   /* macro/2012-04-25: This needs to come before the subroutine
6981      call check below as on some targets return trampolines look
6982      like subroutine calls (MIPS16 return thunks).  */
6983   if (gdbarch_in_solib_return_trampoline (gdbarch,
6984 					  ecs->event_thread->stop_pc (),
6985 					  ecs->stop_func_name)
6986       && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6987     {
6988       /* Determine where this trampoline returns.  */
6989       CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
6990       CORE_ADDR real_stop_pc
6991 	= gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6992 
6993       infrun_debug_printf ("stepped into solib return tramp");
6994 
6995       /* Only proceed through if we know where it's going.  */
6996       if (real_stop_pc)
6997 	{
6998 	  /* And put the step-breakpoint there and go until there.  */
6999 	  symtab_and_line sr_sal;
7000 	  sr_sal.pc = real_stop_pc;
7001 	  sr_sal.section = find_pc_overlay (sr_sal.pc);
7002 	  sr_sal.pspace = get_frame_program_space (frame);
7003 
7004 	  /* Do not specify what the fp should be when we stop since
7005 	     on some machines the prologue is where the new fp value
7006 	     is established.  */
7007 	  insert_step_resume_breakpoint_at_sal (gdbarch,
7008 						sr_sal, null_frame_id);
7009 
7010 	  /* Restart without fiddling with the step ranges or
7011 	     other state.  */
7012 	  keep_going (ecs);
7013 	  return;
7014 	}
7015     }
7016 
7017   /* Check for subroutine calls.  The check for the current frame
7018      equalling the step ID is not necessary - the check of the
7019      previous frame's ID is sufficient - but it is a common case and
7020      cheaper than checking the previous frame's ID.
7021 
7022      NOTE: frame_id::operator== will never report two invalid frame IDs as
7023      being equal, so to get into this block, both the current and
7024      previous frame must have valid frame IDs.  */
7025   /* The outer_frame_id check is a heuristic to detect stepping
7026      through startup code.  If we step over an instruction which
7027      sets the stack pointer from an invalid value to a valid value,
7028      we may detect that as a subroutine call from the mythical
7029      "outermost" function.  This could be fixed by marking
7030      outermost frames as !stack_p,code_p,special_p.  Then the
7031      initial outermost frame, before sp was valid, would
7032      have code_addr == &_start.  See the comment in frame_id::operator==
7033      for more.  */
7034   if ((get_stack_frame_id (frame)
7035        != ecs->event_thread->control.step_stack_frame_id)
7036       && ((frame_unwind_caller_id (get_current_frame ())
7037 	   == ecs->event_thread->control.step_stack_frame_id)
7038 	  && ((ecs->event_thread->control.step_stack_frame_id
7039 	       != outer_frame_id)
7040 	      || (ecs->event_thread->control.step_start_function
7041 		  != find_pc_function (ecs->event_thread->stop_pc ())))))
7042     {
7043       CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
7044       CORE_ADDR real_stop_pc;
7045 
7046       infrun_debug_printf ("stepped into subroutine");
7047 
7048       if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
7049 	{
7050 	  /* I presume that step_over_calls is only 0 when we're
7051 	     supposed to be stepping at the assembly language level
7052 	     ("stepi").  Just stop.  */
7053 	  /* And this works the same backward as frontward.  MVS */
7054 	  end_stepping_range (ecs);
7055 	  return;
7056 	}
7057 
7058       /* Reverse stepping through solib trampolines.  */
7059 
7060       if (execution_direction == EXEC_REVERSE
7061 	  && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
7062 	  && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7063 	      || (ecs->stop_func_start == 0
7064 		  && in_solib_dynsym_resolve_code (stop_pc))))
7065 	{
7066 	  /* Any solib trampoline code can be handled in reverse
7067 	     by simply continuing to single-step.  We have already
7068 	     executed the solib function (backwards), and a few
7069 	     steps will take us back through the trampoline to the
7070 	     caller.  */
7071 	  keep_going (ecs);
7072 	  return;
7073 	}
7074 
7075       if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
7076 	{
7077 	  /* We're doing a "next".
7078 
7079 	     Normal (forward) execution: set a breakpoint at the
7080 	     callee's return address (the address at which the caller
7081 	     will resume).
7082 
7083 	     Reverse (backward) execution.  set the step-resume
7084 	     breakpoint at the start of the function that we just
7085 	     stepped into (backwards), and continue to there.  When we
7086 	     get there, we'll need to single-step back to the caller.  */
7087 
7088 	  if (execution_direction == EXEC_REVERSE)
7089 	    {
7090 	      /* If we're already at the start of the function, we've either
7091 		 just stepped backward into a single instruction function,
7092 		 or stepped back out of a signal handler to the first instruction
7093 		 of the function.  Just keep going, which will single-step back
7094 		 to the caller.  */
7095 	      if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
7096 		{
7097 		  /* Normal function call return (static or dynamic).  */
7098 		  symtab_and_line sr_sal;
7099 		  sr_sal.pc = ecs->stop_func_start;
7100 		  sr_sal.pspace = get_frame_program_space (frame);
7101 		  insert_step_resume_breakpoint_at_sal (gdbarch,
7102 							sr_sal, get_stack_frame_id (frame));
7103 		}
7104 	    }
7105 	  else
7106 	    insert_step_resume_breakpoint_at_caller (frame);
7107 
7108 	  keep_going (ecs);
7109 	  return;
7110 	}
7111 
7112       /* If we are in a function call trampoline (a stub between the
7113 	 calling routine and the real function), locate the real
7114 	 function.  That's what tells us (a) whether we want to step
7115 	 into it at all, and (b) what prologue we want to run to the
7116 	 end of, if we do step into it.  */
7117       real_stop_pc = skip_language_trampoline (frame, stop_pc);
7118       if (real_stop_pc == 0)
7119 	real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
7120       if (real_stop_pc != 0)
7121 	ecs->stop_func_start = real_stop_pc;
7122 
7123       if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
7124 	{
7125 	  symtab_and_line sr_sal;
7126 	  sr_sal.pc = ecs->stop_func_start;
7127 	  sr_sal.pspace = get_frame_program_space (frame);
7128 
7129 	  insert_step_resume_breakpoint_at_sal (gdbarch,
7130 						sr_sal, null_frame_id);
7131 	  keep_going (ecs);
7132 	  return;
7133 	}
7134 
7135       /* If we have line number information for the function we are
7136 	 thinking of stepping into and the function isn't on the skip
7137 	 list, step into it.
7138 
7139 	 If there are several symtabs at that PC (e.g. with include
7140 	 files), just want to know whether *any* of them have line
7141 	 numbers.  find_pc_line handles this.  */
7142       {
7143 	struct symtab_and_line tmp_sal;
7144 
7145 	tmp_sal = find_pc_line (ecs->stop_func_start, 0);
7146 	if (tmp_sal.line != 0
7147 	    && !function_name_is_marked_for_skip (ecs->stop_func_name,
7148 						  tmp_sal)
7149 	    && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
7150 	  {
7151 	    if (execution_direction == EXEC_REVERSE)
7152 	      handle_step_into_function_backward (gdbarch, ecs);
7153 	    else
7154 	      handle_step_into_function (gdbarch, ecs);
7155 	    return;
7156 	  }
7157       }
7158 
7159       /* If we have no line number and the step-stop-if-no-debug is
7160 	 set, we stop the step so that the user has a chance to switch
7161 	 in assembly mode.  */
7162       if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7163 	  && step_stop_if_no_debug)
7164 	{
7165 	  end_stepping_range (ecs);
7166 	  return;
7167 	}
7168 
7169       if (execution_direction == EXEC_REVERSE)
7170 	{
7171 	  /* If we're already at the start of the function, we've either just
7172 	     stepped backward into a single instruction function without line
7173 	     number info, or stepped back out of a signal handler to the first
7174 	     instruction of the function without line number info.  Just keep
7175 	     going, which will single-step back to the caller.  */
7176 	  if (ecs->stop_func_start != stop_pc)
7177 	    {
7178 	      /* Set a breakpoint at callee's start address.
7179 		 From there we can step once and be back in the caller.  */
7180 	      symtab_and_line sr_sal;
7181 	      sr_sal.pc = ecs->stop_func_start;
7182 	      sr_sal.pspace = get_frame_program_space (frame);
7183 	      insert_step_resume_breakpoint_at_sal (gdbarch,
7184 						    sr_sal, null_frame_id);
7185 	    }
7186 	}
7187       else
7188 	/* Set a breakpoint at callee's return address (the address
7189 	   at which the caller will resume).  */
7190 	insert_step_resume_breakpoint_at_caller (frame);
7191 
7192       keep_going (ecs);
7193       return;
7194     }
7195 
7196   /* Reverse stepping through solib trampolines.  */
7197 
7198   if (execution_direction == EXEC_REVERSE
7199       && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7200     {
7201       CORE_ADDR stop_pc = ecs->event_thread->stop_pc ();
7202 
7203       if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7204 	  || (ecs->stop_func_start == 0
7205 	      && in_solib_dynsym_resolve_code (stop_pc)))
7206 	{
7207 	  /* Any solib trampoline code can be handled in reverse
7208 	     by simply continuing to single-step.  We have already
7209 	     executed the solib function (backwards), and a few
7210 	     steps will take us back through the trampoline to the
7211 	     caller.  */
7212 	  keep_going (ecs);
7213 	  return;
7214 	}
7215       else if (in_solib_dynsym_resolve_code (stop_pc))
7216 	{
7217 	  /* Stepped backward into the solib dynsym resolver.
7218 	     Set a breakpoint at its start and continue, then
7219 	     one more step will take us out.  */
7220 	  symtab_and_line sr_sal;
7221 	  sr_sal.pc = ecs->stop_func_start;
7222 	  sr_sal.pspace = get_frame_program_space (frame);
7223 	  insert_step_resume_breakpoint_at_sal (gdbarch,
7224 						sr_sal, null_frame_id);
7225 	  keep_going (ecs);
7226 	  return;
7227 	}
7228     }
7229 
7230   /* This always returns the sal for the inner-most frame when we are in a
7231      stack of inlined frames, even if GDB actually believes that it is in a
7232      more outer frame.  This is checked for below by calls to
7233      inline_skipped_frames.  */
7234   stop_pc_sal = find_pc_line (ecs->event_thread->stop_pc (), 0);
7235 
7236   /* NOTE: tausq/2004-05-24: This if block used to be done before all
7237      the trampoline processing logic, however, there are some trampolines
7238      that have no names, so we should do trampoline handling first.  */
7239   if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7240       && ecs->stop_func_name == nullptr
7241       && stop_pc_sal.line == 0)
7242     {
7243       infrun_debug_printf ("stepped into undebuggable function");
7244 
7245       /* The inferior just stepped into, or returned to, an
7246 	 undebuggable function (where there is no debugging information
7247 	 and no line number corresponding to the address where the
7248 	 inferior stopped).  Since we want to skip this kind of code,
7249 	 we keep going until the inferior returns from this
7250 	 function - unless the user has asked us not to (via
7251 	 set step-mode) or we no longer know how to get back
7252 	 to the call site.  */
7253       if (step_stop_if_no_debug
7254 	  || !frame_id_p (frame_unwind_caller_id (frame)))
7255 	{
7256 	  /* If we have no line number and the step-stop-if-no-debug
7257 	     is set, we stop the step so that the user has a chance to
7258 	     switch in assembly mode.  */
7259 	  end_stepping_range (ecs);
7260 	  return;
7261 	}
7262       else
7263 	{
7264 	  /* Set a breakpoint at callee's return address (the address
7265 	     at which the caller will resume).  */
7266 	  insert_step_resume_breakpoint_at_caller (frame);
7267 	  keep_going (ecs);
7268 	  return;
7269 	}
7270     }
7271 
7272   if (ecs->event_thread->control.step_range_end == 1)
7273     {
7274       /* It is stepi or nexti.  We always want to stop stepping after
7275 	 one instruction.  */
7276       infrun_debug_printf ("stepi/nexti");
7277       end_stepping_range (ecs);
7278       return;
7279     }
7280 
7281   if (stop_pc_sal.line == 0)
7282     {
7283       /* We have no line number information.  That means to stop
7284 	 stepping (does this always happen right after one instruction,
7285 	 when we do "s" in a function with no line numbers,
7286 	 or can this happen as a result of a return or longjmp?).  */
7287       infrun_debug_printf ("line number info");
7288       end_stepping_range (ecs);
7289       return;
7290     }
7291 
7292   /* Look for "calls" to inlined functions, part one.  If the inline
7293      frame machinery detected some skipped call sites, we have entered
7294      a new inline function.  */
7295 
7296   if ((get_frame_id (get_current_frame ())
7297        == ecs->event_thread->control.step_frame_id)
7298       && inline_skipped_frames (ecs->event_thread))
7299     {
7300       infrun_debug_printf ("stepped into inlined function");
7301 
7302       symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7303 
7304       if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7305 	{
7306 	  /* For "step", we're going to stop.  But if the call site
7307 	     for this inlined function is on the same source line as
7308 	     we were previously stepping, go down into the function
7309 	     first.  Otherwise stop at the call site.  */
7310 
7311 	  if (call_sal.line == ecs->event_thread->current_line
7312 	      && call_sal.symtab == ecs->event_thread->current_symtab)
7313 	    {
7314 	      step_into_inline_frame (ecs->event_thread);
7315 	      if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7316 		{
7317 		  keep_going (ecs);
7318 		  return;
7319 		}
7320 	    }
7321 
7322 	  end_stepping_range (ecs);
7323 	  return;
7324 	}
7325       else
7326 	{
7327 	  /* For "next", we should stop at the call site if it is on a
7328 	     different source line.  Otherwise continue through the
7329 	     inlined function.  */
7330 	  if (call_sal.line == ecs->event_thread->current_line
7331 	      && call_sal.symtab == ecs->event_thread->current_symtab)
7332 	    keep_going (ecs);
7333 	  else
7334 	    end_stepping_range (ecs);
7335 	  return;
7336 	}
7337     }
7338 
7339   /* Look for "calls" to inlined functions, part two.  If we are still
7340      in the same real function we were stepping through, but we have
7341      to go further up to find the exact frame ID, we are stepping
7342      through a more inlined call beyond its call site.  */
7343 
7344   if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7345       && (get_frame_id (get_current_frame ())
7346 	  != ecs->event_thread->control.step_frame_id)
7347       && stepped_in_from (get_current_frame (),
7348 			  ecs->event_thread->control.step_frame_id))
7349     {
7350       infrun_debug_printf ("stepping through inlined function");
7351 
7352       if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7353 	  || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7354 	keep_going (ecs);
7355       else
7356 	end_stepping_range (ecs);
7357       return;
7358     }
7359 
7360   bool refresh_step_info = true;
7361   if ((ecs->event_thread->stop_pc () == stop_pc_sal.pc)
7362       && (ecs->event_thread->current_line != stop_pc_sal.line
7363 	  || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7364     {
7365       /* We are at a different line.  */
7366 
7367       if (stop_pc_sal.is_stmt)
7368 	{
7369 	  /* We are at the start of a statement.
