xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/infrun.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /* Target-struct-independent code to start (run) and stop an inferior
2    process.
3 
4    Copyright (C) 1986-2017 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "arch-utils.h"
68 
69 /* Prototypes for local functions */
70 
71 static void signals_info (char *, int);
72 
73 static void handle_command (char *, int);
74 
75 static void sig_print_info (enum gdb_signal);
76 
77 static void sig_print_header (void);
78 
79 static void resume_cleanups (void *);
80 
81 static int hook_stop_stub (void *);
82 
83 static int restore_selected_frame (void *);
84 
85 static int follow_fork (void);
86 
87 static int follow_fork_inferior (int follow_child, int detach_fork);
88 
89 static void follow_inferior_reset_breakpoints (void);
90 
91 static void set_schedlock_func (char *args, int from_tty,
92 				struct cmd_list_element *c);
93 
94 static int currently_stepping (struct thread_info *tp);
95 
96 void _initialize_infrun (void);
97 
98 void nullify_last_target_wait_ptid (void);
99 
100 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
101 
102 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
103 
104 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
105 
106 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
107 
108 /* Asynchronous signal handler registered as event loop source for
109    when we have pending events ready to be passed to the core.  */
110 static struct async_event_handler *infrun_async_inferior_event_token;
111 
112 /* Stores whether infrun_async was previously enabled or disabled.
113    Starts off as -1, indicating "never enabled/disabled".  */
114 static int infrun_is_async = -1;
115 
116 /* See infrun.h.  */
117 
118 void
119 infrun_async (int enable)
120 {
121   if (infrun_is_async != enable)
122     {
123       infrun_is_async = enable;
124 
125       if (debug_infrun)
126 	fprintf_unfiltered (gdb_stdlog,
127 			    "infrun: infrun_async(%d)\n",
128 			    enable);
129 
130       if (enable)
131 	mark_async_event_handler (infrun_async_inferior_event_token);
132       else
133 	clear_async_event_handler (infrun_async_inferior_event_token);
134     }
135 }
136 
137 /* See infrun.h.  */
138 
139 void
140 mark_infrun_async_event_handler (void)
141 {
142   mark_async_event_handler (infrun_async_inferior_event_token);
143 }
144 
145 /* When set, stop the 'step' command if we enter a function which has
146    no line number information.  The normal behavior is that we step
147    over such function.  */
148 int step_stop_if_no_debug = 0;
149 static void
150 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
151 			    struct cmd_list_element *c, const char *value)
152 {
153   fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
154 }
155 
156 /* proceed and normal_stop use this to notify the user when the
157    inferior stopped in a different thread than it had been running
158    in.  */
159 
160 static ptid_t previous_inferior_ptid;
161 
162 /* If set (default for legacy reasons), when following a fork, GDB
163    will detach from one of the fork branches, child or parent.
164    Exactly which branch is detached depends on 'set follow-fork-mode'
165    setting.  */
166 
167 static int detach_fork = 1;
168 
169 int debug_displaced = 0;
170 static void
171 show_debug_displaced (struct ui_file *file, int from_tty,
172 		      struct cmd_list_element *c, const char *value)
173 {
174   fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
175 }
176 
177 unsigned int debug_infrun = 0;
178 static void
179 show_debug_infrun (struct ui_file *file, int from_tty,
180 		   struct cmd_list_element *c, const char *value)
181 {
182   fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
183 }
184 
185 
186 /* Support for disabling address space randomization.  */
187 
188 int disable_randomization = 1;
189 
190 static void
191 show_disable_randomization (struct ui_file *file, int from_tty,
192 			    struct cmd_list_element *c, const char *value)
193 {
194   if (target_supports_disable_randomization ())
195     fprintf_filtered (file,
196 		      _("Disabling randomization of debuggee's "
197 			"virtual address space is %s.\n"),
198 		      value);
199   else
200     fputs_filtered (_("Disabling randomization of debuggee's "
201 		      "virtual address space is unsupported on\n"
202 		      "this platform.\n"), file);
203 }
204 
205 static void
206 set_disable_randomization (char *args, int from_tty,
207 			   struct cmd_list_element *c)
208 {
209   if (!target_supports_disable_randomization ())
210     error (_("Disabling randomization of debuggee's "
211 	     "virtual address space is unsupported on\n"
212 	     "this platform."));
213 }
214 
215 /* User interface for non-stop mode.  */
216 
217 int non_stop = 0;
218 static int non_stop_1 = 0;
219 
220 static void
221 set_non_stop (char *args, int from_tty,
222 	      struct cmd_list_element *c)
223 {
224   if (target_has_execution)
225     {
226       non_stop_1 = non_stop;
227       error (_("Cannot change this setting while the inferior is running."));
228     }
229 
230   non_stop = non_stop_1;
231 }
232 
233 static void
234 show_non_stop (struct ui_file *file, int from_tty,
235 	       struct cmd_list_element *c, const char *value)
236 {
237   fprintf_filtered (file,
238 		    _("Controlling the inferior in non-stop mode is %s.\n"),
239 		    value);
240 }
241 
242 /* "Observer mode" is somewhat like a more extreme version of
243    non-stop, in which all GDB operations that might affect the
244    target's execution have been disabled.  */
245 
246 int observer_mode = 0;
247 static int observer_mode_1 = 0;
248 
249 static void
250 set_observer_mode (char *args, int from_tty,
251 		   struct cmd_list_element *c)
252 {
253   if (target_has_execution)
254     {
255       observer_mode_1 = observer_mode;
256       error (_("Cannot change this setting while the inferior is running."));
257     }
258 
259   observer_mode = observer_mode_1;
260 
261   may_write_registers = !observer_mode;
262   may_write_memory = !observer_mode;
263   may_insert_breakpoints = !observer_mode;
264   may_insert_tracepoints = !observer_mode;
265   /* We can insert fast tracepoints in or out of observer mode,
266      but enable them if we're going into this mode.  */
267   if (observer_mode)
268     may_insert_fast_tracepoints = 1;
269   may_stop = !observer_mode;
270   update_target_permissions ();
271 
272   /* Going *into* observer mode we must force non-stop, then
273      going out we leave it that way.  */
274   if (observer_mode)
275     {
276       pagination_enabled = 0;
277       non_stop = non_stop_1 = 1;
278     }
279 
280   if (from_tty)
281     printf_filtered (_("Observer mode is now %s.\n"),
282 		     (observer_mode ? "on" : "off"));
283 }
284 
285 static void
286 show_observer_mode (struct ui_file *file, int from_tty,
287 		    struct cmd_list_element *c, const char *value)
288 {
289   fprintf_filtered (file, _("Observer mode is %s.\n"), value);
290 }
291 
292 /* This updates the value of observer mode based on changes in
293    permissions.  Note that we are deliberately ignoring the values of
294    may-write-registers and may-write-memory, since the user may have
295    reason to enable these during a session, for instance to turn on a
296    debugging-related global.  */
297 
298 void
299 update_observer_mode (void)
300 {
301   int newval;
302 
303   newval = (!may_insert_breakpoints
304 	    && !may_insert_tracepoints
305 	    && may_insert_fast_tracepoints
306 	    && !may_stop
307 	    && non_stop);
308 
309   /* Let the user know if things change.  */
310   if (newval != observer_mode)
311     printf_filtered (_("Observer mode is now %s.\n"),
312 		     (newval ? "on" : "off"));
313 
314   observer_mode = observer_mode_1 = newval;
315 }
316 
317 /* Tables of how to react to signals; the user sets them.  */
318 
319 static unsigned char *signal_stop;
320 static unsigned char *signal_print;
321 static unsigned char *signal_program;
322 
323 /* Table of signals that are registered with "catch signal".  A
324    non-zero entry indicates that the signal is caught by some "catch
325    signal" command.  This has size GDB_SIGNAL_LAST, to accommodate all
326    signals.  */
327 static unsigned char *signal_catch;
328 
329 /* Table of signals that the target may silently handle.
330    This is automatically determined from the flags above,
331    and simply cached here.  */
332 static unsigned char *signal_pass;
333 
334 #define SET_SIGS(nsigs,sigs,flags) \
335   do { \
336     int signum = (nsigs); \
337     while (signum-- > 0) \
338       if ((sigs)[signum]) \
339 	(flags)[signum] = 1; \
340   } while (0)
341 
342 #define UNSET_SIGS(nsigs,sigs,flags) \
343   do { \
344     int signum = (nsigs); \
345     while (signum-- > 0) \
346       if ((sigs)[signum]) \
347 	(flags)[signum] = 0; \
348   } while (0)
349 
350 /* Update the target's copy of SIGNAL_PROGRAM.  The sole purpose of
351    this function is to avoid exporting `signal_program'.  */
352 
353 void
354 update_signals_program_target (void)
355 {
356   target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
357 }
358 
359 /* Value to pass to target_resume() to cause all threads to resume.  */
360 
361 #define RESUME_ALL minus_one_ptid
362 
363 /* Command list pointer for the "stop" placeholder.  */
364 
365 static struct cmd_list_element *stop_command;
366 
367 /* Nonzero if we want to give control to the user when we're notified
368    of shared library events by the dynamic linker.  */
369 int stop_on_solib_events;
370 
371 /* Enable or disable optional shared library event breakpoints
372    as appropriate when the above flag is changed.  */
373 
374 static void
375 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
376 {
377   update_solib_breakpoints ();
378 }
379 
380 static void
381 show_stop_on_solib_events (struct ui_file *file, int from_tty,
382 			   struct cmd_list_element *c, const char *value)
383 {
384   fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
385 		    value);
386 }
387 
388 /* Nonzero after stop if current stack frame should be printed.  */
389 
390 static int stop_print_frame;
391 
392 /* This is a cached copy of the pid/waitstatus of the last event
393    returned by target_wait()/deprecated_target_wait_hook().  This
394    information is returned by get_last_target_status().  */
395 static ptid_t target_last_wait_ptid;
396 static struct target_waitstatus target_last_waitstatus;
397 
398 static void context_switch (ptid_t ptid);
399 
400 void init_thread_stepping_state (struct thread_info *tss);
401 
402 static const char follow_fork_mode_child[] = "child";
403 static const char follow_fork_mode_parent[] = "parent";
404 
405 static const char *const follow_fork_mode_kind_names[] = {
406   follow_fork_mode_child,
407   follow_fork_mode_parent,
408   NULL
409 };
410 
411 static const char *follow_fork_mode_string = follow_fork_mode_parent;
412 static void
413 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
414 			      struct cmd_list_element *c, const char *value)
415 {
416   fprintf_filtered (file,
417 		    _("Debugger response to a program "
418 		      "call of fork or vfork is \"%s\".\n"),
419 		    value);
420 }
421 
422 
423 /* Handle changes to the inferior list based on the type of fork,
424    which process is being followed, and whether the other process
425    should be detached.  On entry inferior_ptid must be the ptid of
426    the fork parent.  At return inferior_ptid is the ptid of the
427    followed inferior.  */
428 
429 static int
430 follow_fork_inferior (int follow_child, int detach_fork)
431 {
432   int has_vforked;
433   ptid_t parent_ptid, child_ptid;
434 
435   has_vforked = (inferior_thread ()->pending_follow.kind
436 		 == TARGET_WAITKIND_VFORKED);
437   parent_ptid = inferior_ptid;
438   child_ptid = inferior_thread ()->pending_follow.value.related_pid;
439 
440   if (has_vforked
441       && !non_stop /* Non-stop always resumes both branches.  */
442       && current_ui->prompt_state == PROMPT_BLOCKED
443       && !(follow_child || detach_fork || sched_multi))
444     {
445       /* The parent stays blocked inside the vfork syscall until the
446 	 child execs or exits.  If we don't let the child run, then
447 	 the parent stays blocked.  If we're telling the parent to run
448 	 in the foreground, the user will not be able to ctrl-c to get
449 	 back the terminal, effectively hanging the debug session.  */
450       fprintf_filtered (gdb_stderr, _("\
451 Can not resume the parent process over vfork in the foreground while\n\
452 holding the child stopped.  Try \"set detach-on-fork\" or \
453 \"set schedule-multiple\".\n"));
454       /* FIXME output string > 80 columns.  */
455       return 1;
456     }
457 
458   if (!follow_child)
459     {
460       /* Detach new forked process?  */
461       if (detach_fork)
462 	{
463 	  /* Before detaching from the child, remove all breakpoints
464 	     from it.  If we forked, then this has already been taken
465 	     care of by infrun.c.  If we vforked however, any
466 	     breakpoint inserted in the parent is visible in the
467 	     child, even those added while stopped in a vfork
468 	     catchpoint.  This will remove the breakpoints from the
469 	     parent also, but they'll be reinserted below.  */
470 	  if (has_vforked)
471 	    {
472 	      /* Keep breakpoints list in sync.  */
473 	      remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
474 	    }
475 
476 	  if (info_verbose || debug_infrun)
477 	    {
478 	      /* Ensure that we have a process ptid.  */
479 	      ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
480 
481 	      target_terminal_ours_for_output ();
482 	      fprintf_filtered (gdb_stdlog,
483 				_("Detaching after %s from child %s.\n"),
484 				has_vforked ? "vfork" : "fork",
485 				target_pid_to_str (process_ptid));
486 	    }
487 	}
488       else
489 	{
490 	  struct inferior *parent_inf, *child_inf;
491 	  struct cleanup *old_chain;
492 
493 	  /* Add process to GDB's tables.  */
494 	  child_inf = add_inferior (ptid_get_pid (child_ptid));
495 
496 	  parent_inf = current_inferior ();
497 	  child_inf->attach_flag = parent_inf->attach_flag;
498 	  copy_terminal_info (child_inf, parent_inf);
499 	  child_inf->gdbarch = parent_inf->gdbarch;
500 	  copy_inferior_target_desc_info (child_inf, parent_inf);
501 
502 	  old_chain = save_current_space_and_thread ();
503 
504 	  inferior_ptid = child_ptid;
505 	  add_thread (inferior_ptid);
506 	  set_current_inferior (child_inf);
507 	  child_inf->symfile_flags = SYMFILE_NO_READ;
508 
509 	  /* If this is a vfork child, then the address-space is
510 	     shared with the parent.  */
511 	  if (has_vforked)
512 	    {
513 	      child_inf->pspace = parent_inf->pspace;
514 	      child_inf->aspace = parent_inf->aspace;
515 
516 	      /* The parent will be frozen until the child is done
517 		 with the shared region.  Keep track of the
518 		 parent.  */
519 	      child_inf->vfork_parent = parent_inf;
520 	      child_inf->pending_detach = 0;
521 	      parent_inf->vfork_child = child_inf;
522 	      parent_inf->pending_detach = 0;
523 	    }
524 	  else
525 	    {
526 	      child_inf->aspace = new_address_space ();
527 	      child_inf->pspace = add_program_space (child_inf->aspace);
528 	      child_inf->removable = 1;
529 	      set_current_program_space (child_inf->pspace);
530 	      clone_program_space (child_inf->pspace, parent_inf->pspace);
531 
532 	      /* Let the shared library layer (e.g., solib-svr4) learn
533 		 about this new process, relocate the cloned exec, pull
534 		 in shared libraries, and install the solib event
535 		 breakpoint.  If a "cloned-VM" event was propagated
536 		 better throughout the core, this wouldn't be
537 		 required.  */
538 	      solib_create_inferior_hook (0);
539 	    }
540 
541 	  do_cleanups (old_chain);
542 	}
543 
544       if (has_vforked)
545 	{
546 	  struct inferior *parent_inf;
547 
548 	  parent_inf = current_inferior ();
549 
550 	  /* If we detached from the child, then we have to be careful
551 	     to not insert breakpoints in the parent until the child
552 	     is done with the shared memory region.  However, if we're
553 	     staying attached to the child, then we can and should
554 	     insert breakpoints, so that we can debug it.  A
555 	     subsequent child exec or exit is enough to know when does
556 	     the child stops using the parent's address space.  */
557 	  parent_inf->waiting_for_vfork_done = detach_fork;
558 	  parent_inf->pspace->breakpoints_not_allowed = detach_fork;
559 	}
560     }
561   else
562     {
563       /* Follow the child.  */
564       struct inferior *parent_inf, *child_inf;
565       struct program_space *parent_pspace;
566 
567       if (info_verbose || debug_infrun)
568 	{
569 	  target_terminal_ours_for_output ();
570 	  fprintf_filtered (gdb_stdlog,
571 			    _("Attaching after %s %s to child %s.\n"),
572 			    target_pid_to_str (parent_ptid),
573 			    has_vforked ? "vfork" : "fork",
574 			    target_pid_to_str (child_ptid));
575 	}
576 
577       /* Add the new inferior first, so that the target_detach below
578 	 doesn't unpush the target.  */
579 
580       child_inf = add_inferior (ptid_get_pid (child_ptid));
581 
582       parent_inf = current_inferior ();
583       child_inf->attach_flag = parent_inf->attach_flag;
584       copy_terminal_info (child_inf, parent_inf);
585       child_inf->gdbarch = parent_inf->gdbarch;
586       copy_inferior_target_desc_info (child_inf, parent_inf);
587 
588       parent_pspace = parent_inf->pspace;
589 
590       /* If we're vforking, we want to hold on to the parent until the
591 	 child exits or execs.  At child exec or exit time we can
592 	 remove the old breakpoints from the parent and detach or
593 	 resume debugging it.  Otherwise, detach the parent now; we'll
594 	 want to reuse it's program/address spaces, but we can't set
595 	 them to the child before removing breakpoints from the
596 	 parent, otherwise, the breakpoints module could decide to
597 	 remove breakpoints from the wrong process (since they'd be
598 	 assigned to the same address space).  */
599 
600       if (has_vforked)
601 	{
602 	  gdb_assert (child_inf->vfork_parent == NULL);
603 	  gdb_assert (parent_inf->vfork_child == NULL);
604 	  child_inf->vfork_parent = parent_inf;
605 	  child_inf->pending_detach = 0;
606 	  parent_inf->vfork_child = child_inf;
607 	  parent_inf->pending_detach = detach_fork;
608 	  parent_inf->waiting_for_vfork_done = 0;
609 	}
610       else if (detach_fork)
611 	{
612 	  if (info_verbose || debug_infrun)
613 	    {
614 	      /* Ensure that we have a process ptid.  */
615 	      ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
616 
617 	      target_terminal_ours_for_output ();
618 	      fprintf_filtered (gdb_stdlog,
619 				_("Detaching after fork from "
620 				  "child %s.\n"),
621 				target_pid_to_str (process_ptid));
622 	    }
623 
624 	  target_detach (NULL, 0);
625 	}
626 
627       /* Note that the detach above makes PARENT_INF dangling.  */
628 
629       /* Add the child thread to the appropriate lists, and switch to
630 	 this new thread, before cloning the program space, and
631 	 informing the solib layer about this new process.  */
632 
633       inferior_ptid = child_ptid;
634       add_thread (inferior_ptid);
635       set_current_inferior (child_inf);
636 
637       /* If this is a vfork child, then the address-space is shared
638 	 with the parent.  If we detached from the parent, then we can
639 	 reuse the parent's program/address spaces.  */
640       if (has_vforked || detach_fork)
641 	{
642 	  child_inf->pspace = parent_pspace;
643 	  child_inf->aspace = child_inf->pspace->aspace;
644 	}
645       else
646 	{
647 	  child_inf->aspace = new_address_space ();
648 	  child_inf->pspace = add_program_space (child_inf->aspace);
649 	  child_inf->removable = 1;
650 	  child_inf->symfile_flags = SYMFILE_NO_READ;
651 	  set_current_program_space (child_inf->pspace);
652 	  clone_program_space (child_inf->pspace, parent_pspace);
653 
654 	  /* Let the shared library layer (e.g., solib-svr4) learn
655 	     about this new process, relocate the cloned exec, pull in
656 	     shared libraries, and install the solib event breakpoint.
657 	     If a "cloned-VM" event was propagated better throughout
658 	     the core, this wouldn't be required.  */
659 	  solib_create_inferior_hook (0);
660 	}
661     }
662 
663   return target_follow_fork (follow_child, detach_fork);
664 }
665 
666 /* Tell the target to follow the fork we're stopped at.  Returns true
667    if the inferior should be resumed; false, if the target for some
668    reason decided it's best not to resume.  */
669 
670 static int
671 follow_fork (void)
672 {
673   int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
674   int should_resume = 1;
675   struct thread_info *tp;
676 
677   /* Copy user stepping state to the new inferior thread.  FIXME: the
678      followed fork child thread should have a copy of most of the
679      parent thread structure's run control related fields, not just these.
680      Initialized to avoid "may be used uninitialized" warnings from gcc.  */
681   struct breakpoint *step_resume_breakpoint = NULL;
682   struct breakpoint *exception_resume_breakpoint = NULL;
683   CORE_ADDR step_range_start = 0;
684   CORE_ADDR step_range_end = 0;
685   struct frame_id step_frame_id = { 0 };
686   struct thread_fsm *thread_fsm = NULL;
687 
688   if (!non_stop)
689     {
690       ptid_t wait_ptid;
691       struct target_waitstatus wait_status;
692 
693       /* Get the last target status returned by target_wait().  */
694       get_last_target_status (&wait_ptid, &wait_status);
695 
696       /* If not stopped at a fork event, then there's nothing else to
697 	 do.  */
698       if (wait_status.kind != TARGET_WAITKIND_FORKED
699 	  && wait_status.kind != TARGET_WAITKIND_VFORKED)
700 	return 1;
701 
702       /* Check if we switched over from WAIT_PTID, since the event was
703 	 reported.  */
704       if (!ptid_equal (wait_ptid, minus_one_ptid)
705 	  && !ptid_equal (inferior_ptid, wait_ptid))
706 	{
707 	  /* We did.  Switch back to WAIT_PTID thread, to tell the
708 	     target to follow it (in either direction).  We'll
709 	     afterwards refuse to resume, and inform the user what
710 	     happened.  */
711 	  switch_to_thread (wait_ptid);
712 	  should_resume = 0;
713 	}
714     }
715 
716   tp = inferior_thread ();
717 
718   /* If there were any forks/vforks that were caught and are now to be
719      followed, then do so now.  */
720   switch (tp->pending_follow.kind)
721     {
722     case TARGET_WAITKIND_FORKED:
723     case TARGET_WAITKIND_VFORKED:
724       {
725 	ptid_t parent, child;
726 
727 	/* If the user did a next/step, etc, over a fork call,
728 	   preserve the stepping state in the fork child.  */
729 	if (follow_child && should_resume)
730 	  {
731 	    step_resume_breakpoint = clone_momentary_breakpoint
732 					 (tp->control.step_resume_breakpoint);
733 	    step_range_start = tp->control.step_range_start;
734 	    step_range_end = tp->control.step_range_end;
735 	    step_frame_id = tp->control.step_frame_id;
736 	    exception_resume_breakpoint
737 	      = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
738 	    thread_fsm = tp->thread_fsm;
739 
740 	    /* For now, delete the parent's sr breakpoint, otherwise,
741 	       parent/child sr breakpoints are considered duplicates,
742 	       and the child version will not be installed.  Remove
743 	       this when the breakpoints module becomes aware of
744 	       inferiors and address spaces.  */
745 	    delete_step_resume_breakpoint (tp);
746 	    tp->control.step_range_start = 0;
747 	    tp->control.step_range_end = 0;
748 	    tp->control.step_frame_id = null_frame_id;
749 	    delete_exception_resume_breakpoint (tp);
750 	    tp->thread_fsm = NULL;
751 	  }
752 
753 	parent = inferior_ptid;
754 	child = tp->pending_follow.value.related_pid;
755 
756 	/* Set up inferior(s) as specified by the caller, and tell the
757 	   target to do whatever is necessary to follow either parent
758 	   or child.  */
759 	if (follow_fork_inferior (follow_child, detach_fork))
760 	  {
761 	    /* Target refused to follow, or there's some other reason
762 	       we shouldn't resume.  */
763 	    should_resume = 0;
764 	  }
765 	else
766 	  {
767 	    /* This pending follow fork event is now handled, one way
768 	       or another.  The previous selected thread may be gone
769 	       from the lists by now, but if it is still around, need
770 	       to clear the pending follow request.  */
771 	    tp = find_thread_ptid (parent);
772 	    if (tp)
773 	      tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
774 
775 	    /* This makes sure we don't try to apply the "Switched
776 	       over from WAIT_PID" logic above.  */
777 	    nullify_last_target_wait_ptid ();
778 
779 	    /* If we followed the child, switch to it...  */
780 	    if (follow_child)
781 	      {
782 		switch_to_thread (child);
783 
784 		/* ... and preserve the stepping state, in case the
785 		   user was stepping over the fork call.  */
786 		if (should_resume)
787 		  {
788 		    tp = inferior_thread ();
789 		    tp->control.step_resume_breakpoint
790 		      = step_resume_breakpoint;
791 		    tp->control.step_range_start = step_range_start;
792 		    tp->control.step_range_end = step_range_end;
793 		    tp->control.step_frame_id = step_frame_id;
794 		    tp->control.exception_resume_breakpoint
795 		      = exception_resume_breakpoint;
796 		    tp->thread_fsm = thread_fsm;
797 		  }
798 		else
799 		  {
800 		    /* If we get here, it was because we're trying to
801 		       resume from a fork catchpoint, but, the user
802 		       has switched threads away from the thread that
803 		       forked.  In that case, the resume command
804 		       issued is most likely not applicable to the
805 		       child, so just warn, and refuse to resume.  */
806 		    warning (_("Not resuming: switched threads "
807 			       "before following fork child."));
808 		  }
809 
810 		/* Reset breakpoints in the child as appropriate.  */
811 		follow_inferior_reset_breakpoints ();
812 	      }
813 	    else
814 	      switch_to_thread (parent);
815 	  }
816       }
817       break;
818     case TARGET_WAITKIND_SPURIOUS:
819       /* Nothing to follow.  */
820       break;
821     default:
822       internal_error (__FILE__, __LINE__,
823 		      "Unexpected pending_follow.kind %d\n",
824 		      tp->pending_follow.kind);
825       break;
826     }
827 
828   return should_resume;
829 }
830 
831 static void
832 follow_inferior_reset_breakpoints (void)
833 {
834   struct thread_info *tp = inferior_thread ();
835 
836   /* Was there a step_resume breakpoint?  (There was if the user
837      did a "next" at the fork() call.)  If so, explicitly reset its
838      thread number.  Cloned step_resume breakpoints are disabled on
839      creation, so enable it here now that it is associated with the
840      correct thread.
841 
842      step_resumes are a form of bp that are made to be per-thread.
843      Since we created the step_resume bp when the parent process
844      was being debugged, and now are switching to the child process,
845      from the breakpoint package's viewpoint, that's a switch of
846      "threads".  We must update the bp's notion of which thread
847      it is for, or it'll be ignored when it triggers.  */
848 
849   if (tp->control.step_resume_breakpoint)
850     {
851       breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
852       tp->control.step_resume_breakpoint->loc->enabled = 1;
853     }
854 
855   /* Treat exception_resume breakpoints like step_resume breakpoints.  */
856   if (tp->control.exception_resume_breakpoint)
857     {
858       breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
859       tp->control.exception_resume_breakpoint->loc->enabled = 1;
860     }
861 
862   /* Reinsert all breakpoints in the child.  The user may have set
863      breakpoints after catching the fork, in which case those
864      were never set in the child, but only in the parent.  This makes
865      sure the inserted breakpoints match the breakpoint list.  */
866 
867   breakpoint_re_set ();
868   insert_breakpoints ();
869 }
870 
871 /* The child has exited or execed: resume threads of the parent the
872    user wanted to be executing.  */
873 
874 static int
875 proceed_after_vfork_done (struct thread_info *thread,
876 			  void *arg)
877 {
878   int pid = * (int *) arg;
879 
880   if (ptid_get_pid (thread->ptid) == pid
881       && is_running (thread->ptid)
882       && !is_executing (thread->ptid)
883       && !thread->stop_requested
884       && thread->suspend.stop_signal == GDB_SIGNAL_0)
885     {
886       if (debug_infrun)
887 	fprintf_unfiltered (gdb_stdlog,
888 			    "infrun: resuming vfork parent thread %s\n",
889 			    target_pid_to_str (thread->ptid));
890 
891       switch_to_thread (thread->ptid);
892       clear_proceed_status (0);
893       proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
894     }
895 
896   return 0;
897 }
898 
899 /* Called whenever we notice an exec or exit event, to handle
900    detaching or resuming a vfork parent.  */
901 
902 static void
903 handle_vfork_child_exec_or_exit (int exec)
904 {
905   struct inferior *inf = current_inferior ();
906 
907   if (inf->vfork_parent)
908     {
909       int resume_parent = -1;
910 
911       /* This exec or exit marks the end of the shared memory region
912 	 between the parent and the child.  If the user wanted to
913 	 detach from the parent, now is the time.  */
914 
915       if (inf->vfork_parent->pending_detach)
916 	{
917 	  struct thread_info *tp;
918 	  struct cleanup *old_chain;
919 	  struct program_space *pspace;
920 	  struct address_space *aspace;
921 
922 	  /* follow-fork child, detach-on-fork on.  */
923 
924 	  inf->vfork_parent->pending_detach = 0;
925 
926 	  if (!exec)
927 	    {
928 	      /* If we're handling a child exit, then inferior_ptid
929 		 points at the inferior's pid, not to a thread.  */
930 	      old_chain = save_inferior_ptid ();
931 	      save_current_program_space ();
932 	      save_current_inferior ();
933 	    }
934 	  else
935 	    old_chain = save_current_space_and_thread ();
936 
937 	  /* We're letting loose of the parent.  */
938 	  tp = any_live_thread_of_process (inf->vfork_parent->pid);
939 	  switch_to_thread (tp->ptid);
940 
941 	  /* We're about to detach from the parent, which implicitly
942 	     removes breakpoints from its address space.  There's a
943 	     catch here: we want to reuse the spaces for the child,
944 	     but, parent/child are still sharing the pspace at this
945 	     point, although the exec in reality makes the kernel give
946 	     the child a fresh set of new pages.  The problem here is
947 	     that the breakpoints module being unaware of this, would
948 	     likely chose the child process to write to the parent
949 	     address space.  Swapping the child temporarily away from
950 	     the spaces has the desired effect.  Yes, this is "sort
951 	     of" a hack.  */
952 
953 	  pspace = inf->pspace;
954 	  aspace = inf->aspace;
955 	  inf->aspace = NULL;
956 	  inf->pspace = NULL;
957 
958 	  if (debug_infrun || info_verbose)
959 	    {
960 	      target_terminal_ours_for_output ();
961 
962 	      if (exec)
963 		{
964 		  fprintf_filtered (gdb_stdlog,
965 				    _("Detaching vfork parent process "
966 				      "%d after child exec.\n"),
967 				    inf->vfork_parent->pid);
968 		}
969 	      else
970 		{
971 		  fprintf_filtered (gdb_stdlog,
972 				    _("Detaching vfork parent process "
973 				      "%d after child exit.\n"),
974 				    inf->vfork_parent->pid);
975 		}
976 	    }
977 
978 	  target_detach (NULL, 0);
979 
980 	  /* Put it back.  */
981 	  inf->pspace = pspace;
982 	  inf->aspace = aspace;
983 
984 	  do_cleanups (old_chain);
985 	}
986       else if (exec)
987 	{
988 	  /* We're staying attached to the parent, so, really give the
989 	     child a new address space.  */
990 	  inf->pspace = add_program_space (maybe_new_address_space ());
991 	  inf->aspace = inf->pspace->aspace;
992 	  inf->removable = 1;
993 	  set_current_program_space (inf->pspace);
994 
995 	  resume_parent = inf->vfork_parent->pid;
996 
997 	  /* Break the bonds.  */
998 	  inf->vfork_parent->vfork_child = NULL;
999 	}
1000       else
1001 	{
1002 	  struct cleanup *old_chain;
1003 	  struct program_space *pspace;
1004 
1005 	  /* If this is a vfork child exiting, then the pspace and
1006 	     aspaces were shared with the parent.  Since we're
1007 	     reporting the process exit, we'll be mourning all that is
1008 	     found in the address space, and switching to null_ptid,
1009 	     preparing to start a new inferior.  But, since we don't
1010 	     want to clobber the parent's address/program spaces, we
1011 	     go ahead and create a new one for this exiting
1012 	     inferior.  */
1013 
1014 	  /* Switch to null_ptid, so that clone_program_space doesn't want
1015 	     to read the selected frame of a dead process.  */
1016 	  old_chain = save_inferior_ptid ();
1017 	  inferior_ptid = null_ptid;
1018 
1019 	  /* This inferior is dead, so avoid giving the breakpoints
1020 	     module the option to write through to it (cloning a
1021 	     program space resets breakpoints).  */
1022 	  inf->aspace = NULL;
1023 	  inf->pspace = NULL;
1024 	  pspace = add_program_space (maybe_new_address_space ());
1025 	  set_current_program_space (pspace);
1026 	  inf->removable = 1;
1027 	  inf->symfile_flags = SYMFILE_NO_READ;
1028 	  clone_program_space (pspace, inf->vfork_parent->pspace);
1029 	  inf->pspace = pspace;
1030 	  inf->aspace = pspace->aspace;
1031 
1032 	  /* Put back inferior_ptid.  We'll continue mourning this
1033 	     inferior.  */
1034 	  do_cleanups (old_chain);
1035 
1036 	  resume_parent = inf->vfork_parent->pid;
1037 	  /* Break the bonds.  */
1038 	  inf->vfork_parent->vfork_child = NULL;
1039 	}
1040 
1041       inf->vfork_parent = NULL;
1042 
1043       gdb_assert (current_program_space == inf->pspace);
1044 
1045       if (non_stop && resume_parent != -1)
1046 	{
1047 	  /* If the user wanted the parent to be running, let it go
1048 	     free now.  */
1049 	  struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1050 
1051 	  if (debug_infrun)
1052 	    fprintf_unfiltered (gdb_stdlog,
1053 				"infrun: resuming vfork parent process %d\n",
1054 				resume_parent);
1055 
1056 	  iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1057 
1058 	  do_cleanups (old_chain);
1059 	}
1060     }
1061 }
1062 
1063 /* Enum strings for "set|show follow-exec-mode".  */
1064 
1065 static const char follow_exec_mode_new[] = "new";
1066 static const char follow_exec_mode_same[] = "same";
1067 static const char *const follow_exec_mode_names[] =
1068 {
1069   follow_exec_mode_new,
1070   follow_exec_mode_same,
1071   NULL,
1072 };
1073 
1074 static const char *follow_exec_mode_string = follow_exec_mode_same;
1075 static void
1076 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1077 			      struct cmd_list_element *c, const char *value)
1078 {
1079   fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"),  value);
1080 }
1081 
1082 /* EXEC_FILE_TARGET is assumed to be non-NULL.  */
1083 
1084 static void
1085 follow_exec (ptid_t ptid, char *exec_file_target)
1086 {
1087   struct thread_info *th, *tmp;
1088   struct inferior *inf = current_inferior ();
1089   int pid = ptid_get_pid (ptid);
1090   ptid_t process_ptid;
1091   char *exec_file_host;
1092   struct cleanup *old_chain;
1093 
1094   /* This is an exec event that we actually wish to pay attention to.
1095      Refresh our symbol table to the newly exec'd program, remove any
1096      momentary bp's, etc.
1097 
1098      If there are breakpoints, they aren't really inserted now,
1099      since the exec() transformed our inferior into a fresh set
1100      of instructions.
1101 
1102      We want to preserve symbolic breakpoints on the list, since
1103      we have hopes that they can be reset after the new a.out's
1104      symbol table is read.
1105 
1106      However, any "raw" breakpoints must be removed from the list
1107      (e.g., the solib bp's), since their address is probably invalid
1108      now.
1109 
1110      And, we DON'T want to call delete_breakpoints() here, since
1111      that may write the bp's "shadow contents" (the instruction
1112      value that was overwritten witha TRAP instruction).  Since
1113      we now have a new a.out, those shadow contents aren't valid.  */
1114 
1115   mark_breakpoints_out ();
1116 
1117   /* The target reports the exec event to the main thread, even if
1118      some other thread does the exec, and even if the main thread was
1119      stopped or already gone.  We may still have non-leader threads of
1120      the process on our list.  E.g., on targets that don't have thread
1121      exit events (like remote); or on native Linux in non-stop mode if
1122      there were only two threads in the inferior and the non-leader
1123      one is the one that execs (and nothing forces an update of the
1124      thread list up to here).  When debugging remotely, it's best to
1125      avoid extra traffic, when possible, so avoid syncing the thread
1126      list with the target, and instead go ahead and delete all threads
1127      of the process but one that reported the event.  Note this must
1128      be done before calling update_breakpoints_after_exec, as
1129      otherwise clearing the threads' resources would reference stale
1130      thread breakpoints -- it may have been one of these threads that
1131      stepped across the exec.  We could just clear their stepping
1132      states, but as long as we're iterating, might as well delete
1133      them.  Deleting them now rather than at the next user-visible
1134      stop provides a nicer sequence of events for user and MI
1135      notifications.  */
1136   ALL_THREADS_SAFE (th, tmp)
1137     if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1138       delete_thread (th->ptid);
1139 
1140   /* We also need to clear any left over stale state for the
1141      leader/event thread.  E.g., if there was any step-resume
1142      breakpoint or similar, it's gone now.  We cannot truly
1143      step-to-next statement through an exec().  */
1144   th = inferior_thread ();
1145   th->control.step_resume_breakpoint = NULL;
1146   th->control.exception_resume_breakpoint = NULL;
1147   th->control.single_step_breakpoints = NULL;
1148   th->control.step_range_start = 0;
1149   th->control.step_range_end = 0;
1150 
1151   /* The user may have had the main thread held stopped in the
1152      previous image (e.g., schedlock on, or non-stop).  Release
1153      it now.  */
1154   th->stop_requested = 0;
1155 
1156   update_breakpoints_after_exec ();
1157 
1158   /* What is this a.out's name?  */
1159   process_ptid = pid_to_ptid (pid);
1160   printf_unfiltered (_("%s is executing new program: %s\n"),
1161 		     target_pid_to_str (process_ptid),
1162 		     exec_file_target);
1163 
1164   /* We've followed the inferior through an exec.  Therefore, the
1165      inferior has essentially been killed & reborn.  */
1166 
1167   gdb_flush (gdb_stdout);
1168 
1169   breakpoint_init_inferior (inf_execd);
1170 
1171   exec_file_host = exec_file_find (exec_file_target, NULL);
1172   old_chain = make_cleanup (xfree, exec_file_host);
1173 
1174   /* If we were unable to map the executable target pathname onto a host
1175      pathname, tell the user that.  Otherwise GDB's subsequent behavior
1176      is confusing.  Maybe it would even be better to stop at this point
1177      so that the user can specify a file manually before continuing.  */
1178   if (exec_file_host == NULL)
1179     warning (_("Could not load symbols for executable %s.\n"
1180 	       "Do you need \"set sysroot\"?"),
1181 	     exec_file_target);
1182 
1183   /* Reset the shared library package.  This ensures that we get a
1184      shlib event when the child reaches "_start", at which point the
1185      dld will have had a chance to initialize the child.  */
1186   /* Also, loading a symbol file below may trigger symbol lookups, and
1187      we don't want those to be satisfied by the libraries of the
1188      previous incarnation of this process.  */
1189   no_shared_libraries (NULL, 0);
1190 
1191   if (follow_exec_mode_string == follow_exec_mode_new)
1192     {
1193       /* The user wants to keep the old inferior and program spaces
1194 	 around.  Create a new fresh one, and switch to it.  */
1195 
1196       /* Do exit processing for the original inferior before adding
1197 	 the new inferior so we don't have two active inferiors with
1198 	 the same ptid, which can confuse find_inferior_ptid.  */
1199       exit_inferior_num_silent (current_inferior ()->num);
1200 
1201       inf = add_inferior_with_spaces ();
1202       inf->pid = pid;
1203       target_follow_exec (inf, exec_file_target);
1204 
1205       set_current_inferior (inf);
1206       set_current_program_space (inf->pspace);
1207     }
1208   else
1209     {
1210       /* The old description may no longer be fit for the new image.
1211 	 E.g, a 64-bit process exec'ed a 32-bit process.  Clear the
1212 	 old description; we'll read a new one below.  No need to do
1213 	 this on "follow-exec-mode new", as the old inferior stays
1214 	 around (its description is later cleared/refetched on
1215 	 restart).  */
1216       target_clear_description ();
1217     }
1218 
1219   gdb_assert (current_program_space == inf->pspace);
1220 
1221   /* Attempt to open the exec file.  SYMFILE_DEFER_BP_RESET is used
1222      because the proper displacement for a PIE (Position Independent
1223      Executable) main symbol file will only be computed by
1224      solib_create_inferior_hook below.  breakpoint_re_set would fail
1225      to insert the breakpoints with the zero displacement.  */
1226   try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
1227 
1228   do_cleanups (old_chain);
1229 
1230   /* If the target can specify a description, read it.  Must do this
1231      after flipping to the new executable (because the target supplied
1232      description must be compatible with the executable's
1233      architecture, and the old executable may e.g., be 32-bit, while
1234      the new one 64-bit), and before anything involving memory or
1235      registers.  */
1236   target_find_description ();
1237 
1238   /* The add_thread call ends up reading registers, so do it after updating the
1239      target description.  */
1240   if (follow_exec_mode_string == follow_exec_mode_new)
1241     add_thread (ptid);
1242 
1243   solib_create_inferior_hook (0);
1244 
1245   jit_inferior_created_hook ();
1246 
1247   breakpoint_re_set ();
1248 
1249   /* Reinsert all breakpoints.  (Those which were symbolic have
1250      been reset to the proper address in the new a.out, thanks
1251      to symbol_file_command...).  */
1252   insert_breakpoints ();
1253 
1254   /* The next resume of this inferior should bring it to the shlib
1255      startup breakpoints.  (If the user had also set bp's on
1256      "main" from the old (parent) process, then they'll auto-
1257      matically get reset there in the new process.).  */
1258 }
1259 
1260 /* The queue of threads that need to do a step-over operation to get
1261    past e.g., a breakpoint.  What technique is used to step over the
1262    breakpoint/watchpoint does not matter -- all threads end up in the
1263    same queue, to maintain rough temporal order of execution, in order
1264    to avoid starvation, otherwise, we could e.g., find ourselves
1265    constantly stepping the same couple threads past their breakpoints
1266    over and over, if the single-step finish fast enough.  */
1267 struct thread_info *step_over_queue_head;
1268 
1269 /* Bit flags indicating what the thread needs to step over.  */
1270 
1271 enum step_over_what_flag
1272   {
1273     /* Step over a breakpoint.  */
1274     STEP_OVER_BREAKPOINT = 1,
1275 
1276     /* Step past a non-continuable watchpoint, in order to let the
1277        instruction execute so we can evaluate the watchpoint
1278        expression.  */
1279     STEP_OVER_WATCHPOINT = 2
1280   };
1281 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1282 
1283 /* Info about an instruction that is being stepped over.  */
1284 
1285 struct step_over_info
1286 {
1287   /* If we're stepping past a breakpoint, this is the address space
1288      and address of the instruction the breakpoint is set at.  We'll
1289      skip inserting all breakpoints here.  Valid iff ASPACE is
1290      non-NULL.  */
1291   struct address_space *aspace;
1292   CORE_ADDR address;
1293 
1294   /* The instruction being stepped over triggers a nonsteppable
1295      watchpoint.  If true, we'll skip inserting watchpoints.  */
1296   int nonsteppable_watchpoint_p;
1297 
1298   /* The thread's global number.  */
1299   int thread;
1300 };
1301 
1302 /* The step-over info of the location that is being stepped over.
