xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/infrun.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /* Target-struct-independent code to start (run) and stop an inferior
2    process.
3 
4    Copyright (C) 1986-2015 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 
64 /* Prototypes for local functions */
65 
66 static void signals_info (char *, int);
67 
68 static void handle_command (char *, int);
69 
70 static void sig_print_info (enum gdb_signal);
71 
72 static void sig_print_header (void);
73 
74 static void resume_cleanups (void *);
75 
76 static int hook_stop_stub (void *);
77 
78 static int restore_selected_frame (void *);
79 
80 static int follow_fork (void);
81 
82 static int follow_fork_inferior (int follow_child, int detach_fork);
83 
84 static void follow_inferior_reset_breakpoints (void);
85 
86 static void set_schedlock_func (char *args, int from_tty,
87 				struct cmd_list_element *c);
88 
89 static int currently_stepping (struct thread_info *tp);
90 
91 static void xdb_handle_command (char *args, int from_tty);
92 
93 void _initialize_infrun (void);
94 
95 void nullify_last_target_wait_ptid (void);
96 
97 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
98 
99 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100 
101 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102 
103 /* When set, stop the 'step' command if we enter a function which has
104    no line number information.  The normal behavior is that we step
105    over such function.  */
106 int step_stop_if_no_debug = 0;
107 static void
108 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 			    struct cmd_list_element *c, const char *value)
110 {
111   fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112 }
113 
114 /* In asynchronous mode, but simulating synchronous execution.  */
115 
116 int sync_execution = 0;
117 
118 /* proceed and normal_stop use this to notify the user when the
119    inferior stopped in a different thread than it had been running
120    in.  */
121 
122 static ptid_t previous_inferior_ptid;
123 
124 /* If set (default for legacy reasons), when following a fork, GDB
125    will detach from one of the fork branches, child or parent.
126    Exactly which branch is detached depends on 'set follow-fork-mode'
127    setting.  */
128 
129 static int detach_fork = 1;
130 
131 int debug_displaced = 0;
132 static void
133 show_debug_displaced (struct ui_file *file, int from_tty,
134 		      struct cmd_list_element *c, const char *value)
135 {
136   fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137 }
138 
139 unsigned int debug_infrun = 0;
140 static void
141 show_debug_infrun (struct ui_file *file, int from_tty,
142 		   struct cmd_list_element *c, const char *value)
143 {
144   fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145 }
146 
147 
148 /* Support for disabling address space randomization.  */
149 
150 int disable_randomization = 1;
151 
152 static void
153 show_disable_randomization (struct ui_file *file, int from_tty,
154 			    struct cmd_list_element *c, const char *value)
155 {
156   if (target_supports_disable_randomization ())
157     fprintf_filtered (file,
158 		      _("Disabling randomization of debuggee's "
159 			"virtual address space is %s.\n"),
160 		      value);
161   else
162     fputs_filtered (_("Disabling randomization of debuggee's "
163 		      "virtual address space is unsupported on\n"
164 		      "this platform.\n"), file);
165 }
166 
167 static void
168 set_disable_randomization (char *args, int from_tty,
169 			   struct cmd_list_element *c)
170 {
171   if (!target_supports_disable_randomization ())
172     error (_("Disabling randomization of debuggee's "
173 	     "virtual address space is unsupported on\n"
174 	     "this platform."));
175 }
176 
177 /* User interface for non-stop mode.  */
178 
179 int non_stop = 0;
180 static int non_stop_1 = 0;
181 
182 static void
183 set_non_stop (char *args, int from_tty,
184 	      struct cmd_list_element *c)
185 {
186   if (target_has_execution)
187     {
188       non_stop_1 = non_stop;
189       error (_("Cannot change this setting while the inferior is running."));
190     }
191 
192   non_stop = non_stop_1;
193 }
194 
195 static void
196 show_non_stop (struct ui_file *file, int from_tty,
197 	       struct cmd_list_element *c, const char *value)
198 {
199   fprintf_filtered (file,
200 		    _("Controlling the inferior in non-stop mode is %s.\n"),
201 		    value);
202 }
203 
204 /* "Observer mode" is somewhat like a more extreme version of
205    non-stop, in which all GDB operations that might affect the
206    target's execution have been disabled.  */
207 
208 int observer_mode = 0;
209 static int observer_mode_1 = 0;
210 
211 static void
212 set_observer_mode (char *args, int from_tty,
213 		   struct cmd_list_element *c)
214 {
215   if (target_has_execution)
216     {
217       observer_mode_1 = observer_mode;
218       error (_("Cannot change this setting while the inferior is running."));
219     }
220 
221   observer_mode = observer_mode_1;
222 
223   may_write_registers = !observer_mode;
224   may_write_memory = !observer_mode;
225   may_insert_breakpoints = !observer_mode;
226   may_insert_tracepoints = !observer_mode;
227   /* We can insert fast tracepoints in or out of observer mode,
228      but enable them if we're going into this mode.  */
229   if (observer_mode)
230     may_insert_fast_tracepoints = 1;
231   may_stop = !observer_mode;
232   update_target_permissions ();
233 
234   /* Going *into* observer mode we must force non-stop, then
235      going out we leave it that way.  */
236   if (observer_mode)
237     {
238       pagination_enabled = 0;
239       non_stop = non_stop_1 = 1;
240     }
241 
242   if (from_tty)
243     printf_filtered (_("Observer mode is now %s.\n"),
244 		     (observer_mode ? "on" : "off"));
245 }
246 
247 static void
248 show_observer_mode (struct ui_file *file, int from_tty,
249 		    struct cmd_list_element *c, const char *value)
250 {
251   fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252 }
253 
254 /* This updates the value of observer mode based on changes in
255    permissions.  Note that we are deliberately ignoring the values of
256    may-write-registers and may-write-memory, since the user may have
257    reason to enable these during a session, for instance to turn on a
258    debugging-related global.  */
259 
260 void
261 update_observer_mode (void)
262 {
263   int newval;
264 
265   newval = (!may_insert_breakpoints
266 	    && !may_insert_tracepoints
267 	    && may_insert_fast_tracepoints
268 	    && !may_stop
269 	    && non_stop);
270 
271   /* Let the user know if things change.  */
272   if (newval != observer_mode)
273     printf_filtered (_("Observer mode is now %s.\n"),
274 		     (newval ? "on" : "off"));
275 
276   observer_mode = observer_mode_1 = newval;
277 }
278 
279 /* Tables of how to react to signals; the user sets them.  */
280 
281 static unsigned char *signal_stop;
282 static unsigned char *signal_print;
283 static unsigned char *signal_program;
284 
285 /* Table of signals that are registered with "catch signal".  A
286    non-zero entry indicates that the signal is caught by some "catch
287    signal" command.  This has size GDB_SIGNAL_LAST, to accommodate all
288    signals.  */
289 static unsigned char *signal_catch;
290 
291 /* Table of signals that the target may silently handle.
292    This is automatically determined from the flags above,
293    and simply cached here.  */
294 static unsigned char *signal_pass;
295 
296 #define SET_SIGS(nsigs,sigs,flags) \
297   do { \
298     int signum = (nsigs); \
299     while (signum-- > 0) \
300       if ((sigs)[signum]) \
301 	(flags)[signum] = 1; \
302   } while (0)
303 
304 #define UNSET_SIGS(nsigs,sigs,flags) \
305   do { \
306     int signum = (nsigs); \
307     while (signum-- > 0) \
308       if ((sigs)[signum]) \
309 	(flags)[signum] = 0; \
310   } while (0)
311 
312 /* Update the target's copy of SIGNAL_PROGRAM.  The sole purpose of
313    this function is to avoid exporting `signal_program'.  */
314 
315 void
316 update_signals_program_target (void)
317 {
318   target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
319 }
320 
321 /* Value to pass to target_resume() to cause all threads to resume.  */
322 
323 #define RESUME_ALL minus_one_ptid
324 
325 /* Command list pointer for the "stop" placeholder.  */
326 
327 static struct cmd_list_element *stop_command;
328 
329 /* Function inferior was in as of last step command.  */
330 
331 static struct symbol *step_start_function;
332 
333 /* Nonzero if we want to give control to the user when we're notified
334    of shared library events by the dynamic linker.  */
335 int stop_on_solib_events;
336 
337 /* Enable or disable optional shared library event breakpoints
338    as appropriate when the above flag is changed.  */
339 
340 static void
341 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
342 {
343   update_solib_breakpoints ();
344 }
345 
346 static void
347 show_stop_on_solib_events (struct ui_file *file, int from_tty,
348 			   struct cmd_list_element *c, const char *value)
349 {
350   fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
351 		    value);
352 }
353 
354 /* Nonzero means expecting a trace trap
355    and should stop the inferior and return silently when it happens.  */
356 
357 int stop_after_trap;
358 
359 /* Save register contents here when executing a "finish" command or are
360    about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
361    Thus this contains the return value from the called function (assuming
362    values are returned in a register).  */
363 
364 struct regcache *stop_registers;
365 
366 /* Nonzero after stop if current stack frame should be printed.  */
367 
368 static int stop_print_frame;
369 
370 /* This is a cached copy of the pid/waitstatus of the last event
371    returned by target_wait()/deprecated_target_wait_hook().  This
372    information is returned by get_last_target_status().  */
373 static ptid_t target_last_wait_ptid;
374 static struct target_waitstatus target_last_waitstatus;
375 
376 static void context_switch (ptid_t ptid);
377 
378 void init_thread_stepping_state (struct thread_info *tss);
379 
380 static const char follow_fork_mode_child[] = "child";
381 static const char follow_fork_mode_parent[] = "parent";
382 
383 static const char *const follow_fork_mode_kind_names[] = {
384   follow_fork_mode_child,
385   follow_fork_mode_parent,
386   NULL
387 };
388 
389 static const char *follow_fork_mode_string = follow_fork_mode_parent;
390 static void
391 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
392 			      struct cmd_list_element *c, const char *value)
393 {
394   fprintf_filtered (file,
395 		    _("Debugger response to a program "
396 		      "call of fork or vfork is \"%s\".\n"),
397 		    value);
398 }
399 
400 
401 /* Handle changes to the inferior list based on the type of fork,
402    which process is being followed, and whether the other process
403    should be detached.  On entry inferior_ptid must be the ptid of
404    the fork parent.  At return inferior_ptid is the ptid of the
405    followed inferior.  */
406 
407 static int
408 follow_fork_inferior (int follow_child, int detach_fork)
409 {
410   int has_vforked;
411   int parent_pid, child_pid;
412 
413   has_vforked = (inferior_thread ()->pending_follow.kind
414 		 == TARGET_WAITKIND_VFORKED);
415   parent_pid = ptid_get_lwp (inferior_ptid);
416   if (parent_pid == 0)
417     parent_pid = ptid_get_pid (inferior_ptid);
418   child_pid
419     = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
420 
421   if (has_vforked
422       && !non_stop /* Non-stop always resumes both branches.  */
423       && (!target_is_async_p () || sync_execution)
424       && !(follow_child || detach_fork || sched_multi))
425     {
426       /* The parent stays blocked inside the vfork syscall until the
427 	 child execs or exits.  If we don't let the child run, then
428 	 the parent stays blocked.  If we're telling the parent to run
429 	 in the foreground, the user will not be able to ctrl-c to get
430 	 back the terminal, effectively hanging the debug session.  */
431       fprintf_filtered (gdb_stderr, _("\
432 Can not resume the parent process over vfork in the foreground while\n\
433 holding the child stopped.  Try \"set detach-on-fork\" or \
434 \"set schedule-multiple\".\n"));
435       /* FIXME output string > 80 columns.  */
436       return 1;
437     }
438 
439   if (!follow_child)
440     {
441       /* Detach new forked process?  */
442       if (detach_fork)
443 	{
444 	  struct cleanup *old_chain;
445 
446 	  /* Before detaching from the child, remove all breakpoints
447 	     from it.  If we forked, then this has already been taken
448 	     care of by infrun.c.  If we vforked however, any
449 	     breakpoint inserted in the parent is visible in the
450 	     child, even those added while stopped in a vfork
451 	     catchpoint.  This will remove the breakpoints from the
452 	     parent also, but they'll be reinserted below.  */
453 	  if (has_vforked)
454 	    {
455 	      /* Keep breakpoints list in sync.  */
456 	      remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
457 	    }
458 
459 	  if (info_verbose || debug_infrun)
460 	    {
461 	      target_terminal_ours_for_output ();
462 	      fprintf_filtered (gdb_stdlog,
463 				_("Detaching after %s from "
464 				  "child process %d.\n"),
465 				has_vforked ? "vfork" : "fork",
466 				child_pid);
467 	    }
468 	}
469       else
470 	{
471 	  struct inferior *parent_inf, *child_inf;
472 	  struct cleanup *old_chain;
473 
474 	  /* Add process to GDB's tables.  */
475 	  child_inf = add_inferior (child_pid);
476 
477 	  parent_inf = current_inferior ();
478 	  child_inf->attach_flag = parent_inf->attach_flag;
479 	  copy_terminal_info (child_inf, parent_inf);
480 	  child_inf->gdbarch = parent_inf->gdbarch;
481 	  copy_inferior_target_desc_info (child_inf, parent_inf);
482 
483 	  old_chain = save_inferior_ptid ();
484 	  save_current_program_space ();
485 
486 	  inferior_ptid = ptid_build (child_pid, child_pid, 0);
487 	  add_thread (inferior_ptid);
488 	  child_inf->symfile_flags = SYMFILE_NO_READ;
489 
490 	  /* If this is a vfork child, then the address-space is
491 	     shared with the parent.  */
492 	  if (has_vforked)
493 	    {
494 	      child_inf->pspace = parent_inf->pspace;
495 	      child_inf->aspace = parent_inf->aspace;
496 
497 	      /* The parent will be frozen until the child is done
498 		 with the shared region.  Keep track of the
499 		 parent.  */
500 	      child_inf->vfork_parent = parent_inf;
501 	      child_inf->pending_detach = 0;
502 	      parent_inf->vfork_child = child_inf;
503 	      parent_inf->pending_detach = 0;
504 	    }
505 	  else
506 	    {
507 	      child_inf->aspace = new_address_space ();
508 	      child_inf->pspace = add_program_space (child_inf->aspace);
509 	      child_inf->removable = 1;
510 	      set_current_program_space (child_inf->pspace);
511 	      clone_program_space (child_inf->pspace, parent_inf->pspace);
512 
513 	      /* Let the shared library layer (e.g., solib-svr4) learn
514 		 about this new process, relocate the cloned exec, pull
515 		 in shared libraries, and install the solib event
516 		 breakpoint.  If a "cloned-VM" event was propagated
517 		 better throughout the core, this wouldn't be
518 		 required.  */
519 	      solib_create_inferior_hook (0);
520 	    }
521 
522 	  do_cleanups (old_chain);
523 	}
524 
525       if (has_vforked)
526 	{
527 	  struct inferior *parent_inf;
528 
529 	  parent_inf = current_inferior ();
530 
531 	  /* If we detached from the child, then we have to be careful
532 	     to not insert breakpoints in the parent until the child
533 	     is done with the shared memory region.  However, if we're
534 	     staying attached to the child, then we can and should
535 	     insert breakpoints, so that we can debug it.  A
536 	     subsequent child exec or exit is enough to know when does
537 	     the child stops using the parent's address space.  */
538 	  parent_inf->waiting_for_vfork_done = detach_fork;
539 	  parent_inf->pspace->breakpoints_not_allowed = detach_fork;
540 	}
541     }
542   else
543     {
544       /* Follow the child.  */
545       struct inferior *parent_inf, *child_inf;
546       struct program_space *parent_pspace;
547 
548       if (info_verbose || debug_infrun)
549 	{
550 	  target_terminal_ours_for_output ();
551 	  fprintf_filtered (gdb_stdlog,
552 			    _("Attaching after process %d "
553 			      "%s to child process %d.\n"),
554 			    parent_pid,
555 			    has_vforked ? "vfork" : "fork",
556 			    child_pid);
557 	}
558 
559       /* Add the new inferior first, so that the target_detach below
560 	 doesn't unpush the target.  */
561 
562       child_inf = add_inferior (child_pid);
563 
564       parent_inf = current_inferior ();
565       child_inf->attach_flag = parent_inf->attach_flag;
566       copy_terminal_info (child_inf, parent_inf);
567       child_inf->gdbarch = parent_inf->gdbarch;
568       copy_inferior_target_desc_info (child_inf, parent_inf);
569 
570       parent_pspace = parent_inf->pspace;
571 
572       /* If we're vforking, we want to hold on to the parent until the
573 	 child exits or execs.  At child exec or exit time we can
574 	 remove the old breakpoints from the parent and detach or
575 	 resume debugging it.  Otherwise, detach the parent now; we'll
576 	 want to reuse it's program/address spaces, but we can't set
577 	 them to the child before removing breakpoints from the
578 	 parent, otherwise, the breakpoints module could decide to
579 	 remove breakpoints from the wrong process (since they'd be
580 	 assigned to the same address space).  */
581 
582       if (has_vforked)
583 	{
584 	  gdb_assert (child_inf->vfork_parent == NULL);
585 	  gdb_assert (parent_inf->vfork_child == NULL);
586 	  child_inf->vfork_parent = parent_inf;
587 	  child_inf->pending_detach = 0;
588 	  parent_inf->vfork_child = child_inf;
589 	  parent_inf->pending_detach = detach_fork;
590 	  parent_inf->waiting_for_vfork_done = 0;
591 	}
592       else if (detach_fork)
593 	{
594 	  if (info_verbose || debug_infrun)
595 	    {
596 	      target_terminal_ours_for_output ();
597 	      fprintf_filtered (gdb_stdlog,
598 				_("Detaching after fork from "
599 				  "child process %d.\n"),
600 				child_pid);
601 	    }
602 
603 	  target_detach (NULL, 0);
604 	}
605 
606       /* Note that the detach above makes PARENT_INF dangling.  */
607 
608       /* Add the child thread to the appropriate lists, and switch to
609 	 this new thread, before cloning the program space, and
610 	 informing the solib layer about this new process.  */
611 
612       inferior_ptid = ptid_build (child_pid, child_pid, 0);
613       add_thread (inferior_ptid);
614 
615       /* If this is a vfork child, then the address-space is shared
616 	 with the parent.  If we detached from the parent, then we can
617 	 reuse the parent's program/address spaces.  */
618       if (has_vforked || detach_fork)
619 	{
620 	  child_inf->pspace = parent_pspace;
621 	  child_inf->aspace = child_inf->pspace->aspace;
622 	}
623       else
624 	{
625 	  child_inf->aspace = new_address_space ();
626 	  child_inf->pspace = add_program_space (child_inf->aspace);
627 	  child_inf->removable = 1;
628 	  child_inf->symfile_flags = SYMFILE_NO_READ;
629 	  set_current_program_space (child_inf->pspace);
630 	  clone_program_space (child_inf->pspace, parent_pspace);
631 
632 	  /* Let the shared library layer (e.g., solib-svr4) learn
633 	     about this new process, relocate the cloned exec, pull in
634 	     shared libraries, and install the solib event breakpoint.
635 	     If a "cloned-VM" event was propagated better throughout
636 	     the core, this wouldn't be required.  */
637 	  solib_create_inferior_hook (0);
638 	}
639     }
640 
641   return target_follow_fork (follow_child, detach_fork);
642 }
643 
644 /* Tell the target to follow the fork we're stopped at.  Returns true
645    if the inferior should be resumed; false, if the target for some
646    reason decided it's best not to resume.  */
647 
648 static int
649 follow_fork (void)
650 {
651   int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
652   int should_resume = 1;
653   struct thread_info *tp;
654 
655   /* Copy user stepping state to the new inferior thread.  FIXME: the
656      followed fork child thread should have a copy of most of the
657      parent thread structure's run control related fields, not just these.
658      Initialized to avoid "may be used uninitialized" warnings from gcc.  */
659   struct breakpoint *step_resume_breakpoint = NULL;
660   struct breakpoint *exception_resume_breakpoint = NULL;
661   CORE_ADDR step_range_start = 0;
662   CORE_ADDR step_range_end = 0;
663   struct frame_id step_frame_id = { 0 };
664   struct interp *command_interp = NULL;
665 
666   if (!non_stop)
667     {
668       ptid_t wait_ptid;
669       struct target_waitstatus wait_status;
670 
671       /* Get the last target status returned by target_wait().  */
672       get_last_target_status (&wait_ptid, &wait_status);
673 
674       /* If not stopped at a fork event, then there's nothing else to
675 	 do.  */
676       if (wait_status.kind != TARGET_WAITKIND_FORKED
677 	  && wait_status.kind != TARGET_WAITKIND_VFORKED)
678 	return 1;
679 
680       /* Check if we switched over from WAIT_PTID, since the event was
681 	 reported.  */
682       if (!ptid_equal (wait_ptid, minus_one_ptid)
683 	  && !ptid_equal (inferior_ptid, wait_ptid))
684 	{
685 	  /* We did.  Switch back to WAIT_PTID thread, to tell the
686 	     target to follow it (in either direction).  We'll
687 	     afterwards refuse to resume, and inform the user what
688 	     happened.  */
689 	  switch_to_thread (wait_ptid);
690 	  should_resume = 0;
691 	}
692     }
693 
694   tp = inferior_thread ();
695 
696   /* If there were any forks/vforks that were caught and are now to be
697      followed, then do so now.  */
698   switch (tp->pending_follow.kind)
699     {
700     case TARGET_WAITKIND_FORKED:
701     case TARGET_WAITKIND_VFORKED:
702       {
703 	ptid_t parent, child;
704 
705 	/* If the user did a next/step, etc, over a fork call,
706 	   preserve the stepping state in the fork child.  */
707 	if (follow_child && should_resume)
708 	  {
709 	    step_resume_breakpoint = clone_momentary_breakpoint
710 					 (tp->control.step_resume_breakpoint);
711 	    step_range_start = tp->control.step_range_start;
712 	    step_range_end = tp->control.step_range_end;
713 	    step_frame_id = tp->control.step_frame_id;
714 	    exception_resume_breakpoint
715 	      = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
716 	    command_interp = tp->control.command_interp;
717 
718 	    /* For now, delete the parent's sr breakpoint, otherwise,
719 	       parent/child sr breakpoints are considered duplicates,
720 	       and the child version will not be installed.  Remove
721 	       this when the breakpoints module becomes aware of
722 	       inferiors and address spaces.  */
723 	    delete_step_resume_breakpoint (tp);
724 	    tp->control.step_range_start = 0;
725 	    tp->control.step_range_end = 0;
726 	    tp->control.step_frame_id = null_frame_id;
727 	    delete_exception_resume_breakpoint (tp);
728 	    tp->control.command_interp = NULL;
729 	  }
730 
731 	parent = inferior_ptid;
732 	child = tp->pending_follow.value.related_pid;
733 
734 	/* Set up inferior(s) as specified by the caller, and tell the
735 	   target to do whatever is necessary to follow either parent
736 	   or child.  */
737 	if (follow_fork_inferior (follow_child, detach_fork))
738 	  {
739 	    /* Target refused to follow, or there's some other reason
740 	       we shouldn't resume.  */
741 	    should_resume = 0;
742 	  }
743 	else
744 	  {
745 	    /* This pending follow fork event is now handled, one way
746 	       or another.  The previous selected thread may be gone
747 	       from the lists by now, but if it is still around, need
748 	       to clear the pending follow request.  */
749 	    tp = find_thread_ptid (parent);
750 	    if (tp)
751 	      tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
752 
753 	    /* This makes sure we don't try to apply the "Switched
754 	       over from WAIT_PID" logic above.  */
755 	    nullify_last_target_wait_ptid ();
756 
757 	    /* If we followed the child, switch to it...  */
758 	    if (follow_child)
759 	      {
760 		switch_to_thread (child);
761 
762 		/* ... and preserve the stepping state, in case the
763 		   user was stepping over the fork call.  */
764 		if (should_resume)
765 		  {
766 		    tp = inferior_thread ();
767 		    tp->control.step_resume_breakpoint
768 		      = step_resume_breakpoint;
769 		    tp->control.step_range_start = step_range_start;
770 		    tp->control.step_range_end = step_range_end;
771 		    tp->control.step_frame_id = step_frame_id;
772 		    tp->control.exception_resume_breakpoint
773 		      = exception_resume_breakpoint;
774 		    tp->control.command_interp = command_interp;
775 		  }
776 		else
777 		  {
778 		    /* If we get here, it was because we're trying to
779 		       resume from a fork catchpoint, but, the user
780 		       has switched threads away from the thread that
781 		       forked.  In that case, the resume command
782 		       issued is most likely not applicable to the
783 		       child, so just warn, and refuse to resume.  */
784 		    warning (_("Not resuming: switched threads "
785 			       "before following fork child.\n"));
786 		  }
787 
788 		/* Reset breakpoints in the child as appropriate.  */
789 		follow_inferior_reset_breakpoints ();
790 	      }
791 	    else
792 	      switch_to_thread (parent);
793 	  }
794       }
795       break;
796     case TARGET_WAITKIND_SPURIOUS:
797       /* Nothing to follow.  */
798       break;
799     default:
800       internal_error (__FILE__, __LINE__,
801 		      "Unexpected pending_follow.kind %d\n",
802 		      tp->pending_follow.kind);
803       break;
804     }
805 
806   return should_resume;
807 }
808 
809 static void
810 follow_inferior_reset_breakpoints (void)
811 {
812   struct thread_info *tp = inferior_thread ();
813 
814   /* Was there a step_resume breakpoint?  (There was if the user
815      did a "next" at the fork() call.)  If so, explicitly reset its
816      thread number.  Cloned step_resume breakpoints are disabled on
817      creation, so enable it here now that it is associated with the
818      correct thread.
819 
820      step_resumes are a form of bp that are made to be per-thread.
821      Since we created the step_resume bp when the parent process
822      was being debugged, and now are switching to the child process,
823      from the breakpoint package's viewpoint, that's a switch of
824      "threads".  We must update the bp's notion of which thread
825      it is for, or it'll be ignored when it triggers.  */
826 
827   if (tp->control.step_resume_breakpoint)
828     {
829       breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
830       tp->control.step_resume_breakpoint->loc->enabled = 1;
831     }
832 
833   /* Treat exception_resume breakpoints like step_resume breakpoints.  */
834   if (tp->control.exception_resume_breakpoint)
835     {
836       breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
837       tp->control.exception_resume_breakpoint->loc->enabled = 1;
838     }
839 
840   /* Reinsert all breakpoints in the child.  The user may have set
841      breakpoints after catching the fork, in which case those
842      were never set in the child, but only in the parent.  This makes
843      sure the inserted breakpoints match the breakpoint list.  */
844 
845   breakpoint_re_set ();
846   insert_breakpoints ();
847 }
848 
849 /* The child has exited or execed: resume threads of the parent the
850    user wanted to be executing.  */
851 
852 static int
853 proceed_after_vfork_done (struct thread_info *thread,
854 			  void *arg)
855 {
856   int pid = * (int *) arg;
857 
858   if (ptid_get_pid (thread->ptid) == pid
859       && is_running (thread->ptid)
860       && !is_executing (thread->ptid)
861       && !thread->stop_requested
862       && thread->suspend.stop_signal == GDB_SIGNAL_0)
863     {
864       if (debug_infrun)
865 	fprintf_unfiltered (gdb_stdlog,
866 			    "infrun: resuming vfork parent thread %s\n",
867 			    target_pid_to_str (thread->ptid));
868 
869       switch_to_thread (thread->ptid);
870       clear_proceed_status (0);
871       proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
872     }
873 
874   return 0;
875 }
876 
877 /* Called whenever we notice an exec or exit event, to handle
878    detaching or resuming a vfork parent.  */
879 
880 static void
881 handle_vfork_child_exec_or_exit (int exec)
882 {
883   struct inferior *inf = current_inferior ();
884 
885   if (inf->vfork_parent)
886     {
887       int resume_parent = -1;
888 
889       /* This exec or exit marks the end of the shared memory region
890 	 between the parent and the child.  If the user wanted to
891 	 detach from the parent, now is the time.  */
892 
893       if (inf->vfork_parent->pending_detach)
894 	{
895 	  struct thread_info *tp;
896 	  struct cleanup *old_chain;
897 	  struct program_space *pspace;
898 	  struct address_space *aspace;
899 
900 	  /* follow-fork child, detach-on-fork on.  */
901 
902 	  inf->vfork_parent->pending_detach = 0;
903 
904 	  if (!exec)
905 	    {
906 	      /* If we're handling a child exit, then inferior_ptid
907 		 points at the inferior's pid, not to a thread.  */
908 	      old_chain = save_inferior_ptid ();
909 	      save_current_program_space ();
910 	      save_current_inferior ();
911 	    }
912 	  else
913 	    old_chain = save_current_space_and_thread ();
914 
915 	  /* We're letting loose of the parent.  */
916 	  tp = any_live_thread_of_process (inf->vfork_parent->pid);
917 	  switch_to_thread (tp->ptid);
918 
919 	  /* We're about to detach from the parent, which implicitly
920 	     removes breakpoints from its address space.  There's a
921 	     catch here: we want to reuse the spaces for the child,
922 	     but, parent/child are still sharing the pspace at this
923 	     point, although the exec in reality makes the kernel give
924 	     the child a fresh set of new pages.  The problem here is
925 	     that the breakpoints module being unaware of this, would
926 	     likely chose the child process to write to the parent
927 	     address space.  Swapping the child temporarily away from
928 	     the spaces has the desired effect.  Yes, this is "sort
929 	     of" a hack.  */
930 
931 	  pspace = inf->pspace;
932 	  aspace = inf->aspace;
933 	  inf->aspace = NULL;
934 	  inf->pspace = NULL;
935 
936 	  if (debug_infrun || info_verbose)
937 	    {
938 	      target_terminal_ours_for_output ();
939 
940 	      if (exec)
941 		{
942 		  fprintf_filtered (gdb_stdlog,
943 				    _("Detaching vfork parent process "
944 				      "%d after child exec.\n"),
945 				    inf->vfork_parent->pid);
946 		}
947 	      else
948 		{
949 		  fprintf_filtered (gdb_stdlog,
950 				    _("Detaching vfork parent process "
951 				      "%d after child exit.\n"),
952 				    inf->vfork_parent->pid);
953 		}
954 	    }
955 
956 	  target_detach (NULL, 0);
957 
958 	  /* Put it back.  */
959 	  inf->pspace = pspace;
960 	  inf->aspace = aspace;
961 
962 	  do_cleanups (old_chain);
963 	}
964       else if (exec)
965 	{
966 	  /* We're staying attached to the parent, so, really give the
967 	     child a new address space.  */
968 	  inf->pspace = add_program_space (maybe_new_address_space ());
969 	  inf->aspace = inf->pspace->aspace;
970 	  inf->removable = 1;
971 	  set_current_program_space (inf->pspace);
972 
973 	  resume_parent = inf->vfork_parent->pid;
974 
975 	  /* Break the bonds.  */
976 	  inf->vfork_parent->vfork_child = NULL;
977 	}
978       else
979 	{
980 	  struct cleanup *old_chain;
981 	  struct program_space *pspace;
982 
983 	  /* If this is a vfork child exiting, then the pspace and
984 	     aspaces were shared with the parent.  Since we're
985 	     reporting the process exit, we'll be mourning all that is
986 	     found in the address space, and switching to null_ptid,
987 	     preparing to start a new inferior.  But, since we don't
988 	     want to clobber the parent's address/program spaces, we
989 	     go ahead and create a new one for this exiting
990 	     inferior.  */
991 
992 	  /* Switch to null_ptid, so that clone_program_space doesn't want
993 	     to read the selected frame of a dead process.  */
994 	  old_chain = save_inferior_ptid ();
995 	  inferior_ptid = null_ptid;
996 
997 	  /* This inferior is dead, so avoid giving the breakpoints
998 	     module the option to write through to it (cloning a
999 	     program space resets breakpoints).  */
1000 	  inf->aspace = NULL;
1001 	  inf->pspace = NULL;
1002 	  pspace = add_program_space (maybe_new_address_space ());
1003 	  set_current_program_space (pspace);
1004 	  inf->removable = 1;
1005 	  inf->symfile_flags = SYMFILE_NO_READ;
1006 	  clone_program_space (pspace, inf->vfork_parent->pspace);
1007 	  inf->pspace = pspace;
1008 	  inf->aspace = pspace->aspace;
1009 
1010 	  /* Put back inferior_ptid.  We'll continue mourning this
1011 	     inferior.  */
1012 	  do_cleanups (old_chain);
1013 
1014 	  resume_parent = inf->vfork_parent->pid;
1015 	  /* Break the bonds.  */
1016 	  inf->vfork_parent->vfork_child = NULL;
1017 	}
1018 
1019       inf->vfork_parent = NULL;
1020 
1021       gdb_assert (current_program_space == inf->pspace);
1022 
1023       if (non_stop && resume_parent != -1)
1024 	{
1025 	  /* If the user wanted the parent to be running, let it go
1026 	     free now.  */
1027 	  struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1028 
1029 	  if (debug_infrun)
1030 	    fprintf_unfiltered (gdb_stdlog,
1031 				"infrun: resuming vfork parent process %d\n",
1032 				resume_parent);
1033 
1034 	  iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1035 
1036 	  do_cleanups (old_chain);
1037 	}
1038     }
1039 }
1040 
1041 /* Enum strings for "set|show follow-exec-mode".  */
1042 
1043 static const char follow_exec_mode_new[] = "new";
1044 static const char follow_exec_mode_same[] = "same";
1045 static const char *const follow_exec_mode_names[] =
1046 {
1047   follow_exec_mode_new,
1048   follow_exec_mode_same,
1049   NULL,
1050 };
1051 
1052 static const char *follow_exec_mode_string = follow_exec_mode_same;
1053 static void
1054 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1055 			      struct cmd_list_element *c, const char *value)
1056 {
1057   fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"),  value);
1058 }
1059 
1060 /* EXECD_PATHNAME is assumed to be non-NULL.  */
1061 
1062 static void
1063 follow_exec (ptid_t pid, char *execd_pathname)
1064 {
1065   struct thread_info *th = inferior_thread ();
1066   struct inferior *inf = current_inferior ();
1067 
1068   /* This is an exec event that we actually wish to pay attention to.
1069      Refresh our symbol table to the newly exec'd program, remove any
1070      momentary bp's, etc.
1071 
1072      If there are breakpoints, they aren't really inserted now,
1073      since the exec() transformed our inferior into a fresh set
1074      of instructions.
1075 
1076      We want to preserve symbolic breakpoints on the list, since
1077      we have hopes that they can be reset after the new a.out's
1078      symbol table is read.
1079 
1080      However, any "raw" breakpoints must be removed from the list
1081      (e.g., the solib bp's), since their address is probably invalid
1082      now.