7370 
7371 	     So stop.  Note that we don't stop if we step into the middle of a
7372 	     statement.  That is said to make things like for (;;) statements
7373 	     work better.  */
7374 	  infrun_debug_printf ("stepped to a different line");
7375 	  end_stepping_range (ecs);
7376 	  return;
7377 	}
7378       else if (get_frame_id (get_current_frame ())
7379                == ecs->event_thread->control.step_frame_id)
7380 	{
7381 	  /* We are not at the start of a statement, and we have not changed
7382 	     frame.
7383 
7384 	     We ignore this line table entry, and continue stepping forward,
7385 	     looking for a better place to stop.  */
7386 	  refresh_step_info = false;
7387 	  infrun_debug_printf ("stepped to a different line, but "
7388 			       "it's not the start of a statement");
7389 	}
7390       else
7391 	{
7392 	  /* We are not the start of a statement, and we have changed frame.
7393 
7394 	     We ignore this line table entry, and continue stepping forward,
7395 	     looking for a better place to stop.  Keep refresh_step_info at
7396 	     true to note that the frame has changed, but ignore the line
7397 	     number to make sure we don't ignore a subsequent entry with the
7398 	     same line number.  */
7399 	  stop_pc_sal.line = 0;
7400 	  infrun_debug_printf ("stepped to a different frame, but "
7401 			       "it's not the start of a statement");
7402 	}
7403     }
7404 
7405   /* We aren't done stepping.
7406 
7407      Optimize by setting the stepping range to the line.
7408      (We might not be in the original line, but if we entered a
7409      new line in mid-statement, we continue stepping.  This makes
7410      things like for(;;) statements work better.)
7411 
7412      If we entered a SAL that indicates a non-statement line table entry,
7413      then we update the stepping range, but we don't update the step info,
7414      which includes things like the line number we are stepping away from.
7415      This means we will stop when we find a line table entry that is marked
7416      as is-statement, even if it matches the non-statement one we just
7417      stepped into.   */
7418 
7419   ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7420   ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7421   ecs->event_thread->control.may_range_step = 1;
7422   infrun_debug_printf
7423     ("updated step range, start = %s, end = %s, may_range_step = %d",
7424      paddress (gdbarch, ecs->event_thread->control.step_range_start),
7425      paddress (gdbarch, ecs->event_thread->control.step_range_end),
7426      ecs->event_thread->control.may_range_step);
7427   if (refresh_step_info)
7428     set_step_info (ecs->event_thread, frame, stop_pc_sal);
7429 
7430   infrun_debug_printf ("keep going");
7431   keep_going (ecs);
7432 }
7433 
7434 static bool restart_stepped_thread (process_stratum_target *resume_target,
7435 				    ptid_t resume_ptid);
7436 
7437 /* In all-stop mode, if we're currently stepping but have stopped in
7438    some other thread, we may need to switch back to the stepped
7439    thread.  Returns true we set the inferior running, false if we left
7440    it stopped (and the event needs further processing).  */
7441 
7442 static bool
7443 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7444 {
7445   if (!target_is_non_stop_p ())
7446     {
7447       /* If any thread is blocked on some internal breakpoint, and we
7448 	 simply need to step over that breakpoint to get it going
7449 	 again, do that first.  */
7450 
7451       /* However, if we see an event for the stepping thread, then we
7452 	 know all other threads have been moved past their breakpoints
7453 	 already.  Let the caller check whether the step is finished,
7454 	 etc., before deciding to move it past a breakpoint.  */
7455       if (ecs->event_thread->control.step_range_end != 0)
7456 	return false;
7457 
7458       /* Check if the current thread is blocked on an incomplete
7459 	 step-over, interrupted by a random signal.  */
7460       if (ecs->event_thread->control.trap_expected
7461 	  && ecs->event_thread->stop_signal () != GDB_SIGNAL_TRAP)
7462 	{
7463 	  infrun_debug_printf
7464 	    ("need to finish step-over of [%s]",
7465 	     ecs->event_thread->ptid.to_string ().c_str ());
7466 	  keep_going (ecs);
7467 	  return true;
7468 	}
7469 
7470       /* Check if the current thread is blocked by a single-step
7471 	 breakpoint of another thread.  */
7472       if (ecs->hit_singlestep_breakpoint)
7473        {
7474 	 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7475 			      ecs->ptid.to_string ().c_str ());
7476 	 keep_going (ecs);
7477 	 return true;
7478        }
7479 
7480       /* If this thread needs yet another step-over (e.g., stepping
7481 	 through a delay slot), do it first before moving on to
7482 	 another thread.  */
7483       if (thread_still_needs_step_over (ecs->event_thread))
7484 	{
7485 	  infrun_debug_printf
7486 	    ("thread [%s] still needs step-over",
7487 	     ecs->event_thread->ptid.to_string ().c_str ());
7488 	  keep_going (ecs);
7489 	  return true;
7490 	}
7491 
7492       /* If scheduler locking applies even if not stepping, there's no
7493 	 need to walk over threads.  Above we've checked whether the
7494 	 current thread is stepping.  If some other thread not the
7495 	 event thread is stepping, then it must be that scheduler
7496 	 locking is not in effect.  */
7497       if (schedlock_applies (ecs->event_thread))
7498 	return false;
7499 
7500       /* Otherwise, we no longer expect a trap in the current thread.
7501 	 Clear the trap_expected flag before switching back -- this is
7502 	 what keep_going does as well, if we call it.  */
7503       ecs->event_thread->control.trap_expected = 0;
7504 
7505       /* Likewise, clear the signal if it should not be passed.  */
7506       if (!signal_program[ecs->event_thread->stop_signal ()])
7507 	ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
7508 
7509       if (restart_stepped_thread (ecs->target, ecs->ptid))
7510 	{
7511 	  prepare_to_wait (ecs);
7512 	  return true;
7513 	}
7514 
7515       switch_to_thread (ecs->event_thread);
7516     }
7517 
7518   return false;
7519 }
7520 
7521 /* Look for the thread that was stepping, and resume it.
7522    RESUME_TARGET / RESUME_PTID indicate the set of threads the caller
7523    is resuming.  Return true if a thread was started, false
7524    otherwise.  */
7525 
7526 static bool
7527 restart_stepped_thread (process_stratum_target *resume_target,
7528 			ptid_t resume_ptid)
7529 {
7530   /* Do all pending step-overs before actually proceeding with
7531      step/next/etc.  */
7532   if (start_step_over ())
7533     return true;
7534 
7535   for (thread_info *tp : all_threads_safe ())
7536     {
7537       if (tp->state == THREAD_EXITED)
7538 	continue;
7539 
7540       if (tp->has_pending_waitstatus ())
7541 	continue;
7542 
7543       /* Ignore threads of processes the caller is not
7544 	 resuming.  */
7545       if (!sched_multi
7546 	  && (tp->inf->process_target () != resume_target
7547 	      || tp->inf->pid != resume_ptid.pid ()))
7548 	continue;
7549 
7550       if (tp->control.trap_expected)
7551 	{
7552 	  infrun_debug_printf ("switching back to stepped thread (step-over)");
7553 
7554 	  if (keep_going_stepped_thread (tp))
7555 	    return true;
7556 	}
7557     }
7558 
7559   for (thread_info *tp : all_threads_safe ())
7560     {
7561       if (tp->state == THREAD_EXITED)
7562 	continue;
7563 
7564       if (tp->has_pending_waitstatus ())
7565 	continue;
7566 
7567       /* Ignore threads of processes the caller is not
7568 	 resuming.  */
7569       if (!sched_multi
7570 	  && (tp->inf->process_target () != resume_target
7571 	      || tp->inf->pid != resume_ptid.pid ()))
7572 	continue;
7573 
7574       /* Did we find the stepping thread?  */
7575       if (tp->control.step_range_end)
7576 	{
7577 	  infrun_debug_printf ("switching back to stepped thread (stepping)");
7578 
7579 	  if (keep_going_stepped_thread (tp))
7580 	    return true;
7581 	}
7582     }
7583 
7584   return false;
7585 }
7586 
7587 /* See infrun.h.  */
7588 
7589 void
7590 restart_after_all_stop_detach (process_stratum_target *proc_target)
7591 {
7592   /* Note we don't check target_is_non_stop_p() here, because the
7593      current inferior may no longer have a process_stratum target
7594      pushed, as we just detached.  */
7595 
7596   /* See if we have a THREAD_RUNNING thread that need to be
7597      re-resumed.  If we have any thread that is already executing,
7598      then we don't need to resume the target -- it is already been
7599      resumed.  With the remote target (in all-stop), it's even
7600      impossible to issue another resumption if the target is already
7601      resumed, until the target reports a stop.  */
7602   for (thread_info *thr : all_threads (proc_target))
7603     {
7604       if (thr->state != THREAD_RUNNING)
7605 	continue;
7606 
7607       /* If we have any thread that is already executing, then we
7608 	 don't need to resume the target -- it is already been
7609 	 resumed.  */
7610       if (thr->executing ())
7611 	return;
7612 
7613       /* If we have a pending event to process, skip resuming the
7614 	 target and go straight to processing it.  */
7615       if (thr->resumed () && thr->has_pending_waitstatus ())
7616 	return;
7617     }
7618 
7619   /* Alright, we need to re-resume the target.  If a thread was
7620      stepping, we need to restart it stepping.  */
7621   if (restart_stepped_thread (proc_target, minus_one_ptid))
7622     return;
7623 
7624   /* Otherwise, find the first THREAD_RUNNING thread and resume
7625      it.  */
7626   for (thread_info *thr : all_threads (proc_target))
7627     {
7628       if (thr->state != THREAD_RUNNING)
7629 	continue;
7630 
7631       execution_control_state ecs (thr);
7632       switch_to_thread (thr);
7633       keep_going (&ecs);
7634       return;
7635     }
7636 }
7637 
7638 /* Set a previously stepped thread back to stepping.  Returns true on
7639    success, false if the resume is not possible (e.g., the thread
7640    vanished).  */
7641 
7642 static bool
7643 keep_going_stepped_thread (struct thread_info *tp)
7644 {
7645   frame_info_ptr frame;
7646 
7647   /* If the stepping thread exited, then don't try to switch back and
7648      resume it, which could fail in several different ways depending
7649      on the target.  Instead, just keep going.
7650 
7651      We can find a stepping dead thread in the thread list in two
7652      cases:
7653 
7654      - The target supports thread exit events, and when the target
7655        tries to delete the thread from the thread list, inferior_ptid
7656        pointed at the exiting thread.  In such case, calling
7657        delete_thread does not really remove the thread from the list;
7658        instead, the thread is left listed, with 'exited' state.