1303 
1304    Note that with async/breakpoint always-inserted mode, a user might
1305    set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1306    being stepped over.  As setting a new breakpoint inserts all
1307    breakpoints, we need to make sure the breakpoint being stepped over
1308    isn't inserted then.  We do that by only clearing the step-over
1309    info when the step-over is actually finished (or aborted).
1310 
1311    Presently GDB can only step over one breakpoint at any given time.
1312    Given threads that can't run code in the same address space as the
1313    breakpoint's can't really miss the breakpoint, GDB could be taught
1314    to step-over at most one breakpoint per address space (so this info
1315    could move to the address space object if/when GDB is extended).
1316    The set of breakpoints being stepped over will normally be much
1317    smaller than the set of all breakpoints, so a flag in the
1318    breakpoint location structure would be wasteful.  A separate list
1319    also saves complexity and run-time, as otherwise we'd have to go
1320    through all breakpoint locations clearing their flag whenever we
1321    start a new sequence.  Similar considerations weigh against storing
1322    this info in the thread object.  Plus, not all step overs actually
1323    have breakpoint locations -- e.g., stepping past a single-step
1324    breakpoint, or stepping to complete a non-continuable
1325    watchpoint.  */
1326 static struct step_over_info step_over_info;
1327 
1328 /* Record the address of the breakpoint/instruction we're currently
1329    stepping over.
1330    N.B. We record the aspace and address now, instead of say just the thread,
1331    because when we need the info later the thread may be running.  */
1332 
1333 static void
1334 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1335 		    int nonsteppable_watchpoint_p,
1336 		    int thread)
1337 {
1338   step_over_info.aspace = aspace;
1339   step_over_info.address = address;
1340   step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1341   step_over_info.thread = thread;
1342 }
1343 
1344 /* Called when we're not longer stepping over a breakpoint / an
1345    instruction, so all breakpoints are free to be (re)inserted.  */
1346 
1347 static void
1348 clear_step_over_info (void)
1349 {
1350   if (debug_infrun)
1351     fprintf_unfiltered (gdb_stdlog,
1352 			"infrun: clear_step_over_info\n");
1353   step_over_info.aspace = NULL;
1354   step_over_info.address = 0;
1355   step_over_info.nonsteppable_watchpoint_p = 0;
1356   step_over_info.thread = -1;
1357 }
1358 
1359 /* See infrun.h.  */
1360 
1361 int
1362 stepping_past_instruction_at (struct address_space *aspace,
1363 			      CORE_ADDR address)
1364 {
1365   return (step_over_info.aspace != NULL
1366 	  && breakpoint_address_match (aspace, address,
1367 				       step_over_info.aspace,
1368 				       step_over_info.address));
1369 }
1370 
1371 /* See infrun.h.  */
1372 
1373 int
1374 thread_is_stepping_over_breakpoint (int thread)
1375 {
1376   return (step_over_info.thread != -1
1377 	  && thread == step_over_info.thread);
1378 }
1379 
1380 /* See infrun.h.  */
1381 
1382 int
1383 stepping_past_nonsteppable_watchpoint (void)
1384 {
1385   return step_over_info.nonsteppable_watchpoint_p;
1386 }
1387 
1388 /* Returns true if step-over info is valid.  */
1389 
1390 static int
1391 step_over_info_valid_p (void)
1392 {
1393   return (step_over_info.aspace != NULL
1394 	  || stepping_past_nonsteppable_watchpoint ());
1395 }
1396 
1397 
1398 /* Displaced stepping.  */
1399 
1400 /* In non-stop debugging mode, we must take special care to manage
1401    breakpoints properly; in particular, the traditional strategy for
1402    stepping a thread past a breakpoint it has hit is unsuitable.
1403    'Displaced stepping' is a tactic for stepping one thread past a
1404    breakpoint it has hit while ensuring that other threads running
1405    concurrently will hit the breakpoint as they should.
1406 
1407    The traditional way to step a thread T off a breakpoint in a
1408    multi-threaded program in all-stop mode is as follows:
1409 
1410    a0) Initially, all threads are stopped, and breakpoints are not
1411        inserted.
1412    a1) We single-step T, leaving breakpoints uninserted.
1413    a2) We insert breakpoints, and resume all threads.
1414 
1415    In non-stop debugging, however, this strategy is unsuitable: we
1416    don't want to have to stop all threads in the system in order to
1417    continue or step T past a breakpoint.  Instead, we use displaced
1418    stepping:
1419 
1420    n0) Initially, T is stopped, other threads are running, and
1421        breakpoints are inserted.
1422    n1) We copy the instruction "under" the breakpoint to a separate
1423        location, outside the main code stream, making any adjustments
1424        to the instruction, register, and memory state as directed by
1425        T's architecture.
1426    n2) We single-step T over the instruction at its new location.
1427    n3) We adjust the resulting register and memory state as directed
1428        by T's architecture.  This includes resetting T's PC to point
1429        back into the main instruction stream.
1430    n4) We resume T.
1431 
1432    This approach depends on the following gdbarch methods:
1433 
1434    - gdbarch_max_insn_length and gdbarch_displaced_step_location
1435      indicate where to copy the instruction, and how much space must
1436      be reserved there.  We use these in step n1.
1437 
1438    - gdbarch_displaced_step_copy_insn copies a instruction to a new
1439      address, and makes any necessary adjustments to the instruction,
1440      register contents, and memory.  We use this in step n1.
1441 
1442    - gdbarch_displaced_step_fixup adjusts registers and memory after
1443      we have successfuly single-stepped the instruction, to yield the
1444      same effect the instruction would have had if we had executed it
1445      at its original address.  We use this in step n3.
1446 
1447    - gdbarch_displaced_step_free_closure provides cleanup.
1448 
1449    The gdbarch_displaced_step_copy_insn and
1450    gdbarch_displaced_step_fixup functions must be written so that
1451    copying an instruction with gdbarch_displaced_step_copy_insn,
1452    single-stepping across the copied instruction, and then applying
1453    gdbarch_displaced_insn_fixup should have the same effects on the
1454    thread's memory and registers as stepping the instruction in place
1455    would have.  Exactly which responsibilities fall to the copy and
1456    which fall to the fixup is up to the author of those functions.
1457 
1458    See the comments in gdbarch.sh for details.
1459 
1460    Note that displaced stepping and software single-step cannot
1461    currently be used in combination, although with some care I think
1462    they could be made to.  Software single-step works by placing
1463    breakpoints on all possible subsequent instructions; if the
1464    displaced instruction is a PC-relative jump, those breakpoints
1465    could fall in very strange places --- on pages that aren't
1466    executable, or at addresses that are not proper instruction
1467    boundaries.  (We do generally let other threads run while we wait
1468    to hit the software single-step breakpoint, and they might
1469    encounter such a corrupted instruction.)  One way to work around
1470    this would be to have gdbarch_displaced_step_copy_insn fully
1471    simulate the effect of PC-relative instructions (and return NULL)
1472    on architectures that use software single-stepping.
1473 
1474    In non-stop mode, we can have independent and simultaneous step
1475    requests, so more than one thread may need to simultaneously step
1476    over a breakpoint.  The current implementation assumes there is
1477    only one scratch space per process.  In this case, we have to
1478    serialize access to the scratch space.  If thread A wants to step
1479    over a breakpoint, but we are currently waiting for some other
1480    thread to complete a displaced step, we leave thread A stopped and
1481    place it in the displaced_step_request_queue.  Whenever a displaced
1482    step finishes, we pick the next thread in the queue and start a new
1483    displaced step operation on it.  See displaced_step_prepare and
1484    displaced_step_fixup for details.  */
1485 
1486 /* Per-inferior displaced stepping state.  */
1487 struct displaced_step_inferior_state
1488 {
1489   /* Pointer to next in linked list.  */
1490   struct displaced_step_inferior_state *next;
1491 
1492   /* The process this displaced step state refers to.  */
1493   int pid;
1494 
1495   /* True if preparing a displaced step ever failed.  If so, we won't
1496      try displaced stepping for this inferior again.  */
1497   int failed_before;
1498 
1499   /* If this is not null_ptid, this is the thread carrying out a
1500      displaced single-step in process PID.  This thread's state will
1501      require fixing up once it has completed its step.  */
1502   ptid_t step_ptid;
1503 
1504   /* The architecture the thread had when we stepped it.  */
1505   struct gdbarch *step_gdbarch;
1506 
1507   /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1508      for post-step cleanup.  */
1509   struct displaced_step_closure *step_closure;
1510 
1511   /* The address of the original instruction, and the copy we
1512      made.  */
1513   CORE_ADDR step_original, step_copy;
1514 
1515   /* Saved contents of copy area.  */
1516   gdb_byte *step_saved_copy;
1517 };
1518 
1519 /* The list of states of processes involved in displaced stepping
1520    presently.  */
1521 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1522 
1523 /* Get the displaced stepping state of process PID.  */
1524 
1525 static struct displaced_step_inferior_state *
1526 get_displaced_stepping_state (int pid)
1527 {
1528   struct displaced_step_inferior_state *state;
1529 
1530   for (state = displaced_step_inferior_states;
1531        state != NULL;
1532        state = state->next)
1533     if (state->pid == pid)
1534       return state;
1535 
1536   return NULL;
1537 }
1538 
1539 /* Returns true if any inferior has a thread doing a displaced
1540    step.  */
1541 
1542 static int
1543 displaced_step_in_progress_any_inferior (void)
1544 {
1545   struct displaced_step_inferior_state *state;
1546 
1547   for (state = displaced_step_inferior_states;
1548        state != NULL;
1549        state = state->next)
1550     if (!ptid_equal (state->step_ptid, null_ptid))
1551       return 1;
1552 
1553   return 0;
1554 }
1555 
1556 /* Return true if thread represented by PTID is doing a displaced
1557    step.  */
1558 
1559 static int
1560 displaced_step_in_progress_thread (ptid_t ptid)
1561 {
1562   struct displaced_step_inferior_state *displaced;
1563 
1564   gdb_assert (!ptid_equal (ptid, null_ptid));
1565 
1566   displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1567 
1568   return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1569 }
1570 
1571 /* Return true if process PID has a thread doing a displaced step.  */
1572 
1573 static int
1574 displaced_step_in_progress (int pid)
1575 {
1576   struct displaced_step_inferior_state *displaced;
1577 
1578   displaced = get_displaced_stepping_state (pid);
1579   if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1580     return 1;
1581 
1582   return 0;
1583 }
1584 
1585 /* Add a new displaced stepping state for process PID to the displaced
1586    stepping state list, or return a pointer to an already existing
1587    entry, if it already exists.  Never returns NULL.  */
1588 
1589 static struct displaced_step_inferior_state *
1590 add_displaced_stepping_state (int pid)
1591 {
1592   struct displaced_step_inferior_state *state;
1593 
1594   for (state = displaced_step_inferior_states;
1595        state != NULL;
1596        state = state->next)
1597     if (state->pid == pid)
1598       return state;
1599 
1600   state = XCNEW (struct displaced_step_inferior_state);
1601   state->pid = pid;
1602   state->next = displaced_step_inferior_states;
1603   displaced_step_inferior_states = state;
1604 
1605   return state;
1606 }
1607 
1608 /* If inferior is in displaced stepping, and ADDR equals to starting address
1609    of copy area, return corresponding displaced_step_closure.  Otherwise,
1610    return NULL.  */
1611 
1612 struct displaced_step_closure*
1613 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1614 {
1615   struct displaced_step_inferior_state *displaced
1616     = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1617 
1618   /* If checking the mode of displaced instruction in copy area.  */
1619   if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1620      && (displaced->step_copy == addr))
1621     return displaced->step_closure;
1622 
1623   return NULL;
1624 }
1625 
1626 /* Remove the displaced stepping state of process PID.  */
1627 
1628 static void
1629 remove_displaced_stepping_state (int pid)
1630 {
1631   struct displaced_step_inferior_state *it, **prev_next_p;
1632 
1633   gdb_assert (pid != 0);
1634 
1635   it = displaced_step_inferior_states;
1636   prev_next_p = &displaced_step_inferior_states;
1637   while (it)
1638     {
1639       if (it->pid == pid)
1640 	{
1641 	  *prev_next_p = it->next;
1642 	  xfree (it);
1643 	  return;
1644 	}
1645 
1646       prev_next_p = &it->next;
1647       it = *prev_next_p;
1648     }
1649 }
1650 
1651 static void
1652 infrun_inferior_exit (struct inferior *inf)
1653 {
1654   remove_displaced_stepping_state (inf->pid);
1655 }
1656 
1657 /* If ON, and the architecture supports it, GDB will use displaced
1658    stepping to step over breakpoints.  If OFF, or if the architecture
1659    doesn't support it, GDB will instead use the traditional
1660    hold-and-step approach.  If AUTO (which is the default), GDB will
1661    decide which technique to use to step over breakpoints depending on
1662    which of all-stop or non-stop mode is active --- displaced stepping
1663    in non-stop mode; hold-and-step in all-stop mode.  */
1664 
1665 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1666 
1667 static void
1668 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1669 				 struct cmd_list_element *c,
1670 				 const char *value)
1671 {
1672   if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1673     fprintf_filtered (file,
1674 		      _("Debugger's willingness to use displaced stepping "
1675 			"to step over breakpoints is %s (currently %s).\n"),
1676 		      value, target_is_non_stop_p () ? "on" : "off");
1677   else
1678     fprintf_filtered (file,
1679 		      _("Debugger's willingness to use displaced stepping "
1680 			"to step over breakpoints is %s.\n"), value);
1681 }
1682 
1683 /* Return non-zero if displaced stepping can/should be used to step
1684    over breakpoints of thread TP.  */
1685 
1686 static int
1687 use_displaced_stepping (struct thread_info *tp)
1688 {
1689   struct regcache *regcache = get_thread_regcache (tp->ptid);
1690   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1691   struct displaced_step_inferior_state *displaced_state;
1692 
1693   displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1694 
1695   return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1696 	    && target_is_non_stop_p ())
1697 	   || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1698 	  && gdbarch_displaced_step_copy_insn_p (gdbarch)
1699 	  && find_record_target () == NULL
1700 	  && (displaced_state == NULL
1701 	      || !displaced_state->failed_before));
1702 }
1703 
1704 /* Clean out any stray displaced stepping state.  */
1705 static void
1706 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1707 {
1708   /* Indicate that there is no cleanup pending.  */
1709   displaced->step_ptid = null_ptid;
1710 
1711   if (displaced->step_closure)
1712     {
1713       gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1714                                            displaced->step_closure);
1715       displaced->step_closure = NULL;
1716     }
1717 }
1718 
1719 static void
1720 displaced_step_clear_cleanup (void *arg)
1721 {
1722   struct displaced_step_inferior_state *state
1723     = (struct displaced_step_inferior_state *) arg;
1724 
1725   displaced_step_clear (state);
1726 }
1727 
1728 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline.  */
1729 void
1730 displaced_step_dump_bytes (struct ui_file *file,
1731                            const gdb_byte *buf,
1732                            size_t len)
1733 {
1734   int i;
1735 
1736   for (i = 0; i < len; i++)
1737     fprintf_unfiltered (file, "%02x ", buf[i]);
1738   fputs_unfiltered ("\n", file);
1739 }
1740 
1741 /* Prepare to single-step, using displaced stepping.
1742 
1743    Note that we cannot use displaced stepping when we have a signal to
1744    deliver.  If we have a signal to deliver and an instruction to step
1745    over, then after the step, there will be no indication from the
1746    target whether the thread entered a signal handler or ignored the
1747    signal and stepped over the instruction successfully --- both cases
1748    result in a simple SIGTRAP.  In the first case we mustn't do a
1749    fixup, and in the second case we must --- but we can't tell which.
1750    Comments in the code for 'random signals' in handle_inferior_event
1751    explain how we handle this case instead.
1752 
1753    Returns 1 if preparing was successful -- this thread is going to be
1754    stepped now; 0 if displaced stepping this thread got queued; or -1
1755    if this instruction can't be displaced stepped.  */
1756 
1757 static int
1758 displaced_step_prepare_throw (ptid_t ptid)
1759 {
1760   struct cleanup *old_cleanups, *ignore_cleanups;
1761   struct thread_info *tp = find_thread_ptid (ptid);
1762   struct regcache *regcache = get_thread_regcache (ptid);
1763   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1764   struct address_space *aspace = get_regcache_aspace (regcache);
1765   CORE_ADDR original, copy;
1766   ULONGEST len;
1767   struct displaced_step_closure *closure;
1768   struct displaced_step_inferior_state *displaced;
1769   int status;
1770 
1771   /* We should never reach this function if the architecture does not
1772      support displaced stepping.  */
1773   gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1774 
1775   /* Nor if the thread isn't meant to step over a breakpoint.  */
1776   gdb_assert (tp->control.trap_expected);
1777 
1778   /* Disable range stepping while executing in the scratch pad.  We
1779      want a single-step even if executing the displaced instruction in
1780      the scratch buffer lands within the stepping range (e.g., a
1781      jump/branch).  */
1782   tp->control.may_range_step = 0;
1783 
1784   /* We have to displaced step one thread at a time, as we only have
1785      access to a single scratch space per inferior.  */
1786 
1787   displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1788 
1789   if (!ptid_equal (displaced->step_ptid, null_ptid))
1790     {
1791       /* Already waiting for a displaced step to finish.  Defer this
1792 	 request and place in queue.  */
1793 
1794       if (debug_displaced)
1795 	fprintf_unfiltered (gdb_stdlog,
1796 			    "displaced: deferring step of %s\n",
1797 			    target_pid_to_str (ptid));
1798 
1799       thread_step_over_chain_enqueue (tp);
1800       return 0;
1801     }
1802   else
1803     {
1804       if (debug_displaced)
1805 	fprintf_unfiltered (gdb_stdlog,
1806 			    "displaced: stepping %s now\n",
1807 			    target_pid_to_str (ptid));
1808     }
1809 
1810   displaced_step_clear (displaced);
1811 
1812   old_cleanups = save_inferior_ptid ();
1813   inferior_ptid = ptid;
1814 
1815   original = regcache_read_pc (regcache);
1816 
1817   copy = gdbarch_displaced_step_location (gdbarch);
1818   len = gdbarch_max_insn_length (gdbarch);
1819 
1820   if (breakpoint_in_range_p (aspace, copy, len))
1821     {
1822       /* There's a breakpoint set in the scratch pad location range
1823 	 (which is usually around the entry point).  We'd either
1824 	 install it before resuming, which would overwrite/corrupt the
1825 	 scratch pad, or if it was already inserted, this displaced
1826 	 step would overwrite it.  The latter is OK in the sense that
1827 	 we already assume that no thread is going to execute the code
1828 	 in the scratch pad range (after initial startup) anyway, but
1829 	 the former is unacceptable.  Simply punt and fallback to
1830 	 stepping over this breakpoint in-line.  */
1831       if (debug_displaced)
1832 	{
1833 	  fprintf_unfiltered (gdb_stdlog,
1834 			      "displaced: breakpoint set in scratch pad.  "
1835 			      "Stepping over breakpoint in-line instead.\n");
1836 	}
1837 
1838       do_cleanups (old_cleanups);
1839       return -1;
1840     }
1841 
1842   /* Save the original contents of the copy area.  */
1843   displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1844   ignore_cleanups = make_cleanup (free_current_contents,
1845 				  &displaced->step_saved_copy);
1846   status = target_read_memory (copy, displaced->step_saved_copy, len);
1847   if (status != 0)
1848     throw_error (MEMORY_ERROR,
1849 		 _("Error accessing memory address %s (%s) for "
1850 		   "displaced-stepping scratch space."),
1851 		 paddress (gdbarch, copy), safe_strerror (status));
1852   if (debug_displaced)
1853     {
1854       fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1855 			  paddress (gdbarch, copy));
1856       displaced_step_dump_bytes (gdb_stdlog,
1857 				 displaced->step_saved_copy,
1858 				 len);
1859     };
1860 
1861   closure = gdbarch_displaced_step_copy_insn (gdbarch,
1862 					      original, copy, regcache);
1863   if (closure == NULL)
1864     {
1865       /* The architecture doesn't know how or want to displaced step
1866 	 this instruction or instruction sequence.  Fallback to
1867 	 stepping over the breakpoint in-line.  */
1868       do_cleanups (old_cleanups);
1869       return -1;
1870     }
1871 
1872   /* Save the information we need to fix things up if the step
1873      succeeds.  */
1874   displaced->step_ptid = ptid;
1875   displaced->step_gdbarch = gdbarch;
1876   displaced->step_closure = closure;
1877   displaced->step_original = original;
1878   displaced->step_copy = copy;
1879 
1880   make_cleanup (displaced_step_clear_cleanup, displaced);
1881 
1882   /* Resume execution at the copy.  */
1883   regcache_write_pc (regcache, copy);
1884 
1885   discard_cleanups (ignore_cleanups);
1886 
1887   do_cleanups (old_cleanups);
1888 
1889   if (debug_displaced)
1890     fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1891 			paddress (gdbarch, copy));
1892 
1893   return 1;
1894 }
1895 
1896 /* Wrapper for displaced_step_prepare_throw that disabled further
1897    attempts at displaced stepping if we get a memory error.  */
1898 
1899 static int
1900 displaced_step_prepare (ptid_t ptid)
1901 {
1902   int prepared = -1;
1903 
1904   TRY
1905     {
1906       prepared = displaced_step_prepare_throw (ptid);
1907     }
1908   CATCH (ex, RETURN_MASK_ERROR)
1909     {
1910       struct displaced_step_inferior_state *displaced_state;
1911 
1912       if (ex.error != MEMORY_ERROR
1913 	  && ex.error != NOT_SUPPORTED_ERROR)
1914 	throw_exception (ex);
1915 
1916       if (debug_infrun)
1917 	{
1918 	  fprintf_unfiltered (gdb_stdlog,
1919 			      "infrun: disabling displaced stepping: %s\n",
1920 			      ex.message);
1921 	}
1922 
1923       /* Be verbose if "set displaced-stepping" is "on", silent if
1924 	 "auto".  */
1925       if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1926 	{
1927 	  warning (_("disabling displaced stepping: %s"),
1928 		   ex.message);
1929 	}
1930 
1931       /* Disable further displaced stepping attempts.  */
1932       displaced_state
1933 	= get_displaced_stepping_state (ptid_get_pid (ptid));
1934       displaced_state->failed_before = 1;
1935     }
1936   END_CATCH
1937 
1938   return prepared;
1939 }
1940 
1941 static void
1942 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1943 		   const gdb_byte *myaddr, int len)
1944 {
1945   struct cleanup *ptid_cleanup = save_inferior_ptid ();
1946 
1947   inferior_ptid = ptid;
1948   write_memory (memaddr, myaddr, len);
1949   do_cleanups (ptid_cleanup);
1950 }
1951 
1952 /* Restore the contents of the copy area for thread PTID.  */
1953 
1954 static void
1955 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1956 			ptid_t ptid)
1957 {
1958   ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1959 
1960   write_memory_ptid (ptid, displaced->step_copy,
1961 		     displaced->step_saved_copy, len);
1962   if (debug_displaced)
1963     fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1964 			target_pid_to_str (ptid),
1965 			paddress (displaced->step_gdbarch,
1966 				  displaced->step_copy));
1967 }
1968 
1969 /* If we displaced stepped an instruction successfully, adjust
1970    registers and memory to yield the same effect the instruction would
1971    have had if we had executed it at its original address, and return
1972    1.  If the instruction didn't complete, relocate the PC and return
1973    -1.  If the thread wasn't displaced stepping, return 0.  */
1974 
1975 static int
1976 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1977 {
1978   struct cleanup *old_cleanups;
1979   struct displaced_step_inferior_state *displaced
1980     = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1981   int ret;
1982 
1983   /* Was any thread of this process doing a displaced step?  */
1984   if (displaced == NULL)
1985     return 0;
1986 
1987   /* Was this event for the pid we displaced?  */
1988   if (ptid_equal (displaced->step_ptid, null_ptid)
1989       || ! ptid_equal (displaced->step_ptid, event_ptid))
1990     return 0;
1991 
1992   old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1993 
1994   displaced_step_restore (displaced, displaced->step_ptid);
1995 
1996   /* Fixup may need to read memory/registers.  Switch to the thread
1997      that we're fixing up.  Also, target_stopped_by_watchpoint checks
1998      the current thread.  */
1999   switch_to_thread (event_ptid);
2000 
2001   /* Did the instruction complete successfully?  */
2002   if (signal == GDB_SIGNAL_TRAP
2003       && !(target_stopped_by_watchpoint ()
2004 	   && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
2005 	       || target_have_steppable_watchpoint)))
2006     {
2007       /* Fix up the resulting state.  */
2008       gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2009                                     displaced->step_closure,
2010                                     displaced->step_original,
2011                                     displaced->step_copy,
2012                                     get_thread_regcache (displaced->step_ptid));
2013       ret = 1;
2014     }
2015   else
2016     {
2017       /* Since the instruction didn't complete, all we can do is
2018          relocate the PC.  */
2019       struct regcache *regcache = get_thread_regcache (event_ptid);
2020       CORE_ADDR pc = regcache_read_pc (regcache);
2021 
2022       pc = displaced->step_original + (pc - displaced->step_copy);
2023       regcache_write_pc (regcache, pc);
2024       ret = -1;
2025     }
2026 
2027   do_cleanups (old_cleanups);
2028 
2029   displaced->step_ptid = null_ptid;
2030 
2031   return ret;
2032 }
2033 
2034 /* Data to be passed around while handling an event.  This data is
2035    discarded between events.  */
2036 struct execution_control_state
2037 {
2038   ptid_t ptid;
2039   /* The thread that got the event, if this was a thread event; NULL
2040      otherwise.  */
2041   struct thread_info *event_thread;
2042 
2043   struct target_waitstatus ws;
2044   int stop_func_filled_in;
2045   CORE_ADDR stop_func_start;
2046   CORE_ADDR stop_func_end;
2047   const char *stop_func_name;
2048   int wait_some_more;
2049 
2050   /* True if the event thread hit the single-step breakpoint of
2051      another thread.  Thus the event doesn't cause a stop, the thread
2052      needs to be single-stepped past the single-step breakpoint before
2053      we can switch back to the original stepping thread.  */
2054   int hit_singlestep_breakpoint;
2055 };
2056 
2057 /* Clear ECS and set it to point at TP.  */
2058 
2059 static void
2060 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2061 {
2062   memset (ecs, 0, sizeof (*ecs));
2063   ecs->event_thread = tp;
2064   ecs->ptid = tp->ptid;
2065 }
2066 
2067 static void keep_going_pass_signal (struct execution_control_state *ecs);
2068 static void prepare_to_wait (struct execution_control_state *ecs);
2069 static int keep_going_stepped_thread (struct thread_info *tp);
2070 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2071 
2072 /* Are there any pending step-over requests?  If so, run all we can
2073    now and return true.  Otherwise, return false.  */
2074 
2075 static int
2076 start_step_over (void)
2077 {
2078   struct thread_info *tp, *next;
2079 
2080   /* Don't start a new step-over if we already have an in-line
2081      step-over operation ongoing.  */
2082   if (step_over_info_valid_p ())
2083     return 0;
2084 
2085   for (tp = step_over_queue_head; tp != NULL; tp = next)
2086     {
2087       struct execution_control_state ecss;
2088       struct execution_control_state *ecs = &ecss;
2089       step_over_what step_what;
2090       int must_be_in_line;
2091 
2092       gdb_assert (!tp->stop_requested);
2093 
2094       next = thread_step_over_chain_next (tp);
2095 
2096       /* If this inferior already has a displaced step in process,
2097 	 don't start a new one.  */
2098       if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2099 	continue;
2100 
2101       step_what = thread_still_needs_step_over (tp);
2102       must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2103 			 || ((step_what & STEP_OVER_BREAKPOINT)
2104 			     && !use_displaced_stepping (tp)));
2105 
2106       /* We currently stop all threads of all processes to step-over
2107 	 in-line.  If we need to start a new in-line step-over, let
2108 	 any pending displaced steps finish first.  */
2109       if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2110 	return 0;
2111 
2112       thread_step_over_chain_remove (tp);
2113 
2114       if (step_over_queue_head == NULL)
2115 	{
2116 	  if (debug_infrun)
2117 	    fprintf_unfiltered (gdb_stdlog,
2118 				"infrun: step-over queue now empty\n");
2119 	}
2120 
2121       if (tp->control.trap_expected
2122 	  || tp->resumed
2123 	  || tp->executing)
2124 	{
2125 	  internal_error (__FILE__, __LINE__,
2126 			  "[%s] has inconsistent state: "
2127 			  "trap_expected=%d, resumed=%d, executing=%d\n",
2128 			  target_pid_to_str (tp->ptid),
2129 			  tp->control.trap_expected,
2130 			  tp->resumed,
2131 			  tp->executing);
2132 	}
2133 
2134       if (debug_infrun)
2135 	fprintf_unfiltered (gdb_stdlog,
2136 			    "infrun: resuming [%s] for step-over\n",
2137 			    target_pid_to_str (tp->ptid));
2138 
2139       /* keep_going_pass_signal skips the step-over if the breakpoint
2140 	 is no longer inserted.  In all-stop, we want to keep looking
2141 	 for a thread that needs a step-over instead of resuming TP,
2142 	 because we wouldn't be able to resume anything else until the
2143 	 target stops again.  In non-stop, the resume always resumes
2144 	 only TP, so it's OK to let the thread resume freely.  */
2145       if (!target_is_non_stop_p () && !step_what)
2146 	continue;
2147 
2148       switch_to_thread (tp->ptid);
2149       reset_ecs (ecs, tp);
2150       keep_going_pass_signal (ecs);
2151 
2152       if (!ecs->wait_some_more)
2153 	error (_("Command aborted."));
2154 
2155       gdb_assert (tp->resumed);
2156 
2157       /* If we started a new in-line step-over, we're done.  */
2158       if (step_over_info_valid_p ())
2159 	{
2160 	  gdb_assert (tp->control.trap_expected);
2161 	  return 1;
2162 	}
2163 
2164       if (!target_is_non_stop_p ())
2165 	{
2166 	  /* On all-stop, shouldn't have resumed unless we needed a
2167 	     step over.  */
2168 	  gdb_assert (tp->control.trap_expected
2169 		      || tp->step_after_step_resume_breakpoint);
2170 
2171 	  /* With remote targets (at least), in all-stop, we can't
2172 	     issue any further remote commands until the program stops
2173 	     again.  */
2174 	  return 1;
2175 	}
2176 
2177       /* Either the thread no longer needed a step-over, or a new
2178 	 displaced stepping sequence started.  Even in the latter
2179 	 case, continue looking.  Maybe we can also start another
2180 	 displaced step on a thread of other process. */
2181     }
2182 
2183   return 0;
2184 }
2185 
2186 /* Update global variables holding ptids to hold NEW_PTID if they were
2187    holding OLD_PTID.  */
2188 static void
2189 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2190 {
2191   struct displaced_step_inferior_state *displaced;
2192 
2193   if (ptid_equal (inferior_ptid, old_ptid))
2194     inferior_ptid = new_ptid;
2195 
2196   for (displaced = displaced_step_inferior_states;
2197        displaced;
2198        displaced = displaced->next)
2199     {
2200       if (ptid_equal (displaced->step_ptid, old_ptid))
2201 	displaced->step_ptid = new_ptid;
2202     }
2203 }
2204 
2205 
2206 /* Resuming.  */
2207 
2208 /* Things to clean up if we QUIT out of resume ().  */
2209 static void
2210 resume_cleanups (void *ignore)
2211 {
2212   if (!ptid_equal (inferior_ptid, null_ptid))
2213     delete_single_step_breakpoints (inferior_thread ());
2214 
2215   normal_stop ();
2216 }
2217 
2218 static const char schedlock_off[] = "off";
2219 static const char schedlock_on[] = "on";
2220 static const char schedlock_step[] = "step";
2221 static const char schedlock_replay[] = "replay";
2222 static const char *const scheduler_enums[] = {
2223   schedlock_off,
2224   schedlock_on,
2225   schedlock_step,
2226   schedlock_replay,
2227   NULL
2228 };
2229 static const char *scheduler_mode = schedlock_replay;
2230 static void
2231 show_scheduler_mode (struct ui_file *file, int from_tty,
2232 		     struct cmd_list_element *c, const char *value)
2233 {
2234   fprintf_filtered (file,
2235 		    _("Mode for locking scheduler "
2236 		      "during execution is \"%s\".\n"),
2237 		    value);
2238 }
2239 
2240 static void
2241 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2242 {
2243   if (!target_can_lock_scheduler)
2244     {
2245       scheduler_mode = schedlock_off;
2246       error (_("Target '%s' cannot support this command."), target_shortname);
2247     }
2248 }
2249 
2250 /* True if execution commands resume all threads of all processes by
2251    default; otherwise, resume only threads of the current inferior
2252    process.  */
2253 int sched_multi = 0;
2254 
2255 /* Try to setup for software single stepping over the specified location.
2256    Return 1 if target_resume() should use hardware single step.
2257 
2258    GDBARCH the current gdbarch.
2259    PC the location to step over.  */
2260 
2261 static int
2262 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2263 {
2264   int hw_step = 1;
2265 
2266   if (execution_direction == EXEC_FORWARD
2267       && gdbarch_software_single_step_p (gdbarch))
2268     hw_step = !insert_single_step_breakpoints (gdbarch);
2269 
2270   return hw_step;
2271 }
2272 
2273 /* See infrun.h.  */
2274 
2275 ptid_t
2276 user_visible_resume_ptid (int step)
2277 {
2278   ptid_t resume_ptid;
2279 
2280   if (non_stop)
2281     {
2282       /* With non-stop mode on, threads are always handled
2283 	 individually.  */
2284       resume_ptid = inferior_ptid;
2285     }
2286   else if ((scheduler_mode == schedlock_on)
2287 	   || (scheduler_mode == schedlock_step && step))
2288     {
2289       /* User-settable 'scheduler' mode requires solo thread
2290 	 resume.  */
2291       resume_ptid = inferior_ptid;
2292     }
2293   else if ((scheduler_mode == schedlock_replay)
2294 	   && target_record_will_replay (minus_one_ptid, execution_direction))
2295     {
2296       /* User-settable 'scheduler' mode requires solo thread resume in replay
2297 	 mode.  */
2298       resume_ptid = inferior_ptid;
2299     }
2300   else if (!sched_multi && target_supports_multi_process ())
2301     {
2302       /* Resume all threads of the current process (and none of other
2303 	 processes).  */
2304       resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2305     }
2306   else
2307     {
2308       /* Resume all threads of all processes.  */
2309       resume_ptid = RESUME_ALL;
2310     }
2311 
2312   return resume_ptid;
2313 }
2314 
2315 /* Return a ptid representing the set of threads that we will resume,
2316    in the perspective of the target, assuming run control handling
2317    does not require leaving some threads stopped (e.g., stepping past
2318    breakpoint).  USER_STEP indicates whether we're about to start the
2319    target for a stepping command.  */
2320 
2321 static ptid_t
2322 internal_resume_ptid (int user_step)
2323 {
2324   /* In non-stop, we always control threads individually.  Note that
2325      the target may always work in non-stop mode even with "set
2326      non-stop off", in which case user_visible_resume_ptid could
2327      return a wildcard ptid.  */
2328   if (target_is_non_stop_p ())
2329     return inferior_ptid;
2330   else
2331     return user_visible_resume_ptid (user_step);
2332 }
2333 
2334 /* Wrapper for target_resume, that handles infrun-specific
2335    bookkeeping.  */
2336 
2337 static void
2338 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2339 {
2340   struct thread_info *tp = inferior_thread ();
2341 
2342   gdb_assert (!tp->stop_requested);
2343 
2344   /* Install inferior's terminal modes.  */
2345   target_terminal_inferior ();
2346 
2347   /* Avoid confusing the next resume, if the next stop/resume
2348      happens to apply to another thread.  */
2349   tp->suspend.stop_signal = GDB_SIGNAL_0;
2350 
2351   /* Advise target which signals may be handled silently.
2352 
2353      If we have removed breakpoints because we are stepping over one
2354      in-line (in any thread), we need to receive all signals to avoid
2355      accidentally skipping a breakpoint during execution of a signal
2356      handler.
2357 
2358      Likewise if we're displaced stepping, otherwise a trap for a
2359      breakpoint in a signal handler might be confused with the
2360      displaced step finishing.  We don't make the displaced_step_fixup
2361      step distinguish the cases instead, because:
2362 
2363      - a backtrace while stopped in the signal handler would show the
2364        scratch pad as frame older than the signal handler, instead of
2365        the real mainline code.
2366 
2367      - when the thread is later resumed, the signal handler would
2368        return to the scratch pad area, which would no longer be
2369        valid.  */
2370   if (step_over_info_valid_p ()
2371       || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2372     target_pass_signals (0, NULL);
2373   else
2374     target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2375 
2376   target_resume (resume_ptid, step, sig);
2377 
2378   target_commit_resume ();
2379 }
2380 
2381 /* Resume the inferior, but allow a QUIT.  This is useful if the user
2382    wants to interrupt some lengthy single-stepping operation
2383    (for child processes, the SIGINT goes to the inferior, and so
2384    we get a SIGINT random_signal, but for remote debugging and perhaps
2385    other targets, that's not true).
2386 
2387    SIG is the signal to give the inferior (zero for none).  */
2388 void
2389 resume (enum gdb_signal sig)
2390 {
2391   struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2392   struct regcache *regcache = get_current_regcache ();
2393   struct gdbarch *gdbarch = get_regcache_arch (regcache);
2394   struct thread_info *tp = inferior_thread ();
2395   CORE_ADDR pc = regcache_read_pc (regcache);
2396   struct address_space *aspace = get_regcache_aspace (regcache);
2397   ptid_t resume_ptid;
2398   /* This represents the user's step vs continue request.  When
2399      deciding whether "set scheduler-locking step" applies, it's the
2400      user's intention that counts.  */
2401   const int user_step = tp->control.stepping_command;
2402   /* This represents what we'll actually request the target to do.
2403      This can decay from a step to a continue, if e.g., we need to
2404      implement single-stepping with breakpoints (software
2405      single-step).  */
2406   int step;
2407 
2408   gdb_assert (!tp->stop_requested);
2409   gdb_assert (!thread_is_in_step_over_chain (tp));
2410 
2411   QUIT;
2412 
2413   if (tp->suspend.waitstatus_pending_p)
2414     {
2415       if (debug_infrun)
2416 	{
2417 	  char *statstr;
2418 
2419 	  statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2420 	  fprintf_unfiltered (gdb_stdlog,
2421 			      "infrun: resume: thread %s has pending wait status %s "
2422 			      "(currently_stepping=%d).\n",
2423 			      target_pid_to_str (tp->ptid),  statstr,
2424 			      currently_stepping (tp));
2425 	  xfree (statstr);
2426 	}
2427 
2428       tp->resumed = 1;
2429 
2430       /* FIXME: What should we do if we are supposed to resume this
2431 	 thread with a signal?  Maybe we should maintain a queue of
2432 	 pending signals to deliver.  */
2433       if (sig != GDB_SIGNAL_0)
2434 	{
2435 	  warning (_("Couldn't deliver signal %s to %s."),
2436 		   gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2437 	}
2438 
2439       tp->suspend.stop_signal = GDB_SIGNAL_0;
2440       discard_cleanups (old_cleanups);
2441 
2442       if (target_can_async_p ())
2443 	target_async (1);
2444       return;
2445     }
2446 
2447   tp->stepped_breakpoint = 0;
2448 
2449   /* Depends on stepped_breakpoint.  */
2450   step = currently_stepping (tp);
2451 
2452   if (current_inferior ()->waiting_for_vfork_done)
2453     {
2454       /* Don't try to single-step a vfork parent that is waiting for
2455 	 the child to get out of the shared memory region (by exec'ing
2456 	 or exiting).  This is particularly important on software
2457 	 single-step archs, as the child process would trip on the
2458 	 software single step breakpoint inserted for the parent
2459 	 process.  Since the parent will not actually execute any
2460 	 instruction until the child is out of the shared region (such
2461 	 are vfork's semantics), it is safe to simply continue it.
