1 /* Target-struct-independent code to start (run) and stop an inferior 2 process. 3 4 Copyright (C) 1986-2016 Free Software Foundation, Inc. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 20 21 #include "defs.h" 22 #include "infrun.h" 23 #include <ctype.h> 24 #include "symtab.h" 25 #include "frame.h" 26 #include "inferior.h" 27 #include "breakpoint.h" 28 #include "gdb_wait.h" 29 #include "gdbcore.h" 30 #include "gdbcmd.h" 31 #include "cli/cli-script.h" 32 #include "target.h" 33 #include "gdbthread.h" 34 #include "annotate.h" 35 #include "symfile.h" 36 #include "top.h" 37 #include <signal.h> 38 #include "inf-loop.h" 39 #include "regcache.h" 40 #include "value.h" 41 #include "observer.h" 42 #include "language.h" 43 #include "solib.h" 44 #include "main.h" 45 #include "dictionary.h" 46 #include "block.h" 47 #include "mi/mi-common.h" 48 #include "event-top.h" 49 #include "record.h" 50 #include "record-full.h" 51 #include "inline-frame.h" 52 #include "jit.h" 53 #include "tracepoint.h" 54 #include "continuations.h" 55 #include "interps.h" 56 #include "skip.h" 57 #include "probe.h" 58 #include "objfiles.h" 59 #include "completer.h" 60 #include "target-descriptions.h" 61 #include "target-dcache.h" 62 #include "terminal.h" 63 #include "solist.h" 64 #include "event-loop.h" 65 #include "thread-fsm.h" 66 #include "common/enum-flags.h" 67 68 /* Prototypes for local functions */ 69 70 static void signals_info (char *, int); 71 72 static void handle_command (char *, int); 73 74 static void sig_print_info (enum gdb_signal); 75 76 static void sig_print_header (void); 77 78 static void resume_cleanups (void *); 79 80 static int hook_stop_stub (void *); 81 82 static int restore_selected_frame (void *); 83 84 static int follow_fork (void); 85 86 static int follow_fork_inferior (int follow_child, int detach_fork); 87 88 static void follow_inferior_reset_breakpoints (void); 89 90 static void set_schedlock_func (char *args, int from_tty, 91 struct cmd_list_element *c); 92 93 static int currently_stepping (struct thread_info *tp); 94 95 void _initialize_infrun (void); 96 97 void nullify_last_target_wait_ptid (void); 98 99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *); 100 101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *); 102 103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR); 104 105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc); 106 107 /* Asynchronous signal handler registered as event loop source for 108 when we have pending events ready to be passed to the core. */ 109 static struct async_event_handler *infrun_async_inferior_event_token; 110 111 /* Stores whether infrun_async was previously enabled or disabled. 112 Starts off as -1, indicating "never enabled/disabled". */ 113 static int infrun_is_async = -1; 114 115 /* See infrun.h. */ 116 117 void 118 infrun_async (int enable) 119 { 120 if (infrun_is_async != enable) 121 { 122 infrun_is_async = enable; 123 124 if (debug_infrun) 125 fprintf_unfiltered (gdb_stdlog, 126 "infrun: infrun_async(%d)\n", 127 enable); 128 129 if (enable) 130 mark_async_event_handler (infrun_async_inferior_event_token); 131 else 132 clear_async_event_handler (infrun_async_inferior_event_token); 133 } 134 } 135 136 /* See infrun.h. */ 137 138 void 139 mark_infrun_async_event_handler (void) 140 { 141 mark_async_event_handler (infrun_async_inferior_event_token); 142 } 143 144 /* When set, stop the 'step' command if we enter a function which has 145 no line number information. The normal behavior is that we step 146 over such function. */ 147 int step_stop_if_no_debug = 0; 148 static void 149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty, 150 struct cmd_list_element *c, const char *value) 151 { 152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); 153 } 154 155 /* proceed and normal_stop use this to notify the user when the 156 inferior stopped in a different thread than it had been running 157 in. */ 158 159 static ptid_t previous_inferior_ptid; 160 161 /* If set (default for legacy reasons), when following a fork, GDB 162 will detach from one of the fork branches, child or parent. 163 Exactly which branch is detached depends on 'set follow-fork-mode' 164 setting. */ 165 166 static int detach_fork = 1; 167 168 int debug_displaced = 0; 169 static void 170 show_debug_displaced (struct ui_file *file, int from_tty, 171 struct cmd_list_element *c, const char *value) 172 { 173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value); 174 } 175 176 unsigned int debug_infrun = 0; 177 static void 178 show_debug_infrun (struct ui_file *file, int from_tty, 179 struct cmd_list_element *c, const char *value) 180 { 181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); 182 } 183 184 185 /* Support for disabling address space randomization. */ 186 187 int disable_randomization = 1; 188 189 static void 190 show_disable_randomization (struct ui_file *file, int from_tty, 191 struct cmd_list_element *c, const char *value) 192 { 193 if (target_supports_disable_randomization ()) 194 fprintf_filtered (file, 195 _("Disabling randomization of debuggee's " 196 "virtual address space is %s.\n"), 197 value); 198 else 199 fputs_filtered (_("Disabling randomization of debuggee's " 200 "virtual address space is unsupported on\n" 201 "this platform.\n"), file); 202 } 203 204 static void 205 set_disable_randomization (char *args, int from_tty, 206 struct cmd_list_element *c) 207 { 208 if (!target_supports_disable_randomization ()) 209 error (_("Disabling randomization of debuggee's " 210 "virtual address space is unsupported on\n" 211 "this platform.")); 212 } 213 214 /* User interface for non-stop mode. */ 215 216 int non_stop = 0; 217 static int non_stop_1 = 0; 218 219 static void 220 set_non_stop (char *args, int from_tty, 221 struct cmd_list_element *c) 222 { 223 if (target_has_execution) 224 { 225 non_stop_1 = non_stop; 226 error (_("Cannot change this setting while the inferior is running.")); 227 } 228 229 non_stop = non_stop_1; 230 } 231 232 static void 233 show_non_stop (struct ui_file *file, int from_tty, 234 struct cmd_list_element *c, const char *value) 235 { 236 fprintf_filtered (file, 237 _("Controlling the inferior in non-stop mode is %s.\n"), 238 value); 239 } 240 241 /* "Observer mode" is somewhat like a more extreme version of 242 non-stop, in which all GDB operations that might affect the 243 target's execution have been disabled. */ 244 245 int observer_mode = 0; 246 static int observer_mode_1 = 0; 247 248 static void 249 set_observer_mode (char *args, int from_tty, 250 struct cmd_list_element *c) 251 { 252 if (target_has_execution) 253 { 254 observer_mode_1 = observer_mode; 255 error (_("Cannot change this setting while the inferior is running.")); 256 } 257 258 observer_mode = observer_mode_1; 259 260 may_write_registers = !observer_mode; 261 may_write_memory = !observer_mode; 262 may_insert_breakpoints = !observer_mode; 263 may_insert_tracepoints = !observer_mode; 264 /* We can insert fast tracepoints in or out of observer mode, 265 but enable them if we're going into this mode. */ 266 if (observer_mode) 267 may_insert_fast_tracepoints = 1; 268 may_stop = !observer_mode; 269 update_target_permissions (); 270 271 /* Going *into* observer mode we must force non-stop, then 272 going out we leave it that way. */ 273 if (observer_mode) 274 { 275 pagination_enabled = 0; 276 non_stop = non_stop_1 = 1; 277 } 278 279 if (from_tty) 280 printf_filtered (_("Observer mode is now %s.\n"), 281 (observer_mode ? "on" : "off")); 282 } 283 284 static void 285 show_observer_mode (struct ui_file *file, int from_tty, 286 struct cmd_list_element *c, const char *value) 287 { 288 fprintf_filtered (file, _("Observer mode is %s.\n"), value); 289 } 290 291 /* This updates the value of observer mode based on changes in 292 permissions. Note that we are deliberately ignoring the values of 293 may-write-registers and may-write-memory, since the user may have 294 reason to enable these during a session, for instance to turn on a 295 debugging-related global. */ 296 297 void 298 update_observer_mode (void) 299 { 300 int newval; 301 302 newval = (!may_insert_breakpoints 303 && !may_insert_tracepoints 304 && may_insert_fast_tracepoints 305 && !may_stop 306 && non_stop); 307 308 /* Let the user know if things change. */ 309 if (newval != observer_mode) 310 printf_filtered (_("Observer mode is now %s.\n"), 311 (newval ? "on" : "off")); 312 313 observer_mode = observer_mode_1 = newval; 314 } 315 316 /* Tables of how to react to signals; the user sets them. */ 317 318 static unsigned char *signal_stop; 319 static unsigned char *signal_print; 320 static unsigned char *signal_program; 321 322 /* Table of signals that are registered with "catch signal". A 323 non-zero entry indicates that the signal is caught by some "catch 324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all 325 signals. */ 326 static unsigned char *signal_catch; 327 328 /* Table of signals that the target may silently handle. 329 This is automatically determined from the flags above, 330 and simply cached here. */ 331 static unsigned char *signal_pass; 332 333 #define SET_SIGS(nsigs,sigs,flags) \ 334 do { \ 335 int signum = (nsigs); \ 336 while (signum-- > 0) \ 337 if ((sigs)[signum]) \ 338 (flags)[signum] = 1; \ 339 } while (0) 340 341 #define UNSET_SIGS(nsigs,sigs,flags) \ 342 do { \ 343 int signum = (nsigs); \ 344 while (signum-- > 0) \ 345 if ((sigs)[signum]) \ 346 (flags)[signum] = 0; \ 347 } while (0) 348 349 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of 350 this function is to avoid exporting `signal_program'. */ 351 352 void 353 update_signals_program_target (void) 354 { 355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); 356 } 357 358 /* Value to pass to target_resume() to cause all threads to resume. */ 359 360 #define RESUME_ALL minus_one_ptid 361 362 /* Command list pointer for the "stop" placeholder. */ 363 364 static struct cmd_list_element *stop_command; 365 366 /* Nonzero if we want to give control to the user when we're notified 367 of shared library events by the dynamic linker. */ 368 int stop_on_solib_events; 369 370 /* Enable or disable optional shared library event breakpoints 371 as appropriate when the above flag is changed. */ 372 373 static void 374 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c) 375 { 376 update_solib_breakpoints (); 377 } 378 379 static void 380 show_stop_on_solib_events (struct ui_file *file, int from_tty, 381 struct cmd_list_element *c, const char *value) 382 { 383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), 384 value); 385 } 386 387 /* Nonzero after stop if current stack frame should be printed. */ 388 389 static int stop_print_frame; 390 391 /* This is a cached copy of the pid/waitstatus of the last event 392 returned by target_wait()/deprecated_target_wait_hook(). This 393 information is returned by get_last_target_status(). */ 394 static ptid_t target_last_wait_ptid; 395 static struct target_waitstatus target_last_waitstatus; 396 397 static void context_switch (ptid_t ptid); 398 399 void init_thread_stepping_state (struct thread_info *tss); 400 401 static const char follow_fork_mode_child[] = "child"; 402 static const char follow_fork_mode_parent[] = "parent"; 403 404 static const char *const follow_fork_mode_kind_names[] = { 405 follow_fork_mode_child, 406 follow_fork_mode_parent, 407 NULL 408 }; 409 410 static const char *follow_fork_mode_string = follow_fork_mode_parent; 411 static void 412 show_follow_fork_mode_string (struct ui_file *file, int from_tty, 413 struct cmd_list_element *c, const char *value) 414 { 415 fprintf_filtered (file, 416 _("Debugger response to a program " 417 "call of fork or vfork is \"%s\".\n"), 418 value); 419 } 420 421 422 /* Handle changes to the inferior list based on the type of fork, 423 which process is being followed, and whether the other process 424 should be detached. On entry inferior_ptid must be the ptid of 425 the fork parent. At return inferior_ptid is the ptid of the 426 followed inferior. */ 427 428 static int 429 follow_fork_inferior (int follow_child, int detach_fork) 430 { 431 int has_vforked; 432 ptid_t parent_ptid, child_ptid; 433 434 has_vforked = (inferior_thread ()->pending_follow.kind 435 == TARGET_WAITKIND_VFORKED); 436 parent_ptid = inferior_ptid; 437 child_ptid = inferior_thread ()->pending_follow.value.related_pid; 438 439 if (has_vforked 440 && !non_stop /* Non-stop always resumes both branches. */ 441 && current_ui->prompt_state == PROMPT_BLOCKED 442 && !(follow_child || detach_fork || sched_multi)) 443 { 444 /* The parent stays blocked inside the vfork syscall until the 445 child execs or exits. If we don't let the child run, then 446 the parent stays blocked. If we're telling the parent to run 447 in the foreground, the user will not be able to ctrl-c to get 448 back the terminal, effectively hanging the debug session. */ 449 fprintf_filtered (gdb_stderr, _("\ 450 Can not resume the parent process over vfork in the foreground while\n\ 451 holding the child stopped. Try \"set detach-on-fork\" or \ 452 \"set schedule-multiple\".\n")); 453 /* FIXME output string > 80 columns. */ 454 return 1; 455 } 456 457 if (!follow_child) 458 { 459 /* Detach new forked process? */ 460 if (detach_fork) 461 { 462 /* Before detaching from the child, remove all breakpoints 463 from it. If we forked, then this has already been taken 464 care of by infrun.c. If we vforked however, any 465 breakpoint inserted in the parent is visible in the 466 child, even those added while stopped in a vfork 467 catchpoint. This will remove the breakpoints from the 468 parent also, but they'll be reinserted below. */ 469 if (has_vforked) 470 { 471 /* Keep breakpoints list in sync. */ 472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid)); 473 } 474 475 if (info_verbose || debug_infrun) 476 { 477 /* Ensure that we have a process ptid. */ 478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid)); 479 480 target_terminal_ours_for_output (); 481 fprintf_filtered (gdb_stdlog, 482 _("Detaching after %s from child %s.\n"), 483 has_vforked ? "vfork" : "fork", 484 target_pid_to_str (process_ptid)); 485 } 486 } 487 else 488 { 489 struct inferior *parent_inf, *child_inf; 490 struct cleanup *old_chain; 491 492 /* Add process to GDB's tables. */ 493 child_inf = add_inferior (ptid_get_pid (child_ptid)); 494 495 parent_inf = current_inferior (); 496 child_inf->attach_flag = parent_inf->attach_flag; 497 copy_terminal_info (child_inf, parent_inf); 498 child_inf->gdbarch = parent_inf->gdbarch; 499 copy_inferior_target_desc_info (child_inf, parent_inf); 500 501 old_chain = save_inferior_ptid (); 502 save_current_program_space (); 503 504 inferior_ptid = child_ptid; 505 add_thread (inferior_ptid); 506 child_inf->symfile_flags = SYMFILE_NO_READ; 507 508 /* If this is a vfork child, then the address-space is 509 shared with the parent. */ 510 if (has_vforked) 511 { 512 child_inf->pspace = parent_inf->pspace; 513 child_inf->aspace = parent_inf->aspace; 514 515 /* The parent will be frozen until the child is done 516 with the shared region. Keep track of the 517 parent. */ 518 child_inf->vfork_parent = parent_inf; 519 child_inf->pending_detach = 0; 520 parent_inf->vfork_child = child_inf; 521 parent_inf->pending_detach = 0; 522 } 523 else 524 { 525 child_inf->aspace = new_address_space (); 526 child_inf->pspace = add_program_space (child_inf->aspace); 527 child_inf->removable = 1; 528 set_current_program_space (child_inf->pspace); 529 clone_program_space (child_inf->pspace, parent_inf->pspace); 530 531 /* Let the shared library layer (e.g., solib-svr4) learn 532 about this new process, relocate the cloned exec, pull 533 in shared libraries, and install the solib event 534 breakpoint. If a "cloned-VM" event was propagated 535 better throughout the core, this wouldn't be 536 required. */ 537 solib_create_inferior_hook (0); 538 } 539 540 do_cleanups (old_chain); 541 } 542 543 if (has_vforked) 544 { 545 struct inferior *parent_inf; 546 547 parent_inf = current_inferior (); 548 549 /* If we detached from the child, then we have to be careful 550 to not insert breakpoints in the parent until the child 551 is done with the shared memory region. However, if we're 552 staying attached to the child, then we can and should 553 insert breakpoints, so that we can debug it. A 554 subsequent child exec or exit is enough to know when does 555 the child stops using the parent's address space. */ 556 parent_inf->waiting_for_vfork_done = detach_fork; 557 parent_inf->pspace->breakpoints_not_allowed = detach_fork; 558 } 559 } 560 else 561 { 562 /* Follow the child. */ 563 struct inferior *parent_inf, *child_inf; 564 struct program_space *parent_pspace; 565 566 if (info_verbose || debug_infrun) 567 { 568 target_terminal_ours_for_output (); 569 fprintf_filtered (gdb_stdlog, 570 _("Attaching after %s %s to child %s.