1083 
1084      And, we DON'T want to call delete_breakpoints() here, since
1085      that may write the bp's "shadow contents" (the instruction
1086      value that was overwritten witha TRAP instruction).  Since
1087      we now have a new a.out, those shadow contents aren't valid.  */
1088 
1089   mark_breakpoints_out ();
1090 
1091   update_breakpoints_after_exec ();
1092 
1093   /* If there was one, it's gone now.  We cannot truly step-to-next
1094      statement through an exec().  */
1095   th->control.step_resume_breakpoint = NULL;
1096   th->control.exception_resume_breakpoint = NULL;
1097   th->control.single_step_breakpoints = NULL;
1098   th->control.step_range_start = 0;
1099   th->control.step_range_end = 0;
1100 
1101   /* The target reports the exec event to the main thread, even if
1102      some other thread does the exec, and even if the main thread was
1103      already stopped --- if debugging in non-stop mode, it's possible
1104      the user had the main thread held stopped in the previous image
1105      --- release it now.  This is the same behavior as step-over-exec
1106      with scheduler-locking on in all-stop mode.  */
1107   th->stop_requested = 0;
1108 
1109   /* What is this a.out's name?  */
1110   printf_unfiltered (_("%s is executing new program: %s\n"),
1111 		     target_pid_to_str (inferior_ptid),
1112 		     execd_pathname);
1113 
1114   /* We've followed the inferior through an exec.  Therefore, the
1115      inferior has essentially been killed & reborn.  */
1116 
1117   gdb_flush (gdb_stdout);
1118 
1119   breakpoint_init_inferior (inf_execd);
1120 
1121   if (gdb_sysroot && *gdb_sysroot)
1122     {
1123       char *name = alloca (strlen (gdb_sysroot)
1124 			    + strlen (execd_pathname)
1125 			    + 1);
1126 
1127       strcpy (name, gdb_sysroot);
1128       strcat (name, execd_pathname);
1129       execd_pathname = name;
1130     }
1131 
1132   /* Reset the shared library package.  This ensures that we get a
1133      shlib event when the child reaches "_start", at which point the
1134      dld will have had a chance to initialize the child.  */
1135   /* Also, loading a symbol file below may trigger symbol lookups, and
1136      we don't want those to be satisfied by the libraries of the
1137      previous incarnation of this process.  */
1138   no_shared_libraries (NULL, 0);
1139 
1140   if (follow_exec_mode_string == follow_exec_mode_new)
1141     {
1142       struct program_space *pspace;
1143 
1144       /* The user wants to keep the old inferior and program spaces
1145 	 around.  Create a new fresh one, and switch to it.  */
1146 
1147       inf = add_inferior (current_inferior ()->pid);
1148       pspace = add_program_space (maybe_new_address_space ());
1149       inf->pspace = pspace;
1150       inf->aspace = pspace->aspace;
1151 
1152       exit_inferior_num_silent (current_inferior ()->num);
1153 
1154       set_current_inferior (inf);
1155       set_current_program_space (pspace);
1156     }
1157   else
1158     {
1159       /* The old description may no longer be fit for the new image.
1160 	 E.g, a 64-bit process exec'ed a 32-bit process.  Clear the
1161 	 old description; we'll read a new one below.  No need to do
1162 	 this on "follow-exec-mode new", as the old inferior stays
1163 	 around (its description is later cleared/refetched on
1164 	 restart).  */
1165       target_clear_description ();
1166     }
1167 
1168   gdb_assert (current_program_space == inf->pspace);
1169 
1170   /* That a.out is now the one to use.  */
1171   exec_file_attach (execd_pathname, 0);
1172 
1173   /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1174      (Position Independent Executable) main symbol file will get applied by
1175      solib_create_inferior_hook below.  breakpoint_re_set would fail to insert
1176      the breakpoints with the zero displacement.  */
1177 
1178   symbol_file_add (execd_pathname,
1179 		   (inf->symfile_flags
1180 		    | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1181 		   NULL, 0);
1182 
1183   if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1184     set_initial_language ();
1185 
1186   /* If the target can specify a description, read it.  Must do this
1187      after flipping to the new executable (because the target supplied
1188      description must be compatible with the executable's
1189      architecture, and the old executable may e.g., be 32-bit, while
1190      the new one 64-bit), and before anything involving memory or
1191      registers.  */
1192   target_find_description ();
1193 
1194   solib_create_inferior_hook (0);
1195 
1196   jit_inferior_created_hook ();
1197 
1198   breakpoint_re_set ();
1199 
1200   /* Reinsert all breakpoints.  (Those which were symbolic have
1201      been reset to the proper address in the new a.out, thanks
1202      to symbol_file_command...).  */
1203   insert_breakpoints ();
1204 
1205   /* The next resume of this inferior should bring it to the shlib
1206      startup breakpoints.  (If the user had also set bp's on
1207      "main" from the old (parent) process, then they'll auto-
1208      matically get reset there in the new process.).  */
1209 }
1210 
1211 /* Info about an instruction that is being stepped over.  */
1212 
1213 struct step_over_info
1214 {
1215   /* If we're stepping past a breakpoint, this is the address space
1216      and address of the instruction the breakpoint is set at.  We'll
1217      skip inserting all breakpoints here.  Valid iff ASPACE is
1218      non-NULL.  */
1219   struct address_space *aspace;
1220   CORE_ADDR address;
1221 
1222   /* The instruction being stepped over triggers a nonsteppable
1223      watchpoint.  If true, we'll skip inserting watchpoints.  */
1224   int nonsteppable_watchpoint_p;
1225 };
1226 
1227 /* The step-over info of the location that is being stepped over.
1228 
1229    Note that with async/breakpoint always-inserted mode, a user might
1230    set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1231    being stepped over.  As setting a new breakpoint inserts all
1232    breakpoints, we need to make sure the breakpoint being stepped over
1233    isn't inserted then.  We do that by only clearing the step-over
1234    info when the step-over is actually finished (or aborted).
1235 
1236    Presently GDB can only step over one breakpoint at any given time.
1237    Given threads that can't run code in the same address space as the
1238    breakpoint's can't really miss the breakpoint, GDB could be taught
1239    to step-over at most one breakpoint per address space (so this info
1240    could move to the address space object if/when GDB is extended).
1241    The set of breakpoints being stepped over will normally be much
1242    smaller than the set of all breakpoints, so a flag in the
1243    breakpoint location structure would be wasteful.  A separate list
1244    also saves complexity and run-time, as otherwise we'd have to go
1245    through all breakpoint locations clearing their flag whenever we
1246    start a new sequence.  Similar considerations weigh against storing
1247    this info in the thread object.  Plus, not all step overs actually
1248    have breakpoint locations -- e.g., stepping past a single-step
1249    breakpoint, or stepping to complete a non-continuable
1250    watchpoint.  */
1251 static struct step_over_info step_over_info;
1252 
1253 /* Record the address of the breakpoint/instruction we're currently
1254    stepping over.  */
1255 
1256 static void
1257 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1258 		    int nonsteppable_watchpoint_p)
1259 {
1260   step_over_info.aspace = aspace;
1261   step_over_info.address = address;
1262   step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1263 }
1264 
1265 /* Called when we're not longer stepping over a breakpoint / an
1266    instruction, so all breakpoints are free to be (re)inserted.  */
1267 
1268 static void
1269 clear_step_over_info (void)
1270 {
1271   step_over_info.aspace = NULL;
1272   step_over_info.address = 0;
1273   step_over_info.nonsteppable_watchpoint_p = 0;
1274 }
1275 
1276 /* See infrun.h.  */
1277 
1278 int
1279 stepping_past_instruction_at (struct address_space *aspace,
1280 			      CORE_ADDR address)
1281 {
1282   return (step_over_info.aspace != NULL
1283 	  && breakpoint_address_match (aspace, address,
1284 				       step_over_info.aspace,
1285 				       step_over_info.address));
1286 }
1287 
1288 /* See infrun.h.  */
1289 
1290 int
1291 stepping_past_nonsteppable_watchpoint (void)
1292 {
1293   return step_over_info.nonsteppable_watchpoint_p;
1294 }
1295 
1296 /* Returns true if step-over info is valid.  */
1297 
1298 static int
1299 step_over_info_valid_p (void)
1300 {
1301   return (step_over_info.aspace != NULL
1302 	  || stepping_past_nonsteppable_watchpoint ());
1303 }
1304 
1305 
1306 /* Displaced stepping.  */
1307 
1308 /* In non-stop debugging mode, we must take special care to manage
1309    breakpoints properly; in particular, the traditional strategy for
1310    stepping a thread past a breakpoint it has hit is unsuitable.
1311    'Displaced stepping' is a tactic for stepping one thread past a
1312    breakpoint it has hit while ensuring that other threads running
1313    concurrently will hit the breakpoint as they should.
1314 
1315    The traditional way to step a thread T off a breakpoint in a
1316    multi-threaded program in all-stop mode is as follows:
1317 
1318    a0) Initially, all threads are stopped, and breakpoints are not
1319        inserted.
1320    a1) We single-step T, leaving breakpoints uninserted.
1321    a2) We insert breakpoints, and resume all threads.
1322 
1323    In non-stop debugging, however, this strategy is unsuitable: we
1324    don't want to have to stop all threads in the system in order to
1325    continue or step T past a breakpoint.  Instead, we use displaced
1326    stepping:
1327 
1328    n0) Initially, T is stopped, other threads are running, and
1329        breakpoints are inserted.
1330    n1) We copy the instruction "under" the breakpoint to a separate
1331        location, outside the main code stream, making any adjustments
1332        to the instruction, register, and memory state as directed by
1333        T's architecture.
1334    n2) We single-step T over the instruction at its new location.
1335    n3) We adjust the resulting register and memory state as directed
1336        by T's architecture.  This includes resetting T's PC to point
1337        back into the main instruction stream.
1338    n4) We resume T.
1339 
1340    This approach depends on the following gdbarch methods:
1341 
1342    - gdbarch_max_insn_length and gdbarch_displaced_step_location
1343      indicate where to copy the instruction, and how much space must
1344      be reserved there.  We use these in step n1.
1345 
1346    - gdbarch_displaced_step_copy_insn copies a instruction to a new
1347      address, and makes any necessary adjustments to the instruction,
1348      register contents, and memory.  We use this in step n1.
1349 
1350    - gdbarch_displaced_step_fixup adjusts registers and memory after
1351      we have successfuly single-stepped the instruction, to yield the
1352      same effect the instruction would have had if we had executed it
1353      at its original address.  We use this in step n3.
1354 
1355    - gdbarch_displaced_step_free_closure provides cleanup.
1356 
1357    The gdbarch_displaced_step_copy_insn and
1358    gdbarch_displaced_step_fixup functions must be written so that
1359    copying an instruction with gdbarch_displaced_step_copy_insn,
1360    single-stepping across the copied instruction, and then applying
1361    gdbarch_displaced_insn_fixup should have the same effects on the
1362    thread's memory and registers as stepping the instruction in place
1363    would have.  Exactly which responsibilities fall to the copy and
1364    which fall to the fixup is up to the author of those functions.
1365 
1366    See the comments in gdbarch.sh for details.
1367 
1368    Note that displaced stepping and software single-step cannot
1369    currently be used in combination, although with some care I think
1370    they could be made to.  Software single-step works by placing
1371    breakpoints on all possible subsequent instructions; if the
1372    displaced instruction is a PC-relative jump, those breakpoints
1373    could fall in very strange places --- on pages that aren't
1374    executable, or at addresses that are not proper instruction
1375    boundaries.  (We do generally let other threads run while we wait
1376    to hit the software single-step breakpoint, and they might
1377    encounter such a corrupted instruction.)  One way to work around
1378    this would be to have gdbarch_displaced_step_copy_insn fully
1379    simulate the effect of PC-relative instructions (and return NULL)
1380    on architectures that use software single-stepping.
1381 
1382    In non-stop mode, we can have independent and simultaneous step
1383    requests, so more than one thread may need to simultaneously step
1384    over a breakpoint.  The current implementation assumes there is
1385    only one scratch space per process.  In this case, we have to
1386    serialize access to the scratch space.  If thread A wants to step
1387    over a breakpoint, but we are currently waiting for some other
1388    thread to complete a displaced step, we leave thread A stopped and
1389    place it in the displaced_step_request_queue.  Whenever a displaced
1390    step finishes, we pick the next thread in the queue and start a new
1391    displaced step operation on it.  See displaced_step_prepare and
1392    displaced_step_fixup for details.  */
1393 
1394 struct displaced_step_request
1395 {
1396   ptid_t ptid;
1397   struct displaced_step_request *next;
1398 };
1399 
1400 /* Per-inferior displaced stepping state.  */
1401 struct displaced_step_inferior_state
1402 {
1403   /* Pointer to next in linked list.  */
1404   struct displaced_step_inferior_state *next;
1405 
1406   /* The process this displaced step state refers to.  */
1407   int pid;
1408 
1409   /* A queue of pending displaced stepping requests.  One entry per
1410      thread that needs to do a displaced step.  */
1411   struct displaced_step_request *step_request_queue;
1412 
1413   /* If this is not null_ptid, this is the thread carrying out a
1414      displaced single-step in process PID.  This thread's state will
1415      require fixing up once it has completed its step.  */
1416   ptid_t step_ptid;
1417 
1418   /* The architecture the thread had when we stepped it.  */
1419   struct gdbarch *step_gdbarch;
1420 
1421   /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1422      for post-step cleanup.  */
1423   struct displaced_step_closure *step_closure;
1424 
1425   /* The address of the original instruction, and the copy we
1426      made.  */
1427   CORE_ADDR step_original, step_copy;
1428 
1429   /* Saved contents of copy area.  */
1430   gdb_byte *step_saved_copy;
1431 };
1432 
1433 /* The list of states of processes involved in displaced stepping
1434    presently.  */
1435 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1436 
1437 /* Get the displaced stepping state of process PID.  */
1438 
1439 static struct displaced_step_inferior_state *
1440 get_displaced_stepping_state (int pid)
1441 {
1442   struct displaced_step_inferior_state *state;
1443 
1444   for (state = displaced_step_inferior_states;
1445        state != NULL;
1446        state = state->next)
1447     if (state->pid == pid)
1448       return state;
1449 
1450   return NULL;
1451 }
1452 
1453 /* Add a new displaced stepping state for process PID to the displaced
1454    stepping state list, or return a pointer to an already existing
1455    entry, if it already exists.  Never returns NULL.  */
1456 
1457 static struct displaced_step_inferior_state *
1458 add_displaced_stepping_state (int pid)
1459 {
1460   struct displaced_step_inferior_state *state;
1461 
1462   for (state = displaced_step_inferior_states;
1463        state != NULL;
1464        state = state->next)
1465     if (state->pid == pid)
1466       return state;
1467 
1468   state = xcalloc (1, sizeof (*state));
1469   state->pid = pid;
1470   state->next = displaced_step_inferior_states;
1471   displaced_step_inferior_states = state;
1472 
1473   return state;
1474 }
1475 
1476 /* If inferior is in displaced stepping, and ADDR equals to starting address
1477    of copy area, return corresponding displaced_step_closure.  Otherwise,
1478    return NULL.  */
1479 
1480 struct displaced_step_closure*
1481 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1482 {
1483   struct displaced_step_inferior_state *displaced
1484     = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1485 
1486   /* If checking the mode of displaced instruction in copy area.  */
1487   if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1488      && (displaced->step_copy == addr))
1489     return displaced->step_closure;
1490 
1491   return NULL;
1492 }
1493 
1494 /* Remove the displaced stepping state of process PID.  */
1495 
1496 static void
1497 remove_displaced_stepping_state (int pid)
1498 {
1499   struct displaced_step_inferior_state *it, **prev_next_p;
1500 
1501   gdb_assert (pid != 0);
1502 
1503   it = displaced_step_inferior_states;
1504   prev_next_p = &displaced_step_inferior_states;
1505   while (it)
1506     {
1507       if (it->pid == pid)
1508 	{
1509 	  *prev_next_p = it->next;
1510 	  xfree (it);
1511 	  return;
1512 	}
1513 
1514       prev_next_p = &it->next;
1515       it = *prev_next_p;
1516     }
1517 }
1518 
1519 static void
1520 infrun_inferior_exit (struct inferior *inf)
1521 {
1522   remove_displaced_stepping_state (inf->pid);
1523 }
1524 
1525 /* If ON, and the architecture supports it, GDB will use displaced
1526    stepping to step over breakpoints.  If OFF, or if the architecture
1527    doesn't support it, GDB will instead use the traditional
1528    hold-and-step approach.  If AUTO (which is the default), GDB will
1529    decide which technique to use to step over breakpoints depending on
1530    which of all-stop or non-stop mode is active --- displaced stepping
1531    in non-stop mode; hold-and-step in all-stop mode.  */
1532 
1533 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1534 
1535 static void
1536 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1537 				 struct cmd_list_element *c,
1538 				 const char *value)
1539 {
1540   if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1541     fprintf_filtered (file,
1542 		      _("Debugger's willingness to use displaced stepping "
1543 			"to step over breakpoints is %s (currently %s).\n"),
1544 		      value, non_stop ? "on" : "off");
1545   else
1546     fprintf_filtered (file,
1547 		      _("Debugger's willingness to use displaced stepping "
1548 			"to step over breakpoints is %s.\n"), value);
1549 }
1550 
1551 /* Return non-zero if displaced stepping can/should be used to step
1552    over breakpoints.  */
1553 
1554 static int
1555 use_displaced_stepping (struct gdbarch *gdbarch)
1556 {
1557   return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1558 	   || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1559 	  && gdbarch_displaced_step_copy_insn_p (gdbarch)
1560 	  && find_record_target () == NULL);
1561 }
1562 
1563 /* Clean out any stray displaced stepping state.  */
1564 static void
1565 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1566 {
1567   /* Indicate that there is no cleanup pending.  */
1568   displaced->step_ptid = null_ptid;
1569 
1570   if (displaced->step_closure)
1571     {
1572       gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1573                                            displaced->step_closure);
1574       displaced->step_closure = NULL;
1575     }
1576 }
1577 
1578 static void
1579 displaced_step_clear_cleanup (void *arg)
1580 {
1581   struct displaced_step_inferior_state *state = arg;
1582 
1583   displaced_step_clear (state);
1584 }
1585 
1586 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline.  */
1587 void
1588 displaced_step_dump_bytes (struct ui_file *file,
1589                            const gdb_byte *buf,
1590                            size_t len)
1591 {
1592   int i;
1593 
1594   for (i = 0; i < len; i++)
1595     fprintf_unfiltered (file, "%02x ", buf[i]);
1596   fputs_unfiltered ("\n", file);
1597 }
1598 
1599 /* Prepare to single-step, using displaced stepping.
1600 
1601    Note that we cannot use displaced stepping when we have a signal to
1602    deliver.  If we have a signal to deliver and an instruction to step
1603    over, then after the step, there will be no indication from the
1604    target whether the thread entered a signal handler or ignored the
1605    signal and stepped over the instruction successfully --- both cases
1606    result in a simple SIGTRAP.  In the first case we mustn't do a
1607    fixup, and in the second case we must --- but we can't tell which.
1608    Comments in the code for 'random signals' in handle_inferior_event
1609    explain how we handle this case instead.
1610 
1611    Returns 1 if preparing was successful -- this thread is going to be
1612    stepped now; or 0 if displaced stepping this thread got queued.  */
1613 static int
1614 displaced_step_prepare (ptid_t ptid)
1615 {
1616   struct cleanup *old_cleanups, *ignore_cleanups;
1617   struct thread_info *tp = find_thread_ptid (ptid);
1618   struct regcache *regcache = get_thread_regcache (ptid);
1619   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1620   CORE_ADDR original, copy;
1621   ULONGEST len;
1622   struct displaced_step_closure *closure;
1623   struct displaced_step_inferior_state *displaced;
1624   int status;
1625 
1626   /* We should never reach this function if the architecture does not
1627      support displaced stepping.  */
1628   gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1629 
1630   /* Disable range stepping while executing in the scratch pad.  We
1631      want a single-step even if executing the displaced instruction in
1632      the scratch buffer lands within the stepping range (e.g., a
1633      jump/branch).  */
1634   tp->control.may_range_step = 0;
1635 
1636   /* We have to displaced step one thread at a time, as we only have
1637      access to a single scratch space per inferior.  */
1638 
1639   displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1640 
1641   if (!ptid_equal (displaced->step_ptid, null_ptid))
1642     {
1643       /* Already waiting for a displaced step to finish.  Defer this
1644 	 request and place in queue.  */
1645       struct displaced_step_request *req, *new_req;
1646 
1647       if (debug_displaced)
1648 	fprintf_unfiltered (gdb_stdlog,
1649 			    "displaced: defering step of %s\n",
1650 			    target_pid_to_str (ptid));
1651 
1652       new_req = xmalloc (sizeof (*new_req));
1653       new_req->ptid = ptid;
1654       new_req->next = NULL;
1655 
1656       if (displaced->step_request_queue)
1657 	{
1658 	  for (req = displaced->step_request_queue;
1659 	       req && req->next;
1660 	       req = req->next)
1661 	    ;
1662 	  req->next = new_req;
1663 	}
1664       else
1665 	displaced->step_request_queue = new_req;
1666 
1667       return 0;
1668     }
1669   else
1670     {
1671       if (debug_displaced)
1672 	fprintf_unfiltered (gdb_stdlog,
1673 			    "displaced: stepping %s now\n",
1674 			    target_pid_to_str (ptid));
1675     }
1676 
1677   displaced_step_clear (displaced);
1678 
1679   old_cleanups = save_inferior_ptid ();
1680   inferior_ptid = ptid;
1681 
1682   original = regcache_read_pc (regcache);
1683 
1684   copy = gdbarch_displaced_step_location (gdbarch);
1685   len = gdbarch_max_insn_length (gdbarch);
1686 
1687   /* Save the original contents of the copy area.  */
1688   displaced->step_saved_copy = xmalloc (len);
1689   ignore_cleanups = make_cleanup (free_current_contents,
1690 				  &displaced->step_saved_copy);
1691   status = target_read_memory (copy, displaced->step_saved_copy, len);
1692   if (status != 0)
1693     throw_error (MEMORY_ERROR,
1694 		 _("Error accessing memory address %s (%s) for "
1695 		   "displaced-stepping scratch space."),
1696 		 paddress (gdbarch, copy), safe_strerror (status));
1697   if (debug_displaced)
1698     {
1699       fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1700 			  paddress (gdbarch, copy));
1701       displaced_step_dump_bytes (gdb_stdlog,
1702 				 displaced->step_saved_copy,
1703 				 len);
1704     };
1705 
1706   closure = gdbarch_displaced_step_copy_insn (gdbarch,
1707 					      original, copy, regcache);
1708 
1709   /* We don't support the fully-simulated case at present.  */
1710   gdb_assert (closure);
1711 
1712   /* Save the information we need to fix things up if the step
1713      succeeds.  */
1714   displaced->step_ptid = ptid;
1715   displaced->step_gdbarch = gdbarch;
1716   displaced->step_closure = closure;
1717   displaced->step_original = original;
1718   displaced->step_copy = copy;
1719 
1720   make_cleanup (displaced_step_clear_cleanup, displaced);
1721 
1722   /* Resume execution at the copy.  */
1723   regcache_write_pc (regcache, copy);
1724 
1725   discard_cleanups (ignore_cleanups);
1726 
1727   do_cleanups (old_cleanups);
1728 
1729   if (debug_displaced)
1730     fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1731 			paddress (gdbarch, copy));
1732 
1733   return 1;
1734 }
1735 
1736 static void
1737 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1738 		   const gdb_byte *myaddr, int len)
1739 {
1740   struct cleanup *ptid_cleanup = save_inferior_ptid ();
1741 
1742   inferior_ptid = ptid;
1743   write_memory (memaddr, myaddr, len);
1744   do_cleanups (ptid_cleanup);
1745 }
1746 
1747 /* Restore the contents of the copy area for thread PTID.  */
1748 
1749 static void
1750 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1751 			ptid_t ptid)
1752 {
1753   ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1754 
1755   write_memory_ptid (ptid, displaced->step_copy,
1756 		     displaced->step_saved_copy, len);
1757   if (debug_displaced)
1758     fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1759 			target_pid_to_str (ptid),
1760 			paddress (displaced->step_gdbarch,
1761 				  displaced->step_copy));
1762 }
1763 
1764 static void
1765 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1766 {
1767   struct cleanup *old_cleanups;
1768   struct displaced_step_inferior_state *displaced
1769     = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1770 
1771   /* Was any thread of this process doing a displaced step?  */
1772   if (displaced == NULL)
1773     return;
1774 
1775   /* Was this event for the pid we displaced?  */
1776   if (ptid_equal (displaced->step_ptid, null_ptid)
1777       || ! ptid_equal (displaced->step_ptid, event_ptid))
1778     return;
1779 
1780   old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1781 
1782   displaced_step_restore (displaced, displaced->step_ptid);
1783 
1784   /* Did the instruction complete successfully?  */
1785   if (signal == GDB_SIGNAL_TRAP)
1786     {
1787       /* Fix up the resulting state.  */
1788       gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1789                                     displaced->step_closure,
1790                                     displaced->step_original,
1791                                     displaced->step_copy,
1792                                     get_thread_regcache (displaced->step_ptid));
1793     }
1794   else
1795     {
1796       /* Since the instruction didn't complete, all we can do is
1797          relocate the PC.  */
1798       struct regcache *regcache = get_thread_regcache (event_ptid);
1799       CORE_ADDR pc = regcache_read_pc (regcache);
1800 
1801       pc = displaced->step_original + (pc - displaced->step_copy);
1802       regcache_write_pc (regcache, pc);
1803     }
1804 
1805   do_cleanups (old_cleanups);
1806 
1807   displaced->step_ptid = null_ptid;
1808 
1809   /* Are there any pending displaced stepping requests?  If so, run
1810      one now.  Leave the state object around, since we're likely to
1811      need it again soon.  */
1812   while (displaced->step_request_queue)
1813     {
1814       struct displaced_step_request *head;
1815       ptid_t ptid;
1816       struct regcache *regcache;
1817       struct gdbarch *gdbarch;
1818       CORE_ADDR actual_pc;
1819       struct address_space *aspace;
1820 
1821       head = displaced->step_request_queue;
1822       ptid = head->ptid;
1823       displaced->step_request_queue = head->next;
1824       xfree (head);
1825 
1826       context_switch (ptid);
1827 
1828       regcache = get_thread_regcache (ptid);
1829       actual_pc = regcache_read_pc (regcache);
1830       aspace = get_regcache_aspace (regcache);
1831 
1832       if (breakpoint_here_p (aspace, actual_pc))
1833 	{
1834 	  if (debug_displaced)
1835 	    fprintf_unfiltered (gdb_stdlog,
1836 				"displaced: stepping queued %s now\n",
1837 				target_pid_to_str (ptid));
1838 
1839 	  displaced_step_prepare (ptid);
1840 
1841 	  gdbarch = get_regcache_arch (regcache);
1842 
1843 	  if (debug_displaced)
1844 	    {
1845 	      CORE_ADDR actual_pc = regcache_read_pc (regcache);
1846 	      gdb_byte buf[4];
1847 
1848 	      fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1849 				  paddress (gdbarch, actual_pc));
1850 	      read_memory (actual_pc, buf, sizeof (buf));
1851 	      displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1852 	    }
1853 
1854 	  if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1855 						    displaced->step_closure))
1856 	    target_resume (ptid, 1, GDB_SIGNAL_0);
1857 	  else
1858 	    target_resume (ptid, 0, GDB_SIGNAL_0);
1859 
1860 	  /* Done, we're stepping a thread.  */
1861 	  break;
1862 	}
1863       else
1864 	{
1865 	  int step;
1866 	  struct thread_info *tp = inferior_thread ();
1867 
1868 	  /* The breakpoint we were sitting under has since been
1869 	     removed.  */
1870 	  tp->control.trap_expected = 0;
1871 
1872 	  /* Go back to what we were trying to do.  */
1873 	  step = currently_stepping (tp);
1874 
1875 	  if (debug_displaced)
1876 	    fprintf_unfiltered (gdb_stdlog,
1877 				"displaced: breakpoint is gone: %s, step(%d)\n",
1878 				target_pid_to_str (tp->ptid), step);
1879 
1880 	  target_resume (ptid, step, GDB_SIGNAL_0);
1881 	  tp->suspend.stop_signal = GDB_SIGNAL_0;
1882 
1883 	  /* This request was discarded.  See if there's any other
1884 	     thread waiting for its turn.  */
1885 	}
1886     }
1887 }
1888 
1889 /* Update global variables holding ptids to hold NEW_PTID if they were
1890    holding OLD_PTID.  */
1891 static void
1892 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1893 {
1894   struct displaced_step_request *it;
1895   struct displaced_step_inferior_state *displaced;
1896 
1897   if (ptid_equal (inferior_ptid, old_ptid))
1898     inferior_ptid = new_ptid;
1899 
1900   for (displaced = displaced_step_inferior_states;
1901        displaced;
1902        displaced = displaced->next)
1903     {
1904       if (ptid_equal (displaced->step_ptid, old_ptid))
1905 	displaced->step_ptid = new_ptid;
1906 
1907       for (it = displaced->step_request_queue; it; it = it->next)
1908 	if (ptid_equal (it->ptid, old_ptid))
1909 	  it->ptid = new_ptid;
1910     }
1911 }
1912 
1913 
1914 /* Resuming.  */
1915 
1916 /* Things to clean up if we QUIT out of resume ().  */
1917 static void
1918 resume_cleanups (void *ignore)
1919 {
1920   if (!ptid_equal (inferior_ptid, null_ptid))
1921     delete_single_step_breakpoints (inferior_thread ());
1922 
1923   normal_stop ();
1924 }
1925 
1926 static const char schedlock_off[] = "off";
1927 static const char schedlock_on[] = "on";
1928 static const char schedlock_step[] = "step";
1929 static const char *const scheduler_enums[] = {
1930   schedlock_off,
1931   schedlock_on,
1932   schedlock_step,
1933   NULL
1934 };
1935 static const char *scheduler_mode = schedlock_off;
1936 static void
1937 show_scheduler_mode (struct ui_file *file, int from_tty,
1938 		     struct cmd_list_element *c, const char *value)
1939 {
1940   fprintf_filtered (file,
1941 		    _("Mode for locking scheduler "
1942 		      "during execution is \"%s\".\n"),
1943 		    value);
1944 }
1945 
1946 static void
1947 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1948 {
1949   if (!target_can_lock_scheduler)
1950     {
1951       scheduler_mode = schedlock_off;
1952       error (_("Target '%s' cannot support this command."), target_shortname);
1953     }
1954 }
1955 
1956 /* True if execution commands resume all threads of all processes by
1957    default; otherwise, resume only threads of the current inferior
1958    process.  */
1959 int sched_multi = 0;
1960 
1961 /* Try to setup for software single stepping over the specified location.
1962    Return 1 if target_resume() should use hardware single step.
1963 
1964    GDBARCH the current gdbarch.
1965    PC the location to step over.  */
1966 
1967 static int
1968 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1969 {
1970   int hw_step = 1;
1971 
1972   if (execution_direction == EXEC_FORWARD
1973       && gdbarch_software_single_step_p (gdbarch)
1974       && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1975     {
1976       hw_step = 0;
1977     }
1978   return hw_step;
1979 }
1980 
1981 ptid_t
1982 user_visible_resume_ptid (int step)
1983 {
1984   /* By default, resume all threads of all processes.  */
1985   ptid_t resume_ptid = RESUME_ALL;
1986 
1987   /* Maybe resume only all threads of the current process.  */
1988   if (!sched_multi && target_supports_multi_process ())
1989     {
1990       resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1991     }
1992 
1993   /* Maybe resume a single thread after all.  */
1994   if (non_stop)
1995     {
1996       /* With non-stop mode on, threads are always handled
1997 	 individually.  */
1998       resume_ptid = inferior_ptid;
1999     }
2000   else if ((scheduler_mode == schedlock_on)
2001 	   || (scheduler_mode == schedlock_step && step))
2002     {
2003       /* User-settable 'scheduler' mode requires solo thread resume.  */
2004       resume_ptid = inferior_ptid;
2005     }
2006 
2007   /* We may actually resume fewer threads at first, e.g., if a thread
2008      is stopped at a breakpoint that needs stepping-off, but that
2009      should not be visible to the user/frontend, and neither should
2010      the frontend/user be allowed to proceed any of the threads that
2011      happen to be stopped for internal run control handling, if a
2012      previous command wanted them resumed.  */
2013   return resume_ptid;
2014 }
2015 
2016 /* Resume the inferior, but allow a QUIT.  This is useful if the user
2017    wants to interrupt some lengthy single-stepping operation
2018    (for child processes, the SIGINT goes to the inferior, and so
2019    we get a SIGINT random_signal, but for remote debugging and perhaps
2020    other targets, that's not true).
2021 
2022    STEP nonzero if we should step (zero to continue instead).
2023    SIG is the signal to give the inferior (zero for none).  */
2024 void
2025 resume (int step, enum gdb_signal sig)
2026 {
2027   struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2028   struct regcache *regcache = get_current_regcache ();
2029   struct gdbarch *gdbarch = get_regcache_arch (regcache);
2030   struct thread_info *tp = inferior_thread ();
2031   CORE_ADDR pc = regcache_read_pc (regcache);
2032   struct address_space *aspace = get_regcache_aspace (regcache);
2033   ptid_t resume_ptid;
2034   /* From here on, this represents the caller's step vs continue
2035      request, while STEP represents what we'll actually request the
2036      target to do.  STEP can decay from a step to a continue, if e.g.,
2037      we need to implement single-stepping with breakpoints (software
2038      single-step).  When deciding whether "set scheduler-locking step"
2039      applies, it's the callers intention that counts.  */
2040   const int entry_step = step;
2041 
2042   tp->stepped_breakpoint = 0;
2043 
2044   QUIT;
2045 
2046   if (current_inferior ()->waiting_for_vfork_done)
2047     {
2048       /* Don't try to single-step a vfork parent that is waiting for
2049 	 the child to get out of the shared memory region (by exec'ing
2050 	 or exiting).  This is particularly important on software
2051 	 single-step archs, as the child process would trip on the
2052 	 software single step breakpoint inserted for the parent
2053 	 process.  Since the parent will not actually execute any
2054 	 instruction until the child is out of the shared region (such
2055 	 are vfork's semantics), it is safe to simply continue it.
2056 	 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2057 	 the parent, and tell it to `keep_going', which automatically
2058 	 re-sets it stepping.  */
2059       if (debug_infrun)
2060 	fprintf_unfiltered (gdb_stdlog,
2061 			    "infrun: resume : clear step\n");
2062       step = 0;
2063     }
2064 
2065   if (debug_infrun)
2066     fprintf_unfiltered (gdb_stdlog,
2067 			"infrun: resume (step=%d, signal=%s), "
2068 			"trap_expected=%d, current thread [%s] at %s\n",
2069 			step, gdb_signal_to_symbol_string (sig),
2070 			tp->control.trap_expected,
2071 			target_pid_to_str (inferior_ptid),
2072 			paddress (gdbarch, pc));
2073 
2074   /* Normally, by the time we reach `resume', the breakpoints are either
2075      removed or inserted, as appropriate.  The exception is if we're sitting
2076      at a permanent breakpoint; we need to step over it, but permanent
2077      breakpoints can't be removed.  So we have to test for it here.  */
2078   if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2079     {
2080       if (sig != GDB_SIGNAL_0)
2081 	{
2082 	  /* We have a signal to pass to the inferior.  The resume
2083 	     may, or may not take us to the signal handler.  If this
2084 	     is a step, we'll need to stop in the signal handler, if
2085 	     there's one, (if the target supports stepping into
2086 	     handlers), or in the next mainline instruction, if
2087 	     there's no handler.  If this is a continue, we need to be
2088 	     sure to run the handler with all breakpoints inserted.