2462 	 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2463 	 the parent, and tell it to `keep_going', which automatically
2464 	 re-sets it stepping.  */
2465       if (debug_infrun)
2466 	fprintf_unfiltered (gdb_stdlog,
2467 			    "infrun: resume : clear step\n");
2468       step = 0;
2469     }
2470 
2471   if (debug_infrun)
2472     fprintf_unfiltered (gdb_stdlog,
2473 			"infrun: resume (step=%d, signal=%s), "
2474 			"trap_expected=%d, current thread [%s] at %s\n",
2475 			step, gdb_signal_to_symbol_string (sig),
2476 			tp->control.trap_expected,
2477 			target_pid_to_str (inferior_ptid),
2478 			paddress (gdbarch, pc));
2479 
2480   /* Normally, by the time we reach `resume', the breakpoints are either
2481      removed or inserted, as appropriate.  The exception is if we're sitting
2482      at a permanent breakpoint; we need to step over it, but permanent
2483      breakpoints can't be removed.  So we have to test for it here.  */
2484   if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2485     {
2486       if (sig != GDB_SIGNAL_0)
2487 	{
2488 	  /* We have a signal to pass to the inferior.  The resume
2489 	     may, or may not take us to the signal handler.  If this
2490 	     is a step, we'll need to stop in the signal handler, if
2491 	     there's one, (if the target supports stepping into
2492 	     handlers), or in the next mainline instruction, if
2493 	     there's no handler.  If this is a continue, we need to be
2494 	     sure to run the handler with all breakpoints inserted.
2495 	     In all cases, set a breakpoint at the current address
2496 	     (where the handler returns to), and once that breakpoint
2497 	     is hit, resume skipping the permanent breakpoint.  If
2498 	     that breakpoint isn't hit, then we've stepped into the
2499 	     signal handler (or hit some other event).  We'll delete
2500 	     the step-resume breakpoint then.  */
2501 
2502 	  if (debug_infrun)
2503 	    fprintf_unfiltered (gdb_stdlog,
2504 				"infrun: resume: skipping permanent breakpoint, "
2505 				"deliver signal first\n");
2506 
2507 	  clear_step_over_info ();
2508 	  tp->control.trap_expected = 0;
2509 
2510 	  if (tp->control.step_resume_breakpoint == NULL)
2511 	    {
2512 	      /* Set a "high-priority" step-resume, as we don't want
2513 		 user breakpoints at PC to trigger (again) when this
2514 		 hits.  */
2515 	      insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2516 	      gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2517 
2518 	      tp->step_after_step_resume_breakpoint = step;
2519 	    }
2520 
2521 	  insert_breakpoints ();
2522 	}
2523       else
2524 	{
2525 	  /* There's no signal to pass, we can go ahead and skip the
2526 	     permanent breakpoint manually.  */
2527 	  if (debug_infrun)
2528 	    fprintf_unfiltered (gdb_stdlog,
2529 				"infrun: resume: skipping permanent breakpoint\n");
2530 	  gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2531 	  /* Update pc to reflect the new address from which we will
2532 	     execute instructions.  */
2533 	  pc = regcache_read_pc (regcache);
2534 
2535 	  if (step)
2536 	    {
2537 	      /* We've already advanced the PC, so the stepping part
2538 		 is done.  Now we need to arrange for a trap to be
2539 		 reported to handle_inferior_event.  Set a breakpoint
2540 		 at the current PC, and run to it.  Don't update
2541 		 prev_pc, because if we end in
2542 		 switch_back_to_stepped_thread, we want the "expected
2543 		 thread advanced also" branch to be taken.  IOW, we
2544 		 don't want this thread to step further from PC
2545 		 (overstep).  */
2546 	      gdb_assert (!step_over_info_valid_p ());
2547 	      insert_single_step_breakpoint (gdbarch, aspace, pc);
2548 	      insert_breakpoints ();
2549 
2550 	      resume_ptid = internal_resume_ptid (user_step);
2551 	      do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2552 	      discard_cleanups (old_cleanups);
2553 	      tp->resumed = 1;
2554 	      return;
2555 	    }
2556 	}
2557     }
2558 
2559   /* If we have a breakpoint to step over, make sure to do a single
2560      step only.  Same if we have software watchpoints.  */
2561   if (tp->control.trap_expected || bpstat_should_step ())
2562     tp->control.may_range_step = 0;
2563 
2564   /* If enabled, step over breakpoints by executing a copy of the
2565      instruction at a different address.
2566 
2567      We can't use displaced stepping when we have a signal to deliver;
2568      the comments for displaced_step_prepare explain why.  The
2569      comments in the handle_inferior event for dealing with 'random
2570      signals' explain what we do instead.
2571 
2572      We can't use displaced stepping when we are waiting for vfork_done
2573      event, displaced stepping breaks the vfork child similarly as single
2574      step software breakpoint.  */
2575   if (tp->control.trap_expected
2576       && use_displaced_stepping (tp)
2577       && !step_over_info_valid_p ()
2578       && sig == GDB_SIGNAL_0
2579       && !current_inferior ()->waiting_for_vfork_done)
2580     {
2581       int prepared = displaced_step_prepare (inferior_ptid);
2582 
2583       if (prepared == 0)
2584 	{
2585 	  if (debug_infrun)
2586 	    fprintf_unfiltered (gdb_stdlog,
2587 				"Got placed in step-over queue\n");
2588 
2589 	  tp->control.trap_expected = 0;
2590 	  discard_cleanups (old_cleanups);
2591 	  return;
2592 	}
2593       else if (prepared < 0)
2594 	{
2595 	  /* Fallback to stepping over the breakpoint in-line.  */
2596 
2597 	  if (target_is_non_stop_p ())
2598 	    stop_all_threads ();
2599 
2600 	  set_step_over_info (get_regcache_aspace (regcache),
2601 			      regcache_read_pc (regcache), 0, tp->global_num);
2602 
2603 	  step = maybe_software_singlestep (gdbarch, pc);
2604 
2605 	  insert_breakpoints ();
2606 	}
2607       else if (prepared > 0)
2608 	{
2609 	  struct displaced_step_inferior_state *displaced;
2610 
2611 	  /* Update pc to reflect the new address from which we will
2612 	     execute instructions due to displaced stepping.  */
2613 	  pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2614 
2615 	  displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2616 	  step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2617 						       displaced->step_closure);
2618 	}
2619     }
2620 
2621   /* Do we need to do it the hard way, w/temp breakpoints?  */
2622   else if (step)
2623     step = maybe_software_singlestep (gdbarch, pc);
2624 
2625   /* Currently, our software single-step implementation leads to different
2626      results than hardware single-stepping in one situation: when stepping
2627      into delivering a signal which has an associated signal handler,
2628      hardware single-step will stop at the first instruction of the handler,
2629      while software single-step will simply skip execution of the handler.
2630 
2631      For now, this difference in behavior is accepted since there is no
2632      easy way to actually implement single-stepping into a signal handler
2633      without kernel support.
2634 
2635      However, there is one scenario where this difference leads to follow-on
2636      problems: if we're stepping off a breakpoint by removing all breakpoints
2637      and then single-stepping.  In this case, the software single-step
2638      behavior means that even if there is a *breakpoint* in the signal
2639      handler, GDB still would not stop.
2640 
2641      Fortunately, we can at least fix this particular issue.  We detect
2642      here the case where we are about to deliver a signal while software
2643      single-stepping with breakpoints removed.  In this situation, we
2644      revert the decisions to remove all breakpoints and insert single-
2645      step breakpoints, and instead we install a step-resume breakpoint
2646      at the current address, deliver the signal without stepping, and
2647      once we arrive back at the step-resume breakpoint, actually step
2648      over the breakpoint we originally wanted to step over.  */
2649   if (thread_has_single_step_breakpoints_set (tp)
2650       && sig != GDB_SIGNAL_0
2651       && step_over_info_valid_p ())
2652     {
2653       /* If we have nested signals or a pending signal is delivered
2654 	 immediately after a handler returns, might might already have
2655 	 a step-resume breakpoint set on the earlier handler.  We cannot
2656 	 set another step-resume breakpoint; just continue on until the
2657 	 original breakpoint is hit.  */
2658       if (tp->control.step_resume_breakpoint == NULL)
2659 	{
2660 	  insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2661 	  tp->step_after_step_resume_breakpoint = 1;
2662 	}
2663 
2664       delete_single_step_breakpoints (tp);
2665 
2666       clear_step_over_info ();
2667       tp->control.trap_expected = 0;
2668 
2669       insert_breakpoints ();
2670     }
2671 
2672   /* If STEP is set, it's a request to use hardware stepping
2673      facilities.  But in that case, we should never
2674      use singlestep breakpoint.  */
2675   gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2676 
2677   /* Decide the set of threads to ask the target to resume.  */
2678   if (tp->control.trap_expected)
2679     {
2680       /* We're allowing a thread to run past a breakpoint it has
2681 	 hit, either by single-stepping the thread with the breakpoint
2682 	 removed, or by displaced stepping, with the breakpoint inserted.
2683 	 In the former case, we need to single-step only this thread,
2684 	 and keep others stopped, as they can miss this breakpoint if
2685 	 allowed to run.  That's not really a problem for displaced
2686 	 stepping, but, we still keep other threads stopped, in case
2687 	 another thread is also stopped for a breakpoint waiting for
2688 	 its turn in the displaced stepping queue.  */
2689       resume_ptid = inferior_ptid;
2690     }
2691   else
2692     resume_ptid = internal_resume_ptid (user_step);
2693 
2694   if (execution_direction != EXEC_REVERSE
2695       && step && breakpoint_inserted_here_p (aspace, pc))
2696     {
2697       /* There are two cases where we currently need to step a
2698 	 breakpoint instruction when we have a signal to deliver:
2699 
2700 	 - See handle_signal_stop where we handle random signals that
2701 	 could take out us out of the stepping range.  Normally, in
2702 	 that case we end up continuing (instead of stepping) over the
2703 	 signal handler with a breakpoint at PC, but there are cases
2704 	 where we should _always_ single-step, even if we have a
2705 	 step-resume breakpoint, like when a software watchpoint is
2706 	 set.  Assuming single-stepping and delivering a signal at the
2707 	 same time would takes us to the signal handler, then we could
2708 	 have removed the breakpoint at PC to step over it.  However,
2709 	 some hardware step targets (like e.g., Mac OS) can't step
2710 	 into signal handlers, and for those, we need to leave the
2711 	 breakpoint at PC inserted, as otherwise if the handler
2712 	 recurses and executes PC again, it'll miss the breakpoint.
2713 	 So we leave the breakpoint inserted anyway, but we need to
2714 	 record that we tried to step a breakpoint instruction, so
2715 	 that adjust_pc_after_break doesn't end up confused.
2716 
2717          - In non-stop if we insert a breakpoint (e.g., a step-resume)
2718 	 in one thread after another thread that was stepping had been
2719 	 momentarily paused for a step-over.  When we re-resume the
2720 	 stepping thread, it may be resumed from that address with a
2721 	 breakpoint that hasn't trapped yet.  Seen with
2722 	 gdb.threads/non-stop-fair-events.exp, on targets that don't
2723 	 do displaced stepping.  */
2724 
2725       if (debug_infrun)
2726 	fprintf_unfiltered (gdb_stdlog,
2727 			    "infrun: resume: [%s] stepped breakpoint\n",
2728 			    target_pid_to_str (tp->ptid));
2729 
2730       tp->stepped_breakpoint = 1;
2731 
2732       /* Most targets can step a breakpoint instruction, thus
2733 	 executing it normally.  But if this one cannot, just
2734 	 continue and we will hit it anyway.  */
2735       if (gdbarch_cannot_step_breakpoint (gdbarch))
2736 	step = 0;
2737     }
2738 
2739   if (debug_displaced
2740       && tp->control.trap_expected
2741       && use_displaced_stepping (tp)
2742       && !step_over_info_valid_p ())
2743     {
2744       struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2745       struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2746       CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2747       gdb_byte buf[4];
2748 
2749       fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2750 			  paddress (resume_gdbarch, actual_pc));
2751       read_memory (actual_pc, buf, sizeof (buf));
2752       displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2753     }
2754 
2755   if (tp->control.may_range_step)
2756     {
2757       /* If we're resuming a thread with the PC out of the step
2758 	 range, then we're doing some nested/finer run control
2759 	 operation, like stepping the thread out of the dynamic
2760 	 linker or the displaced stepping scratch pad.  We
2761 	 shouldn't have allowed a range step then.  */
2762       gdb_assert (pc_in_thread_step_range (pc, tp));
2763     }
2764 
2765   do_target_resume (resume_ptid, step, sig);
2766   tp->resumed = 1;
2767   discard_cleanups (old_cleanups);
2768 }
2769 
2770 /* Proceeding.  */
2771 
2772 /* See infrun.h.  */
2773 
2774 /* Counter that tracks number of user visible stops.  This can be used
2775    to tell whether a command has proceeded the inferior past the
2776    current location.  This allows e.g., inferior function calls in
2777    breakpoint commands to not interrupt the command list.  When the
2778    call finishes successfully, the inferior is standing at the same
2779    breakpoint as if nothing happened (and so we don't call
2780    normal_stop).  */
2781 static ULONGEST current_stop_id;
2782 
2783 /* See infrun.h.  */
2784 
2785 ULONGEST
2786 get_stop_id (void)
2787 {
2788   return current_stop_id;
2789 }
2790 
2791 /* Called when we report a user visible stop.  */
2792 
2793 static void
2794 new_stop_id (void)
2795 {
2796   current_stop_id++;
2797 }
2798 
2799 /* Clear out all variables saying what to do when inferior is continued.
2800    First do this, then set the ones you want, then call `proceed'.  */
2801 
2802 static void
2803 clear_proceed_status_thread (struct thread_info *tp)
2804 {
2805   if (debug_infrun)
2806     fprintf_unfiltered (gdb_stdlog,
2807 			"infrun: clear_proceed_status_thread (%s)\n",
2808 			target_pid_to_str (tp->ptid));
2809 
2810   /* If we're starting a new sequence, then the previous finished
2811      single-step is no longer relevant.  */
2812   if (tp->suspend.waitstatus_pending_p)
2813     {
2814       if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2815 	{
2816 	  if (debug_infrun)
2817 	    fprintf_unfiltered (gdb_stdlog,
2818 				"infrun: clear_proceed_status: pending "
2819 				"event of %s was a finished step. "
2820 				"Discarding.\n",
2821 				target_pid_to_str (tp->ptid));
2822 
2823 	  tp->suspend.waitstatus_pending_p = 0;
2824 	  tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2825 	}
2826       else if (debug_infrun)
2827 	{
2828 	  char *statstr;
2829 
2830 	  statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2831 	  fprintf_unfiltered (gdb_stdlog,
2832 			      "infrun: clear_proceed_status_thread: thread %s "
2833 			      "has pending wait status %s "
2834 			      "(currently_stepping=%d).\n",
2835 			      target_pid_to_str (tp->ptid), statstr,
2836 			      currently_stepping (tp));
2837 	  xfree (statstr);
2838 	}
2839     }
2840 
2841   /* If this signal should not be seen by program, give it zero.
2842      Used for debugging signals.  */
2843   if (!signal_pass_state (tp->suspend.stop_signal))
2844     tp->suspend.stop_signal = GDB_SIGNAL_0;
2845 
2846   thread_fsm_delete (tp->thread_fsm);
2847   tp->thread_fsm = NULL;
2848 
2849   tp->control.trap_expected = 0;
2850   tp->control.step_range_start = 0;
2851   tp->control.step_range_end = 0;
2852   tp->control.may_range_step = 0;
2853   tp->control.step_frame_id = null_frame_id;
2854   tp->control.step_stack_frame_id = null_frame_id;
2855   tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2856   tp->control.step_start_function = NULL;
2857   tp->stop_requested = 0;
2858 
2859   tp->control.stop_step = 0;
2860 
2861   tp->control.proceed_to_finish = 0;
2862 
2863   tp->control.stepping_command = 0;
2864 
2865   /* Discard any remaining commands or status from previous stop.  */
2866   bpstat_clear (&tp->control.stop_bpstat);
2867 }
2868 
2869 void
2870 clear_proceed_status (int step)
2871 {
2872   /* With scheduler-locking replay, stop replaying other threads if we're
2873      not replaying the user-visible resume ptid.
2874 
2875      This is a convenience feature to not require the user to explicitly
2876      stop replaying the other threads.  We're assuming that the user's
2877      intent is to resume tracing the recorded process.  */
2878   if (!non_stop && scheduler_mode == schedlock_replay
2879       && target_record_is_replaying (minus_one_ptid)
2880       && !target_record_will_replay (user_visible_resume_ptid (step),
2881 				     execution_direction))
2882     target_record_stop_replaying ();
2883 
2884   if (!non_stop)
2885     {
2886       struct thread_info *tp;
2887       ptid_t resume_ptid;
2888 
2889       resume_ptid = user_visible_resume_ptid (step);
2890 
2891       /* In all-stop mode, delete the per-thread status of all threads
2892 	 we're about to resume, implicitly and explicitly.  */
2893       ALL_NON_EXITED_THREADS (tp)
2894         {
2895 	  if (!ptid_match (tp->ptid, resume_ptid))
2896 	    continue;
2897 	  clear_proceed_status_thread (tp);
2898 	}
2899     }
2900 
2901   if (!ptid_equal (inferior_ptid, null_ptid))
2902     {
2903       struct inferior *inferior;
2904 
2905       if (non_stop)
2906 	{
2907 	  /* If in non-stop mode, only delete the per-thread status of
2908 	     the current thread.  */
2909 	  clear_proceed_status_thread (inferior_thread ());
2910 	}
2911 
2912       inferior = current_inferior ();
2913       inferior->control.stop_soon = NO_STOP_QUIETLY;
2914     }
2915 
2916   observer_notify_about_to_proceed ();
2917 }
2918 
2919 /* Returns true if TP is still stopped at a breakpoint that needs
2920    stepping-over in order to make progress.  If the breakpoint is gone
2921    meanwhile, we can skip the whole step-over dance.  */
2922 
2923 static int
2924 thread_still_needs_step_over_bp (struct thread_info *tp)
2925 {
2926   if (tp->stepping_over_breakpoint)
2927     {
2928       struct regcache *regcache = get_thread_regcache (tp->ptid);
2929 
2930       if (breakpoint_here_p (get_regcache_aspace (regcache),
2931 			     regcache_read_pc (regcache))
2932 	  == ordinary_breakpoint_here)
2933 	return 1;
2934 
2935       tp->stepping_over_breakpoint = 0;
2936     }
2937 
2938   return 0;
2939 }
2940 
2941 /* Check whether thread TP still needs to start a step-over in order
2942    to make progress when resumed.  Returns an bitwise or of enum
2943    step_over_what bits, indicating what needs to be stepped over.  */
2944 
2945 static step_over_what
2946 thread_still_needs_step_over (struct thread_info *tp)
2947 {
2948   step_over_what what = 0;
2949 
2950   if (thread_still_needs_step_over_bp (tp))
2951     what |= STEP_OVER_BREAKPOINT;
2952 
2953   if (tp->stepping_over_watchpoint
2954       && !target_have_steppable_watchpoint)
2955     what |= STEP_OVER_WATCHPOINT;
2956 
2957   return what;
2958 }
2959 
2960 /* Returns true if scheduler locking applies.  STEP indicates whether
2961    we're about to do a step/next-like command to a thread.  */
2962 
2963 static int
2964 schedlock_applies (struct thread_info *tp)
2965 {
2966   return (scheduler_mode == schedlock_on
2967 	  || (scheduler_mode == schedlock_step
2968 	      && tp->control.stepping_command)
2969 	  || (scheduler_mode == schedlock_replay
2970 	      && target_record_will_replay (minus_one_ptid,
2971 					    execution_direction)));
2972 }
2973 
2974 /* Basic routine for continuing the program in various fashions.
2975 
2976    ADDR is the address to resume at, or -1 for resume where stopped.
2977    SIGGNAL is the signal to give it, or 0 for none,
2978    or -1 for act according to how it stopped.
2979    STEP is nonzero if should trap after one instruction.
2980    -1 means return after that and print nothing.
2981    You should probably set various step_... variables
2982    before calling here, if you are stepping.
2983 
2984    You should call clear_proceed_status before calling proceed.  */
2985 
2986 void
2987 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2988 {
2989   struct regcache *regcache;
2990   struct gdbarch *gdbarch;
2991   struct thread_info *tp;
2992   CORE_ADDR pc;
2993   struct address_space *aspace;
2994   ptid_t resume_ptid;
2995   struct execution_control_state ecss;
2996   struct execution_control_state *ecs = &ecss;
2997   struct cleanup *old_chain;
2998   struct cleanup *defer_resume_cleanup;
2999   int started;
3000 
3001   /* If we're stopped at a fork/vfork, follow the branch set by the
3002      "set follow-fork-mode" command; otherwise, we'll just proceed
3003      resuming the current thread.  */
3004   if (!follow_fork ())
3005     {
3006       /* The target for some reason decided not to resume.  */
3007       normal_stop ();
3008       if (target_can_async_p ())
3009 	inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3010       return;
3011     }
3012 
3013   /* We'll update this if & when we switch to a new thread.  */
3014   previous_inferior_ptid = inferior_ptid;
3015 
3016   regcache = get_current_regcache ();
3017   gdbarch = get_regcache_arch (regcache);
3018   aspace = get_regcache_aspace (regcache);
3019   pc = regcache_read_pc (regcache);
3020   tp = inferior_thread ();
3021 
3022   /* Fill in with reasonable starting values.  */
3023   init_thread_stepping_state (tp);
3024 
3025   gdb_assert (!thread_is_in_step_over_chain (tp));
3026 
3027   if (addr == (CORE_ADDR) -1)
3028     {
3029       if (pc == stop_pc
3030 	  && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3031 	  && execution_direction != EXEC_REVERSE)
3032 	/* There is a breakpoint at the address we will resume at,
3033 	   step one instruction before inserting breakpoints so that
3034 	   we do not stop right away (and report a second hit at this
3035 	   breakpoint).
3036 
3037 	   Note, we don't do this in reverse, because we won't
3038 	   actually be executing the breakpoint insn anyway.
3039 	   We'll be (un-)executing the previous instruction.  */
3040 	tp->stepping_over_breakpoint = 1;
3041       else if (gdbarch_single_step_through_delay_p (gdbarch)
3042 	       && gdbarch_single_step_through_delay (gdbarch,
3043 						     get_current_frame ()))
3044 	/* We stepped onto an instruction that needs to be stepped
3045 	   again before re-inserting the breakpoint, do so.  */
3046 	tp->stepping_over_breakpoint = 1;
3047     }
3048   else
3049     {
3050       regcache_write_pc (regcache, addr);
3051     }
3052 
3053   if (siggnal != GDB_SIGNAL_DEFAULT)
3054     tp->suspend.stop_signal = siggnal;
3055 
3056   resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3057 
3058   /* If an exception is thrown from this point on, make sure to
3059      propagate GDB's knowledge of the executing state to the
3060      frontend/user running state.  */
3061   old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3062 
3063   /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3064      threads (e.g., we might need to set threads stepping over
3065      breakpoints first), from the user/frontend's point of view, all
3066      threads in RESUME_PTID are now running.  Unless we're calling an
3067      inferior function, as in that case we pretend the inferior
3068      doesn't run at all.  */
3069   if (!tp->control.in_infcall)
3070    set_running (resume_ptid, 1);
3071 
3072   if (debug_infrun)
3073     fprintf_unfiltered (gdb_stdlog,
3074 			"infrun: proceed (addr=%s, signal=%s)\n",
3075 			paddress (gdbarch, addr),
3076 			gdb_signal_to_symbol_string (siggnal));
3077 
3078   annotate_starting ();
3079 
3080   /* Make sure that output from GDB appears before output from the
3081      inferior.  */
3082   gdb_flush (gdb_stdout);
3083 
3084   /* In a multi-threaded task we may select another thread and
3085      then continue or step.
3086 
3087      But if a thread that we're resuming had stopped at a breakpoint,
3088      it will immediately cause another breakpoint stop without any
3089      execution (i.e. it will report a breakpoint hit incorrectly).  So
3090      we must step over it first.
3091 
3092      Look for threads other than the current (TP) that reported a
3093      breakpoint hit and haven't been resumed yet since.  */
3094 
3095   /* If scheduler locking applies, we can avoid iterating over all
3096      threads.  */
3097   if (!non_stop && !schedlock_applies (tp))
3098     {
3099       struct thread_info *current = tp;
3100 
3101       ALL_NON_EXITED_THREADS (tp)
3102         {
3103 	  /* Ignore the current thread here.  It's handled
3104 	     afterwards.  */
3105 	  if (tp == current)
3106 	    continue;
3107 
3108 	  /* Ignore threads of processes we're not resuming.  */
3109 	  if (!ptid_match (tp->ptid, resume_ptid))
3110 	    continue;
3111 
3112 	  if (!thread_still_needs_step_over (tp))
3113 	    continue;
3114 
3115 	  gdb_assert (!thread_is_in_step_over_chain (tp));
3116 
3117 	  if (debug_infrun)
3118 	    fprintf_unfiltered (gdb_stdlog,
3119 				"infrun: need to step-over [%s] first\n",
3120 				target_pid_to_str (tp->ptid));
3121 
3122 	  thread_step_over_chain_enqueue (tp);
3123 	}
3124 
3125       tp = current;
3126     }
3127 
3128   /* Enqueue the current thread last, so that we move all other
3129      threads over their breakpoints first.  */
3130   if (tp->stepping_over_breakpoint)
3131     thread_step_over_chain_enqueue (tp);
3132 
3133   /* If the thread isn't started, we'll still need to set its prev_pc,
3134      so that switch_back_to_stepped_thread knows the thread hasn't
3135      advanced.  Must do this before resuming any thread, as in
3136      all-stop/remote, once we resume we can't send any other packet
3137      until the target stops again.  */
3138   tp->prev_pc = regcache_read_pc (regcache);
3139 
3140   defer_resume_cleanup = make_cleanup_defer_target_commit_resume ();
3141 
3142   started = start_step_over ();
3143 
3144   if (step_over_info_valid_p ())
3145     {
3146       /* Either this thread started a new in-line step over, or some
3147 	 other thread was already doing one.  In either case, don't
3148 	 resume anything else until the step-over is finished.  */
3149     }
3150   else if (started && !target_is_non_stop_p ())
3151     {
3152       /* A new displaced stepping sequence was started.  In all-stop,
3153 	 we can't talk to the target anymore until it next stops.  */
3154     }
3155   else if (!non_stop && target_is_non_stop_p ())
3156     {
3157       /* In all-stop, but the target is always in non-stop mode.
3158 	 Start all other threads that are implicitly resumed too.  */
3159       ALL_NON_EXITED_THREADS (tp)
3160         {
3161 	  /* Ignore threads of processes we're not resuming.  */
3162 	  if (!ptid_match (tp->ptid, resume_ptid))
3163 	    continue;
3164 
3165 	  if (tp->resumed)
3166 	    {
3167 	      if (debug_infrun)
3168 		fprintf_unfiltered (gdb_stdlog,
3169 				    "infrun: proceed: [%s] resumed\n",
3170 				    target_pid_to_str (tp->ptid));
3171 	      gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3172 	      continue;
3173 	    }
3174 
3175 	  if (thread_is_in_step_over_chain (tp))
3176 	    {
3177 	      if (debug_infrun)
3178 		fprintf_unfiltered (gdb_stdlog,
3179 				    "infrun: proceed: [%s] needs step-over\n",
3180 				    target_pid_to_str (tp->ptid));
3181 	      continue;
3182 	    }
3183 
3184 	  if (debug_infrun)
3185 	    fprintf_unfiltered (gdb_stdlog,
3186 				"infrun: proceed: resuming %s\n",
3187 				target_pid_to_str (tp->ptid));
3188 
3189 	  reset_ecs (ecs, tp);
3190 	  switch_to_thread (tp->ptid);
3191 	  keep_going_pass_signal (ecs);
3192 	  if (!ecs->wait_some_more)
3193 	    error (_("Command aborted."));
3194 	}
3195     }
3196   else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3197     {
3198       /* The thread wasn't started, and isn't queued, run it now.  */
3199       reset_ecs (ecs, tp);
3200       switch_to_thread (tp->ptid);
3201       keep_going_pass_signal (ecs);
3202       if (!ecs->wait_some_more)
3203 	error (_("Command aborted."));
3204     }
3205 
3206   do_cleanups (defer_resume_cleanup);
3207   target_commit_resume ();
3208 
3209   discard_cleanups (old_chain);
3210 
3211   /* Tell the event loop to wait for it to stop.  If the target
3212      supports asynchronous execution, it'll do this from within
3213      target_resume.  */
3214   if (!target_can_async_p ())
3215     mark_async_event_handler (infrun_async_inferior_event_token);
3216 }
3217 
3218 
3219 /* Start remote-debugging of a machine over a serial link.  */
3220 
3221 void
3222 start_remote (int from_tty)
3223 {
3224   struct inferior *inferior;
3225 
3226   inferior = current_inferior ();
3227   inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3228 
3229   /* Always go on waiting for the target, regardless of the mode.  */
3230   /* FIXME: cagney/1999-09-23: At present it isn't possible to
3231      indicate to wait_for_inferior that a target should timeout if
3232      nothing is returned (instead of just blocking).  Because of this,
3233      targets expecting an immediate response need to, internally, set
3234      things up so that the target_wait() is forced to eventually
3235      timeout.  */
3236   /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3237      differentiate to its caller what the state of the target is after
3238      the initial open has been performed.  Here we're assuming that
3239      the target has stopped.  It should be possible to eventually have
3240      target_open() return to the caller an indication that the target
3241      is currently running and GDB state should be set to the same as
3242      for an async run.  */
3243   wait_for_inferior ();
3244 
3245   /* Now that the inferior has stopped, do any bookkeeping like
3246      loading shared libraries.  We want to do this before normal_stop,
3247      so that the displayed frame is up to date.  */
3248   post_create_inferior (&current_target, from_tty);
3249 
3250   normal_stop ();
3251 }
3252 
3253 /* Initialize static vars when a new inferior begins.  */
3254 
3255 void
3256 init_wait_for_inferior (void)
3257 {
3258   /* These are meaningless until the first time through wait_for_inferior.  */
3259 
3260   breakpoint_init_inferior (inf_starting);
3261 
3262   clear_proceed_status (0);
3263 
3264   target_last_wait_ptid = minus_one_ptid;
3265 
3266   previous_inferior_ptid = inferior_ptid;
3267 
3268   /* Discard any skipped inlined frames.  */
3269   clear_inline_frame_state (minus_one_ptid);
3270 }
3271 
3272 
3273 
3274 static void handle_inferior_event (struct execution_control_state *ecs);
3275 
3276 static void handle_step_into_function (struct gdbarch *gdbarch,
3277 				       struct execution_control_state *ecs);
3278 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3279 						struct execution_control_state *ecs);
3280 static void handle_signal_stop (struct execution_control_state *ecs);
3281 static void check_exception_resume (struct execution_control_state *,
3282 				    struct frame_info *);
3283 
3284 static void end_stepping_range (struct execution_control_state *ecs);
3285 static void stop_waiting (struct execution_control_state *ecs);
3286 static void keep_going (struct execution_control_state *ecs);
3287 static void process_event_stop_test (struct execution_control_state *ecs);
3288 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3289 
3290 /* This function is attached as a "thread_stop_requested" observer.
3291    Cleanup local state that assumed the PTID was to be resumed, and
3292    report the stop to the frontend.  */
3293 
3294 static void
3295 infrun_thread_stop_requested (ptid_t ptid)
3296 {
3297   struct thread_info *tp;
3298 
3299   /* PTID was requested to stop.  If the thread was already stopped,
3300      but the user/frontend doesn't know about that yet (e.g., the
3301      thread had been temporarily paused for some step-over), set up
3302      for reporting the stop now.  */
3303   ALL_NON_EXITED_THREADS (tp)
3304     if (ptid_match (tp->ptid, ptid))
3305       {
3306 	if (tp->state != THREAD_RUNNING)
3307 	  continue;
3308 	if (tp->executing)
3309 	  continue;
3310 
3311 	/* Remove matching threads from the step-over queue, so
3312 	   start_step_over doesn't try to resume them
3313 	   automatically.  */
3314 	if (thread_is_in_step_over_chain (tp))
3315 	  thread_step_over_chain_remove (tp);
3316 
3317 	/* If the thread is stopped, but the user/frontend doesn't
3318 	   know about that yet, queue a pending event, as if the
3319 	   thread had just stopped now.  Unless the thread already had
3320 	   a pending event.  */
3321 	if (!tp->suspend.waitstatus_pending_p)
3322 	  {
3323 	    tp->suspend.waitstatus_pending_p = 1;
3324 	    tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3325 	    tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3326 	  }
3327 
3328 	/* Clear the inline-frame state, since we're re-processing the
3329 	   stop.  */
3330 	clear_inline_frame_state (tp->ptid);
3331 
3332 	/* If this thread was paused because some other thread was
3333 	   doing an inline-step over, let that finish first.  Once
3334 	   that happens, we'll restart all threads and consume pending
3335 	   stop events then.  */
3336 	if (step_over_info_valid_p ())
3337 	  continue;
3338 
3339 	/* Otherwise we can process the (new) pending event now.  Set
3340 	   it so this pending event is considered by
3341 	   do_target_wait.  */
3342 	tp->resumed = 1;
3343       }
3344 }
3345 
3346 static void
3347 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3348 {
3349   if (ptid_equal (target_last_wait_ptid, tp->ptid))
3350     nullify_last_target_wait_ptid ();
3351 }
3352 
3353 /* Delete the step resume, single-step and longjmp/exception resume
3354    breakpoints of TP.  */
3355 
3356 static void
3357 delete_thread_infrun_breakpoints (struct thread_info *tp)
3358 {
3359   delete_step_resume_breakpoint (tp);
3360   delete_exception_resume_breakpoint (tp);
3361   delete_single_step_breakpoints (tp);
3362 }
3363 
3364 /* If the target still has execution, call FUNC for each thread that
3365    just stopped.  In all-stop, that's all the non-exited threads; in
3366    non-stop, that's the current thread, only.  */
3367 
3368 typedef void (*for_each_just_stopped_thread_callback_func)
3369   (struct thread_info *tp);
3370 
3371 static void
3372 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3373 {
3374   if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3375     return;
3376 
3377   if (target_is_non_stop_p ())
3378     {
3379       /* If in non-stop mode, only the current thread stopped.  */
3380       func (inferior_thread ());
3381     }
3382   else
3383     {
3384       struct thread_info *tp;
3385 
3386       /* In all-stop mode, all threads have stopped.  */
3387       ALL_NON_EXITED_THREADS (tp)
3388         {
3389 	  func (tp);
3390 	}
3391     }
3392 }
3393 
3394 /* Delete the step resume and longjmp/exception resume breakpoints of
3395    the threads that just stopped.  */
3396 
3397 static void
3398 delete_just_stopped_threads_infrun_breakpoints (void)
3399 {
3400   for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3401 }
3402 
3403 /* Delete the single-step breakpoints of the threads that just
3404    stopped.  */
3405 
3406 static void
3407 delete_just_stopped_threads_single_step_breakpoints (void)
3408 {
3409   for_each_just_stopped_thread (delete_single_step_breakpoints);
3410 }
3411 
3412 /* A cleanup wrapper.  */
3413 
3414 static void
3415 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3416 {
3417   delete_just_stopped_threads_infrun_breakpoints ();
3418 }
3419 
3420 /* See infrun.h.  */
3421 
3422 void
3423 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3424 			   const struct target_waitstatus *ws)
3425 {
3426   char *status_string = target_waitstatus_to_string (ws);
3427   string_file stb;
3428 
3429   /* The text is split over several lines because it was getting too long.
3430      Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3431      output as a unit; we want only one timestamp printed if debug_timestamp
3432      is set.  */
3433 
3434   stb.printf ("infrun: target_wait (%d.%ld.%ld",
3435 	      ptid_get_pid (waiton_ptid),
3436 	      ptid_get_lwp (waiton_ptid),
3437 	      ptid_get_tid (waiton_ptid));
3438   if (ptid_get_pid (waiton_ptid) != -1)
3439     stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3440   stb.printf (", status) =\n");
3441   stb.printf ("infrun:   %d.%ld.%ld [%s],\n",
3442 	      ptid_get_pid (result_ptid),
3443 	      ptid_get_lwp (result_ptid),
3444 	      ptid_get_tid (result_ptid),
3445 	      target_pid_to_str (result_ptid));
3446   stb.printf ("infrun:   %s\n", status_string);
3447 
3448   /* This uses %s in part to handle %'s in the text, but also to avoid
3449      a gcc error: the format attribute requires a string literal.  */
3450   fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3451 
3452   xfree (status_string);
3453 }
3454 
3455 /* Select a thread at random, out of those which are resumed and have
3456    had events.  */
3457 
3458 static struct thread_info *
3459 random_pending_event_thread (ptid_t waiton_ptid)
3460 {
3461   struct thread_info *event_tp;
3462   int num_events = 0;
3463   int random_selector;
3464 
3465   /* First see how many events we have.  Count only resumed threads
3466      that have an event pending.  */
3467   ALL_NON_EXITED_THREADS (event_tp)
3468     if (ptid_match (event_tp->ptid, waiton_ptid)
3469 	&& event_tp->resumed
3470 	&& event_tp->suspend.waitstatus_pending_p)
3471       num_events++;
3472 
3473   if (num_events == 0)
3474     return NULL;
3475 
3476   /* Now randomly pick a thread out of those that have had events.  */
3477   random_selector = (int)
3478     ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3479 
3480   if (debug_infrun && num_events > 1)
3481     fprintf_unfiltered (gdb_stdlog,
3482 			"infrun: Found %d events, selecting #%d\n",
3483 			num_events, random_selector);
3484 
3485   /* Select the Nth thread that has had an event.  */
3486   ALL_NON_EXITED_THREADS (event_tp)
3487     if (ptid_match (event_tp->ptid, waiton_ptid)
3488 	&& event_tp->resumed
3489 	&& event_tp->suspend.waitstatus_pending_p)
3490       if (random_selector-- == 0)
3491 	break;
3492 
3493   return event_tp;
3494 }
3495 
3496 /* Wrapper for target_wait that first checks whether threads have
3497    pending statuses to report before actually asking the target for
3498    more events.  */
3499 
3500 static ptid_t
3501 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3502 {
3503   ptid_t event_ptid;
3504   struct thread_info *tp;
3505 
3506   /* First check if there is a resumed thread with a wait status
3507      pending.  */
3508   if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3509     {
3510       tp = random_pending_event_thread (ptid);
3511     }
3512   else
3513     {
3514       if (debug_infrun)
3515 	fprintf_unfiltered (gdb_stdlog,
3516 			    "infrun: Waiting for specific thread %s.\n",
3517 			    target_pid_to_str (ptid));
3518 
3519       /* We have a specific thread to check.  */
3520       tp = find_thread_ptid (ptid);
3521       gdb_assert (tp != NULL);
3522       if (!tp->suspend.waitstatus_pending_p)
3523 	tp = NULL;
3524     }
3525 
3526   if (tp != NULL
3527       && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3528 	  || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3529     {
3530       struct regcache *regcache = get_thread_regcache (tp->ptid);
3531       struct gdbarch *gdbarch = get_regcache_arch (regcache);
3532       CORE_ADDR pc;
3533       int discard = 0;
3534 
3535       pc = regcache_read_pc (regcache);
3536 
3537       if (pc != tp->suspend.stop_pc)
3538 	{
3539 	  if (debug_infrun)
3540 	    fprintf_unfiltered (gdb_stdlog,
3541 				"infrun: PC of %s changed.  was=%s, now=%s\n",
3542 				target_pid_to_str (tp->ptid),
3543 				paddress (gdbarch, tp->prev_pc),
3544 				paddress (gdbarch, pc));
3545 	  discard = 1;
3546 	}
3547       else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3548 	{
3549 	  if (debug_infrun)
3550 	    fprintf_unfiltered (gdb_stdlog,
3551 				"infrun: previous breakpoint of %s, at %s gone\n",
3552 				target_pid_to_str (tp->ptid),
3553 				paddress (gdbarch, pc));
3554 
3555 	  discard = 1;
3556 	}
3557 
3558       if (discard)
3559 	{
3560 	  if (debug_infrun)
3561 	    fprintf_unfiltered (gdb_stdlog,
3562 				"infrun: pending event of %s cancelled.\n",
3563 				target_pid_to_str (tp->ptid));
3564 
3565 	  tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3566 	  tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3567 	}
3568     }
3569 
3570   if (tp != NULL)
3571     {
3572       if (debug_infrun)
3573 	{
3574 	  char *statstr;
3575 
3576 	  statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3577 	  fprintf_unfiltered (gdb_stdlog,
3578 			      "infrun: Using pending wait status %s for %s.\n",
3579 			      statstr,
3580 			      target_pid_to_str (tp->ptid));
3581 	  xfree (statstr);
3582 	}
3583 
3584       /* Now that we've selected our final event LWP, un-adjust its PC
3585 	 if it was a software breakpoint (and the target doesn't
3586 	 always adjust the PC itself).  */
3587       if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3588 	  && !target_supports_stopped_by_sw_breakpoint ())
3589 	{
3590 	  struct regcache *regcache;
3591 	  struct gdbarch *gdbarch;
3592 	  int decr_pc;
3593 
3594 	  regcache = get_thread_regcache (tp->ptid);
3595 	  gdbarch = get_regcache_arch (regcache);
3596 
3597 	  decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3598 	  if (decr_pc != 0)
3599 	    {
3600 	      CORE_ADDR pc;
3601 
3602 	      pc = regcache_read_pc (regcache);
3603 	      regcache_write_pc (regcache, pc + decr_pc);
3604 	    }
3605 	}
3606 
3607       tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3608       *status = tp->suspend.waitstatus;
3609       tp->suspend.waitstatus_pending_p = 0;
3610 
3611       /* Wake up the event loop again, until all pending events are
3612 	 processed.  */
3613       if (target_is_async_p ())
3614 	mark_async_event_handler (infrun_async_inferior_event_token);
3615       return tp->ptid;
3616     }
3617 
3618   /* But if we don't find one, we'll have to wait.  */
3619 
3620   if (deprecated_target_wait_hook)
3621     event_ptid = deprecated_target_wait_hook (ptid, status, options);
3622   else
3623     event_ptid = target_wait (ptid, status, options);
3624 
3625   return event_ptid;
3626 }
3627 
3628 /* Prepare and stabilize the inferior for detaching it.  E.g.,
3629    detaching while a thread is displaced stepping is a recipe for
3630    crashing it, as nothing would readjust the PC out of the scratch
3631    pad.  */
3632 
3633 void
3634 prepare_for_detach (void)
3635 {
3636   struct inferior *inf = current_inferior ();
3637   ptid_t pid_ptid = pid_to_ptid (inf->pid);
3638   struct cleanup *old_chain_1;
3639   struct displaced_step_inferior_state *displaced;
3640 
3641   displaced = get_displaced_stepping_state (inf->pid);
3642 
3643   /* Is any thread of this process displaced stepping?  If not,
3644      there's nothing else to do.  */
3645   if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3646     return;
3647 
3648   if (debug_infrun)
3649     fprintf_unfiltered (gdb_stdlog,
3650 			"displaced-stepping in-process while detaching");
3651 
3652   old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3653   inf->detaching = 1;
3654 
3655   while (!ptid_equal (displaced->step_ptid, null_ptid))
3656     {
3657       struct cleanup *old_chain_2;
3658       struct execution_control_state ecss;
3659       struct execution_control_state *ecs;
3660 
3661       ecs = &ecss;
3662       memset (ecs, 0, sizeof (*ecs));
3663 
3664       overlay_cache_invalid = 1;
3665       /* Flush target cache before starting to handle each event.