\n"), 571 target_pid_to_str (parent_ptid), 572 has_vforked ? "vfork" : "fork", 573 target_pid_to_str (child_ptid)); 574 } 575 576 /* Add the new inferior first, so that the target_detach below 577 doesn't unpush the target. */ 578 579 child_inf = add_inferior (ptid_get_pid (child_ptid)); 580 581 parent_inf = current_inferior (); 582 child_inf->attach_flag = parent_inf->attach_flag; 583 copy_terminal_info (child_inf, parent_inf); 584 child_inf->gdbarch = parent_inf->gdbarch; 585 copy_inferior_target_desc_info (child_inf, parent_inf); 586 587 parent_pspace = parent_inf->pspace; 588 589 /* If we're vforking, we want to hold on to the parent until the 590 child exits or execs. At child exec or exit time we can 591 remove the old breakpoints from the parent and detach or 592 resume debugging it. Otherwise, detach the parent now; we'll 593 want to reuse it's program/address spaces, but we can't set 594 them to the child before removing breakpoints from the 595 parent, otherwise, the breakpoints module could decide to 596 remove breakpoints from the wrong process (since they'd be 597 assigned to the same address space). */ 598 599 if (has_vforked) 600 { 601 gdb_assert (child_inf->vfork_parent == NULL); 602 gdb_assert (parent_inf->vfork_child == NULL); 603 child_inf->vfork_parent = parent_inf; 604 child_inf->pending_detach = 0; 605 parent_inf->vfork_child = child_inf; 606 parent_inf->pending_detach = detach_fork; 607 parent_inf->waiting_for_vfork_done = 0; 608 } 609 else if (detach_fork) 610 { 611 if (info_verbose || debug_infrun) 612 { 613 /* Ensure that we have a process ptid. */ 614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid)); 615 616 target_terminal_ours_for_output (); 617 fprintf_filtered (gdb_stdlog, 618 _("Detaching after fork from " 619 "child %s.\n"), 620 target_pid_to_str (process_ptid)); 621 } 622 623 target_detach (NULL, 0); 624 } 625 626 /* Note that the detach above makes PARENT_INF dangling. */ 627 628 /* Add the child thread to the appropriate lists, and switch to 629 this new thread, before cloning the program space, and 630 informing the solib layer about this new process. */ 631 632 inferior_ptid = child_ptid; 633 add_thread (inferior_ptid); 634 635 /* If this is a vfork child, then the address-space is shared 636 with the parent. If we detached from the parent, then we can 637 reuse the parent's program/address spaces. */ 638 if (has_vforked || detach_fork) 639 { 640 child_inf->pspace = parent_pspace; 641 child_inf->aspace = child_inf->pspace->aspace; 642 } 643 else 644 { 645 child_inf->aspace = new_address_space (); 646 child_inf->pspace = add_program_space (child_inf->aspace); 647 child_inf->removable = 1; 648 child_inf->symfile_flags = SYMFILE_NO_READ; 649 set_current_program_space (child_inf->pspace); 650 clone_program_space (child_inf->pspace, parent_pspace); 651 652 /* Let the shared library layer (e.g., solib-svr4) learn 653 about this new process, relocate the cloned exec, pull in 654 shared libraries, and install the solib event breakpoint. 655 If a "cloned-VM" event was propagated better throughout 656 the core, this wouldn't be required. */ 657 solib_create_inferior_hook (0); 658 } 659 } 660 661 return target_follow_fork (follow_child, detach_fork); 662 } 663 664 /* Tell the target to follow the fork we're stopped at. Returns true 665 if the inferior should be resumed; false, if the target for some 666 reason decided it's best not to resume. */ 667 668 static int 669 follow_fork (void) 670 { 671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child); 672 int should_resume = 1; 673 struct thread_info *tp; 674 675 /* Copy user stepping state to the new inferior thread. FIXME: the 676 followed fork child thread should have a copy of most of the 677 parent thread structure's run control related fields, not just these. 678 Initialized to avoid "may be used uninitialized" warnings from gcc. */ 679 struct breakpoint *step_resume_breakpoint = NULL; 680 struct breakpoint *exception_resume_breakpoint = NULL; 681 CORE_ADDR step_range_start = 0; 682 CORE_ADDR step_range_end = 0; 683 struct frame_id step_frame_id = { 0 }; 684 struct thread_fsm *thread_fsm = NULL; 685 686 if (!non_stop) 687 { 688 ptid_t wait_ptid; 689 struct target_waitstatus wait_status; 690 691 /* Get the last target status returned by target_wait(). */ 692 get_last_target_status (&wait_ptid, &wait_status); 693 694 /* If not stopped at a fork event, then there's nothing else to 695 do. */ 696 if (wait_status.kind != TARGET_WAITKIND_FORKED 697 && wait_status.kind != TARGET_WAITKIND_VFORKED) 698 return 1; 699 700 /* Check if we switched over from WAIT_PTID, since the event was 701 reported. */ 702 if (!ptid_equal (wait_ptid, minus_one_ptid) 703 && !ptid_equal (inferior_ptid, wait_ptid)) 704 { 705 /* We did. Switch back to WAIT_PTID thread, to tell the 706 target to follow it (in either direction). We'll 707 afterwards refuse to resume, and inform the user what 708 happened. */ 709 switch_to_thread (wait_ptid); 710 should_resume = 0; 711 } 712 } 713 714 tp = inferior_thread (); 715 716 /* If there were any forks/vforks that were caught and are now to be 717 followed, then do so now. */ 718 switch (tp->pending_follow.kind) 719 { 720 case TARGET_WAITKIND_FORKED: 721 case TARGET_WAITKIND_VFORKED: 722 { 723 ptid_t parent, child; 724 725 /* If the user did a next/step, etc, over a fork call, 726 preserve the stepping state in the fork child. */ 727 if (follow_child && should_resume) 728 { 729 step_resume_breakpoint = clone_momentary_breakpoint 730 (tp->control.step_resume_breakpoint); 731 step_range_start = tp->control.step_range_start; 732 step_range_end = tp->control.step_range_end; 733 step_frame_id = tp->control.step_frame_id; 734 exception_resume_breakpoint 735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint); 736 thread_fsm = tp->thread_fsm; 737 738 /* For now, delete the parent's sr breakpoint, otherwise, 739 parent/child sr breakpoints are considered duplicates, 740 and the child version will not be installed. Remove 741 this when the breakpoints module becomes aware of 742 inferiors and address spaces. */ 743 delete_step_resume_breakpoint (tp); 744 tp->control.step_range_start = 0; 745 tp->control.step_range_end = 0; 746 tp->control.step_frame_id = null_frame_id; 747 delete_exception_resume_breakpoint (tp); 748 tp->thread_fsm = NULL; 749 } 750 751 parent = inferior_ptid; 752 child = tp->pending_follow.value.related_pid; 753 754 /* Set up inferior(s) as specified by the caller, and tell the 755 target to do whatever is necessary to follow either parent 756 or child. */ 757 if (follow_fork_inferior (follow_child, detach_fork)) 758 { 759 /* Target refused to follow, or there's some other reason 760 we shouldn't resume. */ 761 should_resume = 0; 762 } 763 else 764 { 765 /* This pending follow fork event is now handled, one way 766 or another. The previous selected thread may be gone 767 from the lists by now, but if it is still around, need 768 to clear the pending follow request. */ 769 tp = find_thread_ptid (parent); 770 if (tp) 771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS; 772 773 /* This makes sure we don't try to apply the "Switched 774 over from WAIT_PID" logic above. */ 775 nullify_last_target_wait_ptid (); 776 777 /* If we followed the child, switch to it... */ 778 if (follow_child) 779 { 780 switch_to_thread (child); 781 782 /* ... and preserve the stepping state, in case the 783 user was stepping over the fork call. */ 784 if (should_resume) 785 { 786 tp = inferior_thread (); 787 tp->control.step_resume_breakpoint 788 = step_resume_breakpoint; 789 tp->control.step_range_start = step_range_start; 790 tp->control.step_range_end = step_range_end; 791 tp->control.step_frame_id = step_frame_id; 792 tp->control.exception_resume_breakpoint 793 = exception_resume_breakpoint; 794 tp->thread_fsm = thread_fsm; 795 } 796 else 797 { 798 /* If we get here, it was because we're trying to 799 resume from a fork catchpoint, but, the user 800 has switched threads away from the thread that 801 forked. In that case, the resume command 802 issued is most likely not applicable to the 803 child, so just warn, and refuse to resume. */ 804 warning (_("Not resuming: switched threads " 805 "before following fork child.")); 806 } 807 808 /* Reset breakpoints in the child as appropriate. */ 809 follow_inferior_reset_breakpoints (); 810 } 811 else 812 switch_to_thread (parent); 813 } 814 } 815 break; 816 case TARGET_WAITKIND_SPURIOUS: 817 /* Nothing to follow. */ 818 break; 819 default: 820 internal_error (__FILE__, __LINE__, 821 "Unexpected pending_follow.kind %d\n", 822 tp->pending_follow.kind); 823 break; 824 } 825 826 return should_resume; 827 } 828 829 static void 830 follow_inferior_reset_breakpoints (void) 831 { 832 struct thread_info *tp = inferior_thread (); 833 834 /* Was there a step_resume breakpoint? (There was if the user 835 did a "next" at the fork() call.) If so, explicitly reset its 836 thread number. Cloned step_resume breakpoints are disabled on 837 creation, so enable it here now that it is associated with the 838 correct thread. 839 840 step_resumes are a form of bp that are made to be per-thread. 841 Since we created the step_resume bp when the parent process 842 was being debugged, and now are switching to the child process, 843 from the breakpoint package's viewpoint, that's a switch of 844 "threads". We must update the bp's notion of which thread 845 it is for, or it'll be ignored when it triggers. */ 846 847 if (tp->control.step_resume_breakpoint) 848 { 849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint); 850 tp->control.step_resume_breakpoint->loc->enabled = 1; 851 } 852 853 /* Treat exception_resume breakpoints like step_resume breakpoints. */ 854 if (tp->control.exception_resume_breakpoint) 855 { 856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint); 857 tp->control.exception_resume_breakpoint->loc->enabled = 1; 858 } 859 860 /* Reinsert all breakpoints in the child. The user may have set 861 breakpoints after catching the fork, in which case those 862 were never set in the child, but only in the parent. This makes 863 sure the inserted breakpoints match the breakpoint list. */ 864 865 breakpoint_re_set (); 866 insert_breakpoints (); 867 } 868 869 /* The child has exited or execed: resume threads of the parent the 870 user wanted to be executing. */ 871 872 static int 873 proceed_after_vfork_done (struct thread_info *thread, 874 void *arg) 875 { 876 int pid = * (int *) arg; 877 878 if (ptid_get_pid (thread->ptid) == pid 879 && is_running (thread->ptid) 880 && !is_executing (thread->ptid) 881 && !thread->stop_requested 882 && thread->suspend.stop_signal == GDB_SIGNAL_0) 883 { 884 if (debug_infrun) 885 fprintf_unfiltered (gdb_stdlog, 886 "infrun: resuming vfork parent thread %s\n", 887 target_pid_to_str (thread->ptid)); 888 889 switch_to_thread (thread->ptid); 890 clear_proceed_status (0); 891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT); 892 } 893 894 return 0; 895 } 896 897 /* Called whenever we notice an exec or exit event, to handle 898 detaching or resuming a vfork parent. */ 899 900 static void 901 handle_vfork_child_exec_or_exit (int exec) 902 { 903 struct inferior *inf = current_inferior (); 904 905 if (inf->vfork_parent) 906 { 907 int resume_parent = -1; 908 909 /* This exec or exit marks the end of the shared memory region 910 between the parent and the child. If the user wanted to 911 detach from the parent, now is the time. */ 912 913 if (inf->vfork_parent->pending_detach) 914 { 915 struct thread_info *tp; 916 struct cleanup *old_chain; 917 struct program_space *pspace; 918 struct address_space *aspace; 919 920 /* follow-fork child, detach-on-fork on. */ 921 922 inf->vfork_parent->pending_detach = 0; 923 924 if (!exec) 925 { 926 /* If we're handling a child exit, then inferior_ptid 927 points at the inferior's pid, not to a thread. */ 928 old_chain = save_inferior_ptid (); 929 save_current_program_space (); 930 save_current_inferior (); 931 } 932 else 933 old_chain = save_current_space_and_thread (); 934 935 /* We're letting loose of the parent. */ 936 tp = any_live_thread_of_process (inf->vfork_parent->pid); 937 switch_to_thread (tp->ptid); 938 939 /* We're about to detach from the parent, which implicitly 940 removes breakpoints from its address space. There's a 941 catch here: we want to reuse the spaces for the child, 942 but, parent/child are still sharing the pspace at this 943 point, although the exec in reality makes the kernel give 944 the child a fresh set of new pages. The problem here is 945 that the breakpoints module being unaware of this, would 946 likely chose the child process to write to the parent 947 address space. Swapping the child temporarily away from 948 the spaces has the desired effect. Yes, this is "sort 949 of" a hack. */ 950 951 pspace = inf->pspace; 952 aspace = inf->aspace; 953 inf->aspace = NULL; 954 inf->pspace = NULL; 955 956 if (debug_infrun || info_verbose) 957 { 958 target_terminal_ours_for_output (); 959 960 if (exec) 961 { 962 fprintf_filtered (gdb_stdlog, 963 _("Detaching vfork parent process " 964 "%d after child exec.\n"), 965 inf->vfork_parent->pid); 966 } 967 else 968 { 969 fprintf_filtered (gdb_stdlog, 970 _("Detaching vfork parent process " 971 "%d after child exit.