2089 	     In all cases, set a breakpoint at the current address
2090 	     (where the handler returns to), and once that breakpoint
2091 	     is hit, resume skipping the permanent breakpoint.  If
2092 	     that breakpoint isn't hit, then we've stepped into the
2093 	     signal handler (or hit some other event).  We'll delete
2094 	     the step-resume breakpoint then.  */
2095 
2096 	  if (debug_infrun)
2097 	    fprintf_unfiltered (gdb_stdlog,
2098 				"infrun: resume: skipping permanent breakpoint, "
2099 				"deliver signal first\n");
2100 
2101 	  clear_step_over_info ();
2102 	  tp->control.trap_expected = 0;
2103 
2104 	  if (tp->control.step_resume_breakpoint == NULL)
2105 	    {
2106 	      /* Set a "high-priority" step-resume, as we don't want
2107 		 user breakpoints at PC to trigger (again) when this
2108 		 hits.  */
2109 	      insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2110 	      gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2111 
2112 	      tp->step_after_step_resume_breakpoint = step;
2113 	    }
2114 
2115 	  insert_breakpoints ();
2116 	}
2117       else
2118 	{
2119 	  /* There's no signal to pass, we can go ahead and skip the
2120 	     permanent breakpoint manually.  */
2121 	  if (debug_infrun)
2122 	    fprintf_unfiltered (gdb_stdlog,
2123 				"infrun: resume: skipping permanent breakpoint\n");
2124 	  gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2125 	  /* Update pc to reflect the new address from which we will
2126 	     execute instructions.  */
2127 	  pc = regcache_read_pc (regcache);
2128 
2129 	  if (step)
2130 	    {
2131 	      /* We've already advanced the PC, so the stepping part
2132 		 is done.  Now we need to arrange for a trap to be
2133 		 reported to handle_inferior_event.  Set a breakpoint
2134 		 at the current PC, and run to it.  Don't update
2135 		 prev_pc, because if we end in
2136 		 switch_back_to_stepping, we want the "expected thread
2137 		 advanced also" branch to be taken.  IOW, we don't
2138 		 want this thread to step further from PC
2139 		 (overstep).  */
2140 	      insert_single_step_breakpoint (gdbarch, aspace, pc);
2141 	      insert_breakpoints ();
2142 
2143 	      tp->suspend.stop_signal = GDB_SIGNAL_0;
2144 	      /* We're continuing with all breakpoints inserted.  It's
2145 		 safe to let the target bypass signals.  */
2146 	      target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2147 	      /* ... and safe to let other threads run, according to
2148 		 schedlock.  */
2149 	      resume_ptid = user_visible_resume_ptid (entry_step);
2150 	      target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2151 	      discard_cleanups (old_cleanups);
2152 	      return;
2153 	    }
2154 	}
2155     }
2156 
2157   /* If we have a breakpoint to step over, make sure to do a single
2158      step only.  Same if we have software watchpoints.  */
2159   if (tp->control.trap_expected || bpstat_should_step ())
2160     tp->control.may_range_step = 0;
2161 
2162   /* If enabled, step over breakpoints by executing a copy of the
2163      instruction at a different address.
2164 
2165      We can't use displaced stepping when we have a signal to deliver;
2166      the comments for displaced_step_prepare explain why.  The
2167      comments in the handle_inferior event for dealing with 'random
2168      signals' explain what we do instead.
2169 
2170      We can't use displaced stepping when we are waiting for vfork_done
2171      event, displaced stepping breaks the vfork child similarly as single
2172      step software breakpoint.  */
2173   if (use_displaced_stepping (gdbarch)
2174       && tp->control.trap_expected
2175       && sig == GDB_SIGNAL_0
2176       && !current_inferior ()->waiting_for_vfork_done)
2177     {
2178       struct displaced_step_inferior_state *displaced;
2179 
2180       if (!displaced_step_prepare (inferior_ptid))
2181 	{
2182 	  /* Got placed in displaced stepping queue.  Will be resumed
2183 	     later when all the currently queued displaced stepping
2184 	     requests finish.  The thread is not executing at this
2185 	     point, and the call to set_executing will be made later.
2186 	     But we need to call set_running here, since from the
2187 	     user/frontend's point of view, threads were set running.
2188 	     Unless we're calling an inferior function, as in that
2189 	     case we pretend the inferior doesn't run at all.  */
2190 	  if (!tp->control.in_infcall)
2191 	    set_running (user_visible_resume_ptid (entry_step), 1);
2192 	  discard_cleanups (old_cleanups);
2193 	  return;
2194 	}
2195 
2196       /* Update pc to reflect the new address from which we will execute
2197 	 instructions due to displaced stepping.  */
2198       pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2199 
2200       displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2201       step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2202 						   displaced->step_closure);
2203     }
2204 
2205   /* Do we need to do it the hard way, w/temp breakpoints?  */
2206   else if (step)
2207     step = maybe_software_singlestep (gdbarch, pc);
2208 
2209   /* Currently, our software single-step implementation leads to different
2210      results than hardware single-stepping in one situation: when stepping
2211      into delivering a signal which has an associated signal handler,
2212      hardware single-step will stop at the first instruction of the handler,
2213      while software single-step will simply skip execution of the handler.
2214 
2215      For now, this difference in behavior is accepted since there is no
2216      easy way to actually implement single-stepping into a signal handler
2217      without kernel support.
2218 
2219      However, there is one scenario where this difference leads to follow-on
2220      problems: if we're stepping off a breakpoint by removing all breakpoints
2221      and then single-stepping.  In this case, the software single-step
2222      behavior means that even if there is a *breakpoint* in the signal
2223      handler, GDB still would not stop.
2224 
2225      Fortunately, we can at least fix this particular issue.  We detect
2226      here the case where we are about to deliver a signal while software
2227      single-stepping with breakpoints removed.  In this situation, we
2228      revert the decisions to remove all breakpoints and insert single-
2229      step breakpoints, and instead we install a step-resume breakpoint
2230      at the current address, deliver the signal without stepping, and
2231      once we arrive back at the step-resume breakpoint, actually step
2232      over the breakpoint we originally wanted to step over.  */
2233   if (thread_has_single_step_breakpoints_set (tp)
2234       && sig != GDB_SIGNAL_0
2235       && step_over_info_valid_p ())
2236     {
2237       /* If we have nested signals or a pending signal is delivered
2238 	 immediately after a handler returns, might might already have
2239 	 a step-resume breakpoint set on the earlier handler.  We cannot
2240 	 set another step-resume breakpoint; just continue on until the
2241 	 original breakpoint is hit.  */
2242       if (tp->control.step_resume_breakpoint == NULL)
2243 	{
2244 	  insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2245 	  tp->step_after_step_resume_breakpoint = 1;
2246 	}
2247 
2248       delete_single_step_breakpoints (tp);
2249 
2250       clear_step_over_info ();
2251       tp->control.trap_expected = 0;
2252 
2253       insert_breakpoints ();
2254     }
2255 
2256   /* If STEP is set, it's a request to use hardware stepping
2257      facilities.  But in that case, we should never
2258      use singlestep breakpoint.  */
2259   gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2260 
2261   /* Decide the set of threads to ask the target to resume.  Start
2262      by assuming everything will be resumed, than narrow the set
2263      by applying increasingly restricting conditions.  */
2264   resume_ptid = user_visible_resume_ptid (entry_step);
2265 
2266   /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2267      (e.g., we might need to step over a breakpoint), from the
2268      user/frontend's point of view, all threads in RESUME_PTID are now
2269      running.  Unless we're calling an inferior function, as in that
2270      case pretend we inferior doesn't run at all.  */
2271   if (!tp->control.in_infcall)
2272     set_running (resume_ptid, 1);
2273 
2274   /* Maybe resume a single thread after all.  */
2275   if ((step || thread_has_single_step_breakpoints_set (tp))
2276       && tp->control.trap_expected)
2277     {
2278       /* We're allowing a thread to run past a breakpoint it has
2279 	 hit, by single-stepping the thread with the breakpoint
2280 	 removed.  In which case, we need to single-step only this
2281 	 thread, and keep others stopped, as they can miss this
2282 	 breakpoint if allowed to run.  */
2283       resume_ptid = inferior_ptid;
2284     }
2285 
2286   if (execution_direction != EXEC_REVERSE
2287       && step && breakpoint_inserted_here_p (aspace, pc))
2288     {
2289       /* The only case we currently need to step a breakpoint
2290 	 instruction is when we have a signal to deliver.  See
2291 	 handle_signal_stop where we handle random signals that could
2292 	 take out us out of the stepping range.  Normally, in that
2293 	 case we end up continuing (instead of stepping) over the
2294 	 signal handler with a breakpoint at PC, but there are cases
2295 	 where we should _always_ single-step, even if we have a
2296 	 step-resume breakpoint, like when a software watchpoint is
2297 	 set.  Assuming single-stepping and delivering a signal at the
2298 	 same time would takes us to the signal handler, then we could
2299 	 have removed the breakpoint at PC to step over it.  However,
2300 	 some hardware step targets (like e.g., Mac OS) can't step
2301 	 into signal handlers, and for those, we need to leave the
2302 	 breakpoint at PC inserted, as otherwise if the handler
2303 	 recurses and executes PC again, it'll miss the breakpoint.
2304 	 So we leave the breakpoint inserted anyway, but we need to
2305 	 record that we tried to step a breakpoint instruction, so
2306 	 that adjust_pc_after_break doesn't end up confused.  */
2307       gdb_assert (sig != GDB_SIGNAL_0);
2308 
2309       tp->stepped_breakpoint = 1;
2310 
2311       /* Most targets can step a breakpoint instruction, thus
2312 	 executing it normally.  But if this one cannot, just
2313 	 continue and we will hit it anyway.  */
2314       if (gdbarch_cannot_step_breakpoint (gdbarch))
2315 	step = 0;
2316     }
2317 
2318   if (debug_displaced
2319       && use_displaced_stepping (gdbarch)
2320       && tp->control.trap_expected)
2321     {
2322       struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
2323       struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2324       CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2325       gdb_byte buf[4];
2326 
2327       fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2328 			  paddress (resume_gdbarch, actual_pc));
2329       read_memory (actual_pc, buf, sizeof (buf));
2330       displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2331     }
2332 
2333   if (tp->control.may_range_step)
2334     {
2335       /* If we're resuming a thread with the PC out of the step
2336 	 range, then we're doing some nested/finer run control
2337 	 operation, like stepping the thread out of the dynamic
2338 	 linker or the displaced stepping scratch pad.  We
2339 	 shouldn't have allowed a range step then.  */
2340       gdb_assert (pc_in_thread_step_range (pc, tp));
2341     }
2342 
2343   /* Install inferior's terminal modes.  */
2344   target_terminal_inferior ();
2345 
2346   /* Avoid confusing the next resume, if the next stop/resume
2347      happens to apply to another thread.  */
2348   tp->suspend.stop_signal = GDB_SIGNAL_0;
2349 
2350   /* Advise target which signals may be handled silently.  If we have
2351      removed breakpoints because we are stepping over one (in any
2352      thread), we need to receive all signals to avoid accidentally
2353      skipping a breakpoint during execution of a signal handler.  */
2354   if (step_over_info_valid_p ())
2355     target_pass_signals (0, NULL);
2356   else
2357     target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2358 
2359   target_resume (resume_ptid, step, sig);
2360 
2361   discard_cleanups (old_cleanups);
2362 }
2363 
2364 /* Proceeding.  */
2365 
2366 /* Clear out all variables saying what to do when inferior is continued.
2367    First do this, then set the ones you want, then call `proceed'.  */
2368 
2369 static void
2370 clear_proceed_status_thread (struct thread_info *tp)
2371 {
2372   if (debug_infrun)
2373     fprintf_unfiltered (gdb_stdlog,
2374 			"infrun: clear_proceed_status_thread (%s)\n",
2375 			target_pid_to_str (tp->ptid));
2376 
2377   /* If this signal should not be seen by program, give it zero.
2378      Used for debugging signals.  */
2379   if (!signal_pass_state (tp->suspend.stop_signal))
2380     tp->suspend.stop_signal = GDB_SIGNAL_0;
2381 
2382   tp->control.trap_expected = 0;
2383   tp->control.step_range_start = 0;
2384   tp->control.step_range_end = 0;
2385   tp->control.may_range_step = 0;
2386   tp->control.step_frame_id = null_frame_id;
2387   tp->control.step_stack_frame_id = null_frame_id;
2388   tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2389   tp->stop_requested = 0;
2390 
2391   tp->control.stop_step = 0;
2392 
2393   tp->control.proceed_to_finish = 0;
2394 
2395   tp->control.command_interp = NULL;
2396 
2397   /* Discard any remaining commands or status from previous stop.  */
2398   bpstat_clear (&tp->control.stop_bpstat);
2399 }
2400 
2401 void
2402 clear_proceed_status (int step)
2403 {
2404   if (!non_stop)
2405     {
2406       struct thread_info *tp;
2407       ptid_t resume_ptid;
2408 
2409       resume_ptid = user_visible_resume_ptid (step);
2410 
2411       /* In all-stop mode, delete the per-thread status of all threads
2412 	 we're about to resume, implicitly and explicitly.  */
2413       ALL_NON_EXITED_THREADS (tp)
2414         {
2415 	  if (!ptid_match (tp->ptid, resume_ptid))
2416 	    continue;
2417 	  clear_proceed_status_thread (tp);
2418 	}
2419     }
2420 
2421   if (!ptid_equal (inferior_ptid, null_ptid))
2422     {
2423       struct inferior *inferior;
2424 
2425       if (non_stop)
2426 	{
2427 	  /* If in non-stop mode, only delete the per-thread status of
2428 	     the current thread.  */
2429 	  clear_proceed_status_thread (inferior_thread ());
2430 	}
2431 
2432       inferior = current_inferior ();
2433       inferior->control.stop_soon = NO_STOP_QUIETLY;
2434     }
2435 
2436   stop_after_trap = 0;
2437 
2438   clear_step_over_info ();
2439 
2440   observer_notify_about_to_proceed ();
2441 
2442   if (stop_registers)
2443     {
2444       regcache_xfree (stop_registers);
2445       stop_registers = NULL;
2446     }
2447 }
2448 
2449 /* Returns true if TP is still stopped at a breakpoint that needs
2450    stepping-over in order to make progress.  If the breakpoint is gone
2451    meanwhile, we can skip the whole step-over dance.  */
2452 
2453 static int
2454 thread_still_needs_step_over (struct thread_info *tp)
2455 {
2456   if (tp->stepping_over_breakpoint)
2457     {
2458       struct regcache *regcache = get_thread_regcache (tp->ptid);
2459 
2460       if (breakpoint_here_p (get_regcache_aspace (regcache),
2461 			     regcache_read_pc (regcache))
2462 	  == ordinary_breakpoint_here)
2463 	return 1;
2464 
2465       tp->stepping_over_breakpoint = 0;
2466     }
2467 
2468   return 0;
2469 }
2470 
2471 /* Returns true if scheduler locking applies.  STEP indicates whether
2472    we're about to do a step/next-like command to a thread.  */
2473 
2474 static int
2475 schedlock_applies (int step)
2476 {
2477   return (scheduler_mode == schedlock_on
2478 	  || (scheduler_mode == schedlock_step
2479 	      && step));
2480 }
2481 
2482 /* Look a thread other than EXCEPT that has previously reported a
2483    breakpoint event, and thus needs a step-over in order to make
2484    progress.  Returns NULL is none is found.  STEP indicates whether
2485    we're about to step the current thread, in order to decide whether
2486    "set scheduler-locking step" applies.  */
2487 
2488 static struct thread_info *
2489 find_thread_needs_step_over (int step, struct thread_info *except)
2490 {
2491   struct thread_info *tp, *current;
2492 
2493   /* With non-stop mode on, threads are always handled individually.  */
2494   gdb_assert (! non_stop);
2495 
2496   current = inferior_thread ();
2497 
2498   /* If scheduler locking applies, we can avoid iterating over all
2499      threads.  */
2500   if (schedlock_applies (step))
2501     {
2502       if (except != current
2503 	  && thread_still_needs_step_over (current))
2504 	return current;
2505 
2506       return NULL;
2507     }
2508 
2509   ALL_NON_EXITED_THREADS (tp)
2510     {
2511       /* Ignore the EXCEPT thread.  */
2512       if (tp == except)
2513 	continue;
2514       /* Ignore threads of processes we're not resuming.  */
2515       if (!sched_multi
2516 	  && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2517 	continue;
2518 
2519       if (thread_still_needs_step_over (tp))
2520 	return tp;
2521     }
2522 
2523   return NULL;
2524 }
2525 
2526 /* Basic routine for continuing the program in various fashions.
2527 
2528    ADDR is the address to resume at, or -1 for resume where stopped.
2529    SIGGNAL is the signal to give it, or 0 for none,
2530    or -1 for act according to how it stopped.
2531    STEP is nonzero if should trap after one instruction.
2532    -1 means return after that and print nothing.
2533    You should probably set various step_... variables
2534    before calling here, if you are stepping.
2535 
2536    You should call clear_proceed_status before calling proceed.  */
2537 
2538 void
2539 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2540 {
2541   struct regcache *regcache;
2542   struct gdbarch *gdbarch;
2543   struct thread_info *tp;
2544   CORE_ADDR pc;
2545   struct address_space *aspace;
2546 
2547   /* If we're stopped at a fork/vfork, follow the branch set by the
2548      "set follow-fork-mode" command; otherwise, we'll just proceed
2549      resuming the current thread.  */
2550   if (!follow_fork ())
2551     {
2552       /* The target for some reason decided not to resume.  */
2553       normal_stop ();
2554       if (target_can_async_p ())
2555 	inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2556       return;
2557     }
2558 
2559   /* We'll update this if & when we switch to a new thread.  */
2560   previous_inferior_ptid = inferior_ptid;
2561 
2562   regcache = get_current_regcache ();
2563   gdbarch = get_regcache_arch (regcache);
2564   aspace = get_regcache_aspace (regcache);
2565   pc = regcache_read_pc (regcache);
2566   tp = inferior_thread ();
2567 
2568   if (step > 0)
2569     step_start_function = find_pc_function (pc);
2570   if (step < 0)
2571     stop_after_trap = 1;
2572 
2573   /* Fill in with reasonable starting values.  */
2574   init_thread_stepping_state (tp);
2575 
2576   if (addr == (CORE_ADDR) -1)
2577     {
2578       if (pc == stop_pc
2579 	  && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2580 	  && execution_direction != EXEC_REVERSE)
2581 	/* There is a breakpoint at the address we will resume at,
2582 	   step one instruction before inserting breakpoints so that
2583 	   we do not stop right away (and report a second hit at this
2584 	   breakpoint).
2585 
2586 	   Note, we don't do this in reverse, because we won't
2587 	   actually be executing the breakpoint insn anyway.
2588 	   We'll be (un-)executing the previous instruction.  */
2589 	tp->stepping_over_breakpoint = 1;
2590       else if (gdbarch_single_step_through_delay_p (gdbarch)
2591 	       && gdbarch_single_step_through_delay (gdbarch,
2592 						     get_current_frame ()))
2593 	/* We stepped onto an instruction that needs to be stepped
2594 	   again before re-inserting the breakpoint, do so.  */
2595 	tp->stepping_over_breakpoint = 1;
2596     }
2597   else
2598     {
2599       regcache_write_pc (regcache, addr);
2600     }
2601 
2602   if (siggnal != GDB_SIGNAL_DEFAULT)
2603     tp->suspend.stop_signal = siggnal;
2604 
2605   /* Record the interpreter that issued the execution command that
2606      caused this thread to resume.  If the top level interpreter is
2607      MI/async, and the execution command was a CLI command
2608      (next/step/etc.), we'll want to print stop event output to the MI
2609      console channel (the stepped-to line, etc.), as if the user
2610      entered the execution command on a real GDB console.  */
2611   inferior_thread ()->control.command_interp = command_interp ();
2612 
2613   if (debug_infrun)
2614     fprintf_unfiltered (gdb_stdlog,
2615 			"infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2616 			paddress (gdbarch, addr),
2617 			gdb_signal_to_symbol_string (siggnal), step);
2618 
2619   if (non_stop)
2620     /* In non-stop, each thread is handled individually.  The context
2621        must already be set to the right thread here.  */
2622     ;
2623   else
2624     {
2625       struct thread_info *step_over;
2626 
2627       /* In a multi-threaded task we may select another thread and
2628 	 then continue or step.
2629 
2630 	 But if the old thread was stopped at a breakpoint, it will
2631 	 immediately cause another breakpoint stop without any
2632 	 execution (i.e. it will report a breakpoint hit incorrectly).
2633 	 So we must step over it first.
2634 
2635 	 Look for a thread other than the current (TP) that reported a
2636 	 breakpoint hit and hasn't been resumed yet since.  */
2637       step_over = find_thread_needs_step_over (step, tp);
2638       if (step_over != NULL)
2639 	{
2640 	  if (debug_infrun)
2641 	    fprintf_unfiltered (gdb_stdlog,
2642 				"infrun: need to step-over [%s] first\n",
2643 				target_pid_to_str (step_over->ptid));
2644 
2645 	  /* Store the prev_pc for the stepping thread too, needed by
2646 	     switch_back_to_stepping thread.  */
2647 	  tp->prev_pc = regcache_read_pc (get_current_regcache ());
2648 	  switch_to_thread (step_over->ptid);
2649 	  tp = step_over;
2650 	}
2651     }
2652 
2653   /* If we need to step over a breakpoint, and we're not using
2654      displaced stepping to do so, insert all breakpoints (watchpoints,
2655      etc.) but the one we're stepping over, step one instruction, and
2656      then re-insert the breakpoint when that step is finished.  */
2657   if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
2658     {
2659       struct regcache *regcache = get_current_regcache ();
2660 
2661       set_step_over_info (get_regcache_aspace (regcache),
2662 			  regcache_read_pc (regcache), 0);
2663     }
2664   else
2665     clear_step_over_info ();
2666 
2667   insert_breakpoints ();
2668 
2669   tp->control.trap_expected = tp->stepping_over_breakpoint;
2670 
2671   annotate_starting ();
2672 
2673   /* Make sure that output from GDB appears before output from the
2674      inferior.  */
2675   gdb_flush (gdb_stdout);
2676 
2677   /* Refresh prev_pc value just prior to resuming.  This used to be
2678      done in stop_waiting, however, setting prev_pc there did not handle
2679      scenarios such as inferior function calls or returning from
2680      a function via the return command.  In those cases, the prev_pc
2681      value was not set properly for subsequent commands.  The prev_pc value
2682      is used to initialize the starting line number in the ecs.  With an
2683      invalid value, the gdb next command ends up stopping at the position
2684      represented by the next line table entry past our start position.
2685      On platforms that generate one line table entry per line, this
2686      is not a problem.  However, on the ia64, the compiler generates
2687      extraneous line table entries that do not increase the line number.
2688      When we issue the gdb next command on the ia64 after an inferior call
2689      or a return command, we often end up a few instructions forward, still
2690      within the original line we started.
2691 
2692      An attempt was made to refresh the prev_pc at the same time the
2693      execution_control_state is initialized (for instance, just before
2694      waiting for an inferior event).  But this approach did not work
2695      because of platforms that use ptrace, where the pc register cannot
2696      be read unless the inferior is stopped.  At that point, we are not
2697      guaranteed the inferior is stopped and so the regcache_read_pc() call
2698      can fail.  Setting the prev_pc value here ensures the value is updated
2699      correctly when the inferior is stopped.  */
2700   tp->prev_pc = regcache_read_pc (get_current_regcache ());
2701 
2702   /* Resume inferior.  */
2703   resume (tp->control.trap_expected || step || bpstat_should_step (),
2704 	  tp->suspend.stop_signal);
2705 
2706   /* Wait for it to stop (if not standalone)
2707      and in any case decode why it stopped, and act accordingly.  */
2708   /* Do this only if we are not using the event loop, or if the target
2709      does not support asynchronous execution.  */
2710   if (!target_can_async_p ())
2711     {
2712       wait_for_inferior ();
2713       normal_stop ();
2714     }
2715 }
2716 
2717 
2718 /* Start remote-debugging of a machine over a serial link.  */
2719 
2720 void
2721 start_remote (int from_tty)
2722 {
2723   struct inferior *inferior;
2724 
2725   inferior = current_inferior ();
2726   inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2727 
2728   /* Always go on waiting for the target, regardless of the mode.  */
2729   /* FIXME: cagney/1999-09-23: At present it isn't possible to
2730      indicate to wait_for_inferior that a target should timeout if
2731      nothing is returned (instead of just blocking).  Because of this,
2732      targets expecting an immediate response need to, internally, set
2733      things up so that the target_wait() is forced to eventually
2734      timeout.  */
2735   /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2736      differentiate to its caller what the state of the target is after
2737      the initial open has been performed.  Here we're assuming that
2738      the target has stopped.  It should be possible to eventually have
2739      target_open() return to the caller an indication that the target
2740      is currently running and GDB state should be set to the same as
2741      for an async run.  */
2742   wait_for_inferior ();
2743 
2744   /* Now that the inferior has stopped, do any bookkeeping like
2745      loading shared libraries.  We want to do this before normal_stop,
2746      so that the displayed frame is up to date.  */
2747   post_create_inferior (&current_target, from_tty);
2748 
2749   normal_stop ();
2750 }
2751 
2752 /* Initialize static vars when a new inferior begins.  */
2753 
2754 void
2755 init_wait_for_inferior (void)
2756 {
2757   /* These are meaningless until the first time through wait_for_inferior.  */
2758 
2759   breakpoint_init_inferior (inf_starting);
2760 
2761   clear_proceed_status (0);
2762 
2763   target_last_wait_ptid = minus_one_ptid;
2764 
2765   previous_inferior_ptid = inferior_ptid;
2766 
2767   /* Discard any skipped inlined frames.  */
2768   clear_inline_frame_state (minus_one_ptid);
2769 }
2770 
2771 
2772 /* Data to be passed around while handling an event.  This data is
2773    discarded between events.  */
2774 struct execution_control_state
2775 {
2776   ptid_t ptid;
2777   /* The thread that got the event, if this was a thread event; NULL
2778      otherwise.  */
2779   struct thread_info *event_thread;
2780 
2781   struct target_waitstatus ws;
2782   int stop_func_filled_in;
2783   CORE_ADDR stop_func_start;
2784   CORE_ADDR stop_func_end;
2785   const char *stop_func_name;
2786   int wait_some_more;
2787 
2788   /* True if the event thread hit the single-step breakpoint of
2789      another thread.  Thus the event doesn't cause a stop, the thread
2790      needs to be single-stepped past the single-step breakpoint before
2791      we can switch back to the original stepping thread.  */
2792   int hit_singlestep_breakpoint;
2793 };
2794 
2795 static void handle_inferior_event (struct execution_control_state *ecs);
2796 
2797 static void handle_step_into_function (struct gdbarch *gdbarch,
2798 				       struct execution_control_state *ecs);
2799 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2800 						struct execution_control_state *ecs);
2801 static void handle_signal_stop (struct execution_control_state *ecs);
2802 static void check_exception_resume (struct execution_control_state *,
2803 				    struct frame_info *);
2804 
2805 static void end_stepping_range (struct execution_control_state *ecs);
2806 static void stop_waiting (struct execution_control_state *ecs);
2807 static void prepare_to_wait (struct execution_control_state *ecs);
2808 static void keep_going (struct execution_control_state *ecs);
2809 static void process_event_stop_test (struct execution_control_state *ecs);
2810 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2811 
2812 /* Callback for iterate over threads.  If the thread is stopped, but
2813    the user/frontend doesn't know about that yet, go through
2814    normal_stop, as if the thread had just stopped now.  ARG points at
2815    a ptid.  If PTID is MINUS_ONE_PTID, applies to all threads.  If
2816    ptid_is_pid(PTID) is true, applies to all threads of the process
2817    pointed at by PTID.  Otherwise, apply only to the thread pointed by
2818    PTID.  */
2819 
2820 static int
2821 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2822 {
2823   ptid_t ptid = * (ptid_t *) arg;
2824 
2825   if ((ptid_equal (info->ptid, ptid)
2826        || ptid_equal (minus_one_ptid, ptid)
2827        || (ptid_is_pid (ptid)
2828 	   && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2829       && is_running (info->ptid)
2830       && !is_executing (info->ptid))
2831     {
2832       struct cleanup *old_chain;
2833       struct execution_control_state ecss;
2834       struct execution_control_state *ecs = &ecss;
2835 
2836       memset (ecs, 0, sizeof (*ecs));
2837 
2838       old_chain = make_cleanup_restore_current_thread ();
2839 
2840       overlay_cache_invalid = 1;
2841       /* Flush target cache before starting to handle each event.
2842 	 Target was running and cache could be stale.  This is just a
2843 	 heuristic.  Running threads may modify target memory, but we
2844 	 don't get any event.  */
2845       target_dcache_invalidate ();
2846 
2847       /* Go through handle_inferior_event/normal_stop, so we always
2848 	 have consistent output as if the stop event had been
2849 	 reported.  */
2850       ecs->ptid = info->ptid;
2851       ecs->event_thread = find_thread_ptid (info->ptid);
2852       ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2853       ecs->ws.value.sig = GDB_SIGNAL_0;
2854 
2855       handle_inferior_event (ecs);
2856 
2857       if (!ecs->wait_some_more)
2858 	{
2859 	  struct thread_info *tp;
2860 
2861 	  normal_stop ();
2862 
2863 	  /* Finish off the continuations.  */
2864 	  tp = inferior_thread ();
2865 	  do_all_intermediate_continuations_thread (tp, 1);
2866 	  do_all_continuations_thread (tp, 1);
2867 	}
2868 
2869       do_cleanups (old_chain);
2870     }
2871 
2872   return 0;
2873 }
2874 
2875 /* This function is attached as a "thread_stop_requested" observer.
2876    Cleanup local state that assumed the PTID was to be resumed, and
2877    report the stop to the frontend.  */
2878 
2879 static void
2880 infrun_thread_stop_requested (ptid_t ptid)
2881 {
2882   struct displaced_step_inferior_state *displaced;
2883 
2884   /* PTID was requested to stop.  Remove it from the displaced
2885      stepping queue, so we don't try to resume it automatically.  */
2886 
2887   for (displaced = displaced_step_inferior_states;
2888        displaced;
2889        displaced = displaced->next)
2890     {
2891       struct displaced_step_request *it, **prev_next_p;
2892 
2893       it = displaced->step_request_queue;
2894       prev_next_p = &displaced->step_request_queue;
2895       while (it)
2896 	{
2897 	  if (ptid_match (it->ptid, ptid))
2898 	    {
2899 	      *prev_next_p = it->next;
2900 	      it->next = NULL;
2901 	      xfree (it);
2902 	    }
2903 	  else
2904 	    {
2905 	      prev_next_p = &it->next;
2906 	    }
2907 
2908 	  it = *prev_next_p;
2909 	}
2910     }
2911 
2912   iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2913 }
2914 
2915 static void
2916 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2917 {
2918   if (ptid_equal (target_last_wait_ptid, tp->ptid))
2919     nullify_last_target_wait_ptid ();
2920 }
2921 
2922 /* Delete the step resume, single-step and longjmp/exception resume
2923    breakpoints of TP.  */
2924 
2925 static void
2926 delete_thread_infrun_breakpoints (struct thread_info *tp)
2927 {
2928   delete_step_resume_breakpoint (tp);
2929   delete_exception_resume_breakpoint (tp);
2930   delete_single_step_breakpoints (tp);
2931 }
2932 
2933 /* If the target still has execution, call FUNC for each thread that
2934    just stopped.  In all-stop, that's all the non-exited threads; in
2935    non-stop, that's the current thread, only.  */
2936 
2937 typedef void (*for_each_just_stopped_thread_callback_func)
2938   (struct thread_info *tp);
2939 
2940 static void
2941 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
2942 {
2943   if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
2944     return;
2945 
2946   if (non_stop)
2947     {
2948       /* If in non-stop mode, only the current thread stopped.  */
2949       func (inferior_thread ());
2950     }
2951   else
2952     {
2953       struct thread_info *tp;
2954 
2955       /* In all-stop mode, all threads have stopped.  */
2956       ALL_NON_EXITED_THREADS (tp)
2957         {
2958 	  func (tp);
2959 	}
2960     }
2961 }
2962 
2963 /* Delete the step resume and longjmp/exception resume breakpoints of
2964    the threads that just stopped.  */
2965 
2966 static void
2967 delete_just_stopped_threads_infrun_breakpoints (void)
2968 {
2969   for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
2970 }
2971 
2972 /* Delete the single-step breakpoints of the threads that just
2973    stopped.  */
2974 
2975 static void
2976 delete_just_stopped_threads_single_step_breakpoints (void)
2977 {
2978   for_each_just_stopped_thread (delete_single_step_breakpoints);
2979 }
2980 
2981 /* A cleanup wrapper.  */
2982 
2983 static void
2984 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
2985 {
2986   delete_just_stopped_threads_infrun_breakpoints ();
2987 }
2988 
2989 /* Pretty print the results of target_wait, for debugging purposes.  */
2990 
2991 static void
2992 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2993 			   const struct target_waitstatus *ws)
2994 {
2995   char *status_string = target_waitstatus_to_string (ws);
2996   struct ui_file *tmp_stream = mem_fileopen ();
2997   char *text;
2998 
2999   /* The text is split over several lines because it was getting too long.