7659 
7660      - The target's debug interface does not support thread exit
7661        events, and so we have no idea whatsoever if the previously
7662        stepping thread is still alive.  For that reason, we need to
7663        synchronously query the target now.  */
7664 
7665   if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7666     {
7667       infrun_debug_printf ("not resuming previously stepped thread, it has "
7668 			   "vanished");
7669 
7670       delete_thread (tp);
7671       return false;
7672     }
7673 
7674   infrun_debug_printf ("resuming previously stepped thread");
7675 
7676   execution_control_state ecs (tp);
7677   switch_to_thread (tp);
7678 
7679   tp->set_stop_pc (regcache_read_pc (get_thread_regcache (tp)));
7680   frame = get_current_frame ();
7681 
7682   /* If the PC of the thread we were trying to single-step has
7683      changed, then that thread has trapped or been signaled, but the
7684      event has not been reported to GDB yet.  Re-poll the target
7685      looking for this particular thread's event (i.e. temporarily
7686      enable schedlock) by:
7687 
7688      - setting a break at the current PC
7689      - resuming that particular thread, only (by setting trap
7690      expected)
7691 
7692      This prevents us continuously moving the single-step breakpoint
7693      forward, one instruction at a time, overstepping.  */
7694 
7695   if (tp->stop_pc () != tp->prev_pc)
7696     {
7697       ptid_t resume_ptid;
7698 
7699       infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7700 			   paddress (target_gdbarch (), tp->prev_pc),
7701 			   paddress (target_gdbarch (), tp->stop_pc ()));
7702 
7703       /* Clear the info of the previous step-over, as it's no longer
7704 	 valid (if the thread was trying to step over a breakpoint, it
7705 	 has already succeeded).  It's what keep_going would do too,
7706 	 if we called it.  Do this before trying to insert the sss
7707 	 breakpoint, otherwise if we were previously trying to step
7708 	 over this exact address in another thread, the breakpoint is
7709 	 skipped.  */
7710       clear_step_over_info ();
7711       tp->control.trap_expected = 0;
7712 
7713       insert_single_step_breakpoint (get_frame_arch (frame),
7714 				     get_frame_address_space (frame),
7715 				     tp->stop_pc ());
7716 
7717       tp->set_resumed (true);
7718       resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7719       do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
7720     }
7721   else
7722     {
7723       infrun_debug_printf ("expected thread still hasn't advanced");
7724 
7725       keep_going_pass_signal (&ecs);
7726     }
7727 
7728   return true;
7729 }
7730 
7731 /* Is thread TP in the middle of (software or hardware)
7732    single-stepping?  (Note the result of this function must never be
7733    passed directly as target_resume's STEP parameter.)  */
7734 
7735 static bool
7736 currently_stepping (struct thread_info *tp)
7737 {
7738   return ((tp->control.step_range_end
7739 	   && tp->control.step_resume_breakpoint == nullptr)
7740 	  || tp->control.trap_expected
7741 	  || tp->stepped_breakpoint
7742 	  || bpstat_should_step ());
7743 }
7744 
7745 /* Inferior has stepped into a subroutine call with source code that
7746    we should not step over.  Do step to the first line of code in
7747    it.  */
7748 
7749 static void
7750 handle_step_into_function (struct gdbarch *gdbarch,
7751 			   struct execution_control_state *ecs)
7752 {
7753   fill_in_stop_func (gdbarch, ecs);
7754 
7755   compunit_symtab *cust
7756     = find_pc_compunit_symtab (ecs->event_thread->stop_pc ());
7757   if (cust != nullptr && cust->language () != language_asm)
7758     ecs->stop_func_start
7759       = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7760 
7761   symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7762   /* Use the step_resume_break to step until the end of the prologue,
7763      even if that involves jumps (as it seems to on the vax under
7764      4.2).  */
7765   /* If the prologue ends in the middle of a source line, continue to
7766      the end of that source line (if it is still within the function).
7767      Otherwise, just go to end of prologue.  */
7768   if (stop_func_sal.end
7769       && stop_func_sal.pc != ecs->stop_func_start
7770       && stop_func_sal.end < ecs->stop_func_end)
7771     ecs->stop_func_start = stop_func_sal.end;
7772 
7773   /* Architectures which require breakpoint adjustment might not be able
7774      to place a breakpoint at the computed address.  If so, the test
7775      ``ecs->stop_func_start == stop_pc'' will never succeed.  Adjust
7776      ecs->stop_func_start to an address at which a breakpoint may be
7777      legitimately placed.
7778 
7779      Note:  kevinb/2004-01-19:  On FR-V, if this adjustment is not
7780      made, GDB will enter an infinite loop when stepping through
7781      optimized code consisting of VLIW instructions which contain
7782      subinstructions corresponding to different source lines.  On
7783      FR-V, it's not permitted to place a breakpoint on any but the
7784      first subinstruction of a VLIW instruction.  When a breakpoint is
7785      set, GDB will adjust the breakpoint address to the beginning of
7786      the VLIW instruction.  Thus, we need to make the corresponding
7787      adjustment here when computing the stop address.  */
7788 
7789   if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7790     {
7791       ecs->stop_func_start
7792 	= gdbarch_adjust_breakpoint_address (gdbarch,
7793 					     ecs->stop_func_start);
7794     }
7795 
7796   if (ecs->stop_func_start == ecs->event_thread->stop_pc ())
7797     {
7798       /* We are already there: stop now.  */
7799       end_stepping_range (ecs);
7800       return;
7801     }
7802   else
7803     {
7804       /* Put the step-breakpoint there and go until there.  */
7805       symtab_and_line sr_sal;
7806       sr_sal.pc = ecs->stop_func_start;
7807       sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7808       sr_sal.pspace = get_frame_program_space (get_current_frame ());
7809 
7810       /* Do not specify what the fp should be when we stop since on
7811 	 some machines the prologue is where the new fp value is
7812 	 established.  */
7813       insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7814 
7815       /* And make sure stepping stops right away then.  */
7816       ecs->event_thread->control.step_range_end
7817 	= ecs->event_thread->control.step_range_start;
7818     }
7819   keep_going (ecs);
7820 }
7821 
7822 /* Inferior has stepped backward into a subroutine call with source
7823    code that we should not step over.  Do step to the beginning of the
7824    last line of code in it.  */
7825 
7826 static void
7827 handle_step_into_function_backward (struct gdbarch *gdbarch,
7828 				    struct execution_control_state *ecs)
7829 {
7830   struct compunit_symtab *cust;
7831   struct symtab_and_line stop_func_sal;
7832 
7833   fill_in_stop_func (gdbarch, ecs);
7834 
7835   cust = find_pc_compunit_symtab (ecs->event_thread->stop_pc ());
7836   if (cust != nullptr && cust->language () != language_asm)
7837     ecs->stop_func_start
7838       = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7839 
7840   stop_func_sal = find_pc_line (ecs->event_thread->stop_pc (), 0);
7841 
7842   /* OK, we're just going to keep stepping here.  */
7843   if (stop_func_sal.pc == ecs->event_thread->stop_pc ())
7844     {
7845       /* We're there already.  Just stop stepping now.  */
7846       end_stepping_range (ecs);
7847     }
7848   else
7849     {
7850       /* Else just reset the step range and keep going.
7851 	 No step-resume breakpoint, they don't work for
7852 	 epilogues, which can have multiple entry paths.  */
7853       ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7854       ecs->event_thread->control.step_range_end = stop_func_sal.end;
7855       keep_going (ecs);
7856     }
7857   return;
7858 }
7859 
7860 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7861    This is used to both functions and to skip over code.  */
7862 
7863 static void
7864 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7865 					struct symtab_and_line sr_sal,
7866 					struct frame_id sr_id,
7867 					enum bptype sr_type)
7868 {
7869   /* There should never be more than one step-resume or longjmp-resume
7870      breakpoint per thread, so we should never be setting a new
7871      step_resume_breakpoint when one is already active.  */
7872   gdb_assert (inferior_thread ()->control.step_resume_breakpoint == nullptr);
7873   gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7874 
7875   infrun_debug_printf ("inserting step-resume breakpoint at %s",
7876 		       paddress (gdbarch, sr_sal.pc));
7877 
7878   inferior_thread ()->control.step_resume_breakpoint
7879     = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7880 }
7881 
7882 void
7883 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7884 				      struct symtab_and_line sr_sal,
7885 				      struct frame_id sr_id)
7886 {
7887   insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7888 					  sr_sal, sr_id,
7889 					  bp_step_resume);
7890 }
7891 
7892 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7893    This is used to skip a potential signal handler.
7894 
7895    This is called with the interrupted function's frame.  The signal
7896    handler, when it returns, will resume the interrupted function at
7897    RETURN_FRAME.pc.  */
7898 
7899 static void
7900 insert_hp_step_resume_breakpoint_at_frame (frame_info_ptr return_frame)
7901 {
7902   gdb_assert (return_frame != nullptr);
7903 
7904   struct gdbarch *gdbarch = get_frame_arch (return_frame);
7905 
7906   symtab_and_line sr_sal;
7907   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7908   sr_sal.section = find_pc_overlay (sr_sal.pc);
7909   sr_sal.pspace = get_frame_program_space (return_frame);
7910 
7911   insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7912 					  get_stack_frame_id (return_frame),
7913 					  bp_hp_step_resume);
7914 }
7915 
7916 /* Insert a "step-resume breakpoint" at the previous frame's PC.  This
7917    is used to skip a function after stepping into it (for "next" or if
7918    the called function has no debugging information).
7919 
7920    The current function has almost always been reached by single
7921    stepping a call or return instruction.  NEXT_FRAME belongs to the
7922    current function, and the breakpoint will be set at the caller's
7923    resume address.
7924 
7925    This is a separate function rather than reusing
7926    insert_hp_step_resume_breakpoint_at_frame in order to avoid
7927    get_prev_frame, which may stop prematurely (see the implementation
7928    of frame_unwind_caller_id for an example).  */
7929 
7930 static void
7931 insert_step_resume_breakpoint_at_caller (frame_info_ptr next_frame)
7932 {
7933   /* We shouldn't have gotten here if we don't know where the call site
7934      is.  */
7935   gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7936 
7937   struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7938 
7939   symtab_and_line sr_sal;
7940   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7941 					frame_unwind_caller_pc (next_frame));
7942   sr_sal.section = find_pc_overlay (sr_sal.pc);
7943   sr_sal.pspace = frame_unwind_program_space (next_frame);
7944 
7945   insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7946 					frame_unwind_caller_id (next_frame));
7947 }
7948 
7949 /* Insert a "longjmp-resume" breakpoint at PC.  This is used to set a
7950    new breakpoint at the target of a jmp_buf.  The handling of
7951    longjmp-resume uses the same mechanisms used for handling
7952    "step-resume" breakpoints.  */
7953 
7954 static void
7955 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7956 {
7957   /* There should never be more than one longjmp-resume breakpoint per
7958      thread, so we should never be setting a new
7959      longjmp_resume_breakpoint when one is already active.  */
7960   gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == nullptr);
7961 
7962   infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7963 		       paddress (gdbarch, pc));
7964 
7965   inferior_thread ()->control.exception_resume_breakpoint =
7966     set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7967 }
7968 
7969 /* Insert an exception resume breakpoint.  TP is the thread throwing
7970    the exception.  The block B is the block of the unwinder debug hook
7971    function.  FRAME is the frame corresponding to the call to this
7972    function.  SYM is the symbol of the function argument holding the
7973    target PC of the exception.  */
7974 
7975 static void
7976 insert_exception_resume_breakpoint (struct thread_info *tp,
7977 				    const struct block *b,
7978 				    frame_info_ptr frame,
7979 				    struct symbol *sym)
7980 {
7981   try
7982     {
7983       struct block_symbol vsym;
7984       struct value *value;
7985       CORE_ADDR handler;
7986       struct breakpoint *bp;
7987 
7988       vsym = lookup_symbol_search_name (sym->search_name (),
7989 					b, VAR_DOMAIN);
7990       value = read_var_value (vsym.symbol, vsym.block, frame);
7991       /* If the value was optimized out, revert to the old behavior.  */
7992       if (! value_optimized_out (value))
7993 	{
7994 	  handler = value_as_address (value);
7995 
7996 	  infrun_debug_printf ("exception resume at %lx",
7997 			       (unsigned long) handler);
7998 
7999 	  bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
8000 					       handler,
8001 					       bp_exception_resume).release ();
8002 
8003 	  /* set_momentary_breakpoint_at_pc invalidates FRAME.  */
8004 	  frame = nullptr;
8005 
8006 	  bp->thread = tp->global_num;
8007 	  inferior_thread ()->control.exception_resume_breakpoint = bp;
8008 	}
8009     }
8010   catch (const gdb_exception_error &e)
8011     {
8012       /* We want to ignore errors here.  */
8013     }
8014 }
8015 
8016 /* A helper for check_exception_resume that sets an
8017    exception-breakpoint based on a SystemTap probe.  */
8018 
8019 static void
8020 insert_exception_resume_from_probe (struct thread_info *tp,
8021 				    const struct bound_probe *probe,
8022 				    frame_info_ptr frame)
8023 {
8024   struct value *arg_value;
8025   CORE_ADDR handler;
8026   struct breakpoint *bp;
8027 
8028   arg_value = probe_safe_evaluate_at_pc (frame, 1);
8029   if (!arg_value)
8030     return;
8031 
8032   handler = value_as_address (arg_value);
8033 
8034   infrun_debug_printf ("exception resume at %s",
8035 		       paddress (probe->objfile->arch (), handler));
8036 
8037   bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
8038 				       handler, bp_exception_resume).release ();
8039   bp->thread = tp->global_num;
8040   inferior_thread ()->control.exception_resume_breakpoint = bp;
8041 }
8042 
8043 /* This is called when an exception has been intercepted.  Check to
8044    see whether the exception's destination is of interest, and if so,
8045    set an exception resume breakpoint there.  */
8046 
8047 static void
8048 check_exception_resume (struct execution_control_state *ecs,
8049 			frame_info_ptr frame)
8050 {
8051   struct bound_probe probe;
8052   struct symbol *func;
8053 
8054   /* First see if this exception unwinding breakpoint was set via a
8055      SystemTap probe point.  If so, the probe has two arguments: the
8056      CFA and the HANDLER.  We ignore the CFA, extract the handler, and
8057      set a breakpoint there.  */
8058   probe = find_probe_by_pc (get_frame_pc (frame));
8059   if (probe.prob)
8060     {
8061       insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
8062       return;
8063     }
8064 
8065   func = get_frame_function (frame);
8066   if (!func)
8067     return;
8068 
8069   try
8070     {
8071       const struct block *b;
8072       struct block_iterator iter;
8073       struct symbol *sym;
8074       int argno = 0;
8075 
8076       /* The exception breakpoint is a thread-specific breakpoint on
8077 	 the unwinder's debug hook, declared as:
8078 
8079 	 void _Unwind_DebugHook (void *cfa, void *handler);
8080 
8081 	 The CFA argument indicates the frame to which control is
8082 	 about to be transferred.  HANDLER is the destination PC.