\n"), 972 inf->vfork_parent->pid); 973 } 974 } 975 976 target_detach (NULL, 0); 977 978 /* Put it back. */ 979 inf->pspace = pspace; 980 inf->aspace = aspace; 981 982 do_cleanups (old_chain); 983 } 984 else if (exec) 985 { 986 /* We're staying attached to the parent, so, really give the 987 child a new address space. */ 988 inf->pspace = add_program_space (maybe_new_address_space ()); 989 inf->aspace = inf->pspace->aspace; 990 inf->removable = 1; 991 set_current_program_space (inf->pspace); 992 993 resume_parent = inf->vfork_parent->pid; 994 995 /* Break the bonds. */ 996 inf->vfork_parent->vfork_child = NULL; 997 } 998 else 999 { 1000 struct cleanup *old_chain; 1001 struct program_space *pspace; 1002 1003 /* If this is a vfork child exiting, then the pspace and 1004 aspaces were shared with the parent. Since we're 1005 reporting the process exit, we'll be mourning all that is 1006 found in the address space, and switching to null_ptid, 1007 preparing to start a new inferior. But, since we don't 1008 want to clobber the parent's address/program spaces, we 1009 go ahead and create a new one for this exiting 1010 inferior. */ 1011 1012 /* Switch to null_ptid, so that clone_program_space doesn't want 1013 to read the selected frame of a dead process. */ 1014 old_chain = save_inferior_ptid (); 1015 inferior_ptid = null_ptid; 1016 1017 /* This inferior is dead, so avoid giving the breakpoints 1018 module the option to write through to it (cloning a 1019 program space resets breakpoints). */ 1020 inf->aspace = NULL; 1021 inf->pspace = NULL; 1022 pspace = add_program_space (maybe_new_address_space ()); 1023 set_current_program_space (pspace); 1024 inf->removable = 1; 1025 inf->symfile_flags = SYMFILE_NO_READ; 1026 clone_program_space (pspace, inf->vfork_parent->pspace); 1027 inf->pspace = pspace; 1028 inf->aspace = pspace->aspace; 1029 1030 /* Put back inferior_ptid. We'll continue mourning this 1031 inferior. */ 1032 do_cleanups (old_chain); 1033 1034 resume_parent = inf->vfork_parent->pid; 1035 /* Break the bonds. */ 1036 inf->vfork_parent->vfork_child = NULL; 1037 } 1038 1039 inf->vfork_parent = NULL; 1040 1041 gdb_assert (current_program_space == inf->pspace); 1042 1043 if (non_stop && resume_parent != -1) 1044 { 1045 /* If the user wanted the parent to be running, let it go 1046 free now. */ 1047 struct cleanup *old_chain = make_cleanup_restore_current_thread (); 1048 1049 if (debug_infrun) 1050 fprintf_unfiltered (gdb_stdlog, 1051 "infrun: resuming vfork parent process %d\n", 1052 resume_parent); 1053 1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent); 1055 1056 do_cleanups (old_chain); 1057 } 1058 } 1059 } 1060 1061 /* Enum strings for "set|show follow-exec-mode". */ 1062 1063 static const char follow_exec_mode_new[] = "new"; 1064 static const char follow_exec_mode_same[] = "same"; 1065 static const char *const follow_exec_mode_names[] = 1066 { 1067 follow_exec_mode_new, 1068 follow_exec_mode_same, 1069 NULL, 1070 }; 1071 1072 static const char *follow_exec_mode_string = follow_exec_mode_same; 1073 static void 1074 show_follow_exec_mode_string (struct ui_file *file, int from_tty, 1075 struct cmd_list_element *c, const char *value) 1076 { 1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value); 1078 } 1079 1080 /* EXECD_PATHNAME is assumed to be non-NULL. */ 1081 1082 static void 1083 follow_exec (ptid_t ptid, char *execd_pathname) 1084 { 1085 struct thread_info *th, *tmp; 1086 struct inferior *inf = current_inferior (); 1087 int pid = ptid_get_pid (ptid); 1088 ptid_t process_ptid; 1089 1090 /* This is an exec event that we actually wish to pay attention to. 1091 Refresh our symbol table to the newly exec'd program, remove any 1092 momentary bp's, etc. 1093 1094 If there are breakpoints, they aren't really inserted now, 1095 since the exec() transformed our inferior into a fresh set 1096 of instructions. 1097 1098 We want to preserve symbolic breakpoints on the list, since 1099 we have hopes that they can be reset after the new a.out's 1100 symbol table is read. 1101 1102 However, any "raw" breakpoints must be removed from the list 1103 (e.g., the solib bp's), since their address is probably invalid 1104 now. 1105 1106 And, we DON'T want to call delete_breakpoints() here, since 1107 that may write the bp's "shadow contents" (the instruction 1108 value that was overwritten witha TRAP instruction). Since 1109 we now have a new a.out, those shadow contents aren't valid. */ 1110 1111 mark_breakpoints_out (); 1112 1113 /* The target reports the exec event to the main thread, even if 1114 some other thread does the exec, and even if the main thread was 1115 stopped or already gone. We may still have non-leader threads of 1116 the process on our list. E.g., on targets that don't have thread 1117 exit events (like remote); or on native Linux in non-stop mode if 1118 there were only two threads in the inferior and the non-leader 1119 one is the one that execs (and nothing forces an update of the 1120 thread list up to here). When debugging remotely, it's best to 1121 avoid extra traffic, when possible, so avoid syncing the thread 1122 list with the target, and instead go ahead and delete all threads 1123 of the process but one that reported the event. Note this must 1124 be done before calling update_breakpoints_after_exec, as 1125 otherwise clearing the threads' resources would reference stale 1126 thread breakpoints -- it may have been one of these threads that 1127 stepped across the exec. We could just clear their stepping 1128 states, but as long as we're iterating, might as well delete 1129 them. Deleting them now rather than at the next user-visible 1130 stop provides a nicer sequence of events for user and MI 1131 notifications. */ 1132 ALL_THREADS_SAFE (th, tmp) 1133 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid)) 1134 delete_thread (th->ptid); 1135 1136 /* We also need to clear any left over stale state for the 1137 leader/event thread. E.g., if there was any step-resume 1138 breakpoint or similar, it's gone now. We cannot truly 1139 step-to-next statement through an exec(). */ 1140 th = inferior_thread (); 1141 th->control.step_resume_breakpoint = NULL; 1142 th->control.exception_resume_breakpoint = NULL; 1143 th->control.single_step_breakpoints = NULL; 1144 th->control.step_range_start = 0; 1145 th->control.step_range_end = 0; 1146 1147 /* The user may have had the main thread held stopped in the 1148 previous image (e.g., schedlock on, or non-stop). Release 1149 it now. */ 1150 th->stop_requested = 0; 1151 1152 update_breakpoints_after_exec (); 1153 1154 /* What is this a.out's name? */ 1155 process_ptid = pid_to_ptid (pid); 1156 printf_unfiltered (_("%s is executing new program: %s\n"), 1157 target_pid_to_str (process_ptid), 1158 execd_pathname); 1159 1160 /* We've followed the inferior through an exec. Therefore, the 1161 inferior has essentially been killed & reborn. */ 1162 1163 gdb_flush (gdb_stdout); 1164 1165 breakpoint_init_inferior (inf_execd); 1166 1167 if (*gdb_sysroot != '\0') 1168 { 1169 char *name = exec_file_find (execd_pathname, NULL); 1170 1171 execd_pathname = (char *) alloca (strlen (name) + 1); 1172 strcpy (execd_pathname, name); 1173 xfree (name); 1174 } 1175 1176 /* Reset the shared library package. This ensures that we get a 1177 shlib event when the child reaches "_start", at which point the 1178 dld will have had a chance to initialize the child. */ 1179 /* Also, loading a symbol file below may trigger symbol lookups, and 1180 we don't want those to be satisfied by the libraries of the 1181 previous incarnation of this process. */ 1182 no_shared_libraries (NULL, 0); 1183 1184 if (follow_exec_mode_string == follow_exec_mode_new) 1185 { 1186 /* The user wants to keep the old inferior and program spaces 1187 around. Create a new fresh one, and switch to it. */ 1188 1189 /* Do exit processing for the original inferior before adding 1190 the new inferior so we don't have two active inferiors with 1191 the same ptid, which can confuse find_inferior_ptid. */ 1192 exit_inferior_num_silent (current_inferior ()->num); 1193 1194 inf = add_inferior_with_spaces (); 1195 inf->pid = pid; 1196 target_follow_exec (inf, execd_pathname); 1197 1198 set_current_inferior (inf); 1199 set_current_program_space (inf->pspace); 1200 add_thread (ptid); 1201 } 1202 else 1203 { 1204 /* The old description may no longer be fit for the new image. 1205 E.g, a 64-bit process exec'ed a 32-bit process. Clear the 1206 old description; we'll read a new one below. No need to do 1207 this on "follow-exec-mode new", as the old inferior stays 1208 around (its description is later cleared/refetched on 1209 restart). */ 1210 target_clear_description (); 1211 } 1212 1213 gdb_assert (current_program_space == inf->pspace); 1214 1215 /* That a.out is now the one to use. */ 1216 exec_file_attach (execd_pathname, 0); 1217 1218 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE 1219 (Position Independent Executable) main symbol file will get applied by 1220 solib_create_inferior_hook below. breakpoint_re_set would fail to insert 1221 the breakpoints with the zero displacement. */ 1222 1223 symbol_file_add (execd_pathname, 1224 (inf->symfile_flags 1225 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET), 1226 NULL, 0); 1227 1228 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0) 1229 set_initial_language (); 1230 1231 /* If the target can specify a description, read it. Must do this 1232 after flipping to the new executable (because the target supplied 1233 description must be compatible with the executable's 1234 architecture, and the old executable may e.g., be 32-bit, while 1235 the new one 64-bit), and before anything involving memory or 1236 registers. */ 1237 target_find_description (); 1238 1239 solib_create_inferior_hook (0); 1240 1241 jit_inferior_created_hook (); 1242 1243 breakpoint_re_set (); 1244 1245 /* Reinsert all breakpoints. (Those which were symbolic have 1246 been reset to the proper address in the new a.out, thanks 1247 to symbol_file_command...). */ 1248 insert_breakpoints (); 1249 1250 /* The next resume of this inferior should bring it to the shlib 1251 startup breakpoints. (If the user had also set bp's on 1252 "main" from the old (parent) process, then they'll auto- 1253 matically get reset there in the new process.). */ 1254 } 1255 1256 /* The queue of threads that need to do a step-over operation to get 1257 past e.g., a breakpoint. What technique is used to step over the 1258 breakpoint/watchpoint does not matter -- all threads end up in the 1259 same queue, to maintain rough temporal order of execution, in order 1260 to avoid starvation, otherwise, we could e.g., find ourselves 1261 constantly stepping the same couple threads past their breakpoints 1262 over and over, if the single-step finish fast enough. */ 1263 struct thread_info *step_over_queue_head; 1264 1265 /* Bit flags indicating what the thread needs to step over. */ 1266 1267 enum step_over_what_flag 1268 { 1269 /* Step over a breakpoint. */ 1270 STEP_OVER_BREAKPOINT = 1, 1271 1272 /* Step past a non-continuable watchpoint, in order to let the 1273 instruction execute so we can evaluate the watchpoint 1274 expression. */ 1275 STEP_OVER_WATCHPOINT = 2 1276 }; 1277 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what); 1278 1279 /* Info about an instruction that is being stepped over. */ 1280 1281 struct step_over_info 1282 { 1283 /* If we're stepping past a breakpoint, this is the address space 1284 and address of the instruction the breakpoint is set at. We'll 1285 skip inserting all breakpoints here. Valid iff ASPACE is 1286 non-NULL. */ 1287 struct address_space *aspace; 1288 CORE_ADDR address; 1289 1290 /* The instruction being stepped over triggers a nonsteppable 1291 watchpoint. If true, we'll skip inserting watchpoints. */ 1292 int nonsteppable_watchpoint_p; 1293 1294 /* The thread's global number. */ 1295 int thread; 1296 }; 1297 1298 /* The step-over info of the location that is being stepped over. 1299 1300 Note that with async/breakpoint always-inserted mode, a user might 1301 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is 1302 being stepped over. As setting a new breakpoint inserts all 1303 breakpoints, we need to make sure the breakpoint being stepped over 1304 isn't inserted then. We do that by only clearing the step-over 1305 info when the step-over is actually finished (or aborted). 1306 1307 Presently GDB can only step over one breakpoint at any given time. 1308 Given threads that can't run code in the same address space as the 1309 breakpoint's can't really miss the breakpoint, GDB could be taught 1310 to step-over at most one breakpoint per address space (so this info 1311 could move to the address space object if/when GDB is extended). 1312 The set of breakpoints being stepped over will normally be much 1313 smaller than the set of all breakpoints, so a flag in the 1314 breakpoint location structure would be wasteful. A separate list 1315 also saves complexity and run-time, as otherwise we'd have to go 1316 through all breakpoint locations clearing their flag whenever we 1317 start a new sequence. Similar considerations weigh against storing 1318 this info in the thread object. Plus, not all step overs actually 1319 have breakpoint locations -- e.g., stepping past a single-step 1320 breakpoint, or stepping to complete a non-continuable 1321 watchpoint. */ 1322 static struct step_over_info step_over_info; 1323 1324 /* Record the address of the breakpoint/instruction we're currently 1325 stepping over. */ 1326 1327 static void 1328 set_step_over_info (struct address_space *aspace, CORE_ADDR address, 1329 int nonsteppable_watchpoint_p, 1330 int thread) 1331 { 1332 step_over_info.aspace = aspace; 1333 step_over_info.address = address; 1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p; 1335 step_over_info.thread = thread; 1336 } 1337 1338 /* Called when we're not longer stepping over a breakpoint / an 1339 instruction, so all breakpoints are free to be (re)inserted. */ 1340 1341 static void 1342 clear_step_over_info (void) 1343 { 1344 if (debug_infrun) 1345 fprintf_unfiltered (gdb_stdlog, 1346 "infrun: clear_step_over_info\n"); 1347 step_over_info.aspace = NULL; 1348 step_over_info.address = 0; 1349 step_over_info.nonsteppable_watchpoint_p = 0; 1350 step_over_info.thread = -1; 1351 } 1352 1353 /* See infrun.h. */ 1354 1355 int 1356 stepping_past_instruction_at (struct address_space *aspace, 1357 CORE_ADDR address) 1358 { 1359 return (step_over_info.aspace != NULL 1360 && breakpoint_address_match (aspace, address, 1361 step_over_info.aspace, 1362 step_over_info.address)); 1363 } 1364 1365 /* See infrun.h. */ 1366 1367 int 1368 thread_is_stepping_over_breakpoint (int thread) 1369 { 1370 return (step_over_info.thread != -1 1371 && thread == step_over_info.thread); 1372 } 1373 1374 /* See infrun.h. */ 1375 1376 int 1377 stepping_past_nonsteppable_watchpoint (void) 1378 { 1379 return step_over_info.nonsteppable_watchpoint_p; 1380 } 1381 1382 /* Returns true if step-over info is valid. */ 1383 1384 static int 1385 step_over_info_valid_p (void) 1386 { 1387 return (step_over_info.aspace != NULL 1388 || stepping_past_nonsteppable_watchpoint ()); 1389 } 1390 1391 1392 /* Displaced stepping. */ 1393 1394 /* In non-stop debugging mode, we must take special care to manage 1395 breakpoints properly; in particular, the traditional strategy for 1396 stepping a thread past a breakpoint it has hit is unsuitable. 1397 'Displaced stepping' is a tactic for stepping one thread past a 1398 breakpoint it has hit while ensuring that other threads running 1399 concurrently will hit the breakpoint as they should. 1400 1401 The traditional way to step a thread T off a breakpoint in a 1402 multi-threaded program in all-stop mode is as follows: 1403 1404 a0) Initially, all threads are stopped, and breakpoints are not 1405 inserted. 1406 a1) We single-step T, leaving breakpoints uninserted. 1407 a2) We insert breakpoints, and resume all threads. 1408 1409 In non-stop debugging, however, this strategy is unsuitable: we 1410 don't want to have to stop all threads in the system in order to 1411 continue or step T past a breakpoint. Instead, we use displaced 1412 stepping: 1413 1414 n0) Initially, T is stopped, other threads are running, and 1415 breakpoints are inserted. 1416 n1) We copy the instruction "under" the breakpoint to a separate 1417 location, outside the main code stream, making any adjustments 1418 to the instruction, register, and memory state as directed by 1419 T's architecture. 1420 n2) We single-step T over the instruction at its new location. 1421 n3) We adjust the resulting register and memory state as directed 1422 by T's architecture. This includes resetting T's PC to point 1423 back into the main instruction stream. 1424 n4) We resume T. 1425 1426 This approach depends on the following gdbarch methods: 1427 1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location 1429 indicate where to copy the instruction, and how much space must 1430 be reserved there. We use these in step n1. 1431 1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new 1433 address, and makes any necessary adjustments to the instruction, 1434 register contents, and memory. We use this in step n1. 1435 1436 - gdbarch_displaced_step_fixup adjusts registers and memory after 1437 we have successfuly single-stepped the instruction, to yield the 1438 same effect the instruction would have had if we had executed it 1439 at its original address. We use this in step n3. 1440 1441 - gdbarch_displaced_step_free_closure provides cleanup. 