3000      Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3001      output as a unit; we want only one timestamp printed if debug_timestamp
3002      is set.  */
3003 
3004   fprintf_unfiltered (tmp_stream,
3005 		      "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
3006   if (ptid_get_pid (waiton_ptid) != -1)
3007     fprintf_unfiltered (tmp_stream,
3008 			" [%s]", target_pid_to_str (waiton_ptid));
3009   fprintf_unfiltered (tmp_stream, ", status) =\n");
3010   fprintf_unfiltered (tmp_stream,
3011 		      "infrun:   %d [%s],\n",
3012 		      ptid_get_pid (result_ptid),
3013 		      target_pid_to_str (result_ptid));
3014   fprintf_unfiltered (tmp_stream,
3015 		      "infrun:   %s\n",
3016 		      status_string);
3017 
3018   text = ui_file_xstrdup (tmp_stream, NULL);
3019 
3020   /* This uses %s in part to handle %'s in the text, but also to avoid
3021      a gcc error: the format attribute requires a string literal.  */
3022   fprintf_unfiltered (gdb_stdlog, "%s", text);
3023 
3024   xfree (status_string);
3025   xfree (text);
3026   ui_file_delete (tmp_stream);
3027 }
3028 
3029 /* Prepare and stabilize the inferior for detaching it.  E.g.,
3030    detaching while a thread is displaced stepping is a recipe for
3031    crashing it, as nothing would readjust the PC out of the scratch
3032    pad.  */
3033 
3034 void
3035 prepare_for_detach (void)
3036 {
3037   struct inferior *inf = current_inferior ();
3038   ptid_t pid_ptid = pid_to_ptid (inf->pid);
3039   struct cleanup *old_chain_1;
3040   struct displaced_step_inferior_state *displaced;
3041 
3042   displaced = get_displaced_stepping_state (inf->pid);
3043 
3044   /* Is any thread of this process displaced stepping?  If not,
3045      there's nothing else to do.  */
3046   if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3047     return;
3048 
3049   if (debug_infrun)
3050     fprintf_unfiltered (gdb_stdlog,
3051 			"displaced-stepping in-process while detaching");
3052 
3053   old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3054   inf->detaching = 1;
3055 
3056   while (!ptid_equal (displaced->step_ptid, null_ptid))
3057     {
3058       struct cleanup *old_chain_2;
3059       struct execution_control_state ecss;
3060       struct execution_control_state *ecs;
3061 
3062       ecs = &ecss;
3063       memset (ecs, 0, sizeof (*ecs));
3064 
3065       overlay_cache_invalid = 1;
3066       /* Flush target cache before starting to handle each event.
3067 	 Target was running and cache could be stale.  This is just a
3068 	 heuristic.  Running threads may modify target memory, but we
3069 	 don't get any event.  */
3070       target_dcache_invalidate ();
3071 
3072       if (deprecated_target_wait_hook)
3073 	ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
3074       else
3075 	ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
3076 
3077       if (debug_infrun)
3078 	print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3079 
3080       /* If an error happens while handling the event, propagate GDB's
3081 	 knowledge of the executing state to the frontend/user running
3082 	 state.  */
3083       old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3084 				  &minus_one_ptid);
3085 
3086       /* Now figure out what to do with the result of the result.  */
3087       handle_inferior_event (ecs);
3088 
3089       /* No error, don't finish the state yet.  */
3090       discard_cleanups (old_chain_2);
3091 
3092       /* Breakpoints and watchpoints are not installed on the target
3093 	 at this point, and signals are passed directly to the
3094 	 inferior, so this must mean the process is gone.  */
3095       if (!ecs->wait_some_more)
3096 	{
3097 	  discard_cleanups (old_chain_1);
3098 	  error (_("Program exited while detaching"));
3099 	}
3100     }
3101 
3102   discard_cleanups (old_chain_1);
3103 }
3104 
3105 /* Wait for control to return from inferior to debugger.
3106 
3107    If inferior gets a signal, we may decide to start it up again
3108    instead of returning.  That is why there is a loop in this function.
3109    When this function actually returns it means the inferior
3110    should be left stopped and GDB should read more commands.  */
3111 
3112 void
3113 wait_for_inferior (void)
3114 {
3115   struct cleanup *old_cleanups;
3116 
3117   if (debug_infrun)
3118     fprintf_unfiltered
3119       (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3120 
3121   old_cleanups
3122     = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3123 		    NULL);
3124 
3125   while (1)
3126     {
3127       struct execution_control_state ecss;
3128       struct execution_control_state *ecs = &ecss;
3129       struct cleanup *old_chain;
3130       ptid_t waiton_ptid = minus_one_ptid;
3131 
3132       memset (ecs, 0, sizeof (*ecs));
3133 
3134       overlay_cache_invalid = 1;
3135 
3136       /* Flush target cache before starting to handle each event.
3137 	 Target was running and cache could be stale.  This is just a
3138 	 heuristic.  Running threads may modify target memory, but we
3139 	 don't get any event.  */
3140       target_dcache_invalidate ();
3141 
3142       if (deprecated_target_wait_hook)
3143 	ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
3144       else
3145 	ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
3146 
3147       if (debug_infrun)
3148 	print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3149 
3150       /* If an error happens while handling the event, propagate GDB's
3151 	 knowledge of the executing state to the frontend/user running
3152 	 state.  */
3153       old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3154 
3155       /* Now figure out what to do with the result of the result.  */
3156       handle_inferior_event (ecs);
3157 
3158       /* No error, don't finish the state yet.  */
3159       discard_cleanups (old_chain);
3160 
3161       if (!ecs->wait_some_more)
3162 	break;
3163     }
3164 
3165   do_cleanups (old_cleanups);
3166 }
3167 
3168 /* Cleanup that reinstalls the readline callback handler, if the
3169    target is running in the background.  If while handling the target
3170    event something triggered a secondary prompt, like e.g., a
3171    pagination prompt, we'll have removed the callback handler (see
3172    gdb_readline_wrapper_line).  Need to do this as we go back to the
3173    event loop, ready to process further input.  Note this has no
3174    effect if the handler hasn't actually been removed, because calling
3175    rl_callback_handler_install resets the line buffer, thus losing
3176    input.  */
3177 
3178 static void
3179 reinstall_readline_callback_handler_cleanup (void *arg)
3180 {
3181   if (!interpreter_async)
3182     {
3183       /* We're not going back to the top level event loop yet.  Don't
3184 	 install the readline callback, as it'd prep the terminal,
3185 	 readline-style (raw, noecho) (e.g., --batch).  We'll install
3186 	 it the next time the prompt is displayed, when we're ready
3187 	 for input.  */
3188       return;
3189     }
3190 
3191   if (async_command_editing_p && !sync_execution)
3192     gdb_rl_callback_handler_reinstall ();
3193 }
3194 
3195 /* Asynchronous version of wait_for_inferior.  It is called by the
3196    event loop whenever a change of state is detected on the file
3197    descriptor corresponding to the target.  It can be called more than
3198    once to complete a single execution command.  In such cases we need
3199    to keep the state in a global variable ECSS.  If it is the last time
3200    that this function is called for a single execution command, then
3201    report to the user that the inferior has stopped, and do the
3202    necessary cleanups.  */
3203 
3204 void
3205 fetch_inferior_event (void *client_data)
3206 {
3207   struct execution_control_state ecss;
3208   struct execution_control_state *ecs = &ecss;
3209   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3210   struct cleanup *ts_old_chain;
3211   int was_sync = sync_execution;
3212   int cmd_done = 0;
3213   ptid_t waiton_ptid = minus_one_ptid;
3214 
3215   memset (ecs, 0, sizeof (*ecs));
3216 
3217   /* End up with readline processing input, if necessary.  */
3218   make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3219 
3220   /* We're handling a live event, so make sure we're doing live
3221      debugging.  If we're looking at traceframes while the target is
3222      running, we're going to need to get back to that mode after
3223      handling the event.  */
3224   if (non_stop)
3225     {
3226       make_cleanup_restore_current_traceframe ();
3227       set_current_traceframe (-1);
3228     }
3229 
3230   if (non_stop)
3231     /* In non-stop mode, the user/frontend should not notice a thread
3232        switch due to internal events.  Make sure we reverse to the
3233        user selected thread and frame after handling the event and
3234        running any breakpoint commands.  */
3235     make_cleanup_restore_current_thread ();
3236 
3237   overlay_cache_invalid = 1;
3238   /* Flush target cache before starting to handle each event.  Target
3239      was running and cache could be stale.  This is just a heuristic.
3240      Running threads may modify target memory, but we don't get any
3241      event.  */
3242   target_dcache_invalidate ();
3243 
3244   make_cleanup_restore_integer (&execution_direction);
3245   execution_direction = target_execution_direction ();
3246 
3247   if (deprecated_target_wait_hook)
3248     ecs->ptid =
3249       deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3250   else
3251     ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3252 
3253   if (debug_infrun)
3254     print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3255 
3256   /* If an error happens while handling the event, propagate GDB's
3257      knowledge of the executing state to the frontend/user running
3258      state.  */
3259   if (!non_stop)
3260     ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3261   else
3262     ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3263 
3264   /* Get executed before make_cleanup_restore_current_thread above to apply
3265      still for the thread which has thrown the exception.  */
3266   make_bpstat_clear_actions_cleanup ();
3267 
3268   make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3269 
3270   /* Now figure out what to do with the result of the result.  */
3271   handle_inferior_event (ecs);
3272 
3273   if (!ecs->wait_some_more)
3274     {
3275       struct inferior *inf = find_inferior_ptid (ecs->ptid);
3276 
3277       delete_just_stopped_threads_infrun_breakpoints ();
3278 
3279       /* We may not find an inferior if this was a process exit.  */
3280       if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3281 	normal_stop ();
3282 
3283       if (target_has_execution
3284 	  && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
3285 	  && ecs->ws.kind != TARGET_WAITKIND_EXITED
3286 	  && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3287 	  && ecs->event_thread->step_multi
3288 	  && ecs->event_thread->control.stop_step)
3289 	inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3290       else
3291 	{
3292 	  inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3293 	  cmd_done = 1;
3294 	}
3295     }
3296 
3297   /* No error, don't finish the thread states yet.  */
3298   discard_cleanups (ts_old_chain);
3299 
3300   /* Revert thread and frame.  */
3301   do_cleanups (old_chain);
3302 
3303   /* If the inferior was in sync execution mode, and now isn't,
3304      restore the prompt (a synchronous execution command has finished,
3305      and we're ready for input).  */
3306   if (interpreter_async && was_sync && !sync_execution)
3307     observer_notify_sync_execution_done ();
3308 
3309   if (cmd_done
3310       && !was_sync
3311       && exec_done_display_p
3312       && (ptid_equal (inferior_ptid, null_ptid)
3313 	  || !is_running (inferior_ptid)))
3314     printf_unfiltered (_("completed.\n"));
3315 }
3316 
3317 /* Record the frame and location we're currently stepping through.  */
3318 void
3319 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3320 {
3321   struct thread_info *tp = inferior_thread ();
3322 
3323   tp->control.step_frame_id = get_frame_id (frame);
3324   tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3325 
3326   tp->current_symtab = sal.symtab;
3327   tp->current_line = sal.line;
3328 }
3329 
3330 /* Clear context switchable stepping state.  */
3331 
3332 void
3333 init_thread_stepping_state (struct thread_info *tss)
3334 {
3335   tss->stepped_breakpoint = 0;
3336   tss->stepping_over_breakpoint = 0;
3337   tss->stepping_over_watchpoint = 0;
3338   tss->step_after_step_resume_breakpoint = 0;
3339 }
3340 
3341 /* Set the cached copy of the last ptid/waitstatus.  */
3342 
3343 static void
3344 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3345 {
3346   target_last_wait_ptid = ptid;
3347   target_last_waitstatus = status;
3348 }
3349 
3350 /* Return the cached copy of the last pid/waitstatus returned by
3351    target_wait()/deprecated_target_wait_hook().  The data is actually
3352    cached by handle_inferior_event(), which gets called immediately
3353    after target_wait()/deprecated_target_wait_hook().  */
3354 
3355 void
3356 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3357 {
3358   *ptidp = target_last_wait_ptid;
3359   *status = target_last_waitstatus;
3360 }
3361 
3362 void
3363 nullify_last_target_wait_ptid (void)
3364 {
3365   target_last_wait_ptid = minus_one_ptid;
3366 }
3367 
3368 /* Switch thread contexts.  */
3369 
3370 static void
3371 context_switch (ptid_t ptid)
3372 {
3373   if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
3374     {
3375       fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3376 			  target_pid_to_str (inferior_ptid));
3377       fprintf_unfiltered (gdb_stdlog, "to %s\n",
3378 			  target_pid_to_str (ptid));
3379     }
3380 
3381   switch_to_thread (ptid);
3382 }
3383 
3384 static void
3385 adjust_pc_after_break (struct execution_control_state *ecs)
3386 {
3387   struct regcache *regcache;
3388   struct gdbarch *gdbarch;
3389   struct address_space *aspace;
3390   CORE_ADDR breakpoint_pc, decr_pc;
3391 
3392   /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP.  If
3393      we aren't, just return.
3394 
3395      We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3396      affected by gdbarch_decr_pc_after_break.  Other waitkinds which are
3397      implemented by software breakpoints should be handled through the normal
3398      breakpoint layer.
3399 
3400      NOTE drow/2004-01-31: On some targets, breakpoints may generate
3401      different signals (SIGILL or SIGEMT for instance), but it is less
3402      clear where the PC is pointing afterwards.  It may not match
3403      gdbarch_decr_pc_after_break.  I don't know any specific target that
3404      generates these signals at breakpoints (the code has been in GDB since at
3405      least 1992) so I can not guess how to handle them here.
3406 
3407      In earlier versions of GDB, a target with
3408      gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3409      watchpoint affected by gdbarch_decr_pc_after_break.  I haven't found any
3410      target with both of these set in GDB history, and it seems unlikely to be
3411      correct, so gdbarch_have_nonsteppable_watchpoint is not checked here.  */
3412 
3413   if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3414     return;
3415 
3416   if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
3417     return;
3418 
3419   /* In reverse execution, when a breakpoint is hit, the instruction
3420      under it has already been de-executed.  The reported PC always
3421      points at the breakpoint address, so adjusting it further would
3422      be wrong.  E.g., consider this case on a decr_pc_after_break == 1
3423      architecture:
3424 
3425        B1         0x08000000 :   INSN1
3426        B2         0x08000001 :   INSN2
3427 		  0x08000002 :   INSN3
3428 	    PC -> 0x08000003 :   INSN4
3429 
3430      Say you're stopped at 0x08000003 as above.  Reverse continuing
3431      from that point should hit B2 as below.  Reading the PC when the
3432      SIGTRAP is reported should read 0x08000001 and INSN2 should have
3433      been de-executed already.
3434 
3435        B1         0x08000000 :   INSN1
3436        B2   PC -> 0x08000001 :   INSN2
3437 		  0x08000002 :   INSN3
3438 		  0x08000003 :   INSN4
3439 
3440      We can't apply the same logic as for forward execution, because
3441      we would wrongly adjust the PC to 0x08000000, since there's a
3442      breakpoint at PC - 1.  We'd then report a hit on B1, although
3443      INSN1 hadn't been de-executed yet.  Doing nothing is the correct
3444      behaviour.  */
3445   if (execution_direction == EXEC_REVERSE)
3446     return;
3447 
3448   /* If this target does not decrement the PC after breakpoints, then
3449      we have nothing to do.  */
3450   regcache = get_thread_regcache (ecs->ptid);
3451   gdbarch = get_regcache_arch (regcache);
3452 
3453   decr_pc = target_decr_pc_after_break (gdbarch);
3454   if (decr_pc == 0)
3455     return;
3456 
3457   aspace = get_regcache_aspace (regcache);
3458 
3459   /* Find the location where (if we've hit a breakpoint) the
3460      breakpoint would be.  */
3461   breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3462 
3463   /* Check whether there actually is a software breakpoint inserted at
3464      that location.
3465 
3466      If in non-stop mode, a race condition is possible where we've
3467      removed a breakpoint, but stop events for that breakpoint were
3468      already queued and arrive later.  To suppress those spurious
3469      SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3470      and retire them after a number of stop events are reported.  */
3471   if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3472       || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3473     {
3474       struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3475 
3476       if (record_full_is_used ())
3477 	record_full_gdb_operation_disable_set ();
3478 
3479       /* When using hardware single-step, a SIGTRAP is reported for both
3480 	 a completed single-step and a software breakpoint.  Need to
3481 	 differentiate between the two, as the latter needs adjusting
3482 	 but the former does not.
3483 
3484 	 The SIGTRAP can be due to a completed hardware single-step only if
3485 	  - we didn't insert software single-step breakpoints
3486 	  - the thread to be examined is still the current thread
3487 	  - this thread is currently being stepped
3488 
3489 	 If any of these events did not occur, we must have stopped due
3490 	 to hitting a software breakpoint, and have to back up to the
3491 	 breakpoint address.
3492 
3493 	 As a special case, we could have hardware single-stepped a
3494 	 software breakpoint.  In this case (prev_pc == breakpoint_pc),
3495 	 we also need to back up to the breakpoint address.  */
3496 
3497       if (thread_has_single_step_breakpoints_set (ecs->event_thread)
3498 	  || !ptid_equal (ecs->ptid, inferior_ptid)
3499 	  || !currently_stepping (ecs->event_thread)
3500 	  || (ecs->event_thread->stepped_breakpoint
3501 	      && ecs->event_thread->prev_pc == breakpoint_pc))
3502 	regcache_write_pc (regcache, breakpoint_pc);
3503 
3504       do_cleanups (old_cleanups);
3505     }
3506 }
3507 
3508 static int
3509 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3510 {
3511   for (frame = get_prev_frame (frame);
3512        frame != NULL;
3513        frame = get_prev_frame (frame))
3514     {
3515       if (frame_id_eq (get_frame_id (frame), step_frame_id))
3516 	return 1;
3517       if (get_frame_type (frame) != INLINE_FRAME)
3518 	break;
3519     }
3520 
3521   return 0;
3522 }
3523 
3524 /* Auxiliary function that handles syscall entry/return events.
3525    It returns 1 if the inferior should keep going (and GDB
3526    should ignore the event), or 0 if the event deserves to be
3527    processed.  */
3528 
3529 static int
3530 handle_syscall_event (struct execution_control_state *ecs)
3531 {
3532   struct regcache *regcache;
3533   int syscall_number;
3534 
3535   if (!ptid_equal (ecs->ptid, inferior_ptid))
3536     context_switch (ecs->ptid);
3537 
3538   regcache = get_thread_regcache (ecs->ptid);
3539   syscall_number = ecs->ws.value.syscall_number;
3540   stop_pc = regcache_read_pc (regcache);
3541 
3542   if (catch_syscall_enabled () > 0
3543       && catching_syscall_number (syscall_number) > 0)
3544     {
3545       if (debug_infrun)
3546         fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3547                             syscall_number);
3548 
3549       ecs->event_thread->control.stop_bpstat
3550 	= bpstat_stop_status (get_regcache_aspace (regcache),
3551 			      stop_pc, ecs->ptid, &ecs->ws);
3552 
3553       if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3554 	{
3555 	  /* Catchpoint hit.  */
3556 	  return 0;
3557 	}
3558     }
3559 
3560   /* If no catchpoint triggered for this, then keep going.  */
3561   keep_going (ecs);
3562   return 1;
3563 }
3564 
3565 /* Lazily fill in the execution_control_state's stop_func_* fields.  */
3566 
3567 static void
3568 fill_in_stop_func (struct gdbarch *gdbarch,
3569 		   struct execution_control_state *ecs)
3570 {
3571   if (!ecs->stop_func_filled_in)
3572     {
3573       /* Don't care about return value; stop_func_start and stop_func_name
3574 	 will both be 0 if it doesn't work.  */
3575       find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3576 				&ecs->stop_func_start, &ecs->stop_func_end);
3577       ecs->stop_func_start
3578 	+= gdbarch_deprecated_function_start_offset (gdbarch);
3579 
3580       if (gdbarch_skip_entrypoint_p (gdbarch))
3581 	ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3582 							ecs->stop_func_start);
3583 
3584       ecs->stop_func_filled_in = 1;
3585     }
3586 }
3587 
3588 
3589 /* Return the STOP_SOON field of the inferior pointed at by PTID.  */
3590 
3591 static enum stop_kind
3592 get_inferior_stop_soon (ptid_t ptid)
3593 {
3594   struct inferior *inf = find_inferior_ptid (ptid);
3595 
3596   gdb_assert (inf != NULL);
3597   return inf->control.stop_soon;
3598 }
3599 
3600 /* Given an execution control state that has been freshly filled in by
3601    an event from the inferior, figure out what it means and take
3602    appropriate action.
3603 
3604    The alternatives are:
3605 
3606    1) stop_waiting and return; to really stop and return to the
3607    debugger.
3608 
3609    2) keep_going and return; to wait for the next event (set
3610    ecs->event_thread->stepping_over_breakpoint to 1 to single step
3611    once).  */
3612 
3613 static void
3614 handle_inferior_event (struct execution_control_state *ecs)
3615 {
3616   enum stop_kind stop_soon;
3617 
3618   if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3619     {
3620       /* We had an event in the inferior, but we are not interested in
3621 	 handling it at this level.  The lower layers have already
3622 	 done what needs to be done, if anything.
3623 
3624 	 One of the possible circumstances for this is when the
3625 	 inferior produces output for the console.  The inferior has
3626 	 not stopped, and we are ignoring the event.  Another possible
3627 	 circumstance is any event which the lower level knows will be
3628 	 reported multiple times without an intervening resume.  */
3629       if (debug_infrun)
3630 	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3631       prepare_to_wait (ecs);
3632       return;
3633     }
3634 
3635   if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3636       && target_can_async_p () && !sync_execution)
3637     {
3638       /* There were no unwaited-for children left in the target, but,
3639 	 we're not synchronously waiting for events either.  Just
3640 	 ignore.  Otherwise, if we were running a synchronous
3641 	 execution command, we need to cancel it and give the user
3642 	 back the terminal.  */
3643       if (debug_infrun)
3644 	fprintf_unfiltered (gdb_stdlog,
3645 			    "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3646       prepare_to_wait (ecs);
3647       return;
3648     }
3649 
3650   /* Cache the last pid/waitstatus.  */
3651   set_last_target_status (ecs->ptid, ecs->ws);
3652 
3653   /* Always clear state belonging to the previous time we stopped.  */
3654   stop_stack_dummy = STOP_NONE;
3655 
3656   if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3657     {
3658       /* No unwaited-for children left.  IOW, all resumed children
3659 	 have exited.  */
3660       if (debug_infrun)
3661 	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3662 
3663       stop_print_frame = 0;
3664       stop_waiting (ecs);
3665       return;
3666     }
3667 
3668   if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3669       && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3670     {
3671       ecs->event_thread = find_thread_ptid (ecs->ptid);
3672       /* If it's a new thread, add it to the thread database.  */
3673       if (ecs->event_thread == NULL)
3674 	ecs->event_thread = add_thread (ecs->ptid);
3675 
3676       /* Disable range stepping.  If the next step request could use a
3677 	 range, this will be end up re-enabled then.  */
3678       ecs->event_thread->control.may_range_step = 0;
3679     }
3680 
3681   /* Dependent on valid ECS->EVENT_THREAD.  */
3682   adjust_pc_after_break (ecs);
3683 
3684   /* Dependent on the current PC value modified by adjust_pc_after_break.  */
3685   reinit_frame_cache ();
3686 
3687   breakpoint_retire_moribund ();
3688 
3689   /* First, distinguish signals caused by the debugger from signals
3690      that have to do with the program's own actions.  Note that
3691      breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3692      on the operating system version.  Here we detect when a SIGILL or
3693      SIGEMT is really a breakpoint and change it to SIGTRAP.  We do
3694      something similar for SIGSEGV, since a SIGSEGV will be generated
3695      when we're trying to execute a breakpoint instruction on a
3696      non-executable stack.  This happens for call dummy breakpoints
3697      for architectures like SPARC that place call dummies on the
3698      stack.  */
3699   if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3700       && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3701 	  || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3702 	  || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3703     {
3704       struct regcache *regcache = get_thread_regcache (ecs->ptid);
3705 
3706       if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3707 				      regcache_read_pc (regcache)))
3708 	{
3709 	  if (debug_infrun)
3710 	    fprintf_unfiltered (gdb_stdlog,
3711 				"infrun: Treating signal as SIGTRAP\n");
3712 	  ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3713 	}
3714     }
3715 
3716   /* Mark the non-executing threads accordingly.  In all-stop, all
3717      threads of all processes are stopped when we get any event
3718      reported.  In non-stop mode, only the event thread stops.  If
3719      we're handling a process exit in non-stop mode, there's nothing
3720      to do, as threads of the dead process are gone, and threads of
3721      any other process were left running.  */
3722   if (!non_stop)
3723     set_executing (minus_one_ptid, 0);
3724   else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3725 	   && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3726     set_executing (ecs->ptid, 0);
3727 
3728   switch (ecs->ws.kind)
3729     {
3730     case TARGET_WAITKIND_LOADED:
3731       if (debug_infrun)
3732         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3733       if (!ptid_equal (ecs->ptid, inferior_ptid))
3734 	context_switch (ecs->ptid);
3735       /* Ignore gracefully during startup of the inferior, as it might
3736          be the shell which has just loaded some objects, otherwise
3737          add the symbols for the newly loaded objects.  Also ignore at
3738          the beginning of an attach or remote session; we will query
3739          the full list of libraries once the connection is
3740          established.  */
3741 
3742       stop_soon = get_inferior_stop_soon (ecs->ptid);
3743       if (stop_soon == NO_STOP_QUIETLY)
3744 	{
3745 	  struct regcache *regcache;
3746 
3747 	  regcache = get_thread_regcache (ecs->ptid);
3748 
3749 	  handle_solib_event ();
3750 
3751 	  ecs->event_thread->control.stop_bpstat
3752 	    = bpstat_stop_status (get_regcache_aspace (regcache),
3753 				  stop_pc, ecs->ptid, &ecs->ws);
3754 
3755 	  if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3756 	    {
3757 	      /* A catchpoint triggered.  */
3758 	      process_event_stop_test (ecs);
3759 	      return;
3760 	    }
3761 
3762 	  /* If requested, stop when the dynamic linker notifies
3763 	     gdb of events.  This allows the user to get control
3764 	     and place breakpoints in initializer routines for
3765 	     dynamically loaded objects (among other things).  */
3766 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3767 	  if (stop_on_solib_events)
3768 	    {
3769 	      /* Make sure we print "Stopped due to solib-event" in
3770 		 normal_stop.  */
3771 	      stop_print_frame = 1;
3772 
3773 	      stop_waiting (ecs);
3774 	      return;
3775 	    }
3776 	}
3777 
3778       /* If we are skipping through a shell, or through shared library
3779 	 loading that we aren't interested in, resume the program.  If
3780 	 we're running the program normally, also resume.  */
3781       if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3782 	{
3783 	  /* Loading of shared libraries might have changed breakpoint
3784 	     addresses.  Make sure new breakpoints are inserted.  */
3785 	  if (stop_soon == NO_STOP_QUIETLY)
3786 	    insert_breakpoints ();
3787 	  resume (0, GDB_SIGNAL_0);
3788 	  prepare_to_wait (ecs);
3789 	  return;
3790 	}
3791 
3792       /* But stop if we're attaching or setting up a remote
3793 	 connection.  */
3794       if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3795 	  || stop_soon == STOP_QUIETLY_REMOTE)
3796 	{
3797 	  if (debug_infrun)
3798 	    fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3799 	  stop_waiting (ecs);
3800 	  return;
3801 	}
3802 
3803       internal_error (__FILE__, __LINE__,
3804 		      _("unhandled stop_soon: %d"), (int) stop_soon);
3805 
3806     case TARGET_WAITKIND_SPURIOUS:
3807       if (debug_infrun)
3808         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3809       if (!ptid_equal (ecs->ptid, inferior_ptid))
3810 	context_switch (ecs->ptid);
3811       resume (0, GDB_SIGNAL_0);
3812       prepare_to_wait (ecs);
3813       return;
3814 
3815     case TARGET_WAITKIND_EXITED:
3816     case TARGET_WAITKIND_SIGNALLED:
3817       if (debug_infrun)
3818 	{
3819 	  if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3820 	    fprintf_unfiltered (gdb_stdlog,
3821 				"infrun: TARGET_WAITKIND_EXITED\n");
3822 	  else
3823 	    fprintf_unfiltered (gdb_stdlog,
3824 				"infrun: TARGET_WAITKIND_SIGNALLED\n");
3825 	}
3826 
3827       inferior_ptid = ecs->ptid;
3828       set_current_inferior (find_inferior_ptid (ecs->ptid));
3829       set_current_program_space (current_inferior ()->pspace);
3830       handle_vfork_child_exec_or_exit (0);
3831       target_terminal_ours ();	/* Must do this before mourn anyway.  */
3832 
3833       /* Clearing any previous state of convenience variables.  */
3834       clear_exit_convenience_vars ();
3835 
3836       if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3837 	{
3838 	  /* Record the exit code in the convenience variable $_exitcode, so
3839 	     that the user can inspect this again later.  */
3840 	  set_internalvar_integer (lookup_internalvar ("_exitcode"),
3841 				   (LONGEST) ecs->ws.value.integer);
3842 
3843 	  /* Also record this in the inferior itself.  */
3844 	  current_inferior ()->has_exit_code = 1;
3845 	  current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3846 
3847 	  /* Support the --return-child-result option.  */
3848 	  return_child_result_value = ecs->ws.value.integer;
3849 
3850 	  observer_notify_exited (ecs->ws.value.integer);
3851 	}
3852       else
3853 	{
3854 	  struct regcache *regcache = get_thread_regcache (ecs->ptid);
3855 	  struct gdbarch *gdbarch = get_regcache_arch (regcache);
3856 
3857 	  if (gdbarch_gdb_signal_to_target_p (gdbarch))
3858 	    {
3859 	      /* Set the value of the internal variable $_exitsignal,
3860 		 which holds the signal uncaught by the inferior.  */
3861 	      set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3862 				       gdbarch_gdb_signal_to_target (gdbarch,
3863 							  ecs->ws.value.sig));
3864 	    }
3865 	  else
3866 	    {
3867 	      /* We don't have access to the target's method used for
3868 		 converting between signal numbers (GDB's internal
3869 		 representation <-> target's representation).
3870 		 Therefore, we cannot do a good job at displaying this
3871 		 information to the user.  It's better to just warn
3872 		 her about it (if infrun debugging is enabled), and
3873 		 give up.  */
3874 	      if (debug_infrun)
3875 		fprintf_filtered (gdb_stdlog, _("\
3876 Cannot fill $_exitsignal with the correct signal number.\n"));
3877 	    }
3878 
3879 	  observer_notify_signal_exited (ecs->ws.value.sig);
3880 	}
3881 
3882       gdb_flush (gdb_stdout);
3883       target_mourn_inferior ();
3884       stop_print_frame = 0;
3885       stop_waiting (ecs);
3886       return;
3887 
3888       /* The following are the only cases in which we keep going;
3889          the above cases end in a continue or goto.  */
3890     case TARGET_WAITKIND_FORKED:
3891     case TARGET_WAITKIND_VFORKED:
3892       if (debug_infrun)
3893 	{
3894 	  if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3895 	    fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3896 	  else
3897 	    fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3898 	}
3899 
3900       /* Check whether the inferior is displaced stepping.  */
3901       {
3902 	struct regcache *regcache = get_thread_regcache (ecs->ptid);
3903 	struct gdbarch *gdbarch = get_regcache_arch (regcache);
3904 	struct displaced_step_inferior_state *displaced
3905 	  = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3906 
3907 	/* If checking displaced stepping is supported, and thread
3908 	   ecs->ptid is displaced stepping.  */
3909 	if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3910 	  {
3911 	    struct inferior *parent_inf
3912 	      = find_inferior_ptid (ecs->ptid);
3913 	    struct regcache *child_regcache;
3914 	    CORE_ADDR parent_pc;
3915 
3916 	    /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3917 	       indicating that the displaced stepping of syscall instruction
3918 	       has been done.  Perform cleanup for parent process here.  Note
3919 	       that this operation also cleans up the child process for vfork,
3920 	       because their pages are shared.  */
3921 	    displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3922 
3923 	    if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3924 	      {
3925 		/* Restore scratch pad for child process.  */
3926 		displaced_step_restore (displaced, ecs->ws.value.related_pid);
3927 	      }
3928 
3929 	    /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3930 	       the child's PC is also within the scratchpad.  Set the child's PC
3931 	       to the parent's PC value, which has already been fixed up.
3932 	       FIXME: we use the parent's aspace here, although we're touching
3933 	       the child, because the child hasn't been added to the inferior
3934 	       list yet at this point.  */
3935 
3936 	    child_regcache
3937 	      = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3938 						 gdbarch,
3939 						 parent_inf->aspace);
3940 	    /* Read PC value of parent process.  */
3941 	    parent_pc = regcache_read_pc (regcache);
3942 
3943 	    if (debug_displaced)
3944 	      fprintf_unfiltered (gdb_stdlog,
3945 				  "displaced: write child pc from %s to %s\n",
3946 				  paddress (gdbarch,
3947 					    regcache_read_pc (child_regcache)),
3948 				  paddress (gdbarch, parent_pc));
3949 
3950 	    regcache_write_pc (child_regcache, parent_pc);
3951 	  }
3952       }
3953 
3954       if (!ptid_equal (ecs->ptid, inferior_ptid))
3955 	context_switch (ecs->ptid);
3956 
3957       /* Immediately detach breakpoints from the child before there's
3958 	 any chance of letting the user delete breakpoints from the
3959 	 breakpoint lists.  If we don't do this early, it's easy to
3960 	 leave left over traps in the child, vis: "break foo; catch
3961 	 fork; c; <fork>; del; c; <child calls foo>".  We only follow
3962 	 the fork on the last `continue', and by that time the
3963 	 breakpoint at "foo" is long gone from the breakpoint table.
3964 	 If we vforked, then we don't need to unpatch here, since both
3965 	 parent and child are sharing the same memory pages; we'll
3966 	 need to unpatch at follow/detach time instead to be certain
3967 	 that new breakpoints added between catchpoint hit time and
3968 	 vfork follow are detached.  */
3969       if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3970 	{
3971 	  /* This won't actually modify the breakpoint list, but will
3972 	     physically remove the breakpoints from the child.  */
3973 	  detach_breakpoints (ecs->ws.value.related_pid);
3974 	}
3975 
3976       delete_just_stopped_threads_single_step_breakpoints ();
3977 
3978       /* In case the event is caught by a catchpoint, remember that
3979 	 the event is to be followed at the next resume of the thread,
3980 	 and not immediately.  */
3981       ecs->event_thread->pending_follow = ecs->ws;
3982 
3983       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3984 
3985       ecs->event_thread->control.stop_bpstat
3986 	= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3987 			      stop_pc, ecs->ptid, &ecs->ws);
3988 
3989       /* If no catchpoint triggered for this, then keep going.  Note
3990 	 that we're interested in knowing the bpstat actually causes a
3991 	 stop, not just if it may explain the signal.  Software
3992 	 watchpoints, for example, always appear in the bpstat.  */
3993       if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3994 	{
3995 	  ptid_t parent;
3996 	  ptid_t child;
3997 	  int should_resume;
3998 	  int follow_child
3999 	    = (follow_fork_mode_string == follow_fork_mode_child);
4000 
4001 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4002 
4003 	  should_resume = follow_fork ();
4004 
4005 	  parent = ecs->ptid;
4006 	  child = ecs->ws.value.related_pid;
4007 
4008 	  /* In non-stop mode, also resume the other branch.  */
4009 	  if (non_stop && !detach_fork)
4010 	    {
4011 	      if (follow_child)
4012 		switch_to_thread (parent);
4013 	      else
4014 		switch_to_thread (child);
4015 
4016 	      ecs->event_thread = inferior_thread ();
4017 	      ecs->ptid = inferior_ptid;
4018 	      keep_going (ecs);
4019 	    }
4020 
4021 	  if (follow_child)
4022 	    switch_to_thread (child);
4023 	  else
4024 	    switch_to_thread (parent);
4025 
4026 	  ecs->event_thread = inferior_thread ();
4027 	  ecs->ptid = inferior_ptid;
4028 
4029 	  if (should_resume)
4030 	    keep_going (ecs);
4031 	  else
4032 	    stop_waiting (ecs);
4033 	  return;
4034 	}
4035       process_event_stop_test (ecs);
4036       return;
4037 
4038     case TARGET_WAITKIND_VFORK_DONE:
4039       /* Done with the shared memory region.  Re-insert breakpoints in
4040 	 the parent, and keep going.  */
4041 
4042       if (debug_infrun)
4043 	fprintf_unfiltered (gdb_stdlog,
4044 			    "infrun: TARGET_WAITKIND_VFORK_DONE\n");
4045 
4046       if (!ptid_equal (ecs->ptid, inferior_ptid))
4047 	context_switch (ecs->ptid);
4048 
4049       current_inferior ()->waiting_for_vfork_done = 0;
4050       current_inferior ()->pspace->breakpoints_not_allowed = 0;
4051       /* This also takes care of reinserting breakpoints in the
4052 	 previously locked inferior.  */
4053       keep_going (ecs);
4054       return;
4055 
4056     case TARGET_WAITKIND_EXECD:
4057       if (debug_infrun)
4058         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
4059 
4060       if (!ptid_equal (ecs->ptid, inferior_ptid))
4061 	context_switch (ecs->ptid);
4062 
4063       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4064 
4065       /* Do whatever is necessary to the parent branch of the vfork.  */
4066       handle_vfork_child_exec_or_exit (1);
4067 
4068       /* This causes the eventpoints and symbol table to be reset.