8083 
8084 	 We ignore the CFA and set a temporary breakpoint at HANDLER.
8085 	 This is not extremely efficient but it avoids issues in gdb
8086 	 with computing the DWARF CFA, and it also works even in weird
8087 	 cases such as throwing an exception from inside a signal
8088 	 handler.  */
8089 
8090       b = func->value_block ();
8091       ALL_BLOCK_SYMBOLS (b, iter, sym)
8092 	{
8093 	  if (!sym->is_argument ())
8094 	    continue;
8095 
8096 	  if (argno == 0)
8097 	    ++argno;
8098 	  else
8099 	    {
8100 	      insert_exception_resume_breakpoint (ecs->event_thread,
8101 						  b, frame, sym);
8102 	      break;
8103 	    }
8104 	}
8105     }
8106   catch (const gdb_exception_error &e)
8107     {
8108     }
8109 }
8110 
8111 static void
8112 stop_waiting (struct execution_control_state *ecs)
8113 {
8114   infrun_debug_printf ("stop_waiting");
8115 
8116   /* Let callers know we don't want to wait for the inferior anymore.  */
8117   ecs->wait_some_more = 0;
8118 }
8119 
8120 /* Like keep_going, but passes the signal to the inferior, even if the
8121    signal is set to nopass.  */
8122 
8123 static void
8124 keep_going_pass_signal (struct execution_control_state *ecs)
8125 {
8126   gdb_assert (ecs->event_thread->ptid == inferior_ptid);
8127   gdb_assert (!ecs->event_thread->resumed ());
8128 
8129   /* Save the pc before execution, to compare with pc after stop.  */
8130   ecs->event_thread->prev_pc
8131     = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
8132 
8133   if (ecs->event_thread->control.trap_expected)
8134     {
8135       struct thread_info *tp = ecs->event_thread;
8136 
8137       infrun_debug_printf ("%s has trap_expected set, "
8138 			   "resuming to collect trap",
8139 			   tp->ptid.to_string ().c_str ());
8140 
8141       /* We haven't yet gotten our trap, and either: intercepted a
8142 	 non-signal event (e.g., a fork); or took a signal which we
8143 	 are supposed to pass through to the inferior.  Simply
8144 	 continue.  */
8145       resume (ecs->event_thread->stop_signal ());
8146     }
8147   else if (step_over_info_valid_p ())
8148     {
8149       /* Another thread is stepping over a breakpoint in-line.  If
8150 	 this thread needs a step-over too, queue the request.  In
8151 	 either case, this resume must be deferred for later.  */
8152       struct thread_info *tp = ecs->event_thread;
8153 
8154       if (ecs->hit_singlestep_breakpoint
8155 	  || thread_still_needs_step_over (tp))
8156 	{
8157 	  infrun_debug_printf ("step-over already in progress: "
8158 			       "step-over for %s deferred",
8159 			       tp->ptid.to_string ().c_str ());
8160 	  global_thread_step_over_chain_enqueue (tp);
8161 	}
8162       else
8163 	infrun_debug_printf ("step-over in progress: resume of %s deferred",
8164 			     tp->ptid.to_string ().c_str ());
8165     }
8166   else
8167     {
8168       struct regcache *regcache = get_current_regcache ();
8169       int remove_bp;
8170       int remove_wps;
8171       step_over_what step_what;
8172 
8173       /* Either the trap was not expected, but we are continuing
8174 	 anyway (if we got a signal, the user asked it be passed to
8175 	 the child)
8176 	 -- or --
8177 	 We got our expected trap, but decided we should resume from
8178 	 it.
8179 
8180 	 We're going to run this baby now!
8181 
8182 	 Note that insert_breakpoints won't try to re-insert
8183 	 already inserted breakpoints.  Therefore, we don't
8184 	 care if breakpoints were already inserted, or not.  */
8185 
8186       /* If we need to step over a breakpoint, and we're not using
8187 	 displaced stepping to do so, insert all breakpoints
8188 	 (watchpoints, etc.) but the one we're stepping over, step one
8189 	 instruction, and then re-insert the breakpoint when that step
8190 	 is finished.  */
8191 
8192       step_what = thread_still_needs_step_over (ecs->event_thread);
8193 
8194       remove_bp = (ecs->hit_singlestep_breakpoint
8195 		   || (step_what & STEP_OVER_BREAKPOINT));
8196       remove_wps = (step_what & STEP_OVER_WATCHPOINT);
8197 
8198       /* We can't use displaced stepping if we need to step past a
8199 	 watchpoint.  The instruction copied to the scratch pad would
8200 	 still trigger the watchpoint.  */
8201       if (remove_bp
8202 	  && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
8203 	{
8204 	  set_step_over_info (regcache->aspace (),
8205 			      regcache_read_pc (regcache), remove_wps,
8206 			      ecs->event_thread->global_num);
8207 	}
8208       else if (remove_wps)
8209 	set_step_over_info (nullptr, 0, remove_wps, -1);
8210 
8211       /* If we now need to do an in-line step-over, we need to stop
8212 	 all other threads.  Note this must be done before
8213 	 insert_breakpoints below, because that removes the breakpoint
8214 	 we're about to step over, otherwise other threads could miss
8215 	 it.  */
8216       if (step_over_info_valid_p () && target_is_non_stop_p ())
8217 	stop_all_threads ("starting in-line step-over");
8218 
8219       /* Stop stepping if inserting breakpoints fails.  */
8220       try
8221 	{
8222 	  insert_breakpoints ();
8223 	}
8224       catch (const gdb_exception_error &e)
8225 	{
8226 	  exception_print (gdb_stderr, e);
8227 	  stop_waiting (ecs);
8228 	  clear_step_over_info ();
8229 	  return;
8230 	}
8231 
8232       ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
8233 
8234       resume (ecs->event_thread->stop_signal ());
8235     }
8236 
8237   prepare_to_wait (ecs);
8238 }
8239 
8240 /* Called when we should continue running the inferior, because the
8241    current event doesn't cause a user visible stop.  This does the
8242    resuming part; waiting for the next event is done elsewhere.  */
8243 
8244 static void
8245 keep_going (struct execution_control_state *ecs)
8246 {
8247   if (ecs->event_thread->control.trap_expected
8248       && ecs->event_thread->stop_signal () == GDB_SIGNAL_TRAP)
8249     ecs->event_thread->control.trap_expected = 0;
8250 
8251   if (!signal_program[ecs->event_thread->stop_signal ()])
8252     ecs->event_thread->set_stop_signal (GDB_SIGNAL_0);
8253   keep_going_pass_signal (ecs);
8254 }
8255 
8256 /* This function normally comes after a resume, before
8257    handle_inferior_event exits.  It takes care of any last bits of
8258    housekeeping, and sets the all-important wait_some_more flag.  */
8259 
8260 static void
8261 prepare_to_wait (struct execution_control_state *ecs)
8262 {
8263   infrun_debug_printf ("prepare_to_wait");
8264 
8265   ecs->wait_some_more = 1;
8266 
8267   /* If the target can't async, emulate it by marking the infrun event
8268      handler such that as soon as we get back to the event-loop, we
8269      immediately end up in fetch_inferior_event again calling
8270      target_wait.  */
8271   if (!target_can_async_p ())
8272     mark_infrun_async_event_handler ();
8273 }
8274 
8275 /* We are done with the step range of a step/next/si/ni command.
8276    Called once for each n of a "step n" operation.  */
8277 
8278 static void
8279 end_stepping_range (struct execution_control_state *ecs)
8280 {
8281   ecs->event_thread->control.stop_step = 1;
8282   stop_waiting (ecs);
8283 }
8284 
8285 /* Several print_*_reason functions to print why the inferior has stopped.
8286    We always print something when the inferior exits, or receives a signal.
8287    The rest of the cases are dealt with later on in normal_stop and
8288    print_it_typical.  Ideally there should be a call to one of these
8289    print_*_reason functions functions from handle_inferior_event each time
8290    stop_waiting is called.
8291 
8292    Note that we don't call these directly, instead we delegate that to
8293    the interpreters, through observers.  Interpreters then call these
8294    with whatever uiout is right.  */
8295 
8296 void
8297 print_end_stepping_range_reason (struct ui_out *uiout)
8298 {
8299   /* For CLI-like interpreters, print nothing.  */
8300 
8301   if (uiout->is_mi_like_p ())
8302     {
8303       uiout->field_string ("reason",
8304 			   async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8305     }
8306 }
8307 
8308 void
8309 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8310 {
8311   annotate_signalled ();
8312   if (uiout->is_mi_like_p ())
8313     uiout->field_string
8314       ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8315   uiout->text ("\nProgram terminated with signal ");
8316   annotate_signal_name ();
8317   uiout->field_string ("signal-name",
8318 		       gdb_signal_to_name (siggnal));
8319   annotate_signal_name_end ();
8320   uiout->text (", ");
8321   annotate_signal_string ();
8322   uiout->field_string ("signal-meaning",
8323 		       gdb_signal_to_string (siggnal));
8324   annotate_signal_string_end ();
8325   uiout->text (".\n");
8326   uiout->text ("The program no longer exists.\n");
8327 }
8328 
8329 void
8330 print_exited_reason (struct ui_out *uiout, int exitstatus)
8331 {
8332   struct inferior *inf = current_inferior ();
8333   std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8334 
8335   annotate_exited (exitstatus);
8336   if (exitstatus)
8337     {
8338       if (uiout->is_mi_like_p ())
8339 	uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8340       std::string exit_code_str
8341 	= string_printf ("0%o", (unsigned int) exitstatus);
8342       uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8343 		      plongest (inf->num), pidstr.c_str (),
8344 		      string_field ("exit-code", exit_code_str.c_str ()));
8345     }
8346   else
8347     {
8348       if (uiout->is_mi_like_p ())
8349 	uiout->field_string
8350 	  ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8351       uiout->message ("[Inferior %s (%s) exited normally]\n",
8352 		      plongest (inf->num), pidstr.c_str ());
8353     }
8354 }
8355 
8356 void
8357 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8358 {
8359   struct thread_info *thr = inferior_thread ();
8360 
8361   annotate_signal ();
8362 
8363   if (uiout->is_mi_like_p ())
8364     ;
8365   else if (show_thread_that_caused_stop ())
8366     {
8367       uiout->text ("\nThread ");
8368       uiout->field_string ("thread-id", print_thread_id (thr));
8369 
8370       const char *name = thread_name (thr);
8371       if (name != nullptr)
8372 	{
8373 	  uiout->text (" \"");
8374 	  uiout->field_string ("name", name);
8375 	  uiout->text ("\"");
8376 	}
8377     }
8378   else
8379     uiout->text ("\nProgram");
8380 
8381   if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8382     uiout->text (" stopped");
8383   else
8384     {
8385       uiout->text (" received signal ");
8386       annotate_signal_name ();
8387       if (uiout->is_mi_like_p ())
8388 	uiout->field_string
8389 	  ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8390       uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8391       annotate_signal_name_end ();
8392       uiout->text (", ");
8393       annotate_signal_string ();
8394       uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8395 
8396       struct regcache *regcache = get_current_regcache ();
8397       struct gdbarch *gdbarch = regcache->arch ();
8398       if (gdbarch_report_signal_info_p (gdbarch))
8399 	gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8400 
8401       annotate_signal_string_end ();
8402     }
8403   uiout->text (".\n");
8404 }
8405 
8406 void
8407 print_no_history_reason (struct ui_out *uiout)
8408 {
8409   uiout->text ("\nNo more reverse-execution history.\n");
8410 }
8411 
8412 /* Print current location without a level number, if we have changed
8413    functions or hit a breakpoint.  Print source line if we have one.