3666 	 Target was running and cache could be stale.  This is just a
3667 	 heuristic.  Running threads may modify target memory, but we
3668 	 don't get any event.  */
3669       target_dcache_invalidate ();
3670 
3671       ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3672 
3673       if (debug_infrun)
3674 	print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3675 
3676       /* If an error happens while handling the event, propagate GDB's
3677 	 knowledge of the executing state to the frontend/user running
3678 	 state.  */
3679       old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3680 				  &minus_one_ptid);
3681 
3682       /* Now figure out what to do with the result of the result.  */
3683       handle_inferior_event (ecs);
3684 
3685       /* No error, don't finish the state yet.  */
3686       discard_cleanups (old_chain_2);
3687 
3688       /* Breakpoints and watchpoints are not installed on the target
3689 	 at this point, and signals are passed directly to the
3690 	 inferior, so this must mean the process is gone.  */
3691       if (!ecs->wait_some_more)
3692 	{
3693 	  discard_cleanups (old_chain_1);
3694 	  error (_("Program exited while detaching"));
3695 	}
3696     }
3697 
3698   discard_cleanups (old_chain_1);
3699 }
3700 
3701 /* Wait for control to return from inferior to debugger.
3702 
3703    If inferior gets a signal, we may decide to start it up again
3704    instead of returning.  That is why there is a loop in this function.
3705    When this function actually returns it means the inferior
3706    should be left stopped and GDB should read more commands.  */
3707 
3708 void
3709 wait_for_inferior (void)
3710 {
3711   struct cleanup *old_cleanups;
3712   struct cleanup *thread_state_chain;
3713 
3714   if (debug_infrun)
3715     fprintf_unfiltered
3716       (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3717 
3718   old_cleanups
3719     = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3720 		    NULL);
3721 
3722   /* If an error happens while handling the event, propagate GDB's
3723      knowledge of the executing state to the frontend/user running
3724      state.  */
3725   thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3726 
3727   while (1)
3728     {
3729       struct execution_control_state ecss;
3730       struct execution_control_state *ecs = &ecss;
3731       ptid_t waiton_ptid = minus_one_ptid;
3732 
3733       memset (ecs, 0, sizeof (*ecs));
3734 
3735       overlay_cache_invalid = 1;
3736 
3737       /* Flush target cache before starting to handle each event.
3738 	 Target was running and cache could be stale.  This is just a
3739 	 heuristic.  Running threads may modify target memory, but we
3740 	 don't get any event.  */
3741       target_dcache_invalidate ();
3742 
3743       ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3744 
3745       if (debug_infrun)
3746 	print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3747 
3748       /* Now figure out what to do with the result of the result.  */
3749       handle_inferior_event (ecs);
3750 
3751       if (!ecs->wait_some_more)
3752 	break;
3753     }
3754 
3755   /* No error, don't finish the state yet.  */
3756   discard_cleanups (thread_state_chain);
3757 
3758   do_cleanups (old_cleanups);
3759 }
3760 
3761 /* Cleanup that reinstalls the readline callback handler, if the
3762    target is running in the background.  If while handling the target
3763    event something triggered a secondary prompt, like e.g., a
3764    pagination prompt, we'll have removed the callback handler (see
3765    gdb_readline_wrapper_line).  Need to do this as we go back to the
3766    event loop, ready to process further input.  Note this has no
3767    effect if the handler hasn't actually been removed, because calling
3768    rl_callback_handler_install resets the line buffer, thus losing
3769    input.  */
3770 
3771 static void
3772 reinstall_readline_callback_handler_cleanup (void *arg)
3773 {
3774   struct ui *ui = current_ui;
3775 
3776   if (!ui->async)
3777     {
3778       /* We're not going back to the top level event loop yet.  Don't
3779 	 install the readline callback, as it'd prep the terminal,
3780 	 readline-style (raw, noecho) (e.g., --batch).  We'll install
3781 	 it the next time the prompt is displayed, when we're ready
3782 	 for input.  */
3783       return;
3784     }
3785 
3786   if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3787     gdb_rl_callback_handler_reinstall ();
3788 }
3789 
3790 /* Clean up the FSMs of threads that are now stopped.  In non-stop,
3791    that's just the event thread.  In all-stop, that's all threads.  */
3792 
3793 static void
3794 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3795 {
3796   struct thread_info *thr = ecs->event_thread;
3797 
3798   if (thr != NULL && thr->thread_fsm != NULL)
3799     thread_fsm_clean_up (thr->thread_fsm, thr);
3800 
3801   if (!non_stop)
3802     {
3803       ALL_NON_EXITED_THREADS (thr)
3804         {
3805 	  if (thr->thread_fsm == NULL)
3806 	    continue;
3807 	  if (thr == ecs->event_thread)
3808 	    continue;
3809 
3810 	  switch_to_thread (thr->ptid);
3811 	  thread_fsm_clean_up (thr->thread_fsm, thr);
3812 	}
3813 
3814       if (ecs->event_thread != NULL)
3815 	switch_to_thread (ecs->event_thread->ptid);
3816     }
3817 }
3818 
3819 /* Helper for all_uis_check_sync_execution_done that works on the
3820    current UI.  */
3821 
3822 static void
3823 check_curr_ui_sync_execution_done (void)
3824 {
3825   struct ui *ui = current_ui;
3826 
3827   if (ui->prompt_state == PROMPT_NEEDED
3828       && ui->async
3829       && !gdb_in_secondary_prompt_p (ui))
3830     {
3831       target_terminal_ours ();
3832       observer_notify_sync_execution_done ();
3833       ui_register_input_event_handler (ui);
3834     }
3835 }
3836 
3837 /* See infrun.h.  */
3838 
3839 void
3840 all_uis_check_sync_execution_done (void)
3841 {
3842   SWITCH_THRU_ALL_UIS ()
3843     {
3844       check_curr_ui_sync_execution_done ();
3845     }
3846 }
3847 
3848 /* See infrun.h.  */
3849 
3850 void
3851 all_uis_on_sync_execution_starting (void)
3852 {
3853   SWITCH_THRU_ALL_UIS ()
3854     {
3855       if (current_ui->prompt_state == PROMPT_NEEDED)
3856 	async_disable_stdin ();
3857     }
3858 }
3859 
3860 /* Asynchronous version of wait_for_inferior.  It is called by the
3861    event loop whenever a change of state is detected on the file
3862    descriptor corresponding to the target.  It can be called more than
3863    once to complete a single execution command.  In such cases we need
3864    to keep the state in a global variable ECSS.  If it is the last time
3865    that this function is called for a single execution command, then
3866    report to the user that the inferior has stopped, and do the
3867    necessary cleanups.  */
3868 
3869 void
3870 fetch_inferior_event (void *client_data)
3871 {
3872   struct execution_control_state ecss;
3873   struct execution_control_state *ecs = &ecss;
3874   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3875   struct cleanup *ts_old_chain;
3876   int cmd_done = 0;
3877   ptid_t waiton_ptid = minus_one_ptid;
3878 
3879   memset (ecs, 0, sizeof (*ecs));
3880 
3881   /* Events are always processed with the main UI as current UI.  This
3882      way, warnings, debug output, etc. are always consistently sent to
3883      the main console.  */
3884   scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3885 
3886   /* End up with readline processing input, if necessary.  */
3887   make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3888 
3889   /* We're handling a live event, so make sure we're doing live
3890      debugging.  If we're looking at traceframes while the target is
3891      running, we're going to need to get back to that mode after
3892      handling the event.  */
3893   if (non_stop)
3894     {
3895       make_cleanup_restore_current_traceframe ();
3896       set_current_traceframe (-1);
3897     }
3898 
3899   if (non_stop)
3900     /* In non-stop mode, the user/frontend should not notice a thread
3901        switch due to internal events.  Make sure we reverse to the
3902        user selected thread and frame after handling the event and
3903        running any breakpoint commands.  */
3904     make_cleanup_restore_current_thread ();
3905 
3906   overlay_cache_invalid = 1;
3907   /* Flush target cache before starting to handle each event.  Target
3908      was running and cache could be stale.  This is just a heuristic.
3909      Running threads may modify target memory, but we don't get any
3910      event.  */
3911   target_dcache_invalidate ();
3912 
3913   scoped_restore save_exec_dir
3914     = make_scoped_restore (&execution_direction, target_execution_direction ());
3915 
3916   ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3917 			      target_can_async_p () ? TARGET_WNOHANG : 0);
3918 
3919   if (debug_infrun)
3920     print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3921 
3922   /* If an error happens while handling the event, propagate GDB's
3923      knowledge of the executing state to the frontend/user running
3924      state.  */
3925   if (!target_is_non_stop_p ())
3926     ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3927   else
3928     ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3929 
3930   /* Get executed before make_cleanup_restore_current_thread above to apply
3931      still for the thread which has thrown the exception.  */
3932   make_bpstat_clear_actions_cleanup ();
3933 
3934   make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3935 
3936   /* Now figure out what to do with the result of the result.  */
3937   handle_inferior_event (ecs);
3938 
3939   if (!ecs->wait_some_more)
3940     {
3941       struct inferior *inf = find_inferior_ptid (ecs->ptid);
3942       int should_stop = 1;
3943       struct thread_info *thr = ecs->event_thread;
3944       int should_notify_stop = 1;
3945 
3946       delete_just_stopped_threads_infrun_breakpoints ();
3947 
3948       if (thr != NULL)
3949 	{
3950 	  struct thread_fsm *thread_fsm = thr->thread_fsm;
3951 
3952 	  if (thread_fsm != NULL)
3953 	    should_stop = thread_fsm_should_stop (thread_fsm, thr);
3954 	}
3955 
3956       if (!should_stop)
3957 	{
3958 	  keep_going (ecs);
3959 	}
3960       else
3961 	{
3962 	  clean_up_just_stopped_threads_fsms (ecs);
3963 
3964 	  if (thr != NULL && thr->thread_fsm != NULL)
3965 	    {
3966 	      should_notify_stop
3967 		= thread_fsm_should_notify_stop (thr->thread_fsm);
3968 	    }
3969 
3970 	  if (should_notify_stop)
3971 	    {
3972 	      int proceeded = 0;
3973 
3974 	      /* We may not find an inferior if this was a process exit.  */
3975 	      if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3976 		proceeded = normal_stop ();
3977 
3978 	      if (!proceeded)
3979 		{
3980 		  inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3981 		  cmd_done = 1;
3982 		}
3983 	    }
3984 	}
3985     }
3986 
3987   /* No error, don't finish the thread states yet.  */
3988   discard_cleanups (ts_old_chain);
3989 
3990   /* Revert thread and frame.  */
3991   do_cleanups (old_chain);
3992 
3993   /* If a UI was in sync execution mode, and now isn't, restore its
3994      prompt (a synchronous execution command has finished, and we're
3995      ready for input).  */
3996   all_uis_check_sync_execution_done ();
3997 
3998   if (cmd_done
3999       && exec_done_display_p
4000       && (ptid_equal (inferior_ptid, null_ptid)
4001 	  || !is_running (inferior_ptid)))
4002     printf_unfiltered (_("completed.\n"));
4003 }
4004 
4005 /* Record the frame and location we're currently stepping through.  */
4006 void
4007 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4008 {
4009   struct thread_info *tp = inferior_thread ();
4010 
4011   tp->control.step_frame_id = get_frame_id (frame);
4012   tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4013 
4014   tp->current_symtab = sal.symtab;
4015   tp->current_line = sal.line;
4016 }
4017 
4018 /* Clear context switchable stepping state.  */
4019 
4020 void
4021 init_thread_stepping_state (struct thread_info *tss)
4022 {
4023   tss->stepped_breakpoint = 0;
4024   tss->stepping_over_breakpoint = 0;
4025   tss->stepping_over_watchpoint = 0;
4026   tss->step_after_step_resume_breakpoint = 0;
4027 }
4028 
4029 /* Set the cached copy of the last ptid/waitstatus.  */
4030 
4031 void
4032 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4033 {
4034   target_last_wait_ptid = ptid;
4035   target_last_waitstatus = status;
4036 }
4037 
4038 /* Return the cached copy of the last pid/waitstatus returned by
4039    target_wait()/deprecated_target_wait_hook().  The data is actually
4040    cached by handle_inferior_event(), which gets called immediately
4041    after target_wait()/deprecated_target_wait_hook().  */
4042 
4043 void
4044 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4045 {
4046   *ptidp = target_last_wait_ptid;
4047   *status = target_last_waitstatus;
4048 }
4049 
4050 void
4051 nullify_last_target_wait_ptid (void)
4052 {
4053   target_last_wait_ptid = minus_one_ptid;
4054 }
4055 
4056 /* Switch thread contexts.  */
4057 
4058 static void
4059 context_switch (ptid_t ptid)
4060 {
4061   if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4062     {
4063       fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4064 			  target_pid_to_str (inferior_ptid));
4065       fprintf_unfiltered (gdb_stdlog, "to %s\n",
4066 			  target_pid_to_str (ptid));
4067     }
4068 
4069   switch_to_thread (ptid);
4070 }
4071 
4072 /* If the target can't tell whether we've hit breakpoints
4073    (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4074    check whether that could have been caused by a breakpoint.  If so,
4075    adjust the PC, per gdbarch_decr_pc_after_break.  */
4076 
4077 static void
4078 adjust_pc_after_break (struct thread_info *thread,
4079 		       struct target_waitstatus *ws)
4080 {
4081   struct regcache *regcache;
4082   struct gdbarch *gdbarch;
4083   struct address_space *aspace;
4084   CORE_ADDR breakpoint_pc, decr_pc;
4085 
4086   /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP.  If
4087      we aren't, just return.
4088 
4089      We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4090      affected by gdbarch_decr_pc_after_break.  Other waitkinds which are
4091      implemented by software breakpoints should be handled through the normal
4092      breakpoint layer.
4093 
4094      NOTE drow/2004-01-31: On some targets, breakpoints may generate
4095      different signals (SIGILL or SIGEMT for instance), but it is less
4096      clear where the PC is pointing afterwards.  It may not match
4097      gdbarch_decr_pc_after_break.  I don't know any specific target that
4098      generates these signals at breakpoints (the code has been in GDB since at
4099      least 1992) so I can not guess how to handle them here.
4100 
4101      In earlier versions of GDB, a target with
4102      gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4103      watchpoint affected by gdbarch_decr_pc_after_break.  I haven't found any
4104      target with both of these set in GDB history, and it seems unlikely to be
4105      correct, so gdbarch_have_nonsteppable_watchpoint is not checked here.  */
4106 
4107   if (ws->kind != TARGET_WAITKIND_STOPPED)
4108     return;
4109 
4110   if (ws->value.sig != GDB_SIGNAL_TRAP)
4111     return;
4112 
4113   /* In reverse execution, when a breakpoint is hit, the instruction
4114      under it has already been de-executed.  The reported PC always
4115      points at the breakpoint address, so adjusting it further would
4116      be wrong.  E.g., consider this case on a decr_pc_after_break == 1
4117      architecture:
4118 
4119        B1         0x08000000 :   INSN1
4120        B2         0x08000001 :   INSN2
4121 		  0x08000002 :   INSN3
4122 	    PC -> 0x08000003 :   INSN4
4123 
4124      Say you're stopped at 0x08000003 as above.  Reverse continuing
4125      from that point should hit B2 as below.  Reading the PC when the
4126      SIGTRAP is reported should read 0x08000001 and INSN2 should have
4127      been de-executed already.
4128 
4129        B1         0x08000000 :   INSN1
4130        B2   PC -> 0x08000001 :   INSN2
4131 		  0x08000002 :   INSN3
4132 		  0x08000003 :   INSN4
4133 
4134      We can't apply the same logic as for forward execution, because
4135      we would wrongly adjust the PC to 0x08000000, since there's a
4136      breakpoint at PC - 1.  We'd then report a hit on B1, although
4137      INSN1 hadn't been de-executed yet.  Doing nothing is the correct
4138      behaviour.  */
4139   if (execution_direction == EXEC_REVERSE)
4140     return;
4141 
4142   /* If the target can tell whether the thread hit a SW breakpoint,
4143      trust it.  Targets that can tell also adjust the PC
4144      themselves.  */
4145   if (target_supports_stopped_by_sw_breakpoint ())
4146     return;
4147 
4148   /* Note that relying on whether a breakpoint is planted in memory to
4149      determine this can fail.  E.g,. the breakpoint could have been
4150      removed since.  Or the thread could have been told to step an
4151      instruction the size of a breakpoint instruction, and only
4152      _after_ was a breakpoint inserted at its address.  */
4153 
4154   /* If this target does not decrement the PC after breakpoints, then
4155      we have nothing to do.  */
4156   regcache = get_thread_regcache (thread->ptid);
4157   gdbarch = get_regcache_arch (regcache);
4158 
4159   decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4160   if (decr_pc == 0)
4161     return;
4162 
4163   aspace = get_regcache_aspace (regcache);
4164 
4165   /* Find the location where (if we've hit a breakpoint) the
4166      breakpoint would be.  */
4167   breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4168 
4169   /* If the target can't tell whether a software breakpoint triggered,
4170      fallback to figuring it out based on breakpoints we think were
4171      inserted in the target, and on whether the thread was stepped or
4172      continued.  */
4173 
4174   /* Check whether there actually is a software breakpoint inserted at
4175      that location.
4176 
4177      If in non-stop mode, a race condition is possible where we've
4178      removed a breakpoint, but stop events for that breakpoint were
4179      already queued and arrive later.  To suppress those spurious
4180      SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4181      and retire them after a number of stop events are reported.  Note
4182      this is an heuristic and can thus get confused.  The real fix is
4183      to get the "stopped by SW BP and needs adjustment" info out of
4184      the target/kernel (and thus never reach here; see above).  */
4185   if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4186       || (target_is_non_stop_p ()
4187 	  && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4188     {
4189       struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4190 
4191       if (record_full_is_used ())
4192 	record_full_gdb_operation_disable_set ();
4193 
4194       /* When using hardware single-step, a SIGTRAP is reported for both
4195 	 a completed single-step and a software breakpoint.  Need to
4196 	 differentiate between the two, as the latter needs adjusting
4197 	 but the former does not.
4198 
4199 	 The SIGTRAP can be due to a completed hardware single-step only if
4200 	  - we didn't insert software single-step breakpoints
4201 	  - this thread is currently being stepped
4202 
4203 	 If any of these events did not occur, we must have stopped due
4204 	 to hitting a software breakpoint, and have to back up to the
4205 	 breakpoint address.
4206 
4207 	 As a special case, we could have hardware single-stepped a
4208 	 software breakpoint.  In this case (prev_pc == breakpoint_pc),
4209 	 we also need to back up to the breakpoint address.  */
4210 
4211       if (thread_has_single_step_breakpoints_set (thread)
4212 	  || !currently_stepping (thread)
4213 	  || (thread->stepped_breakpoint
4214 	      && thread->prev_pc == breakpoint_pc))
4215 	regcache_write_pc (regcache, breakpoint_pc);
4216 
4217       do_cleanups (old_cleanups);
4218     }
4219 }
4220 
4221 static int
4222 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4223 {
4224   for (frame = get_prev_frame (frame);
4225        frame != NULL;
4226        frame = get_prev_frame (frame))
4227     {
4228       if (frame_id_eq (get_frame_id (frame), step_frame_id))
4229 	return 1;
4230       if (get_frame_type (frame) != INLINE_FRAME)
4231 	break;
4232     }
4233 
4234   return 0;
4235 }
4236 
4237 /* If the event thread has the stop requested flag set, pretend it
4238    stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4239    target_stop).  */
4240 
4241 static bool
4242 handle_stop_requested (struct execution_control_state *ecs)
4243 {
4244   if (ecs->event_thread->stop_requested)
4245     {
4246       ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4247       ecs->ws.value.sig = GDB_SIGNAL_0;
4248       handle_signal_stop (ecs);
4249       return true;
4250     }
4251   return false;
4252 }
4253 
4254 /* Auxiliary function that handles syscall entry/return events.
4255    It returns 1 if the inferior should keep going (and GDB
4256    should ignore the event), or 0 if the event deserves to be
4257    processed.  */
4258 
4259 static int
4260 handle_syscall_event (struct execution_control_state *ecs)
4261 {
4262   struct regcache *regcache;
4263   int syscall_number;
4264 
4265   if (!ptid_equal (ecs->ptid, inferior_ptid))
4266     context_switch (ecs->ptid);
4267 
4268   regcache = get_thread_regcache (ecs->ptid);
4269   syscall_number = ecs->ws.value.syscall_number;
4270   stop_pc = regcache_read_pc (regcache);
4271 
4272   if (catch_syscall_enabled () > 0
4273       && catching_syscall_number (syscall_number) > 0)
4274     {
4275       if (debug_infrun)
4276         fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4277                             syscall_number);
4278 
4279       ecs->event_thread->control.stop_bpstat
4280 	= bpstat_stop_status (get_regcache_aspace (regcache),
4281 			      stop_pc, ecs->ptid, &ecs->ws);
4282 
4283       if (handle_stop_requested (ecs))
4284 	return 0;
4285 
4286       if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4287 	{
4288 	  /* Catchpoint hit.  */
4289 	  return 0;
4290 	}
4291     }
4292 
4293   if (handle_stop_requested (ecs))
4294     return 0;
4295 
4296   /* If no catchpoint triggered for this, then keep going.  */
4297   keep_going (ecs);
4298   return 1;
4299 }
4300 
4301 /* Lazily fill in the execution_control_state's stop_func_* fields.  */
4302 
4303 static void
4304 fill_in_stop_func (struct gdbarch *gdbarch,
4305 		   struct execution_control_state *ecs)
4306 {
4307   if (!ecs->stop_func_filled_in)
4308     {
4309       /* Don't care about return value; stop_func_start and stop_func_name
4310 	 will both be 0 if it doesn't work.  */
4311       find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4312 				&ecs->stop_func_start, &ecs->stop_func_end);
4313       ecs->stop_func_start
4314 	+= gdbarch_deprecated_function_start_offset (gdbarch);
4315 
4316       if (gdbarch_skip_entrypoint_p (gdbarch))
4317 	ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4318 							ecs->stop_func_start);
4319 
4320       ecs->stop_func_filled_in = 1;
4321     }
4322 }
4323 
4324 
4325 /* Return the STOP_SOON field of the inferior pointed at by PTID.  */
4326 
4327 static enum stop_kind
4328 get_inferior_stop_soon (ptid_t ptid)
4329 {
4330   struct inferior *inf = find_inferior_ptid (ptid);
4331 
4332   gdb_assert (inf != NULL);
4333   return inf->control.stop_soon;
4334 }
4335 
4336 /* Wait for one event.  Store the resulting waitstatus in WS, and
4337    return the event ptid.  */
4338 
4339 static ptid_t
4340 wait_one (struct target_waitstatus *ws)
4341 {
4342   ptid_t event_ptid;
4343   ptid_t wait_ptid = minus_one_ptid;
4344 
4345   overlay_cache_invalid = 1;
4346 
4347   /* Flush target cache before starting to handle each event.
4348      Target was running and cache could be stale.  This is just a
4349      heuristic.  Running threads may modify target memory, but we
4350      don't get any event.  */
4351   target_dcache_invalidate ();
4352 
4353   if (deprecated_target_wait_hook)
4354     event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4355   else
4356     event_ptid = target_wait (wait_ptid, ws, 0);
4357 
4358   if (debug_infrun)
4359     print_target_wait_results (wait_ptid, event_ptid, ws);
4360 
4361   return event_ptid;
4362 }
4363 
4364 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4365    instead of the current thread.  */
4366 #define THREAD_STOPPED_BY(REASON)		\
4367 static int					\
4368 thread_stopped_by_ ## REASON (ptid_t ptid)	\
4369 {						\
4370   struct cleanup *old_chain;			\
4371   int res;					\
4372 						\
4373   old_chain = save_inferior_ptid ();		\
4374   inferior_ptid = ptid;				\
4375 						\
4376   res = target_stopped_by_ ## REASON ();	\
4377 						\
4378   do_cleanups (old_chain);			\
4379 						\
4380   return res;					\
4381 }
4382 
4383 /* Generate thread_stopped_by_watchpoint.  */
4384 THREAD_STOPPED_BY (watchpoint)
4385 /* Generate thread_stopped_by_sw_breakpoint.  */
4386 THREAD_STOPPED_BY (sw_breakpoint)
4387 /* Generate thread_stopped_by_hw_breakpoint.  */
4388 THREAD_STOPPED_BY (hw_breakpoint)
4389 
4390 /* Cleanups that switches to the PTID pointed at by PTID_P.  */
4391 
4392 static void
4393 switch_to_thread_cleanup (void *ptid_p)
4394 {
4395   ptid_t ptid = *(ptid_t *) ptid_p;
4396 
4397   switch_to_thread (ptid);
4398 }
4399 
4400 /* Save the thread's event and stop reason to process it later.  */
4401 
4402 static void
4403 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4404 {
4405   struct regcache *regcache;
4406   struct address_space *aspace;
4407 
4408   if (debug_infrun)
4409     {
4410       char *statstr;
4411 
4412       statstr = target_waitstatus_to_string (ws);
4413       fprintf_unfiltered (gdb_stdlog,
4414 			  "infrun: saving status %s for %d.%ld.%ld\n",
4415 			  statstr,
4416 			  ptid_get_pid (tp->ptid),
4417 			  ptid_get_lwp (tp->ptid),
4418 			  ptid_get_tid (tp->ptid));
4419       xfree (statstr);
4420     }
4421 
4422   /* Record for later.  */
4423   tp->suspend.waitstatus = *ws;
4424   tp->suspend.waitstatus_pending_p = 1;
4425 
4426   regcache = get_thread_regcache (tp->ptid);
4427   aspace = get_regcache_aspace (regcache);
4428 
4429   if (ws->kind == TARGET_WAITKIND_STOPPED
4430       && ws->value.sig == GDB_SIGNAL_TRAP)
4431     {
4432       CORE_ADDR pc = regcache_read_pc (regcache);
4433 
4434       adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4435 
4436       if (thread_stopped_by_watchpoint (tp->ptid))
4437 	{
4438 	  tp->suspend.stop_reason
4439 	    = TARGET_STOPPED_BY_WATCHPOINT;
4440 	}
4441       else if (target_supports_stopped_by_sw_breakpoint ()
4442 	       && thread_stopped_by_sw_breakpoint (tp->ptid))
4443 	{
4444 	  tp->suspend.stop_reason
4445 	    = TARGET_STOPPED_BY_SW_BREAKPOINT;
4446 	}
4447       else if (target_supports_stopped_by_hw_breakpoint ()
4448 	       && thread_stopped_by_hw_breakpoint (tp->ptid))
4449 	{
4450 	  tp->suspend.stop_reason
4451 	    = TARGET_STOPPED_BY_HW_BREAKPOINT;
4452 	}
4453       else if (!target_supports_stopped_by_hw_breakpoint ()
4454 	       && hardware_breakpoint_inserted_here_p (aspace,
4455 						       pc))
4456 	{
4457 	  tp->suspend.stop_reason
4458 	    = TARGET_STOPPED_BY_HW_BREAKPOINT;
4459 	}
4460       else if (!target_supports_stopped_by_sw_breakpoint ()
4461 	       && software_breakpoint_inserted_here_p (aspace,
4462 						       pc))
4463 	{
4464 	  tp->suspend.stop_reason
4465 	    = TARGET_STOPPED_BY_SW_BREAKPOINT;
4466 	}
4467       else if (!thread_has_single_step_breakpoints_set (tp)
4468 	       && currently_stepping (tp))
4469 	{
4470 	  tp->suspend.stop_reason
4471 	    = TARGET_STOPPED_BY_SINGLE_STEP;
4472 	}
4473     }
4474 }
4475 
4476 /* A cleanup that disables thread create/exit events.  */
4477 
4478 static void
4479 disable_thread_events (void *arg)
4480 {
4481   target_thread_events (0);
4482 }
4483 
4484 /* See infrun.h.  */
4485 
4486 void
4487 stop_all_threads (void)
4488 {
4489   /* We may need multiple passes to discover all threads.  */
4490   int pass;
4491   int iterations = 0;
4492   ptid_t entry_ptid;
4493   struct cleanup *old_chain;
4494 
4495   gdb_assert (target_is_non_stop_p ());
4496 
4497   if (debug_infrun)
4498     fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4499 
4500   entry_ptid = inferior_ptid;
4501   old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4502 
4503   target_thread_events (1);
4504   make_cleanup (disable_thread_events, NULL);
4505 
4506   /* Request threads to stop, and then wait for the stops.  Because
4507      threads we already know about can spawn more threads while we're
4508      trying to stop them, and we only learn about new threads when we
4509      update the thread list, do this in a loop, and keep iterating
4510      until two passes find no threads that need to be stopped.  */
4511   for (pass = 0; pass < 2; pass++, iterations++)
4512     {
4513       if (debug_infrun)
4514 	fprintf_unfiltered (gdb_stdlog,
4515 			    "infrun: stop_all_threads, pass=%d, "
4516 			    "iterations=%d\n", pass, iterations);
4517       while (1)
4518 	{
4519 	  ptid_t event_ptid;
4520 	  struct target_waitstatus ws;
4521 	  int need_wait = 0;
4522 	  struct thread_info *t;
4523 
4524 	  update_thread_list ();
4525 
4526 	  /* Go through all threads looking for threads that we need
4527 	     to tell the target to stop.  */
4528 	  ALL_NON_EXITED_THREADS (t)
4529 	    {
4530 	      if (t->executing)
4531 		{
4532 		  /* If already stopping, don't request a stop again.
4533 		     We just haven't seen the notification yet.  */
4534 		  if (!t->stop_requested)
4535 		    {
4536 		      if (debug_infrun)
4537 			fprintf_unfiltered (gdb_stdlog,
4538 					    "infrun:   %s executing, "
4539 					    "need stop\n",
4540 					    target_pid_to_str (t->ptid));
4541 		      target_stop (t->ptid);
4542 		      t->stop_requested = 1;
4543 		    }
4544 		  else
4545 		    {
4546 		      if (debug_infrun)
4547 			fprintf_unfiltered (gdb_stdlog,
4548 					    "infrun:   %s executing, "
4549 					    "already stopping\n",
4550 					    target_pid_to_str (t->ptid));
4551 		    }
4552 
4553 		  if (t->stop_requested)
4554 		    need_wait = 1;
4555 		}
4556 	      else
4557 		{
4558 		  if (debug_infrun)
4559 		    fprintf_unfiltered (gdb_stdlog,
4560 					"infrun:   %s not executing\n",
4561 					target_pid_to_str (t->ptid));
4562 
4563 		  /* The thread may be not executing, but still be
4564 		     resumed with a pending status to process.  */
4565 		  t->resumed = 0;
4566 		}
4567 	    }
4568 
4569 	  if (!need_wait)
4570 	    break;
4571 
4572 	  /* If we find new threads on the second iteration, restart
4573 	     over.  We want to see two iterations in a row with all
4574 	     threads stopped.  */
4575 	  if (pass > 0)
4576 	    pass = -1;
4577 
4578 	  event_ptid = wait_one (&ws);
4579 	  if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4580 	    {
4581 	      /* All resumed threads exited.  */
4582 	    }
4583 	  else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4584 		   || ws.kind == TARGET_WAITKIND_EXITED
4585 		   || ws.kind == TARGET_WAITKIND_SIGNALLED)
4586 	    {
4587 	      if (debug_infrun)
4588 		{
4589 		  ptid_t ptid = pid_to_ptid (ws.value.integer);
4590 
4591 		  fprintf_unfiltered (gdb_stdlog,
4592 				      "infrun: %s exited while "
4593 				      "stopping threads\n",
4594 				      target_pid_to_str (ptid));
4595 		}
4596 	    }
4597 	  else
4598 	    {
4599 	      struct inferior *inf;
4600 
4601 	      t = find_thread_ptid (event_ptid);
4602 	      if (t == NULL)
4603 		t = add_thread (event_ptid);
4604 
4605 	      t->stop_requested = 0;
4606 	      t->executing = 0;
4607 	      t->resumed = 0;
4608 	      t->control.may_range_step = 0;
4609 
4610 	      /* This may be the first time we see the inferior report
4611 		 a stop.  */
4612 	      inf = find_inferior_ptid (event_ptid);
4613 	      if (inf->needs_setup)
4614 		{
4615 		  switch_to_thread_no_regs (t);
4616 		  setup_inferior (0);
4617 		}
4618 
4619 	      if (ws.kind == TARGET_WAITKIND_STOPPED
4620 		  && ws.value.sig == GDB_SIGNAL_0)
4621 		{
4622 		  /* We caught the event that we intended to catch, so
4623 		     there's no event pending.  */
4624 		  t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4625 		  t->suspend.waitstatus_pending_p = 0;
4626 
4627 		  if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4628 		    {
4629 		      /* Add it back to the step-over queue.  */
4630 		      if (debug_infrun)
4631 			{
4632 			  fprintf_unfiltered (gdb_stdlog,
4633 					      "infrun: displaced-step of %s "
4634 					      "canceled: adding back to the "
4635 					      "step-over queue\n",
4636 					      target_pid_to_str (t->ptid));
4637 			}
4638 		      t->control.trap_expected = 0;
4639 		      thread_step_over_chain_enqueue (t);
4640 		    }
4641 		}
4642 	      else
4643 		{
4644 		  enum gdb_signal sig;
4645 		  struct regcache *regcache;
4646 
4647 		  if (debug_infrun)
4648 		    {
4649 		      char *statstr;
4650 
4651 		      statstr = target_waitstatus_to_string (&ws);
4652 		      fprintf_unfiltered (gdb_stdlog,
4653 					  "infrun: target_wait %s, saving "
4654 					  "status for %d.%ld.%ld\n",
4655 					  statstr,
4656 					  ptid_get_pid (t->ptid),
4657 					  ptid_get_lwp (t->ptid),
4658 					  ptid_get_tid (t->ptid));
4659 		      xfree (statstr);
4660 		    }
4661 
4662 		  /* Record for later.  */
4663 		  save_waitstatus (t, &ws);
4664 
4665 		  sig = (ws.kind == TARGET_WAITKIND_STOPPED
4666 			 ? ws.value.sig : GDB_SIGNAL_0);
4667 
4668 		  if (displaced_step_fixup (t->ptid, sig) < 0)
4669 		    {
4670 		      /* Add it back to the step-over queue.  */
4671 		      t->control.trap_expected = 0;
4672 		      thread_step_over_chain_enqueue (t);
4673 		    }
4674 
4675 		  regcache = get_thread_regcache (t->ptid);
4676 		  t->suspend.stop_pc = regcache_read_pc (regcache);
4677 
4678 		  if (debug_infrun)
4679 		    {
4680 		      fprintf_unfiltered (gdb_stdlog,
4681 					  "infrun: saved stop_pc=%s for %s "
4682 					  "(currently_stepping=%d)\n",
4683 					  paddress (target_gdbarch (),
4684 						    t->suspend.stop_pc),
4685 					  target_pid_to_str (t->ptid),
4686 					  currently_stepping (t));
4687 		    }
4688 		}
4689 	    }
4690 	}
4691     }
4692 
4693   do_cleanups (old_chain);
4694 
4695   if (debug_infrun)
4696     fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4697 }
4698 
4699 /* Handle a TARGET_WAITKIND_NO_RESUMED event.  */
4700 
4701 static int
4702 handle_no_resumed (struct execution_control_state *ecs)
4703 {
4704   struct inferior *inf;
4705   struct thread_info *thread;
4706 
4707   if (target_can_async_p ())
4708     {
4709       struct ui *ui;
4710       int any_sync = 0;
4711 
4712       ALL_UIS (ui)
4713 	{
4714 	  if (ui->prompt_state == PROMPT_BLOCKED)
4715 	    {
4716 	      any_sync = 1;
4717 	      break;
4718 	    }
4719 	}
4720       if (!any_sync)
4721 	{
4722 	  /* There were no unwaited-for children left in the target, but,
4723 	     we're not synchronously waiting for events either.  Just
4724 	     ignore.  */
4725 
4726 	  if (debug_infrun)
4727 	    fprintf_unfiltered (gdb_stdlog,
4728 				"infrun: TARGET_WAITKIND_NO_RESUMED "
4729 				"(ignoring: bg)\n");
4730 	  prepare_to_wait (ecs);
4731 	  return 1;
4732 	}
4733     }
4734 
4735   /* Otherwise, if we were running a synchronous execution command, we
4736      may need to cancel it and give the user back the terminal.
4737 
4738      In non-stop mode, the target can't tell whether we've already
4739      consumed previous stop events, so it can end up sending us a
4740      no-resumed event like so:
4741 
4742        #0 - thread 1 is left stopped
4743 
4744        #1 - thread 2 is resumed and hits breakpoint
4745                -> TARGET_WAITKIND_STOPPED
4746 
4747        #2 - thread 3 is resumed and exits
4748             this is the last resumed thread, so
4749 	       -> TARGET_WAITKIND_NO_RESUMED
4750 
4751        #3 - gdb processes stop for thread 2 and decides to re-resume
4752             it.
4753 
4754        #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4755             thread 2 is now resumed, so the event should be ignored.
4756 
4757      IOW, if the stop for thread 2 doesn't end a foreground command,
4758      then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4759      event.  But it could be that the event meant that thread 2 itself
4760      (or whatever other thread was the last resumed thread) exited.
4761 
4762      To address this we refresh the thread list and check whether we
4763      have resumed threads _now_.  In the example above, this removes
4764      thread 3 from the thread list.  If thread 2 was re-resumed, we
4765      ignore this event.  If we find no thread resumed, then we cancel
4766      the synchronous command show "no unwaited-for " to the user.  */
4767   update_thread_list ();
4768 
4769   ALL_NON_EXITED_THREADS (thread)
4770     {
4771       if (thread->executing
4772 	  || thread->suspend.waitstatus_pending_p)
4773 	{
4774 	  /* There were no unwaited-for children left in the target at
4775 	     some point, but there are now.  Just ignore.  */
4776 	  if (debug_infrun)
4777 	    fprintf_unfiltered (gdb_stdlog,
4778 				"infrun: TARGET_WAITKIND_NO_RESUMED "
4779 				"(ignoring: found resumed)\n");
4780 	  prepare_to_wait (ecs);
4781 	  return 1;
4782 	}
4783     }
4784 
4785   /* Note however that we may find no resumed thread because the whole
4786      process exited meanwhile (thus updating the thread list results
4787      in an empty thread list).  In this case we know we'll be getting
4788      a process exit event shortly.  */
4789   ALL_INFERIORS (inf)
4790     {
4791       if (inf->pid == 0)
4792 	continue;
4793 
4794       thread = any_live_thread_of_process (inf->pid);
4795       if (thread == NULL)
4796 	{
4797 	  if (debug_infrun)
4798 	    fprintf_unfiltered (gdb_stdlog,
4799 				"infrun: TARGET_WAITKIND_NO_RESUMED "
4800 				"(expect process exit)\n");
4801 	  prepare_to_wait (ecs);
4802 	  return 1;
4803 	}
4804     }
4805 
4806   /* Go ahead and report the event.  */
4807   return 0;
4808 }
4809 
4810 /* Given an execution control state that has been freshly filled in by
4811    an event from the inferior, figure out what it means and take
4812    appropriate action.
4813 
4814    The alternatives are:
4815 
4816    1) stop_waiting and return; to really stop and return to the
4817    debugger.
4818 
4819    2) keep_going and return; to wait for the next event (set
4820    ecs->event_thread->stepping_over_breakpoint to 1 to single step
4821    once).  */
4822 
4823 static void
4824 handle_inferior_event_1 (struct execution_control_state *ecs)
4825 {
4826   enum stop_kind stop_soon;
4827 
4828   if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4829     {
4830       /* We had an event in the inferior, but we are not interested in
4831 	 handling it at this level.  The lower layers have already
4832 	 done what needs to be done, if anything.