4069          Must do this now, before trying to determine whether to
4070          stop.  */
4071       follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
4072 
4073       ecs->event_thread->control.stop_bpstat
4074 	= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4075 			      stop_pc, ecs->ptid, &ecs->ws);
4076 
4077       /* Note that this may be referenced from inside
4078 	 bpstat_stop_status above, through inferior_has_execd.  */
4079       xfree (ecs->ws.value.execd_pathname);
4080       ecs->ws.value.execd_pathname = NULL;
4081 
4082       /* If no catchpoint triggered for this, then keep going.  */
4083       if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4084 	{
4085 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4086 	  keep_going (ecs);
4087 	  return;
4088 	}
4089       process_event_stop_test (ecs);
4090       return;
4091 
4092       /* Be careful not to try to gather much state about a thread
4093          that's in a syscall.  It's frequently a losing proposition.  */
4094     case TARGET_WAITKIND_SYSCALL_ENTRY:
4095       if (debug_infrun)
4096         fprintf_unfiltered (gdb_stdlog,
4097 			    "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
4098       /* Getting the current syscall number.  */
4099       if (handle_syscall_event (ecs) == 0)
4100 	process_event_stop_test (ecs);
4101       return;
4102 
4103       /* Before examining the threads further, step this thread to
4104          get it entirely out of the syscall.  (We get notice of the
4105          event when the thread is just on the verge of exiting a
4106          syscall.  Stepping one instruction seems to get it back
4107          into user code.)  */
4108     case TARGET_WAITKIND_SYSCALL_RETURN:
4109       if (debug_infrun)
4110         fprintf_unfiltered (gdb_stdlog,
4111 			    "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
4112       if (handle_syscall_event (ecs) == 0)
4113 	process_event_stop_test (ecs);
4114       return;
4115 
4116     case TARGET_WAITKIND_STOPPED:
4117       if (debug_infrun)
4118         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4119       ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4120       handle_signal_stop (ecs);
4121       return;
4122 
4123     case TARGET_WAITKIND_NO_HISTORY:
4124       if (debug_infrun)
4125         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
4126       /* Reverse execution: target ran out of history info.  */
4127 
4128       delete_just_stopped_threads_single_step_breakpoints ();
4129       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4130       observer_notify_no_history ();
4131       stop_waiting (ecs);
4132       return;
4133     }
4134 }
4135 
4136 /* Come here when the program has stopped with a signal.  */
4137 
4138 static void
4139 handle_signal_stop (struct execution_control_state *ecs)
4140 {
4141   struct frame_info *frame;
4142   struct gdbarch *gdbarch;
4143   int stopped_by_watchpoint;
4144   enum stop_kind stop_soon;
4145   int random_signal;
4146 
4147   gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4148 
4149   /* Do we need to clean up the state of a thread that has
4150      completed a displaced single-step?  (Doing so usually affects
4151      the PC, so do it here, before we set stop_pc.)  */
4152   displaced_step_fixup (ecs->ptid,
4153 			ecs->event_thread->suspend.stop_signal);
4154 
4155   /* If we either finished a single-step or hit a breakpoint, but
4156      the user wanted this thread to be stopped, pretend we got a
4157      SIG0 (generic unsignaled stop).  */
4158   if (ecs->event_thread->stop_requested
4159       && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4160     ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4161 
4162   stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4163 
4164   if (debug_infrun)
4165     {
4166       struct regcache *regcache = get_thread_regcache (ecs->ptid);
4167       struct gdbarch *gdbarch = get_regcache_arch (regcache);
4168       struct cleanup *old_chain = save_inferior_ptid ();
4169 
4170       inferior_ptid = ecs->ptid;
4171 
4172       fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4173                           paddress (gdbarch, stop_pc));
4174       if (target_stopped_by_watchpoint ())
4175 	{
4176           CORE_ADDR addr;
4177 
4178 	  fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4179 
4180           if (target_stopped_data_address (&current_target, &addr))
4181             fprintf_unfiltered (gdb_stdlog,
4182                                 "infrun: stopped data address = %s\n",
4183                                 paddress (gdbarch, addr));
4184           else
4185             fprintf_unfiltered (gdb_stdlog,
4186                                 "infrun: (no data address available)\n");
4187 	}
4188 
4189       do_cleanups (old_chain);
4190     }
4191 
4192   /* This is originated from start_remote(), start_inferior() and
4193      shared libraries hook functions.  */
4194   stop_soon = get_inferior_stop_soon (ecs->ptid);
4195   if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4196     {
4197       if (!ptid_equal (ecs->ptid, inferior_ptid))
4198 	context_switch (ecs->ptid);
4199       if (debug_infrun)
4200 	fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4201       stop_print_frame = 1;
4202       stop_waiting (ecs);
4203       return;
4204     }
4205 
4206   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4207       && stop_after_trap)
4208     {
4209       if (!ptid_equal (ecs->ptid, inferior_ptid))
4210 	context_switch (ecs->ptid);
4211       if (debug_infrun)
4212 	fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4213       stop_print_frame = 0;
4214       stop_waiting (ecs);
4215       return;
4216     }
4217 
4218   /* This originates from attach_command().  We need to overwrite
4219      the stop_signal here, because some kernels don't ignore a
4220      SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4221      See more comments in inferior.h.  On the other hand, if we
4222      get a non-SIGSTOP, report it to the user - assume the backend
4223      will handle the SIGSTOP if it should show up later.
4224 
4225      Also consider that the attach is complete when we see a
4226      SIGTRAP.  Some systems (e.g. Windows), and stubs supporting
4227      target extended-remote report it instead of a SIGSTOP
4228      (e.g. gdbserver).  We already rely on SIGTRAP being our
4229      signal, so this is no exception.
4230 
4231      Also consider that the attach is complete when we see a
4232      GDB_SIGNAL_0.  In non-stop mode, GDB will explicitly tell
4233      the target to stop all threads of the inferior, in case the
4234      low level attach operation doesn't stop them implicitly.  If
4235      they weren't stopped implicitly, then the stub will report a
4236      GDB_SIGNAL_0, meaning: stopped for no particular reason
4237      other than GDB's request.  */
4238   if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4239       && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4240 	  || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4241 	  || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4242     {
4243       stop_print_frame = 1;
4244       stop_waiting (ecs);
4245       ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4246       return;
4247     }
4248 
4249   /* See if something interesting happened to the non-current thread.  If
4250      so, then switch to that thread.  */
4251   if (!ptid_equal (ecs->ptid, inferior_ptid))
4252     {
4253       if (debug_infrun)
4254 	fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4255 
4256       context_switch (ecs->ptid);
4257 
4258       if (deprecated_context_hook)
4259 	deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4260     }
4261 
4262   /* At this point, get hold of the now-current thread's frame.  */
4263   frame = get_current_frame ();
4264   gdbarch = get_frame_arch (frame);
4265 
4266   /* Pull the single step breakpoints out of the target.  */
4267   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4268     {
4269       struct regcache *regcache;
4270       struct address_space *aspace;
4271       CORE_ADDR pc;
4272 
4273       regcache = get_thread_regcache (ecs->ptid);
4274       aspace = get_regcache_aspace (regcache);
4275       pc = regcache_read_pc (regcache);
4276 
4277       /* However, before doing so, if this single-step breakpoint was
4278 	 actually for another thread, set this thread up for moving
4279 	 past it.  */
4280       if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4281 						   aspace, pc))
4282 	{
4283 	  if (single_step_breakpoint_inserted_here_p (aspace, pc))
4284 	    {
4285 	      if (debug_infrun)
4286 		{
4287 		  fprintf_unfiltered (gdb_stdlog,
4288 				      "infrun: [%s] hit another thread's "
4289 				      "single-step breakpoint\n",
4290 				      target_pid_to_str (ecs->ptid));
4291 		}
4292 	      ecs->hit_singlestep_breakpoint = 1;
4293 	    }
4294 	}
4295       else
4296 	{
4297 	  if (debug_infrun)
4298 	    {
4299 	      fprintf_unfiltered (gdb_stdlog,
4300 				  "infrun: [%s] hit its "
4301 				  "single-step breakpoint\n",
4302 				  target_pid_to_str (ecs->ptid));
4303 	    }
4304 	}
4305     }
4306   delete_just_stopped_threads_single_step_breakpoints ();
4307 
4308   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4309       && ecs->event_thread->control.trap_expected
4310       && ecs->event_thread->stepping_over_watchpoint)
4311     stopped_by_watchpoint = 0;
4312   else
4313     stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4314 
4315   /* If necessary, step over this watchpoint.  We'll be back to display
4316      it in a moment.  */
4317   if (stopped_by_watchpoint
4318       && (target_have_steppable_watchpoint
4319 	  || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4320     {
4321       /* At this point, we are stopped at an instruction which has
4322          attempted to write to a piece of memory under control of
4323          a watchpoint.  The instruction hasn't actually executed
4324          yet.  If we were to evaluate the watchpoint expression
4325          now, we would get the old value, and therefore no change
4326          would seem to have occurred.
4327 
4328          In order to make watchpoints work `right', we really need
4329          to complete the memory write, and then evaluate the
4330          watchpoint expression.  We do this by single-stepping the
4331 	 target.
4332 
4333 	 It may not be necessary to disable the watchpoint to step over
4334 	 it.  For example, the PA can (with some kernel cooperation)
4335 	 single step over a watchpoint without disabling the watchpoint.
4336 
4337 	 It is far more common to need to disable a watchpoint to step
4338 	 the inferior over it.  If we have non-steppable watchpoints,
4339 	 we must disable the current watchpoint; it's simplest to
4340 	 disable all watchpoints.
4341 
4342 	 Any breakpoint at PC must also be stepped over -- if there's
4343 	 one, it will have already triggered before the watchpoint
4344 	 triggered, and we either already reported it to the user, or
4345 	 it didn't cause a stop and we called keep_going.  In either
4346 	 case, if there was a breakpoint at PC, we must be trying to
4347 	 step past it.  */
4348       ecs->event_thread->stepping_over_watchpoint = 1;
4349       keep_going (ecs);
4350       return;
4351     }
4352 
4353   ecs->event_thread->stepping_over_breakpoint = 0;
4354   ecs->event_thread->stepping_over_watchpoint = 0;
4355   bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4356   ecs->event_thread->control.stop_step = 0;
4357   stop_print_frame = 1;
4358   stopped_by_random_signal = 0;
4359 
4360   /* Hide inlined functions starting here, unless we just performed stepi or
4361      nexti.  After stepi and nexti, always show the innermost frame (not any
4362      inline function call sites).  */
4363   if (ecs->event_thread->control.step_range_end != 1)
4364     {
4365       struct address_space *aspace =
4366 	get_regcache_aspace (get_thread_regcache (ecs->ptid));
4367 
4368       /* skip_inline_frames is expensive, so we avoid it if we can
4369 	 determine that the address is one where functions cannot have
4370 	 been inlined.  This improves performance with inferiors that
4371 	 load a lot of shared libraries, because the solib event
4372 	 breakpoint is defined as the address of a function (i.e. not
4373 	 inline).  Note that we have to check the previous PC as well
4374 	 as the current one to catch cases when we have just
4375 	 single-stepped off a breakpoint prior to reinstating it.
4376 	 Note that we're assuming that the code we single-step to is
4377 	 not inline, but that's not definitive: there's nothing
4378 	 preventing the event breakpoint function from containing
4379 	 inlined code, and the single-step ending up there.  If the
4380 	 user had set a breakpoint on that inlined code, the missing
4381 	 skip_inline_frames call would break things.  Fortunately
4382 	 that's an extremely unlikely scenario.  */
4383       if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4384 	  && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4385 	       && ecs->event_thread->control.trap_expected
4386 	       && pc_at_non_inline_function (aspace,
4387 					     ecs->event_thread->prev_pc,
4388 					     &ecs->ws)))
4389 	{
4390 	  skip_inline_frames (ecs->ptid);
4391 
4392 	  /* Re-fetch current thread's frame in case that invalidated
4393 	     the frame cache.  */
4394 	  frame = get_current_frame ();
4395 	  gdbarch = get_frame_arch (frame);
4396 	}
4397     }
4398 
4399   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4400       && ecs->event_thread->control.trap_expected
4401       && gdbarch_single_step_through_delay_p (gdbarch)
4402       && currently_stepping (ecs->event_thread))
4403     {
4404       /* We're trying to step off a breakpoint.  Turns out that we're
4405 	 also on an instruction that needs to be stepped multiple
4406 	 times before it's been fully executing.  E.g., architectures
4407 	 with a delay slot.  It needs to be stepped twice, once for
4408 	 the instruction and once for the delay slot.  */
4409       int step_through_delay
4410 	= gdbarch_single_step_through_delay (gdbarch, frame);
4411 
4412       if (debug_infrun && step_through_delay)
4413 	fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4414       if (ecs->event_thread->control.step_range_end == 0
4415 	  && step_through_delay)
4416 	{
4417 	  /* The user issued a continue when stopped at a breakpoint.
4418 	     Set up for another trap and get out of here.  */
4419          ecs->event_thread->stepping_over_breakpoint = 1;
4420          keep_going (ecs);
4421          return;
4422 	}
4423       else if (step_through_delay)
4424 	{
4425 	  /* The user issued a step when stopped at a breakpoint.
4426 	     Maybe we should stop, maybe we should not - the delay
4427 	     slot *might* correspond to a line of source.  In any
4428 	     case, don't decide that here, just set
4429 	     ecs->stepping_over_breakpoint, making sure we
4430 	     single-step again before breakpoints are re-inserted.  */
4431 	  ecs->event_thread->stepping_over_breakpoint = 1;
4432 	}
4433     }
4434 
4435   /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4436      handles this event.  */
4437   ecs->event_thread->control.stop_bpstat
4438     = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4439 			  stop_pc, ecs->ptid, &ecs->ws);
4440 
4441   /* Following in case break condition called a
4442      function.  */
4443   stop_print_frame = 1;
4444 
4445   /* This is where we handle "moribund" watchpoints.  Unlike
4446      software breakpoints traps, hardware watchpoint traps are
4447      always distinguishable from random traps.  If no high-level
4448      watchpoint is associated with the reported stop data address
4449      anymore, then the bpstat does not explain the signal ---
4450      simply make sure to ignore it if `stopped_by_watchpoint' is
4451      set.  */
4452 
4453   if (debug_infrun
4454       && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4455       && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4456 				  GDB_SIGNAL_TRAP)
4457       && stopped_by_watchpoint)
4458     fprintf_unfiltered (gdb_stdlog,
4459 			"infrun: no user watchpoint explains "
4460 			"watchpoint SIGTRAP, ignoring\n");
4461 
4462   /* NOTE: cagney/2003-03-29: These checks for a random signal
4463      at one stage in the past included checks for an inferior
4464      function call's call dummy's return breakpoint.  The original
4465      comment, that went with the test, read:
4466 
4467      ``End of a stack dummy.  Some systems (e.g. Sony news) give
4468      another signal besides SIGTRAP, so check here as well as
4469      above.''
4470 
4471      If someone ever tries to get call dummys on a
4472      non-executable stack to work (where the target would stop
4473      with something like a SIGSEGV), then those tests might need
4474      to be re-instated.  Given, however, that the tests were only
4475      enabled when momentary breakpoints were not being used, I
4476      suspect that it won't be the case.
4477 
4478      NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4479      be necessary for call dummies on a non-executable stack on
4480      SPARC.  */
4481 
4482   /* See if the breakpoints module can explain the signal.  */
4483   random_signal
4484     = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4485 			       ecs->event_thread->suspend.stop_signal);
4486 
4487   /* If not, perhaps stepping/nexting can.  */
4488   if (random_signal)
4489     random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4490 		      && currently_stepping (ecs->event_thread));
4491 
4492   /* Perhaps the thread hit a single-step breakpoint of _another_
4493      thread.  Single-step breakpoints are transparent to the
4494      breakpoints module.  */
4495   if (random_signal)
4496     random_signal = !ecs->hit_singlestep_breakpoint;
4497 
4498   /* No?  Perhaps we got a moribund watchpoint.  */
4499   if (random_signal)
4500     random_signal = !stopped_by_watchpoint;
4501 
4502   /* For the program's own signals, act according to
4503      the signal handling tables.  */
4504 
4505   if (random_signal)
4506     {
4507       /* Signal not for debugging purposes.  */
4508       struct inferior *inf = find_inferior_ptid (ecs->ptid);
4509       enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4510 
4511       if (debug_infrun)
4512 	 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4513 			     gdb_signal_to_symbol_string (stop_signal));
4514 
4515       stopped_by_random_signal = 1;
4516 
4517       /* Always stop on signals if we're either just gaining control
4518 	 of the program, or the user explicitly requested this thread
4519 	 to remain stopped.  */
4520       if (stop_soon != NO_STOP_QUIETLY
4521 	  || ecs->event_thread->stop_requested
4522 	  || (!inf->detaching
4523 	      && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4524 	{
4525 	  stop_waiting (ecs);
4526 	  return;
4527 	}
4528 
4529       /* Notify observers the signal has "handle print" set.  Note we
4530 	 returned early above if stopping; normal_stop handles the
4531 	 printing in that case.  */
4532       if (signal_print[ecs->event_thread->suspend.stop_signal])
4533 	{
4534 	  /* The signal table tells us to print about this signal.  */
4535 	  target_terminal_ours_for_output ();
4536 	  observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4537 	  target_terminal_inferior ();
4538 	}
4539 
4540       /* Clear the signal if it should not be passed.  */
4541       if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4542 	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4543 
4544       if (ecs->event_thread->prev_pc == stop_pc
4545 	  && ecs->event_thread->control.trap_expected
4546 	  && ecs->event_thread->control.step_resume_breakpoint == NULL)
4547 	{
4548 	  /* We were just starting a new sequence, attempting to
4549 	     single-step off of a breakpoint and expecting a SIGTRAP.
4550 	     Instead this signal arrives.  This signal will take us out
4551 	     of the stepping range so GDB needs to remember to, when
4552 	     the signal handler returns, resume stepping off that
4553 	     breakpoint.  */
4554 	  /* To simplify things, "continue" is forced to use the same
4555 	     code paths as single-step - set a breakpoint at the
4556 	     signal return address and then, once hit, step off that
4557 	     breakpoint.  */
4558           if (debug_infrun)
4559             fprintf_unfiltered (gdb_stdlog,
4560                                 "infrun: signal arrived while stepping over "
4561                                 "breakpoint\n");
4562 
4563 	  insert_hp_step_resume_breakpoint_at_frame (frame);
4564 	  ecs->event_thread->step_after_step_resume_breakpoint = 1;
4565 	  /* Reset trap_expected to ensure breakpoints are re-inserted.  */
4566 	  ecs->event_thread->control.trap_expected = 0;
4567 
4568 	  /* If we were nexting/stepping some other thread, switch to
4569 	     it, so that we don't continue it, losing control.  */
4570 	  if (!switch_back_to_stepped_thread (ecs))
4571 	    keep_going (ecs);
4572 	  return;
4573 	}
4574 
4575       if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4576 	  && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4577 	      || ecs->event_thread->control.step_range_end == 1)
4578 	  && frame_id_eq (get_stack_frame_id (frame),
4579 			  ecs->event_thread->control.step_stack_frame_id)
4580 	  && ecs->event_thread->control.step_resume_breakpoint == NULL)
4581 	{
4582 	  /* The inferior is about to take a signal that will take it
4583 	     out of the single step range.  Set a breakpoint at the
4584 	     current PC (which is presumably where the signal handler
4585 	     will eventually return) and then allow the inferior to
4586 	     run free.
4587 
4588 	     Note that this is only needed for a signal delivered
4589 	     while in the single-step range.  Nested signals aren't a
4590 	     problem as they eventually all return.  */
4591           if (debug_infrun)
4592             fprintf_unfiltered (gdb_stdlog,
4593                                 "infrun: signal may take us out of "
4594                                 "single-step range\n");
4595 
4596 	  insert_hp_step_resume_breakpoint_at_frame (frame);
4597 	  ecs->event_thread->step_after_step_resume_breakpoint = 1;
4598 	  /* Reset trap_expected to ensure breakpoints are re-inserted.  */
4599 	  ecs->event_thread->control.trap_expected = 0;
4600 	  keep_going (ecs);
4601 	  return;
4602 	}
4603 
4604       /* Note: step_resume_breakpoint may be non-NULL.  This occures
4605 	 when either there's a nested signal, or when there's a
4606 	 pending signal enabled just as the signal handler returns
4607 	 (leaving the inferior at the step-resume-breakpoint without
4608 	 actually executing it).  Either way continue until the
4609 	 breakpoint is really hit.  */
4610 
4611       if (!switch_back_to_stepped_thread (ecs))
4612 	{
4613 	  if (debug_infrun)
4614 	    fprintf_unfiltered (gdb_stdlog,
4615 				"infrun: random signal, keep going\n");
4616 
4617 	  keep_going (ecs);
4618 	}
4619       return;
4620     }
4621 
4622   process_event_stop_test (ecs);
4623 }
4624 
4625 /* Come here when we've got some debug event / signal we can explain
4626    (IOW, not a random signal), and test whether it should cause a
4627    stop, or whether we should resume the inferior (transparently).
4628    E.g., could be a breakpoint whose condition evaluates false; we
4629    could be still stepping within the line; etc.  */
4630 
4631 static void
4632 process_event_stop_test (struct execution_control_state *ecs)
4633 {
4634   struct symtab_and_line stop_pc_sal;
4635   struct frame_info *frame;
4636   struct gdbarch *gdbarch;
4637   CORE_ADDR jmp_buf_pc;
4638   struct bpstat_what what;
4639 
4640   /* Handle cases caused by hitting a breakpoint.  */
4641 
4642   frame = get_current_frame ();
4643   gdbarch = get_frame_arch (frame);
4644 
4645   what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4646 
4647   if (what.call_dummy)
4648     {
4649       stop_stack_dummy = what.call_dummy;
4650     }
4651 
4652   /* If we hit an internal event that triggers symbol changes, the
4653      current frame will be invalidated within bpstat_what (e.g., if we
4654      hit an internal solib event).  Re-fetch it.  */
4655   frame = get_current_frame ();
4656   gdbarch = get_frame_arch (frame);
4657 
4658   switch (what.main_action)
4659     {
4660     case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4661       /* If we hit the breakpoint at longjmp while stepping, we
4662 	 install a momentary breakpoint at the target of the
4663 	 jmp_buf.  */
4664 
4665       if (debug_infrun)
4666 	fprintf_unfiltered (gdb_stdlog,
4667 			    "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4668 
4669       ecs->event_thread->stepping_over_breakpoint = 1;
4670 
4671       if (what.is_longjmp)
4672 	{
4673 	  struct value *arg_value;
4674 
4675 	  /* If we set the longjmp breakpoint via a SystemTap probe,
4676 	     then use it to extract the arguments.  The destination PC
4677 	     is the third argument to the probe.  */
4678 	  arg_value = probe_safe_evaluate_at_pc (frame, 2);
4679 	  if (arg_value)
4680 	    {
4681 	      jmp_buf_pc = value_as_address (arg_value);
4682 	      jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4683 	    }
4684 	  else if (!gdbarch_get_longjmp_target_p (gdbarch)
4685 		   || !gdbarch_get_longjmp_target (gdbarch,
4686 						   frame, &jmp_buf_pc))
4687 	    {
4688 	      if (debug_infrun)
4689 		fprintf_unfiltered (gdb_stdlog,
4690 				    "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4691 				    "(!gdbarch_get_longjmp_target)\n");
4692 	      keep_going (ecs);
4693 	      return;
4694 	    }
4695 
4696 	  /* Insert a breakpoint at resume address.  */
4697 	  insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4698 	}
4699       else
4700 	check_exception_resume (ecs, frame);
4701       keep_going (ecs);
4702       return;
4703 
4704     case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4705       {
4706 	struct frame_info *init_frame;
4707 
4708 	/* There are several cases to consider.
4709 
4710 	   1. The initiating frame no longer exists.  In this case we
4711 	   must stop, because the exception or longjmp has gone too
4712 	   far.
4713 
4714 	   2. The initiating frame exists, and is the same as the
4715 	   current frame.  We stop, because the exception or longjmp
4716 	   has been caught.
4717 
4718 	   3. The initiating frame exists and is different from the
4719 	   current frame.  This means the exception or longjmp has
4720 	   been caught beneath the initiating frame, so keep going.
4721 
4722 	   4. longjmp breakpoint has been placed just to protect
4723 	   against stale dummy frames and user is not interested in
4724 	   stopping around longjmps.  */
4725 
4726 	if (debug_infrun)
4727 	  fprintf_unfiltered (gdb_stdlog,
4728 			      "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4729 
4730 	gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4731 		    != NULL);
4732 	delete_exception_resume_breakpoint (ecs->event_thread);
4733 
4734 	if (what.is_longjmp)
4735 	  {
4736 	    check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
4737 
4738 	    if (!frame_id_p (ecs->event_thread->initiating_frame))
4739 	      {
4740 		/* Case 4.  */
4741 		keep_going (ecs);
4742 		return;
4743 	      }
4744 	  }
4745 
4746 	init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4747 
4748 	if (init_frame)
4749 	  {
4750 	    struct frame_id current_id
4751 	      = get_frame_id (get_current_frame ());
4752 	    if (frame_id_eq (current_id,
4753 			     ecs->event_thread->initiating_frame))
4754 	      {
4755 		/* Case 2.  Fall through.  */
4756 	      }
4757 	    else
4758 	      {
4759 		/* Case 3.  */
4760 		keep_going (ecs);
4761 		return;
4762 	      }
4763 	  }
4764 
4765 	/* For Cases 1 and 2, remove the step-resume breakpoint, if it
4766 	   exists.  */
4767 	delete_step_resume_breakpoint (ecs->event_thread);
4768 
4769 	end_stepping_range (ecs);
4770       }
4771       return;
4772 
4773     case BPSTAT_WHAT_SINGLE:
4774       if (debug_infrun)
4775 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4776       ecs->event_thread->stepping_over_breakpoint = 1;
4777       /* Still need to check other stuff, at least the case where we
4778 	 are stepping and step out of the right range.  */
4779       break;
4780 
4781     case BPSTAT_WHAT_STEP_RESUME:
4782       if (debug_infrun)
4783 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4784 
4785       delete_step_resume_breakpoint (ecs->event_thread);
4786       if (ecs->event_thread->control.proceed_to_finish
4787 	  && execution_direction == EXEC_REVERSE)
4788 	{
4789 	  struct thread_info *tp = ecs->event_thread;
4790 
4791 	  /* We are finishing a function in reverse, and just hit the
4792 	     step-resume breakpoint at the start address of the
4793 	     function, and we're almost there -- just need to back up
4794 	     by one more single-step, which should take us back to the
4795 	     function call.  */
4796 	  tp->control.step_range_start = tp->control.step_range_end = 1;
4797 	  keep_going (ecs);
4798 	  return;
4799 	}
4800       fill_in_stop_func (gdbarch, ecs);
4801       if (stop_pc == ecs->stop_func_start
4802 	  && execution_direction == EXEC_REVERSE)
4803 	{
4804 	  /* We are stepping over a function call in reverse, and just
4805 	     hit the step-resume breakpoint at the start address of
4806 	     the function.  Go back to single-stepping, which should
4807 	     take us back to the function call.  */
4808 	  ecs->event_thread->stepping_over_breakpoint = 1;
4809 	  keep_going (ecs);
4810 	  return;
4811 	}
4812       break;
4813 
4814     case BPSTAT_WHAT_STOP_NOISY:
4815       if (debug_infrun)
4816 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4817       stop_print_frame = 1;
4818 
4819       /* Assume the thread stopped for a breapoint.  We'll still check
4820 	 whether a/the breakpoint is there when the thread is next
4821 	 resumed.  */
4822       ecs->event_thread->stepping_over_breakpoint = 1;
4823 
4824       stop_waiting (ecs);
4825       return;
4826 
4827     case BPSTAT_WHAT_STOP_SILENT:
4828       if (debug_infrun)
4829 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4830       stop_print_frame = 0;
4831 
4832       /* Assume the thread stopped for a breapoint.  We'll still check
4833 	 whether a/the breakpoint is there when the thread is next
4834 	 resumed.  */
4835       ecs->event_thread->stepping_over_breakpoint = 1;
4836       stop_waiting (ecs);
4837       return;
4838 
4839     case BPSTAT_WHAT_HP_STEP_RESUME:
4840       if (debug_infrun)
4841 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4842 
4843       delete_step_resume_breakpoint (ecs->event_thread);
4844       if (ecs->event_thread->step_after_step_resume_breakpoint)
4845 	{
4846 	  /* Back when the step-resume breakpoint was inserted, we
4847 	     were trying to single-step off a breakpoint.  Go back to
4848 	     doing that.  */
4849 	  ecs->event_thread->step_after_step_resume_breakpoint = 0;
4850 	  ecs->event_thread->stepping_over_breakpoint = 1;
4851 	  keep_going (ecs);
4852 	  return;
4853 	}
4854       break;
4855 
4856     case BPSTAT_WHAT_KEEP_CHECKING:
4857       break;
4858     }
4859 
4860   /* If we stepped a permanent breakpoint and we had a high priority
4861      step-resume breakpoint for the address we stepped, but we didn't
4862      hit it, then we must have stepped into the signal handler.  The
4863      step-resume was only necessary to catch the case of _not_
4864      stepping into the handler, so delete it, and fall through to
4865      checking whether the step finished.  */
4866   if (ecs->event_thread->stepped_breakpoint)
4867     {
4868       struct breakpoint *sr_bp
4869 	= ecs->event_thread->control.step_resume_breakpoint;
4870 
4871       if (sr_bp->loc->permanent
4872 	  && sr_bp->type == bp_hp_step_resume
4873 	  && sr_bp->loc->address == ecs->event_thread->prev_pc)
4874 	{
4875 	  if (debug_infrun)
4876 	    fprintf_unfiltered (gdb_stdlog,
4877 				"infrun: stepped permanent breakpoint, stopped in "
4878 				"handler\n");
4879 	  delete_step_resume_breakpoint (ecs->event_thread);
4880 	  ecs->event_thread->step_after_step_resume_breakpoint = 0;
4881 	}
4882     }
4883 
4884   /* We come here if we hit a breakpoint but should not stop for it.
4885      Possibly we also were stepping and should stop for that.  So fall
4886      through and test for stepping.  But, if not stepping, do not
4887      stop.  */
4888 
4889   /* In all-stop mode, if we're currently stepping but have stopped in
4890      some other thread, we need to switch back to the stepped thread.  */
4891   if (switch_back_to_stepped_thread (ecs))
4892     return;
4893 
4894   if (ecs->event_thread->control.step_resume_breakpoint)
4895     {
4896       if (debug_infrun)
4897 	 fprintf_unfiltered (gdb_stdlog,
4898 			     "infrun: step-resume breakpoint is inserted\n");
4899 
4900       /* Having a step-resume breakpoint overrides anything
4901          else having to do with stepping commands until
4902          that breakpoint is reached.  */
4903       keep_going (ecs);
4904       return;
4905     }
4906 
4907   if (ecs->event_thread->control.step_range_end == 0)
4908     {
4909       if (debug_infrun)
4910 	 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4911       /* Likewise if we aren't even stepping.  */
4912       keep_going (ecs);
4913       return;
4914     }
4915 
4916   /* Re-fetch current thread's frame in case the code above caused
4917      the frame cache to be re-initialized, making our FRAME variable
4918      a dangling pointer.  */
4919   frame = get_current_frame ();
4920   gdbarch = get_frame_arch (frame);
4921   fill_in_stop_func (gdbarch, ecs);
4922 
4923   /* If stepping through a line, keep going if still within it.
4924 
4925      Note that step_range_end is the address of the first instruction
4926      beyond the step range, and NOT the address of the last instruction
4927      within it!
4928 
4929      Note also that during reverse execution, we may be stepping
4930      through a function epilogue and therefore must detect when
4931      the current-frame changes in the middle of a line.  */
4932 
4933   if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4934       && (execution_direction != EXEC_REVERSE
4935 	  || frame_id_eq (get_frame_id (frame),
4936 			  ecs->event_thread->control.step_frame_id)))
4937     {
4938       if (debug_infrun)
4939 	fprintf_unfiltered
4940 	  (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4941 	   paddress (gdbarch, ecs->event_thread->control.step_range_start),
4942 	   paddress (gdbarch, ecs->event_thread->control.step_range_end));
4943 
4944       /* Tentatively re-enable range stepping; `resume' disables it if
4945 	 necessary (e.g., if we're stepping over a breakpoint or we
4946 	 have software watchpoints).  */
4947       ecs->event_thread->control.may_range_step = 1;
4948 
4949       /* When stepping backward, stop at beginning of line range
4950 	 (unless it's the function entry point, in which case
4951 	 keep going back to the call point).  */
4952       if (stop_pc == ecs->event_thread->control.step_range_start
4953 	  && stop_pc != ecs->stop_func_start
4954 	  && execution_direction == EXEC_REVERSE)
4955 	end_stepping_range (ecs);
4956       else
4957 	keep_going (ecs);
4958 
4959       return;
4960     }
4961 
4962   /* We stepped out of the stepping range.  */
4963 
4964   /* If we are stepping at the source level and entered the runtime
4965      loader dynamic symbol resolution code...
4966 
4967      EXEC_FORWARD: we keep on single stepping until we exit the run
4968      time loader code and reach the callee's address.