8414    bpstat_print contains the logic deciding in detail what to print,
8415    based on the event(s) that just occurred.  */
8416 
8417 static void
8418 print_stop_location (const target_waitstatus &ws)
8419 {
8420   int bpstat_ret;
8421   enum print_what source_flag;
8422   int do_frame_printing = 1;
8423   struct thread_info *tp = inferior_thread ();
8424 
8425   bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws.kind ());
8426   switch (bpstat_ret)
8427     {
8428     case PRINT_UNKNOWN:
8429       /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8430 	 should) carry around the function and does (or should) use
8431 	 that when doing a frame comparison.  */
8432       if (tp->control.stop_step
8433 	  && (tp->control.step_frame_id
8434 	      == get_frame_id (get_current_frame ()))
8435 	  && (tp->control.step_start_function
8436 	      == find_pc_function (tp->stop_pc ())))
8437 	{
8438 	  /* Finished step, just print source line.  */
8439 	  source_flag = SRC_LINE;
8440 	}
8441       else
8442 	{
8443 	  /* Print location and source line.  */
8444 	  source_flag = SRC_AND_LOC;
8445 	}
8446       break;
8447     case PRINT_SRC_AND_LOC:
8448       /* Print location and source line.  */
8449       source_flag = SRC_AND_LOC;
8450       break;
8451     case PRINT_SRC_ONLY:
8452       source_flag = SRC_LINE;
8453       break;
8454     case PRINT_NOTHING:
8455       /* Something bogus.  */
8456       source_flag = SRC_LINE;
8457       do_frame_printing = 0;
8458       break;
8459     default:
8460       internal_error (_("Unknown value."));
8461     }
8462 
8463   /* The behavior of this routine with respect to the source
8464      flag is:
8465      SRC_LINE: Print only source line
8466      LOCATION: Print only location
8467      SRC_AND_LOC: Print location and source line.  */
8468   if (do_frame_printing)
8469     print_stack_frame (get_selected_frame (nullptr), 0, source_flag, 1);
8470 }
8471 
8472 /* See infrun.h.  */
8473 
8474 void
8475 print_stop_event (struct ui_out *uiout, bool displays)
8476 {
8477   struct target_waitstatus last;
8478   struct thread_info *tp;
8479 
8480   get_last_target_status (nullptr, nullptr, &last);
8481 
8482   {
8483     scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8484 
8485     print_stop_location (last);
8486 
8487     /* Display the auto-display expressions.  */
8488     if (displays)
8489       do_displays ();
8490   }
8491 
8492   tp = inferior_thread ();
8493   if (tp->thread_fsm () != nullptr
8494       && tp->thread_fsm ()->finished_p ())
8495     {
8496       struct return_value_info *rv;
8497 
8498       rv = tp->thread_fsm ()->return_value ();
8499       if (rv != nullptr)
8500 	print_return_value (uiout, rv);
8501     }
8502 }
8503 
8504 /* See infrun.h.  */
8505 
8506 void
8507 maybe_remove_breakpoints (void)
8508 {
8509   if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8510     {
8511       if (remove_breakpoints ())
8512 	{
8513 	  target_terminal::ours_for_output ();
8514 	  gdb_printf (_("Cannot remove breakpoints because "
8515 			"program is no longer writable.\nFurther "
8516 			"execution is probably impossible.\n"));
8517 	}
8518     }
8519 }
8520 
8521 /* The execution context that just caused a normal stop.  */
8522 
8523 struct stop_context
8524 {
8525   stop_context ();
8526 
8527   DISABLE_COPY_AND_ASSIGN (stop_context);
8528 
8529   bool changed () const;
8530 
8531   /* The stop ID.  */
8532   ULONGEST stop_id;
8533 
8534   /* The event PTID.  */
8535 
8536   ptid_t ptid;
8537 
8538   /* If stopp for a thread event, this is the thread that caused the
8539      stop.  */
8540   thread_info_ref thread;
8541 
8542   /* The inferior that caused the stop.  */
8543   int inf_num;
8544 };
8545 
8546 /* Initializes a new stop context.  If stopped for a thread event, this
8547    takes a strong reference to the thread.  */
8548 
8549 stop_context::stop_context ()
8550 {
8551   stop_id = get_stop_id ();
8552   ptid = inferior_ptid;
8553   inf_num = current_inferior ()->num;
8554 
8555   if (inferior_ptid != null_ptid)
8556     {
8557       /* Take a strong reference so that the thread can't be deleted
8558 	 yet.  */
8559       thread = thread_info_ref::new_reference (inferior_thread ());
8560     }
8561 }
8562 
8563 /* Return true if the current context no longer matches the saved stop
8564    context.  */
8565 
8566 bool
8567 stop_context::changed () const
8568 {
8569   if (ptid != inferior_ptid)
8570     return true;
8571   if (inf_num != current_inferior ()->num)
8572     return true;
8573   if (thread != nullptr && thread->state != THREAD_STOPPED)
8574     return true;
8575   if (get_stop_id () != stop_id)
8576     return true;
8577   return false;
8578 }
8579 
8580 /* See infrun.h.  */
8581 
8582 int
8583 normal_stop (void)
8584 {
8585   struct target_waitstatus last;
8586 
8587   get_last_target_status (nullptr, nullptr, &last);
8588 
8589   new_stop_id ();
8590 
8591   /* If an exception is thrown from this point on, make sure to
8592      propagate GDB's knowledge of the executing state to the
8593      frontend/user running state.  A QUIT is an easy exception to see
8594      here, so do this before any filtered output.  */
8595 
8596   ptid_t finish_ptid = null_ptid;
8597 
8598   if (!non_stop)
8599     finish_ptid = minus_one_ptid;
8600   else if (last.kind () == TARGET_WAITKIND_SIGNALLED
8601 	   || last.kind () == TARGET_WAITKIND_EXITED)
8602     {
8603       /* On some targets, we may still have live threads in the
8604 	 inferior when we get a process exit event.  E.g., for
8605 	 "checkpoint", when the current checkpoint/fork exits,
8606 	 linux-fork.c automatically switches to another fork from
8607 	 within target_mourn_inferior.  */
8608       if (inferior_ptid != null_ptid)
8609 	finish_ptid = ptid_t (inferior_ptid.pid ());
8610     }
8611   else if (last.kind () != TARGET_WAITKIND_NO_RESUMED)
8612     finish_ptid = inferior_ptid;
8613 
8614   gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8615   if (finish_ptid != null_ptid)
8616     {
8617       maybe_finish_thread_state.emplace
8618 	(user_visible_resume_target (finish_ptid), finish_ptid);
8619     }
8620 
8621   /* As we're presenting a stop, and potentially removing breakpoints,
8622      update the thread list so we can tell whether there are threads
8623      running on the target.  With target remote, for example, we can
8624      only learn about new threads when we explicitly update the thread
8625      list.  Do this before notifying the interpreters about signal
8626      stops, end of stepping ranges, etc., so that the "new thread"
8627      output is emitted before e.g., "Program received signal FOO",
8628      instead of after.  */
8629   update_thread_list ();
8630 
8631   if (last.kind () == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8632     gdb::observers::signal_received.notify (inferior_thread ()->stop_signal ());
8633 
8634   /* As with the notification of thread events, we want to delay
8635      notifying the user that we've switched thread context until
8636      the inferior actually stops.
8637 
8638      There's no point in saying anything if the inferior has exited.
8639      Note that SIGNALLED here means "exited with a signal", not
8640      "received a signal".
8641 
8642      Also skip saying anything in non-stop mode.  In that mode, as we
8643      don't want GDB to switch threads behind the user's back, to avoid
8644      races where the user is typing a command to apply to thread x,
8645      but GDB switches to thread y before the user finishes entering
8646      the command, fetch_inferior_event installs a cleanup to restore
8647      the current thread back to the thread the user had selected right
8648      after this event is handled, so we're not really switching, only
8649      informing of a stop.  */
8650   if (!non_stop
8651       && previous_inferior_ptid != inferior_ptid
8652       && target_has_execution ()
8653       && last.kind () != TARGET_WAITKIND_SIGNALLED
8654       && last.kind () != TARGET_WAITKIND_EXITED
8655       && last.kind () != TARGET_WAITKIND_NO_RESUMED)
8656     {
8657       SWITCH_THRU_ALL_UIS ()
8658 	{
8659 	  target_terminal::ours_for_output ();
8660 	  gdb_printf (_("[Switching to %s]\n"),
8661 		      target_pid_to_str (inferior_ptid).c_str ());
8662 	  annotate_thread_changed ();
8663 	}
8664       previous_inferior_ptid = inferior_ptid;
8665     }
8666 
8667   if (last.kind () == TARGET_WAITKIND_NO_RESUMED)
8668     {
8669       SWITCH_THRU_ALL_UIS ()
8670 	if (current_ui->prompt_state == PROMPT_BLOCKED)
8671 	  {
8672 	    target_terminal::ours_for_output ();
8673 	    gdb_printf (_("No unwaited-for children left.\n"));
8674 	  }
8675     }
8676 
8677   /* Note: this depends on the update_thread_list call above.  */
8678   maybe_remove_breakpoints ();
8679 
8680   /* If an auto-display called a function and that got a signal,
8681      delete that auto-display to avoid an infinite recursion.  */
8682 
8683   if (stopped_by_random_signal)
8684     disable_current_display ();
8685 
8686   SWITCH_THRU_ALL_UIS ()
8687     {
8688       async_enable_stdin ();
8689     }
8690 
8691   /* Let the user/frontend see the threads as stopped.  */
8692   maybe_finish_thread_state.reset ();
8693 
8694   /* Select innermost stack frame - i.e., current frame is frame 0,
8695      and current location is based on that.  Handle the case where the
8696      dummy call is returning after being stopped.  E.g. the dummy call
8697      previously hit a breakpoint.  (If the dummy call returns
8698      normally, we won't reach here.)  Do this before the stop hook is
8699      run, so that it doesn't get to see the temporary dummy frame,
8700      which is not where we'll present the stop.  */
8701   if (has_stack_frames ())
8702     {
8703       if (stop_stack_dummy == STOP_STACK_DUMMY)
8704 	{
8705 	  /* Pop the empty frame that contains the stack dummy.  This
8706 	     also restores inferior state prior to the call (struct
8707 	     infcall_suspend_state).  */
8708 	  frame_info_ptr frame = get_current_frame ();
8709 
8710 	  gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8711 	  frame_pop (frame);
8712 	  /* frame_pop calls reinit_frame_cache as the last thing it
8713 	     does which means there's now no selected frame.  */
8714 	}
8715 
8716       select_frame (get_current_frame ());
8717 
8718       /* Set the current source location.  */
8719       set_current_sal_from_frame (get_current_frame ());
8720     }
8721 
8722   /* Look up the hook_stop and run it (CLI internally handles problem
8723      of stop_command's pre-hook not existing).  */
8724   stop_context saved_context;
8725 
8726   try
8727     {
8728       execute_cmd_pre_hook (stop_command);
8729     }
8730   catch (const gdb_exception &ex)
8731     {
8732       exception_fprintf (gdb_stderr, ex,
8733 			 "Error while running hook_stop:\n");
8734     }
8735 
8736   /* If the stop hook resumes the target, then there's no point in
8737      trying to notify about the previous stop; its context is
8738      gone.  Likewise if the command switches thread or inferior --
8739      the observers would print a stop for the wrong
8740      thread/inferior.  */
8741   if (saved_context.changed ())
8742     return 1;
8743 
8744   /* Notify observers about the stop.  This is where the interpreters
8745      print the stop event.  */
8746   if (inferior_ptid != null_ptid)
8747     gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8748 					stop_print_frame);
8749   else
8750     gdb::observers::normal_stop.notify (nullptr, stop_print_frame);
8751 
8752   annotate_stopped ();
8753 
8754   if (target_has_execution ())
8755     {
8756       if (last.kind () != TARGET_WAITKIND_SIGNALLED
8757 	  && last.kind () != TARGET_WAITKIND_EXITED
8758 	  && last.kind () != TARGET_WAITKIND_NO_RESUMED)
8759 	/* Delete the breakpoint we stopped at, if it wants to be deleted.