1442 1443 The gdbarch_displaced_step_copy_insn and 1444 gdbarch_displaced_step_fixup functions must be written so that 1445 copying an instruction with gdbarch_displaced_step_copy_insn, 1446 single-stepping across the copied instruction, and then applying 1447 gdbarch_displaced_insn_fixup should have the same effects on the 1448 thread's memory and registers as stepping the instruction in place 1449 would have. Exactly which responsibilities fall to the copy and 1450 which fall to the fixup is up to the author of those functions. 1451 1452 See the comments in gdbarch.sh for details. 1453 1454 Note that displaced stepping and software single-step cannot 1455 currently be used in combination, although with some care I think 1456 they could be made to. Software single-step works by placing 1457 breakpoints on all possible subsequent instructions; if the 1458 displaced instruction is a PC-relative jump, those breakpoints 1459 could fall in very strange places --- on pages that aren't 1460 executable, or at addresses that are not proper instruction 1461 boundaries. (We do generally let other threads run while we wait 1462 to hit the software single-step breakpoint, and they might 1463 encounter such a corrupted instruction.) One way to work around 1464 this would be to have gdbarch_displaced_step_copy_insn fully 1465 simulate the effect of PC-relative instructions (and return NULL) 1466 on architectures that use software single-stepping. 1467 1468 In non-stop mode, we can have independent and simultaneous step 1469 requests, so more than one thread may need to simultaneously step 1470 over a breakpoint. The current implementation assumes there is 1471 only one scratch space per process. In this case, we have to 1472 serialize access to the scratch space. If thread A wants to step 1473 over a breakpoint, but we are currently waiting for some other 1474 thread to complete a displaced step, we leave thread A stopped and 1475 place it in the displaced_step_request_queue. Whenever a displaced 1476 step finishes, we pick the next thread in the queue and start a new 1477 displaced step operation on it. See displaced_step_prepare and 1478 displaced_step_fixup for details. */ 1479 1480 /* Per-inferior displaced stepping state. */ 1481 struct displaced_step_inferior_state 1482 { 1483 /* Pointer to next in linked list. */ 1484 struct displaced_step_inferior_state *next; 1485 1486 /* The process this displaced step state refers to. */ 1487 int pid; 1488 1489 /* True if preparing a displaced step ever failed. If so, we won't 1490 try displaced stepping for this inferior again. */ 1491 int failed_before; 1492 1493 /* If this is not null_ptid, this is the thread carrying out a 1494 displaced single-step in process PID. This thread's state will 1495 require fixing up once it has completed its step. */ 1496 ptid_t step_ptid; 1497 1498 /* The architecture the thread had when we stepped it. */ 1499 struct gdbarch *step_gdbarch; 1500 1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used 1502 for post-step cleanup. */ 1503 struct displaced_step_closure *step_closure; 1504 1505 /* The address of the original instruction, and the copy we 1506 made. */ 1507 CORE_ADDR step_original, step_copy; 1508 1509 /* Saved contents of copy area. */ 1510 gdb_byte *step_saved_copy; 1511 }; 1512 1513 /* The list of states of processes involved in displaced stepping 1514 presently. */ 1515 static struct displaced_step_inferior_state *displaced_step_inferior_states; 1516 1517 /* Get the displaced stepping state of process PID. */ 1518 1519 static struct displaced_step_inferior_state * 1520 get_displaced_stepping_state (int pid) 1521 { 1522 struct displaced_step_inferior_state *state; 1523 1524 for (state = displaced_step_inferior_states; 1525 state != NULL; 1526 state = state->next) 1527 if (state->pid == pid) 1528 return state; 1529 1530 return NULL; 1531 } 1532 1533 /* Returns true if any inferior has a thread doing a displaced 1534 step. */ 1535 1536 static int 1537 displaced_step_in_progress_any_inferior (void) 1538 { 1539 struct displaced_step_inferior_state *state; 1540 1541 for (state = displaced_step_inferior_states; 1542 state != NULL; 1543 state = state->next) 1544 if (!ptid_equal (state->step_ptid, null_ptid)) 1545 return 1; 1546 1547 return 0; 1548 } 1549 1550 /* Return true if thread represented by PTID is doing a displaced 1551 step. */ 1552 1553 static int 1554 displaced_step_in_progress_thread (ptid_t ptid) 1555 { 1556 struct displaced_step_inferior_state *displaced; 1557 1558 gdb_assert (!ptid_equal (ptid, null_ptid)); 1559 1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid)); 1561 1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid)); 1563 } 1564 1565 /* Return true if process PID has a thread doing a displaced step. */ 1566 1567 static int 1568 displaced_step_in_progress (int pid) 1569 { 1570 struct displaced_step_inferior_state *displaced; 1571 1572 displaced = get_displaced_stepping_state (pid); 1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid)) 1574 return 1; 1575 1576 return 0; 1577 } 1578 1579 /* Add a new displaced stepping state for process PID to the displaced 1580 stepping state list, or return a pointer to an already existing 1581 entry, if it already exists. Never returns NULL. */ 1582 1583 static struct displaced_step_inferior_state * 1584 add_displaced_stepping_state (int pid) 1585 { 1586 struct displaced_step_inferior_state *state; 1587 1588 for (state = displaced_step_inferior_states; 1589 state != NULL; 1590 state = state->next) 1591 if (state->pid == pid) 1592 return state; 1593 1594 state = XCNEW (struct displaced_step_inferior_state); 1595 state->pid = pid; 1596 state->next = displaced_step_inferior_states; 1597 displaced_step_inferior_states = state; 1598 1599 return state; 1600 } 1601 1602 /* If inferior is in displaced stepping, and ADDR equals to starting address 1603 of copy area, return corresponding displaced_step_closure. Otherwise, 1604 return NULL. */ 1605 1606 struct displaced_step_closure* 1607 get_displaced_step_closure_by_addr (CORE_ADDR addr) 1608 { 1609 struct displaced_step_inferior_state *displaced 1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid)); 1611 1612 /* If checking the mode of displaced instruction in copy area. */ 1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid) 1614 && (displaced->step_copy == addr)) 1615 return displaced->step_closure; 1616 1617 return NULL; 1618 } 1619 1620 /* Remove the displaced stepping state of process PID. */ 1621 1622 static void 1623 remove_displaced_stepping_state (int pid) 1624 { 1625 struct displaced_step_inferior_state *it, **prev_next_p; 1626 1627 gdb_assert (pid != 0); 1628 1629 it = displaced_step_inferior_states; 1630 prev_next_p = &displaced_step_inferior_states; 1631 while (it) 1632 { 1633 if (it->pid == pid) 1634 { 1635 *prev_next_p = it->next; 1636 xfree (it); 1637 return; 1638 } 1639 1640 prev_next_p = &it->next; 1641 it = *prev_next_p; 1642 } 1643 } 1644 1645 static void 1646 infrun_inferior_exit (struct inferior *inf) 1647 { 1648 remove_displaced_stepping_state (inf->pid); 1649 } 1650 1651 /* If ON, and the architecture supports it, GDB will use displaced 1652 stepping to step over breakpoints. If OFF, or if the architecture 1653 doesn't support it, GDB will instead use the traditional 1654 hold-and-step approach. If AUTO (which is the default), GDB will 1655 decide which technique to use to step over breakpoints depending on 1656 which of all-stop or non-stop mode is active --- displaced stepping 1657 in non-stop mode; hold-and-step in all-stop mode. */ 1658 1659 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO; 1660 1661 static void 1662 show_can_use_displaced_stepping (struct ui_file *file, int from_tty, 1663 struct cmd_list_element *c, 1664 const char *value) 1665 { 1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO) 1667 fprintf_filtered (file, 1668 _("Debugger's willingness to use displaced stepping " 1669 "to step over breakpoints is %s (currently %s).\n"), 1670 value, target_is_non_stop_p () ? "on" : "off"); 1671 else 1672 fprintf_filtered (file, 1673 _("Debugger's willingness to use displaced stepping " 1674 "to step over breakpoints is %s.\n"), value); 1675 } 1676 1677 /* Return non-zero if displaced stepping can/should be used to step 1678 over breakpoints of thread TP. */ 1679 1680 static int 1681 use_displaced_stepping (struct thread_info *tp) 1682 { 1683 struct regcache *regcache = get_thread_regcache (tp->ptid); 1684 struct gdbarch *gdbarch = get_regcache_arch (regcache); 1685 struct displaced_step_inferior_state *displaced_state; 1686 1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid)); 1688 1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO 1690 && target_is_non_stop_p ()) 1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) 1692 && gdbarch_displaced_step_copy_insn_p (gdbarch) 1693 && find_record_target () == NULL 1694 && (displaced_state == NULL 1695 || !displaced_state->failed_before)); 1696 } 1697 1698 /* Clean out any stray displaced stepping state. */ 1699 static void 1700 displaced_step_clear (struct displaced_step_inferior_state *displaced) 1701 { 1702 /* Indicate that there is no cleanup pending. */ 1703 displaced->step_ptid = null_ptid; 1704 1705 if (displaced->step_closure) 1706 { 1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch, 1708 displaced->step_closure); 1709 displaced->step_closure = NULL; 1710 } 1711 } 1712 1713 static void 1714 displaced_step_clear_cleanup (void *arg) 1715 { 1716 struct displaced_step_inferior_state *state 1717 = (struct displaced_step_inferior_state *) arg; 1718 1719 displaced_step_clear (state); 1720 } 1721 1722 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */ 1723 void 1724 displaced_step_dump_bytes (struct ui_file *file, 1725 const gdb_byte *buf, 1726 size_t len) 1727 { 1728 int i; 1729 1730 for (i = 0; i < len; i++) 1731 fprintf_unfiltered (file, "%02x ", buf[i]); 1732 fputs_unfiltered ("\n", file); 1733 } 1734 1735 /* Prepare to single-step, using displaced stepping. 1736 1737 Note that we cannot use displaced stepping when we have a signal to 1738 deliver. If we have a signal to deliver and an instruction to step 1739 over, then after the step, there will be no indication from the 1740 target whether the thread entered a signal handler or ignored the 1741 signal and stepped over the instruction successfully --- both cases 1742 result in a simple SIGTRAP. In the first case we mustn't do a 1743 fixup, and in the second case we must --- but we can't tell which. 1744 Comments in the code for 'random signals' in handle_inferior_event 1745 explain how we handle this case instead. 1746 1747 Returns 1 if preparing was successful -- this thread is going to be 1748 stepped now; 0 if displaced stepping this thread got queued; or -1 1749 if this instruction can't be displaced stepped. */ 1750 1751 static int 1752 displaced_step_prepare_throw (ptid_t ptid) 1753 { 1754 struct cleanup *old_cleanups, *ignore_cleanups; 1755 struct thread_info *tp = find_thread_ptid (ptid); 1756 struct regcache *regcache = get_thread_regcache (ptid); 1757 struct gdbarch *gdbarch = get_regcache_arch (regcache); 1758 struct address_space *aspace = get_regcache_aspace (regcache); 1759 CORE_ADDR original, copy; 1760 ULONGEST len; 1761 struct displaced_step_closure *closure; 1762 struct displaced_step_inferior_state *displaced; 1763 int status; 1764 1765 /* We should never reach this function if the architecture does not 1766 support displaced stepping. */ 1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch)); 1768 1769 /* Nor if the thread isn't meant to step over a breakpoint. */ 1770 gdb_assert (tp->control.trap_expected); 1771 1772 /* Disable range stepping while executing in the scratch pad. We 1773 want a single-step even if executing the displaced instruction in 1774 the scratch buffer lands within the stepping range (e.g., a 1775 jump/branch). */ 1776 tp->control.may_range_step = 0; 1777 1778 /* We have to displaced step one thread at a time, as we only have 1779 access to a single scratch space per inferior. */ 1780 1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid)); 1782 1783 if (!ptid_equal (displaced->step_ptid, null_ptid)) 1784 { 1785 /* Already waiting for a displaced step to finish. Defer this 1786 request and place in queue. */ 1787 1788 if (debug_displaced) 1789 fprintf_unfiltered (gdb_stdlog, 1790 "displaced: deferring step of %s\n", 1791 target_pid_to_str (ptid)); 1792 1793 thread_step_over_chain_enqueue (tp); 1794 return 0; 1795 } 1796 else 1797 { 1798 if (debug_displaced) 1799 fprintf_unfiltered (gdb_stdlog, 1800 "displaced: stepping %s now\n", 1801 target_pid_to_str (ptid)); 1802 } 1803 1804 displaced_step_clear (displaced); 1805 1806 old_cleanups = save_inferior_ptid (); 1807 inferior_ptid = ptid; 1808 1809 original = regcache_read_pc (regcache); 1810 1811 copy = gdbarch_displaced_step_location (gdbarch); 1812 len = gdbarch_max_insn_length (gdbarch); 1813 1814 if (breakpoint_in_range_p (aspace, copy, len)) 1815 { 1816 /* There's a breakpoint set in the scratch pad location range 1817 (which is usually around the entry point). We'd either 1818 install it before resuming, which would overwrite/corrupt the 1819 scratch pad, or if it was already inserted, this displaced 1820 step would overwrite it. The latter is OK in the sense that 1821 we already assume that no thread is going to execute the code 1822 in the scratch pad range (after initial startup) anyway, but 1823 the former is unacceptable. Simply punt and fallback to 1824 stepping over this breakpoint in-line. */ 1825 if (debug_displaced) 1826 { 1827 fprintf_unfiltered (gdb_stdlog, 1828 "displaced: breakpoint set in scratch pad. " 1829 "Stepping over breakpoint in-line instead.