4969 
4970      EXEC_REVERSE: we've already executed the callee (backward), and
4971      the runtime loader code is handled just like any other
4972      undebuggable function call.  Now we need only keep stepping
4973      backward through the trampoline code, and that's handled further
4974      down, so there is nothing for us to do here.  */
4975 
4976   if (execution_direction != EXEC_REVERSE
4977       && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4978       && in_solib_dynsym_resolve_code (stop_pc))
4979     {
4980       CORE_ADDR pc_after_resolver =
4981 	gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4982 
4983       if (debug_infrun)
4984 	 fprintf_unfiltered (gdb_stdlog,
4985 			     "infrun: stepped into dynsym resolve code\n");
4986 
4987       if (pc_after_resolver)
4988 	{
4989 	  /* Set up a step-resume breakpoint at the address
4990 	     indicated by SKIP_SOLIB_RESOLVER.  */
4991 	  struct symtab_and_line sr_sal;
4992 
4993 	  init_sal (&sr_sal);
4994 	  sr_sal.pc = pc_after_resolver;
4995 	  sr_sal.pspace = get_frame_program_space (frame);
4996 
4997 	  insert_step_resume_breakpoint_at_sal (gdbarch,
4998 						sr_sal, null_frame_id);
4999 	}
5000 
5001       keep_going (ecs);
5002       return;
5003     }
5004 
5005   if (ecs->event_thread->control.step_range_end != 1
5006       && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5007 	  || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5008       && get_frame_type (frame) == SIGTRAMP_FRAME)
5009     {
5010       if (debug_infrun)
5011 	 fprintf_unfiltered (gdb_stdlog,
5012 			     "infrun: stepped into signal trampoline\n");
5013       /* The inferior, while doing a "step" or "next", has ended up in
5014          a signal trampoline (either by a signal being delivered or by
5015          the signal handler returning).  Just single-step until the
5016          inferior leaves the trampoline (either by calling the handler
5017          or returning).  */
5018       keep_going (ecs);
5019       return;
5020     }
5021 
5022   /* If we're in the return path from a shared library trampoline,
5023      we want to proceed through the trampoline when stepping.  */
5024   /* macro/2012-04-25: This needs to come before the subroutine
5025      call check below as on some targets return trampolines look
5026      like subroutine calls (MIPS16 return thunks).  */
5027   if (gdbarch_in_solib_return_trampoline (gdbarch,
5028 					  stop_pc, ecs->stop_func_name)
5029       && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5030     {
5031       /* Determine where this trampoline returns.  */
5032       CORE_ADDR real_stop_pc;
5033 
5034       real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5035 
5036       if (debug_infrun)
5037 	 fprintf_unfiltered (gdb_stdlog,
5038 			     "infrun: stepped into solib return tramp\n");
5039 
5040       /* Only proceed through if we know where it's going.  */
5041       if (real_stop_pc)
5042 	{
5043 	  /* And put the step-breakpoint there and go until there.  */
5044 	  struct symtab_and_line sr_sal;
5045 
5046 	  init_sal (&sr_sal);	/* initialize to zeroes */
5047 	  sr_sal.pc = real_stop_pc;
5048 	  sr_sal.section = find_pc_overlay (sr_sal.pc);
5049 	  sr_sal.pspace = get_frame_program_space (frame);
5050 
5051 	  /* Do not specify what the fp should be when we stop since
5052 	     on some machines the prologue is where the new fp value
5053 	     is established.  */
5054 	  insert_step_resume_breakpoint_at_sal (gdbarch,
5055 						sr_sal, null_frame_id);
5056 
5057 	  /* Restart without fiddling with the step ranges or
5058 	     other state.  */
5059 	  keep_going (ecs);
5060 	  return;
5061 	}
5062     }
5063 
5064   /* Check for subroutine calls.  The check for the current frame
5065      equalling the step ID is not necessary - the check of the
5066      previous frame's ID is sufficient - but it is a common case and
5067      cheaper than checking the previous frame's ID.
5068 
5069      NOTE: frame_id_eq will never report two invalid frame IDs as
5070      being equal, so to get into this block, both the current and
5071      previous frame must have valid frame IDs.  */
5072   /* The outer_frame_id check is a heuristic to detect stepping
5073      through startup code.  If we step over an instruction which
5074      sets the stack pointer from an invalid value to a valid value,
5075      we may detect that as a subroutine call from the mythical
5076      "outermost" function.  This could be fixed by marking
5077      outermost frames as !stack_p,code_p,special_p.  Then the
5078      initial outermost frame, before sp was valid, would
5079      have code_addr == &_start.  See the comment in frame_id_eq
5080      for more.  */
5081   if (!frame_id_eq (get_stack_frame_id (frame),
5082 		    ecs->event_thread->control.step_stack_frame_id)
5083       && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
5084 		       ecs->event_thread->control.step_stack_frame_id)
5085 	  && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
5086 			    outer_frame_id)
5087 	      || step_start_function != find_pc_function (stop_pc))))
5088     {
5089       CORE_ADDR real_stop_pc;
5090 
5091       if (debug_infrun)
5092 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
5093 
5094       if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
5095 	{
5096 	  /* I presume that step_over_calls is only 0 when we're
5097 	     supposed to be stepping at the assembly language level
5098 	     ("stepi").  Just stop.  */
5099 	  /* And this works the same backward as frontward.  MVS */
5100 	  end_stepping_range (ecs);
5101 	  return;
5102 	}
5103 
5104       /* Reverse stepping through solib trampolines.  */
5105 
5106       if (execution_direction == EXEC_REVERSE
5107 	  && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
5108 	  && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5109 	      || (ecs->stop_func_start == 0
5110 		  && in_solib_dynsym_resolve_code (stop_pc))))
5111 	{
5112 	  /* Any solib trampoline code can be handled in reverse
5113 	     by simply continuing to single-step.  We have already
5114 	     executed the solib function (backwards), and a few
5115 	     steps will take us back through the trampoline to the
5116 	     caller.  */
5117 	  keep_going (ecs);
5118 	  return;
5119 	}
5120 
5121       if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5122 	{
5123 	  /* We're doing a "next".
5124 
5125 	     Normal (forward) execution: set a breakpoint at the
5126 	     callee's return address (the address at which the caller
5127 	     will resume).
5128 
5129 	     Reverse (backward) execution.  set the step-resume
5130 	     breakpoint at the start of the function that we just
5131 	     stepped into (backwards), and continue to there.  When we
5132 	     get there, we'll need to single-step back to the caller.  */
5133 
5134 	  if (execution_direction == EXEC_REVERSE)
5135 	    {
5136 	      /* If we're already at the start of the function, we've either
5137 		 just stepped backward into a single instruction function,
5138 		 or stepped back out of a signal handler to the first instruction
5139 		 of the function.  Just keep going, which will single-step back
5140 		 to the caller.  */
5141 	      if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
5142 		{
5143 		  struct symtab_and_line sr_sal;
5144 
5145 		  /* Normal function call return (static or dynamic).  */
5146 		  init_sal (&sr_sal);
5147 		  sr_sal.pc = ecs->stop_func_start;
5148 		  sr_sal.pspace = get_frame_program_space (frame);
5149 		  insert_step_resume_breakpoint_at_sal (gdbarch,
5150 							sr_sal, null_frame_id);
5151 		}
5152 	    }
5153 	  else
5154 	    insert_step_resume_breakpoint_at_caller (frame);
5155 
5156 	  keep_going (ecs);
5157 	  return;
5158 	}
5159 
5160       /* If we are in a function call trampoline (a stub between the
5161          calling routine and the real function), locate the real
5162          function.  That's what tells us (a) whether we want to step
5163          into it at all, and (b) what prologue we want to run to the
5164          end of, if we do step into it.  */
5165       real_stop_pc = skip_language_trampoline (frame, stop_pc);
5166       if (real_stop_pc == 0)
5167 	real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5168       if (real_stop_pc != 0)
5169 	ecs->stop_func_start = real_stop_pc;
5170 
5171       if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
5172 	{
5173 	  struct symtab_and_line sr_sal;
5174 
5175 	  init_sal (&sr_sal);
5176 	  sr_sal.pc = ecs->stop_func_start;
5177 	  sr_sal.pspace = get_frame_program_space (frame);
5178 
5179 	  insert_step_resume_breakpoint_at_sal (gdbarch,
5180 						sr_sal, null_frame_id);
5181 	  keep_going (ecs);
5182 	  return;
5183 	}
5184 
5185       /* If we have line number information for the function we are
5186 	 thinking of stepping into and the function isn't on the skip
5187 	 list, step into it.
5188 
5189          If there are several symtabs at that PC (e.g. with include
5190          files), just want to know whether *any* of them have line
5191          numbers.  find_pc_line handles this.  */
5192       {
5193 	struct symtab_and_line tmp_sal;
5194 
5195 	tmp_sal = find_pc_line (ecs->stop_func_start, 0);
5196 	if (tmp_sal.line != 0
5197 	    && !function_name_is_marked_for_skip (ecs->stop_func_name,
5198 						  &tmp_sal))
5199 	  {
5200 	    if (execution_direction == EXEC_REVERSE)
5201 	      handle_step_into_function_backward (gdbarch, ecs);
5202 	    else
5203 	      handle_step_into_function (gdbarch, ecs);
5204 	    return;
5205 	  }
5206       }
5207 
5208       /* If we have no line number and the step-stop-if-no-debug is
5209          set, we stop the step so that the user has a chance to switch
5210          in assembly mode.  */
5211       if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5212 	  && step_stop_if_no_debug)
5213 	{
5214 	  end_stepping_range (ecs);
5215 	  return;
5216 	}
5217 
5218       if (execution_direction == EXEC_REVERSE)
5219 	{
5220 	  /* If we're already at the start of the function, we've either just
5221 	     stepped backward into a single instruction function without line
5222 	     number info, or stepped back out of a signal handler to the first
5223 	     instruction of the function without line number info.  Just keep
5224 	     going, which will single-step back to the caller.  */
5225 	  if (ecs->stop_func_start != stop_pc)
5226 	    {
5227 	      /* Set a breakpoint at callee's start address.
5228 		 From there we can step once and be back in the caller.  */
5229 	      struct symtab_and_line sr_sal;
5230 
5231 	      init_sal (&sr_sal);
5232 	      sr_sal.pc = ecs->stop_func_start;
5233 	      sr_sal.pspace = get_frame_program_space (frame);
5234 	      insert_step_resume_breakpoint_at_sal (gdbarch,
5235 						    sr_sal, null_frame_id);
5236 	    }
5237 	}
5238       else
5239 	/* Set a breakpoint at callee's return address (the address
5240 	   at which the caller will resume).  */
5241 	insert_step_resume_breakpoint_at_caller (frame);
5242 
5243       keep_going (ecs);
5244       return;
5245     }
5246 
5247   /* Reverse stepping through solib trampolines.  */
5248 
5249   if (execution_direction == EXEC_REVERSE
5250       && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5251     {
5252       if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5253 	  || (ecs->stop_func_start == 0
5254 	      && in_solib_dynsym_resolve_code (stop_pc)))
5255 	{
5256 	  /* Any solib trampoline code can be handled in reverse
5257 	     by simply continuing to single-step.  We have already
5258 	     executed the solib function (backwards), and a few
5259 	     steps will take us back through the trampoline to the
5260 	     caller.  */
5261 	  keep_going (ecs);
5262 	  return;
5263 	}
5264       else if (in_solib_dynsym_resolve_code (stop_pc))
5265 	{
5266 	  /* Stepped backward into the solib dynsym resolver.
5267 	     Set a breakpoint at its start and continue, then
5268 	     one more step will take us out.  */
5269 	  struct symtab_and_line sr_sal;
5270 
5271 	  init_sal (&sr_sal);
5272 	  sr_sal.pc = ecs->stop_func_start;
5273 	  sr_sal.pspace = get_frame_program_space (frame);
5274 	  insert_step_resume_breakpoint_at_sal (gdbarch,
5275 						sr_sal, null_frame_id);
5276 	  keep_going (ecs);
5277 	  return;
5278 	}
5279     }
5280 
5281   stop_pc_sal = find_pc_line (stop_pc, 0);
5282 
5283   /* NOTE: tausq/2004-05-24: This if block used to be done before all
5284      the trampoline processing logic, however, there are some trampolines
5285      that have no names, so we should do trampoline handling first.  */
5286   if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5287       && ecs->stop_func_name == NULL
5288       && stop_pc_sal.line == 0)
5289     {
5290       if (debug_infrun)
5291 	 fprintf_unfiltered (gdb_stdlog,
5292 			     "infrun: stepped into undebuggable function\n");
5293 
5294       /* The inferior just stepped into, or returned to, an
5295          undebuggable function (where there is no debugging information
5296          and no line number corresponding to the address where the
5297          inferior stopped).  Since we want to skip this kind of code,
5298          we keep going until the inferior returns from this
5299          function - unless the user has asked us not to (via
5300          set step-mode) or we no longer know how to get back
5301          to the call site.  */
5302       if (step_stop_if_no_debug
5303 	  || !frame_id_p (frame_unwind_caller_id (frame)))
5304 	{
5305 	  /* If we have no line number and the step-stop-if-no-debug
5306 	     is set, we stop the step so that the user has a chance to
5307 	     switch in assembly mode.  */
5308 	  end_stepping_range (ecs);
5309 	  return;
5310 	}
5311       else
5312 	{
5313 	  /* Set a breakpoint at callee's return address (the address
5314 	     at which the caller will resume).  */
5315 	  insert_step_resume_breakpoint_at_caller (frame);
5316 	  keep_going (ecs);
5317 	  return;
5318 	}
5319     }
5320 
5321   if (ecs->event_thread->control.step_range_end == 1)
5322     {
5323       /* It is stepi or nexti.  We always want to stop stepping after
5324          one instruction.  */
5325       if (debug_infrun)
5326 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5327       end_stepping_range (ecs);
5328       return;
5329     }
5330 
5331   if (stop_pc_sal.line == 0)
5332     {
5333       /* We have no line number information.  That means to stop
5334          stepping (does this always happen right after one instruction,
5335          when we do "s" in a function with no line numbers,
5336          or can this happen as a result of a return or longjmp?).  */
5337       if (debug_infrun)
5338 	 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5339       end_stepping_range (ecs);
5340       return;
5341     }
5342 
5343   /* Look for "calls" to inlined functions, part one.  If the inline
5344      frame machinery detected some skipped call sites, we have entered
5345      a new inline function.  */
5346 
5347   if (frame_id_eq (get_frame_id (get_current_frame ()),
5348 		   ecs->event_thread->control.step_frame_id)
5349       && inline_skipped_frames (ecs->ptid))
5350     {
5351       struct symtab_and_line call_sal;
5352 
5353       if (debug_infrun)
5354 	fprintf_unfiltered (gdb_stdlog,
5355 			    "infrun: stepped into inlined function\n");
5356 
5357       find_frame_sal (get_current_frame (), &call_sal);
5358 
5359       if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5360 	{
5361 	  /* For "step", we're going to stop.  But if the call site
5362 	     for this inlined function is on the same source line as
5363 	     we were previously stepping, go down into the function
5364 	     first.  Otherwise stop at the call site.  */
5365 
5366 	  if (call_sal.line == ecs->event_thread->current_line
5367 	      && call_sal.symtab == ecs->event_thread->current_symtab)
5368 	    step_into_inline_frame (ecs->ptid);
5369 
5370 	  end_stepping_range (ecs);
5371 	  return;
5372 	}
5373       else
5374 	{
5375 	  /* For "next", we should stop at the call site if it is on a
5376 	     different source line.  Otherwise continue through the
5377 	     inlined function.  */
5378 	  if (call_sal.line == ecs->event_thread->current_line
5379 	      && call_sal.symtab == ecs->event_thread->current_symtab)
5380 	    keep_going (ecs);
5381 	  else
5382 	    end_stepping_range (ecs);
5383 	  return;
5384 	}
5385     }
5386 
5387   /* Look for "calls" to inlined functions, part two.  If we are still
5388      in the same real function we were stepping through, but we have
5389      to go further up to find the exact frame ID, we are stepping
5390      through a more inlined call beyond its call site.  */
5391 
5392   if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5393       && !frame_id_eq (get_frame_id (get_current_frame ()),
5394 		       ecs->event_thread->control.step_frame_id)
5395       && stepped_in_from (get_current_frame (),
5396 			  ecs->event_thread->control.step_frame_id))
5397     {
5398       if (debug_infrun)
5399 	fprintf_unfiltered (gdb_stdlog,
5400 			    "infrun: stepping through inlined function\n");
5401 
5402       if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5403 	keep_going (ecs);
5404       else
5405 	end_stepping_range (ecs);
5406       return;
5407     }
5408 
5409   if ((stop_pc == stop_pc_sal.pc)
5410       && (ecs->event_thread->current_line != stop_pc_sal.line
5411  	  || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5412     {
5413       /* We are at the start of a different line.  So stop.  Note that
5414          we don't stop if we step into the middle of a different line.
5415          That is said to make things like for (;;) statements work
5416          better.  */
5417       if (debug_infrun)
5418 	 fprintf_unfiltered (gdb_stdlog,
5419 			     "infrun: stepped to a different line\n");
5420       end_stepping_range (ecs);
5421       return;
5422     }
5423 
5424   /* We aren't done stepping.
5425 
5426      Optimize by setting the stepping range to the line.
5427      (We might not be in the original line, but if we entered a
5428      new line in mid-statement, we continue stepping.  This makes
5429      things like for(;;) statements work better.)  */
5430 
5431   ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5432   ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5433   ecs->event_thread->control.may_range_step = 1;
5434   set_step_info (frame, stop_pc_sal);
5435 
5436   if (debug_infrun)
5437      fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5438   keep_going (ecs);
5439 }
5440 
5441 /* In all-stop mode, if we're currently stepping but have stopped in
5442    some other thread, we may need to switch back to the stepped
5443    thread.  Returns true we set the inferior running, false if we left
5444    it stopped (and the event needs further processing).  */
5445 
5446 static int
5447 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5448 {
5449   if (!non_stop)
5450     {
5451       struct thread_info *tp;
5452       struct thread_info *stepping_thread;
5453       struct thread_info *step_over;
5454 
5455       /* If any thread is blocked on some internal breakpoint, and we
5456 	 simply need to step over that breakpoint to get it going
5457 	 again, do that first.  */
5458 
5459       /* However, if we see an event for the stepping thread, then we
5460 	 know all other threads have been moved past their breakpoints
5461 	 already.  Let the caller check whether the step is finished,
5462 	 etc., before deciding to move it past a breakpoint.  */
5463       if (ecs->event_thread->control.step_range_end != 0)
5464 	return 0;
5465 
5466       /* Check if the current thread is blocked on an incomplete
5467 	 step-over, interrupted by a random signal.  */
5468       if (ecs->event_thread->control.trap_expected
5469 	  && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5470 	{
5471 	  if (debug_infrun)
5472 	    {
5473 	      fprintf_unfiltered (gdb_stdlog,
5474 				  "infrun: need to finish step-over of [%s]\n",
5475 				  target_pid_to_str (ecs->event_thread->ptid));
5476 	    }
5477 	  keep_going (ecs);
5478 	  return 1;
5479 	}
5480 
5481       /* Check if the current thread is blocked by a single-step
5482 	 breakpoint of another thread.  */
5483       if (ecs->hit_singlestep_breakpoint)
5484        {
5485 	 if (debug_infrun)
5486 	   {
5487 	     fprintf_unfiltered (gdb_stdlog,
5488 				 "infrun: need to step [%s] over single-step "
5489 				 "breakpoint\n",
5490 				 target_pid_to_str (ecs->ptid));
5491 	   }
5492 	 keep_going (ecs);
5493 	 return 1;
5494        }
5495 
5496       /* Otherwise, we no longer expect a trap in the current thread.
5497 	 Clear the trap_expected flag before switching back -- this is
5498 	 what keep_going does as well, if we call it.  */
5499       ecs->event_thread->control.trap_expected = 0;
5500 
5501       /* Likewise, clear the signal if it should not be passed.  */
5502       if (!signal_program[ecs->event_thread->suspend.stop_signal])
5503 	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5504 
5505       /* If scheduler locking applies even if not stepping, there's no
5506 	 need to walk over threads.  Above we've checked whether the
5507 	 current thread is stepping.  If some other thread not the
5508 	 event thread is stepping, then it must be that scheduler
5509 	 locking is not in effect.  */
5510       if (schedlock_applies (0))
5511 	return 0;
5512 
5513       /* Look for the stepping/nexting thread, and check if any other
5514 	 thread other than the stepping thread needs to start a
5515 	 step-over.  Do all step-overs before actually proceeding with
5516 	 step/next/etc.  */
5517       stepping_thread = NULL;
5518       step_over = NULL;
5519       ALL_NON_EXITED_THREADS (tp)
5520         {
5521 	  /* Ignore threads of processes we're not resuming.  */
5522 	  if (!sched_multi
5523 	      && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5524 	    continue;
5525 
5526 	  /* When stepping over a breakpoint, we lock all threads
5527 	     except the one that needs to move past the breakpoint.
5528 	     If a non-event thread has this set, the "incomplete
5529 	     step-over" check above should have caught it earlier.  */
5530 	  gdb_assert (!tp->control.trap_expected);
5531 
5532 	  /* Did we find the stepping thread?  */
5533 	  if (tp->control.step_range_end)
5534 	    {
5535 	      /* Yep.  There should only one though.  */
5536 	      gdb_assert (stepping_thread == NULL);
5537 
5538 	      /* The event thread is handled at the top, before we
5539 		 enter this loop.  */
5540 	      gdb_assert (tp != ecs->event_thread);
5541 
5542 	      /* If some thread other than the event thread is
5543 		 stepping, then scheduler locking can't be in effect,
5544 		 otherwise we wouldn't have resumed the current event
5545 		 thread in the first place.  */
5546 	      gdb_assert (!schedlock_applies (currently_stepping (tp)));
5547 
5548 	      stepping_thread = tp;
5549 	    }
5550 	  else if (thread_still_needs_step_over (tp))
5551 	    {
5552 	      step_over = tp;
5553 
5554 	      /* At the top we've returned early if the event thread
5555 		 is stepping.  If some other thread not the event
5556 		 thread is stepping, then scheduler locking can't be
5557 		 in effect, and we can resume this thread.  No need to
5558 		 keep looking for the stepping thread then.  */
5559 	      break;
5560 	    }
5561 	}
5562 
5563       if (step_over != NULL)
5564 	{
5565 	  tp = step_over;
5566 	  if (debug_infrun)
5567 	    {
5568 	      fprintf_unfiltered (gdb_stdlog,
5569 				  "infrun: need to step-over [%s]\n",
5570 				  target_pid_to_str (tp->ptid));
5571 	    }
5572 
5573 	  /* Only the stepping thread should have this set.  */
5574 	  gdb_assert (tp->control.step_range_end == 0);
5575 
5576 	  ecs->ptid = tp->ptid;
5577 	  ecs->event_thread = tp;
5578 	  switch_to_thread (ecs->ptid);
5579 	  keep_going (ecs);
5580 	  return 1;
5581 	}
5582 
5583       if (stepping_thread != NULL)
5584 	{
5585 	  struct frame_info *frame;
5586 	  struct gdbarch *gdbarch;
5587 
5588 	  tp = stepping_thread;
5589 
5590 	  /* If the stepping thread exited, then don't try to switch
5591 	     back and resume it, which could fail in several different
5592 	     ways depending on the target.  Instead, just keep going.
5593 
5594 	     We can find a stepping dead thread in the thread list in
5595 	     two cases:
5596 
5597 	     - The target supports thread exit events, and when the
5598 	     target tries to delete the thread from the thread list,
5599 	     inferior_ptid pointed at the exiting thread.  In such
5600 	     case, calling delete_thread does not really remove the
5601 	     thread from the list; instead, the thread is left listed,
5602 	     with 'exited' state.
5603 
5604 	     - The target's debug interface does not support thread
5605 	     exit events, and so we have no idea whatsoever if the
5606 	     previously stepping thread is still alive.  For that
5607 	     reason, we need to synchronously query the target
5608 	     now.  */
5609 	  if (is_exited (tp->ptid)
5610 	      || !target_thread_alive (tp->ptid))
5611 	    {
5612 	      if (debug_infrun)
5613 		fprintf_unfiltered (gdb_stdlog,
5614 				    "infrun: not switching back to "
5615 				    "stepped thread, it has vanished\n");
5616 
5617 	      delete_thread (tp->ptid);
5618 	      keep_going (ecs);
5619 	      return 1;
5620 	    }
5621 
5622 	  if (debug_infrun)
5623 	    fprintf_unfiltered (gdb_stdlog,
5624 				"infrun: switching back to stepped thread\n");
5625 
5626 	  ecs->event_thread = tp;
5627 	  ecs->ptid = tp->ptid;
5628 	  context_switch (ecs->ptid);
5629 
5630 	  stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5631 	  frame = get_current_frame ();
5632 	  gdbarch = get_frame_arch (frame);
5633 
5634 	  /* If the PC of the thread we were trying to single-step has
5635 	     changed, then that thread has trapped or been signaled,
5636 	     but the event has not been reported to GDB yet.  Re-poll
5637 	     the target looking for this particular thread's event
5638 	     (i.e. temporarily enable schedlock) by:
5639 
5640 	       - setting a break at the current PC
5641 	       - resuming that particular thread, only (by setting
5642 		 trap expected)
5643 
5644 	     This prevents us continuously moving the single-step
5645 	     breakpoint forward, one instruction at a time,
5646 	     overstepping.  */
5647 
5648 	  if (stop_pc != tp->prev_pc)
5649 	    {
5650 	      if (debug_infrun)
5651 		fprintf_unfiltered (gdb_stdlog,
5652 				    "infrun: expected thread advanced also\n");
5653 
5654 	      /* Clear the info of the previous step-over, as it's no
5655 		 longer valid.  It's what keep_going would do too, if
5656 		 we called it.  Must do this before trying to insert
5657 		 the sss breakpoint, otherwise if we were previously
5658 		 trying to step over this exact address in another
5659 		 thread, the breakpoint ends up not installed.  */
5660 	      clear_step_over_info ();
5661 
5662 	      insert_single_step_breakpoint (get_frame_arch (frame),
5663 					     get_frame_address_space (frame),
5664 					     stop_pc);
5665 	      ecs->event_thread->control.trap_expected = 1;
5666 
5667 	      resume (0, GDB_SIGNAL_0);
5668 	      prepare_to_wait (ecs);
5669 	    }
5670 	  else
5671 	    {
5672 	      if (debug_infrun)
5673 		fprintf_unfiltered (gdb_stdlog,
5674 				    "infrun: expected thread still "
5675 				    "hasn't advanced\n");
5676 	      keep_going (ecs);
5677 	    }
5678 
5679 	  return 1;
5680 	}
5681     }
5682   return 0;
5683 }
5684 
5685 /* Is thread TP in the middle of single-stepping?  */
5686 
5687 static int
5688 currently_stepping (struct thread_info *tp)
5689 {
5690   return ((tp->control.step_range_end
5691 	   && tp->control.step_resume_breakpoint == NULL)
5692 	  || tp->control.trap_expected
5693 	  || tp->stepped_breakpoint
5694 	  || bpstat_should_step ());
5695 }
5696 
5697 /* Inferior has stepped into a subroutine call with source code that
5698    we should not step over.  Do step to the first line of code in
5699    it.  */
5700 
5701 static void
5702 handle_step_into_function (struct gdbarch *gdbarch,
5703 			   struct execution_control_state *ecs)
5704 {
5705   struct compunit_symtab *cust;
5706   struct symtab_and_line stop_func_sal, sr_sal;
5707 
5708   fill_in_stop_func (gdbarch, ecs);
5709 
5710   cust = find_pc_compunit_symtab (stop_pc);
5711   if (cust != NULL && compunit_language (cust) != language_asm)
5712     ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5713 						  ecs->stop_func_start);
5714 
5715   stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5716   /* Use the step_resume_break to step until the end of the prologue,
5717      even if that involves jumps (as it seems to on the vax under
5718      4.2).  */
5719   /* If the prologue ends in the middle of a source line, continue to
5720      the end of that source line (if it is still within the function).
5721      Otherwise, just go to end of prologue.  */
5722   if (stop_func_sal.end
5723       && stop_func_sal.pc != ecs->stop_func_start
5724       && stop_func_sal.end < ecs->stop_func_end)
5725     ecs->stop_func_start = stop_func_sal.end;
5726 
5727   /* Architectures which require breakpoint adjustment might not be able
5728      to place a breakpoint at the computed address.  If so, the test
5729      ``ecs->stop_func_start == stop_pc'' will never succeed.  Adjust
5730      ecs->stop_func_start to an address at which a breakpoint may be
5731      legitimately placed.
5732 
5733      Note:  kevinb/2004-01-19:  On FR-V, if this adjustment is not
5734      made, GDB will enter an infinite loop when stepping through
5735      optimized code consisting of VLIW instructions which contain
5736      subinstructions corresponding to different source lines.  On
5737      FR-V, it's not permitted to place a breakpoint on any but the
5738      first subinstruction of a VLIW instruction.  When a breakpoint is
5739      set, GDB will adjust the breakpoint address to the beginning of
5740      the VLIW instruction.  Thus, we need to make the corresponding
5741      adjustment here when computing the stop address.  */
5742 
5743   if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5744     {
5745       ecs->stop_func_start
5746 	= gdbarch_adjust_breakpoint_address (gdbarch,
5747 					     ecs->stop_func_start);
5748     }
5749 
5750   if (ecs->stop_func_start == stop_pc)
5751     {
5752       /* We are already there: stop now.  */
5753       end_stepping_range (ecs);
5754       return;
5755     }
5756   else
5757     {
5758       /* Put the step-breakpoint there and go until there.  */
5759       init_sal (&sr_sal);	/* initialize to zeroes */
5760       sr_sal.pc = ecs->stop_func_start;
5761       sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5762       sr_sal.pspace = get_frame_program_space (get_current_frame ());
5763 
5764       /* Do not specify what the fp should be when we stop since on
5765          some machines the prologue is where the new fp value is
5766          established.  */
5767       insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5768 
5769       /* And make sure stepping stops right away then.  */
5770       ecs->event_thread->control.step_range_end
5771         = ecs->event_thread->control.step_range_start;
5772     }
5773   keep_going (ecs);
5774 }
5775 
5776 /* Inferior has stepped backward into a subroutine call with source
5777    code that we should not step over.  Do step to the beginning of the
5778    last line of code in it.  */
5779 
5780 static void
5781 handle_step_into_function_backward (struct gdbarch *gdbarch,
5782 				    struct execution_control_state *ecs)
5783 {
5784   struct compunit_symtab *cust;
5785   struct symtab_and_line stop_func_sal;
5786 
5787   fill_in_stop_func (gdbarch, ecs);
5788 
5789   cust = find_pc_compunit_symtab (stop_pc);
5790   if (cust != NULL && compunit_language (cust) != language_asm)
5791     ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5792 						  ecs->stop_func_start);
5793 
5794   stop_func_sal = find_pc_line (stop_pc, 0);
5795 
5796   /* OK, we're just going to keep stepping here.  */
5797   if (stop_func_sal.pc == stop_pc)
5798     {
5799       /* We're there already.  Just stop stepping now.  */
5800       end_stepping_range (ecs);
5801     }
5802   else
5803     {
5804       /* Else just reset the step range and keep going.
5805 	 No step-resume breakpoint, they don't work for
5806 	 epilogues, which can have multiple entry paths.  */
5807       ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5808       ecs->event_thread->control.step_range_end = stop_func_sal.end;
5809       keep_going (ecs);
5810     }
5811   return;
5812 }
5813 
5814 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5815    This is used to both functions and to skip over code.  */
5816 
5817 static void
5818 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5819 					struct symtab_and_line sr_sal,
5820 					struct frame_id sr_id,
5821 					enum bptype sr_type)
5822 {
5823   /* There should never be more than one step-resume or longjmp-resume
5824      breakpoint per thread, so we should never be setting a new
5825      step_resume_breakpoint when one is already active.  */
5826   gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5827   gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5828 
5829   if (debug_infrun)
5830     fprintf_unfiltered (gdb_stdlog,
5831 			"infrun: inserting step-resume breakpoint at %s\n",
5832 			paddress (gdbarch, sr_sal.pc));
5833 
5834   inferior_thread ()->control.step_resume_breakpoint
5835     = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5836 }
5837 
5838 void
5839 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5840 				      struct symtab_and_line sr_sal,
5841 				      struct frame_id sr_id)
5842 {
5843   insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5844 					  sr_sal, sr_id,
5845 					  bp_step_resume);
5846 }
5847 
5848 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5849    This is used to skip a potential signal handler.
5850 
5851    This is called with the interrupted function's frame.  The signal
5852    handler, when it returns, will resume the interrupted function at
5853    RETURN_FRAME.pc.  */
5854 
5855 static void
5856 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5857 {
5858   struct symtab_and_line sr_sal;
5859   struct gdbarch *gdbarch;
5860 
5861   gdb_assert (return_frame != NULL);
5862   init_sal (&sr_sal);		/* initialize to zeros */
5863 
5864   gdbarch = get_frame_arch (return_frame);
5865   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5866   sr_sal.section = find_pc_overlay (sr_sal.pc);
5867   sr_sal.pspace = get_frame_program_space (return_frame);
5868 
5869   insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5870 					  get_stack_frame_id (return_frame),
5871 					  bp_hp_step_resume);
5872 }
5873 
5874 /* Insert a "step-resume breakpoint" at the previous frame's PC.  This
5875    is used to skip a function after stepping into it (for "next" or if
5876    the called function has no debugging information).
5877 
5878    The current function has almost always been reached by single
5879    stepping a call or return instruction.  NEXT_FRAME belongs to the
5880    current function, and the breakpoint will be set at the caller's
5881    resume address.