8760 	   Delete any breakpoint that is to be deleted at the next stop.  */
8761 	breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8762     }
8763 
8764   return 0;
8765 }
8766 
8767 int
8768 signal_stop_state (int signo)
8769 {
8770   return signal_stop[signo];
8771 }
8772 
8773 int
8774 signal_print_state (int signo)
8775 {
8776   return signal_print[signo];
8777 }
8778 
8779 int
8780 signal_pass_state (int signo)
8781 {
8782   return signal_program[signo];
8783 }
8784 
8785 static void
8786 signal_cache_update (int signo)
8787 {
8788   if (signo == -1)
8789     {
8790       for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8791 	signal_cache_update (signo);
8792 
8793       return;
8794     }
8795 
8796   signal_pass[signo] = (signal_stop[signo] == 0
8797 			&& signal_print[signo] == 0
8798 			&& signal_program[signo] == 1
8799 			&& signal_catch[signo] == 0);
8800 }
8801 
8802 int
8803 signal_stop_update (int signo, int state)
8804 {
8805   int ret = signal_stop[signo];
8806 
8807   signal_stop[signo] = state;
8808   signal_cache_update (signo);
8809   return ret;
8810 }
8811 
8812 int
8813 signal_print_update (int signo, int state)
8814 {
8815   int ret = signal_print[signo];
8816 
8817   signal_print[signo] = state;
8818   signal_cache_update (signo);
8819   return ret;
8820 }
8821 
8822 int
8823 signal_pass_update (int signo, int state)
8824 {
8825   int ret = signal_program[signo];
8826 
8827   signal_program[signo] = state;
8828   signal_cache_update (signo);
8829   return ret;
8830 }
8831 
8832 /* Update the global 'signal_catch' from INFO and notify the
8833    target.  */
8834 
8835 void
8836 signal_catch_update (const unsigned int *info)
8837 {
8838   int i;
8839 
8840   for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8841     signal_catch[i] = info[i] > 0;
8842   signal_cache_update (-1);
8843   target_pass_signals (signal_pass);
8844 }
8845 
8846 static void
8847 sig_print_header (void)
8848 {
8849   gdb_printf (_("Signal        Stop\tPrint\tPass "
8850 		"to program\tDescription\n"));
8851 }
8852 
8853 static void
8854 sig_print_info (enum gdb_signal oursig)
8855 {
8856   const char *name = gdb_signal_to_name (oursig);
8857   int name_padding = 13 - strlen (name);
8858 
8859   if (name_padding <= 0)
8860     name_padding = 0;
8861 
8862   gdb_printf ("%s", name);
8863   gdb_printf ("%*.*s ", name_padding, name_padding, "                 ");
8864   gdb_printf ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8865   gdb_printf ("%s\t", signal_print[oursig] ? "Yes" : "No");
8866   gdb_printf ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8867   gdb_printf ("%s\n", gdb_signal_to_string (oursig));
8868 }
8869 
8870 /* Specify how various signals in the inferior should be handled.  */
8871 
8872 static void
8873 handle_command (const char *args, int from_tty)
8874 {
8875   int digits, wordlen;
8876   int sigfirst, siglast;
8877   enum gdb_signal oursig;
8878   int allsigs;
8879 
8880   if (args == nullptr)
8881     {
8882       error_no_arg (_("signal to handle"));
8883     }
8884 
8885   /* Allocate and zero an array of flags for which signals to handle.  */
8886 
8887   const size_t nsigs = GDB_SIGNAL_LAST;
8888   unsigned char sigs[nsigs] {};
8889 
8890   /* Break the command line up into args.  */
8891 
8892   gdb_argv built_argv (args);
8893 
8894   /* Walk through the args, looking for signal oursigs, signal names, and
8895      actions.  Signal numbers and signal names may be interspersed with
8896      actions, with the actions being performed for all signals cumulatively
8897      specified.  Signal ranges can be specified as <LOW>-<HIGH>.  */
8898 
8899   for (char *arg : built_argv)
8900     {
8901       wordlen = strlen (arg);
8902       for (digits = 0; isdigit (arg[digits]); digits++)
8903 	{;
8904 	}
8905       allsigs = 0;
8906       sigfirst = siglast = -1;
8907 
8908       if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8909 	{
8910 	  /* Apply action to all signals except those used by the
8911 	     debugger.  Silently skip those.  */
8912 	  allsigs = 1;
8913 	  sigfirst = 0;
8914 	  siglast = nsigs - 1;
8915 	}
8916       else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8917 	{
8918 	  SET_SIGS (nsigs, sigs, signal_stop);
8919 	  SET_SIGS (nsigs, sigs, signal_print);
8920 	}
8921       else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8922 	{
8923 	  UNSET_SIGS (nsigs, sigs, signal_program);
8924 	}
8925       else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8926 	{
8927 	  SET_SIGS (nsigs, sigs, signal_print);
8928 	}
8929       else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8930 	{
8931 	  SET_SIGS (nsigs, sigs, signal_program);
8932 	}
8933       else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8934 	{
8935 	  UNSET_SIGS (nsigs, sigs, signal_stop);
8936 	}
8937       else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8938 	{
8939 	  SET_SIGS (nsigs, sigs, signal_program);
8940 	}
8941       else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8942 	{
8943 	  UNSET_SIGS (nsigs, sigs, signal_print);
8944 	  UNSET_SIGS (nsigs, sigs, signal_stop);
8945 	}
8946       else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8947 	{
8948 	  UNSET_SIGS (nsigs, sigs, signal_program);
8949 	}
8950       else if (digits > 0)
8951 	{
8952 	  /* It is numeric.  The numeric signal refers to our own
8953 	     internal signal numbering from target.h, not to host/target
8954 	     signal  number.  This is a feature; users really should be
8955 	     using symbolic names anyway, and the common ones like
8956 	     SIGHUP, SIGINT, SIGALRM, etc. will work right anyway.  */
8957 
8958 	  sigfirst = siglast = (int)
8959 	    gdb_signal_from_command (atoi (arg));
8960 	  if (arg[digits] == '-')
8961 	    {
8962 	      siglast = (int)
8963 		gdb_signal_from_command (atoi (arg + digits + 1));
8964 	    }
8965 	  if (sigfirst > siglast)
8966 	    {
8967 	      /* Bet he didn't figure we'd think of this case...  */
8968 	      std::swap (sigfirst, siglast);
8969 	    }
8970 	}
8971       else
8972 	{
8973 	  oursig = gdb_signal_from_name (arg);
8974 	  if (oursig != GDB_SIGNAL_UNKNOWN)
8975 	    {
8976 	      sigfirst = siglast = (int) oursig;
8977 	    }
8978 	  else
8979 	    {
8980 	      /* Not a number and not a recognized flag word => complain.  */
8981 	      error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8982 	    }
8983 	}
8984 
8985       /* If any signal numbers or symbol names were found, set flags for
8986 	 which signals to apply actions to.  */
8987 
8988       for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8989 	{
8990 	  switch ((enum gdb_signal) signum)
8991 	    {
8992 	    case GDB_SIGNAL_TRAP:
8993 	    case GDB_SIGNAL_INT:
8994 	      if (!allsigs && !sigs[signum])
8995 		{
8996 		  if (query (_("%s is used by the debugger.\n\
8997 Are you sure you want to change it? "),
8998 			     gdb_signal_to_name ((enum gdb_signal) signum)))
8999 		    {
9000 		      sigs[signum] = 1;
9001 		    }
9002 		  else
9003 		    gdb_printf (_("Not confirmed, unchanged.\n"));
9004 		}
9005 	      break;
9006 	    case GDB_SIGNAL_0:
9007 	    case GDB_SIGNAL_DEFAULT:
9008 	    case GDB_SIGNAL_UNKNOWN:
9009 	      /* Make sure that "all" doesn't print these.  */
9010 	      break;
9011 	    default:
9012 	      sigs[signum] = 1;
9013 	      break;
9014 	    }
9015 	}
9016     }
9017 
9018   for (int signum = 0; signum < nsigs; signum++)
9019     if (sigs[signum])
9020       {
9021 	signal_cache_update (-1);
9022 	target_pass_signals (signal_pass);
9023 	target_program_signals (signal_program);
9024 
9025 	if (from_tty)
9026 	  {
9027 	    /* Show the results.  */
9028 	    sig_print_header ();
9029 	    for (; signum < nsigs; signum++)
9030 	      if (sigs[signum])
9031 		sig_print_info ((enum gdb_signal) signum);
9032 	  }
9033 
9034 	break;
9035       }
9036 }
9037 
9038 /* Complete the "handle" command.  */
9039 
9040 static void
9041 handle_completer (struct cmd_list_element *ignore,
9042 		  completion_tracker &tracker,
9043 		  const char *text, const char *word)
9044 {
9045   static const char * const keywords[] =
9046     {
9047       "all",
9048       "stop",
9049       "ignore",
9050       "print",
9051       "pass",
9052       "nostop",
9053       "noignore",
9054       "noprint",
9055       "nopass",
9056       nullptr,
9057     };
9058 
9059   signal_completer (ignore, tracker, text, word);
9060   complete_on_enum (tracker, keywords, word, word);
9061 }
9062 
9063 enum gdb_signal
9064 gdb_signal_from_command (int num)
9065 {
9066   if (num >= 1 && num <= 15)
9067     return (enum gdb_signal) num;
9068   error (_("Only signals 1-15 are valid as numeric signals.\n\
9069 Use \"info signals\" for a list of symbolic signals."));
9070 }
9071 
9072 /* Print current contents of the tables set by the handle command.
9073    It is possible we should just be printing signals actually used
9074    by the current target (but for things to work right when switching
9075    targets, all signals should be in the signal tables).  */
9076 
9077 static void
9078 info_signals_command (const char *signum_exp, int from_tty)
9079 {
9080   enum gdb_signal oursig;
9081 
9082   sig_print_header ();
9083 
9084   if (signum_exp)
9085     {
9086       /* First see if this is a symbol name.  */
9087       oursig = gdb_signal_from_name (signum_exp);
9088       if (oursig == GDB_SIGNAL_UNKNOWN)
9089 	{
9090 	  /* No, try numeric.  */
9091 	  oursig =
9092 	    gdb_signal_from_command (parse_and_eval_long (signum_exp));
9093 	}
9094       sig_print_info (oursig);
9095       return;
9096     }
9097 
9098   gdb_printf ("\n");
9099   /* These ugly casts brought to you by the native VAX compiler.  */
9100   for (oursig = GDB_SIGNAL_FIRST;
9101        (int) oursig < (int) GDB_SIGNAL_LAST;
9102        oursig = (enum gdb_signal) ((int) oursig + 1))
9103     {
9104       QUIT;
9105 
9106       if (oursig != GDB_SIGNAL_UNKNOWN
9107 	  && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
9108 	sig_print_info (oursig);
9109     }
9110 
9111   gdb_printf (_("\nUse the \"handle\" command "
9112 		"to change these tables.\n"));
9113 }
9114 
9115 /* The $_siginfo convenience variable is a bit special.  We don't know
9116    for sure the type of the value until we actually have a chance to
9117    fetch the data.  The type can change depending on gdbarch, so it is
9118    also dependent on which thread you have selected.
9119 
9120      1. making $_siginfo be an internalvar that creates a new value on
9121      access.
9122 
9123      2. making the value of $_siginfo be an lval_computed value.  */
9124 
9125 /* This function implements the lval_computed support for reading a
9126    $_siginfo value.  */
9127 
9128 static void
9129 siginfo_value_read (struct value *v)
9130 {
9131   LONGEST transferred;
9132 
9133   /* If we can access registers, so can we access $_siginfo.  Likewise
9134      vice versa.  */
9135   validate_registers_access ();
9136 
9137   transferred =
9138     target_read (current_inferior ()->top_target (),
9139 		 TARGET_OBJECT_SIGNAL_INFO,
9140 		 nullptr,
9141 		 value_contents_all_raw (v).data (),
9142 		 value_offset (v),
9143 		 value_type (v)->length ());
9144 
9145   if (transferred != value_type (v)->length ())
9146     error (_("Unable to read siginfo"));
9147 }
9148 
9149 /* This function implements the lval_computed support for writing a
9150    $_siginfo value.  */
9151 
9152 static void
9153 siginfo_value_write (struct value *v, struct value *fromval)
9154 {
9155   LONGEST transferred;
9156 
9157   /* If we can access registers, so can we access $_siginfo.  Likewise
9158      vice versa.  */
9159   validate_registers_access ();
9160 
9161   transferred = target_write (current_inferior ()->top_target (),
9162 			      TARGET_OBJECT_SIGNAL_INFO,
9163 			      nullptr,
9164 			      value_contents_all_raw (fromval).data (),
9165 			      value_offset (v),
9166 			      value_type (fromval)->length ());
9167 
9168   if (transferred != value_type (fromval)->length ())
9169     error (_("Unable to write siginfo"));
9170 }
9171 
9172 static const struct lval_funcs siginfo_value_funcs =
9173   {
9174     siginfo_value_read,
9175     siginfo_value_write
9176   };
9177 
9178 /* Return a new value with the correct type for the siginfo object of
9179    the current thread using architecture GDBARCH.  Return a void value
9180    if there's no object available.  */
9181 
9182 static struct value *
9183 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9184 		    void *ignore)
9185 {
9186   if (target_has_stack ()
9187       && inferior_ptid != null_ptid
9188       && gdbarch_get_siginfo_type_p (gdbarch))
9189     {
9190       struct type *type = gdbarch_get_siginfo_type (gdbarch);
9191 
9192       return allocate_computed_value (type, &siginfo_value_funcs, nullptr);
9193     }
9194 
9195   return allocate_value (builtin_type (gdbarch)->builtin_void);
9196 }
9197 
9198 
9199 /* infcall_suspend_state contains state about the program itself like its
9200    registers and any signal it received when it last stopped.