\n"); 1830 } 1831 1832 do_cleanups (old_cleanups); 1833 return -1; 1834 } 1835 1836 /* Save the original contents of the copy area. */ 1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len); 1838 ignore_cleanups = make_cleanup (free_current_contents, 1839 &displaced->step_saved_copy); 1840 status = target_read_memory (copy, displaced->step_saved_copy, len); 1841 if (status != 0) 1842 throw_error (MEMORY_ERROR, 1843 _("Error accessing memory address %s (%s) for " 1844 "displaced-stepping scratch space."), 1845 paddress (gdbarch, copy), safe_strerror (status)); 1846 if (debug_displaced) 1847 { 1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ", 1849 paddress (gdbarch, copy)); 1850 displaced_step_dump_bytes (gdb_stdlog, 1851 displaced->step_saved_copy, 1852 len); 1853 }; 1854 1855 closure = gdbarch_displaced_step_copy_insn (gdbarch, 1856 original, copy, regcache); 1857 if (closure == NULL) 1858 { 1859 /* The architecture doesn't know how or want to displaced step 1860 this instruction or instruction sequence. Fallback to 1861 stepping over the breakpoint in-line. */ 1862 do_cleanups (old_cleanups); 1863 return -1; 1864 } 1865 1866 /* Save the information we need to fix things up if the step 1867 succeeds. */ 1868 displaced->step_ptid = ptid; 1869 displaced->step_gdbarch = gdbarch; 1870 displaced->step_closure = closure; 1871 displaced->step_original = original; 1872 displaced->step_copy = copy; 1873 1874 make_cleanup (displaced_step_clear_cleanup, displaced); 1875 1876 /* Resume execution at the copy. */ 1877 regcache_write_pc (regcache, copy); 1878 1879 discard_cleanups (ignore_cleanups); 1880 1881 do_cleanups (old_cleanups); 1882 1883 if (debug_displaced) 1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n", 1885 paddress (gdbarch, copy)); 1886 1887 return 1; 1888 } 1889 1890 /* Wrapper for displaced_step_prepare_throw that disabled further 1891 attempts at displaced stepping if we get a memory error. */ 1892 1893 static int 1894 displaced_step_prepare (ptid_t ptid) 1895 { 1896 int prepared = -1; 1897 1898 TRY 1899 { 1900 prepared = displaced_step_prepare_throw (ptid); 1901 } 1902 CATCH (ex, RETURN_MASK_ERROR) 1903 { 1904 struct displaced_step_inferior_state *displaced_state; 1905 1906 if (ex.error != MEMORY_ERROR 1907 && ex.error != NOT_SUPPORTED_ERROR) 1908 throw_exception (ex); 1909 1910 if (debug_infrun) 1911 { 1912 fprintf_unfiltered (gdb_stdlog, 1913 "infrun: disabling displaced stepping: %s\n", 1914 ex.message); 1915 } 1916 1917 /* Be verbose if "set displaced-stepping" is "on", silent if 1918 "auto". */ 1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) 1920 { 1921 warning (_("disabling displaced stepping: %s"), 1922 ex.message); 1923 } 1924 1925 /* Disable further displaced stepping attempts. */ 1926 displaced_state 1927 = get_displaced_stepping_state (ptid_get_pid (ptid)); 1928 displaced_state->failed_before = 1; 1929 } 1930 END_CATCH 1931 1932 return prepared; 1933 } 1934 1935 static void 1936 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, 1937 const gdb_byte *myaddr, int len) 1938 { 1939 struct cleanup *ptid_cleanup = save_inferior_ptid (); 1940 1941 inferior_ptid = ptid; 1942 write_memory (memaddr, myaddr, len); 1943 do_cleanups (ptid_cleanup); 1944 } 1945 1946 /* Restore the contents of the copy area for thread PTID. */ 1947 1948 static void 1949 displaced_step_restore (struct displaced_step_inferior_state *displaced, 1950 ptid_t ptid) 1951 { 1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch); 1953 1954 write_memory_ptid (ptid, displaced->step_copy, 1955 displaced->step_saved_copy, len); 1956 if (debug_displaced) 1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n", 1958 target_pid_to_str (ptid), 1959 paddress (displaced->step_gdbarch, 1960 displaced->step_copy)); 1961 } 1962 1963 /* If we displaced stepped an instruction successfully, adjust 1964 registers and memory to yield the same effect the instruction would 1965 have had if we had executed it at its original address, and return 1966 1. If the instruction didn't complete, relocate the PC and return 1967 -1. If the thread wasn't displaced stepping, return 0. */ 1968 1969 static int 1970 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal) 1971 { 1972 struct cleanup *old_cleanups; 1973 struct displaced_step_inferior_state *displaced 1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid)); 1975 int ret; 1976 1977 /* Was any thread of this process doing a displaced step? */ 1978 if (displaced == NULL) 1979 return 0; 1980 1981 /* Was this event for the pid we displaced? */ 1982 if (ptid_equal (displaced->step_ptid, null_ptid) 1983 || ! ptid_equal (displaced->step_ptid, event_ptid)) 1984 return 0; 1985 1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced); 1987 1988 displaced_step_restore (displaced, displaced->step_ptid); 1989 1990 /* Fixup may need to read memory/registers. Switch to the thread 1991 that we're fixing up. Also, target_stopped_by_watchpoint checks 1992 the current thread. */ 1993 switch_to_thread (event_ptid); 1994 1995 /* Did the instruction complete successfully? */ 1996 if (signal == GDB_SIGNAL_TRAP 1997 && !(target_stopped_by_watchpoint () 1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch) 1999 || target_have_steppable_watchpoint))) 2000 { 2001 /* Fix up the resulting state. */ 2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch, 2003 displaced->step_closure, 2004 displaced->step_original, 2005 displaced->step_copy, 2006 get_thread_regcache (displaced->step_ptid)); 2007 ret = 1; 2008 } 2009 else 2010 { 2011 /* Since the instruction didn't complete, all we can do is 2012 relocate the PC. */ 2013 struct regcache *regcache = get_thread_regcache (event_ptid); 2014 CORE_ADDR pc = regcache_read_pc (regcache); 2015 2016 pc = displaced->step_original + (pc - displaced->step_copy); 2017 regcache_write_pc (regcache, pc); 2018 ret = -1; 2019 } 2020 2021 do_cleanups (old_cleanups); 2022 2023 displaced->step_ptid = null_ptid; 2024 2025 return ret; 2026 } 2027 2028 /* Data to be passed around while handling an event. This data is 2029 discarded between events. */ 2030 struct execution_control_state 2031 { 2032 ptid_t ptid; 2033 /* The thread that got the event, if this was a thread event; NULL 2034 otherwise. */ 2035 struct thread_info *event_thread; 2036 2037 struct target_waitstatus ws; 2038 int stop_func_filled_in; 2039 CORE_ADDR stop_func_start; 2040 CORE_ADDR stop_func_end; 2041 const char *stop_func_name; 2042 int wait_some_more; 2043 2044 /* True if the event thread hit the single-step breakpoint of 2045 another thread. Thus the event doesn't cause a stop, the thread 2046 needs to be single-stepped past the single-step breakpoint before 2047 we can switch back to the original stepping thread. */ 2048 int hit_singlestep_breakpoint; 2049 }; 2050 2051 /* Clear ECS and set it to point at TP. */ 2052 2053 static void 2054 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp) 2055 { 2056 memset (ecs, 0, sizeof (*ecs)); 2057 ecs->event_thread = tp; 2058 ecs->ptid = tp->ptid; 2059 } 2060 2061 static void keep_going_pass_signal (struct execution_control_state *ecs); 2062 static void prepare_to_wait (struct execution_control_state *ecs); 2063 static int keep_going_stepped_thread (struct thread_info *tp); 2064 static step_over_what thread_still_needs_step_over (struct thread_info *tp); 2065 2066 /* Are there any pending step-over requests? If so, run all we can 2067 now and return true. Otherwise, return false. */ 2068 2069 static int 2070 start_step_over (void) 2071 { 2072 struct thread_info *tp, *next; 2073 2074 /* Don't start a new step-over if we already have an in-line 2075 step-over operation ongoing. */ 2076 if (step_over_info_valid_p ()) 2077 return 0; 2078 2079 for (tp = step_over_queue_head; tp != NULL; tp = next) 2080 { 2081 struct execution_control_state ecss; 2082 struct execution_control_state *ecs = &ecss; 2083 step_over_what step_what; 2084 int must_be_in_line; 2085 2086 next = thread_step_over_chain_next (tp); 2087 2088 /* If this inferior already has a displaced step in process, 2089 don't start a new one. */ 2090 if (displaced_step_in_progress (ptid_get_pid (tp->ptid))) 2091 continue; 2092 2093 step_what = thread_still_needs_step_over (tp); 2094 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT) 2095 || ((step_what & STEP_OVER_BREAKPOINT) 2096 && !use_displaced_stepping (tp))); 2097 2098 /* We currently stop all threads of all processes to step-over 2099 in-line. If we need to start a new in-line step-over, let 2100 any pending displaced steps finish first. */ 2101 if (must_be_in_line && displaced_step_in_progress_any_inferior ()) 2102 return 0; 2103 2104 thread_step_over_chain_remove (tp); 2105 2106 if (step_over_queue_head == NULL) 2107 { 2108 if (debug_infrun) 2109 fprintf_unfiltered (gdb_stdlog, 2110 "infrun: step-over queue now empty\n"); 2111 } 2112 2113 if (tp->control.trap_expected 2114 || tp->resumed 2115 || tp->executing) 2116 { 2117 internal_error (__FILE__, __LINE__, 2118 "[%s] has inconsistent state: " 2119 "trap_expected=%d, resumed=%d, executing=%d\n", 2120 target_pid_to_str (tp->ptid), 2121 tp->control.trap_expected, 2122 tp->resumed, 2123 tp->executing); 2124 } 2125 2126 if (debug_infrun) 2127 fprintf_unfiltered (gdb_stdlog, 2128 "infrun: resuming [%s] for step-over\n", 2129 target_pid_to_str (tp->ptid)); 2130 2131 /* keep_going_pass_signal skips the step-over if the breakpoint 2132 is no longer inserted. In all-stop, we want to keep looking 2133 for a thread that needs a step-over instead of resuming TP, 2134 because we wouldn't be able to resume anything else until the 2135 target stops again. In non-stop, the resume always resumes 2136 only TP, so it's OK to let the thread resume freely. */ 2137 if (!target_is_non_stop_p () && !step_what) 2138 continue; 2139 2140 switch_to_thread (tp->ptid); 2141 reset_ecs (ecs, tp); 2142 keep_going_pass_signal (ecs); 2143 2144 if (!ecs->wait_some_more) 2145 error (_("Command aborted.")); 2146 2147 gdb_assert (tp->resumed); 2148 2149 /* If we started a new in-line step-over, we're done. */ 2150 if (step_over_info_valid_p ()) 2151 { 2152 gdb_assert (tp->control.trap_expected); 2153 return 1; 2154 } 2155 2156 if (!target_is_non_stop_p ()) 2157 { 2158 /* On all-stop, shouldn't have resumed unless we needed a 2159 step over. */ 2160 gdb_assert (tp->control.trap_expected 2161 || tp->step_after_step_resume_breakpoint); 2162 2163 /* With remote targets (at least), in all-stop, we can't 2164 issue any further remote commands until the program stops 2165 again. */ 2166 return 1; 2167 } 2168 2169 /* Either the thread no longer needed a step-over, or a new 2170 displaced stepping sequence started. Even in the latter 2171 case, continue looking. Maybe we can also start another 2172 displaced step on a thread of other process. */ 2173 } 2174 2175 return 0; 2176 } 2177 2178 /* Update global variables holding ptids to hold NEW_PTID if they were 2179 holding OLD_PTID. */ 2180 static void 2181 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) 2182 { 2183 struct displaced_step_inferior_state *displaced; 2184 2185 if (ptid_equal (inferior_ptid, old_ptid)) 2186 inferior_ptid = new_ptid; 2187 2188 for (displaced = displaced_step_inferior_states; 2189 displaced; 2190 displaced = displaced->next) 2191 { 2192 if (ptid_equal (displaced->step_ptid, old_ptid)) 2193 displaced->step_ptid = new_ptid; 2194 } 2195 } 2196 2197 2198 /* Resuming. */ 2199 2200 /* Things to clean up if we QUIT out of resume (). */ 2201 static void 2202 resume_cleanups (void *ignore) 2203 { 2204 if (!ptid_equal (inferior_ptid, null_ptid)) 2205 delete_single_step_breakpoints (inferior_thread ()); 2206 2207 normal_stop (); 2208 } 2209 2210 static const char schedlock_off[] = "off"; 2211 static const char schedlock_on[] = "on"; 2212 static const char schedlock_step[] = "step"; 2213 static const char schedlock_replay[] = "replay"; 2214 static const char *const scheduler_enums[] = { 2215 schedlock_off, 2216 schedlock_on, 2217 schedlock_step, 2218 schedlock_replay, 2219 NULL 2220 }; 2221 static const char *scheduler_mode = schedlock_replay; 2222 static void 2223 show_scheduler_mode (struct ui_file *file, int from_tty, 2224 struct cmd_list_element *c, const char *value) 2225 { 2226 fprintf_filtered (file, 2227 _("Mode for locking scheduler " 2228 "during execution is \"%s\".\n"), 2229 value); 2230 } 2231 2232 static void 2233 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c) 2234 { 2235 if (!target_can_lock_scheduler) 2236 { 2237 scheduler_mode = schedlock_off; 2238 error (_("Target '%s' cannot support this command."), target_shortname); 2239 } 2240 } 2241 2242 /* True if execution commands resume all threads of all processes by 2243 default; otherwise, resume only threads of the current inferior 2244 process. */ 2245 int sched_multi = 0; 2246 2247 /* Try to setup for software single stepping over the specified location. 2248 Return 1 if target_resume() should use hardware single step. 2249 2250 GDBARCH the current gdbarch. 2251 PC the location to step over. */ 2252 2253 static int 2254 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc) 2255 { 2256 int hw_step = 1; 2257 2258 if (execution_direction == EXEC_FORWARD 2259 && gdbarch_software_single_step_p (gdbarch) 2260 && gdbarch_software_single_step (gdbarch, get_current_frame ())) 2261 { 2262 hw_step = 0; 2263 } 2264 return hw_step; 2265 } 2266 2267 /* See infrun.h. */ 2268 2269 ptid_t 2270 user_visible_resume_ptid (int step) 2271 { 2272 ptid_t resume_ptid; 2273 2274 if (non_stop) 2275 { 2276 /* With non-stop mode on, threads are always handled 2277 individually. */ 2278 resume_ptid = inferior_ptid; 2279 } 2280 else if ((scheduler_mode == schedlock_on) 2281 || (scheduler_mode == schedlock_step && step)) 2282 { 2283 /* User-settable 'scheduler' mode requires solo thread 2284 resume. */ 2285 resume_ptid = inferior_ptid; 2286 } 2287 else if ((scheduler_mode == schedlock_replay) 2288 && target_record_will_replay (minus_one_ptid, execution_direction)) 2289 { 2290 /* User-settable 'scheduler' mode requires solo thread resume in replay 2291 mode. */ 2292 resume_ptid = inferior_ptid; 2293 } 2294 else if (!sched_multi && target_supports_multi_process ()) 2295 { 2296 /* Resume all threads of the current process (and none of other 2297 processes). */ 2298 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); 2299 } 2300 else 2301 { 2302 /* Resume all threads of all processes. */ 2303 resume_ptid = RESUME_ALL; 2304 } 2305 2306 return resume_ptid; 2307 } 2308 2309 /* Return a ptid representing the set of threads that we will resume, 2310 in the perspective of the target, assuming run control handling 2311 does not require leaving some threads stopped (e.g., stepping past 2312 breakpoint). USER_STEP indicates whether we're about to start the 2313 target for a stepping command. */ 2314 2315 static ptid_t 2316 internal_resume_ptid (int user_step) 2317 { 2318 /* In non-stop, we always control threads individually. Note that 2319 the target may always work in non-stop mode even with "set 2320 non-stop off", in which case user_visible_resume_ptid could 2321 return a wildcard ptid. */ 2322 if (target_is_non_stop_p ()) 2323 return inferior_ptid; 2324 else 2325 return user_visible_resume_ptid (user_step); 2326 } 2327 2328 /* Wrapper for target_resume, that handles infrun-specific 2329 bookkeeping. */ 2330 2331 static void 2332 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig) 2333 { 2334 struct thread_info *tp = inferior_thread (); 2335 2336 /* Install inferior's terminal modes. */ 2337 target_terminal_inferior (); 2338 2339 /* Avoid confusing the next resume, if the next stop/resume 2340 happens to apply to another thread. */ 2341 tp->suspend.stop_signal = GDB_SIGNAL_0; 2342 2343 /* Advise target which signals may be handled silently. 2344 2345 If we have removed breakpoints because we are stepping over one 2346 in-line (in any thread), we need to receive all signals to avoid 2347 accidentally skipping a breakpoint during execution of a signal 2348 handler. 2349 2350 Likewise if we're displaced stepping, otherwise a trap for a 2351 breakpoint in a signal handler might be confused with the 2352 displaced step finishing. We don't make the displaced_step_fixup 2353 step distinguish the cases instead, because: 2354 2355 - a backtrace while stopped in the signal handler would show the 2356 scratch pad as frame older than the signal handler, instead of 2357 the real mainline code. 2358 2359 - when the thread is later resumed, the signal handler would 2360 return to the scratch pad area, which would no longer be 2361 valid. */ 2362 if (step_over_info_valid_p () 2363 || displaced_step_in_progress (ptid_get_pid (tp->ptid))) 2364 target_pass_signals (0, NULL); 2365 else 2366 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); 2367 2368 target_resume (resume_ptid, step, sig); 2369 } 2370 2371 /* Resume the inferior, but allow a QUIT. This is useful if the user 2372 wants to interrupt some lengthy single-stepping operation 2373 (for child processes, the SIGINT goes to the inferior, and so 2374 we get a SIGINT random_signal, but for remote debugging and perhaps 2375 other targets, that's not true). 2376 2377 SIG is the signal to give the inferior (zero for none). */ 2378 void 2379 resume (enum gdb_signal sig) 2380 { 2381 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); 2382 struct regcache *regcache = get_current_regcache (); 2383 struct gdbarch *gdbarch = get_regcache_arch (regcache); 2384 struct thread_info *tp = inferior_thread (); 2385 CORE_ADDR pc = regcache_read_pc (regcache); 2386 struct address_space *aspace = get_regcache_aspace (regcache); 2387 ptid_t resume_ptid; 2388 /* This represents the user's step vs continue request. When 2389 deciding whether "set scheduler-locking step" applies, it's the 2390 user's intention that counts. */ 2391 const int user_step = tp->control.stepping_command; 2392 /* This represents what we'll actually request the target to do. 2393 This can decay from a step to a continue, if e.g., we need to 2394 implement single-stepping with breakpoints (software 2395 single-step). */ 2396 int step; 2397 2398 gdb_assert (!thread_is_in_step_over_chain (tp)); 2399 2400 QUIT; 2401 2402 if (tp->suspend.waitstatus_pending_p) 2403 { 2404 if (debug_infrun) 2405 { 2406 char *statstr; 2407 2408 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus); 2409 fprintf_unfiltered (gdb_stdlog, 2410 "infrun: resume: thread %s has pending wait status %s " 2411 "(currently_stepping=%d).