5882 
5883    This is a separate function rather than reusing
5884    insert_hp_step_resume_breakpoint_at_frame in order to avoid
5885    get_prev_frame, which may stop prematurely (see the implementation
5886    of frame_unwind_caller_id for an example).  */
5887 
5888 static void
5889 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5890 {
5891   struct symtab_and_line sr_sal;
5892   struct gdbarch *gdbarch;
5893 
5894   /* We shouldn't have gotten here if we don't know where the call site
5895      is.  */
5896   gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5897 
5898   init_sal (&sr_sal);		/* initialize to zeros */
5899 
5900   gdbarch = frame_unwind_caller_arch (next_frame);
5901   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5902 					frame_unwind_caller_pc (next_frame));
5903   sr_sal.section = find_pc_overlay (sr_sal.pc);
5904   sr_sal.pspace = frame_unwind_program_space (next_frame);
5905 
5906   insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5907 					frame_unwind_caller_id (next_frame));
5908 }
5909 
5910 /* Insert a "longjmp-resume" breakpoint at PC.  This is used to set a
5911    new breakpoint at the target of a jmp_buf.  The handling of
5912    longjmp-resume uses the same mechanisms used for handling
5913    "step-resume" breakpoints.  */
5914 
5915 static void
5916 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5917 {
5918   /* There should never be more than one longjmp-resume breakpoint per
5919      thread, so we should never be setting a new
5920      longjmp_resume_breakpoint when one is already active.  */
5921   gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5922 
5923   if (debug_infrun)
5924     fprintf_unfiltered (gdb_stdlog,
5925 			"infrun: inserting longjmp-resume breakpoint at %s\n",
5926 			paddress (gdbarch, pc));
5927 
5928   inferior_thread ()->control.exception_resume_breakpoint =
5929     set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5930 }
5931 
5932 /* Insert an exception resume breakpoint.  TP is the thread throwing
5933    the exception.  The block B is the block of the unwinder debug hook
5934    function.  FRAME is the frame corresponding to the call to this
5935    function.  SYM is the symbol of the function argument holding the
5936    target PC of the exception.  */
5937 
5938 static void
5939 insert_exception_resume_breakpoint (struct thread_info *tp,
5940 				    const struct block *b,
5941 				    struct frame_info *frame,
5942 				    struct symbol *sym)
5943 {
5944   volatile struct gdb_exception e;
5945 
5946   /* We want to ignore errors here.  */
5947   TRY_CATCH (e, RETURN_MASK_ERROR)
5948     {
5949       struct symbol *vsym;
5950       struct value *value;
5951       CORE_ADDR handler;
5952       struct breakpoint *bp;
5953 
5954       vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5955       value = read_var_value (vsym, frame);
5956       /* If the value was optimized out, revert to the old behavior.  */
5957       if (! value_optimized_out (value))
5958 	{
5959 	  handler = value_as_address (value);
5960 
5961 	  if (debug_infrun)
5962 	    fprintf_unfiltered (gdb_stdlog,
5963 				"infrun: exception resume at %lx\n",
5964 				(unsigned long) handler);
5965 
5966 	  bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5967 					       handler, bp_exception_resume);
5968 
5969 	  /* set_momentary_breakpoint_at_pc invalidates FRAME.  */
5970 	  frame = NULL;
5971 
5972 	  bp->thread = tp->num;
5973 	  inferior_thread ()->control.exception_resume_breakpoint = bp;
5974 	}
5975     }
5976 }
5977 
5978 /* A helper for check_exception_resume that sets an
5979    exception-breakpoint based on a SystemTap probe.  */
5980 
5981 static void
5982 insert_exception_resume_from_probe (struct thread_info *tp,
5983 				    const struct bound_probe *probe,
5984 				    struct frame_info *frame)
5985 {
5986   struct value *arg_value;
5987   CORE_ADDR handler;
5988   struct breakpoint *bp;
5989 
5990   arg_value = probe_safe_evaluate_at_pc (frame, 1);
5991   if (!arg_value)
5992     return;
5993 
5994   handler = value_as_address (arg_value);
5995 
5996   if (debug_infrun)
5997     fprintf_unfiltered (gdb_stdlog,
5998 			"infrun: exception resume at %s\n",
5999 			paddress (get_objfile_arch (probe->objfile),
6000 				  handler));
6001 
6002   bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6003 				       handler, bp_exception_resume);
6004   bp->thread = tp->num;
6005   inferior_thread ()->control.exception_resume_breakpoint = bp;
6006 }
6007 
6008 /* This is called when an exception has been intercepted.  Check to
6009    see whether the exception's destination is of interest, and if so,
6010    set an exception resume breakpoint there.  */
6011 
6012 static void
6013 check_exception_resume (struct execution_control_state *ecs,
6014 			struct frame_info *frame)
6015 {
6016   volatile struct gdb_exception e;
6017   struct bound_probe probe;
6018   struct symbol *func;
6019 
6020   /* First see if this exception unwinding breakpoint was set via a
6021      SystemTap probe point.  If so, the probe has two arguments: the
6022      CFA and the HANDLER.  We ignore the CFA, extract the handler, and
6023      set a breakpoint there.  */
6024   probe = find_probe_by_pc (get_frame_pc (frame));
6025   if (probe.probe)
6026     {
6027       insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
6028       return;
6029     }
6030 
6031   func = get_frame_function (frame);
6032   if (!func)
6033     return;
6034 
6035   TRY_CATCH (e, RETURN_MASK_ERROR)
6036     {
6037       const struct block *b;
6038       struct block_iterator iter;
6039       struct symbol *sym;
6040       int argno = 0;
6041 
6042       /* The exception breakpoint is a thread-specific breakpoint on
6043 	 the unwinder's debug hook, declared as:
6044 
6045 	 void _Unwind_DebugHook (void *cfa, void *handler);
6046 
6047 	 The CFA argument indicates the frame to which control is
6048 	 about to be transferred.  HANDLER is the destination PC.
6049 
6050 	 We ignore the CFA and set a temporary breakpoint at HANDLER.
6051 	 This is not extremely efficient but it avoids issues in gdb
6052 	 with computing the DWARF CFA, and it also works even in weird
6053 	 cases such as throwing an exception from inside a signal
6054 	 handler.  */
6055 
6056       b = SYMBOL_BLOCK_VALUE (func);
6057       ALL_BLOCK_SYMBOLS (b, iter, sym)
6058 	{
6059 	  if (!SYMBOL_IS_ARGUMENT (sym))
6060 	    continue;
6061 
6062 	  if (argno == 0)
6063 	    ++argno;
6064 	  else
6065 	    {
6066 	      insert_exception_resume_breakpoint (ecs->event_thread,
6067 						  b, frame, sym);
6068 	      break;
6069 	    }
6070 	}
6071     }
6072 }
6073 
6074 static void
6075 stop_waiting (struct execution_control_state *ecs)
6076 {
6077   if (debug_infrun)
6078     fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
6079 
6080   clear_step_over_info ();
6081 
6082   /* Let callers know we don't want to wait for the inferior anymore.  */
6083   ecs->wait_some_more = 0;
6084 }
6085 
6086 /* Called when we should continue running the inferior, because the
6087    current event doesn't cause a user visible stop.  This does the
6088    resuming part; waiting for the next event is done elsewhere.  */
6089 
6090 static void
6091 keep_going (struct execution_control_state *ecs)
6092 {
6093   /* Make sure normal_stop is called if we get a QUIT handled before
6094      reaching resume.  */
6095   struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
6096 
6097   /* Save the pc before execution, to compare with pc after stop.  */
6098   ecs->event_thread->prev_pc
6099     = regcache_read_pc (get_thread_regcache (ecs->ptid));
6100 
6101   if (ecs->event_thread->control.trap_expected
6102       && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6103     {
6104       /* We haven't yet gotten our trap, and either: intercepted a
6105 	 non-signal event (e.g., a fork); or took a signal which we
6106 	 are supposed to pass through to the inferior.  Simply
6107 	 continue.  */
6108       discard_cleanups (old_cleanups);
6109       resume (currently_stepping (ecs->event_thread),
6110 	      ecs->event_thread->suspend.stop_signal);
6111     }
6112   else
6113     {
6114       volatile struct gdb_exception e;
6115       struct regcache *regcache = get_current_regcache ();
6116       int remove_bp;
6117       int remove_wps;
6118 
6119       /* Either the trap was not expected, but we are continuing
6120 	 anyway (if we got a signal, the user asked it be passed to
6121 	 the child)
6122 	 -- or --
6123 	 We got our expected trap, but decided we should resume from
6124 	 it.
6125 
6126 	 We're going to run this baby now!
6127 
6128 	 Note that insert_breakpoints won't try to re-insert
6129 	 already inserted breakpoints.  Therefore, we don't
6130 	 care if breakpoints were already inserted, or not.  */
6131 
6132       /* If we need to step over a breakpoint, and we're not using
6133 	 displaced stepping to do so, insert all breakpoints
6134 	 (watchpoints, etc.) but the one we're stepping over, step one
6135 	 instruction, and then re-insert the breakpoint when that step
6136 	 is finished.  */
6137 
6138       remove_bp = (ecs->hit_singlestep_breakpoint
6139 		   || thread_still_needs_step_over (ecs->event_thread));
6140       remove_wps = (ecs->event_thread->stepping_over_watchpoint
6141 		    && !target_have_steppable_watchpoint);
6142 
6143       if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache)))
6144 	{
6145 	  set_step_over_info (get_regcache_aspace (regcache),
6146 			      regcache_read_pc (regcache), remove_wps);
6147 	}
6148       else if (remove_wps)
6149 	set_step_over_info (NULL, 0, remove_wps);
6150       else
6151 	clear_step_over_info ();
6152 
6153       /* Stop stepping if inserting breakpoints fails.  */
6154       TRY_CATCH (e, RETURN_MASK_ERROR)
6155 	{
6156 	  insert_breakpoints ();
6157 	}
6158       if (e.reason < 0)
6159 	{
6160 	  exception_print (gdb_stderr, e);
6161 	  stop_waiting (ecs);
6162 	  return;
6163 	}
6164 
6165       ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
6166 
6167       /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6168 	 explicitly specifies that such a signal should be delivered
6169 	 to the target program).  Typically, that would occur when a
6170 	 user is debugging a target monitor on a simulator: the target
6171 	 monitor sets a breakpoint; the simulator encounters this
6172 	 breakpoint and halts the simulation handing control to GDB;
6173 	 GDB, noting that the stop address doesn't map to any known
6174 	 breakpoint, returns control back to the simulator; the
6175 	 simulator then delivers the hardware equivalent of a
6176 	 GDB_SIGNAL_TRAP to the program being debugged.	 */
6177       if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6178 	  && !signal_program[ecs->event_thread->suspend.stop_signal])
6179 	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6180 
6181       discard_cleanups (old_cleanups);
6182       resume (currently_stepping (ecs->event_thread),
6183 	      ecs->event_thread->suspend.stop_signal);
6184     }
6185 
6186   prepare_to_wait (ecs);
6187 }
6188 
6189 /* This function normally comes after a resume, before
6190    handle_inferior_event exits.  It takes care of any last bits of
6191    housekeeping, and sets the all-important wait_some_more flag.  */
6192 
6193 static void
6194 prepare_to_wait (struct execution_control_state *ecs)
6195 {
6196   if (debug_infrun)
6197     fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
6198 
6199   /* This is the old end of the while loop.  Let everybody know we
6200      want to wait for the inferior some more and get called again
6201      soon.  */
6202   ecs->wait_some_more = 1;
6203 }
6204 
6205 /* We are done with the step range of a step/next/si/ni command.
6206    Called once for each n of a "step n" operation.  */
6207 
6208 static void
6209 end_stepping_range (struct execution_control_state *ecs)
6210 {
6211   ecs->event_thread->control.stop_step = 1;
6212   stop_waiting (ecs);
6213 }
6214 
6215 /* Several print_*_reason functions to print why the inferior has stopped.
6216    We always print something when the inferior exits, or receives a signal.
6217    The rest of the cases are dealt with later on in normal_stop and
6218    print_it_typical.  Ideally there should be a call to one of these
6219    print_*_reason functions functions from handle_inferior_event each time
6220    stop_waiting is called.
6221 
6222    Note that we don't call these directly, instead we delegate that to
6223    the interpreters, through observers.  Interpreters then call these
6224    with whatever uiout is right.  */
6225 
6226 void
6227 print_end_stepping_range_reason (struct ui_out *uiout)
6228 {
6229   /* For CLI-like interpreters, print nothing.  */
6230 
6231   if (ui_out_is_mi_like_p (uiout))
6232     {
6233       ui_out_field_string (uiout, "reason",
6234 			   async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6235     }
6236 }
6237 
6238 void
6239 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6240 {
6241   annotate_signalled ();
6242   if (ui_out_is_mi_like_p (uiout))
6243     ui_out_field_string
6244       (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6245   ui_out_text (uiout, "\nProgram terminated with signal ");
6246   annotate_signal_name ();
6247   ui_out_field_string (uiout, "signal-name",
6248 		       gdb_signal_to_name (siggnal));
6249   annotate_signal_name_end ();
6250   ui_out_text (uiout, ", ");
6251   annotate_signal_string ();
6252   ui_out_field_string (uiout, "signal-meaning",
6253 		       gdb_signal_to_string (siggnal));
6254   annotate_signal_string_end ();
6255   ui_out_text (uiout, ".\n");
6256   ui_out_text (uiout, "The program no longer exists.\n");
6257 }
6258 
6259 void
6260 print_exited_reason (struct ui_out *uiout, int exitstatus)
6261 {
6262   struct inferior *inf = current_inferior ();
6263   const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6264 
6265   annotate_exited (exitstatus);
6266   if (exitstatus)
6267     {
6268       if (ui_out_is_mi_like_p (uiout))
6269 	ui_out_field_string (uiout, "reason",
6270 			     async_reason_lookup (EXEC_ASYNC_EXITED));
6271       ui_out_text (uiout, "[Inferior ");
6272       ui_out_text (uiout, plongest (inf->num));
6273       ui_out_text (uiout, " (");
6274       ui_out_text (uiout, pidstr);
6275       ui_out_text (uiout, ") exited with code ");
6276       ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
6277       ui_out_text (uiout, "]\n");
6278     }
6279   else
6280     {
6281       if (ui_out_is_mi_like_p (uiout))
6282 	ui_out_field_string
6283 	  (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6284       ui_out_text (uiout, "[Inferior ");
6285       ui_out_text (uiout, plongest (inf->num));
6286       ui_out_text (uiout, " (");
6287       ui_out_text (uiout, pidstr);
6288       ui_out_text (uiout, ") exited normally]\n");
6289     }
6290 }
6291 
6292 void
6293 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6294 {
6295   annotate_signal ();
6296 
6297   if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
6298     {
6299       struct thread_info *t = inferior_thread ();
6300 
6301       ui_out_text (uiout, "\n[");
6302       ui_out_field_string (uiout, "thread-name",
6303 			   target_pid_to_str (t->ptid));
6304       ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6305       ui_out_text (uiout, " stopped");
6306     }
6307   else
6308     {
6309       ui_out_text (uiout, "\nProgram received signal ");
6310       annotate_signal_name ();
6311       if (ui_out_is_mi_like_p (uiout))
6312 	ui_out_field_string
6313 	  (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
6314       ui_out_field_string (uiout, "signal-name",
6315 			   gdb_signal_to_name (siggnal));
6316       annotate_signal_name_end ();
6317       ui_out_text (uiout, ", ");
6318       annotate_signal_string ();
6319       ui_out_field_string (uiout, "signal-meaning",
6320 			   gdb_signal_to_string (siggnal));
6321       annotate_signal_string_end ();
6322     }
6323   ui_out_text (uiout, ".\n");
6324 }
6325 
6326 void
6327 print_no_history_reason (struct ui_out *uiout)
6328 {
6329   ui_out_text (uiout, "\nNo more reverse-execution history.\n");
6330 }
6331 
6332 /* Print current location without a level number, if we have changed
6333    functions or hit a breakpoint.  Print source line if we have one.
6334    bpstat_print contains the logic deciding in detail what to print,
6335    based on the event(s) that just occurred.  */
6336 
6337 void
6338 print_stop_event (struct target_waitstatus *ws)
6339 {
6340   int bpstat_ret;
6341   int source_flag;
6342   int do_frame_printing = 1;
6343   struct thread_info *tp = inferior_thread ();
6344 
6345   bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6346   switch (bpstat_ret)
6347     {
6348     case PRINT_UNKNOWN:
6349       /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6350 	 should) carry around the function and does (or should) use
6351 	 that when doing a frame comparison.  */
6352       if (tp->control.stop_step
6353 	  && frame_id_eq (tp->control.step_frame_id,
6354 			  get_frame_id (get_current_frame ()))
6355 	  && step_start_function == find_pc_function (stop_pc))
6356 	{
6357 	  /* Finished step, just print source line.  */
6358 	  source_flag = SRC_LINE;
6359 	}
6360       else
6361 	{
6362 	  /* Print location and source line.  */
6363 	  source_flag = SRC_AND_LOC;
6364 	}
6365       break;
6366     case PRINT_SRC_AND_LOC:
6367       /* Print location and source line.  */
6368       source_flag = SRC_AND_LOC;
6369       break;
6370     case PRINT_SRC_ONLY:
6371       source_flag = SRC_LINE;
6372       break;
6373     case PRINT_NOTHING:
6374       /* Something bogus.  */
6375       source_flag = SRC_LINE;
6376       do_frame_printing = 0;
6377       break;
6378     default:
6379       internal_error (__FILE__, __LINE__, _("Unknown value."));
6380     }
6381 
6382   /* The behavior of this routine with respect to the source
6383      flag is:
6384      SRC_LINE: Print only source line
6385      LOCATION: Print only location
6386      SRC_AND_LOC: Print location and source line.  */
6387   if (do_frame_printing)
6388     print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6389 
6390   /* Display the auto-display expressions.  */
6391   do_displays ();
6392 }
6393 
6394 /* Here to return control to GDB when the inferior stops for real.
6395    Print appropriate messages, remove breakpoints, give terminal our modes.
6396 
6397    STOP_PRINT_FRAME nonzero means print the executing frame
6398    (pc, function, args, file, line number and line text).
6399    BREAKPOINTS_FAILED nonzero means stop was due to error
6400    attempting to insert breakpoints.  */
6401 
6402 void
6403 normal_stop (void)
6404 {
6405   struct target_waitstatus last;
6406   ptid_t last_ptid;
6407   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6408 
6409   get_last_target_status (&last_ptid, &last);
6410 
6411   /* If an exception is thrown from this point on, make sure to
6412      propagate GDB's knowledge of the executing state to the
6413      frontend/user running state.  A QUIT is an easy exception to see
6414      here, so do this before any filtered output.  */
6415   if (!non_stop)
6416     make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6417   else if (last.kind != TARGET_WAITKIND_SIGNALLED
6418 	   && last.kind != TARGET_WAITKIND_EXITED
6419 	   && last.kind != TARGET_WAITKIND_NO_RESUMED)
6420     make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
6421 
6422   /* As we're presenting a stop, and potentially removing breakpoints,
6423      update the thread list so we can tell whether there are threads
6424      running on the target.  With target remote, for example, we can
6425      only learn about new threads when we explicitly update the thread
6426      list.  Do this before notifying the interpreters about signal
6427      stops, end of stepping ranges, etc., so that the "new thread"
6428      output is emitted before e.g., "Program received signal FOO",
6429      instead of after.  */
6430   update_thread_list ();
6431 
6432   if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6433     observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6434 
6435   /* As with the notification of thread events, we want to delay
6436      notifying the user that we've switched thread context until
6437      the inferior actually stops.
6438 
6439      There's no point in saying anything if the inferior has exited.
6440      Note that SIGNALLED here means "exited with a signal", not
6441      "received a signal".
6442 
6443      Also skip saying anything in non-stop mode.  In that mode, as we
6444      don't want GDB to switch threads behind the user's back, to avoid
6445      races where the user is typing a command to apply to thread x,
6446      but GDB switches to thread y before the user finishes entering
6447      the command, fetch_inferior_event installs a cleanup to restore
6448      the current thread back to the thread the user had selected right
6449      after this event is handled, so we're not really switching, only
6450      informing of a stop.  */
6451   if (!non_stop
6452       && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6453       && target_has_execution
6454       && last.kind != TARGET_WAITKIND_SIGNALLED
6455       && last.kind != TARGET_WAITKIND_EXITED
6456       && last.kind != TARGET_WAITKIND_NO_RESUMED)
6457     {
6458       target_terminal_ours_for_output ();
6459       printf_filtered (_("[Switching to %s]\n"),
6460 		       target_pid_to_str (inferior_ptid));
6461       annotate_thread_changed ();
6462       previous_inferior_ptid = inferior_ptid;
6463     }
6464 
6465   if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6466     {
6467       gdb_assert (sync_execution || !target_can_async_p ());
6468 
6469       target_terminal_ours_for_output ();
6470       printf_filtered (_("No unwaited-for children left.\n"));
6471     }
6472 
6473   /* Note: this depends on the update_thread_list call above.  */
6474   if (!breakpoints_should_be_inserted_now () && target_has_execution)
6475     {
6476       if (remove_breakpoints ())
6477 	{
6478 	  target_terminal_ours_for_output ();
6479 	  printf_filtered (_("Cannot remove breakpoints because "
6480 			     "program is no longer writable.\nFurther "
6481 			     "execution is probably impossible.\n"));
6482 	}
6483     }
6484 
6485   /* If an auto-display called a function and that got a signal,
6486      delete that auto-display to avoid an infinite recursion.  */
6487 
6488   if (stopped_by_random_signal)
6489     disable_current_display ();
6490 
6491   /* Notify observers if we finished a "step"-like command, etc.  */
6492   if (target_has_execution
6493       && last.kind != TARGET_WAITKIND_SIGNALLED
6494       && last.kind != TARGET_WAITKIND_EXITED
6495       && inferior_thread ()->control.stop_step)
6496     {
6497       /* But not if in the middle of doing a "step n" operation for
6498 	 n > 1 */
6499       if (inferior_thread ()->step_multi)
6500 	goto done;
6501 
6502       observer_notify_end_stepping_range ();
6503     }
6504 
6505   target_terminal_ours ();
6506   async_enable_stdin ();
6507 
6508   /* Set the current source location.  This will also happen if we
6509      display the frame below, but the current SAL will be incorrect
6510      during a user hook-stop function.  */
6511   if (has_stack_frames () && !stop_stack_dummy)
6512     set_current_sal_from_frame (get_current_frame ());
6513 
6514   /* Let the user/frontend see the threads as stopped, but do nothing
6515      if the thread was running an infcall.  We may be e.g., evaluating
6516      a breakpoint condition.  In that case, the thread had state
6517      THREAD_RUNNING before the infcall, and shall remain set to
6518      running, all without informing the user/frontend about state
6519      transition changes.  If this is actually a call command, then the
6520      thread was originally already stopped, so there's no state to
6521      finish either.  */
6522   if (target_has_execution && inferior_thread ()->control.in_infcall)
6523     discard_cleanups (old_chain);
6524   else
6525     do_cleanups (old_chain);
6526 
6527   /* Look up the hook_stop and run it (CLI internally handles problem
6528      of stop_command's pre-hook not existing).  */
6529   if (stop_command)
6530     catch_errors (hook_stop_stub, stop_command,
6531 		  "Error while running hook_stop:\n", RETURN_MASK_ALL);
6532 
6533   if (!has_stack_frames ())
6534     goto done;
6535 
6536   if (last.kind == TARGET_WAITKIND_SIGNALLED
6537       || last.kind == TARGET_WAITKIND_EXITED)
6538     goto done;
6539 
6540   /* Select innermost stack frame - i.e., current frame is frame 0,
6541      and current location is based on that.
6542      Don't do this on return from a stack dummy routine,
6543      or if the program has exited.  */
6544 
6545   if (!stop_stack_dummy)
6546     {
6547       select_frame (get_current_frame ());
6548 
6549       /* If --batch-silent is enabled then there's no need to print the current
6550 	 source location, and to try risks causing an error message about
6551 	 missing source files.  */
6552       if (stop_print_frame && !batch_silent)
6553 	print_stop_event (&last);
6554     }
6555 
6556   /* Save the function value return registers, if we care.
6557      We might be about to restore their previous contents.  */
6558   if (inferior_thread ()->control.proceed_to_finish
6559       && execution_direction != EXEC_REVERSE)
6560     {
6561       /* This should not be necessary.  */
6562       if (stop_registers)
6563 	regcache_xfree (stop_registers);
6564 
6565       /* NB: The copy goes through to the target picking up the value of
6566 	 all the registers.  */
6567       stop_registers = regcache_dup (get_current_regcache ());
6568     }
6569 
6570   if (stop_stack_dummy == STOP_STACK_DUMMY)
6571     {
6572       /* Pop the empty frame that contains the stack dummy.
6573 	 This also restores inferior state prior to the call
6574 	 (struct infcall_suspend_state).  */
6575       struct frame_info *frame = get_current_frame ();
6576 
6577       gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6578       frame_pop (frame);
6579       /* frame_pop() calls reinit_frame_cache as the last thing it
6580 	 does which means there's currently no selected frame.  We
6581 	 don't need to re-establish a selected frame if the dummy call
6582 	 returns normally, that will be done by
6583 	 restore_infcall_control_state.  However, we do have to handle
6584 	 the case where the dummy call is returning after being
6585 	 stopped (e.g. the dummy call previously hit a breakpoint).
6586 	 We can't know which case we have so just always re-establish
6587 	 a selected frame here.  */
6588       select_frame (get_current_frame ());
6589     }
6590 
6591 done:
6592   annotate_stopped ();
6593 
6594   /* Suppress the stop observer if we're in the middle of:
6595 
6596      - a step n (n > 1), as there still more steps to be done.
6597 
6598      - a "finish" command, as the observer will be called in
6599        finish_command_continuation, so it can include the inferior
6600        function's return value.
6601 
6602      - calling an inferior function, as we pretend we inferior didn't
6603        run at all.  The return value of the call is handled by the
6604        expression evaluator, through call_function_by_hand.  */
6605 
6606   if (!target_has_execution
6607       || last.kind == TARGET_WAITKIND_SIGNALLED
6608       || last.kind == TARGET_WAITKIND_EXITED
6609       || last.kind == TARGET_WAITKIND_NO_RESUMED
6610       || (!(inferior_thread ()->step_multi
6611 	    && inferior_thread ()->control.stop_step)
6612 	  && !(inferior_thread ()->control.stop_bpstat
6613 	       && inferior_thread ()->control.proceed_to_finish)
6614 	  && !inferior_thread ()->control.in_infcall))
6615     {
6616       if (!ptid_equal (inferior_ptid, null_ptid))
6617 	observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6618 				     stop_print_frame);
6619       else
6620 	observer_notify_normal_stop (NULL, stop_print_frame);
6621     }
6622 
6623   if (target_has_execution)
6624     {
6625       if (last.kind != TARGET_WAITKIND_SIGNALLED
6626 	  && last.kind != TARGET_WAITKIND_EXITED)
6627 	/* Delete the breakpoint we stopped at, if it wants to be deleted.
6628 	   Delete any breakpoint that is to be deleted at the next stop.  */
6629 	breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6630     }
6631 
6632   /* Try to get rid of automatically added inferiors that are no
6633      longer needed.  Keeping those around slows down things linearly.
6634      Note that this never removes the current inferior.  */
6635   prune_inferiors ();
6636 }
6637 
6638 static int
6639 hook_stop_stub (void *cmd)
6640 {
6641   execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6642   return (0);
6643 }
6644 
6645 int
6646 signal_stop_state (int signo)
6647 {
6648   return signal_stop[signo];
6649 }
6650 
6651 int
6652 signal_print_state (int signo)
6653 {
6654   return signal_print[signo];
6655 }
6656 
6657 int
6658 signal_pass_state (int signo)
6659 {
6660   return signal_program[signo];
6661 }
6662 
6663 static void
6664 signal_cache_update (int signo)
6665 {
6666   if (signo == -1)
6667     {
6668       for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6669 	signal_cache_update (signo);
6670 
6671       return;
6672     }
6673 
6674   signal_pass[signo] = (signal_stop[signo] == 0
6675 			&& signal_print[signo] == 0
6676 			&& signal_program[signo] == 1
6677 			&& signal_catch[signo] == 0);
6678 }
6679 
6680 int
6681 signal_stop_update (int signo, int state)
6682 {
6683   int ret = signal_stop[signo];
6684 
6685   signal_stop[signo] = state;
6686   signal_cache_update (signo);
6687   return ret;
6688 }
6689 
6690 int
6691 signal_print_update (int signo, int state)
6692 {
6693   int ret = signal_print[signo];
6694 
6695   signal_print[signo] = state;
6696   signal_cache_update (signo);
6697   return ret;
6698 }
6699 
6700 int
6701 signal_pass_update (int signo, int state)
6702 {
6703   int ret = signal_program[signo];
6704 
6705   signal_program[signo] = state;
6706   signal_cache_update (signo);
6707   return ret;
6708 }
6709 
6710 /* Update the global 'signal_catch' from INFO and notify the
6711    target.  */
6712 
6713 void
6714 signal_catch_update (const unsigned int *info)
6715 {
6716   int i;
6717 
6718   for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6719     signal_catch[i] = info[i] > 0;
6720   signal_cache_update (-1);
6721   target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6722 }
6723 
6724 static void
6725 sig_print_header (void)
6726 {
6727   printf_filtered (_("Signal        Stop\tPrint\tPass "
6728 		     "to program\tDescription\n"));
6729 }
6730 
6731 static void
6732 sig_print_info (enum gdb_signal oursig)
6733 {
6734   const char *name = gdb_signal_to_name (oursig);
6735   int name_padding = 13 - strlen (name);
6736 
6737   if (name_padding <= 0)
6738     name_padding = 0;
6739 
6740   printf_filtered ("%s", name);
6741   printf_filtered ("%*.*s ", name_padding, name_padding, "                 ");
6742   printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6743   printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6744   printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6745   printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6746 }
6747 
6748 /* Specify how various signals in the inferior should be handled.  */
6749 
6750 static void
6751 handle_command (char *args, int from_tty)
6752 {
6753   char **argv;
6754   int digits, wordlen;
6755   int sigfirst, signum, siglast;
6756   enum gdb_signal oursig;
6757   int allsigs;
6758   int nsigs;
6759   unsigned char *sigs;
6760   struct cleanup *old_chain;
6761 
6762   if (args == NULL)
6763     {
6764       error_no_arg (_("signal to handle"));
6765     }
6766 
6767   /* Allocate and zero an array of flags for which signals to handle.  */
6768 
6769   nsigs = (int) GDB_SIGNAL_LAST;
6770   sigs = (unsigned char *) alloca (nsigs);
6771   memset (sigs, 0, nsigs);
6772 
6773   /* Break the command line up into args.  */
6774 
6775   argv = gdb_buildargv (args);
6776   old_chain = make_cleanup_freeargv (argv);
6777 
6778   /* Walk through the args, looking for signal oursigs, signal names, and
6779      actions.  Signal numbers and signal names may be interspersed with
6780      actions, with the actions being performed for all signals cumulatively
6781      specified.  Signal ranges can be specified as <LOW>-<HIGH>.  */
6782 
6783   while (*argv != NULL)
6784     {
6785       wordlen = strlen (*argv);
6786       for (digits = 0; isdigit ((*argv)[digits]); digits++)
6787 	{;
6788 	}
6789       allsigs = 0;
6790       sigfirst = siglast = -1;
6791 
6792       if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6793 	{
6794 	  /* Apply action to all signals except those used by the
6795 	     debugger.  Silently skip those.  */
6796 	  allsigs = 1;
6797 	  sigfirst = 0;
6798 	  siglast = nsigs - 1;
6799 	}
6800       else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6801 	{
6802 	  SET_SIGS (nsigs, sigs, signal_stop);
6803 	  SET_SIGS (nsigs, sigs, signal_print);
6804 	}
6805       else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6806 	{
6807 	  UNSET_SIGS (nsigs, sigs, signal_program);
6808 	}
6809       else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6810 	{
6811 	  SET_SIGS (nsigs, sigs, signal_print);
6812 	}
6813       else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6814 	{
6815 	  SET_SIGS (nsigs, sigs, signal_program);
6816 	}
6817       else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6818 	{
6819 	  UNSET_SIGS (nsigs, sigs, signal_stop);
6820 	}
6821       else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6822 	{
6823 	  SET_SIGS (nsigs, sigs, signal_program);
6824 	}
6825       else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6826 	{
6827 	  UNSET_SIGS (nsigs, sigs, signal_print);
6828 	  UNSET_SIGS (nsigs, sigs, signal_stop);
6829 	}
6830       else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6831 	{
6832 	  UNSET_SIGS (nsigs, sigs, signal_program);
6833 	}
6834       else if (digits > 0)
6835 	{
6836 	  /* It is numeric.  The numeric signal refers to our own
6837 	     internal signal numbering from target.h, not to host/target
6838 	     signal  number.  This is a feature; users really should be
6839 	     using symbolic names anyway, and the common ones like
6840 	     SIGHUP, SIGINT, SIGALRM, etc. will work right anyway.  */
6841 
6842 	  sigfirst = siglast = (int)
6843 	    gdb_signal_from_command (atoi (*argv));
6844 	  if ((*argv)[digits] == '-')
6845 	    {
6846 	      siglast = (int)
6847 		gdb_signal_from_command (atoi ((*argv) + digits + 1));
6848 	    }
6849 	  if (sigfirst > siglast)
6850 	    {
6851 	      /* Bet he didn't figure we'd think of this case...  */
6852 	      signum = sigfirst;
6853 	      sigfirst = siglast;
6854 	      siglast = signum;
6855 	    }
6856 	}
6857       else
6858 	{
6859 	  oursig = gdb_signal_from_name (*argv);
6860 	  if (oursig != GDB_SIGNAL_UNKNOWN)
6861 	    {
6862 	      sigfirst = siglast = (int) oursig;
6863 	    }
6864 	  else
6865 	    {
6866 	      /* Not a number and not a recognized flag word => complain.  */
6867 	      error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6868 	    }
6869 	}
6870 
6871       /* If any signal numbers or symbol names were found, set flags for
6872          which signals to apply actions to.  */
6873 
6874       for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6875 	{
6876 	  switch ((enum gdb_signal) signum)
6877 	    {
6878 	    case GDB_SIGNAL_TRAP:
6879 	    case GDB_SIGNAL_INT:
6880 	      if (!allsigs && !sigs[signum])
6881 		{
6882 		  if (query (_("%s is used by the debugger.\n\
6883 Are you sure you want to change it? "),
6884 			     gdb_signal_to_name ((enum gdb_signal) signum)))
6885 		    {
6886 		      sigs[signum] = 1;
6887 		    }
6888 		  else
6889 		    {
6890 		      printf_unfiltered (_("Not confirmed, unchanged.\n"));
6891 		      gdb_flush (gdb_stdout);
6892 		    }
6893 		}
6894 	      break;
6895 	    case GDB_SIGNAL_0:
6896 	    case GDB_SIGNAL_DEFAULT:
6897 	    case GDB_SIGNAL_UNKNOWN:
6898 	      /* Make sure that "all" doesn't print these.  */
6899 	      break;
6900 	    default:
6901 	      sigs[signum] = 1;
6902 	      break;
6903 	    }
6904 	}
6905 
6906       argv++;
6907     }
6908 
6909   for (signum = 0; signum < nsigs; signum++)
6910     if (sigs[signum])
6911       {
6912 	signal_cache_update (-1);
6913 	target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6914 	target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6915 
6916 	if (from_tty)
6917 	  {
6918 	    /* Show the results.  */
6919 	    sig_print_header ();
6920 	    for (; signum < nsigs; signum++)
6921 	      if (sigs[signum])
6922 		sig_print_info (signum);
6923 	  }
6924 
6925 	break;
6926       }
6927 
6928   do_cleanups (old_chain);
6929 }
6930 
6931 /* Complete the "handle" command.  */
6932 
6933 static VEC (char_ptr) *
6934 handle_completer (struct cmd_list_element *ignore,
6935 		  const char *text, const char *word)
6936 {
6937   VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6938   static const char * const keywords[] =
6939     {
6940       "all",
6941       "stop",
6942       "ignore",
6943       "print",
6944       "pass",
6945       "nostop",
6946       "noignore",
6947       "noprint",
6948       "nopass",
6949       NULL,
6950     };
6951 
6952   vec_signals = signal_completer (ignore, text, word);
6953   vec_keywords = complete_on_enum (keywords, word, word);
6954 
6955   return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6956   VEC_free (char_ptr, vec_signals);
6957   VEC_free (char_ptr, vec_keywords);
6958   return return_val;
6959 }
6960 
6961 static void
6962 xdb_handle_command (char *args, int from_tty)
6963 {
6964   char **argv;
6965   struct cleanup *old_chain;
6966 
6967   if (args == NULL)
6968     error_no_arg (_("xdb command"));
6969 
6970   /* Break the command line up into args.  */
6971 
6972   argv = gdb_buildargv (args);
6973   old_chain = make_cleanup_freeargv (argv);
6974   if (argv[1] != (char *) NULL)
6975     {
6976       char *argBuf;
6977       int bufLen;
6978 
6979       bufLen = strlen (argv[0]) + 20;
6980       argBuf = (char *) xmalloc (bufLen);
6981       if (argBuf)
6982 	{
6983 	  int validFlag = 1;
6984 	  enum gdb_signal oursig;
6985 
6986 	  oursig = gdb_signal_from_name (argv[0]);
6987 	  memset (argBuf, 0, bufLen);
6988 	  if (strcmp (argv[1], "Q") == 0)
6989 	    sprintf (argBuf, "%s %s", argv[0], "noprint");
6990 	  else
6991 	    {
6992 	      if (strcmp (argv[1], "s") == 0)
6993 		{
6994 		  if (!signal_stop[oursig])
6995 		    sprintf (argBuf, "%s %s", argv[0], "stop");
6996 		  else
6997 		    sprintf (argBuf, "%s %s", argv[0], "nostop");
6998 		}
6999 	      else if (strcmp (argv[1], "i") == 0)
7000 		{
7001 		  if (!signal_program[oursig])
7002 		    sprintf (argBuf, "%s %s", argv[0], "pass");
7003 		  else
7004 		    sprintf (argBuf, "%s %s", argv[0], "nopass");
7005 		}
7006 	      else if (strcmp (argv[1], "r") == 0)
7007 		{
7008 		  if (!signal_print[oursig])
7009 		    sprintf (argBuf, "%s %s", argv[0], "print");
7010 		  else
7011 		    sprintf (argBuf, "%s %s", argv[0], "noprint");
7012 		}
7013 	      else
7014 		validFlag = 0;
7015 	    }
7016 	  if (validFlag)
7017 	    handle_command (argBuf, from_tty);
7018 	  else
7019 	    printf_filtered (_("Invalid signal handling flag.\n"));
7020 	  if (argBuf)
7021 	    xfree (argBuf);
7022 	}
7023     }
7024   do_cleanups (old_chain);
7025 }
7026 
7027 enum gdb_signal
7028 gdb_signal_from_command (int num)
7029 {
7030   if (num >= 1 && num <= 15)
7031     return (enum gdb_signal) num;
7032   error (_("Only signals 1-15 are valid as numeric signals.\n\
7033 Use \"info signals\" for a list of symbolic signals."));
7034 }
7035 
7036 /* Print current contents of the tables set by the handle command.