4833 
4834 	 One of the possible circumstances for this is when the
4835 	 inferior produces output for the console.  The inferior has
4836 	 not stopped, and we are ignoring the event.  Another possible
4837 	 circumstance is any event which the lower level knows will be
4838 	 reported multiple times without an intervening resume.  */
4839       if (debug_infrun)
4840 	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4841       prepare_to_wait (ecs);
4842       return;
4843     }
4844 
4845   if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4846     {
4847       if (debug_infrun)
4848 	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4849       prepare_to_wait (ecs);
4850       return;
4851     }
4852 
4853   if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4854       && handle_no_resumed (ecs))
4855     return;
4856 
4857   /* Cache the last pid/waitstatus.  */
4858   set_last_target_status (ecs->ptid, ecs->ws);
4859 
4860   /* Always clear state belonging to the previous time we stopped.  */
4861   stop_stack_dummy = STOP_NONE;
4862 
4863   if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4864     {
4865       /* No unwaited-for children left.  IOW, all resumed children
4866 	 have exited.  */
4867       if (debug_infrun)
4868 	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4869 
4870       stop_print_frame = 0;
4871       stop_waiting (ecs);
4872       return;
4873     }
4874 
4875   if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4876       && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4877     {
4878       ecs->event_thread = find_thread_ptid (ecs->ptid);
4879       /* If it's a new thread, add it to the thread database.  */
4880       if (ecs->event_thread == NULL)
4881 	ecs->event_thread = add_thread (ecs->ptid);
4882 
4883       /* Disable range stepping.  If the next step request could use a
4884 	 range, this will be end up re-enabled then.  */
4885       ecs->event_thread->control.may_range_step = 0;
4886     }
4887 
4888   /* Dependent on valid ECS->EVENT_THREAD.  */
4889   adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4890 
4891   /* Dependent on the current PC value modified by adjust_pc_after_break.  */
4892   reinit_frame_cache ();
4893 
4894   breakpoint_retire_moribund ();
4895 
4896   /* First, distinguish signals caused by the debugger from signals
4897      that have to do with the program's own actions.  Note that
4898      breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4899      on the operating system version.  Here we detect when a SIGILL or
4900      SIGEMT is really a breakpoint and change it to SIGTRAP.  We do
4901      something similar for SIGSEGV, since a SIGSEGV will be generated
4902      when we're trying to execute a breakpoint instruction on a
4903      non-executable stack.  This happens for call dummy breakpoints
4904      for architectures like SPARC that place call dummies on the
4905      stack.  */
4906   if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4907       && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4908 	  || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4909 	  || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4910     {
4911       struct regcache *regcache = get_thread_regcache (ecs->ptid);
4912 
4913       if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4914 				      regcache_read_pc (regcache)))
4915 	{
4916 	  if (debug_infrun)
4917 	    fprintf_unfiltered (gdb_stdlog,
4918 				"infrun: Treating signal as SIGTRAP\n");
4919 	  ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4920 	}
4921     }
4922 
4923   /* Mark the non-executing threads accordingly.  In all-stop, all
4924      threads of all processes are stopped when we get any event
4925      reported.  In non-stop mode, only the event thread stops.  */
4926   {
4927     ptid_t mark_ptid;
4928 
4929     if (!target_is_non_stop_p ())
4930       mark_ptid = minus_one_ptid;
4931     else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4932 	     || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4933       {
4934 	/* If we're handling a process exit in non-stop mode, even
4935 	   though threads haven't been deleted yet, one would think
4936 	   that there is nothing to do, as threads of the dead process
4937 	   will be soon deleted, and threads of any other process were
4938 	   left running.  However, on some targets, threads survive a
4939 	   process exit event.  E.g., for the "checkpoint" command,
4940 	   when the current checkpoint/fork exits, linux-fork.c
4941 	   automatically switches to another fork from within
4942 	   target_mourn_inferior, by associating the same
4943 	   inferior/thread to another fork.  We haven't mourned yet at
4944 	   this point, but we must mark any threads left in the
4945 	   process as not-executing so that finish_thread_state marks
4946 	   them stopped (in the user's perspective) if/when we present
4947 	   the stop to the user.  */
4948 	mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4949       }
4950     else
4951       mark_ptid = ecs->ptid;
4952 
4953     set_executing (mark_ptid, 0);
4954 
4955     /* Likewise the resumed flag.  */
4956     set_resumed (mark_ptid, 0);
4957   }
4958 
4959   switch (ecs->ws.kind)
4960     {
4961     case TARGET_WAITKIND_LOADED:
4962       if (debug_infrun)
4963         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4964       if (!ptid_equal (ecs->ptid, inferior_ptid))
4965 	context_switch (ecs->ptid);
4966       /* Ignore gracefully during startup of the inferior, as it might
4967          be the shell which has just loaded some objects, otherwise
4968          add the symbols for the newly loaded objects.  Also ignore at
4969          the beginning of an attach or remote session; we will query
4970          the full list of libraries once the connection is
4971          established.  */
4972 
4973       stop_soon = get_inferior_stop_soon (ecs->ptid);
4974       if (stop_soon == NO_STOP_QUIETLY)
4975 	{
4976 	  struct regcache *regcache;
4977 
4978 	  regcache = get_thread_regcache (ecs->ptid);
4979 
4980 	  handle_solib_event ();
4981 
4982 	  ecs->event_thread->control.stop_bpstat
4983 	    = bpstat_stop_status (get_regcache_aspace (regcache),
4984 				  stop_pc, ecs->ptid, &ecs->ws);
4985 
4986 	  if (handle_stop_requested (ecs))
4987 	    return;
4988 
4989 	  if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4990 	    {
4991 	      /* A catchpoint triggered.  */
4992 	      process_event_stop_test (ecs);
4993 	      return;
4994 	    }
4995 
4996 	  /* If requested, stop when the dynamic linker notifies
4997 	     gdb of events.  This allows the user to get control
4998 	     and place breakpoints in initializer routines for
4999 	     dynamically loaded objects (among other things).  */
5000 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5001 	  if (stop_on_solib_events)
5002 	    {
5003 	      /* Make sure we print "Stopped due to solib-event" in
5004 		 normal_stop.  */
5005 	      stop_print_frame = 1;
5006 
5007 	      stop_waiting (ecs);
5008 	      return;
5009 	    }
5010 	}
5011 
5012       /* If we are skipping through a shell, or through shared library
5013 	 loading that we aren't interested in, resume the program.  If
5014 	 we're running the program normally, also resume.  */
5015       if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5016 	{
5017 	  /* Loading of shared libraries might have changed breakpoint
5018 	     addresses.  Make sure new breakpoints are inserted.  */
5019 	  if (stop_soon == NO_STOP_QUIETLY)
5020 	    insert_breakpoints ();
5021 	  resume (GDB_SIGNAL_0);
5022 	  prepare_to_wait (ecs);
5023 	  return;
5024 	}
5025 
5026       /* But stop if we're attaching or setting up a remote
5027 	 connection.  */
5028       if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5029 	  || stop_soon == STOP_QUIETLY_REMOTE)
5030 	{
5031 	  if (debug_infrun)
5032 	    fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5033 	  stop_waiting (ecs);
5034 	  return;
5035 	}
5036 
5037       internal_error (__FILE__, __LINE__,
5038 		      _("unhandled stop_soon: %d"), (int) stop_soon);
5039 
5040     case TARGET_WAITKIND_SPURIOUS:
5041       if (debug_infrun)
5042         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5043       if (handle_stop_requested (ecs))
5044 	return;
5045       if (!ptid_equal (ecs->ptid, inferior_ptid))
5046 	context_switch (ecs->ptid);
5047       resume (GDB_SIGNAL_0);
5048       prepare_to_wait (ecs);
5049       return;
5050 
5051     case TARGET_WAITKIND_THREAD_CREATED:
5052       if (debug_infrun)
5053         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5054       if (handle_stop_requested (ecs))
5055 	return;
5056       if (!ptid_equal (ecs->ptid, inferior_ptid))
5057 	context_switch (ecs->ptid);
5058       if (!switch_back_to_stepped_thread (ecs))
5059 	keep_going (ecs);
5060       return;
5061 
5062     case TARGET_WAITKIND_EXITED:
5063     case TARGET_WAITKIND_SIGNALLED:
5064       if (debug_infrun)
5065 	{
5066 	  if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5067 	    fprintf_unfiltered (gdb_stdlog,
5068 				"infrun: TARGET_WAITKIND_EXITED\n");
5069 	  else
5070 	    fprintf_unfiltered (gdb_stdlog,
5071 				"infrun: TARGET_WAITKIND_SIGNALLED\n");
5072 	}
5073 
5074       inferior_ptid = ecs->ptid;
5075       set_current_inferior (find_inferior_ptid (ecs->ptid));
5076       set_current_program_space (current_inferior ()->pspace);
5077       handle_vfork_child_exec_or_exit (0);
5078       target_terminal_ours ();	/* Must do this before mourn anyway.  */
5079 
5080       /* Clearing any previous state of convenience variables.  */
5081       clear_exit_convenience_vars ();
5082 
5083       if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5084 	{
5085 	  /* Record the exit code in the convenience variable $_exitcode, so
5086 	     that the user can inspect this again later.  */
5087 	  set_internalvar_integer (lookup_internalvar ("_exitcode"),
5088 				   (LONGEST) ecs->ws.value.integer);
5089 
5090 	  /* Also record this in the inferior itself.  */
5091 	  current_inferior ()->has_exit_code = 1;
5092 	  current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5093 
5094 	  /* Support the --return-child-result option.  */
5095 	  return_child_result_value = ecs->ws.value.integer;
5096 
5097 	  observer_notify_exited (ecs->ws.value.integer);
5098 	}
5099       else
5100 	{
5101 	  struct regcache *regcache = get_thread_regcache (ecs->ptid);
5102 	  struct gdbarch *gdbarch = get_regcache_arch (regcache);
5103 
5104 	  if (gdbarch_gdb_signal_to_target_p (gdbarch))
5105 	    {
5106 	      /* Set the value of the internal variable $_exitsignal,
5107 		 which holds the signal uncaught by the inferior.  */
5108 	      set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5109 				       gdbarch_gdb_signal_to_target (gdbarch,
5110 							  ecs->ws.value.sig));
5111 	    }
5112 	  else
5113 	    {
5114 	      /* We don't have access to the target's method used for
5115 		 converting between signal numbers (GDB's internal
5116 		 representation <-> target's representation).
5117 		 Therefore, we cannot do a good job at displaying this
5118 		 information to the user.  It's better to just warn
5119 		 her about it (if infrun debugging is enabled), and
5120 		 give up.  */
5121 	      if (debug_infrun)
5122 		fprintf_filtered (gdb_stdlog, _("\
5123 Cannot fill $_exitsignal with the correct signal number.\n"));
5124 	    }
5125 
5126 	  observer_notify_signal_exited (ecs->ws.value.sig);
5127 	}
5128 
5129       gdb_flush (gdb_stdout);
5130       target_mourn_inferior (inferior_ptid);
5131       stop_print_frame = 0;
5132       stop_waiting (ecs);
5133       return;
5134 
5135       /* The following are the only cases in which we keep going;
5136          the above cases end in a continue or goto.  */
5137     case TARGET_WAITKIND_FORKED:
5138     case TARGET_WAITKIND_VFORKED:
5139       if (debug_infrun)
5140 	{
5141 	  if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5142 	    fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5143 	  else
5144 	    fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5145 	}
5146 
5147       /* Check whether the inferior is displaced stepping.  */
5148       {
5149 	struct regcache *regcache = get_thread_regcache (ecs->ptid);
5150 	struct gdbarch *gdbarch = get_regcache_arch (regcache);
5151 
5152 	/* If checking displaced stepping is supported, and thread
5153 	   ecs->ptid is displaced stepping.  */
5154 	if (displaced_step_in_progress_thread (ecs->ptid))
5155 	  {
5156 	    struct inferior *parent_inf
5157 	      = find_inferior_ptid (ecs->ptid);
5158 	    struct regcache *child_regcache;
5159 	    CORE_ADDR parent_pc;
5160 
5161 	    /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5162 	       indicating that the displaced stepping of syscall instruction
5163 	       has been done.  Perform cleanup for parent process here.  Note
5164 	       that this operation also cleans up the child process for vfork,
5165 	       because their pages are shared.  */
5166 	    displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5167 	    /* Start a new step-over in another thread if there's one
5168 	       that needs it.  */
5169 	    start_step_over ();
5170 
5171 	    if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5172 	      {
5173 		struct displaced_step_inferior_state *displaced
5174 		  = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5175 
5176 		/* Restore scratch pad for child process.  */
5177 		displaced_step_restore (displaced, ecs->ws.value.related_pid);
5178 	      }
5179 
5180 	    /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5181 	       the child's PC is also within the scratchpad.  Set the child's PC
5182 	       to the parent's PC value, which has already been fixed up.
5183 	       FIXME: we use the parent's aspace here, although we're touching
5184 	       the child, because the child hasn't been added to the inferior
5185 	       list yet at this point.  */
5186 
5187 	    child_regcache
5188 	      = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5189 						 gdbarch,
5190 						 parent_inf->aspace);
5191 	    /* Read PC value of parent process.  */
5192 	    parent_pc = regcache_read_pc (regcache);
5193 
5194 	    if (debug_displaced)
5195 	      fprintf_unfiltered (gdb_stdlog,
5196 				  "displaced: write child pc from %s to %s\n",
5197 				  paddress (gdbarch,
5198 					    regcache_read_pc (child_regcache)),
5199 				  paddress (gdbarch, parent_pc));
5200 
5201 	    regcache_write_pc (child_regcache, parent_pc);
5202 	  }
5203       }
5204 
5205       if (!ptid_equal (ecs->ptid, inferior_ptid))
5206 	context_switch (ecs->ptid);
5207 
5208       /* Immediately detach breakpoints from the child before there's
5209 	 any chance of letting the user delete breakpoints from the
5210 	 breakpoint lists.  If we don't do this early, it's easy to
5211 	 leave left over traps in the child, vis: "break foo; catch
5212 	 fork; c; <fork>; del; c; <child calls foo>".  We only follow
5213 	 the fork on the last `continue', and by that time the
5214 	 breakpoint at "foo" is long gone from the breakpoint table.
5215 	 If we vforked, then we don't need to unpatch here, since both
5216 	 parent and child are sharing the same memory pages; we'll
5217 	 need to unpatch at follow/detach time instead to be certain
5218 	 that new breakpoints added between catchpoint hit time and
5219 	 vfork follow are detached.  */
5220       if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5221 	{
5222 	  /* This won't actually modify the breakpoint list, but will
5223 	     physically remove the breakpoints from the child.  */
5224 	  detach_breakpoints (ecs->ws.value.related_pid);
5225 	}
5226 
5227       delete_just_stopped_threads_single_step_breakpoints ();
5228 
5229       /* In case the event is caught by a catchpoint, remember that
5230 	 the event is to be followed at the next resume of the thread,
5231 	 and not immediately.  */
5232       ecs->event_thread->pending_follow = ecs->ws;
5233 
5234       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5235 
5236       ecs->event_thread->control.stop_bpstat
5237 	= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5238 			      stop_pc, ecs->ptid, &ecs->ws);
5239 
5240       if (handle_stop_requested (ecs))
5241 	return;
5242 
5243       /* If no catchpoint triggered for this, then keep going.  Note
5244 	 that we're interested in knowing the bpstat actually causes a
5245 	 stop, not just if it may explain the signal.  Software
5246 	 watchpoints, for example, always appear in the bpstat.  */
5247       if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5248 	{
5249 	  ptid_t parent;
5250 	  ptid_t child;
5251 	  int should_resume;
5252 	  int follow_child
5253 	    = (follow_fork_mode_string == follow_fork_mode_child);
5254 
5255 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5256 
5257 	  should_resume = follow_fork ();
5258 
5259 	  parent = ecs->ptid;
5260 	  child = ecs->ws.value.related_pid;
5261 
5262 	  /* At this point, the parent is marked running, and the
5263 	     child is marked stopped.  */
5264 
5265 	  /* If not resuming the parent, mark it stopped.  */
5266 	  if (follow_child && !detach_fork && !non_stop && !sched_multi)
5267 	    set_running (parent, 0);
5268 
5269 	  /* If resuming the child, mark it running.  */
5270 	  if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5271 	    set_running (child, 1);
5272 
5273 	  /* In non-stop mode, also resume the other branch.  */
5274 	  if (!detach_fork && (non_stop
5275 			       || (sched_multi && target_is_non_stop_p ())))
5276 	    {
5277 	      if (follow_child)
5278 		switch_to_thread (parent);
5279 	      else
5280 		switch_to_thread (child);
5281 
5282 	      ecs->event_thread = inferior_thread ();
5283 	      ecs->ptid = inferior_ptid;
5284 	      keep_going (ecs);
5285 	    }
5286 
5287 	  if (follow_child)
5288 	    switch_to_thread (child);
5289 	  else
5290 	    switch_to_thread (parent);
5291 
5292 	  ecs->event_thread = inferior_thread ();
5293 	  ecs->ptid = inferior_ptid;
5294 
5295 	  if (should_resume)
5296 	    keep_going (ecs);
5297 	  else
5298 	    stop_waiting (ecs);
5299 	  return;
5300 	}
5301       process_event_stop_test (ecs);
5302       return;
5303 
5304     case TARGET_WAITKIND_VFORK_DONE:
5305       /* Done with the shared memory region.  Re-insert breakpoints in
5306 	 the parent, and keep going.  */
5307 
5308       if (debug_infrun)
5309 	fprintf_unfiltered (gdb_stdlog,
5310 			    "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5311 
5312       if (!ptid_equal (ecs->ptid, inferior_ptid))
5313 	context_switch (ecs->ptid);
5314 
5315       current_inferior ()->waiting_for_vfork_done = 0;
5316       current_inferior ()->pspace->breakpoints_not_allowed = 0;
5317 
5318       if (handle_stop_requested (ecs))
5319 	return;
5320 
5321       /* This also takes care of reinserting breakpoints in the
5322 	 previously locked inferior.  */
5323       keep_going (ecs);
5324       return;
5325 
5326     case TARGET_WAITKIND_EXECD:
5327       if (debug_infrun)
5328         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5329 
5330       if (!ptid_equal (ecs->ptid, inferior_ptid))
5331 	context_switch (ecs->ptid);
5332 
5333       /* Do whatever is necessary to the parent branch of the vfork.  */
5334       handle_vfork_child_exec_or_exit (1);
5335 
5336       /* This causes the eventpoints and symbol table to be reset.
5337          Must do this now, before trying to determine whether to
5338          stop.  */
5339       follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5340 
5341       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5342 
5343       /* In follow_exec we may have deleted the original thread and
5344 	 created a new one.  Make sure that the event thread is the
5345 	 execd thread for that case (this is a nop otherwise).  */
5346       ecs->event_thread = inferior_thread ();
5347 
5348       ecs->event_thread->control.stop_bpstat
5349 	= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5350 			      stop_pc, ecs->ptid, &ecs->ws);
5351 
5352       /* Note that this may be referenced from inside
5353 	 bpstat_stop_status above, through inferior_has_execd.  */
5354       xfree (ecs->ws.value.execd_pathname);
5355       ecs->ws.value.execd_pathname = NULL;
5356 
5357       if (handle_stop_requested (ecs))
5358 	return;
5359 
5360       /* If no catchpoint triggered for this, then keep going.  */
5361       if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5362 	{
5363 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5364 	  keep_going (ecs);
5365 	  return;
5366 	}
5367       process_event_stop_test (ecs);
5368       return;
5369 
5370       /* Be careful not to try to gather much state about a thread
5371          that's in a syscall.  It's frequently a losing proposition.  */
5372     case TARGET_WAITKIND_SYSCALL_ENTRY:
5373       if (debug_infrun)
5374         fprintf_unfiltered (gdb_stdlog,
5375 			    "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5376       /* Getting the current syscall number.  */
5377       if (handle_syscall_event (ecs) == 0)
5378 	process_event_stop_test (ecs);
5379       return;
5380 
5381       /* Before examining the threads further, step this thread to
5382          get it entirely out of the syscall.  (We get notice of the
5383          event when the thread is just on the verge of exiting a
5384          syscall.  Stepping one instruction seems to get it back
5385          into user code.)  */
5386     case TARGET_WAITKIND_SYSCALL_RETURN:
5387       if (debug_infrun)
5388         fprintf_unfiltered (gdb_stdlog,
5389 			    "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5390       if (handle_syscall_event (ecs) == 0)
5391 	process_event_stop_test (ecs);
5392       return;
5393 
5394     case TARGET_WAITKIND_STOPPED:
5395       if (debug_infrun)
5396         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5397       handle_signal_stop (ecs);
5398       return;
5399 
5400     case TARGET_WAITKIND_NO_HISTORY:
5401       if (debug_infrun)
5402         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5403       /* Reverse execution: target ran out of history info.  */
5404 
5405       /* Switch to the stopped thread.  */
5406       if (!ptid_equal (ecs->ptid, inferior_ptid))
5407 	context_switch (ecs->ptid);
5408       if (debug_infrun)
5409 	fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5410 
5411       delete_just_stopped_threads_single_step_breakpoints ();
5412       stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5413 
5414       if (handle_stop_requested (ecs))
5415 	return;
5416 
5417       observer_notify_no_history ();
5418       stop_waiting (ecs);
5419       return;
5420     }
5421 }
5422 
5423 /* A wrapper around handle_inferior_event_1, which also makes sure
5424    that all temporary struct value objects that were created during
5425    the handling of the event get deleted at the end.  */
5426 
5427 static void
5428 handle_inferior_event (struct execution_control_state *ecs)
5429 {
5430   struct value *mark = value_mark ();
5431 
5432   handle_inferior_event_1 (ecs);
5433   /* Purge all temporary values created during the event handling,
5434      as it could be a long time before we return to the command level
5435      where such values would otherwise be purged.  */
5436   value_free_to_mark (mark);
5437 }
5438 
5439 /* Restart threads back to what they were trying to do back when we
5440    paused them for an in-line step-over.  The EVENT_THREAD thread is
5441    ignored.  */
5442 
5443 static void
5444 restart_threads (struct thread_info *event_thread)
5445 {
5446   struct thread_info *tp;
5447 
5448   /* In case the instruction just stepped spawned a new thread.  */
5449   update_thread_list ();
5450 
5451   ALL_NON_EXITED_THREADS (tp)
5452     {
5453       if (tp == event_thread)
5454 	{
5455 	  if (debug_infrun)
5456 	    fprintf_unfiltered (gdb_stdlog,
5457 				"infrun: restart threads: "
5458 				"[%s] is event thread\n",
5459 				target_pid_to_str (tp->ptid));
5460 	  continue;
5461 	}
5462 
5463       if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5464 	{
5465 	  if (debug_infrun)
5466 	    fprintf_unfiltered (gdb_stdlog,
5467 				"infrun: restart threads: "
5468 				"[%s] not meant to be running\n",
5469 				target_pid_to_str (tp->ptid));
5470 	  continue;
5471 	}
5472 
5473       if (tp->resumed)
5474 	{
5475 	  if (debug_infrun)
5476 	    fprintf_unfiltered (gdb_stdlog,
5477 				"infrun: restart threads: [%s] resumed\n",
5478 				target_pid_to_str (tp->ptid));
5479 	  gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5480 	  continue;
5481 	}
5482 
5483       if (thread_is_in_step_over_chain (tp))
5484 	{
5485 	  if (debug_infrun)
5486 	    fprintf_unfiltered (gdb_stdlog,
5487 				"infrun: restart threads: "
5488 				"[%s] needs step-over\n",
5489 				target_pid_to_str (tp->ptid));
5490 	  gdb_assert (!tp->resumed);
5491 	  continue;
5492 	}
5493 
5494 
5495       if (tp->suspend.waitstatus_pending_p)
5496 	{
5497 	  if (debug_infrun)
5498 	    fprintf_unfiltered (gdb_stdlog,
5499 				"infrun: restart threads: "
5500 				"[%s] has pending status\n",
5501 				target_pid_to_str (tp->ptid));
5502 	  tp->resumed = 1;
5503 	  continue;
5504 	}
5505 
5506       gdb_assert (!tp->stop_requested);
5507 
5508       /* If some thread needs to start a step-over at this point, it
5509 	 should still be in the step-over queue, and thus skipped
5510 	 above.  */
5511       if (thread_still_needs_step_over (tp))
5512 	{
5513 	  internal_error (__FILE__, __LINE__,
5514 			  "thread [%s] needs a step-over, but not in "
5515 			  "step-over queue\n",
5516 			  target_pid_to_str (tp->ptid));
5517 	}
5518 
5519       if (currently_stepping (tp))
5520 	{
5521 	  if (debug_infrun)
5522 	    fprintf_unfiltered (gdb_stdlog,
5523 				"infrun: restart threads: [%s] was stepping\n",
5524 				target_pid_to_str (tp->ptid));
5525 	  keep_going_stepped_thread (tp);
5526 	}
5527       else
5528 	{
5529 	  struct execution_control_state ecss;
5530 	  struct execution_control_state *ecs = &ecss;
5531 
5532 	  if (debug_infrun)
5533 	    fprintf_unfiltered (gdb_stdlog,
5534 				"infrun: restart threads: [%s] continuing\n",
5535 				target_pid_to_str (tp->ptid));
5536 	  reset_ecs (ecs, tp);
5537 	  switch_to_thread (tp->ptid);
5538 	  keep_going_pass_signal (ecs);
5539 	}
5540     }
5541 }
5542 
5543 /* Callback for iterate_over_threads.  Find a resumed thread that has
5544    a pending waitstatus.  */
5545 
5546 static int
5547 resumed_thread_with_pending_status (struct thread_info *tp,
5548 				    void *arg)
5549 {
5550   return (tp->resumed
5551 	  && tp->suspend.waitstatus_pending_p);
5552 }
5553 
5554 /* Called when we get an event that may finish an in-line or
5555    out-of-line (displaced stepping) step-over started previously.
5556    Return true if the event is processed and we should go back to the
5557    event loop; false if the caller should continue processing the
5558    event.  */
5559 
5560 static int
5561 finish_step_over (struct execution_control_state *ecs)
5562 {
5563   int had_step_over_info;
5564 
5565   displaced_step_fixup (ecs->ptid,
5566 			ecs->event_thread->suspend.stop_signal);
5567 
5568   had_step_over_info = step_over_info_valid_p ();
5569 
5570   if (had_step_over_info)
5571     {
5572       /* If we're stepping over a breakpoint with all threads locked,
5573 	 then only the thread that was stepped should be reporting
5574 	 back an event.  */
5575       gdb_assert (ecs->event_thread->control.trap_expected);
5576 
5577       clear_step_over_info ();
5578     }
5579 
5580   if (!target_is_non_stop_p ())
5581     return 0;
5582 
5583   /* Start a new step-over in another thread if there's one that
5584      needs it.  */
5585   start_step_over ();
5586 
5587   /* If we were stepping over a breakpoint before, and haven't started
5588      a new in-line step-over sequence, then restart all other threads
5589      (except the event thread).  We can't do this in all-stop, as then
5590      e.g., we wouldn't be able to issue any other remote packet until
5591      these other threads stop.  */
5592   if (had_step_over_info && !step_over_info_valid_p ())
5593     {
5594       struct thread_info *pending;
5595 
5596       /* If we only have threads with pending statuses, the restart
5597 	 below won't restart any thread and so nothing re-inserts the
5598 	 breakpoint we just stepped over.  But we need it inserted
5599 	 when we later process the pending events, otherwise if
5600 	 another thread has a pending event for this breakpoint too,
5601 	 we'd discard its event (because the breakpoint that
5602 	 originally caused the event was no longer inserted).  */
5603       context_switch (ecs->ptid);
5604       insert_breakpoints ();
5605 
5606       restart_threads (ecs->event_thread);
5607 
5608       /* If we have events pending, go through handle_inferior_event
5609 	 again, picking up a pending event at random.  This avoids
5610 	 thread starvation.  */
5611 
5612       /* But not if we just stepped over a watchpoint in order to let
5613 	 the instruction execute so we can evaluate its expression.
5614 	 The set of watchpoints that triggered is recorded in the
5615 	 breakpoint objects themselves (see bp->watchpoint_triggered).
5616 	 If we processed another event first, that other event could
5617 	 clobber this info.  */
5618       if (ecs->event_thread->stepping_over_watchpoint)
5619 	return 0;
5620 
5621       pending = iterate_over_threads (resumed_thread_with_pending_status,
5622 				      NULL);
5623       if (pending != NULL)
5624 	{
5625 	  struct thread_info *tp = ecs->event_thread;
5626 	  struct regcache *regcache;
5627 
5628 	  if (debug_infrun)
5629 	    {
5630 	      fprintf_unfiltered (gdb_stdlog,
5631 				  "infrun: found resumed threads with "
5632 				  "pending events, saving status\n");
5633 	    }
5634 
5635 	  gdb_assert (pending != tp);
5636 
5637 	  /* Record the event thread's event for later.  */
5638 	  save_waitstatus (tp, &ecs->ws);
5639 	  /* This was cleared early, by handle_inferior_event.  Set it
5640 	     so this pending event is considered by
5641 	     do_target_wait.  */
5642 	  tp->resumed = 1;
5643 
5644 	  gdb_assert (!tp->executing);
5645 
5646 	  regcache = get_thread_regcache (tp->ptid);
5647 	  tp->suspend.stop_pc = regcache_read_pc (regcache);
5648 
5649 	  if (debug_infrun)
5650 	    {
5651 	      fprintf_unfiltered (gdb_stdlog,
5652 				  "infrun: saved stop_pc=%s for %s "
5653 				  "(currently_stepping=%d)\n",
5654 				  paddress (target_gdbarch (),
5655 					    tp->suspend.stop_pc),
5656 				  target_pid_to_str (tp->ptid),
5657 				  currently_stepping (tp));
5658 	    }
5659 
5660 	  /* This in-line step-over finished; clear this so we won't
5661 	     start a new one.  This is what handle_signal_stop would
5662 	     do, if we returned false.  */
5663 	  tp->stepping_over_breakpoint = 0;
5664 
5665 	  /* Wake up the event loop again.  */
5666 	  mark_async_event_handler (infrun_async_inferior_event_token);
5667 
5668 	  prepare_to_wait (ecs);
5669 	  return 1;
5670 	}
5671     }
5672 
5673   return 0;
5674 }
5675 
5676 /* Come here when the program has stopped with a signal.  */
5677 
5678 static void
5679 handle_signal_stop (struct execution_control_state *ecs)
5680 {
5681   struct frame_info *frame;
5682   struct gdbarch *gdbarch;
5683   int stopped_by_watchpoint;
5684   enum stop_kind stop_soon;
5685   int random_signal;
5686 
5687   gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5688 
5689   ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5690 
5691   /* Do we need to clean up the state of a thread that has
5692      completed a displaced single-step?  (Doing so usually affects
5693      the PC, so do it here, before we set stop_pc.)  */
5694   if (finish_step_over (ecs))
5695     return;
5696 
5697   /* If we either finished a single-step or hit a breakpoint, but
5698      the user wanted this thread to be stopped, pretend we got a
5699      SIG0 (generic unsignaled stop).  */
5700   if (ecs->event_thread->stop_requested
5701       && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5702     ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5703 
5704   stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5705 
5706   if (debug_infrun)
5707     {
5708       struct regcache *regcache = get_thread_regcache (ecs->ptid);
5709       struct gdbarch *gdbarch = get_regcache_arch (regcache);
5710       struct cleanup *old_chain = save_inferior_ptid ();
5711 
5712       inferior_ptid = ecs->ptid;
5713 
5714       fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5715                           paddress (gdbarch, stop_pc));
5716       if (target_stopped_by_watchpoint ())
5717 	{
5718           CORE_ADDR addr;
5719 
5720 	  fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5721 
5722           if (target_stopped_data_address (&current_target, &addr))
5723             fprintf_unfiltered (gdb_stdlog,
5724                                 "infrun: stopped data address = %s\n",
5725                                 paddress (gdbarch, addr));
5726           else
5727             fprintf_unfiltered (gdb_stdlog,
5728                                 "infrun: (no data address available)\n");
5729 	}
5730 
5731       do_cleanups (old_chain);
5732     }
5733 
5734   /* This is originated from start_remote(), start_inferior() and
5735      shared libraries hook functions.  */
5736   stop_soon = get_inferior_stop_soon (ecs->ptid);
5737   if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5738     {
5739       if (!ptid_equal (ecs->ptid, inferior_ptid))
5740 	context_switch (ecs->ptid);
5741       if (debug_infrun)
5742 	fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5743       stop_print_frame = 1;
5744       stop_waiting (ecs);
5745       return;
5746     }
5747 
5748   /* This originates from attach_command().  We need to overwrite
5749      the stop_signal here, because some kernels don't ignore a
5750      SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5751      See more comments in inferior.h.  On the other hand, if we
5752      get a non-SIGSTOP, report it to the user - assume the backend
5753      will handle the SIGSTOP if it should show up later.
5754 
5755      Also consider that the attach is complete when we see a
5756      SIGTRAP.  Some systems (e.g. Windows), and stubs supporting
5757      target extended-remote report it instead of a SIGSTOP
5758      (e.g. gdbserver).  We already rely on SIGTRAP being our
5759      signal, so this is no exception.
5760 
5761      Also consider that the attach is complete when we see a
5762      GDB_SIGNAL_0.  In non-stop mode, GDB will explicitly tell
5763      the target to stop all threads of the inferior, in case the
5764      low level attach operation doesn't stop them implicitly.  If
5765      they weren't stopped implicitly, then the stub will report a
5766      GDB_SIGNAL_0, meaning: stopped for no particular reason
5767      other than GDB's request.  */
5768   if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5769       && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5770 	  || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5771 	  || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5772     {
5773       stop_print_frame = 1;
5774       stop_waiting (ecs);
5775       ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5776       return;
5777     }
5778 
5779   /* See if something interesting happened to the non-current thread.  If
5780      so, then switch to that thread.  */
5781   if (!ptid_equal (ecs->ptid, inferior_ptid))
5782     {
5783       if (debug_infrun)
5784 	fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5785 
5786       context_switch (ecs->ptid);
5787 
5788       if (deprecated_context_hook)
5789 	deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5790     }
5791 
5792   /* At this point, get hold of the now-current thread's frame.  */
5793   frame = get_current_frame ();
5794   gdbarch = get_frame_arch (frame);
5795 
5796   /* Pull the single step breakpoints out of the target.  */
5797   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5798     {
5799       struct regcache *regcache;
5800       struct address_space *aspace;
5801       CORE_ADDR pc;
5802 
5803       regcache = get_thread_regcache (ecs->ptid);
5804       aspace = get_regcache_aspace (regcache);
5805       pc = regcache_read_pc (regcache);
5806 
5807       /* However, before doing so, if this single-step breakpoint was
5808 	 actually for another thread, set this thread up for moving
5809 	 past it.  */
5810       if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5811 						   aspace, pc))
5812 	{
5813 	  if (single_step_breakpoint_inserted_here_p (aspace, pc))
5814 	    {
5815 	      if (debug_infrun)
5816 		{
5817 		  fprintf_unfiltered (gdb_stdlog,
5818 				      "infrun: [%s] hit another thread's "
5819 				      "single-step breakpoint\n",
5820 				      target_pid_to_str (ecs->ptid));
5821 		}
5822 	      ecs->hit_singlestep_breakpoint = 1;
5823 	    }
5824 	}
5825       else
5826 	{
5827 	  if (debug_infrun)
5828 	    {
5829 	      fprintf_unfiltered (gdb_stdlog,
5830 				  "infrun: [%s] hit its "
5831 				  "single-step breakpoint\n",
5832 				  target_pid_to_str (ecs->ptid));
5833 	    }
5834 	}
5835     }
5836   delete_just_stopped_threads_single_step_breakpoints ();
5837 
5838   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5839       && ecs->event_thread->control.trap_expected
5840       && ecs->event_thread->stepping_over_watchpoint)
5841     stopped_by_watchpoint = 0;
5842   else
5843     stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5844 
5845   /* If necessary, step over this watchpoint.  We'll be back to display
5846      it in a moment.  */
5847   if (stopped_by_watchpoint
5848       && (target_have_steppable_watchpoint
5849 	  || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5850     {
5851       /* At this point, we are stopped at an instruction which has
5852          attempted to write to a piece of memory under control of
5853          a watchpoint.  The instruction hasn't actually executed
5854          yet.  If we were to evaluate the watchpoint expression
5855          now, we would get the old value, and therefore no change
5856          would seem to have occurred.
5857 
5858          In order to make watchpoints work `right', we really need
5859          to complete the memory write, and then evaluate the
5860          watchpoint expression.  We do this by single-stepping the
5861 	 target.
5862 
5863 	 It may not be necessary to disable the watchpoint to step over
5864 	 it.  For example, the PA can (with some kernel cooperation)
5865 	 single step over a watchpoint without disabling the watchpoint.
5866 
5867 	 It is far more common to need to disable a watchpoint to step
5868 	 the inferior over it.  If we have non-steppable watchpoints,
5869 	 we must disable the current watchpoint; it's simplest to
5870 	 disable all watchpoints.
5871 
5872 	 Any breakpoint at PC must also be stepped over -- if there's
5873 	 one, it will have already triggered before the watchpoint
5874 	 triggered, and we either already reported it to the user, or
5875 	 it didn't cause a stop and we called keep_going.  In either
5876 	 case, if there was a breakpoint at PC, we must be trying to
5877 	 step past it.  */
5878       ecs->event_thread->stepping_over_watchpoint = 1;
5879       keep_going (ecs);
5880       return;
5881     }
5882 
5883   ecs->event_thread->stepping_over_breakpoint = 0;
5884   ecs->event_thread->stepping_over_watchpoint = 0;
5885   bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5886   ecs->event_thread->control.stop_step = 0;
5887   stop_print_frame = 1;
5888   stopped_by_random_signal = 0;
5889 
5890   /* Hide inlined functions starting here, unless we just performed stepi or
5891      nexti.  After stepi and nexti, always show the innermost frame (not any
5892      inline function call sites).  */
5893   if (ecs->event_thread->control.step_range_end != 1)
5894     {
5895       struct address_space *aspace =
5896 	get_regcache_aspace (get_thread_regcache (ecs->ptid));
5897 
5898       /* skip_inline_frames is expensive, so we avoid it if we can
5899 	 determine that the address is one where functions cannot have
5900 	 been inlined.  This improves performance with inferiors that
5901 	 load a lot of shared libraries, because the solib event
5902 	 breakpoint is defined as the address of a function (i.e. not
5903 	 inline).  Note that we have to check the previous PC as well
5904 	 as the current one to catch cases when we have just
5905 	 single-stepped off a breakpoint prior to reinstating it.
5906 	 Note that we're assuming that the code we single-step to is
5907 	 not inline, but that's not definitive: there's nothing
5908 	 preventing the event breakpoint function from containing
5909 	 inlined code, and the single-step ending up there.  If the
5910 	 user had set a breakpoint on that inlined code, the missing
5911 	 skip_inline_frames call would break things.  Fortunately
5912 	 that's an extremely unlikely scenario.  */
5913       if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5914 	  && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5915 	       && ecs->event_thread->control.trap_expected
5916 	       && pc_at_non_inline_function (aspace,
5917 					     ecs->event_thread->prev_pc,
5918 					     &ecs->ws)))
5919 	{
5920 	  skip_inline_frames (ecs->ptid);
5921 
5922 	  /* Re-fetch current thread's frame in case that invalidated
5923 	     the frame cache.  */
5924 	  frame = get_current_frame ();
5925 	  gdbarch = get_frame_arch (frame);
5926 	}
5927     }
5928 
5929   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5930       && ecs->event_thread->control.trap_expected
5931       && gdbarch_single_step_through_delay_p (gdbarch)
5932       && currently_stepping (ecs->event_thread))
5933     {
5934       /* We're trying to step off a breakpoint.  Turns out that we're
5935 	 also on an instruction that needs to be stepped multiple
5936 	 times before it's been fully executing.  E.g., architectures
5937 	 with a delay slot.  It needs to be stepped twice, once for
5938 	 the instruction and once for the delay slot.  */
5939       int step_through_delay
5940 	= gdbarch_single_step_through_delay (gdbarch, frame);
5941 
5942       if (debug_infrun && step_through_delay)
5943 	fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5944       if (ecs->event_thread->control.step_range_end == 0
5945 	  && step_through_delay)
5946 	{
5947 	  /* The user issued a continue when stopped at a breakpoint.
5948 	     Set up for another trap and get out of here.  */
5949          ecs->event_thread->stepping_over_breakpoint = 1;
5950          keep_going (ecs);
5951          return;
5952 	}
5953       else if (step_through_delay)
5954 	{
5955 	  /* The user issued a step when stopped at a breakpoint.
5956 	     Maybe we should stop, maybe we should not - the delay
5957 	     slot *might* correspond to a line of source.  In any
5958 	     case, don't decide that here, just set
5959 	     ecs->stepping_over_breakpoint, making sure we
5960 	     single-step again before breakpoints are re-inserted.  */
5961 	  ecs->event_thread->stepping_over_breakpoint = 1;
5962 	}
5963     }
5964 
5965   /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5966      handles this event.  */
5967   ecs->event_thread->control.stop_bpstat
5968     = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5969 			  stop_pc, ecs->ptid, &ecs->ws);
5970 
5971   /* Following in case break condition called a
5972      function.  */
5973   stop_print_frame = 1;
5974 
5975   /* This is where we handle "moribund" watchpoints.  Unlike
5976      software breakpoints traps, hardware watchpoint traps are
5977      always distinguishable from random traps.  If no high-level
5978      watchpoint is associated with the reported stop data address
5979      anymore, then the bpstat does not explain the signal ---
5980      simply make sure to ignore it if `stopped_by_watchpoint' is
5981      set.  */
5982 
5983   if (debug_infrun
5984       && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5985       && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5986 				  GDB_SIGNAL_TRAP)
5987       && stopped_by_watchpoint)
5988     fprintf_unfiltered (gdb_stdlog,
5989 			"infrun: no user watchpoint explains "
5990 			"watchpoint SIGTRAP, ignoring\n");
5991 
5992   /* NOTE: cagney/2003-03-29: These checks for a random signal
5993      at one stage in the past included checks for an inferior
5994      function call's call dummy's return breakpoint.  The original
5995      comment, that went with the test, read:
5996 
5997      ``End of a stack dummy.  Some systems (e.g. Sony news) give
5998      another signal besides SIGTRAP, so check here as well as
5999      above.''