9201    This state must be restored regardless of how the inferior function call
9202    ends (either successfully, or after it hits a breakpoint or signal)
9203    if the program is to properly continue where it left off.  */
9204 
9205 class infcall_suspend_state
9206 {
9207 public:
9208   /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9209      once the inferior function call has finished.  */
9210   infcall_suspend_state (struct gdbarch *gdbarch,
9211 			 const struct thread_info *tp,
9212 			 struct regcache *regcache)
9213     : m_registers (new readonly_detached_regcache (*regcache))
9214   {
9215     tp->save_suspend_to (m_thread_suspend);
9216 
9217     gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9218 
9219     if (gdbarch_get_siginfo_type_p (gdbarch))
9220       {
9221 	struct type *type = gdbarch_get_siginfo_type (gdbarch);
9222 	size_t len = type->length ();
9223 
9224 	siginfo_data.reset ((gdb_byte *) xmalloc (len));
9225 
9226 	if (target_read (current_inferior ()->top_target (),
9227 			 TARGET_OBJECT_SIGNAL_INFO, nullptr,
9228 			 siginfo_data.get (), 0, len) != len)
9229 	  {
9230 	    /* Errors ignored.  */
9231 	    siginfo_data.reset (nullptr);
9232 	  }
9233       }
9234 
9235     if (siginfo_data)
9236       {
9237 	m_siginfo_gdbarch = gdbarch;
9238 	m_siginfo_data = std::move (siginfo_data);
9239       }
9240   }
9241 
9242   /* Return a pointer to the stored register state.  */
9243 
9244   readonly_detached_regcache *registers () const
9245   {
9246     return m_registers.get ();
9247   }
9248 
9249   /* Restores the stored state into GDBARCH, TP, and REGCACHE.  */
9250 
9251   void restore (struct gdbarch *gdbarch,
9252 		struct thread_info *tp,
9253 		struct regcache *regcache) const
9254   {
9255     tp->restore_suspend_from (m_thread_suspend);
9256 
9257     if (m_siginfo_gdbarch == gdbarch)
9258       {
9259 	struct type *type = gdbarch_get_siginfo_type (gdbarch);
9260 
9261 	/* Errors ignored.  */
9262 	target_write (current_inferior ()->top_target (),
9263 		      TARGET_OBJECT_SIGNAL_INFO, nullptr,
9264 		      m_siginfo_data.get (), 0, type->length ());
9265       }
9266 
9267     /* The inferior can be gone if the user types "print exit(0)"
9268        (and perhaps other times).  */
9269     if (target_has_execution ())
9270       /* NB: The register write goes through to the target.  */
9271       regcache->restore (registers ());
9272   }
9273 
9274 private:
9275   /* How the current thread stopped before the inferior function call was
9276      executed.  */
9277   struct thread_suspend_state m_thread_suspend;
9278 
9279   /* The registers before the inferior function call was executed.  */
9280   std::unique_ptr<readonly_detached_regcache> m_registers;
9281 
9282   /* Format of SIGINFO_DATA or NULL if it is not present.  */
9283   struct gdbarch *m_siginfo_gdbarch = nullptr;
9284 
9285   /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9286      gdbarch_get_siginfo_type ()->length ().  For different gdbarch the
9287      content would be invalid.  */
9288   gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9289 };
9290 
9291 infcall_suspend_state_up
9292 save_infcall_suspend_state ()
9293 {
9294   struct thread_info *tp = inferior_thread ();
9295   struct regcache *regcache = get_current_regcache ();
9296   struct gdbarch *gdbarch = regcache->arch ();
9297 
9298   infcall_suspend_state_up inf_state
9299     (new struct infcall_suspend_state (gdbarch, tp, regcache));
9300 
9301   /* Having saved the current state, adjust the thread state, discarding
9302      any stop signal information.  The stop signal is not useful when
9303      starting an inferior function call, and run_inferior_call will not use
9304      the signal due to its `proceed' call with GDB_SIGNAL_0.  */
9305   tp->set_stop_signal (GDB_SIGNAL_0);
9306 
9307   return inf_state;
9308 }
9309 
9310 /* Restore inferior session state to INF_STATE.  */
9311 
9312 void
9313 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9314 {
9315   struct thread_info *tp = inferior_thread ();
9316   struct regcache *regcache = get_current_regcache ();
9317   struct gdbarch *gdbarch = regcache->arch ();
9318 
9319   inf_state->restore (gdbarch, tp, regcache);
9320   discard_infcall_suspend_state (inf_state);
9321 }
9322 
9323 void
9324 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9325 {
9326   delete inf_state;
9327 }
9328 
9329 readonly_detached_regcache *
9330 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9331 {
9332   return inf_state->registers ();
9333 }
9334 
9335 /* infcall_control_state contains state regarding gdb's control of the
9336    inferior itself like stepping control.  It also contains session state like
9337    the user's currently selected frame.  */
9338 
9339 struct infcall_control_state
9340 {
9341   struct thread_control_state thread_control;
9342   struct inferior_control_state inferior_control;
9343 
9344   /* Other fields:  */
9345   enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9346   int stopped_by_random_signal = 0;
9347 
9348   /* ID and level of the selected frame when the inferior function
9349      call was made.  */
9350   struct frame_id selected_frame_id {};
9351   int selected_frame_level = -1;
9352 };
9353 
9354 /* Save all of the information associated with the inferior<==>gdb
9355    connection.  */
9356 
9357 infcall_control_state_up
9358 save_infcall_control_state ()
9359 {
9360   infcall_control_state_up inf_status (new struct infcall_control_state);
9361   struct thread_info *tp = inferior_thread ();
9362   struct inferior *inf = current_inferior ();
9363 
9364   inf_status->thread_control = tp->control;
9365   inf_status->inferior_control = inf->control;
9366 
9367   tp->control.step_resume_breakpoint = nullptr;
9368   tp->control.exception_resume_breakpoint = nullptr;
9369 
9370   /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9371      chain.  If caller's caller is walking the chain, they'll be happier if we
9372      hand them back the original chain when restore_infcall_control_state is
9373      called.  */
9374   tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9375 
9376   /* Other fields:  */
9377   inf_status->stop_stack_dummy = stop_stack_dummy;
9378   inf_status->stopped_by_random_signal = stopped_by_random_signal;
9379 
9380   save_selected_frame (&inf_status->selected_frame_id,
9381 		       &inf_status->selected_frame_level);
9382 
9383   return inf_status;
9384 }
9385 
9386 /* Restore inferior session state to INF_STATUS.  */
9387 
9388 void
9389 restore_infcall_control_state (struct infcall_control_state *inf_status)
9390 {
9391   struct thread_info *tp = inferior_thread ();
9392   struct inferior *inf = current_inferior ();
9393 
9394   if (tp->control.step_resume_breakpoint)
9395     tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9396 
9397   if (tp->control.exception_resume_breakpoint)
9398     tp->control.exception_resume_breakpoint->disposition
9399       = disp_del_at_next_stop;
9400 
9401   /* Handle the bpstat_copy of the chain.  */
9402   bpstat_clear (&tp->control.stop_bpstat);
9403 
9404   tp->control = inf_status->thread_control;
9405   inf->control = inf_status->inferior_control;
9406 
9407   /* Other fields:  */
9408   stop_stack_dummy = inf_status->stop_stack_dummy;
9409   stopped_by_random_signal = inf_status->stopped_by_random_signal;
9410 
9411   if (target_has_stack ())
9412     {
9413       restore_selected_frame (inf_status->selected_frame_id,
9414 			      inf_status->selected_frame_level);
9415     }
9416 
9417   delete inf_status;
9418 }
9419 
9420 void
9421 discard_infcall_control_state (struct infcall_control_state *inf_status)
9422 {
9423   if (inf_status->thread_control.step_resume_breakpoint)
9424     inf_status->thread_control.step_resume_breakpoint->disposition
9425       = disp_del_at_next_stop;
9426 
9427   if (inf_status->thread_control.exception_resume_breakpoint)
9428     inf_status->thread_control.exception_resume_breakpoint->disposition
9429       = disp_del_at_next_stop;
9430 
9431   /* See save_infcall_control_state for info on stop_bpstat.  */
9432   bpstat_clear (&inf_status->thread_control.stop_bpstat);
9433 
9434   delete inf_status;
9435 }
9436 
9437 /* See infrun.h.  */
9438 
9439 void
9440 clear_exit_convenience_vars (void)
9441 {
9442   clear_internalvar (lookup_internalvar ("_exitsignal"));
9443   clear_internalvar (lookup_internalvar ("_exitcode"));
9444 }
9445 
9446 
9447 /* User interface for reverse debugging:
9448    Set exec-direction / show exec-direction commands
9449    (returns error unless target implements to_set_exec_direction method).  */
9450 
9451 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9452 static const char exec_forward[] = "forward";
9453 static const char exec_reverse[] = "reverse";
9454 static const char *exec_direction = exec_forward;
9455 static const char *const exec_direction_names[] = {
9456   exec_forward,
9457   exec_reverse,
9458   nullptr
9459 };
9460 
9461 static void
9462 set_exec_direction_func (const char *args, int from_tty,
9463 			 struct cmd_list_element *cmd)
9464 {
9465   if (target_can_execute_reverse ())
9466     {
9467       if (!strcmp (exec_direction, exec_forward))
9468 	execution_direction = EXEC_FORWARD;
9469       else if (!strcmp (exec_direction, exec_reverse))
9470 	execution_direction = EXEC_REVERSE;
9471     }
9472   else
9473     {
9474       exec_direction = exec_forward;
9475       error (_("Target does not support this operation."));
9476     }
9477 }
9478 
9479 static void
9480 show_exec_direction_func (struct ui_file *out, int from_tty,
9481 			  struct cmd_list_element *cmd, const char *value)
9482 {
9483   switch (execution_direction) {
9484   case EXEC_FORWARD:
9485     gdb_printf (out, _("Forward.\n"));
9486     break;
9487   case EXEC_REVERSE:
9488     gdb_printf (out, _("Reverse.\n"));
9489     break;
9490   default:
9491     internal_error (_("bogus execution_direction value: %d"),
9492 		    (int) execution_direction);
9493   }
9494 }
9495 
9496 static void
9497 show_schedule_multiple (struct ui_file *file, int from_tty,
9498 			struct cmd_list_element *c, const char *value)
9499 {
9500   gdb_printf (file, _("Resuming the execution of threads "
9501 		      "of all processes is %s.\n"), value);
9502 }
9503 
9504 /* Implementation of `siginfo' variable.  */
9505 
9506 static const struct internalvar_funcs siginfo_funcs =
9507 {
9508   siginfo_make_value,
9509   nullptr,
9510 };
9511 
9512 /* Callback for infrun's target events source.  This is marked when a
9513    thread has a pending status to process.  */
9514 
9515 static void
9516 infrun_async_inferior_event_handler (gdb_client_data data)
9517 {
9518   clear_async_event_handler (infrun_async_inferior_event_token);
9519   inferior_event_handler (INF_REG_EVENT);
9520 }
9521 
9522 #if GDB_SELF_TEST
9523 namespace selftests
9524 {
9525 
9526 /* Verify that when two threads with the same ptid exist (from two different
9527    targets) and one of them changes ptid, we only update inferior_ptid if
9528    it is appropriate.  */
9529 
9530 static void
9531 infrun_thread_ptid_changed ()
9532 {
9533   gdbarch *arch = current_inferior ()->gdbarch;
9534 
9535   /* The thread which inferior_ptid represents changes ptid.  */
9536   {
9537     scoped_restore_current_pspace_and_thread restore;
9538 
9539     scoped_mock_context<test_target_ops> target1 (arch);
9540     scoped_mock_context<test_target_ops> target2 (arch);
9541 
9542     ptid_t old_ptid (111, 222);
9543     ptid_t new_ptid (111, 333);
9544 
9545     target1.mock_inferior.pid = old_ptid.pid ();
9546     target1.mock_thread.ptid = old_ptid;
9547     target1.mock_inferior.ptid_thread_map.clear ();
9548     target1.mock_inferior.ptid_thread_map[old_ptid] = &target1.mock_thread;
9549 
9550     target2.mock_inferior.pid = old_ptid.pid ();
9551     target2.mock_thread.ptid = old_ptid;
9552     target2.mock_inferior.ptid_thread_map.clear ();
9553     target2.mock_inferior.ptid_thread_map[old_ptid] = &target2.mock_thread;
9554 
9555     auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9556     set_current_inferior (&target1.mock_inferior);
9557 
9558     thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9559 
9560     gdb_assert (inferior_ptid == new_ptid);
9561   }
9562 
9563   /* A thread with the same ptid as inferior_ptid, but from another target,
9564      changes ptid.  */
9565   {
9566     scoped_restore_current_pspace_and_thread restore;
9567 
9568     scoped_mock_context<test_target_ops> target1 (arch);
9569     scoped_mock_context<test_target_ops> target2 (arch);
9570 
9571     ptid_t old_ptid (111, 222);
9572     ptid_t new_ptid (111, 333);
9573 
9574     target1.mock_inferior.pid = old_ptid.pid ();
9575     target1.mock_thread.ptid = old_ptid;
9576     target1.mock_inferior.ptid_thread_map.clear ();
9577     target1.mock_inferior.ptid_thread_map[old_ptid] = &target1.mock_thread;
9578 
9579     target2.mock_inferior.pid = old_ptid.pid ();
9580     target2.mock_thread.ptid = old_ptid;
9581     target2.mock_inferior.ptid_thread_map.clear ();
9582     target2.mock_inferior.ptid_thread_map[old_ptid] = &target2.mock_thread;
9583 
9584     auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9585     set_current_inferior (&target2.mock_inferior);
9586 
9587     thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9588 
9589     gdb_assert (inferior_ptid == old_ptid);
9590   }
9591 }
9592 
9593 } /* namespace selftests */
9594 
9595 #endif /* GDB_SELF_TEST */
9596 
9597 void _initialize_infrun ();
9598 void
9599 _initialize_infrun ()
9600 {
9601   struct cmd_list_element *c;
9602 
9603   /* Register extra event sources in the event loop.  */
9604   infrun_async_inferior_event_token
9605     = create_async_event_handler (infrun_async_inferior_event_handler, nullptr,
9606 				  "infrun");
9607 
9608   cmd_list_element *info_signals_cmd
9609     = add_info ("signals", info_signals_command, _("\
9610 What debugger does when program gets various signals.\n\
9611 Specify a signal as argument to print info on that signal only."));
9612   add_info_alias ("handle", info_signals_cmd, 0);
9613 
9614   c = add_com ("handle", class_run, handle_command, _("\
9615 Specify how to handle signals.\n\
9616 Usage: handle SIGNAL [ACTIONS]\n\
9617 Args are signals and actions to apply to those signals.\n\
9618 If no actions are specified, the current settings for the specified signals\n\
9619 will be displayed instead.\n\
9620 \n\
9621 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9622 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9623 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9624 The special arg \"all\" is recognized to mean all signals except those\n\
9625 used by the debugger, typically SIGTRAP and SIGINT.\n\
9626 \n\
9627 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9628 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9629 Stop means reenter debugger if this signal happens (implies print).\n\
9630 Print means print a message if this signal happens.\n\
9631 Pass means let program see this signal; otherwise program doesn't know.\n\
9632 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9633 Pass and Stop may be combined.\n\
9634 \n\
9635 Multiple signals may be specified.  Signal numbers and signal names\n\
9636 may be interspersed with actions, with the actions being performed for\n\
9637 all signals cumulatively specified."));
9638   set_cmd_completer (c, handle_completer);
9639 
9640   stop_command = add_cmd ("stop", class_obscure,
9641 			  not_just_help_class_command, _("\
9642 There is no `stop' command, but you can set a hook on `stop'.\n\
9643 This allows you to set a list of commands to be run each time execution\n\
9644 of the program stops."), &cmdlist);
9645 
9646   add_setshow_boolean_cmd
9647     ("infrun", class_maintenance, &debug_infrun,
9648      _("Set inferior debugging."),
9649      _("Show inferior debugging."),
9650      _("When non-zero, inferior specific debugging is enabled."),
9651      nullptr, show_debug_infrun, &setdebuglist, &showdebuglist);
9652 
9653   add_setshow_boolean_cmd ("non-stop", no_class,
9654 			   &non_stop_1, _("\
9655 Set whether gdb controls the inferior in non-stop mode."), _("\
9656 Show whether gdb controls the inferior in non-stop mode."), _("\
9657 When debugging a multi-threaded program and this setting is\n\
9658 off (the default, also called all-stop mode), when one thread stops\n\
9659 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9660 all other threads in the program while you interact with the thread of\n\
9661 interest.  When you continue or step a thread, you can allow the other\n\
9662 threads to run, or have them remain stopped, but while you inspect any\n\
9663 thread's state, all threads stop.\n\
9664 \n\
9665 In non-stop mode, when one thread stops, other threads can continue\n\
9666 to run freely.  You'll be able to step each thread independently,\n\
9667 leave it stopped or free to run as needed."),
9668 			   set_non_stop,
9669 			   show_non_stop,
9670 			   &setlist,
9671 			   &showlist);
9672 
9673   for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9674     {
9675       signal_stop[i] = 1;
9676       signal_print[i] = 1;
9677       signal_program[i] = 1;
9678       signal_catch[i] = 0;
9679     }
9680 
9681   /* Signals caused by debugger's own actions should not be given to
9682      the program afterwards.