7037    It is possible we should just be printing signals actually used
7038    by the current target (but for things to work right when switching
7039    targets, all signals should be in the signal tables).  */
7040 
7041 static void
7042 signals_info (char *signum_exp, int from_tty)
7043 {
7044   enum gdb_signal oursig;
7045 
7046   sig_print_header ();
7047 
7048   if (signum_exp)
7049     {
7050       /* First see if this is a symbol name.  */
7051       oursig = gdb_signal_from_name (signum_exp);
7052       if (oursig == GDB_SIGNAL_UNKNOWN)
7053 	{
7054 	  /* No, try numeric.  */
7055 	  oursig =
7056 	    gdb_signal_from_command (parse_and_eval_long (signum_exp));
7057 	}
7058       sig_print_info (oursig);
7059       return;
7060     }
7061 
7062   printf_filtered ("\n");
7063   /* These ugly casts brought to you by the native VAX compiler.  */
7064   for (oursig = GDB_SIGNAL_FIRST;
7065        (int) oursig < (int) GDB_SIGNAL_LAST;
7066        oursig = (enum gdb_signal) ((int) oursig + 1))
7067     {
7068       QUIT;
7069 
7070       if (oursig != GDB_SIGNAL_UNKNOWN
7071 	  && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
7072 	sig_print_info (oursig);
7073     }
7074 
7075   printf_filtered (_("\nUse the \"handle\" command "
7076 		     "to change these tables.\n"));
7077 }
7078 
7079 /* Check if it makes sense to read $_siginfo from the current thread
7080    at this point.  If not, throw an error.  */
7081 
7082 static void
7083 validate_siginfo_access (void)
7084 {
7085   /* No current inferior, no siginfo.  */
7086   if (ptid_equal (inferior_ptid, null_ptid))
7087     error (_("No thread selected."));
7088 
7089   /* Don't try to read from a dead thread.  */
7090   if (is_exited (inferior_ptid))
7091     error (_("The current thread has terminated"));
7092 
7093   /* ... or from a spinning thread.  */
7094   if (is_running (inferior_ptid))
7095     error (_("Selected thread is running."));
7096 }
7097 
7098 /* The $_siginfo convenience variable is a bit special.  We don't know
7099    for sure the type of the value until we actually have a chance to
7100    fetch the data.  The type can change depending on gdbarch, so it is
7101    also dependent on which thread you have selected.
7102 
7103      1. making $_siginfo be an internalvar that creates a new value on
7104      access.
7105 
7106      2. making the value of $_siginfo be an lval_computed value.  */
7107 
7108 /* This function implements the lval_computed support for reading a
7109    $_siginfo value.  */
7110 
7111 static void
7112 siginfo_value_read (struct value *v)
7113 {
7114   LONGEST transferred;
7115 
7116   validate_siginfo_access ();
7117 
7118   transferred =
7119     target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7120 		 NULL,
7121 		 value_contents_all_raw (v),
7122 		 value_offset (v),
7123 		 TYPE_LENGTH (value_type (v)));
7124 
7125   if (transferred != TYPE_LENGTH (value_type (v)))
7126     error (_("Unable to read siginfo"));
7127 }
7128 
7129 /* This function implements the lval_computed support for writing a
7130    $_siginfo value.  */
7131 
7132 static void
7133 siginfo_value_write (struct value *v, struct value *fromval)
7134 {
7135   LONGEST transferred;
7136 
7137   validate_siginfo_access ();
7138 
7139   transferred = target_write (&current_target,
7140 			      TARGET_OBJECT_SIGNAL_INFO,
7141 			      NULL,
7142 			      value_contents_all_raw (fromval),
7143 			      value_offset (v),
7144 			      TYPE_LENGTH (value_type (fromval)));
7145 
7146   if (transferred != TYPE_LENGTH (value_type (fromval)))
7147     error (_("Unable to write siginfo"));
7148 }
7149 
7150 static const struct lval_funcs siginfo_value_funcs =
7151   {
7152     siginfo_value_read,
7153     siginfo_value_write
7154   };
7155 
7156 /* Return a new value with the correct type for the siginfo object of
7157    the current thread using architecture GDBARCH.  Return a void value
7158    if there's no object available.  */
7159 
7160 static struct value *
7161 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7162 		    void *ignore)
7163 {
7164   if (target_has_stack
7165       && !ptid_equal (inferior_ptid, null_ptid)
7166       && gdbarch_get_siginfo_type_p (gdbarch))
7167     {
7168       struct type *type = gdbarch_get_siginfo_type (gdbarch);
7169 
7170       return allocate_computed_value (type, &siginfo_value_funcs, NULL);
7171     }
7172 
7173   return allocate_value (builtin_type (gdbarch)->builtin_void);
7174 }
7175 
7176 
7177 /* infcall_suspend_state contains state about the program itself like its
7178    registers and any signal it received when it last stopped.
7179    This state must be restored regardless of how the inferior function call
7180    ends (either successfully, or after it hits a breakpoint or signal)
7181    if the program is to properly continue where it left off.  */
7182 
7183 struct infcall_suspend_state
7184 {
7185   struct thread_suspend_state thread_suspend;
7186 #if 0 /* Currently unused and empty structures are not valid C.  */
7187   struct inferior_suspend_state inferior_suspend;
7188 #endif
7189 
7190   /* Other fields:  */
7191   CORE_ADDR stop_pc;
7192   struct regcache *registers;
7193 
7194   /* Format of SIGINFO_DATA or NULL if it is not present.  */
7195   struct gdbarch *siginfo_gdbarch;
7196 
7197   /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7198      TYPE_LENGTH (gdbarch_get_siginfo_type ()).  For different gdbarch the
7199      content would be invalid.  */
7200   gdb_byte *siginfo_data;
7201 };
7202 
7203 struct infcall_suspend_state *
7204 save_infcall_suspend_state (void)
7205 {
7206   struct infcall_suspend_state *inf_state;
7207   struct thread_info *tp = inferior_thread ();
7208 #if 0
7209   struct inferior *inf = current_inferior ();
7210 #endif
7211   struct regcache *regcache = get_current_regcache ();
7212   struct gdbarch *gdbarch = get_regcache_arch (regcache);
7213   gdb_byte *siginfo_data = NULL;
7214 
7215   if (gdbarch_get_siginfo_type_p (gdbarch))
7216     {
7217       struct type *type = gdbarch_get_siginfo_type (gdbarch);
7218       size_t len = TYPE_LENGTH (type);
7219       struct cleanup *back_to;
7220 
7221       siginfo_data = xmalloc (len);
7222       back_to = make_cleanup (xfree, siginfo_data);
7223 
7224       if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7225 		       siginfo_data, 0, len) == len)
7226 	discard_cleanups (back_to);
7227       else
7228 	{
7229 	  /* Errors ignored.  */
7230 	  do_cleanups (back_to);
7231 	  siginfo_data = NULL;
7232 	}
7233     }
7234 
7235   inf_state = XCNEW (struct infcall_suspend_state);
7236 
7237   if (siginfo_data)
7238     {
7239       inf_state->siginfo_gdbarch = gdbarch;
7240       inf_state->siginfo_data = siginfo_data;
7241     }
7242 
7243   inf_state->thread_suspend = tp->suspend;
7244 #if 0 /* Currently unused and empty structures are not valid C.  */
7245   inf_state->inferior_suspend = inf->suspend;
7246 #endif
7247 
7248   /* run_inferior_call will not use the signal due to its `proceed' call with
7249      GDB_SIGNAL_0 anyway.  */
7250   tp->suspend.stop_signal = GDB_SIGNAL_0;
7251 
7252   inf_state->stop_pc = stop_pc;
7253 
7254   inf_state->registers = regcache_dup (regcache);
7255 
7256   return inf_state;
7257 }
7258 
7259 /* Restore inferior session state to INF_STATE.  */
7260 
7261 void
7262 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7263 {
7264   struct thread_info *tp = inferior_thread ();
7265 #if 0
7266   struct inferior *inf = current_inferior ();
7267 #endif
7268   struct regcache *regcache = get_current_regcache ();
7269   struct gdbarch *gdbarch = get_regcache_arch (regcache);
7270 
7271   tp->suspend = inf_state->thread_suspend;
7272 #if 0 /* Currently unused and empty structures are not valid C.  */
7273   inf->suspend = inf_state->inferior_suspend;
7274 #endif
7275 
7276   stop_pc = inf_state->stop_pc;
7277 
7278   if (inf_state->siginfo_gdbarch == gdbarch)
7279     {
7280       struct type *type = gdbarch_get_siginfo_type (gdbarch);
7281 
7282       /* Errors ignored.  */
7283       target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7284 		    inf_state->siginfo_data, 0, TYPE_LENGTH (type));
7285     }
7286 
7287   /* The inferior can be gone if the user types "print exit(0)"
7288      (and perhaps other times).  */
7289   if (target_has_execution)
7290     /* NB: The register write goes through to the target.  */
7291     regcache_cpy (regcache, inf_state->registers);
7292 
7293   discard_infcall_suspend_state (inf_state);
7294 }
7295 
7296 static void
7297 do_restore_infcall_suspend_state_cleanup (void *state)
7298 {
7299   restore_infcall_suspend_state (state);
7300 }
7301 
7302 struct cleanup *
7303 make_cleanup_restore_infcall_suspend_state
7304   (struct infcall_suspend_state *inf_state)
7305 {
7306   return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
7307 }
7308 
7309 void
7310 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7311 {
7312   regcache_xfree (inf_state->registers);
7313   xfree (inf_state->siginfo_data);
7314   xfree (inf_state);
7315 }
7316 
7317 struct regcache *
7318 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
7319 {
7320   return inf_state->registers;
7321 }
7322 
7323 /* infcall_control_state contains state regarding gdb's control of the
7324    inferior itself like stepping control.  It also contains session state like
7325    the user's currently selected frame.  */
7326 
7327 struct infcall_control_state
7328 {
7329   struct thread_control_state thread_control;
7330   struct inferior_control_state inferior_control;
7331 
7332   /* Other fields:  */
7333   enum stop_stack_kind stop_stack_dummy;
7334   int stopped_by_random_signal;
7335   int stop_after_trap;
7336 
7337   /* ID if the selected frame when the inferior function call was made.  */
7338   struct frame_id selected_frame_id;
7339 };
7340 
7341 /* Save all of the information associated with the inferior<==>gdb
7342    connection.  */
7343 
7344 struct infcall_control_state *
7345 save_infcall_control_state (void)
7346 {
7347   struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
7348   struct thread_info *tp = inferior_thread ();
7349   struct inferior *inf = current_inferior ();
7350 
7351   inf_status->thread_control = tp->control;
7352   inf_status->inferior_control = inf->control;
7353 
7354   tp->control.step_resume_breakpoint = NULL;
7355   tp->control.exception_resume_breakpoint = NULL;
7356 
7357   /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7358      chain.  If caller's caller is walking the chain, they'll be happier if we
7359      hand them back the original chain when restore_infcall_control_state is
7360      called.  */
7361   tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
7362 
7363   /* Other fields:  */
7364   inf_status->stop_stack_dummy = stop_stack_dummy;
7365   inf_status->stopped_by_random_signal = stopped_by_random_signal;
7366   inf_status->stop_after_trap = stop_after_trap;
7367 
7368   inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7369 
7370   return inf_status;
7371 }
7372 
7373 static int
7374 restore_selected_frame (void *args)
7375 {
7376   struct frame_id *fid = (struct frame_id *) args;
7377   struct frame_info *frame;
7378 
7379   frame = frame_find_by_id (*fid);
7380 
7381   /* If inf_status->selected_frame_id is NULL, there was no previously
7382      selected frame.  */
7383   if (frame == NULL)
7384     {
7385       warning (_("Unable to restore previously selected frame."));
7386       return 0;
7387     }
7388 
7389   select_frame (frame);
7390 
7391   return (1);
7392 }
7393 
7394 /* Restore inferior session state to INF_STATUS.  */
7395 
7396 void
7397 restore_infcall_control_state (struct infcall_control_state *inf_status)
7398 {
7399   struct thread_info *tp = inferior_thread ();
7400   struct inferior *inf = current_inferior ();
7401 
7402   if (tp->control.step_resume_breakpoint)
7403     tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7404 
7405   if (tp->control.exception_resume_breakpoint)
7406     tp->control.exception_resume_breakpoint->disposition
7407       = disp_del_at_next_stop;
7408 
7409   /* Handle the bpstat_copy of the chain.  */
7410   bpstat_clear (&tp->control.stop_bpstat);
7411 
7412   tp->control = inf_status->thread_control;
7413   inf->control = inf_status->inferior_control;
7414 
7415   /* Other fields:  */
7416   stop_stack_dummy = inf_status->stop_stack_dummy;
7417   stopped_by_random_signal = inf_status->stopped_by_random_signal;
7418   stop_after_trap = inf_status->stop_after_trap;
7419 
7420   if (target_has_stack)
7421     {
7422       /* The point of catch_errors is that if the stack is clobbered,
7423          walking the stack might encounter a garbage pointer and
7424          error() trying to dereference it.  */
7425       if (catch_errors
7426 	  (restore_selected_frame, &inf_status->selected_frame_id,
7427 	   "Unable to restore previously selected frame:\n",
7428 	   RETURN_MASK_ERROR) == 0)
7429 	/* Error in restoring the selected frame.  Select the innermost
7430 	   frame.  */
7431 	select_frame (get_current_frame ());
7432     }
7433 
7434   xfree (inf_status);
7435 }
7436 
7437 static void
7438 do_restore_infcall_control_state_cleanup (void *sts)
7439 {
7440   restore_infcall_control_state (sts);
7441 }
7442 
7443 struct cleanup *
7444 make_cleanup_restore_infcall_control_state
7445   (struct infcall_control_state *inf_status)
7446 {
7447   return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7448 }
7449 
7450 void
7451 discard_infcall_control_state (struct infcall_control_state *inf_status)
7452 {
7453   if (inf_status->thread_control.step_resume_breakpoint)
7454     inf_status->thread_control.step_resume_breakpoint->disposition
7455       = disp_del_at_next_stop;
7456 
7457   if (inf_status->thread_control.exception_resume_breakpoint)
7458     inf_status->thread_control.exception_resume_breakpoint->disposition
7459       = disp_del_at_next_stop;
7460 
7461   /* See save_infcall_control_state for info on stop_bpstat.  */
7462   bpstat_clear (&inf_status->thread_control.stop_bpstat);
7463 
7464   xfree (inf_status);
7465 }
7466 
7467 /* restore_inferior_ptid() will be used by the cleanup machinery
7468    to restore the inferior_ptid value saved in a call to
7469    save_inferior_ptid().  */
7470 
7471 static void
7472 restore_inferior_ptid (void *arg)
7473 {
7474   ptid_t *saved_ptid_ptr = arg;
7475 
7476   inferior_ptid = *saved_ptid_ptr;
7477   xfree (arg);
7478 }
7479 
7480 /* Save the value of inferior_ptid so that it may be restored by a
7481    later call to do_cleanups().  Returns the struct cleanup pointer
7482    needed for later doing the cleanup.  */
7483 
7484 struct cleanup *
7485 save_inferior_ptid (void)
7486 {
7487   ptid_t *saved_ptid_ptr;
7488 
7489   saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7490   *saved_ptid_ptr = inferior_ptid;
7491   return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7492 }
7493 
7494 /* See infrun.h.  */
7495 
7496 void
7497 clear_exit_convenience_vars (void)
7498 {
7499   clear_internalvar (lookup_internalvar ("_exitsignal"));
7500   clear_internalvar (lookup_internalvar ("_exitcode"));
7501 }
7502 
7503 
7504 /* User interface for reverse debugging:
7505    Set exec-direction / show exec-direction commands
7506    (returns error unless target implements to_set_exec_direction method).  */
7507 
7508 int execution_direction = EXEC_FORWARD;
7509 static const char exec_forward[] = "forward";
7510 static const char exec_reverse[] = "reverse";
7511 static const char *exec_direction = exec_forward;
7512 static const char *const exec_direction_names[] = {
7513   exec_forward,
7514   exec_reverse,
7515   NULL
7516 };
7517 
7518 static void
7519 set_exec_direction_func (char *args, int from_tty,
7520 			 struct cmd_list_element *cmd)
7521 {
7522   if (target_can_execute_reverse)
7523     {
7524       if (!strcmp (exec_direction, exec_forward))
7525 	execution_direction = EXEC_FORWARD;
7526       else if (!strcmp (exec_direction, exec_reverse))
7527 	execution_direction = EXEC_REVERSE;
7528     }
7529   else
7530     {
7531       exec_direction = exec_forward;
7532       error (_("Target does not support this operation."));
7533     }
7534 }
7535 
7536 static void
7537 show_exec_direction_func (struct ui_file *out, int from_tty,
7538 			  struct cmd_list_element *cmd, const char *value)
7539 {
7540   switch (execution_direction) {
7541   case EXEC_FORWARD:
7542     fprintf_filtered (out, _("Forward.\n"));
7543     break;
7544   case EXEC_REVERSE:
7545     fprintf_filtered (out, _("Reverse.\n"));
7546     break;
7547   default:
7548     internal_error (__FILE__, __LINE__,
7549 		    _("bogus execution_direction value: %d"),
7550 		    (int) execution_direction);
7551   }
7552 }
7553 
7554 static void
7555 show_schedule_multiple (struct ui_file *file, int from_tty,
7556 			struct cmd_list_element *c, const char *value)
7557 {
7558   fprintf_filtered (file, _("Resuming the execution of threads "
7559 			    "of all processes is %s.\n"), value);
7560 }
7561 
7562 /* Implementation of `siginfo' variable.  */
7563 
7564 static const struct internalvar_funcs siginfo_funcs =
7565 {
7566   siginfo_make_value,
7567   NULL,
7568   NULL
7569 };
7570 
7571 void
7572 _initialize_infrun (void)
7573 {
7574   int i;
7575   int numsigs;
7576   struct cmd_list_element *c;
7577 
7578   add_info ("signals", signals_info, _("\
7579 What debugger does when program gets various signals.\n\
7580 Specify a signal as argument to print info on that signal only."));
7581   add_info_alias ("handle", "signals", 0);
7582 
7583   c = add_com ("handle", class_run, handle_command, _("\
7584 Specify how to handle signals.\n\
7585 Usage: handle SIGNAL [ACTIONS]\n\
7586 Args are signals and actions to apply to those signals.\n\
7587 If no actions are specified, the current settings for the specified signals\n\
7588 will be displayed instead.\n\
7589 \n\
7590 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7591 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7592 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7593 The special arg \"all\" is recognized to mean all signals except those\n\
7594 used by the debugger, typically SIGTRAP and SIGINT.\n\
7595 \n\
7596 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7597 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7598 Stop means reenter debugger if this signal happens (implies print).\n\
7599 Print means print a message if this signal happens.\n\
7600 Pass means let program see this signal; otherwise program doesn't know.\n\
7601 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7602 Pass and Stop may be combined.\n\
7603 \n\
7604 Multiple signals may be specified.  Signal numbers and signal names\n\
7605 may be interspersed with actions, with the actions being performed for\n\
7606 all signals cumulatively specified."));
7607   set_cmd_completer (c, handle_completer);
7608 
7609   if (xdb_commands)
7610     {
7611       add_com ("lz", class_info, signals_info, _("\
7612 What debugger does when program gets various signals.\n\
7613 Specify a signal as argument to print info on that signal only."));
7614       add_com ("z", class_run, xdb_handle_command, _("\
7615 Specify how to handle a signal.\n\
7616 Args are signals and actions to apply to those signals.\n\
7617 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7618 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7619 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7620 The special arg \"all\" is recognized to mean all signals except those\n\
7621 used by the debugger, typically SIGTRAP and SIGINT.\n\
7622 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7623 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7624 nopass), \"Q\" (noprint)\n\
7625 Stop means reenter debugger if this signal happens (implies print).\n\
7626 Print means print a message if this signal happens.\n\
7627 Pass means let program see this signal; otherwise program doesn't know.\n\
7628 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7629 Pass and Stop may be combined."));
7630     }
7631 
7632   if (!dbx_commands)
7633     stop_command = add_cmd ("stop", class_obscure,
7634 			    not_just_help_class_command, _("\
7635 There is no `stop' command, but you can set a hook on `stop'.\n\
7636 This allows you to set a list of commands to be run each time execution\n\
7637 of the program stops."), &cmdlist);
7638 
7639   add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7640 Set inferior debugging."), _("\
7641 Show inferior debugging."), _("\
7642 When non-zero, inferior specific debugging is enabled."),
7643 			     NULL,
7644 			     show_debug_infrun,
7645 			     &setdebuglist, &showdebuglist);
7646 
7647   add_setshow_boolean_cmd ("displaced", class_maintenance,
7648 			   &debug_displaced, _("\
7649 Set displaced stepping debugging."), _("\
7650 Show displaced stepping debugging."), _("\
7651 When non-zero, displaced stepping specific debugging is enabled."),
7652 			    NULL,
7653 			    show_debug_displaced,
7654 			    &setdebuglist, &showdebuglist);
7655 
7656   add_setshow_boolean_cmd ("non-stop", no_class,
7657 			   &non_stop_1, _("\
7658 Set whether gdb controls the inferior in non-stop mode."), _("\
7659 Show whether gdb controls the inferior in non-stop mode."), _("\
7660 When debugging a multi-threaded program and this setting is\n\
7661 off (the default, also called all-stop mode), when one thread stops\n\
7662 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7663 all other threads in the program while you interact with the thread of\n\
7664 interest.  When you continue or step a thread, you can allow the other\n\
7665 threads to run, or have them remain stopped, but while you inspect any\n\
7666 thread's state, all threads stop.\n\
7667 \n\
7668 In non-stop mode, when one thread stops, other threads can continue\n\
7669 to run freely.  You'll be able to step each thread independently,\n\
7670 leave it stopped or free to run as needed."),
7671 			   set_non_stop,
7672 			   show_non_stop,
7673 			   &setlist,
7674 			   &showlist);
7675 
7676   numsigs = (int) GDB_SIGNAL_LAST;
7677   signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7678   signal_print = (unsigned char *)
7679     xmalloc (sizeof (signal_print[0]) * numsigs);
7680   signal_program = (unsigned char *)
7681     xmalloc (sizeof (signal_program[0]) * numsigs);
7682   signal_catch = (unsigned char *)
7683     xmalloc (sizeof (signal_catch[0]) * numsigs);
7684   signal_pass = (unsigned char *)
7685     xmalloc (sizeof (signal_pass[0]) * numsigs);
7686   for (i = 0; i < numsigs; i++)
7687     {
7688       signal_stop[i] = 1;
7689       signal_print[i] = 1;
7690       signal_program[i] = 1;
7691       signal_catch[i] = 0;
7692     }
7693 
7694   /* Signals caused by debugger's own actions
7695      should not be given to the program afterwards.  */
7696   signal_program[GDB_SIGNAL_TRAP] = 0;
7697   signal_program[GDB_SIGNAL_INT] = 0;
7698 
7699   /* Signals that are not errors should not normally enter the debugger.  */
7700   signal_stop[GDB_SIGNAL_ALRM] = 0;
7701   signal_print[GDB_SIGNAL_ALRM] = 0;
7702   signal_stop[GDB_SIGNAL_VTALRM] = 0;
7703   signal_print[GDB_SIGNAL_VTALRM] = 0;
7704   signal_stop[GDB_SIGNAL_PROF] = 0;
7705   signal_print[GDB_SIGNAL_PROF] = 0;
7706   signal_stop[GDB_SIGNAL_CHLD] = 0;
7707   signal_print[GDB_SIGNAL_CHLD] = 0;
7708   signal_stop[GDB_SIGNAL_IO] = 0;
7709   signal_print[GDB_SIGNAL_IO] = 0;
7710   signal_stop[GDB_SIGNAL_POLL] = 0;
7711   signal_print[GDB_SIGNAL_POLL] = 0;
7712   signal_stop[GDB_SIGNAL_URG] = 0;
7713   signal_print[GDB_SIGNAL_URG] = 0;
7714   signal_stop[GDB_SIGNAL_WINCH] = 0;
7715   signal_print[GDB_SIGNAL_WINCH] = 0;
7716   signal_stop[GDB_SIGNAL_PRIO] = 0;
7717   signal_print[GDB_SIGNAL_PRIO] = 0;
7718 
7719   /* These signals are used internally by user-level thread
7720      implementations.  (See signal(5) on Solaris.)  Like the above
7721      signals, a healthy program receives and handles them as part of
7722      its normal operation.  */
7723   signal_stop[GDB_SIGNAL_LWP] = 0;
7724   signal_print[GDB_SIGNAL_LWP] = 0;
7725   signal_stop[GDB_SIGNAL_WAITING] = 0;
7726   signal_print[GDB_SIGNAL_WAITING] = 0;
7727   signal_stop[GDB_SIGNAL_CANCEL] = 0;
7728   signal_print[GDB_SIGNAL_CANCEL] = 0;
7729 
7730   /* Update cached state.  */
7731   signal_cache_update (-1);
7732 
7733   add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7734 			    &stop_on_solib_events, _("\
7735 Set stopping for shared library events."), _("\
7736 Show stopping for shared library events."), _("\
7737 If nonzero, gdb will give control to the user when the dynamic linker\n\
7738 notifies gdb of shared library events.  The most common event of interest\n\
7739 to the user would be loading/unloading of a new library."),
7740 			    set_stop_on_solib_events,
7741 			    show_stop_on_solib_events,
7742 			    &setlist, &showlist);
7743 
7744   add_setshow_enum_cmd ("follow-fork-mode", class_run,
7745 			follow_fork_mode_kind_names,
7746 			&follow_fork_mode_string, _("\
7747 Set debugger response to a program call of fork or vfork."), _("\
7748 Show debugger response to a program call of fork or vfork."), _("\
7749 A fork or vfork creates a new process.  follow-fork-mode can be:\n\
7750   parent  - the original process is debugged after a fork\n\
7751   child   - the new process is debugged after a fork\n\
7752 The unfollowed process will continue to run.\n\
7753 By default, the debugger will follow the parent process."),
7754 			NULL,
7755 			show_follow_fork_mode_string,
7756 			&setlist, &showlist);
7757 
7758   add_setshow_enum_cmd ("follow-exec-mode", class_run,
7759 			follow_exec_mode_names,
7760 			&follow_exec_mode_string, _("\
7761 Set debugger response to a program call of exec."), _("\
7762 Show debugger response to a program call of exec."), _("\
7763 An exec call replaces the program image of a process.\n\
7764 \n\
7765 follow-exec-mode can be:\n\
7766 \n\
7767   new - the debugger creates a new inferior and rebinds the process\n\
7768 to this new inferior.  The program the process was running before\n\
7769 the exec call can be restarted afterwards by restarting the original\n\
7770 inferior.\n\
7771 \n\
7772   same - the debugger keeps the process bound to the same inferior.\n\
7773 The new executable image replaces the previous executable loaded in\n\
7774 the inferior.  Restarting the inferior after the exec call restarts\n\
7775 the executable the process was running after the exec call.\n\
7776 \n\
7777 By default, the debugger will use the same inferior."),
7778 			NULL,
7779 			show_follow_exec_mode_string,
7780 			&setlist, &showlist);
7781 
7782   add_setshow_enum_cmd ("scheduler-locking", class_run,
7783 			scheduler_enums, &scheduler_mode, _("\
7784 Set mode for locking scheduler during execution."), _("\
7785 Show mode for locking scheduler during execution."), _("\
7786 off  == no locking (threads may preempt at any time)\n\
7787 on   == full locking (no thread except the current thread may run)\n\
7788 step == scheduler locked during every single-step operation.\n\
7789 	In this mode, no other thread may run during a step command.\n\
7790 	Other threads may run while stepping over a function call ('next')."),
7791 			set_schedlock_func,	/* traps on target vector */
7792 			show_scheduler_mode,
7793 			&setlist, &showlist);
7794 
7795   add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7796 Set mode for resuming threads of all processes."), _("\
7797 Show mode for resuming threads of all processes."), _("\
7798 When on, execution commands (such as 'continue' or 'next') resume all\n\
7799 threads of all processes.  When off (which is the default), execution\n\
7800 commands only resume the threads of the current process.  The set of\n\
7801 threads that are resumed is further refined by the scheduler-locking\n\
7802 mode (see help set scheduler-locking)."),
7803 			   NULL,
7804 			   show_schedule_multiple,
7805 			   &setlist, &showlist);
7806 
7807   add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7808 Set mode of the step operation."), _("\
7809 Show mode of the step operation."), _("\
7810 When set, doing a step over a function without debug line information\n\
7811 will stop at the first instruction of that function. Otherwise, the\n\
7812 function is skipped and the step command stops at a different source line."),
7813 			   NULL,
7814 			   show_step_stop_if_no_debug,
7815 			   &setlist, &showlist);
7816 
7817   add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7818 				&can_use_displaced_stepping, _("\
7819 Set debugger's willingness to use displaced stepping."), _("\
7820 Show debugger's willingness to use displaced stepping."), _("\
7821 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7822 supported by the target architecture.  If off, gdb will not use displaced\n\
7823 stepping to step over breakpoints, even if such is supported by the target\n\
7824 architecture.  If auto (which is the default), gdb will use displaced stepping\n\
7825 if the target architecture supports it and non-stop mode is active, but will not\n\
7826 use it in all-stop mode (see help set non-stop)."),
7827 				NULL,
7828 				show_can_use_displaced_stepping,
7829 				&setlist, &showlist);
7830 
7831   add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7832 			&exec_direction, _("Set direction of execution.\n\
7833 Options are 'forward' or 'reverse'."),
7834 			_("Show direction of execution (forward/reverse)."),
7835 			_("Tells gdb whether to execute forward or backward."),
7836 			set_exec_direction_func, show_exec_direction_func,
7837 			&setlist, &showlist);
7838 
7839   /* Set/show detach-on-fork: user-settable mode.  */
7840 
7841   add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7842 Set whether gdb will detach the child of a fork."), _("\
7843 Show whether gdb will detach the child of a fork."), _("\
7844 Tells gdb whether to detach the child of a fork."),
7845 			   NULL, NULL, &setlist, &showlist);
7846 
7847   /* Set/show disable address space randomization mode.  */
7848 
7849   add_setshow_boolean_cmd ("disable-randomization", class_support,
7850 			   &disable_randomization, _("\
7851 Set disabling of debuggee's virtual address space randomization."), _("\
7852 Show disabling of debuggee's virtual address space randomization."), _("\
7853 When this mode is on (which is the default), randomization of the virtual\n\
7854 address space is disabled.  Standalone programs run with the randomization\n\
7855 enabled by default on some platforms."),
7856 			   &set_disable_randomization,
7857 			   &show_disable_randomization,
7858 			   &setlist, &showlist);
7859 
7860   /* ptid initializations */
7861   inferior_ptid = null_ptid;
7862   target_last_wait_ptid = minus_one_ptid;
7863 
7864   observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7865   observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7866   observer_attach_thread_exit (infrun_thread_thread_exit);
7867   observer_attach_inferior_exit (infrun_inferior_exit);
7868 
7869   /* Explicitly create without lookup, since that tries to create a
7870      value with a void typed value, and when we get here, gdbarch
7871      isn't initialized yet.  At this point, we're quite sure there
7872      isn't another convenience variable of the same name.  */
7873   create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7874 
7875   add_setshow_boolean_cmd ("observer", no_class,
7876 			   &observer_mode_1, _("\
7877 Set whether gdb controls the inferior in observer mode."), _("\
7878 Show whether gdb controls the inferior in observer mode."), _("\
7879 In observer mode, GDB can get data from the inferior, but not\n\
7880 affect its execution.  Registers and memory may not be changed,\n\
7881 breakpoints may not be set, and the program cannot be interrupted\n\
7882 or signalled."),
7883 			   set_observer_mode,
7884 			   show_observer_mode,
7885 			   &setlist,
7886 			   &showlist);
7887 }
7888