\n", 2412 target_pid_to_str (tp->ptid), statstr, 2413 currently_stepping (tp)); 2414 xfree (statstr); 2415 } 2416 2417 tp->resumed = 1; 2418 2419 /* FIXME: What should we do if we are supposed to resume this 2420 thread with a signal? Maybe we should maintain a queue of 2421 pending signals to deliver. */ 2422 if (sig != GDB_SIGNAL_0) 2423 { 2424 warning (_("Couldn't deliver signal %s to %s."), 2425 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid)); 2426 } 2427 2428 tp->suspend.stop_signal = GDB_SIGNAL_0; 2429 discard_cleanups (old_cleanups); 2430 2431 if (target_can_async_p ()) 2432 target_async (1); 2433 return; 2434 } 2435 2436 tp->stepped_breakpoint = 0; 2437 2438 /* Depends on stepped_breakpoint. */ 2439 step = currently_stepping (tp); 2440 2441 if (current_inferior ()->waiting_for_vfork_done) 2442 { 2443 /* Don't try to single-step a vfork parent that is waiting for 2444 the child to get out of the shared memory region (by exec'ing 2445 or exiting). This is particularly important on software 2446 single-step archs, as the child process would trip on the 2447 software single step breakpoint inserted for the parent 2448 process. Since the parent will not actually execute any 2449 instruction until the child is out of the shared region (such 2450 are vfork's semantics), it is safe to simply continue it. 2451 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for 2452 the parent, and tell it to `keep_going', which automatically 2453 re-sets it stepping. */ 2454 if (debug_infrun) 2455 fprintf_unfiltered (gdb_stdlog, 2456 "infrun: resume : clear step\n"); 2457 step = 0; 2458 } 2459 2460 if (debug_infrun) 2461 fprintf_unfiltered (gdb_stdlog, 2462 "infrun: resume (step=%d, signal=%s), " 2463 "trap_expected=%d, current thread [%s] at %s\n", 2464 step, gdb_signal_to_symbol_string (sig), 2465 tp->control.trap_expected, 2466 target_pid_to_str (inferior_ptid), 2467 paddress (gdbarch, pc)); 2468 2469 /* Normally, by the time we reach `resume', the breakpoints are either 2470 removed or inserted, as appropriate. The exception is if we're sitting 2471 at a permanent breakpoint; we need to step over it, but permanent 2472 breakpoints can't be removed. So we have to test for it here. */ 2473 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) 2474 { 2475 if (sig != GDB_SIGNAL_0) 2476 { 2477 /* We have a signal to pass to the inferior. The resume 2478 may, or may not take us to the signal handler. If this 2479 is a step, we'll need to stop in the signal handler, if 2480 there's one, (if the target supports stepping into 2481 handlers), or in the next mainline instruction, if 2482 there's no handler. If this is a continue, we need to be 2483 sure to run the handler with all breakpoints inserted. 2484 In all cases, set a breakpoint at the current address 2485 (where the handler returns to), and once that breakpoint 2486 is hit, resume skipping the permanent breakpoint. If 2487 that breakpoint isn't hit, then we've stepped into the 2488 signal handler (or hit some other event). We'll delete 2489 the step-resume breakpoint then. */ 2490 2491 if (debug_infrun) 2492 fprintf_unfiltered (gdb_stdlog, 2493 "infrun: resume: skipping permanent breakpoint, " 2494 "deliver signal first\n"); 2495 2496 clear_step_over_info (); 2497 tp->control.trap_expected = 0; 2498 2499 if (tp->control.step_resume_breakpoint == NULL) 2500 { 2501 /* Set a "high-priority" step-resume, as we don't want 2502 user breakpoints at PC to trigger (again) when this 2503 hits. */ 2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); 2505 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent); 2506 2507 tp->step_after_step_resume_breakpoint = step; 2508 } 2509 2510 insert_breakpoints (); 2511 } 2512 else 2513 { 2514 /* There's no signal to pass, we can go ahead and skip the 2515 permanent breakpoint manually. */ 2516 if (debug_infrun) 2517 fprintf_unfiltered (gdb_stdlog, 2518 "infrun: resume: skipping permanent breakpoint\n"); 2519 gdbarch_skip_permanent_breakpoint (gdbarch, regcache); 2520 /* Update pc to reflect the new address from which we will 2521 execute instructions. */ 2522 pc = regcache_read_pc (regcache); 2523 2524 if (step) 2525 { 2526 /* We've already advanced the PC, so the stepping part 2527 is done. Now we need to arrange for a trap to be 2528 reported to handle_inferior_event. Set a breakpoint 2529 at the current PC, and run to it. Don't update 2530 prev_pc, because if we end in 2531 switch_back_to_stepped_thread, we want the "expected 2532 thread advanced also" branch to be taken. IOW, we 2533 don't want this thread to step further from PC 2534 (overstep). */ 2535 gdb_assert (!step_over_info_valid_p ()); 2536 insert_single_step_breakpoint (gdbarch, aspace, pc); 2537 insert_breakpoints (); 2538 2539 resume_ptid = internal_resume_ptid (user_step); 2540 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); 2541 discard_cleanups (old_cleanups); 2542 tp->resumed = 1; 2543 return; 2544 } 2545 } 2546 } 2547 2548 /* If we have a breakpoint to step over, make sure to do a single 2549 step only. Same if we have software watchpoints. */ 2550 if (tp->control.trap_expected || bpstat_should_step ()) 2551 tp->control.may_range_step = 0; 2552 2553 /* If enabled, step over breakpoints by executing a copy of the 2554 instruction at a different address. 2555 2556 We can't use displaced stepping when we have a signal to deliver; 2557 the comments for displaced_step_prepare explain why. The 2558 comments in the handle_inferior event for dealing with 'random 2559 signals' explain what we do instead. 2560 2561 We can't use displaced stepping when we are waiting for vfork_done 2562 event, displaced stepping breaks the vfork child similarly as single 2563 step software breakpoint. */ 2564 if (tp->control.trap_expected 2565 && use_displaced_stepping (tp) 2566 && !step_over_info_valid_p () 2567 && sig == GDB_SIGNAL_0 2568 && !current_inferior ()->waiting_for_vfork_done) 2569 { 2570 int prepared = displaced_step_prepare (inferior_ptid); 2571 2572 if (prepared == 0) 2573 { 2574 if (debug_infrun) 2575 fprintf_unfiltered (gdb_stdlog, 2576 "Got placed in step-over queue\n"); 2577 2578 tp->control.trap_expected = 0; 2579 discard_cleanups (old_cleanups); 2580 return; 2581 } 2582 else if (prepared < 0) 2583 { 2584 /* Fallback to stepping over the breakpoint in-line. */ 2585 2586 if (target_is_non_stop_p ()) 2587 stop_all_threads (); 2588 2589 set_step_over_info (get_regcache_aspace (regcache), 2590 regcache_read_pc (regcache), 0, tp->global_num); 2591 2592 step = maybe_software_singlestep (gdbarch, pc); 2593 2594 insert_breakpoints (); 2595 } 2596 else if (prepared > 0) 2597 { 2598 struct displaced_step_inferior_state *displaced; 2599 2600 /* Update pc to reflect the new address from which we will 2601 execute instructions due to displaced stepping. */ 2602 pc = regcache_read_pc (get_thread_regcache (inferior_ptid)); 2603 2604 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid)); 2605 step = gdbarch_displaced_step_hw_singlestep (gdbarch, 2606 displaced->step_closure); 2607 } 2608 } 2609 2610 /* Do we need to do it the hard way, w/temp breakpoints? */ 2611 else if (step) 2612 step = maybe_software_singlestep (gdbarch, pc); 2613 2614 /* Currently, our software single-step implementation leads to different 2615 results than hardware single-stepping in one situation: when stepping 2616 into delivering a signal which has an associated signal handler, 2617 hardware single-step will stop at the first instruction of the handler, 2618 while software single-step will simply skip execution of the handler. 2619 2620 For now, this difference in behavior is accepted since there is no 2621 easy way to actually implement single-stepping into a signal handler 2622 without kernel support. 2623 2624 However, there is one scenario where this difference leads to follow-on 2625 problems: if we're stepping off a breakpoint by removing all breakpoints 2626 and then single-stepping. In this case, the software single-step 2627 behavior means that even if there is a *breakpoint* in the signal 2628 handler, GDB still would not stop. 2629 2630 Fortunately, we can at least fix this particular issue. We detect 2631 here the case where we are about to deliver a signal while software 2632 single-stepping with breakpoints removed. In this situation, we 2633 revert the decisions to remove all breakpoints and insert single- 2634 step breakpoints, and instead we install a step-resume breakpoint 2635 at the current address, deliver the signal without stepping, and 2636 once we arrive back at the step-resume breakpoint, actually step 2637 over the breakpoint we originally wanted to step over. */ 2638 if (thread_has_single_step_breakpoints_set (tp) 2639 && sig != GDB_SIGNAL_0 2640 && step_over_info_valid_p ()) 2641 { 2642 /* If we have nested signals or a pending signal is delivered 2643 immediately after a handler returns, might might already have 2644 a step-resume breakpoint set on the earlier handler. We cannot 2645 set another step-resume breakpoint; just continue on until the 2646 original breakpoint is hit. */ 2647 if (tp->control.step_resume_breakpoint == NULL) 2648 { 2649 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); 2650 tp->step_after_step_resume_breakpoint = 1; 2651 } 2652 2653 delete_single_step_breakpoints (tp); 2654 2655 clear_step_over_info (); 2656 tp->control.trap_expected = 0; 2657 2658 insert_breakpoints (); 2659 } 2660 2661 /* If STEP is set, it's a request to use hardware stepping 2662 facilities. But in that case, we should never 2663 use singlestep breakpoint. */ 2664 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step)); 2665 2666 /* Decide the set of threads to ask the target to resume. */ 2667 if (tp->control.trap_expected) 2668 { 2669 /* We're allowing a thread to run past a breakpoint it has 2670 hit, either by single-stepping the thread with the breakpoint 2671 removed, or by displaced stepping, with the breakpoint inserted. 2672 In the former case, we need to single-step only this thread, 2673 and keep others stopped, as they can miss this breakpoint if 2674 allowed to run. That's not really a problem for displaced 2675 stepping, but, we still keep other threads stopped, in case 2676 another thread is also stopped for a breakpoint waiting for 2677 its turn in the displaced stepping queue. */ 2678 resume_ptid = inferior_ptid; 2679 } 2680 else 2681 resume_ptid = internal_resume_ptid (user_step); 2682 2683 if (execution_direction != EXEC_REVERSE 2684 && step && breakpoint_inserted_here_p (aspace, pc)) 2685 { 2686 /* There are two cases where we currently need to step a 2687 breakpoint instruction when we have a signal to deliver: 2688 2689 - See handle_signal_stop where we handle random signals that 2690 could take out us out of the stepping range. Normally, in 2691 that case we end up continuing (instead of stepping) over the 2692 signal handler with a breakpoint at PC, but there are cases 2693 where we should _always_ single-step, even if we have a 2694 step-resume breakpoint, like when a software watchpoint is 2695 set. Assuming single-stepping and delivering a signal at the 2696 same time would takes us to the signal handler, then we could 2697 have removed the breakpoint at PC to step over it. However, 2698 some hardware step targets (like e.g., Mac OS) can't step 2699 into signal handlers, and for those, we need to leave the 2700 breakpoint at PC inserted, as otherwise if the handler 2701 recurses and executes PC again, it'll miss the breakpoint. 2702 So we leave the breakpoint inserted anyway, but we need to 2703 record that we tried to step a breakpoint instruction, so 2704 that adjust_pc_after_break doesn't end up confused. 2705 2706 - In non-stop if we insert a breakpoint (e.g., a step-resume) 2707 in one thread after another thread that was stepping had been 2708 momentarily paused for a step-over. When we re-resume the 2709 stepping thread, it may be resumed from that address with a 2710 breakpoint that hasn't trapped yet. Seen with 2711 gdb.threads/non-stop-fair-events.exp, on targets that don't 2712 do displaced stepping. */ 2713 2714 if (debug_infrun) 2715 fprintf_unfiltered (gdb_stdlog, 2716 "infrun: resume: [%s] stepped breakpoint\n", 2717 target_pid_to_str (tp->ptid)); 2718 2719 tp->stepped_breakpoint = 1; 2720 2721 /* Most targets can step a breakpoint instruction, thus 2722 executing it normally. But if this one cannot, just 2723 continue and we will hit it anyway. */ 2724 if (gdbarch_cannot_step_breakpoint (gdbarch)) 2725 step = 0; 2726 } 2727 2728 if (debug_displaced 2729 && tp->control.trap_expected 2730 && use_displaced_stepping (tp) 2731 && !step_over_info_valid_p ()) 2732 { 2733 struct regcache *resume_regcache = get_thread_regcache (tp->ptid); 2734 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache); 2735 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache); 2736 gdb_byte buf[4]; 2737 2738 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", 2739 paddress (resume_gdbarch, actual_pc)); 2740 read_memory (actual_pc, buf, sizeof (buf)); 2741 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); 2742 } 2743 2744 if (tp->control.may_range_step) 2745 { 2746 /* If we're resuming a thread with the PC out of the step 2747 range, then we're doing some nested/finer run control 2748 operation, like stepping the thread out of the dynamic 2749 linker or the displaced stepping scratch pad. We 2750 shouldn't have allowed a range step then. */ 2751 gdb_assert (pc_in_thread_step_range (pc, tp)); 2752 } 2753 2754 do_target_resume (resume_ptid, step, sig); 2755 tp->resumed = 1; 2756 discard_cleanups (old_cleanups); 2757 } 2758 2759 /* Proceeding. */ 2760 2761 /* See infrun.h. */ 2762 2763 /* Counter that tracks number of user visible stops. This can be used 2764 to tell whether a command has proceeded the inferior past the 2765 current location. This allows e.g., inferior function calls in 2766 breakpoint commands to not interrupt the command list. When the 2767 call finishes successfully, the inferior is standing at the same 2768 breakpoint as if nothing happened (and so we don't call 2769 normal_stop). */ 2770 static ULONGEST current_stop_id; 2771 2772 /* See infrun.h. */ 2773 2774 ULONGEST 2775 get_stop_id (void) 2776 { 2777 return current_stop_id; 2778 } 2779 2780 /* Called when we report a user visible stop. */ 2781 2782 static void 2783 new_stop_id (void) 2784 { 2785 current_stop_id++; 2786 } 2787 2788 /* Clear out all variables saying what to do when inferior is continued. 2789 First do this, then set the ones you want, then call `proceed'. */ 2790 2791 static void 2792 clear_proceed_status_thread (struct thread_info *tp) 2793 { 2794 if (debug_infrun) 2795 fprintf_unfiltered (gdb_stdlog, 2796 "infrun: clear_proceed_status_thread (%s)\n", 2797 target_pid_to_str (tp->ptid)); 2798 2799 /* If we're starting a new sequence, then the previous finished 2800 single-step is no longer relevant. */ 2801 if (tp->suspend.waitstatus_pending_p) 2802 { 2803 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP) 2804 { 2805 if (debug_infrun) 2806 fprintf_unfiltered (gdb_stdlog, 2807 "infrun: clear_proceed_status: pending " 2808 "event of %s was a finished step. " 2809 "Discarding.\n", 2810 target_pid_to_str (tp->ptid)); 2811 2812 tp->suspend.waitstatus_pending_p = 0; 2813 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; 2814 } 2815 else if (debug_infrun) 2816 { 2817 char *statstr; 2818 2819 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus); 2820 fprintf_unfiltered (gdb_stdlog, 2821 "infrun: clear_proceed_status_thread: thread %s " 2822 "has pending wait status %s " 2823 "(currently_stepping=%d).