9683 
9684      Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9685      explicitly specifies that it should be delivered to the target
9686      program.  Typically, that would occur when a user is debugging a
9687      target monitor on a simulator: the target monitor sets a
9688      breakpoint; the simulator encounters this breakpoint and halts
9689      the simulation handing control to GDB; GDB, noting that the stop
9690      address doesn't map to any known breakpoint, returns control back
9691      to the simulator; the simulator then delivers the hardware
9692      equivalent of a GDB_SIGNAL_TRAP to the program being
9693      debugged.  */
9694   signal_program[GDB_SIGNAL_TRAP] = 0;
9695   signal_program[GDB_SIGNAL_INT] = 0;
9696 
9697   /* Signals that are not errors should not normally enter the debugger.  */
9698   signal_stop[GDB_SIGNAL_ALRM] = 0;
9699   signal_print[GDB_SIGNAL_ALRM] = 0;
9700   signal_stop[GDB_SIGNAL_VTALRM] = 0;
9701   signal_print[GDB_SIGNAL_VTALRM] = 0;
9702   signal_stop[GDB_SIGNAL_PROF] = 0;
9703   signal_print[GDB_SIGNAL_PROF] = 0;
9704   signal_stop[GDB_SIGNAL_CHLD] = 0;
9705   signal_print[GDB_SIGNAL_CHLD] = 0;
9706   signal_stop[GDB_SIGNAL_IO] = 0;
9707   signal_print[GDB_SIGNAL_IO] = 0;
9708   signal_stop[GDB_SIGNAL_POLL] = 0;
9709   signal_print[GDB_SIGNAL_POLL] = 0;
9710   signal_stop[GDB_SIGNAL_URG] = 0;
9711   signal_print[GDB_SIGNAL_URG] = 0;
9712   signal_stop[GDB_SIGNAL_WINCH] = 0;
9713   signal_print[GDB_SIGNAL_WINCH] = 0;
9714   signal_stop[GDB_SIGNAL_PRIO] = 0;
9715   signal_print[GDB_SIGNAL_PRIO] = 0;
9716 
9717   /* These signals are used internally by user-level thread
9718      implementations.  (See signal(5) on Solaris.)  Like the above
9719      signals, a healthy program receives and handles them as part of
9720      its normal operation.  */
9721   signal_stop[GDB_SIGNAL_LWP] = 0;
9722   signal_print[GDB_SIGNAL_LWP] = 0;
9723   signal_stop[GDB_SIGNAL_WAITING] = 0;
9724   signal_print[GDB_SIGNAL_WAITING] = 0;
9725   signal_stop[GDB_SIGNAL_CANCEL] = 0;
9726   signal_print[GDB_SIGNAL_CANCEL] = 0;
9727   signal_stop[GDB_SIGNAL_LIBRT] = 0;
9728   signal_print[GDB_SIGNAL_LIBRT] = 0;
9729 
9730   /* Update cached state.  */
9731   signal_cache_update (-1);
9732 
9733   add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9734 			    &stop_on_solib_events, _("\
9735 Set stopping for shared library events."), _("\
9736 Show stopping for shared library events."), _("\
9737 If nonzero, gdb will give control to the user when the dynamic linker\n\
9738 notifies gdb of shared library events.  The most common event of interest\n\
9739 to the user would be loading/unloading of a new library."),
9740 			    set_stop_on_solib_events,
9741 			    show_stop_on_solib_events,
9742 			    &setlist, &showlist);
9743 
9744   add_setshow_enum_cmd ("follow-fork-mode", class_run,
9745 			follow_fork_mode_kind_names,
9746 			&follow_fork_mode_string, _("\
9747 Set debugger response to a program call of fork or vfork."), _("\
9748 Show debugger response to a program call of fork or vfork."), _("\
9749 A fork or vfork creates a new process.  follow-fork-mode can be:\n\
9750   parent  - the original process is debugged after a fork\n\
9751   child   - the new process is debugged after a fork\n\
9752 The unfollowed process will continue to run.\n\
9753 By default, the debugger will follow the parent process."),
9754 			nullptr,
9755 			show_follow_fork_mode_string,
9756 			&setlist, &showlist);
9757 
9758   add_setshow_enum_cmd ("follow-exec-mode", class_run,
9759 			follow_exec_mode_names,
9760 			&follow_exec_mode_string, _("\
9761 Set debugger response to a program call of exec."), _("\
9762 Show debugger response to a program call of exec."), _("\
9763 An exec call replaces the program image of a process.\n\
9764 \n\
9765 follow-exec-mode can be:\n\
9766 \n\
9767   new - the debugger creates a new inferior and rebinds the process\n\
9768 to this new inferior.  The program the process was running before\n\
9769 the exec call can be restarted afterwards by restarting the original\n\
9770 inferior.\n\
9771 \n\
9772   same - the debugger keeps the process bound to the same inferior.\n\
9773 The new executable image replaces the previous executable loaded in\n\
9774 the inferior.  Restarting the inferior after the exec call restarts\n\
9775 the executable the process was running after the exec call.\n\
9776 \n\
9777 By default, the debugger will use the same inferior."),
9778 			nullptr,
9779 			show_follow_exec_mode_string,
9780 			&setlist, &showlist);
9781 
9782   add_setshow_enum_cmd ("scheduler-locking", class_run,
9783 			scheduler_enums, &scheduler_mode, _("\
9784 Set mode for locking scheduler during execution."), _("\
9785 Show mode for locking scheduler during execution."), _("\
9786 off    == no locking (threads may preempt at any time)\n\
9787 on     == full locking (no thread except the current thread may run)\n\
9788 	  This applies to both normal execution and replay mode.\n\
9789 step   == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9790 	  In this mode, other threads may run during other commands.\n\
9791 	  This applies to both normal execution and replay mode.\n\
9792 replay == scheduler locked in replay mode and unlocked during normal execution."),
9793 			set_schedlock_func,	/* traps on target vector */
9794 			show_scheduler_mode,
9795 			&setlist, &showlist);
9796 
9797   add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9798 Set mode for resuming threads of all processes."), _("\
9799 Show mode for resuming threads of all processes."), _("\
9800 When on, execution commands (such as 'continue' or 'next') resume all\n\
9801 threads of all processes.  When off (which is the default), execution\n\
9802 commands only resume the threads of the current process.  The set of\n\
9803 threads that are resumed is further refined by the scheduler-locking\n\
9804 mode (see help set scheduler-locking)."),
9805 			   nullptr,
9806 			   show_schedule_multiple,
9807 			   &setlist, &showlist);
9808 
9809   add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9810 Set mode of the step operation."), _("\
9811 Show mode of the step operation."), _("\
9812 When set, doing a step over a function without debug line information\n\
9813 will stop at the first instruction of that function. Otherwise, the\n\
9814 function is skipped and the step command stops at a different source line."),
9815 			   nullptr,
9816 			   show_step_stop_if_no_debug,
9817 			   &setlist, &showlist);
9818 
9819   add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9820 				&can_use_displaced_stepping, _("\
9821 Set debugger's willingness to use displaced stepping."), _("\
9822 Show debugger's willingness to use displaced stepping."), _("\
9823 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9824 supported by the target architecture.  If off, gdb will not use displaced\n\
9825 stepping to step over breakpoints, even if such is supported by the target\n\
9826 architecture.  If auto (which is the default), gdb will use displaced stepping\n\
9827 if the target architecture supports it and non-stop mode is active, but will not\n\
9828 use it in all-stop mode (see help set non-stop)."),
9829 				nullptr,
9830 				show_can_use_displaced_stepping,
9831 				&setlist, &showlist);
9832 
9833   add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9834 			&exec_direction, _("Set direction of execution.\n\
9835 Options are 'forward' or 'reverse'."),
9836 			_("Show direction of execution (forward/reverse)."),
9837 			_("Tells gdb whether to execute forward or backward."),
9838 			set_exec_direction_func, show_exec_direction_func,
9839 			&setlist, &showlist);
9840 
9841   /* Set/show detach-on-fork: user-settable mode.  */
9842 
9843   add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9844 Set whether gdb will detach the child of a fork."), _("\
9845 Show whether gdb will detach the child of a fork."), _("\
9846 Tells gdb whether to detach the child of a fork."),
9847 			   nullptr, nullptr, &setlist, &showlist);
9848 
9849   /* Set/show disable address space randomization mode.  */
9850 
9851   add_setshow_boolean_cmd ("disable-randomization", class_support,
9852 			   &disable_randomization, _("\
9853 Set disabling of debuggee's virtual address space randomization."), _("\
9854 Show disabling of debuggee's virtual address space randomization."), _("\
9855 When this mode is on (which is the default), randomization of the virtual\n\
9856 address space is disabled.  Standalone programs run with the randomization\n\
9857 enabled by default on some platforms."),
9858 			   &set_disable_randomization,
9859 			   &show_disable_randomization,
9860 			   &setlist, &showlist);
9861 
9862   /* ptid initializations */
9863   inferior_ptid = null_ptid;
9864   target_last_wait_ptid = minus_one_ptid;
9865 
9866   gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed,
9867 					      "infrun");
9868   gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested,
9869 						"infrun");
9870   gdb::observers::thread_exit.attach (infrun_thread_thread_exit, "infrun");
9871   gdb::observers::inferior_exit.attach (infrun_inferior_exit, "infrun");
9872   gdb::observers::inferior_execd.attach (infrun_inferior_execd, "infrun");
9873 
9874   /* Explicitly create without lookup, since that tries to create a
9875      value with a void typed value, and when we get here, gdbarch
9876      isn't initialized yet.  At this point, we're quite sure there
9877      isn't another convenience variable of the same name.  */
9878   create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, nullptr);
9879 
9880   add_setshow_boolean_cmd ("observer", no_class,
9881 			   &observer_mode_1, _("\
9882 Set whether gdb controls the inferior in observer mode."), _("\
9883 Show whether gdb controls the inferior in observer mode."), _("\
9884 In observer mode, GDB can get data from the inferior, but not\n\
9885 affect its execution.  Registers and memory may not be changed,\n\
9886 breakpoints may not be set, and the program cannot be interrupted\n\
9887 or signalled."),
9888 			   set_observer_mode,
9889 			   show_observer_mode,
9890 			   &setlist,
9891 			   &showlist);
9892 
9893 #if GDB_SELF_TEST
9894   selftests::register_test ("infrun_thread_ptid_changed",
9895 			    selftests::infrun_thread_ptid_changed);
9896 #endif
9897 }
9898