6000 
6001      If someone ever tries to get call dummys on a
6002      non-executable stack to work (where the target would stop
6003      with something like a SIGSEGV), then those tests might need
6004      to be re-instated.  Given, however, that the tests were only
6005      enabled when momentary breakpoints were not being used, I
6006      suspect that it won't be the case.
6007 
6008      NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6009      be necessary for call dummies on a non-executable stack on
6010      SPARC.  */
6011 
6012   /* See if the breakpoints module can explain the signal.  */
6013   random_signal
6014     = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6015 			       ecs->event_thread->suspend.stop_signal);
6016 
6017   /* Maybe this was a trap for a software breakpoint that has since
6018      been removed.  */
6019   if (random_signal && target_stopped_by_sw_breakpoint ())
6020     {
6021       if (program_breakpoint_here_p (gdbarch, stop_pc))
6022 	{
6023 	  struct regcache *regcache;
6024 	  int decr_pc;
6025 
6026 	  /* Re-adjust PC to what the program would see if GDB was not
6027 	     debugging it.  */
6028 	  regcache = get_thread_regcache (ecs->event_thread->ptid);
6029 	  decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6030 	  if (decr_pc != 0)
6031 	    {
6032 	      struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6033 
6034 	      if (record_full_is_used ())
6035 		record_full_gdb_operation_disable_set ();
6036 
6037 	      regcache_write_pc (regcache, stop_pc + decr_pc);
6038 
6039 	      do_cleanups (old_cleanups);
6040 	    }
6041 	}
6042       else
6043 	{
6044 	  /* A delayed software breakpoint event.  Ignore the trap.  */
6045 	  if (debug_infrun)
6046 	    fprintf_unfiltered (gdb_stdlog,
6047 				"infrun: delayed software breakpoint "
6048 				"trap, ignoring\n");
6049 	  random_signal = 0;
6050 	}
6051     }
6052 
6053   /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6054      has since been removed.  */
6055   if (random_signal && target_stopped_by_hw_breakpoint ())
6056     {
6057       /* A delayed hardware breakpoint event.  Ignore the trap.  */
6058       if (debug_infrun)
6059 	fprintf_unfiltered (gdb_stdlog,
6060 			    "infrun: delayed hardware breakpoint/watchpoint "
6061 			    "trap, ignoring\n");
6062       random_signal = 0;
6063     }
6064 
6065   /* If not, perhaps stepping/nexting can.  */
6066   if (random_signal)
6067     random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6068 		      && currently_stepping (ecs->event_thread));
6069 
6070   /* Perhaps the thread hit a single-step breakpoint of _another_
6071      thread.  Single-step breakpoints are transparent to the
6072      breakpoints module.  */
6073   if (random_signal)
6074     random_signal = !ecs->hit_singlestep_breakpoint;
6075 
6076   /* No?  Perhaps we got a moribund watchpoint.  */
6077   if (random_signal)
6078     random_signal = !stopped_by_watchpoint;
6079 
6080   /* Always stop if the user explicitly requested this thread to
6081      remain stopped.  */
6082   if (ecs->event_thread->stop_requested)
6083     {
6084       random_signal = 1;
6085       if (debug_infrun)
6086 	fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6087     }
6088 
6089   /* For the program's own signals, act according to
6090      the signal handling tables.  */
6091 
6092   if (random_signal)
6093     {
6094       /* Signal not for debugging purposes.  */
6095       struct inferior *inf = find_inferior_ptid (ecs->ptid);
6096       enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6097 
6098       if (debug_infrun)
6099 	 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6100 			     gdb_signal_to_symbol_string (stop_signal));
6101 
6102       stopped_by_random_signal = 1;
6103 
6104       /* Always stop on signals if we're either just gaining control
6105 	 of the program, or the user explicitly requested this thread
6106 	 to remain stopped.  */
6107       if (stop_soon != NO_STOP_QUIETLY
6108 	  || ecs->event_thread->stop_requested
6109 	  || (!inf->detaching
6110 	      && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6111 	{
6112 	  stop_waiting (ecs);
6113 	  return;
6114 	}
6115 
6116       /* Notify observers the signal has "handle print" set.  Note we
6117 	 returned early above if stopping; normal_stop handles the
6118 	 printing in that case.  */
6119       if (signal_print[ecs->event_thread->suspend.stop_signal])
6120 	{
6121 	  /* The signal table tells us to print about this signal.  */
6122 	  target_terminal_ours_for_output ();
6123 	  observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6124 	  target_terminal_inferior ();
6125 	}
6126 
6127       /* Clear the signal if it should not be passed.  */
6128       if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6129 	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6130 
6131       if (ecs->event_thread->prev_pc == stop_pc
6132 	  && ecs->event_thread->control.trap_expected
6133 	  && ecs->event_thread->control.step_resume_breakpoint == NULL)
6134 	{
6135 	  /* We were just starting a new sequence, attempting to
6136 	     single-step off of a breakpoint and expecting a SIGTRAP.
6137 	     Instead this signal arrives.  This signal will take us out
6138 	     of the stepping range so GDB needs to remember to, when
6139 	     the signal handler returns, resume stepping off that
6140 	     breakpoint.  */
6141 	  /* To simplify things, "continue" is forced to use the same
6142 	     code paths as single-step - set a breakpoint at the
6143 	     signal return address and then, once hit, step off that
6144 	     breakpoint.  */
6145           if (debug_infrun)
6146             fprintf_unfiltered (gdb_stdlog,
6147                                 "infrun: signal arrived while stepping over "
6148                                 "breakpoint\n");
6149 
6150 	  insert_hp_step_resume_breakpoint_at_frame (frame);
6151 	  ecs->event_thread->step_after_step_resume_breakpoint = 1;
6152 	  /* Reset trap_expected to ensure breakpoints are re-inserted.  */
6153 	  ecs->event_thread->control.trap_expected = 0;
6154 
6155 	  /* If we were nexting/stepping some other thread, switch to
6156 	     it, so that we don't continue it, losing control.  */
6157 	  if (!switch_back_to_stepped_thread (ecs))
6158 	    keep_going (ecs);
6159 	  return;
6160 	}
6161 
6162       if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6163 	  && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6164 	      || ecs->event_thread->control.step_range_end == 1)
6165 	  && frame_id_eq (get_stack_frame_id (frame),
6166 			  ecs->event_thread->control.step_stack_frame_id)
6167 	  && ecs->event_thread->control.step_resume_breakpoint == NULL)
6168 	{
6169 	  /* The inferior is about to take a signal that will take it
6170 	     out of the single step range.  Set a breakpoint at the
6171 	     current PC (which is presumably where the signal handler
6172 	     will eventually return) and then allow the inferior to
6173 	     run free.
6174 
6175 	     Note that this is only needed for a signal delivered
6176 	     while in the single-step range.  Nested signals aren't a
6177 	     problem as they eventually all return.  */
6178           if (debug_infrun)
6179             fprintf_unfiltered (gdb_stdlog,
6180                                 "infrun: signal may take us out of "
6181                                 "single-step range\n");
6182 
6183 	  clear_step_over_info ();
6184 	  insert_hp_step_resume_breakpoint_at_frame (frame);
6185 	  ecs->event_thread->step_after_step_resume_breakpoint = 1;
6186 	  /* Reset trap_expected to ensure breakpoints are re-inserted.  */
6187 	  ecs->event_thread->control.trap_expected = 0;
6188 	  keep_going (ecs);
6189 	  return;
6190 	}
6191 
6192       /* Note: step_resume_breakpoint may be non-NULL.  This occures
6193 	 when either there's a nested signal, or when there's a
6194 	 pending signal enabled just as the signal handler returns
6195 	 (leaving the inferior at the step-resume-breakpoint without
6196 	 actually executing it).  Either way continue until the
6197 	 breakpoint is really hit.  */
6198 
6199       if (!switch_back_to_stepped_thread (ecs))
6200 	{
6201 	  if (debug_infrun)
6202 	    fprintf_unfiltered (gdb_stdlog,
6203 				"infrun: random signal, keep going\n");
6204 
6205 	  keep_going (ecs);
6206 	}
6207       return;
6208     }
6209 
6210   process_event_stop_test (ecs);
6211 }
6212 
6213 /* Come here when we've got some debug event / signal we can explain
6214    (IOW, not a random signal), and test whether it should cause a
6215    stop, or whether we should resume the inferior (transparently).
6216    E.g., could be a breakpoint whose condition evaluates false; we
6217    could be still stepping within the line; etc.  */
6218 
6219 static void
6220 process_event_stop_test (struct execution_control_state *ecs)
6221 {
6222   struct symtab_and_line stop_pc_sal;
6223   struct frame_info *frame;
6224   struct gdbarch *gdbarch;
6225   CORE_ADDR jmp_buf_pc;
6226   struct bpstat_what what;
6227 
6228   /* Handle cases caused by hitting a breakpoint.  */
6229 
6230   frame = get_current_frame ();
6231   gdbarch = get_frame_arch (frame);
6232 
6233   what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6234 
6235   if (what.call_dummy)
6236     {
6237       stop_stack_dummy = what.call_dummy;
6238     }
6239 
6240   /* A few breakpoint types have callbacks associated (e.g.,
6241      bp_jit_event).  Run them now.  */
6242   bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6243 
6244   /* If we hit an internal event that triggers symbol changes, the
6245      current frame will be invalidated within bpstat_what (e.g., if we
6246      hit an internal solib event).  Re-fetch it.  */
6247   frame = get_current_frame ();
6248   gdbarch = get_frame_arch (frame);
6249 
6250   switch (what.main_action)
6251     {
6252     case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6253       /* If we hit the breakpoint at longjmp while stepping, we
6254 	 install a momentary breakpoint at the target of the
6255 	 jmp_buf.  */
6256 
6257       if (debug_infrun)
6258 	fprintf_unfiltered (gdb_stdlog,
6259 			    "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6260 
6261       ecs->event_thread->stepping_over_breakpoint = 1;
6262 
6263       if (what.is_longjmp)
6264 	{
6265 	  struct value *arg_value;
6266 
6267 	  /* If we set the longjmp breakpoint via a SystemTap probe,
6268 	     then use it to extract the arguments.  The destination PC
6269 	     is the third argument to the probe.  */
6270 	  arg_value = probe_safe_evaluate_at_pc (frame, 2);
6271 	  if (arg_value)
6272 	    {
6273 	      jmp_buf_pc = value_as_address (arg_value);
6274 	      jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6275 	    }
6276 	  else if (!gdbarch_get_longjmp_target_p (gdbarch)
6277 		   || !gdbarch_get_longjmp_target (gdbarch,
6278 						   frame, &jmp_buf_pc))
6279 	    {
6280 	      if (debug_infrun)
6281 		fprintf_unfiltered (gdb_stdlog,
6282 				    "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6283 				    "(!gdbarch_get_longjmp_target)\n");
6284 	      keep_going (ecs);
6285 	      return;
6286 	    }
6287 
6288 	  /* Insert a breakpoint at resume address.  */
6289 	  insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6290 	}
6291       else
6292 	check_exception_resume (ecs, frame);
6293       keep_going (ecs);
6294       return;
6295 
6296     case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6297       {
6298 	struct frame_info *init_frame;
6299 
6300 	/* There are several cases to consider.
6301 
6302 	   1. The initiating frame no longer exists.  In this case we
6303 	   must stop, because the exception or longjmp has gone too
6304 	   far.
6305 
6306 	   2. The initiating frame exists, and is the same as the
6307 	   current frame.  We stop, because the exception or longjmp
6308 	   has been caught.
6309 
6310 	   3. The initiating frame exists and is different from the
6311 	   current frame.  This means the exception or longjmp has
6312 	   been caught beneath the initiating frame, so keep going.
6313 
6314 	   4. longjmp breakpoint has been placed just to protect
6315 	   against stale dummy frames and user is not interested in
6316 	   stopping around longjmps.  */
6317 
6318 	if (debug_infrun)
6319 	  fprintf_unfiltered (gdb_stdlog,
6320 			      "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6321 
6322 	gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6323 		    != NULL);
6324 	delete_exception_resume_breakpoint (ecs->event_thread);
6325 
6326 	if (what.is_longjmp)
6327 	  {
6328 	    check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6329 
6330 	    if (!frame_id_p (ecs->event_thread->initiating_frame))
6331 	      {
6332 		/* Case 4.  */
6333 		keep_going (ecs);
6334 		return;
6335 	      }
6336 	  }
6337 
6338 	init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6339 
6340 	if (init_frame)
6341 	  {
6342 	    struct frame_id current_id
6343 	      = get_frame_id (get_current_frame ());
6344 	    if (frame_id_eq (current_id,
6345 			     ecs->event_thread->initiating_frame))
6346 	      {
6347 		/* Case 2.  Fall through.  */
6348 	      }
6349 	    else
6350 	      {
6351 		/* Case 3.  */
6352 		keep_going (ecs);
6353 		return;
6354 	      }
6355 	  }
6356 
6357 	/* For Cases 1 and 2, remove the step-resume breakpoint, if it
6358 	   exists.  */
6359 	delete_step_resume_breakpoint (ecs->event_thread);
6360 
6361 	end_stepping_range (ecs);
6362       }
6363       return;
6364 
6365     case BPSTAT_WHAT_SINGLE:
6366       if (debug_infrun)
6367 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6368       ecs->event_thread->stepping_over_breakpoint = 1;
6369       /* Still need to check other stuff, at least the case where we
6370 	 are stepping and step out of the right range.  */
6371       break;
6372 
6373     case BPSTAT_WHAT_STEP_RESUME:
6374       if (debug_infrun)
6375 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6376 
6377       delete_step_resume_breakpoint (ecs->event_thread);
6378       if (ecs->event_thread->control.proceed_to_finish
6379 	  && execution_direction == EXEC_REVERSE)
6380 	{
6381 	  struct thread_info *tp = ecs->event_thread;
6382 
6383 	  /* We are finishing a function in reverse, and just hit the
6384 	     step-resume breakpoint at the start address of the
6385 	     function, and we're almost there -- just need to back up
6386 	     by one more single-step, which should take us back to the
6387 	     function call.  */
6388 	  tp->control.step_range_start = tp->control.step_range_end = 1;
6389 	  keep_going (ecs);
6390 	  return;
6391 	}
6392       fill_in_stop_func (gdbarch, ecs);
6393       if (stop_pc == ecs->stop_func_start
6394 	  && execution_direction == EXEC_REVERSE)
6395 	{
6396 	  /* We are stepping over a function call in reverse, and just
6397 	     hit the step-resume breakpoint at the start address of
6398 	     the function.  Go back to single-stepping, which should
6399 	     take us back to the function call.  */
6400 	  ecs->event_thread->stepping_over_breakpoint = 1;
6401 	  keep_going (ecs);
6402 	  return;
6403 	}
6404       break;
6405 
6406     case BPSTAT_WHAT_STOP_NOISY:
6407       if (debug_infrun)
6408 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6409       stop_print_frame = 1;
6410 
6411       /* Assume the thread stopped for a breapoint.  We'll still check
6412 	 whether a/the breakpoint is there when the thread is next
6413 	 resumed.  */
6414       ecs->event_thread->stepping_over_breakpoint = 1;
6415 
6416       stop_waiting (ecs);
6417       return;
6418 
6419     case BPSTAT_WHAT_STOP_SILENT:
6420       if (debug_infrun)
6421 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6422       stop_print_frame = 0;
6423 
6424       /* Assume the thread stopped for a breapoint.  We'll still check
6425 	 whether a/the breakpoint is there when the thread is next
6426 	 resumed.  */
6427       ecs->event_thread->stepping_over_breakpoint = 1;
6428       stop_waiting (ecs);
6429       return;
6430 
6431     case BPSTAT_WHAT_HP_STEP_RESUME:
6432       if (debug_infrun)
6433 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6434 
6435       delete_step_resume_breakpoint (ecs->event_thread);
6436       if (ecs->event_thread->step_after_step_resume_breakpoint)
6437 	{
6438 	  /* Back when the step-resume breakpoint was inserted, we
6439 	     were trying to single-step off a breakpoint.  Go back to
6440 	     doing that.  */
6441 	  ecs->event_thread->step_after_step_resume_breakpoint = 0;
6442 	  ecs->event_thread->stepping_over_breakpoint = 1;
6443 	  keep_going (ecs);
6444 	  return;
6445 	}
6446       break;
6447 
6448     case BPSTAT_WHAT_KEEP_CHECKING:
6449       break;
6450     }
6451 
6452   /* If we stepped a permanent breakpoint and we had a high priority
6453      step-resume breakpoint for the address we stepped, but we didn't
6454      hit it, then we must have stepped into the signal handler.  The
6455      step-resume was only necessary to catch the case of _not_
6456      stepping into the handler, so delete it, and fall through to
6457      checking whether the step finished.  */
6458   if (ecs->event_thread->stepped_breakpoint)
6459     {
6460       struct breakpoint *sr_bp
6461 	= ecs->event_thread->control.step_resume_breakpoint;
6462 
6463       if (sr_bp != NULL
6464 	  && sr_bp->loc->permanent
6465 	  && sr_bp->type == bp_hp_step_resume
6466 	  && sr_bp->loc->address == ecs->event_thread->prev_pc)
6467 	{
6468 	  if (debug_infrun)
6469 	    fprintf_unfiltered (gdb_stdlog,
6470 				"infrun: stepped permanent breakpoint, stopped in "
6471 				"handler\n");
6472 	  delete_step_resume_breakpoint (ecs->event_thread);
6473 	  ecs->event_thread->step_after_step_resume_breakpoint = 0;
6474 	}
6475     }
6476 
6477   /* We come here if we hit a breakpoint but should not stop for it.
6478      Possibly we also were stepping and should stop for that.  So fall
6479      through and test for stepping.  But, if not stepping, do not
6480      stop.  */
6481 
6482   /* In all-stop mode, if we're currently stepping but have stopped in
6483      some other thread, we need to switch back to the stepped thread.  */
6484   if (switch_back_to_stepped_thread (ecs))
6485     return;
6486 
6487   if (ecs->event_thread->control.step_resume_breakpoint)
6488     {
6489       if (debug_infrun)
6490 	 fprintf_unfiltered (gdb_stdlog,
6491 			     "infrun: step-resume breakpoint is inserted\n");
6492 
6493       /* Having a step-resume breakpoint overrides anything
6494          else having to do with stepping commands until
6495          that breakpoint is reached.  */
6496       keep_going (ecs);
6497       return;
6498     }
6499 
6500   if (ecs->event_thread->control.step_range_end == 0)
6501     {
6502       if (debug_infrun)
6503 	 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6504       /* Likewise if we aren't even stepping.  */
6505       keep_going (ecs);
6506       return;
6507     }
6508 
6509   /* Re-fetch current thread's frame in case the code above caused
6510      the frame cache to be re-initialized, making our FRAME variable
6511      a dangling pointer.  */
6512   frame = get_current_frame ();
6513   gdbarch = get_frame_arch (frame);
6514   fill_in_stop_func (gdbarch, ecs);
6515 
6516   /* If stepping through a line, keep going if still within it.
6517 
6518      Note that step_range_end is the address of the first instruction
6519      beyond the step range, and NOT the address of the last instruction
6520      within it!
6521 
6522      Note also that during reverse execution, we may be stepping
6523      through a function epilogue and therefore must detect when
6524      the current-frame changes in the middle of a line.  */
6525 
6526   if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6527       && (execution_direction != EXEC_REVERSE
6528 	  || frame_id_eq (get_frame_id (frame),
6529 			  ecs->event_thread->control.step_frame_id)))
6530     {
6531       if (debug_infrun)
6532 	fprintf_unfiltered
6533 	  (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6534 	   paddress (gdbarch, ecs->event_thread->control.step_range_start),
6535 	   paddress (gdbarch, ecs->event_thread->control.step_range_end));
6536 
6537       /* Tentatively re-enable range stepping; `resume' disables it if
6538 	 necessary (e.g., if we're stepping over a breakpoint or we
6539 	 have software watchpoints).  */
6540       ecs->event_thread->control.may_range_step = 1;
6541 
6542       /* When stepping backward, stop at beginning of line range
6543 	 (unless it's the function entry point, in which case
6544 	 keep going back to the call point).  */
6545       if (stop_pc == ecs->event_thread->control.step_range_start
6546 	  && stop_pc != ecs->stop_func_start
6547 	  && execution_direction == EXEC_REVERSE)
6548 	end_stepping_range (ecs);
6549       else
6550 	keep_going (ecs);
6551 
6552       return;
6553     }
6554 
6555   /* We stepped out of the stepping range.  */
6556 
6557   /* If we are stepping at the source level and entered the runtime
6558      loader dynamic symbol resolution code...
6559 
6560      EXEC_FORWARD: we keep on single stepping until we exit the run
6561      time loader code and reach the callee's address.
6562 
6563      EXEC_REVERSE: we've already executed the callee (backward), and
6564      the runtime loader code is handled just like any other
6565      undebuggable function call.  Now we need only keep stepping
6566      backward through the trampoline code, and that's handled further
6567      down, so there is nothing for us to do here.  */
6568 
6569   if (execution_direction != EXEC_REVERSE
6570       && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6571       && in_solib_dynsym_resolve_code (stop_pc))
6572     {
6573       CORE_ADDR pc_after_resolver =
6574 	gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6575 
6576       if (debug_infrun)
6577 	 fprintf_unfiltered (gdb_stdlog,
6578 			     "infrun: stepped into dynsym resolve code\n");
6579 
6580       if (pc_after_resolver)
6581 	{
6582 	  /* Set up a step-resume breakpoint at the address
6583 	     indicated by SKIP_SOLIB_RESOLVER.  */
6584 	  struct symtab_and_line sr_sal;
6585 
6586 	  init_sal (&sr_sal);
6587 	  sr_sal.pc = pc_after_resolver;
6588 	  sr_sal.pspace = get_frame_program_space (frame);
6589 
6590 	  insert_step_resume_breakpoint_at_sal (gdbarch,
6591 						sr_sal, null_frame_id);
6592 	}
6593 
6594       keep_going (ecs);
6595       return;
6596     }
6597 
6598   if (ecs->event_thread->control.step_range_end != 1
6599       && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6600 	  || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6601       && get_frame_type (frame) == SIGTRAMP_FRAME)
6602     {
6603       if (debug_infrun)
6604 	 fprintf_unfiltered (gdb_stdlog,
6605 			     "infrun: stepped into signal trampoline\n");
6606       /* The inferior, while doing a "step" or "next", has ended up in
6607          a signal trampoline (either by a signal being delivered or by
6608          the signal handler returning).  Just single-step until the
6609          inferior leaves the trampoline (either by calling the handler
6610          or returning).  */
6611       keep_going (ecs);
6612       return;
6613     }
6614 
6615   /* If we're in the return path from a shared library trampoline,
6616      we want to proceed through the trampoline when stepping.  */
6617   /* macro/2012-04-25: This needs to come before the subroutine
6618      call check below as on some targets return trampolines look
6619      like subroutine calls (MIPS16 return thunks).  */
6620   if (gdbarch_in_solib_return_trampoline (gdbarch,
6621 					  stop_pc, ecs->stop_func_name)
6622       && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6623     {
6624       /* Determine where this trampoline returns.  */
6625       CORE_ADDR real_stop_pc;
6626 
6627       real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6628 
6629       if (debug_infrun)
6630 	 fprintf_unfiltered (gdb_stdlog,
6631 			     "infrun: stepped into solib return tramp\n");
6632 
6633       /* Only proceed through if we know where it's going.  */
6634       if (real_stop_pc)
6635 	{
6636 	  /* And put the step-breakpoint there and go until there.  */
6637 	  struct symtab_and_line sr_sal;
6638 
6639 	  init_sal (&sr_sal);	/* initialize to zeroes */
6640 	  sr_sal.pc = real_stop_pc;
6641 	  sr_sal.section = find_pc_overlay (sr_sal.pc);
6642 	  sr_sal.pspace = get_frame_program_space (frame);
6643 
6644 	  /* Do not specify what the fp should be when we stop since
6645 	     on some machines the prologue is where the new fp value
6646 	     is established.  */
6647 	  insert_step_resume_breakpoint_at_sal (gdbarch,
6648 						sr_sal, null_frame_id);
6649 
6650 	  /* Restart without fiddling with the step ranges or
6651 	     other state.  */
6652 	  keep_going (ecs);
6653 	  return;
6654 	}
6655     }
6656 
6657   /* Check for subroutine calls.  The check for the current frame
6658      equalling the step ID is not necessary - the check of the
6659      previous frame's ID is sufficient - but it is a common case and
6660      cheaper than checking the previous frame's ID.
6661 
6662      NOTE: frame_id_eq will never report two invalid frame IDs as
6663      being equal, so to get into this block, both the current and
6664      previous frame must have valid frame IDs.  */
6665   /* The outer_frame_id check is a heuristic to detect stepping
6666      through startup code.  If we step over an instruction which
6667      sets the stack pointer from an invalid value to a valid value,
6668      we may detect that as a subroutine call from the mythical
6669      "outermost" function.  This could be fixed by marking
6670      outermost frames as !stack_p,code_p,special_p.  Then the
6671      initial outermost frame, before sp was valid, would
6672      have code_addr == &_start.  See the comment in frame_id_eq
6673      for more.  */
6674   if (!frame_id_eq (get_stack_frame_id (frame),
6675 		    ecs->event_thread->control.step_stack_frame_id)
6676       && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6677 		       ecs->event_thread->control.step_stack_frame_id)
6678 	  && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6679 			    outer_frame_id)
6680 	      || (ecs->event_thread->control.step_start_function
6681 		  != find_pc_function (stop_pc)))))
6682     {
6683       CORE_ADDR real_stop_pc;
6684 
6685       if (debug_infrun)
6686 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6687 
6688       if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6689 	{
6690 	  /* I presume that step_over_calls is only 0 when we're
6691 	     supposed to be stepping at the assembly language level
6692 	     ("stepi").  Just stop.  */
6693 	  /* And this works the same backward as frontward.  MVS */
6694 	  end_stepping_range (ecs);
6695 	  return;
6696 	}
6697 
6698       /* Reverse stepping through solib trampolines.  */
6699 
6700       if (execution_direction == EXEC_REVERSE
6701 	  && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6702 	  && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6703 	      || (ecs->stop_func_start == 0
6704 		  && in_solib_dynsym_resolve_code (stop_pc))))
6705 	{
6706 	  /* Any solib trampoline code can be handled in reverse
6707 	     by simply continuing to single-step.  We have already
6708 	     executed the solib function (backwards), and a few
6709 	     steps will take us back through the trampoline to the
6710 	     caller.  */
6711 	  keep_going (ecs);
6712 	  return;
6713 	}
6714 
6715       if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6716 	{
6717 	  /* We're doing a "next".
6718 
6719 	     Normal (forward) execution: set a breakpoint at the
6720 	     callee's return address (the address at which the caller
6721 	     will resume).
6722 
6723 	     Reverse (backward) execution.  set the step-resume
6724 	     breakpoint at the start of the function that we just
6725 	     stepped into (backwards), and continue to there.  When we
6726 	     get there, we'll need to single-step back to the caller.  */
6727 
6728 	  if (execution_direction == EXEC_REVERSE)
6729 	    {
6730 	      /* If we're already at the start of the function, we've either
6731 		 just stepped backward into a single instruction function,
6732 		 or stepped back out of a signal handler to the first instruction
6733 		 of the function.  Just keep going, which will single-step back
6734 		 to the caller.  */
6735 	      if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6736 		{
6737 		  struct symtab_and_line sr_sal;
6738 
6739 		  /* Normal function call return (static or dynamic).  */
6740 		  init_sal (&sr_sal);
6741 		  sr_sal.pc = ecs->stop_func_start;
6742 		  sr_sal.pspace = get_frame_program_space (frame);
6743 		  insert_step_resume_breakpoint_at_sal (gdbarch,
6744 							sr_sal, null_frame_id);
6745 		}
6746 	    }
6747 	  else
6748 	    insert_step_resume_breakpoint_at_caller (frame);
6749 
6750 	  keep_going (ecs);
6751 	  return;
6752 	}
6753 
6754       /* If we are in a function call trampoline (a stub between the
6755          calling routine and the real function), locate the real
6756          function.  That's what tells us (a) whether we want to step
6757          into it at all, and (b) what prologue we want to run to the
6758          end of, if we do step into it.  */
6759       real_stop_pc = skip_language_trampoline (frame, stop_pc);
6760       if (real_stop_pc == 0)
6761 	real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6762       if (real_stop_pc != 0)
6763 	ecs->stop_func_start = real_stop_pc;
6764 
6765       if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6766 	{
6767 	  struct symtab_and_line sr_sal;
6768 
6769 	  init_sal (&sr_sal);
6770 	  sr_sal.pc = ecs->stop_func_start;
6771 	  sr_sal.pspace = get_frame_program_space (frame);
6772 
6773 	  insert_step_resume_breakpoint_at_sal (gdbarch,
6774 						sr_sal, null_frame_id);
6775 	  keep_going (ecs);
6776 	  return;
6777 	}
6778 
6779       /* If we have line number information for the function we are
6780 	 thinking of stepping into and the function isn't on the skip
6781 	 list, step into it.
6782 
6783          If there are several symtabs at that PC (e.g. with include
6784          files), just want to know whether *any* of them have line
6785          numbers.  find_pc_line handles this.  */
6786       {
6787 	struct symtab_and_line tmp_sal;
6788 
6789 	tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6790 	if (tmp_sal.line != 0
6791 	    && !function_name_is_marked_for_skip (ecs->stop_func_name,
6792 						  &tmp_sal))
6793 	  {
6794 	    if (execution_direction == EXEC_REVERSE)
6795 	      handle_step_into_function_backward (gdbarch, ecs);
6796 	    else
6797 	      handle_step_into_function (gdbarch, ecs);
6798 	    return;
6799 	  }
6800       }
6801 
6802       /* If we have no line number and the step-stop-if-no-debug is
6803          set, we stop the step so that the user has a chance to switch
6804          in assembly mode.  */
6805       if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6806 	  && step_stop_if_no_debug)
6807 	{
6808 	  end_stepping_range (ecs);
6809 	  return;
6810 	}
6811 
6812       if (execution_direction == EXEC_REVERSE)
6813 	{
6814 	  /* If we're already at the start of the function, we've either just
6815 	     stepped backward into a single instruction function without line
6816 	     number info, or stepped back out of a signal handler to the first
6817 	     instruction of the function without line number info.  Just keep
6818 	     going, which will single-step back to the caller.  */
6819 	  if (ecs->stop_func_start != stop_pc)
6820 	    {
6821 	      /* Set a breakpoint at callee's start address.
6822 		 From there we can step once and be back in the caller.  */
6823 	      struct symtab_and_line sr_sal;
6824 
6825 	      init_sal (&sr_sal);
6826 	      sr_sal.pc = ecs->stop_func_start;
6827 	      sr_sal.pspace = get_frame_program_space (frame);
6828 	      insert_step_resume_breakpoint_at_sal (gdbarch,
6829 						    sr_sal, null_frame_id);
6830 	    }
6831 	}
6832       else
6833 	/* Set a breakpoint at callee's return address (the address
6834 	   at which the caller will resume).  */
6835 	insert_step_resume_breakpoint_at_caller (frame);
6836 
6837       keep_going (ecs);
6838       return;
6839     }
6840 
6841   /* Reverse stepping through solib trampolines.  */
6842 
6843   if (execution_direction == EXEC_REVERSE
6844       && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6845     {
6846       if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6847 	  || (ecs->stop_func_start == 0
6848 	      && in_solib_dynsym_resolve_code (stop_pc)))
6849 	{
6850 	  /* Any solib trampoline code can be handled in reverse
6851 	     by simply continuing to single-step.  We have already
6852 	     executed the solib function (backwards), and a few
6853 	     steps will take us back through the trampoline to the
6854 	     caller.  */
6855 	  keep_going (ecs);
6856 	  return;
6857 	}
6858       else if (in_solib_dynsym_resolve_code (stop_pc))
6859 	{
6860 	  /* Stepped backward into the solib dynsym resolver.
6861 	     Set a breakpoint at its start and continue, then
6862 	     one more step will take us out.  */
6863 	  struct symtab_and_line sr_sal;
6864 
6865 	  init_sal (&sr_sal);
6866 	  sr_sal.pc = ecs->stop_func_start;
6867 	  sr_sal.pspace = get_frame_program_space (frame);
6868 	  insert_step_resume_breakpoint_at_sal (gdbarch,
6869 						sr_sal, null_frame_id);
6870 	  keep_going (ecs);
6871 	  return;
6872 	}
6873     }
6874 
6875   stop_pc_sal = find_pc_line (stop_pc, 0);
6876 
6877   /* NOTE: tausq/2004-05-24: This if block used to be done before all
6878      the trampoline processing logic, however, there are some trampolines
6879      that have no names, so we should do trampoline handling first.  */
6880   if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6881       && ecs->stop_func_name == NULL
6882       && stop_pc_sal.line == 0)
6883     {
6884       if (debug_infrun)
6885 	 fprintf_unfiltered (gdb_stdlog,
6886 			     "infrun: stepped into undebuggable function\n");
6887 
6888       /* The inferior just stepped into, or returned to, an
6889          undebuggable function (where there is no debugging information
6890          and no line number corresponding to the address where the
6891          inferior stopped).  Since we want to skip this kind of code,
6892          we keep going until the inferior returns from this
6893          function - unless the user has asked us not to (via
6894          set step-mode) or we no longer know how to get back
6895          to the call site.  */
6896       if (step_stop_if_no_debug
6897 	  || !frame_id_p (frame_unwind_caller_id (frame)))
6898 	{
6899 	  /* If we have no line number and the step-stop-if-no-debug
6900 	     is set, we stop the step so that the user has a chance to
6901 	     switch in assembly mode.  */
6902 	  end_stepping_range (ecs);
6903 	  return;
6904 	}
6905       else
6906 	{
6907 	  /* Set a breakpoint at callee's return address (the address
6908 	     at which the caller will resume).  */
6909 	  insert_step_resume_breakpoint_at_caller (frame);
6910 	  keep_going (ecs);
6911 	  return;
6912 	}
6913     }
6914 
6915   if (ecs->event_thread->control.step_range_end == 1)
6916     {
6917       /* It is stepi or nexti.  We always want to stop stepping after
6918          one instruction.  */
6919       if (debug_infrun)
6920 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6921       end_stepping_range (ecs);
6922       return;
6923     }
6924 
6925   if (stop_pc_sal.line == 0)
6926     {
6927       /* We have no line number information.  That means to stop
6928          stepping (does this always happen right after one instruction,
6929          when we do "s" in a function with no line numbers,
6930          or can this happen as a result of a return or longjmp?).  */
6931       if (debug_infrun)
6932 	 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6933       end_stepping_range (ecs);
6934       return;
6935     }
6936 
6937   /* Look for "calls" to inlined functions, part one.  If the inline
6938      frame machinery detected some skipped call sites, we have entered
6939      a new inline function.  */
6940 
6941   if (frame_id_eq (get_frame_id (get_current_frame ()),
6942 		   ecs->event_thread->control.step_frame_id)
6943       && inline_skipped_frames (ecs->ptid))
6944     {
6945       struct symtab_and_line call_sal;
6946 
6947       if (debug_infrun)
6948 	fprintf_unfiltered (gdb_stdlog,
6949 			    "infrun: stepped into inlined function\n");
6950 
6951       find_frame_sal (get_current_frame (), &call_sal);
6952 
6953       if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6954 	{
6955 	  /* For "step", we're going to stop.  But if the call site
6956 	     for this inlined function is on the same source line as
6957 	     we were previously stepping, go down into the function
6958 	     first.  Otherwise stop at the call site.  */
6959 
6960 	  if (call_sal.line == ecs->event_thread->current_line
6961 	      && call_sal.symtab == ecs->event_thread->current_symtab)
6962 	    step_into_inline_frame (ecs->ptid);
6963 
6964 	  end_stepping_range (ecs);
6965 	  return;
6966 	}
6967       else
6968 	{
6969 	  /* For "next", we should stop at the call site if it is on a
6970 	     different source line.  Otherwise continue through the
6971 	     inlined function.  */
6972 	  if (call_sal.line == ecs->event_thread->current_line
6973 	      && call_sal.symtab == ecs->event_thread->current_symtab)
6974 	    keep_going (ecs);
6975 	  else
6976 	    end_stepping_range (ecs);
6977 	  return;
6978 	}
6979     }
6980 
6981   /* Look for "calls" to inlined functions, part two.  If we are still
6982      in the same real function we were stepping through, but we have
6983      to go further up to find the exact frame ID, we are stepping
6984      through a more inlined call beyond its call site.  */
6985 
6986   if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6987       && !frame_id_eq (get_frame_id (get_current_frame ()),
6988 		       ecs->event_thread->control.step_frame_id)
6989       && stepped_in_from (get_current_frame (),
6990 			  ecs->event_thread->control.step_frame_id))
6991     {
6992       if (debug_infrun)
6993 	fprintf_unfiltered (gdb_stdlog,
6994 			    "infrun: stepping through inlined function\n");
6995 
6996       if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6997 	keep_going (ecs);
6998       else
6999 	end_stepping_range (ecs);
7000       return;
7001     }
7002 
7003   if ((stop_pc == stop_pc_sal.pc)
7004       && (ecs->event_thread->current_line != stop_pc_sal.line
7005  	  || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7006     {
7007       /* We are at the start of a different line.  So stop.  Note that
7008          we don't stop if we step into the middle of a different line.
7009          That is said to make things like for (;;) statements work
7010          better.  */
7011       if (debug_infrun)
7012 	 fprintf_unfiltered (gdb_stdlog,
7013 			     "infrun: stepped to a different line\n");
7014       end_stepping_range (ecs);
7015       return;
7016     }
7017 
7018   /* We aren't done stepping.
7019 
7020      Optimize by setting the stepping range to the line.
7021      (We might not be in the original line, but if we entered a
7022      new line in mid-statement, we continue stepping.  This makes
7023      things like for(;;) statements work better.)  */
7024 
7025   ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7026   ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7027   ecs->event_thread->control.may_range_step = 1;
7028   set_step_info (frame, stop_pc_sal);
7029 
7030   if (debug_infrun)
7031      fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7032   keep_going (ecs);
7033 }
7034 
7035 /* In all-stop mode, if we're currently stepping but have stopped in
7036    some other thread, we may need to switch back to the stepped
7037    thread.  Returns true we set the inferior running, false if we left
7038    it stopped (and the event needs further processing).  */
7039 
7040 static int
7041 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7042 {
7043   if (!target_is_non_stop_p ())
7044     {
7045       struct thread_info *tp;
7046       struct thread_info *stepping_thread;
7047 
7048       /* If any thread is blocked on some internal breakpoint, and we
7049 	 simply need to step over that breakpoint to get it going
7050 	 again, do that first.  */
7051 
7052       /* However, if we see an event for the stepping thread, then we
7053 	 know all other threads have been moved past their breakpoints
7054 	 already.  Let the caller check whether the step is finished,
7055 	 etc., before deciding to move it past a breakpoint.  */
7056       if (ecs->event_thread->control.step_range_end != 0)
7057 	return 0;
7058 
7059       /* Check if the current thread is blocked on an incomplete
7060 	 step-over, interrupted by a random signal.  */
7061       if (ecs->event_thread->control.trap_expected
7062 	  && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7063 	{
7064 	  if (debug_infrun)
7065 	    {
7066 	      fprintf_unfiltered (gdb_stdlog,
7067 				  "infrun: need to finish step-over of [%s]\n",
7068 				  target_pid_to_str (ecs->event_thread->ptid));
7069 	    }
7070 	  keep_going (ecs);
7071 	  return 1;
7072 	}
7073 
7074       /* Check if the current thread is blocked by a single-step
7075 	 breakpoint of another thread.  */
7076       if (ecs->hit_singlestep_breakpoint)
7077        {
7078 	 if (debug_infrun)
7079 	   {
7080 	     fprintf_unfiltered (gdb_stdlog,
7081 				 "infrun: need to step [%s] over single-step "
7082 				 "breakpoint\n",
7083 				 target_pid_to_str (ecs->ptid));
7084 	   }
7085 	 keep_going (ecs);
7086 	 return 1;
7087        }
7088 
7089       /* If this thread needs yet another step-over (e.g., stepping
7090 	 through a delay slot), do it first before moving on to
7091 	 another thread.  */
7092       if (thread_still_needs_step_over (ecs->event_thread))
7093 	{
7094 	  if (debug_infrun)
7095 	    {
7096 	      fprintf_unfiltered (gdb_stdlog,
7097 				  "infrun: thread [%s] still needs step-over\n",
7098 				  target_pid_to_str (ecs->event_thread->ptid));
7099 	    }
7100 	  keep_going (ecs);
7101 	  return 1;
7102 	}
7103 
7104       /* If scheduler locking applies even if not stepping, there's no
7105 	 need to walk over threads.  Above we've checked whether the
7106 	 current thread is stepping.  If some other thread not the
7107 	 event thread is stepping, then it must be that scheduler
7108 	 locking is not in effect.  */
7109       if (schedlock_applies (ecs->event_thread))
7110 	return 0;
7111 
7112       /* Otherwise, we no longer expect a trap in the current thread.