\n", 2824 target_pid_to_str (tp->ptid), statstr, 2825 currently_stepping (tp)); 2826 xfree (statstr); 2827 } 2828 } 2829 2830 /* If this signal should not be seen by program, give it zero. 2831 Used for debugging signals. */ 2832 if (!signal_pass_state (tp->suspend.stop_signal)) 2833 tp->suspend.stop_signal = GDB_SIGNAL_0; 2834 2835 thread_fsm_delete (tp->thread_fsm); 2836 tp->thread_fsm = NULL; 2837 2838 tp->control.trap_expected = 0; 2839 tp->control.step_range_start = 0; 2840 tp->control.step_range_end = 0; 2841 tp->control.may_range_step = 0; 2842 tp->control.step_frame_id = null_frame_id; 2843 tp->control.step_stack_frame_id = null_frame_id; 2844 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE; 2845 tp->control.step_start_function = NULL; 2846 tp->stop_requested = 0; 2847 2848 tp->control.stop_step = 0; 2849 2850 tp->control.proceed_to_finish = 0; 2851 2852 tp->control.stepping_command = 0; 2853 2854 /* Discard any remaining commands or status from previous stop. */ 2855 bpstat_clear (&tp->control.stop_bpstat); 2856 } 2857 2858 void 2859 clear_proceed_status (int step) 2860 { 2861 /* With scheduler-locking replay, stop replaying other threads if we're 2862 not replaying the user-visible resume ptid. 2863 2864 This is a convenience feature to not require the user to explicitly 2865 stop replaying the other threads. We're assuming that the user's 2866 intent is to resume tracing the recorded process. */ 2867 if (!non_stop && scheduler_mode == schedlock_replay 2868 && target_record_is_replaying (minus_one_ptid) 2869 && !target_record_will_replay (user_visible_resume_ptid (step), 2870 execution_direction)) 2871 target_record_stop_replaying (); 2872 2873 if (!non_stop) 2874 { 2875 struct thread_info *tp; 2876 ptid_t resume_ptid; 2877 2878 resume_ptid = user_visible_resume_ptid (step); 2879 2880 /* In all-stop mode, delete the per-thread status of all threads 2881 we're about to resume, implicitly and explicitly. */ 2882 ALL_NON_EXITED_THREADS (tp) 2883 { 2884 if (!ptid_match (tp->ptid, resume_ptid)) 2885 continue; 2886 clear_proceed_status_thread (tp); 2887 } 2888 } 2889 2890 if (!ptid_equal (inferior_ptid, null_ptid)) 2891 { 2892 struct inferior *inferior; 2893 2894 if (non_stop) 2895 { 2896 /* If in non-stop mode, only delete the per-thread status of 2897 the current thread. */ 2898 clear_proceed_status_thread (inferior_thread ()); 2899 } 2900 2901 inferior = current_inferior (); 2902 inferior->control.stop_soon = NO_STOP_QUIETLY; 2903 } 2904 2905 observer_notify_about_to_proceed (); 2906 } 2907 2908 /* Returns true if TP is still stopped at a breakpoint that needs 2909 stepping-over in order to make progress. If the breakpoint is gone 2910 meanwhile, we can skip the whole step-over dance. */ 2911 2912 static int 2913 thread_still_needs_step_over_bp (struct thread_info *tp) 2914 { 2915 if (tp->stepping_over_breakpoint) 2916 { 2917 struct regcache *regcache = get_thread_regcache (tp->ptid); 2918 2919 if (breakpoint_here_p (get_regcache_aspace (regcache), 2920 regcache_read_pc (regcache)) 2921 == ordinary_breakpoint_here) 2922 return 1; 2923 2924 tp->stepping_over_breakpoint = 0; 2925 } 2926 2927 return 0; 2928 } 2929 2930 /* Check whether thread TP still needs to start a step-over in order 2931 to make progress when resumed. Returns an bitwise or of enum 2932 step_over_what bits, indicating what needs to be stepped over. */ 2933 2934 static step_over_what 2935 thread_still_needs_step_over (struct thread_info *tp) 2936 { 2937 step_over_what what = 0; 2938 2939 if (thread_still_needs_step_over_bp (tp)) 2940 what |= STEP_OVER_BREAKPOINT; 2941 2942 if (tp->stepping_over_watchpoint 2943 && !target_have_steppable_watchpoint) 2944 what |= STEP_OVER_WATCHPOINT; 2945 2946 return what; 2947 } 2948 2949 /* Returns true if scheduler locking applies. STEP indicates whether 2950 we're about to do a step/next-like command to a thread. */ 2951 2952 static int 2953 schedlock_applies (struct thread_info *tp) 2954 { 2955 return (scheduler_mode == schedlock_on 2956 || (scheduler_mode == schedlock_step 2957 && tp->control.stepping_command) 2958 || (scheduler_mode == schedlock_replay 2959 && target_record_will_replay (minus_one_ptid, 2960 execution_direction))); 2961 } 2962 2963 /* Basic routine for continuing the program in various fashions. 2964 2965 ADDR is the address to resume at, or -1 for resume where stopped. 2966 SIGGNAL is the signal to give it, or 0 for none, 2967 or -1 for act according to how it stopped. 2968 STEP is nonzero if should trap after one instruction. 2969 -1 means return after that and print nothing. 2970 You should probably set various step_... variables 2971 before calling here, if you are stepping. 2972 2973 You should call clear_proceed_status before calling proceed. */ 2974 2975 void 2976 proceed (CORE_ADDR addr, enum gdb_signal siggnal) 2977 { 2978 struct regcache *regcache; 2979 struct gdbarch *gdbarch; 2980 struct thread_info *tp; 2981 CORE_ADDR pc; 2982 struct address_space *aspace; 2983 ptid_t resume_ptid; 2984 struct execution_control_state ecss; 2985 struct execution_control_state *ecs = &ecss; 2986 struct cleanup *old_chain; 2987 int started; 2988 2989 /* If we're stopped at a fork/vfork, follow the branch set by the 2990 "set follow-fork-mode" command; otherwise, we'll just proceed 2991 resuming the current thread. */ 2992 if (!follow_fork ()) 2993 { 2994 /* The target for some reason decided not to resume. */ 2995 normal_stop (); 2996 if (target_can_async_p ()) 2997 inferior_event_handler (INF_EXEC_COMPLETE, NULL); 2998 return; 2999 } 3000 3001 /* We'll update this if & when we switch to a new thread. */ 3002 previous_inferior_ptid = inferior_ptid; 3003 3004 regcache = get_current_regcache (); 3005 gdbarch = get_regcache_arch (regcache); 3006 aspace = get_regcache_aspace (regcache); 3007 pc = regcache_read_pc (regcache); 3008 tp = inferior_thread (); 3009 3010 /* Fill in with reasonable starting values. */ 3011 init_thread_stepping_state (tp); 3012 3013 gdb_assert (!thread_is_in_step_over_chain (tp)); 3014 3015 if (addr == (CORE_ADDR) -1) 3016 { 3017 if (pc == stop_pc 3018 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here 3019 && execution_direction != EXEC_REVERSE) 3020 /* There is a breakpoint at the address we will resume at, 3021 step one instruction before inserting breakpoints so that 3022 we do not stop right away (and report a second hit at this 3023 breakpoint). 3024 3025 Note, we don't do this in reverse, because we won't 3026 actually be executing the breakpoint insn anyway. 3027 We'll be (un-)executing the previous instruction. */ 3028 tp->stepping_over_breakpoint = 1; 3029 else if (gdbarch_single_step_through_delay_p (gdbarch) 3030 && gdbarch_single_step_through_delay (gdbarch, 3031 get_current_frame ())) 3032 /* We stepped onto an instruction that needs to be stepped 3033 again before re-inserting the breakpoint, do so. */ 3034 tp->stepping_over_breakpoint = 1; 3035 } 3036 else 3037 { 3038 regcache_write_pc (regcache, addr); 3039 } 3040 3041 if (siggnal != GDB_SIGNAL_DEFAULT) 3042 tp->suspend.stop_signal = siggnal; 3043 3044 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command); 3045 3046 /* If an exception is thrown from this point on, make sure to 3047 propagate GDB's knowledge of the executing state to the 3048 frontend/user running state. */ 3049 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid); 3050 3051 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer 3052 threads (e.g., we might need to set threads stepping over 3053 breakpoints first), from the user/frontend's point of view, all 3054 threads in RESUME_PTID are now running. Unless we're calling an 3055 inferior function, as in that case we pretend the inferior 3056 doesn't run at all. */ 3057 if (!tp->control.in_infcall) 3058 set_running (resume_ptid, 1); 3059 3060 if (debug_infrun) 3061 fprintf_unfiltered (gdb_stdlog, 3062 "infrun: proceed (addr=%s, signal=%s)\n", 3063 paddress (gdbarch, addr), 3064 gdb_signal_to_symbol_string (siggnal)); 3065 3066 annotate_starting (); 3067 3068 /* Make sure that output from GDB appears before output from the 3069 inferior. */ 3070 gdb_flush (gdb_stdout); 3071 3072 /* In a multi-threaded task we may select another thread and 3073 then continue or step. 3074 3075 But if a thread that we're resuming had stopped at a breakpoint, 3076 it will immediately cause another breakpoint stop without any 3077 execution (i.e. it will report a breakpoint hit incorrectly). So 3078 we must step over it first. 3079 3080 Look for threads other than the current (TP) that reported a 3081 breakpoint hit and haven't been resumed yet since. */ 3082 3083 /* If scheduler locking applies, we can avoid iterating over all 3084 threads. */ 3085 if (!non_stop && !schedlock_applies (tp)) 3086 { 3087 struct thread_info *current = tp; 3088 3089 ALL_NON_EXITED_THREADS (tp) 3090 { 3091 /* Ignore the current thread here. It's handled 3092 afterwards. */ 3093 if (tp == current) 3094 continue; 3095 3096 /* Ignore threads of processes we're not resuming. */ 3097 if (!ptid_match (tp->ptid, resume_ptid)) 3098 continue; 3099 3100 if (!thread_still_needs_step_over (tp)) 3101 continue; 3102 3103 gdb_assert (!thread_is_in_step_over_chain (tp)); 3104 3105 if (debug_infrun) 3106 fprintf_unfiltered (gdb_stdlog, 3107 "infrun: need to step-over [%s] first\n", 3108 target_pid_to_str (tp->ptid)); 3109 3110 thread_step_over_chain_enqueue (tp); 3111 } 3112 3113 tp = current; 3114 } 3115 3116 /* Enqueue the current thread last, so that we move all other 3117 threads over their breakpoints first. */ 3118 if (tp->stepping_over_breakpoint) 3119 thread_step_over_chain_enqueue (tp); 3120 3121 /* If the thread isn't started, we'll still need to set its prev_pc, 3122 so that switch_back_to_stepped_thread knows the thread hasn't 3123 advanced. Must do this before resuming any thread, as in 3124 all-stop/remote, once we resume we can't send any other packet 3125 until the target stops again. */ 3126 tp->prev_pc = regcache_read_pc (regcache); 3127 3128 started = start_step_over (); 3129 3130 if (step_over_info_valid_p ()) 3131 { 3132 /* Either this thread started a new in-line step over, or some 3133 other thread was already doing one. In either case, don't 3134 resume anything else until the step-over is finished. */ 3135 } 3136 else if (started && !target_is_non_stop_p ()) 3137 { 3138 /* A new displaced stepping sequence was started. In all-stop, 3139 we can't talk to the target anymore until it next stops. */ 3140 } 3141 else if (!non_stop && target_is_non_stop_p ()) 3142 { 3143 /* In all-stop, but the target is always in non-stop mode. 3144 Start all other threads that are implicitly resumed too. */ 3145 ALL_NON_EXITED_THREADS (tp) 3146 { 3147 /* Ignore threads of processes we're not resuming. */ 3148 if (!ptid_match (tp->ptid, resume_ptid)) 3149 continue; 3150 3151 if (tp->resumed) 3152 { 3153 if (debug_infrun) 3154 fprintf_unfiltered (gdb_stdlog, 3155 "infrun: proceed: [%s] resumed\n", 3156 target_pid_to_str (tp->ptid)); 3157 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); 3158 continue; 3159 } 3160 3161 if (thread_is_in_step_over_chain (tp)) 3162 { 3163 if (debug_infrun) 3164 fprintf_unfiltered (gdb_stdlog, 3165 "infrun: proceed: [%s] needs step-over\n", 3166 target_pid_to_str (tp->ptid)); 3167 continue; 3168 } 3169 3170 if (debug_infrun) 3171 fprintf_unfiltered (gdb_stdlog, 3172 "infrun: proceed: resuming %s\n", 3173 target_pid_to_str (tp->ptid)); 3174 3175 reset_ecs (ecs, tp); 3176 switch_to_thread (tp->ptid); 3177 keep_going_pass_signal (ecs); 3178 if (!ecs->wait_some_more) 3179 error (_("Command aborted.")); 3180 } 3181 } 3182 else if (!tp->resumed && !thread_is_in_step_over_chain (tp)) 3183 { 3184 /* The thread wasn't started, and isn't queued, run it now. */ 3185 reset_ecs (ecs, tp); 3186 switch_to_thread (tp->ptid); 3187 keep_going_pass_signal (ecs); 3188 if (!ecs->wait_some_more) 3189 error (_("Command aborted.")); 3190 } 3191 3192 discard_cleanups (old_chain); 3193 3194 /* Tell the event loop to wait for it to stop. If the target 3195 supports asynchronous execution, it'll do this from within 3196 target_resume. */ 3197 if (!target_can_async_p ()) 3198 mark_async_event_handler (infrun_async_inferior_event_token); 3199 } 3200 3201 3202 /* Start remote-debugging of a machine over a serial link. */ 3203 3204 void 3205 start_remote (int from_tty) 3206 { 3207 struct inferior *inferior; 3208 3209 inferior = current_inferior (); 3210 inferior->control.stop_soon = STOP_QUIETLY_REMOTE; 3211 3212 /* Always go on waiting for the target, regardless of the mode. */ 3213 /* FIXME: cagney/1999-09-23: At present it isn't possible to 3214 indicate to wait_for_inferior that a target should timeout if 3215 nothing is returned (instead of just blocking). Because of this, 3216 targets expecting an immediate response need to, internally, set 3217 things up so that the target_wait() is forced to eventually 3218 timeout. */ 3219 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to 3220 differentiate to its caller what the state of the target is after 3221 the initial open has been performed. Here we're assuming that 3222 the target has stopped. It should be possible to eventually have 3223 target_open() return to the caller an indication that the target 3224 is currently running and GDB state should be set to the same as 3225 for an async run. */ 3226 wait_for_inferior (); 3227 3228 /* Now that the inferior has stopped, do any bookkeeping like 3229 loading shared libraries. We want to do this before normal_stop, 3230 so that the displayed frame is up to date. */ 3231 post_create_inferior (¤t_target, from_tty); 3232 3233 normal_stop (); 3234 } 3235 3236 /* Initialize static vars when a new inferior begins. */ 3237 3238 void 3239 init_wait_for_inferior (void) 3240 { 3241 /* These are meaningless until the first time through wait_for_inferior. */ 3242 3243 breakpoint_init_inferior (inf_starting); 3244 3245 clear_proceed_status (0); 3246 3247 target_last_wait_ptid = minus_one_ptid; 3248 3249 previous_inferior_ptid = inferior_ptid; 3250 3251 /* Discard any skipped inlined frames. */ 3252 clear_inline_frame_state (minus_one_ptid); 3253 } 3254 3255 3256 3257 static void handle_inferior_event (struct execution_control_state *ecs); 3258 3259 static void handle_step_into_function (struct gdbarch *gdbarch, 3260 struct execution_control_state *ecs); 3261 static void handle_step_into_function_backward (struct gdbarch *gdbarch, 3262 struct execution_control_state *ecs); 3263 static void handle_signal_stop (struct execution_control_state *ecs); 3264 static void check_exception_resume (struct execution_control_state *, 3265 struct frame_info *); 3266 3267 static void end_stepping_range (struct execution_control_state *ecs); 3268 static void stop_waiting (struct execution_control_state *ecs); 3269 static void keep_going (struct execution_control_state *ecs); 3270 static void process_event_stop_test (struct execution_control_state *ecs); 3271 static int switch_back_to_stepped_thread (struct execution_control_state *ecs); 3272 3273 /* Callback for iterate over threads. If the thread is stopped, but 3274 the user/frontend doesn't know about that yet, go through 3275 normal_stop, as if the thread had just stopped now. ARG points at 3276 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If 3277 ptid_is_pid(PTID) is true, applies to all threads of the process 3278 pointed at by PTID. Otherwise, apply only to the thread pointed by 3279 PTID. */ 3280 3281 static int 3282 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg) 3283 { 3284 ptid_t ptid = * (ptid_t *) arg; 3285 3286 if ((ptid_equal (info->ptid, ptid) 3287 || ptid_equal (minus_one_ptid, ptid) 3288 || (ptid_is_pid (ptid) 3289 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid))) 3290 && is_running (info->ptid) 3291 && !is_executing (info->ptid)) 3292 { 3293 struct cleanup *old_chain; 3294 struct execution_control_state ecss; 3295 struct execution_control_state *ecs = &ecss; 3296 3297 memset (ecs, 0, sizeof (*ecs)); 3298 3299 old_chain = make_cleanup_restore_current_thread (); 3300 3301 overlay_cache_invalid = 1; 3302 /* Flush target cache before starting to handle each event. 