7113 	 Clear the trap_expected flag before switching back -- this is
7114 	 what keep_going does as well, if we call it.  */
7115       ecs->event_thread->control.trap_expected = 0;
7116 
7117       /* Likewise, clear the signal if it should not be passed.  */
7118       if (!signal_program[ecs->event_thread->suspend.stop_signal])
7119 	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7120 
7121       /* Do all pending step-overs before actually proceeding with
7122 	 step/next/etc.  */
7123       if (start_step_over ())
7124 	{
7125 	  prepare_to_wait (ecs);
7126 	  return 1;
7127 	}
7128 
7129       /* Look for the stepping/nexting thread.  */
7130       stepping_thread = NULL;
7131 
7132       ALL_NON_EXITED_THREADS (tp)
7133         {
7134 	  /* Ignore threads of processes the caller is not
7135 	     resuming.  */
7136 	  if (!sched_multi
7137 	      && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7138 	    continue;
7139 
7140 	  /* When stepping over a breakpoint, we lock all threads
7141 	     except the one that needs to move past the breakpoint.
7142 	     If a non-event thread has this set, the "incomplete
7143 	     step-over" check above should have caught it earlier.  */
7144 	  if (tp->control.trap_expected)
7145 	    {
7146 	      internal_error (__FILE__, __LINE__,
7147 			      "[%s] has inconsistent state: "
7148 			      "trap_expected=%d\n",
7149 			      target_pid_to_str (tp->ptid),
7150 			      tp->control.trap_expected);
7151 	    }
7152 
7153 	  /* Did we find the stepping thread?  */
7154 	  if (tp->control.step_range_end)
7155 	    {
7156 	      /* Yep.  There should only one though.  */
7157 	      gdb_assert (stepping_thread == NULL);
7158 
7159 	      /* The event thread is handled at the top, before we
7160 		 enter this loop.  */
7161 	      gdb_assert (tp != ecs->event_thread);
7162 
7163 	      /* If some thread other than the event thread is
7164 		 stepping, then scheduler locking can't be in effect,
7165 		 otherwise we wouldn't have resumed the current event
7166 		 thread in the first place.  */
7167 	      gdb_assert (!schedlock_applies (tp));
7168 
7169 	      stepping_thread = tp;
7170 	    }
7171 	}
7172 
7173       if (stepping_thread != NULL)
7174 	{
7175 	  if (debug_infrun)
7176 	    fprintf_unfiltered (gdb_stdlog,
7177 				"infrun: switching back to stepped thread\n");
7178 
7179 	  if (keep_going_stepped_thread (stepping_thread))
7180 	    {
7181 	      prepare_to_wait (ecs);
7182 	      return 1;
7183 	    }
7184 	}
7185     }
7186 
7187   return 0;
7188 }
7189 
7190 /* Set a previously stepped thread back to stepping.  Returns true on
7191    success, false if the resume is not possible (e.g., the thread
7192    vanished).  */
7193 
7194 static int
7195 keep_going_stepped_thread (struct thread_info *tp)
7196 {
7197   struct frame_info *frame;
7198   struct execution_control_state ecss;
7199   struct execution_control_state *ecs = &ecss;
7200 
7201   /* If the stepping thread exited, then don't try to switch back and
7202      resume it, which could fail in several different ways depending
7203      on the target.  Instead, just keep going.
7204 
7205      We can find a stepping dead thread in the thread list in two
7206      cases:
7207 
7208      - The target supports thread exit events, and when the target
7209        tries to delete the thread from the thread list, inferior_ptid
7210        pointed at the exiting thread.  In such case, calling
7211        delete_thread does not really remove the thread from the list;
7212        instead, the thread is left listed, with 'exited' state.
7213 
7214      - The target's debug interface does not support thread exit
7215        events, and so we have no idea whatsoever if the previously
7216        stepping thread is still alive.  For that reason, we need to
7217        synchronously query the target now.  */
7218 
7219   if (is_exited (tp->ptid)
7220       || !target_thread_alive (tp->ptid))
7221     {
7222       if (debug_infrun)
7223 	fprintf_unfiltered (gdb_stdlog,
7224 			    "infrun: not resuming previously  "
7225 			    "stepped thread, it has vanished\n");
7226 
7227       delete_thread (tp->ptid);
7228       return 0;
7229     }
7230 
7231   if (debug_infrun)
7232     fprintf_unfiltered (gdb_stdlog,
7233 			"infrun: resuming previously stepped thread\n");
7234 
7235   reset_ecs (ecs, tp);
7236   switch_to_thread (tp->ptid);
7237 
7238   stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7239   frame = get_current_frame ();
7240 
7241   /* If the PC of the thread we were trying to single-step has
7242      changed, then that thread has trapped or been signaled, but the
7243      event has not been reported to GDB yet.  Re-poll the target
7244      looking for this particular thread's event (i.e. temporarily
7245      enable schedlock) by:
7246 
7247      - setting a break at the current PC
7248      - resuming that particular thread, only (by setting trap
7249      expected)
7250 
7251      This prevents us continuously moving the single-step breakpoint
7252      forward, one instruction at a time, overstepping.  */
7253 
7254   if (stop_pc != tp->prev_pc)
7255     {
7256       ptid_t resume_ptid;
7257 
7258       if (debug_infrun)
7259 	fprintf_unfiltered (gdb_stdlog,
7260 			    "infrun: expected thread advanced also (%s -> %s)\n",
7261 			    paddress (target_gdbarch (), tp->prev_pc),
7262 			    paddress (target_gdbarch (), stop_pc));
7263 
7264       /* Clear the info of the previous step-over, as it's no longer
7265 	 valid (if the thread was trying to step over a breakpoint, it
7266 	 has already succeeded).  It's what keep_going would do too,
7267 	 if we called it.  Do this before trying to insert the sss
7268 	 breakpoint, otherwise if we were previously trying to step
7269 	 over this exact address in another thread, the breakpoint is
7270 	 skipped.  */
7271       clear_step_over_info ();
7272       tp->control.trap_expected = 0;
7273 
7274       insert_single_step_breakpoint (get_frame_arch (frame),
7275 				     get_frame_address_space (frame),
7276 				     stop_pc);
7277 
7278       tp->resumed = 1;
7279       resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7280       do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7281     }
7282   else
7283     {
7284       if (debug_infrun)
7285 	fprintf_unfiltered (gdb_stdlog,
7286 			    "infrun: expected thread still hasn't advanced\n");
7287 
7288       keep_going_pass_signal (ecs);
7289     }
7290   return 1;
7291 }
7292 
7293 /* Is thread TP in the middle of (software or hardware)
7294    single-stepping?  (Note the result of this function must never be
7295    passed directly as target_resume's STEP parameter.)  */
7296 
7297 static int
7298 currently_stepping (struct thread_info *tp)
7299 {
7300   return ((tp->control.step_range_end
7301 	   && tp->control.step_resume_breakpoint == NULL)
7302 	  || tp->control.trap_expected
7303 	  || tp->stepped_breakpoint
7304 	  || bpstat_should_step ());
7305 }
7306 
7307 /* Inferior has stepped into a subroutine call with source code that
7308    we should not step over.  Do step to the first line of code in
7309    it.  */
7310 
7311 static void
7312 handle_step_into_function (struct gdbarch *gdbarch,
7313 			   struct execution_control_state *ecs)
7314 {
7315   struct compunit_symtab *cust;
7316   struct symtab_and_line stop_func_sal, sr_sal;
7317 
7318   fill_in_stop_func (gdbarch, ecs);
7319 
7320   cust = find_pc_compunit_symtab (stop_pc);
7321   if (cust != NULL && compunit_language (cust) != language_asm)
7322     ecs->stop_func_start
7323       = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7324 
7325   stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7326   /* Use the step_resume_break to step until the end of the prologue,
7327      even if that involves jumps (as it seems to on the vax under
7328      4.2).  */
7329   /* If the prologue ends in the middle of a source line, continue to
7330      the end of that source line (if it is still within the function).
7331      Otherwise, just go to end of prologue.  */
7332   if (stop_func_sal.end
7333       && stop_func_sal.pc != ecs->stop_func_start
7334       && stop_func_sal.end < ecs->stop_func_end)
7335     ecs->stop_func_start = stop_func_sal.end;
7336 
7337   /* Architectures which require breakpoint adjustment might not be able
7338      to place a breakpoint at the computed address.  If so, the test
7339      ``ecs->stop_func_start == stop_pc'' will never succeed.  Adjust
7340      ecs->stop_func_start to an address at which a breakpoint may be
7341      legitimately placed.
7342 
7343      Note:  kevinb/2004-01-19:  On FR-V, if this adjustment is not
7344      made, GDB will enter an infinite loop when stepping through
7345      optimized code consisting of VLIW instructions which contain
7346      subinstructions corresponding to different source lines.  On
7347      FR-V, it's not permitted to place a breakpoint on any but the
7348      first subinstruction of a VLIW instruction.  When a breakpoint is
7349      set, GDB will adjust the breakpoint address to the beginning of
7350      the VLIW instruction.  Thus, we need to make the corresponding
7351      adjustment here when computing the stop address.  */
7352 
7353   if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7354     {
7355       ecs->stop_func_start
7356 	= gdbarch_adjust_breakpoint_address (gdbarch,
7357 					     ecs->stop_func_start);
7358     }
7359 
7360   if (ecs->stop_func_start == stop_pc)
7361     {
7362       /* We are already there: stop now.  */
7363       end_stepping_range (ecs);
7364       return;
7365     }
7366   else
7367     {
7368       /* Put the step-breakpoint there and go until there.  */
7369       init_sal (&sr_sal);	/* initialize to zeroes */
7370       sr_sal.pc = ecs->stop_func_start;
7371       sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7372       sr_sal.pspace = get_frame_program_space (get_current_frame ());
7373 
7374       /* Do not specify what the fp should be when we stop since on
7375          some machines the prologue is where the new fp value is
7376          established.  */
7377       insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7378 
7379       /* And make sure stepping stops right away then.  */
7380       ecs->event_thread->control.step_range_end
7381         = ecs->event_thread->control.step_range_start;
7382     }
7383   keep_going (ecs);
7384 }
7385 
7386 /* Inferior has stepped backward into a subroutine call with source
7387    code that we should not step over.  Do step to the beginning of the
7388    last line of code in it.  */
7389 
7390 static void
7391 handle_step_into_function_backward (struct gdbarch *gdbarch,
7392 				    struct execution_control_state *ecs)
7393 {
7394   struct compunit_symtab *cust;
7395   struct symtab_and_line stop_func_sal;
7396 
7397   fill_in_stop_func (gdbarch, ecs);
7398 
7399   cust = find_pc_compunit_symtab (stop_pc);
7400   if (cust != NULL && compunit_language (cust) != language_asm)
7401     ecs->stop_func_start
7402       = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7403 
7404   stop_func_sal = find_pc_line (stop_pc, 0);
7405 
7406   /* OK, we're just going to keep stepping here.  */
7407   if (stop_func_sal.pc == stop_pc)
7408     {
7409       /* We're there already.  Just stop stepping now.  */
7410       end_stepping_range (ecs);
7411     }
7412   else
7413     {
7414       /* Else just reset the step range and keep going.
7415 	 No step-resume breakpoint, they don't work for
7416 	 epilogues, which can have multiple entry paths.  */
7417       ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7418       ecs->event_thread->control.step_range_end = stop_func_sal.end;
7419       keep_going (ecs);
7420     }
7421   return;
7422 }
7423 
7424 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7425    This is used to both functions and to skip over code.  */
7426 
7427 static void
7428 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7429 					struct symtab_and_line sr_sal,
7430 					struct frame_id sr_id,
7431 					enum bptype sr_type)
7432 {
7433   /* There should never be more than one step-resume or longjmp-resume
7434      breakpoint per thread, so we should never be setting a new
7435      step_resume_breakpoint when one is already active.  */
7436   gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7437   gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7438 
7439   if (debug_infrun)
7440     fprintf_unfiltered (gdb_stdlog,
7441 			"infrun: inserting step-resume breakpoint at %s\n",
7442 			paddress (gdbarch, sr_sal.pc));
7443 
7444   inferior_thread ()->control.step_resume_breakpoint
7445     = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7446 }
7447 
7448 void
7449 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7450 				      struct symtab_and_line sr_sal,
7451 				      struct frame_id sr_id)
7452 {
7453   insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7454 					  sr_sal, sr_id,
7455 					  bp_step_resume);
7456 }
7457 
7458 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7459    This is used to skip a potential signal handler.
7460 
7461    This is called with the interrupted function's frame.  The signal
7462    handler, when it returns, will resume the interrupted function at
7463    RETURN_FRAME.pc.  */
7464 
7465 static void
7466 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7467 {
7468   struct symtab_and_line sr_sal;
7469   struct gdbarch *gdbarch;
7470 
7471   gdb_assert (return_frame != NULL);
7472   init_sal (&sr_sal);		/* initialize to zeros */
7473 
7474   gdbarch = get_frame_arch (return_frame);
7475   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7476   sr_sal.section = find_pc_overlay (sr_sal.pc);
7477   sr_sal.pspace = get_frame_program_space (return_frame);
7478 
7479   insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7480 					  get_stack_frame_id (return_frame),
7481 					  bp_hp_step_resume);
7482 }
7483 
7484 /* Insert a "step-resume breakpoint" at the previous frame's PC.  This
7485    is used to skip a function after stepping into it (for "next" or if
7486    the called function has no debugging information).
7487 
7488    The current function has almost always been reached by single
7489    stepping a call or return instruction.  NEXT_FRAME belongs to the
7490    current function, and the breakpoint will be set at the caller's
7491    resume address.
7492 
7493    This is a separate function rather than reusing
7494    insert_hp_step_resume_breakpoint_at_frame in order to avoid
7495    get_prev_frame, which may stop prematurely (see the implementation
7496    of frame_unwind_caller_id for an example).  */
7497 
7498 static void
7499 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7500 {
7501   struct symtab_and_line sr_sal;
7502   struct gdbarch *gdbarch;
7503 
7504   /* We shouldn't have gotten here if we don't know where the call site
7505      is.  */
7506   gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7507 
7508   init_sal (&sr_sal);		/* initialize to zeros */
7509 
7510   gdbarch = frame_unwind_caller_arch (next_frame);
7511   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7512 					frame_unwind_caller_pc (next_frame));
7513   sr_sal.section = find_pc_overlay (sr_sal.pc);
7514   sr_sal.pspace = frame_unwind_program_space (next_frame);
7515 
7516   insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7517 					frame_unwind_caller_id (next_frame));
7518 }
7519 
7520 /* Insert a "longjmp-resume" breakpoint at PC.  This is used to set a
7521    new breakpoint at the target of a jmp_buf.  The handling of
7522    longjmp-resume uses the same mechanisms used for handling
7523    "step-resume" breakpoints.  */
7524 
7525 static void
7526 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7527 {
7528   /* There should never be more than one longjmp-resume breakpoint per
7529      thread, so we should never be setting a new
7530      longjmp_resume_breakpoint when one is already active.  */
7531   gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7532 
7533   if (debug_infrun)
7534     fprintf_unfiltered (gdb_stdlog,
7535 			"infrun: inserting longjmp-resume breakpoint at %s\n",
7536 			paddress (gdbarch, pc));
7537 
7538   inferior_thread ()->control.exception_resume_breakpoint =
7539     set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7540 }
7541 
7542 /* Insert an exception resume breakpoint.  TP is the thread throwing
7543    the exception.  The block B is the block of the unwinder debug hook
7544    function.  FRAME is the frame corresponding to the call to this
7545    function.  SYM is the symbol of the function argument holding the
7546    target PC of the exception.  */
7547 
7548 static void
7549 insert_exception_resume_breakpoint (struct thread_info *tp,
7550 				    const struct block *b,
7551 				    struct frame_info *frame,
7552 				    struct symbol *sym)
7553 {
7554   TRY
7555     {
7556       struct block_symbol vsym;
7557       struct value *value;
7558       CORE_ADDR handler;
7559       struct breakpoint *bp;
7560 
7561       vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7562       value = read_var_value (vsym.symbol, vsym.block, frame);
7563       /* If the value was optimized out, revert to the old behavior.  */
7564       if (! value_optimized_out (value))
7565 	{
7566 	  handler = value_as_address (value);
7567 
7568 	  if (debug_infrun)
7569 	    fprintf_unfiltered (gdb_stdlog,
7570 				"infrun: exception resume at %lx\n",
7571 				(unsigned long) handler);
7572 
7573 	  bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7574 					       handler, bp_exception_resume);
7575 
7576 	  /* set_momentary_breakpoint_at_pc invalidates FRAME.  */
7577 	  frame = NULL;
7578 
7579 	  bp->thread = tp->global_num;
7580 	  inferior_thread ()->control.exception_resume_breakpoint = bp;
7581 	}
7582     }
7583   CATCH (e, RETURN_MASK_ERROR)
7584     {
7585       /* We want to ignore errors here.  */
7586     }
7587   END_CATCH
7588 }
7589 
7590 /* A helper for check_exception_resume that sets an
7591    exception-breakpoint based on a SystemTap probe.  */
7592 
7593 static void
7594 insert_exception_resume_from_probe (struct thread_info *tp,
7595 				    const struct bound_probe *probe,
7596 				    struct frame_info *frame)
7597 {
7598   struct value *arg_value;
7599   CORE_ADDR handler;
7600   struct breakpoint *bp;
7601 
7602   arg_value = probe_safe_evaluate_at_pc (frame, 1);
7603   if (!arg_value)
7604     return;
7605 
7606   handler = value_as_address (arg_value);
7607 
7608   if (debug_infrun)
7609     fprintf_unfiltered (gdb_stdlog,
7610 			"infrun: exception resume at %s\n",
7611 			paddress (get_objfile_arch (probe->objfile),
7612 				  handler));
7613 
7614   bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7615 				       handler, bp_exception_resume);
7616   bp->thread = tp->global_num;
7617   inferior_thread ()->control.exception_resume_breakpoint = bp;
7618 }
7619 
7620 /* This is called when an exception has been intercepted.  Check to
7621    see whether the exception's destination is of interest, and if so,
7622    set an exception resume breakpoint there.  */
7623 
7624 static void
7625 check_exception_resume (struct execution_control_state *ecs,
7626 			struct frame_info *frame)
7627 {
7628   struct bound_probe probe;
7629   struct symbol *func;
7630 
7631   /* First see if this exception unwinding breakpoint was set via a
7632      SystemTap probe point.  If so, the probe has two arguments: the
7633      CFA and the HANDLER.  We ignore the CFA, extract the handler, and
7634      set a breakpoint there.  */
7635   probe = find_probe_by_pc (get_frame_pc (frame));
7636   if (probe.probe)
7637     {
7638       insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7639       return;
7640     }
7641 
7642   func = get_frame_function (frame);
7643   if (!func)
7644     return;
7645 
7646   TRY
7647     {
7648       const struct block *b;
7649       struct block_iterator iter;
7650       struct symbol *sym;
7651       int argno = 0;
7652 
7653       /* The exception breakpoint is a thread-specific breakpoint on
7654 	 the unwinder's debug hook, declared as:
7655 
7656 	 void _Unwind_DebugHook (void *cfa, void *handler);
7657 
7658 	 The CFA argument indicates the frame to which control is
7659 	 about to be transferred.  HANDLER is the destination PC.
7660 
7661 	 We ignore the CFA and set a temporary breakpoint at HANDLER.
7662 	 This is not extremely efficient but it avoids issues in gdb
7663 	 with computing the DWARF CFA, and it also works even in weird
7664 	 cases such as throwing an exception from inside a signal
7665 	 handler.  */
7666 
7667       b = SYMBOL_BLOCK_VALUE (func);
7668       ALL_BLOCK_SYMBOLS (b, iter, sym)
7669 	{
7670 	  if (!SYMBOL_IS_ARGUMENT (sym))
7671 	    continue;
7672 
7673 	  if (argno == 0)
7674 	    ++argno;
7675 	  else
7676 	    {
7677 	      insert_exception_resume_breakpoint (ecs->event_thread,
7678 						  b, frame, sym);
7679 	      break;
7680 	    }
7681 	}
7682     }
7683   CATCH (e, RETURN_MASK_ERROR)
7684     {
7685     }
7686   END_CATCH
7687 }
7688 
7689 static void
7690 stop_waiting (struct execution_control_state *ecs)
7691 {
7692   if (debug_infrun)
7693     fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7694 
7695   /* Let callers know we don't want to wait for the inferior anymore.  */
7696   ecs->wait_some_more = 0;
7697 
7698   /* If all-stop, but the target is always in non-stop mode, stop all
7699      threads now that we're presenting the stop to the user.  */
7700   if (!non_stop && target_is_non_stop_p ())
7701     stop_all_threads ();
7702 }
7703 
7704 /* Like keep_going, but passes the signal to the inferior, even if the
7705    signal is set to nopass.  */
7706 
7707 static void
7708 keep_going_pass_signal (struct execution_control_state *ecs)
7709 {
7710   /* Make sure normal_stop is called if we get a QUIT handled before
7711      reaching resume.  */
7712   struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7713 
7714   gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7715   gdb_assert (!ecs->event_thread->resumed);
7716 
7717   /* Save the pc before execution, to compare with pc after stop.  */
7718   ecs->event_thread->prev_pc
7719     = regcache_read_pc (get_thread_regcache (ecs->ptid));
7720 
7721   if (ecs->event_thread->control.trap_expected)
7722     {
7723       struct thread_info *tp = ecs->event_thread;
7724 
7725       if (debug_infrun)
7726 	fprintf_unfiltered (gdb_stdlog,
7727 			    "infrun: %s has trap_expected set, "
7728 			    "resuming to collect trap\n",
7729 			    target_pid_to_str (tp->ptid));
7730 
7731       /* We haven't yet gotten our trap, and either: intercepted a
7732 	 non-signal event (e.g., a fork); or took a signal which we
7733 	 are supposed to pass through to the inferior.  Simply
7734 	 continue.  */
7735       discard_cleanups (old_cleanups);
7736       resume (ecs->event_thread->suspend.stop_signal);
7737     }
7738   else if (step_over_info_valid_p ())
7739     {
7740       /* Another thread is stepping over a breakpoint in-line.  If
7741 	 this thread needs a step-over too, queue the request.  In
7742 	 either case, this resume must be deferred for later.  */
7743       struct thread_info *tp = ecs->event_thread;
7744 
7745       if (ecs->hit_singlestep_breakpoint
7746 	  || thread_still_needs_step_over (tp))
7747 	{
7748 	  if (debug_infrun)
7749 	    fprintf_unfiltered (gdb_stdlog,
7750 				"infrun: step-over already in progress: "
7751 				"step-over for %s deferred\n",
7752 				target_pid_to_str (tp->ptid));
7753 	  thread_step_over_chain_enqueue (tp);
7754 	}
7755       else
7756 	{
7757 	  if (debug_infrun)
7758 	    fprintf_unfiltered (gdb_stdlog,
7759 				"infrun: step-over in progress: "
7760 				"resume of %s deferred\n",
7761 				target_pid_to_str (tp->ptid));
7762 	}
7763 
7764       discard_cleanups (old_cleanups);
7765     }
7766   else
7767     {
7768       struct regcache *regcache = get_current_regcache ();
7769       int remove_bp;
7770       int remove_wps;
7771       step_over_what step_what;
7772 
7773       /* Either the trap was not expected, but we are continuing
7774 	 anyway (if we got a signal, the user asked it be passed to
7775 	 the child)
7776 	 -- or --
7777 	 We got our expected trap, but decided we should resume from
7778 	 it.
7779 
7780 	 We're going to run this baby now!
7781 
7782 	 Note that insert_breakpoints won't try to re-insert
7783 	 already inserted breakpoints.  Therefore, we don't
7784 	 care if breakpoints were already inserted, or not.  */
7785 
7786       /* If we need to step over a breakpoint, and we're not using
7787 	 displaced stepping to do so, insert all breakpoints
7788 	 (watchpoints, etc.) but the one we're stepping over, step one
7789 	 instruction, and then re-insert the breakpoint when that step
7790 	 is finished.  */
7791 
7792       step_what = thread_still_needs_step_over (ecs->event_thread);
7793 
7794       remove_bp = (ecs->hit_singlestep_breakpoint
7795 		   || (step_what & STEP_OVER_BREAKPOINT));
7796       remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7797 
7798       /* We can't use displaced stepping if we need to step past a
7799 	 watchpoint.  The instruction copied to the scratch pad would
7800 	 still trigger the watchpoint.  */
7801       if (remove_bp
7802 	  && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7803 	{
7804 	  set_step_over_info (get_regcache_aspace (regcache),
7805 			      regcache_read_pc (regcache), remove_wps,
7806 			      ecs->event_thread->global_num);
7807 	}
7808       else if (remove_wps)
7809 	set_step_over_info (NULL, 0, remove_wps, -1);
7810 
7811       /* If we now need to do an in-line step-over, we need to stop
7812 	 all other threads.  Note this must be done before
7813 	 insert_breakpoints below, because that removes the breakpoint
7814 	 we're about to step over, otherwise other threads could miss
7815 	 it.  */
7816       if (step_over_info_valid_p () && target_is_non_stop_p ())
7817 	stop_all_threads ();
7818 
7819       /* Stop stepping if inserting breakpoints fails.  */
7820       TRY
7821 	{
7822 	  insert_breakpoints ();
7823 	}
7824       CATCH (e, RETURN_MASK_ERROR)
7825 	{
7826 	  exception_print (gdb_stderr, e);
7827 	  stop_waiting (ecs);
7828 	  discard_cleanups (old_cleanups);
7829 	  return;
7830 	}
7831       END_CATCH
7832 
7833       ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7834 
7835       discard_cleanups (old_cleanups);
7836       resume (ecs->event_thread->suspend.stop_signal);
7837     }
7838 
7839   prepare_to_wait (ecs);
7840 }
7841 
7842 /* Called when we should continue running the inferior, because the
7843    current event doesn't cause a user visible stop.  This does the
7844    resuming part; waiting for the next event is done elsewhere.  */
7845 
7846 static void
7847 keep_going (struct execution_control_state *ecs)
7848 {
7849   if (ecs->event_thread->control.trap_expected
7850       && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7851     ecs->event_thread->control.trap_expected = 0;
7852 
7853   if (!signal_program[ecs->event_thread->suspend.stop_signal])
7854     ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7855   keep_going_pass_signal (ecs);
7856 }
7857 
7858 /* This function normally comes after a resume, before
7859    handle_inferior_event exits.  It takes care of any last bits of
7860    housekeeping, and sets the all-important wait_some_more flag.  */
7861 
7862 static void
7863 prepare_to_wait (struct execution_control_state *ecs)
7864 {
7865   if (debug_infrun)
7866     fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7867 
7868   ecs->wait_some_more = 1;
7869 
7870   if (!target_is_async_p ())
7871     mark_infrun_async_event_handler ();
7872 }
7873 
7874 /* We are done with the step range of a step/next/si/ni command.
7875    Called once for each n of a "step n" operation.  */
7876 
7877 static void
7878 end_stepping_range (struct execution_control_state *ecs)
7879 {
7880   ecs->event_thread->control.stop_step = 1;
7881   stop_waiting (ecs);
7882 }
7883 
7884 /* Several print_*_reason functions to print why the inferior has stopped.
7885    We always print something when the inferior exits, or receives a signal.
7886    The rest of the cases are dealt with later on in normal_stop and
7887    print_it_typical.  Ideally there should be a call to one of these
7888    print_*_reason functions functions from handle_inferior_event each time
7889    stop_waiting is called.
7890 
7891    Note that we don't call these directly, instead we delegate that to
7892    the interpreters, through observers.  Interpreters then call these
7893    with whatever uiout is right.  */
7894 
7895 void
7896 print_end_stepping_range_reason (struct ui_out *uiout)
7897 {
7898   /* For CLI-like interpreters, print nothing.  */
7899 
7900   if (uiout->is_mi_like_p ())
7901     {
7902       uiout->field_string ("reason",
7903 			   async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7904     }
7905 }
7906 
7907 void
7908 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7909 {
7910   annotate_signalled ();
7911   if (uiout->is_mi_like_p ())
7912     uiout->field_string
7913       ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7914   uiout->text ("\nProgram terminated with signal ");
7915   annotate_signal_name ();
7916   uiout->field_string ("signal-name",
7917 		       gdb_signal_to_name (siggnal));
7918   annotate_signal_name_end ();
7919   uiout->text (", ");
7920   annotate_signal_string ();
7921   uiout->field_string ("signal-meaning",
7922 		       gdb_signal_to_string (siggnal));
7923   annotate_signal_string_end ();
7924   uiout->text (".\n");
7925   uiout->text ("The program no longer exists.\n");
7926 }
7927 
7928 void
7929 print_exited_reason (struct ui_out *uiout, int exitstatus)
7930 {
7931   struct inferior *inf = current_inferior ();
7932   const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7933 
7934   annotate_exited (exitstatus);
7935   if (exitstatus)
7936     {
7937       if (uiout->is_mi_like_p ())
7938 	uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7939       uiout->text ("[Inferior ");
7940       uiout->text (plongest (inf->num));
7941       uiout->text (" (");
7942       uiout->text (pidstr);
7943       uiout->text (") exited with code ");
7944       uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7945       uiout->text ("]\n");
7946     }
7947   else
7948     {
7949       if (uiout->is_mi_like_p ())
7950 	uiout->field_string
7951 	  ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7952       uiout->text ("[Inferior ");
7953       uiout->text (plongest (inf->num));
7954       uiout->text (" (");
7955       uiout->text (pidstr);
7956       uiout->text (") exited normally]\n");
7957     }
7958 }
7959 
7960 /* Some targets/architectures can do extra processing/display of
7961    segmentation faults.  E.g., Intel MPX boundary faults.
7962    Call the architecture dependent function to handle the fault.  */
7963 
7964 static void
7965 handle_segmentation_fault (struct ui_out *uiout)
7966 {
7967   struct regcache *regcache = get_current_regcache ();
7968   struct gdbarch *gdbarch = get_regcache_arch (regcache);
7969 
7970   if (gdbarch_handle_segmentation_fault_p (gdbarch))
7971     gdbarch_handle_segmentation_fault (gdbarch, uiout);
7972 }
7973 
7974 void
7975 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7976 {
7977   struct thread_info *thr = inferior_thread ();
7978 
7979   annotate_signal ();
7980 
7981   if (uiout->is_mi_like_p ())
7982     ;
7983   else if (show_thread_that_caused_stop ())
7984     {
7985       const char *name;
7986 
7987       uiout->text ("\nThread ");
7988       uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7989 
7990       name = thr->name != NULL ? thr->name : target_thread_name (thr);
7991       if (name != NULL)
7992 	{
7993 	  uiout->text (" \"");
7994 	  uiout->field_fmt ("name", "%s", name);
7995 	  uiout->text ("\"");
7996 	}
7997     }
7998   else
7999     uiout->text ("\nProgram");
8000 
8001   if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8002     uiout->text (" stopped");
8003   else
8004     {
8005       uiout->text (" received signal ");
8006       annotate_signal_name ();
8007       if (uiout->is_mi_like_p ())
8008 	uiout->field_string
8009 	  ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8010       uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8011       annotate_signal_name_end ();
8012       uiout->text (", ");
8013       annotate_signal_string ();
8014       uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8015 
8016       if (siggnal == GDB_SIGNAL_SEGV)
8017 	handle_segmentation_fault (uiout);
8018 
8019       annotate_signal_string_end ();
8020     }
8021   uiout->text (".\n");
8022 }
8023 
8024 void
8025 print_no_history_reason (struct ui_out *uiout)
8026 {
8027   uiout->text ("\nNo more reverse-execution history.\n");
8028 }
8029 
8030 /* Print current location without a level number, if we have changed
8031    functions or hit a breakpoint.  Print source line if we have one.
8032    bpstat_print contains the logic deciding in detail what to print,
8033    based on the event(s) that just occurred.  */
8034 
8035 static void
8036 print_stop_location (struct target_waitstatus *ws)
8037 {
8038   int bpstat_ret;
8039   enum print_what source_flag;
8040   int do_frame_printing = 1;
8041   struct thread_info *tp = inferior_thread ();
8042 
8043   bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8044   switch (bpstat_ret)
8045     {
8046     case PRINT_UNKNOWN:
8047       /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8048 	 should) carry around the function and does (or should) use
8049 	 that when doing a frame comparison.  */
8050       if (tp->control.stop_step
8051 	  && frame_id_eq (tp->control.step_frame_id,
8052 			  get_frame_id (get_current_frame ()))
8053 	  && tp->control.step_start_function == find_pc_function (stop_pc))
8054 	{
8055 	  /* Finished step, just print source line.  */
8056 	  source_flag = SRC_LINE;
8057 	}
8058       else
8059 	{
8060 	  /* Print location and source line.  */
8061 	  source_flag = SRC_AND_LOC;
8062 	}
8063       break;
8064     case PRINT_SRC_AND_LOC:
8065       /* Print location and source line.  */
8066       source_flag = SRC_AND_LOC;
8067       break;
8068     case PRINT_SRC_ONLY:
8069       source_flag = SRC_LINE;
8070       break;
8071     case PRINT_NOTHING:
8072       /* Something bogus.  */
8073       source_flag = SRC_LINE;
8074       do_frame_printing = 0;
8075       break;
8076     default:
8077       internal_error (__FILE__, __LINE__, _("Unknown value."));
8078     }
8079 
8080   /* The behavior of this routine with respect to the source
8081      flag is:
8082      SRC_LINE: Print only source line
8083      LOCATION: Print only location
8084      SRC_AND_LOC: Print location and source line.  */
8085   if (do_frame_printing)
8086     print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8087 }
8088 
8089 /* See infrun.h.  */
8090 
8091 void
8092 print_stop_event (struct ui_out *uiout)
8093 {
8094   struct target_waitstatus last;
8095   ptid_t last_ptid;
8096   struct thread_info *tp;
8097 
8098   get_last_target_status (&last_ptid, &last);
8099 
8100   {
8101     scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8102 
8103     print_stop_location (&last);
8104 
8105     /* Display the auto-display expressions.  */
8106     do_displays ();
8107   }
8108 
8109   tp = inferior_thread ();
8110   if (tp->thread_fsm != NULL
8111       && thread_fsm_finished_p (tp->thread_fsm))
8112     {
8113       struct return_value_info *rv;
8114 
8115       rv = thread_fsm_return_value (tp->thread_fsm);
8116       if (rv != NULL)
8117 	print_return_value (uiout, rv);
8118     }
8119 }
8120 
8121 /* See infrun.h.  */
8122 
8123 void
8124 maybe_remove_breakpoints (void)
8125 {
8126   if (!breakpoints_should_be_inserted_now () && target_has_execution)
8127     {
8128       if (remove_breakpoints ())
8129 	{
8130 	  target_terminal_ours_for_output ();
8131 	  printf_filtered (_("Cannot remove breakpoints because "
8132 			     "program is no longer writable.\nFurther "
8133 			     "execution is probably impossible.\n"));
8134 	}
8135     }
8136 }
8137 
8138 /* The execution context that just caused a normal stop.  */
8139 
8140 struct stop_context
8141 {
8142   /* The stop ID.  */
8143   ULONGEST stop_id;
8144 
8145   /* The event PTID.  */
8146 
8147   ptid_t ptid;
8148 
8149   /* If stopp for a thread event, this is the thread that caused the
8150      stop.  */
8151   struct thread_info *thread;
8152 
8153   /* The inferior that caused the stop.  */
8154   int inf_num;
8155 };
8156 
8157 /* Returns a new stop context.  If stopped for a thread event, this
8158    takes a strong reference to the thread.  */
8159 
8160 static struct stop_context *
8161 save_stop_context (void)
8162 {
8163   struct stop_context *sc = XNEW (struct stop_context);
8164 
8165   sc->stop_id = get_stop_id ();
8166   sc->ptid = inferior_ptid;
8167   sc->inf_num = current_inferior ()->num;
8168 
8169   if (!ptid_equal (inferior_ptid, null_ptid))
8170     {
8171       /* Take a strong reference so that the thread can't be deleted
8172 	 yet.  */
8173       sc->thread = inferior_thread ();
8174       sc->thread->incref ();
8175     }
8176   else
8177     sc->thread = NULL;
8178 
8179   return sc;
8180 }
8181 
8182 /* Release a stop context previously created with save_stop_context.
8183    Releases the strong reference to the thread as well. */
8184 
8185 static void
8186 release_stop_context_cleanup (void *arg)
8187 {
8188   struct stop_context *sc = (struct stop_context *) arg;
8189 
8190   if (sc->thread != NULL)
8191     sc->thread->decref ();
8192   xfree (sc);
8193 }
8194 
8195 /* Return true if the current context no longer matches the saved stop
8196    context.  */
8197 
8198 static int
8199 stop_context_changed (struct stop_context *prev)
8200 {
8201   if (!ptid_equal (prev->ptid, inferior_ptid))
8202     return 1;
8203   if (prev->inf_num != current_inferior ()->num)
8204     return 1;
8205   if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8206     return 1;
8207   if (get_stop_id () != prev->stop_id)
8208     return 1;
8209   return 0;
8210 }
8211 
8212 /* See infrun.h.  */
8213 
8214 int
8215 normal_stop (void)
8216 {
8217   struct target_waitstatus last;
8218   ptid_t last_ptid;
8219   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8220   ptid_t pid_ptid;
8221 
8222   get_last_target_status (&last_ptid, &last);
8223 
8224   new_stop_id ();
8225 
8226   /* If an exception is thrown from this point on, make sure to
8227      propagate GDB's knowledge of the executing state to the
8228      frontend/user running state.  A QUIT is an easy exception to see
8229      here, so do this before any filtered output.  */
8230   if (!non_stop)
8231     make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8232   else if (last.kind == TARGET_WAITKIND_SIGNALLED
8233 	   || last.kind == TARGET_WAITKIND_EXITED)
8234     {
8235       /* On some targets, we may still have live threads in the
8236 	 inferior when we get a process exit event.  E.g., for
8237 	 "checkpoint", when the current checkpoint/fork exits,
8238 	 linux-fork.c automatically switches to another fork from
8239 	 within target_mourn_inferior.  */
8240       if (!ptid_equal (inferior_ptid, null_ptid))
8241 	{
8242 	  pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8243 	  make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8244 	}
8245     }
8246   else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8247     make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8248 
8249   /* As we're presenting a stop, and potentially removing breakpoints,
8250      update the thread list so we can tell whether there are threads
8251      running on the target.  With target remote, for example, we can
8252      only learn about new threads when we explicitly update the thread
8253      list.  Do this before notifying the interpreters about signal
8254      stops, end of stepping ranges, etc., so that the "new thread"
8255      output is emitted before e.g., "Program received signal FOO",
8256      instead of after.  */
8257   update_thread_list ();
8258 
8259   if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8260     observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8261 
8262   /* As with the notification of thread events, we want to delay
8263      notifying the user that we've switched thread context until
8264      the inferior actually stops.
8265 
8266      There's no point in saying anything if the inferior has exited.
8267      Note that SIGNALLED here means "exited with a signal", not
8268      "received a signal".
8269 
8270      Also skip saying anything in non-stop mode.  In that mode, as we
8271      don't want GDB to switch threads behind the user's back, to avoid
8272      races where the user is typing a command to apply to thread x,
8273      but GDB switches to thread y before the user finishes entering
8274      the command, fetch_inferior_event installs a cleanup to restore
8275      the current thread back to the thread the user had selected right
8276      after this event is handled, so we're not really switching, only
8277      informing of a stop.  */
8278   if (!non_stop
8279       && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8280       && target_has_execution
8281       && last.kind != TARGET_WAITKIND_SIGNALLED
8282       && last.kind != TARGET_WAITKIND_EXITED
8283       && last.kind != TARGET_WAITKIND_NO_RESUMED)
8284     {
8285       SWITCH_THRU_ALL_UIS ()
8286 	{
8287 	  target_terminal_ours_for_output ();
8288 	  printf_filtered (_("[Switching to %s]\n"),
8289 			   target_pid_to_str (inferior_ptid));
8290 	  annotate_thread_changed ();
8291 	}
8292       previous_inferior_ptid = inferior_ptid;
8293     }
8294 
8295   if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8296     {
8297       SWITCH_THRU_ALL_UIS ()
8298 	if (current_ui->prompt_state == PROMPT_BLOCKED)
8299 	  {
8300 	    target_terminal_ours_for_output ();
8301 	    printf_filtered (_("No unwaited-for children left.\n"));
8302 	  }
8303     }
8304 
8305   /* Note: this depends on the update_thread_list call above.  */
8306   maybe_remove_breakpoints ();
8307 
8308   /* If an auto-display called a function and that got a signal,
8309      delete that auto-display to avoid an infinite recursion.  */
8310 
8311   if (stopped_by_random_signal)
8312     disable_current_display ();
8313 
8314   SWITCH_THRU_ALL_UIS ()
8315     {
8316       async_enable_stdin ();
8317     }
8318 
8319   /* Let the user/frontend see the threads as stopped.  */
8320   do_cleanups (old_chain);
8321 
8322   /* Select innermost stack frame - i.e., current frame is frame 0,
8323      and current location is based on that.  Handle the case where the
8324      dummy call is returning after being stopped.  E.g. the dummy call
8325      previously hit a breakpoint.  (If the dummy call returns
8326      normally, we won't reach here.)  Do this before the stop hook is
8327      run, so that it doesn't get to see the temporary dummy frame,
8328      which is not where we'll present the stop.  */
8329   if (has_stack_frames ())
8330     {
8331       if (stop_stack_dummy == STOP_STACK_DUMMY)
8332 	{
8333 	  /* Pop the empty frame that contains the stack dummy.  This
8334 	     also restores inferior state prior to the call (struct
8335 	     infcall_suspend_state).  */
8336 	  struct frame_info *frame = get_current_frame ();
8337 
8338 	  gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8339 	  frame_pop (frame);
8340 	  /* frame_pop calls reinit_frame_cache as the last thing it
8341 	     does which means there's now no selected frame.  */
8342 	}
8343 
8344       select_frame (get_current_frame ());
8345 
8346       /* Set the current source location.  */
8347       set_current_sal_from_frame (get_current_frame ());
8348     }
8349 
8350   /* Look up the hook_stop and run it (CLI internally handles problem
8351      of stop_command's pre-hook not existing).  */
8352   if (stop_command != NULL)
8353     {
8354       struct stop_context *saved_context = save_stop_context ();
8355       struct cleanup *old_chain
8356 	= make_cleanup (release_stop_context_cleanup, saved_context);
8357 
8358       catch_errors (hook_stop_stub, stop_command,
8359 		    "Error while running hook_stop:\n", RETURN_MASK_ALL);
8360 
8361       /* If the stop hook resumes the target, then there's no point in
8362 	 trying to notify about the previous stop; its context is
8363 	 gone.  Likewise if the command switches thread or inferior --
8364 	 the observers would print a stop for the wrong
8365 	 thread/inferior.  */
8366       if (stop_context_changed (saved_context))
8367 	{
8368 	  do_cleanups (old_chain);
8369 	  return 1;
8370 	}
8371       do_cleanups (old_chain);
8372     }
8373 
8374   /* Notify observers about the stop.  This is where the interpreters
8375      print the stop event.  */
8376   if (!ptid_equal (inferior_ptid, null_ptid))
8377     observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8378 				 stop_print_frame);
8379   else
8380     observer_notify_normal_stop (NULL, stop_print_frame);
8381 
8382   annotate_stopped ();
8383 
8384   if (target_has_execution)
8385     {
8386       if (last.kind != TARGET_WAITKIND_SIGNALLED
8387 	  && last.kind != TARGET_WAITKIND_EXITED)
8388 	/* Delete the breakpoint we stopped at, if it wants to be deleted.
8389 	   Delete any breakpoint that is to be deleted at the next stop.  */
8390 	breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8391     }
8392 
8393   /* Try to get rid of automatically added inferiors that are no
8394      longer needed.  Keeping those around slows down things linearly.
8395      Note that this never removes the current inferior.  */
8396   prune_inferiors ();
8397 
8398   return 0;
8399 }
8400 
8401 static int
8402 hook_stop_stub (void *cmd)
8403 {
8404   execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8405   return (0);
8406 }
8407 
8408 int
8409 signal_stop_state (int signo)
8410 {
8411   return signal_stop[signo];
8412 }
8413 
8414 int
8415 signal_print_state (int signo)
8416 {
8417   return signal_print[signo];
8418 }
8419 
8420 int
8421 signal_pass_state (int signo)
8422 {
8423   return signal_program[signo];
8424 }
8425 
8426 static void
8427 signal_cache_update (int signo)
8428 {
8429   if (signo == -1)
8430     {
8431       for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8432 	signal_cache_update (signo);
8433 
8434       return;
8435     }
8436 
8437   signal_pass[signo] = (signal_stop[signo] == 0
8438 			&& signal_print[signo] == 0
8439 			&& signal_program[signo] == 1
8440 			&& signal_catch[signo] == 0);
8441 }
8442 
8443 int
8444 signal_stop_update (int signo, int state)
8445 {
8446   int ret = signal_stop[signo];
8447 
8448   signal_stop[signo] = state;
8449   signal_cache_update (signo);
8450   return ret;
8451 }
8452 
8453 int
8454 signal_print_update (int signo, int state)
8455 {
8456   int ret = signal_print[signo];
8457 
8458   signal_print[signo] = state;
8459   signal_cache_update (signo);
8460   return ret;
8461 }
8462 
8463 int
8464 signal_pass_update (int signo, int state)
8465 {
8466   int ret = signal_program[signo];
8467 
8468   signal_program[signo] = state;
8469   signal_cache_update (signo);
8470   return ret;
8471 }
8472 
8473 /* Update the global 'signal_catch' from INFO and notify the
8474    target.  */
8475 
8476 void
8477 signal_catch_update (const unsigned int *info)
8478 {
8479   int i;
8480 
8481   for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8482     signal_catch[i] = info[i] > 0;
8483   signal_cache_update (-1);
8484   target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8485 }
8486 
8487 static void
8488 sig_print_header (void)
8489 {
8490   printf_filtered (_("Signal        Stop\tPrint\tPass "
8491 		     "to program\tDescription\n"));
8492 }
8493 
8494 static void
8495 sig_print_info (enum gdb_signal oursig)
8496 {
8497   const char *name = gdb_signal_to_name (oursig);
8498   int name_padding = 13 - strlen (name);
8499 
8500   if (name_padding <= 0)
8501     name_padding = 0;
8502 
8503   printf_filtered ("%s", name);
8504   printf_filtered ("%*.*s ", name_padding, name_padding, "                 ");
8505   printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8506   printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8507   printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8508   printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8509 }
8510 
8511 /* Specify how various signals in the inferior should be handled.  */
8512 
8513 static void
8514 handle_command (char *args, int from_tty)
8515 {
8516   char **argv;
8517   int digits, wordlen;
8518   int sigfirst, signum, siglast;
8519   enum gdb_signal oursig;
8520   int allsigs;
8521   int nsigs;
8522   unsigned char *sigs;
8523   struct cleanup *old_chain;
8524 
8525   if (args == NULL)
8526     {
8527       error_no_arg (_("signal to handle"));
8528     }
8529 
8530   /* Allocate and zero an array of flags for which signals to handle.  */
8531 
8532   nsigs = (int) GDB_SIGNAL_LAST;
8533   sigs = (unsigned char *) alloca (nsigs);
8534   memset (sigs, 0, nsigs);
8535 
8536   /* Break the command line up into args.  */
8537 
8538   argv = gdb_buildargv (args);
8539   old_chain = make_cleanup_freeargv (argv);
8540 
8541   /* Walk through the args, looking for signal oursigs, signal names, and
8542      actions.  Signal numbers and signal names may be interspersed with
8543      actions, with the actions being performed for all signals cumulatively
8544      specified.  Signal ranges can be specified as <LOW>-<HIGH>.  */
8545 
8546   while (*argv != NULL)
8547     {
8548       wordlen = strlen (*argv);
8549       for (digits = 0; isdigit ((*argv)[digits]); digits++)
8550 	{;
8551 	}
8552       allsigs = 0;
8553       sigfirst = siglast = -1;
8554 
8555       if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8556 	{
8557 	  /* Apply action to all signals except those used by the
8558 	     debugger.  Silently skip those.  */
8559 	  allsigs = 1;
8560 	  sigfirst = 0;
8561 	  siglast = nsigs - 1;
8562 	}
8563       else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8564 	{
8565 	  SET_SIGS (nsigs, sigs, signal_stop);
8566 	  SET_SIGS (nsigs, sigs, signal_print);
8567 	}
8568       else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8569 	{
8570 	  UNSET_SIGS (nsigs, sigs, signal_program);
8571 	}
8572       else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8573 	{
8574 	  SET_SIGS (nsigs, sigs, signal_print);
8575 	}
8576       else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8577 	{
8578 	  SET_SIGS (nsigs, sigs, signal_program);
8579 	}
8580       else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8581 	{
8582 	  UNSET_SIGS (nsigs, sigs, signal_stop);
8583 	}
8584       else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8585 	{
8586 	  SET_SIGS (nsigs, sigs, signal_program);
8587 	}
8588       else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8589 	{
8590 	  UNSET_SIGS (nsigs, sigs, signal_print);
8591 	  UNSET_SIGS (nsigs, sigs, signal_stop);
8592 	}
8593       else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8594 	{
8595 	  UNSET_SIGS (nsigs, sigs, signal_program);
8596 	}
8597       else if (digits > 0)
8598 	{
8599 	  /* It is numeric.  The numeric signal refers to our own
8600 	     internal signal numbering from target.h, not to host/target
8601 	     signal  number.  This is a feature; users really should be
8602 	     using symbolic names anyway, and the common ones like
8603 	     SIGHUP, SIGINT, SIGALRM, etc. will work right anyway.  */
8604 
8605 	  sigfirst = siglast = (int)
8606 	    gdb_signal_from_command (atoi (*argv));
8607 	  if ((*argv)[digits] == '-')
8608 	    {
8609 	      siglast = (int)
8610 		gdb_signal_from_command (atoi ((*argv) + digits + 1));
8611 	    }
8612 	  if (sigfirst > siglast)
8613 	    {
8614 	      /* Bet he didn't figure we'd think of this case...  */
8615 	      signum = sigfirst;
8616 	      sigfirst = siglast;
8617 	      siglast = signum;
8618 	    }
8619 	}
8620       else
8621 	{
8622 	  oursig = gdb_signal_from_name (*argv);
8623 	  if (oursig != GDB_SIGNAL_UNKNOWN)
8624 	    {
8625 	      sigfirst = siglast = (int) oursig;
8626 	    }
8627 	  else
8628 	    {
8629 	      /* Not a number and not a recognized flag word => complain.  */
8630 	      error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8631 	    }
8632 	}
8633 
8634       /* If any signal numbers or symbol names were found, set flags for
8635          which signals to apply actions to.  */
8636 
8637       for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8638 	{
8639 	  switch ((enum gdb_signal) signum)
8640 	    {
8641 	    case GDB_SIGNAL_TRAP:
8642 	    case GDB_SIGNAL_INT:
8643 	      if (!allsigs && !sigs[signum])
8644 		{
8645 		  if (query (_("%s is used by the debugger.\n\
8646 Are you sure you want to change it? "),
8647 			     gdb_signal_to_name ((enum gdb_signal) signum)))
8648 		    {
8649 		      sigs[signum] = 1;
8650 		    }
8651 		  else
8652 		    {
8653 		      printf_unfiltered (_("Not confirmed, unchanged.\n"));
8654 		      gdb_flush (gdb_stdout);
8655 		    }
8656 		}
8657 	      break;
8658 	    case GDB_SIGNAL_0:
8659 	    case GDB_SIGNAL_DEFAULT:
8660 	    case GDB_SIGNAL_UNKNOWN:
8661 	      /* Make sure that "all" doesn't print these.  */
8662 	      break;
8663 	    default:
8664 	      sigs[signum] = 1;
8665 	      break;
8666 	    }
8667 	}
8668 
8669       argv++;
8670     }
8671 
8672   for (signum = 0; signum < nsigs; signum++)
8673     if (sigs[signum])
8674       {
8675 	signal_cache_update (-1);
8676 	target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8677 	target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8678 
8679 	if (from_tty)
8680 	  {
8681 	    /* Show the results.  */
8682 	    sig_print_header ();
8683 	    for (; signum < nsigs; signum++)
8684 	      if (sigs[signum])
8685 		sig_print_info ((enum gdb_signal) signum);
8686 	  }
8687 
8688 	break;
8689       }
8690 
8691   do_cleanups (old_chain);
8692 }
8693 
8694 /* Complete the "handle" command.  */
8695 
8696 static VEC (char_ptr) *
8697 handle_completer (struct cmd_list_element *ignore,
8698 		  const char *text, const char *word)
8699 {
8700   VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8701   static const char * const keywords[] =
8702     {
8703       "all",
8704       "stop",
8705       "ignore",
8706       "print",
8707       "pass",
8708       "nostop",
8709       "noignore",
8710       "noprint",
8711       "nopass",
8712       NULL,
8713     };
8714 
8715   vec_signals = signal_completer (ignore, text, word);
8716   vec_keywords = complete_on_enum (keywords, word, word);
8717 
8718   return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8719   VEC_free (char_ptr, vec_signals);
8720   VEC_free (char_ptr, vec_keywords);
8721   return return_val;
8722 }
8723 
8724 enum gdb_signal
8725 gdb_signal_from_command (int num)
8726 {
8727   if (num >= 1 && num <= 15)
8728     return (enum gdb_signal) num;
8729   error (_("Only signals 1-15 are valid as numeric signals.\n\
8730 Use \"info signals\" for a list of symbolic signals."));
8731 }
8732 
8733 /* Print current contents of the tables set by the handle command.
8734    It is possible we should just be printing signals actually used
8735    by the current target (but for things to work right when switching
8736    targets, all signals should be in the signal tables).  */
8737 
8738 static void
8739 signals_info (char *signum_exp, int from_tty)
8740 {
8741   enum gdb_signal oursig;
8742 
8743   sig_print_header ();
8744 
8745   if (signum_exp)
8746     {
8747       /* First see if this is a symbol name.  */
8748       oursig = gdb_signal_from_name (signum_exp);
8749       if (oursig == GDB_SIGNAL_UNKNOWN)
8750 	{
8751 	  /* No, try numeric.  */
8752 	  oursig =
8753 	    gdb_signal_from_command (parse_and_eval_long (signum_exp));
8754 	}
8755       sig_print_info (oursig);
8756       return;
8757     }
8758 
8759   printf_filtered ("\n");
8760   /* These ugly casts brought to you by the native VAX compiler.  */
8761   for (oursig = GDB_SIGNAL_FIRST;
8762        (int) oursig < (int) GDB_SIGNAL_LAST;
8763        oursig = (enum gdb_signal) ((int) oursig + 1))
8764     {
8765       QUIT;
8766 
8767       if (oursig != GDB_SIGNAL_UNKNOWN
8768 	  && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8769 	sig_print_info (oursig);
8770     }
8771 
8772   printf_filtered (_("\nUse the \"handle\" command "
8773 		     "to change these tables.\n"));
8774 }
8775 
8776 /* The $_siginfo convenience variable is a bit special.  We don't know
8777    for sure the type of the value until we actually have a chance to
8778    fetch the data.  The type can change depending on gdbarch, so it is
8779    also dependent on which thread you have selected.
8780 
8781      1. making $_siginfo be an internalvar that creates a new value on
8782      access.
8783 
8784      2. making the value of $_siginfo be an lval_computed value.  */
8785 
8786 /* This function implements the lval_computed support for reading a
8787    $_siginfo value.  */
8788 
8789 static void
8790 siginfo_value_read (struct value *v)
8791 {
8792   LONGEST transferred;
8793 
8794   /* If we can access registers, so can we access $_siginfo.  Likewise
8795      vice versa.  */
8796   validate_registers_access ();
8797 
8798   transferred =
8799     target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8800 		 NULL,
8801 		 value_contents_all_raw (v),
8802 		 value_offset (v),
8803 		 TYPE_LENGTH (value_type (v)));
8804 
8805   if (transferred != TYPE_LENGTH (value_type (v)))
8806     error (_("Unable to read siginfo"));
8807 }
8808 
8809 /* This function implements the lval_computed support for writing a
8810    $_siginfo value.  */
8811 
8812 static void
8813 siginfo_value_write (struct value *v, struct value *fromval)
8814 {
8815   LONGEST transferred;
8816 
8817   /* If we can access registers, so can we access $_siginfo.  Likewise
8818      vice versa.  */
8819   validate_registers_access ();
8820 
8821   transferred = target_write (&current_target,
8822 			      TARGET_OBJECT_SIGNAL_INFO,
8823 			      NULL,
8824 			      value_contents_all_raw (fromval),
8825 			      value_offset (v),
8826 			      TYPE_LENGTH (value_type (fromval)));
8827 
8828   if (transferred != TYPE_LENGTH (value_type (fromval)))
8829     error (_("Unable to write siginfo"));
8830 }
8831 
8832 static const struct lval_funcs siginfo_value_funcs =
8833   {
8834     siginfo_value_read,
8835     siginfo_value_write
8836   };
8837 
8838 /* Return a new value with the correct type for the siginfo object of
8839    the current thread using architecture GDBARCH.  Return a void value
8840    if there's no object available.  */
8841 
8842 static struct value *
8843 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8844 		    void *ignore)
8845 {
8846   if (target_has_stack
8847       && !ptid_equal (inferior_ptid, null_ptid)
8848       && gdbarch_get_siginfo_type_p (gdbarch))
8849     {
8850       struct type *type = gdbarch_get_siginfo_type (gdbarch);
8851 
8852       return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8853     }
8854 
8855   return allocate_value (builtin_type (gdbarch)->builtin_void);
8856 }
8857 
8858 
8859 /* infcall_suspend_state contains state about the program itself like its
8860    registers and any signal it received when it last stopped.
8861    This state must be restored regardless of how the inferior function call
8862    ends (either successfully, or after it hits a breakpoint or signal)
8863    if the program is to properly continue where it left off.  */
8864 
8865 struct infcall_suspend_state
8866 {
8867   struct thread_suspend_state thread_suspend;
8868 
8869   /* Other fields:  */
8870   CORE_ADDR stop_pc;
8871   struct regcache *registers;
8872 
8873   /* Format of SIGINFO_DATA or NULL if it is not present.  */
8874   struct gdbarch *siginfo_gdbarch;
8875 
8876   /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8877      TYPE_LENGTH (gdbarch_get_siginfo_type ()).  For different gdbarch the
8878      content would be invalid.  */
8879   gdb_byte *siginfo_data;
8880 };
8881 
8882 struct infcall_suspend_state *
8883 save_infcall_suspend_state (void)
8884 {
8885   struct infcall_suspend_state *inf_state;
8886   struct thread_info *tp = inferior_thread ();
8887   struct regcache *regcache = get_current_regcache ();
8888   struct gdbarch *gdbarch = get_regcache_arch (regcache);
8889   gdb_byte *siginfo_data = NULL;
8890 
8891   if (gdbarch_get_siginfo_type_p (gdbarch))
8892     {
8893       struct type *type = gdbarch_get_siginfo_type (gdbarch);
8894       size_t len = TYPE_LENGTH (type);
8895       struct cleanup *back_to;
8896 
8897       siginfo_data = (gdb_byte *) xmalloc (len);
8898       back_to = make_cleanup (xfree, siginfo_data);
8899 
8900       if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8901 		       siginfo_data, 0, len) == len)
8902 	discard_cleanups (back_to);
8903       else
8904 	{
8905 	  /* Errors ignored.  */
8906 	  do_cleanups (back_to);
8907 	  siginfo_data = NULL;
8908 	}
8909     }
8910 
8911   inf_state = XCNEW (struct infcall_suspend_state);
8912 
8913   if (siginfo_data)
8914     {
8915       inf_state->siginfo_gdbarch = gdbarch;
8916       inf_state->siginfo_data = siginfo_data;
8917     }
8918 
8919   inf_state->thread_suspend = tp->suspend;
8920 
8921   /* run_inferior_call will not use the signal due to its `proceed' call with
8922      GDB_SIGNAL_0 anyway.  */
8923   tp->suspend.stop_signal = GDB_SIGNAL_0;
8924 
8925   inf_state->stop_pc = stop_pc;
8926 
8927   inf_state->registers = regcache_dup (regcache);
8928 
8929   return inf_state;
8930 }
8931 
8932 /* Restore inferior session state to INF_STATE.  */
8933 
8934 void
8935 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8936 {
8937   struct thread_info *tp = inferior_thread ();
8938   struct regcache *regcache = get_current_regcache ();
8939   struct gdbarch *gdbarch = get_regcache_arch (regcache);
8940 
8941   tp->suspend = inf_state->thread_suspend;
8942 
8943   stop_pc = inf_state->stop_pc;
8944 
8945   if (inf_state->siginfo_gdbarch == gdbarch)
8946     {
8947       struct type *type = gdbarch_get_siginfo_type (gdbarch);
8948 
8949       /* Errors ignored.  */
8950       target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8951 		    inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8952     }
8953 
8954   /* The inferior can be gone if the user types "print exit(0)"
8955      (and perhaps other times).  */
8956   if (target_has_execution)
8957     /* NB: The register write goes through to the target.  */
8958     regcache_cpy (regcache, inf_state->registers);
8959 
8960   discard_infcall_suspend_state (inf_state);
8961 }
8962 
8963 static void
8964 do_restore_infcall_suspend_state_cleanup (void *state)
8965 {
8966   restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8967 }
8968 
8969 struct cleanup *
8970 make_cleanup_restore_infcall_suspend_state
8971   (struct infcall_suspend_state *inf_state)
8972 {
8973   return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8974 }
8975 
8976 void
8977 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8978 {
8979   regcache_xfree (inf_state->registers);
8980   xfree (inf_state->siginfo_data);
8981   xfree (inf_state);
8982 }
8983 
8984 struct regcache *
8985 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8986 {
8987   return inf_state->registers;
8988 }
8989 
8990 /* infcall_control_state contains state regarding gdb's control of the
8991    inferior itself like stepping control.  It also contains session state like
8992    the user's currently selected frame.  */
8993 
8994 struct infcall_control_state
8995 {
8996   struct thread_control_state thread_control;
8997   struct inferior_control_state inferior_control;
8998 
8999   /* Other fields:  */
9000   enum stop_stack_kind stop_stack_dummy;
9001   int stopped_by_random_signal;
9002 
9003   /* ID if the selected frame when the inferior function call was made.  */
9004   struct frame_id selected_frame_id;
9005 };
9006 
9007 /* Save all of the information associated with the inferior<==>gdb
9008    connection.  */
9009 
9010 struct infcall_control_state *
9011 save_infcall_control_state (void)
9012 {
9013   struct infcall_control_state *inf_status =
9014     XNEW (struct infcall_control_state);
9015   struct thread_info *tp = inferior_thread ();
9016   struct inferior *inf = current_inferior ();
9017 
9018   inf_status->thread_control = tp->control;
9019   inf_status->inferior_control = inf->control;
9020 
9021   tp->control.step_resume_breakpoint = NULL;
9022   tp->control.exception_resume_breakpoint = NULL;
9023 
9024   /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9025      chain.  If caller's caller is walking the chain, they'll be happier if we
9026      hand them back the original chain when restore_infcall_control_state is
9027      called.  */
9028   tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9029 
9030   /* Other fields:  */
9031   inf_status->stop_stack_dummy = stop_stack_dummy;
9032   inf_status->stopped_by_random_signal = stopped_by_random_signal;
9033 
9034   inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9035 
9036   return inf_status;
9037 }
9038 
9039 static int
9040 restore_selected_frame (void *args)
9041 {
9042   struct frame_id *fid = (struct frame_id *) args;
9043   struct frame_info *frame;
9044 
9045   frame = frame_find_by_id (*fid);
9046 
9047   /* If inf_status->selected_frame_id is NULL, there was no previously
9048      selected frame.  */
9049   if (frame == NULL)
9050     {
9051       warning (_("Unable to restore previously selected frame."));
9052       return 0;
9053     }
9054 
9055   select_frame (frame);
9056 
9057   return (1);
9058 }
9059 
9060 /* Restore inferior session state to INF_STATUS.  */
9061 
9062 void
9063 restore_infcall_control_state (struct infcall_control_state *inf_status)
9064 {
9065   struct thread_info *tp = inferior_thread ();
9066   struct inferior *inf = current_inferior ();
9067 
9068   if (tp->control.step_resume_breakpoint)
9069     tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9070 
9071   if (tp->control.exception_resume_breakpoint)
9072     tp->control.exception_resume_breakpoint->disposition
9073       = disp_del_at_next_stop;
9074 
9075   /* Handle the bpstat_copy of the chain.  */
9076   bpstat_clear (&tp->control.stop_bpstat);
9077 
9078   tp->control = inf_status->thread_control;
9079   inf->control = inf_status->inferior_control;
9080 
9081   /* Other fields:  */
9082   stop_stack_dummy = inf_status->stop_stack_dummy;
9083   stopped_by_random_signal = inf_status->stopped_by_random_signal;
9084 
9085   if (target_has_stack)
9086     {
9087       /* The point of catch_errors is that if the stack is clobbered,
9088          walking the stack might encounter a garbage pointer and
9089          error() trying to dereference it.  */
9090       if (catch_errors
9091 	  (restore_selected_frame, &inf_status->selected_frame_id,
9092 	   "Unable to restore previously selected frame:\n",
9093 	   RETURN_MASK_ERROR) == 0)
9094 	/* Error in restoring the selected frame.  Select the innermost
9095 	   frame.  */
9096 	select_frame (get_current_frame ());
9097     }
9098 
9099   xfree (inf_status);
9100 }
9101 
9102 static void
9103 do_restore_infcall_control_state_cleanup (void *sts)
9104 {
9105   restore_infcall_control_state ((struct infcall_control_state *) sts);
9106 }
9107 
9108 struct cleanup *
9109 make_cleanup_restore_infcall_control_state
9110   (struct infcall_control_state *inf_status)
9111 {
9112   return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9113 }
9114 
9115 void
9116 discard_infcall_control_state (struct infcall_control_state *inf_status)
9117 {
9118   if (inf_status->thread_control.step_resume_breakpoint)
9119     inf_status->thread_control.step_resume_breakpoint->disposition
9120       = disp_del_at_next_stop;
9121 
9122   if (inf_status->thread_control.exception_resume_breakpoint)
9123     inf_status->thread_control.exception_resume_breakpoint->disposition
9124       = disp_del_at_next_stop;
9125 
9126   /* See save_infcall_control_state for info on stop_bpstat.  */
9127   bpstat_clear (&inf_status->thread_control.stop_bpstat);
9128 
9129   xfree (inf_status);
9130 }
9131 
9132 /* restore_inferior_ptid() will be used by the cleanup machinery
9133    to restore the inferior_ptid value saved in a call to
9134    save_inferior_ptid().  */
9135 
9136 static void
9137 restore_inferior_ptid (void *arg)
9138 {
9139   ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9140 
9141   inferior_ptid = *saved_ptid_ptr;
9142   xfree (arg);
9143 }
9144 
9145 /* Save the value of inferior_ptid so that it may be restored by a
9146    later call to do_cleanups().  Returns the struct cleanup pointer
9147    needed for later doing the cleanup.  */
9148 
9149 struct cleanup *
9150 save_inferior_ptid (void)
9151 {
9152   ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9153 
9154   *saved_ptid_ptr = inferior_ptid;
9155   return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9156 }
9157 
9158 /* See infrun.h.  */
9159 
9160 void
9161 clear_exit_convenience_vars (void)
9162 {
9163   clear_internalvar (lookup_internalvar ("_exitsignal"));
9164   clear_internalvar (lookup_internalvar ("_exitcode"));
9165 }
9166 
9167 
9168 /* User interface for reverse debugging:
9169    Set exec-direction / show exec-direction commands
9170    (returns error unless target implements to_set_exec_direction method).  */
9171 
9172 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9173 static const char exec_forward[] = "forward";
9174 static const char exec_reverse[] = "reverse";
9175 static const char *exec_direction = exec_forward;
9176 static const char *const exec_direction_names[] = {
9177   exec_forward,
9178   exec_reverse,
9179   NULL
9180 };
9181 
9182 static void
9183 set_exec_direction_func (char *args, int from_tty,
9184 			 struct cmd_list_element *cmd)
9185 {
9186   if (target_can_execute_reverse)
9187     {
9188       if (!strcmp (exec_direction, exec_forward))
9189 	execution_direction = EXEC_FORWARD;
9190       else if (!strcmp (exec_direction, exec_reverse))
9191 	execution_direction = EXEC_REVERSE;
9192     }
9193   else
9194     {
9195       exec_direction = exec_forward;
9196       error (_("Target does not support this operation."));
9197     }
9198 }
9199 
9200 static void
9201 show_exec_direction_func (struct ui_file *out, int from_tty,
9202 			  struct cmd_list_element *cmd, const char *value)
9203 {
9204   switch (execution_direction) {
9205   case EXEC_FORWARD:
9206     fprintf_filtered (out, _("Forward.\n"));
9207     break;
9208   case EXEC_REVERSE:
9209     fprintf_filtered (out, _("Reverse.\n"));
9210     break;
9211   default:
9212     internal_error (__FILE__, __LINE__,
9213 		    _("bogus execution_direction value: %d"),
9214 		    (int) execution_direction);
9215   }
9216 }
9217 
9218 static void
9219 show_schedule_multiple (struct ui_file *file, int from_tty,
9220 			struct cmd_list_element *c, const char *value)
9221 {
9222   fprintf_filtered (file, _("Resuming the execution of threads "
9223 			    "of all processes is %s.\n"), value);
9224 }
9225 
9226 /* Implementation of `siginfo' variable.  */
9227 
9228 static const struct internalvar_funcs siginfo_funcs =
9229 {
9230   siginfo_make_value,
9231   NULL,
9232   NULL
9233 };
9234 
9235 /* Callback for infrun's target events source.  This is marked when a
9236    thread has a pending status to process.  */
9237 
9238 static void
9239 infrun_async_inferior_event_handler (gdb_client_data data)
9240 {
9241   inferior_event_handler (INF_REG_EVENT, NULL);
9242 }
9243 
9244 void
9245 _initialize_infrun (void)
9246 {
9247   int i;
9248   int numsigs;
9249   struct cmd_list_element *c;
9250 
9251   /* Register extra event sources in the event loop.  */
9252   infrun_async_inferior_event_token
9253     = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9254 
9255   add_info ("signals", signals_info, _("\
9256 What debugger does when program gets various signals.\n\
9257 Specify a signal as argument to print info on that signal only."));
9258   add_info_alias ("handle", "signals", 0);
9259 
9260   c = add_com ("handle", class_run, handle_command, _("\
9261 Specify how to handle signals.\n\
9262 Usage: handle SIGNAL [ACTIONS]\n\
9263 Args are signals and actions to apply to those signals.\n\
9264 If no actions are specified, the current settings for the specified signals\n\
9265 will be displayed instead.\n\
9266 \n\
9267 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9268 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9269 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9270 The special arg \"all\" is recognized to mean all signals except those\n\
9271 used by the debugger, typically SIGTRAP and SIGINT.\n\
9272 \n\
9273 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9274 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9275 Stop means reenter debugger if this signal happens (implies print).\n\
9276 Print means print a message if this signal happens.\n\
9277 Pass means let program see this signal; otherwise program doesn't know.\n\
9278 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9279 Pass and Stop may be combined.\n\
9280 \n\
9281 Multiple signals may be specified.  Signal numbers and signal names\n\
9282 may be interspersed with actions, with the actions being performed for\n\
9283 all signals cumulatively specified."));
9284   set_cmd_completer (c, handle_completer);
9285 
9286   if (!dbx_commands)
9287     stop_command = add_cmd ("stop", class_obscure,
9288 			    not_just_help_class_command, _("\
9289 There is no `stop' command, but you can set a hook on `stop'.\n\
9290 This allows you to set a list of commands to be run each time execution\n\
9291 of the program stops."), &cmdlist);
9292 
9293   add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9294 Set inferior debugging."), _("\
9295 Show inferior debugging."), _("\
9296 When non-zero, inferior specific debugging is enabled."),
9297 			     NULL,
9298 			     show_debug_infrun,
9299 			     &setdebuglist, &showdebuglist);
9300 
9301   add_setshow_boolean_cmd ("displaced", class_maintenance,
9302 			   &debug_displaced, _("\
9303 Set displaced stepping debugging."), _("\
9304 Show displaced stepping debugging."), _("\
9305 When non-zero, displaced stepping specific debugging is enabled."),
9306 			    NULL,
9307 			    show_debug_displaced,
9308 			    &setdebuglist, &showdebuglist);
9309 
9310   add_setshow_boolean_cmd ("non-stop", no_class,
9311 			   &non_stop_1, _("\
9312 Set whether gdb controls the inferior in non-stop mode."), _("\
9313 Show whether gdb controls the inferior in non-stop mode."), _("\
9314 When debugging a multi-threaded program and this setting is\n\
9315 off (the default, also called all-stop mode), when one thread stops\n\
9316 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9317 all other threads in the program while you interact with the thread of\n\
9318 interest.  When you continue or step a thread, you can allow the other\n\
9319 threads to run, or have them remain stopped, but while you inspect any\n\
9320 thread's state, all threads stop.\n\
9321 \n\
9322 In non-stop mode, when one thread stops, other threads can continue\n\
9323 to run freely.  You'll be able to step each thread independently,\n\
9324 leave it stopped or free to run as needed."),
9325 			   set_non_stop,
9326 			   show_non_stop,
9327 			   &setlist,
9328 			   &showlist);
9329 
9330   numsigs = (int) GDB_SIGNAL_LAST;
9331   signal_stop = XNEWVEC (unsigned char, numsigs);
9332   signal_print = XNEWVEC (unsigned char, numsigs);
9333   signal_program = XNEWVEC (unsigned char, numsigs);
9334   signal_catch = XNEWVEC (unsigned char, numsigs);
9335   signal_pass = XNEWVEC (unsigned char, numsigs);
9336   for (i = 0; i < numsigs; i++)
9337     {
9338       signal_stop[i] = 1;
9339       signal_print[i] = 1;
9340       signal_program[i] = 1;
9341       signal_catch[i] = 0;
9342     }
9343 
9344   /* Signals caused by debugger's own actions should not be given to
9345      the program afterwards.
9346 
9347      Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9348      explicitly specifies that it should be delivered to the target
9349      program.  Typically, that would occur when a user is debugging a
9350      target monitor on a simulator: the target monitor sets a
9351      breakpoint; the simulator encounters this breakpoint and halts
9352      the simulation handing control to GDB; GDB, noting that the stop
9353      address doesn't map to any known breakpoint, returns control back
9354      to the simulator; the simulator then delivers the hardware
9355      equivalent of a GDB_SIGNAL_TRAP to the program being
9356      debugged.  */
9357   signal_program[GDB_SIGNAL_TRAP] = 0;
9358   signal_program[GDB_SIGNAL_INT] = 0;
9359 
9360   /* Signals that are not errors should not normally enter the debugger.  */
9361   signal_stop[GDB_SIGNAL_ALRM] = 0;
9362   signal_print[GDB_SIGNAL_ALRM] = 0;
9363   signal_stop[GDB_SIGNAL_VTALRM] = 0;
9364   signal_print[GDB_SIGNAL_VTALRM] = 0;
9365   signal_stop[GDB_SIGNAL_PROF] = 0;
9366   signal_print[GDB_SIGNAL_PROF] = 0;
9367   signal_stop[GDB_SIGNAL_CHLD] = 0;
9368   signal_print[GDB_SIGNAL_CHLD] = 0;
9369   signal_stop[GDB_SIGNAL_IO] = 0;
9370   signal_print[GDB_SIGNAL_IO] = 0;
9371   signal_stop[GDB_SIGNAL_POLL] = 0;
9372   signal_print[GDB_SIGNAL_POLL] = 0;
9373   signal_stop[GDB_SIGNAL_URG] = 0;
9374   signal_print[GDB_SIGNAL_URG] = 0;
9375   signal_stop[GDB_SIGNAL_WINCH] = 0;
9376   signal_print[GDB_SIGNAL_WINCH] = 0;
9377   signal_stop[GDB_SIGNAL_PRIO] = 0;
9378   signal_print[GDB_SIGNAL_PRIO] = 0;
9379 
9380   /* These signals are used internally by user-level thread
9381      implementations.  (See signal(5) on Solaris.)  Like the above
9382      signals, a healthy program receives and handles them as part of
9383      its normal operation.  */
9384   signal_stop[GDB_SIGNAL_LWP] = 0;
9385   signal_print[GDB_SIGNAL_LWP] = 0;
9386   signal_stop[GDB_SIGNAL_WAITING] = 0;
9387   signal_print[GDB_SIGNAL_WAITING] = 0;
9388   signal_stop[GDB_SIGNAL_CANCEL] = 0;
9389   signal_print[GDB_SIGNAL_CANCEL] = 0;
9390   signal_stop[GDB_SIGNAL_LIBRT] = 0;
9391   signal_print[GDB_SIGNAL_LIBRT] = 0;
9392 
9393   /* Update cached state.  */
9394   signal_cache_update (-1);
9395 
9396   add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9397 			    &stop_on_solib_events, _("\
9398 Set stopping for shared library events."), _("\
9399 Show stopping for shared library events."), _("\
9400 If nonzero, gdb will give control to the user when the dynamic linker\n\
9401 notifies gdb of shared library events.  The most common event of interest\n\
9402 to the user would be loading/unloading of a new library."),
9403 			    set_stop_on_solib_events,
9404 			    show_stop_on_solib_events,
9405 			    &setlist, &showlist);
9406 
9407   add_setshow_enum_cmd ("follow-fork-mode", class_run,
9408 			follow_fork_mode_kind_names,
9409 			&follow_fork_mode_string, _("\
9410 Set debugger response to a program call of fork or vfork."), _("\
9411 Show debugger response to a program call of fork or vfork."), _("\
9412 A fork or vfork creates a new process.  follow-fork-mode can be:\n\
9413   parent  - the original process is debugged after a fork\n\
9414   child   - the new process is debugged after a fork\n\
9415 The unfollowed process will continue to run.\n\
9416 By default, the debugger will follow the parent process."),
9417 			NULL,
9418 			show_follow_fork_mode_string,
9419 			&setlist, &showlist);
9420 
9421   add_setshow_enum_cmd ("follow-exec-mode", class_run,
9422 			follow_exec_mode_names,
9423 			&follow_exec_mode_string, _("\
9424 Set debugger response to a program call of exec."), _("\
9425 Show debugger response to a program call of exec."), _("\
9426 An exec call replaces the program image of a process.\n\
9427 \n\
9428 follow-exec-mode can be:\n\
9429 \n\
9430   new - the debugger creates a new inferior and rebinds the process\n\
9431 to this new inferior.  The program the process was running before\n\
9432 the exec call can be restarted afterwards by restarting the original\n\
9433 inferior.\n\
9434 \n\
9435   same - the debugger keeps the process bound to the same inferior.\n\
9436 The new executable image replaces the previous executable loaded in\n\
9437 the inferior.  Restarting the inferior after the exec call restarts\n\
9438 the executable the process was running after the exec call.\n\
9439 \n\
9440 By default, the debugger will use the same inferior."),
9441 			NULL,
9442 			show_follow_exec_mode_string,
9443 			&setlist, &showlist);
9444 
9445   add_setshow_enum_cmd ("scheduler-locking", class_run,
9446 			scheduler_enums, &scheduler_mode, _("\
9447 Set mode for locking scheduler during execution."), _("\
9448 Show mode for locking scheduler during execution."), _("\
9449 off    == no locking (threads may preempt at any time)\n\
9450 on     == full locking (no thread except the current thread may run)\n\
9451           This applies to both normal execution and replay mode.\n\
9452 step   == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9453           In this mode, other threads may run during other commands.\n\
9454           This applies to both normal execution and replay mode.\n\
9455 replay == scheduler locked in replay mode and unlocked during normal execution."),
9456 			set_schedlock_func,	/* traps on target vector */
9457 			show_scheduler_mode,
9458 			&setlist, &showlist);
9459 
9460   add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9461 Set mode for resuming threads of all processes."), _("\
9462 Show mode for resuming threads of all processes."), _("\
9463 When on, execution commands (such as 'continue' or 'next') resume all\n\
9464 threads of all processes.  When off (which is the default), execution\n\
9465 commands only resume the threads of the current process.  The set of\n\
9466 threads that are resumed is further refined by the scheduler-locking\n\
9467 mode (see help set scheduler-locking)."),
9468 			   NULL,
9469 			   show_schedule_multiple,
9470 			   &setlist, &showlist);
9471 
9472   add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9473 Set mode of the step operation."), _("\
9474 Show mode of the step operation."), _("\
9475 When set, doing a step over a function without debug line information\n\
9476 will stop at the first instruction of that function. Otherwise, the\n\
9477 function is skipped and the step command stops at a different source line."),
9478 			   NULL,
9479 			   show_step_stop_if_no_debug,
9480 			   &setlist, &showlist);
9481 
9482   add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9483 				&can_use_displaced_stepping, _("\
9484 Set debugger's willingness to use displaced stepping."), _("\
9485 Show debugger's willingness to use displaced stepping."), _("\
9486 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9487 supported by the target architecture.  If off, gdb will not use displaced\n\
9488 stepping to step over breakpoints, even if such is supported by the target\n\
9489 architecture.  If auto (which is the default), gdb will use displaced stepping\n\
9490 if the target architecture supports it and non-stop mode is active, but will not\n\
9491 use it in all-stop mode (see help set non-stop)."),
9492 				NULL,
9493 				show_can_use_displaced_stepping,
9494 				&setlist, &showlist);
9495 
9496   add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9497 			&exec_direction, _("Set direction of execution.\n\
9498 Options are 'forward' or 'reverse'."),
9499 			_("Show direction of execution (forward/reverse)."),
9500 			_("Tells gdb whether to execute forward or backward."),
9501 			set_exec_direction_func, show_exec_direction_func,
9502 			&setlist, &showlist);
9503 
9504   /* Set/show detach-on-fork: user-settable mode.  */
9505 
9506   add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9507 Set whether gdb will detach the child of a fork."), _("\
9508 Show whether gdb will detach the child of a fork."), _("\
9509 Tells gdb whether to detach the child of a fork."),
9510 			   NULL, NULL, &setlist, &showlist);
9511 
9512   /* Set/show disable address space randomization mode.  */
9513 
9514   add_setshow_boolean_cmd ("disable-randomization", class_support,
9515 			   &disable_randomization, _("\
9516 Set disabling of debuggee's virtual address space randomization."), _("\
9517 Show disabling of debuggee's virtual address space randomization."), _("\
9518 When this mode is on (which is the default), randomization of the virtual\n\
9519 address space is disabled.  Standalone programs run with the randomization\n\
9520 enabled by default on some platforms."),
9521 			   &set_disable_randomization,
9522 			   &show_disable_randomization,
9523 			   &setlist, &showlist);
9524 
9525   /* ptid initializations */
9526   inferior_ptid = null_ptid;
9527   target_last_wait_ptid = minus_one_ptid;
9528 
9529   observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9530   observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9531   observer_attach_thread_exit (infrun_thread_thread_exit);
9532   observer_attach_inferior_exit (infrun_inferior_exit);
9533 
9534   /* Explicitly create without lookup, since that tries to create a
9535      value with a void typed value, and when we get here, gdbarch
9536      isn't initialized yet.  At this point, we're quite sure there
9537      isn't another convenience variable of the same name.  */
9538   create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9539 
9540   add_setshow_boolean_cmd ("observer", no_class,
9541 			   &observer_mode_1, _("\
9542 Set whether gdb controls the inferior in observer mode."), _("\
9543 Show whether gdb controls the inferior in observer mode."), _("\
9544 In observer mode, GDB can get data from the inferior, but not\n\
9545 affect its execution.  Registers and memory may not be changed,\n\
9546 breakpoints may not be set, and the program cannot be interrupted\n\
9547 or signalled."),
9548 			   set_observer_mode,
9549 			   show_observer_mode,
9550 			   &setlist,
9551 			   &showlist);
9552 }
9553