3303 Target was running and cache could be stale. This is just a 3304 heuristic. Running threads may modify target memory, but we 3305 don't get any event. */ 3306 target_dcache_invalidate (); 3307 3308 /* Go through handle_inferior_event/normal_stop, so we always 3309 have consistent output as if the stop event had been 3310 reported. */ 3311 ecs->ptid = info->ptid; 3312 ecs->event_thread = info; 3313 ecs->ws.kind = TARGET_WAITKIND_STOPPED; 3314 ecs->ws.value.sig = GDB_SIGNAL_0; 3315 3316 handle_inferior_event (ecs); 3317 3318 if (!ecs->wait_some_more) 3319 { 3320 /* Cancel any running execution command. */ 3321 thread_cancel_execution_command (info); 3322 3323 normal_stop (); 3324 } 3325 3326 do_cleanups (old_chain); 3327 } 3328 3329 return 0; 3330 } 3331 3332 /* This function is attached as a "thread_stop_requested" observer. 3333 Cleanup local state that assumed the PTID was to be resumed, and 3334 report the stop to the frontend. */ 3335 3336 static void 3337 infrun_thread_stop_requested (ptid_t ptid) 3338 { 3339 struct thread_info *tp; 3340 3341 /* PTID was requested to stop. Remove matching threads from the 3342 step-over queue, so we don't try to resume them 3343 automatically. */ 3344 ALL_NON_EXITED_THREADS (tp) 3345 if (ptid_match (tp->ptid, ptid)) 3346 { 3347 if (thread_is_in_step_over_chain (tp)) 3348 thread_step_over_chain_remove (tp); 3349 } 3350 3351 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid); 3352 } 3353 3354 static void 3355 infrun_thread_thread_exit (struct thread_info *tp, int silent) 3356 { 3357 if (ptid_equal (target_last_wait_ptid, tp->ptid)) 3358 nullify_last_target_wait_ptid (); 3359 } 3360 3361 /* Delete the step resume, single-step and longjmp/exception resume 3362 breakpoints of TP. */ 3363 3364 static void 3365 delete_thread_infrun_breakpoints (struct thread_info *tp) 3366 { 3367 delete_step_resume_breakpoint (tp); 3368 delete_exception_resume_breakpoint (tp); 3369 delete_single_step_breakpoints (tp); 3370 } 3371 3372 /* If the target still has execution, call FUNC for each thread that 3373 just stopped. In all-stop, that's all the non-exited threads; in 3374 non-stop, that's the current thread, only. */ 3375 3376 typedef void (*for_each_just_stopped_thread_callback_func) 3377 (struct thread_info *tp); 3378 3379 static void 3380 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func) 3381 { 3382 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid)) 3383 return; 3384 3385 if (target_is_non_stop_p ()) 3386 { 3387 /* If in non-stop mode, only the current thread stopped. */ 3388 func (inferior_thread ()); 3389 } 3390 else 3391 { 3392 struct thread_info *tp; 3393 3394 /* In all-stop mode, all threads have stopped. */ 3395 ALL_NON_EXITED_THREADS (tp) 3396 { 3397 func (tp); 3398 } 3399 } 3400 } 3401 3402 /* Delete the step resume and longjmp/exception resume breakpoints of 3403 the threads that just stopped. */ 3404 3405 static void 3406 delete_just_stopped_threads_infrun_breakpoints (void) 3407 { 3408 for_each_just_stopped_thread (delete_thread_infrun_breakpoints); 3409 } 3410 3411 /* Delete the single-step breakpoints of the threads that just 3412 stopped. */ 3413 3414 static void 3415 delete_just_stopped_threads_single_step_breakpoints (void) 3416 { 3417 for_each_just_stopped_thread (delete_single_step_breakpoints); 3418 } 3419 3420 /* A cleanup wrapper. */ 3421 3422 static void 3423 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg) 3424 { 3425 delete_just_stopped_threads_infrun_breakpoints (); 3426 } 3427 3428 /* See infrun.h. */ 3429 3430 void 3431 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid, 3432 const struct target_waitstatus *ws) 3433 { 3434 char *status_string = target_waitstatus_to_string (ws); 3435 struct ui_file *tmp_stream = mem_fileopen (); 3436 char *text; 3437 3438 /* The text is split over several lines because it was getting too long. 3439 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still 3440 output as a unit; we want only one timestamp printed if debug_timestamp 3441 is set. */ 3442 3443 fprintf_unfiltered (tmp_stream, 3444 "infrun: target_wait (%d.%ld.%ld", 3445 ptid_get_pid (waiton_ptid), 3446 ptid_get_lwp (waiton_ptid), 3447 ptid_get_tid (waiton_ptid)); 3448 if (ptid_get_pid (waiton_ptid) != -1) 3449 fprintf_unfiltered (tmp_stream, 3450 " [%s]", target_pid_to_str (waiton_ptid)); 3451 fprintf_unfiltered (tmp_stream, ", status) =\n"); 3452 fprintf_unfiltered (tmp_stream, 3453 "infrun: %d.%ld.%ld [%s],\n", 3454 ptid_get_pid (result_ptid), 3455 ptid_get_lwp (result_ptid), 3456 ptid_get_tid (result_ptid), 3457 target_pid_to_str (result_ptid)); 3458 fprintf_unfiltered (tmp_stream, 3459 "infrun: %s\n", 3460 status_string); 3461 3462 text = ui_file_xstrdup (tmp_stream, NULL); 3463 3464 /* This uses %s in part to handle %'s in the text, but also to avoid 3465 a gcc error: the format attribute requires a string literal. */ 3466 fprintf_unfiltered (gdb_stdlog, "%s", text); 3467 3468 xfree (status_string); 3469 xfree (text); 3470 ui_file_delete (tmp_stream); 3471 } 3472 3473 /* Select a thread at random, out of those which are resumed and have 3474 had events. */ 3475 3476 static struct thread_info * 3477 random_pending_event_thread (ptid_t waiton_ptid) 3478 { 3479 struct thread_info *event_tp; 3480 int num_events = 0; 3481 int random_selector; 3482 3483 /* First see how many events we have. Count only resumed threads 3484 that have an event pending. */ 3485 ALL_NON_EXITED_THREADS (event_tp) 3486 if (ptid_match (event_tp->ptid, waiton_ptid) 3487 && event_tp->resumed 3488 && event_tp->suspend.waitstatus_pending_p) 3489 num_events++; 3490 3491 if (num_events == 0) 3492 return NULL; 3493 3494 /* Now randomly pick a thread out of those that have had events. */ 3495 random_selector = (int) 3496 ((num_events * (double) rand ()) / (RAND_MAX + 1.0)); 3497 3498 if (debug_infrun && num_events > 1) 3499 fprintf_unfiltered (gdb_stdlog, 3500 "infrun: Found %d events, selecting #%d\n", 3501 num_events, random_selector); 3502 3503 /* Select the Nth thread that has had an event. */ 3504 ALL_NON_EXITED_THREADS (event_tp) 3505 if (ptid_match (event_tp->ptid, waiton_ptid) 3506 && event_tp->resumed 3507 && event_tp->suspend.waitstatus_pending_p) 3508 if (random_selector-- == 0) 3509 break; 3510 3511 return event_tp; 3512 } 3513 3514 /* Wrapper for target_wait that first checks whether threads have 3515 pending statuses to report before actually asking the target for 3516 more events. */ 3517 3518 static ptid_t 3519 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options) 3520 { 3521 ptid_t event_ptid; 3522 struct thread_info *tp; 3523 3524 /* First check if there is a resumed thread with a wait status 3525 pending. */ 3526 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid)) 3527 { 3528 tp = random_pending_event_thread (ptid); 3529 } 3530 else 3531 { 3532 if (debug_infrun) 3533 fprintf_unfiltered (gdb_stdlog, 3534 "infrun: Waiting for specific thread %s.\n", 3535 target_pid_to_str (ptid)); 3536 3537 /* We have a specific thread to check. */ 3538 tp = find_thread_ptid (ptid); 3539 gdb_assert (tp != NULL); 3540 if (!tp->suspend.waitstatus_pending_p) 3541 tp = NULL; 3542 } 3543 3544 if (tp != NULL 3545 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 3546 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)) 3547 { 3548 struct regcache *regcache = get_thread_regcache (tp->ptid); 3549 struct gdbarch *gdbarch = get_regcache_arch (regcache); 3550 CORE_ADDR pc; 3551 int discard = 0; 3552 3553 pc = regcache_read_pc (regcache); 3554 3555 if (pc != tp->suspend.stop_pc) 3556 { 3557 if (debug_infrun) 3558 fprintf_unfiltered (gdb_stdlog, 3559 "infrun: PC of %s changed. was=%s, now=%s\n", 3560 target_pid_to_str (tp->ptid), 3561 paddress (gdbarch, tp->prev_pc), 3562 paddress (gdbarch, pc)); 3563 discard = 1; 3564 } 3565 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc)) 3566 { 3567 if (debug_infrun) 3568 fprintf_unfiltered (gdb_stdlog, 3569 "infrun: previous breakpoint of %s, at %s gone\n", 3570 target_pid_to_str (tp->ptid), 3571 paddress (gdbarch, pc)); 3572 3573 discard = 1; 3574 } 3575 3576 if (discard) 3577 { 3578 if (debug_infrun) 3579 fprintf_unfiltered (gdb_stdlog, 3580 "infrun: pending event of %s cancelled.\n", 3581 target_pid_to_str (tp->ptid)); 3582 3583 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS; 3584 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; 3585 } 3586 } 3587 3588 if (tp != NULL) 3589 { 3590 if (debug_infrun) 3591 { 3592 char *statstr; 3593 3594 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus); 3595 fprintf_unfiltered (gdb_stdlog, 3596 "infrun: Using pending wait status %s for %s.\n", 3597 statstr, 3598 target_pid_to_str (tp->ptid)); 3599 xfree (statstr); 3600 } 3601 3602 /* Now that we've selected our final event LWP, un-adjust its PC 3603 if it was a software breakpoint (and the target doesn't 3604 always adjust the PC itself). */ 3605 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 3606 && !target_supports_stopped_by_sw_breakpoint ()) 3607 { 3608 struct regcache *regcache; 3609 struct gdbarch *gdbarch; 3610 int decr_pc; 3611 3612 regcache = get_thread_regcache (tp->ptid); 3613 gdbarch = get_regcache_arch (regcache); 3614 3615 decr_pc = gdbarch_decr_pc_after_break (gdbarch); 3616 if (decr_pc != 0) 3617 { 3618 CORE_ADDR pc; 3619 3620 pc = regcache_read_pc (regcache); 3621 regcache_write_pc (regcache, pc + decr_pc); 3622 } 3623 } 3624 3625 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; 3626 *status = tp->suspend.waitstatus; 3627 tp->suspend.waitstatus_pending_p = 0; 3628 3629 /* Wake up the event loop again, until all pending events are 3630 processed. */ 3631 if (target_is_async_p ()) 3632 mark_async_event_handler (infrun_async_inferior_event_token); 3633 return tp->ptid; 3634 } 3635 3636 /* But if we don't find one, we'll have to wait. */ 3637 3638 if (deprecated_target_wait_hook) 3639 event_ptid = deprecated_target_wait_hook (ptid, status, options); 3640 else 3641 event_ptid = target_wait (ptid, status, options); 3642 3643 return event_ptid; 3644 } 3645 3646 /* Prepare and stabilize the inferior for detaching it. E.g., 3647 detaching while a thread is displaced stepping is a recipe for 3648 crashing it, as nothing would readjust the PC out of the scratch 3649 pad. */ 3650 3651 void 3652 prepare_for_detach (void) 3653 { 3654 struct inferior *inf = current_inferior (); 3655 ptid_t pid_ptid = pid_to_ptid (inf->pid); 3656 struct cleanup *old_chain_1; 3657 struct displaced_step_inferior_state *displaced; 3658 3659 displaced = get_displaced_stepping_state (inf->pid); 3660 3661 /* Is any thread of this process displaced stepping? If not, 3662 there's nothing else to do. */ 3663 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid)) 3664 return; 3665 3666 if (debug_infrun) 3667 fprintf_unfiltered (gdb_stdlog, 3668 "displaced-stepping in-process while detaching"); 3669 3670 old_chain_1 = make_cleanup_restore_integer (&inf->detaching); 3671 inf->detaching = 1; 3672 3673 while (!ptid_equal (displaced->step_ptid, null_ptid)) 3674 { 3675 struct cleanup *old_chain_2; 3676 struct execution_control_state ecss; 3677 struct execution_control_state *ecs; 3678 3679 ecs = &ecss; 3680 memset (ecs, 0, sizeof (*ecs)); 3681 3682 overlay_cache_invalid = 1; 3683 /* Flush target cache before starting to handle each event. 3684 Target was running and cache could be stale. This is just a 3685 heuristic. Running threads may modify target memory, but we 3686 don't get any event. */ 3687 target_dcache_invalidate (); 3688 3689 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0); 3690 3691 if (debug_infrun) 3692 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws); 3693 3694 /* If an error happens while handling the event, propagate GDB's 3695 knowledge of the executing state to the frontend/user running 3696 state. */ 3697 old_chain_2 = make_cleanup (finish_thread_state_cleanup, 3698 &minus_one_ptid); 3699 3700 /* Now figure out what to do with the result of the result. */ 3701 handle_inferior_event (ecs); 3702 3703 /* No error, don't finish the state yet. */ 3704 discard_cleanups (old_chain_2); 3705 3706 /* Breakpoints and watchpoints are not installed on the target 3707 at this point, and signals are passed directly to the 3708 inferior, so this must mean the process is gone. */ 3709 if (!ecs->wait_some_more) 3710 { 3711 discard_cleanups (old_chain_1); 3712 error (_("Program exited while detaching")); 3713 } 3714 } 3715 3716 discard_cleanups (old_chain_1); 3717 } 3718 3719 /* Wait for control to return from inferior to debugger. 3720 3721 If inferior gets a signal, we may decide to start it up again 3722 instead of returning. That is why there is a loop in this function. 3723 When this function actually returns it means the inferior 3724 should be left stopped and GDB should read more commands. */ 3725 3726 void 3727 wait_for_inferior (void) 3728 { 3729 struct cleanup *old_cleanups; 3730 struct cleanup *thread_state_chain; 3731 3732 if (debug_infrun) 3733 fprintf_unfiltered 3734 (gdb_stdlog, "infrun: wait_for_inferior ()\n"); 3735 3736 old_cleanups 3737 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, 3738 NULL); 3739 3740 /* If an error happens while handling the event, propagate GDB's 3741 knowledge of the executing state to the frontend/user running 3742 state. */ 3743 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); 3744 3745 while (1) 3746 { 3747 struct execution_control_state ecss; 3748 struct execution_control_state *ecs = &ecss; 3749 ptid_t waiton_ptid = minus_one_ptid; 3750 3751 memset (ecs, 0, sizeof (*ecs)); 3752 3753 overlay_cache_invalid = 1; 3754 3755 /* Flush target cache before starting to handle each event. 3756 Target was running and cache could be stale. This is just a 3757 heuristic. Running threads may modify target memory, but we 3758 don't get any event. */ 3759 target_dcache_invalidate (); 3760 3761 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0); 3762 3763 if (debug_infrun) 3764 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); 3765 3766 /* Now figure out what to do with the result of the result. */ 3767 handle_inferior_event (ecs); 3768 3769 if (!ecs->wait_some_more) 3770 break; 3771 } 3772 3773 /* No error, don't finish the state yet. */ 3774 discard_cleanups (thread_state_chain); 3775 3776 do_cleanups (old_cleanups); 3777 } 3778 3779 /* Cleanup that reinstalls the readline callback handler, if the 3780 target is running in the background. If while handling the target 3781 event something triggered a secondary prompt, like e.g., a 3782 pagination prompt, we'll have removed the callback handler (see 3783 gdb_readline_wrapper_line). Need to do this as we go back to the 3784 event loop, ready to process further input. Note this has no 3785 effect if the handler hasn't actually been removed, because calling 3786 rl_callback_handler_install resets the line buffer, thus losing 3787 input. */ 3788 3789 static void 3790 reinstall_readline_callback_handler_cleanup (void *arg) 3791 { 3792 struct ui *ui = current_ui; 3793 3794 if (!ui->async) 3795 { 3796 /* We're not going back to the top level event loop yet. Don't 3797 install the readline callback, as it'd prep the terminal, 3798 readline-style (raw, noecho) (e.g., --batch). We'll install 3799 it the next time the prompt is displayed, when we're ready 3800 for input. */ 3801 return; 3802 } 3803 3804 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED) 3805 gdb_rl_callback_handler_reinstall (); 3806 } 3807 3808 /* Clean up the FSMs of threads that are now stopped. In non-stop, 3809 that's just the event thread. In all-stop, that's all threads. */ 3810 3811 static void 3812 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs) 3813 { 3814 struct thread_info *thr = ecs->event_thread; 3815 3816 if (thr != NULL && thr->thread_fsm != NULL) 3817 thread_fsm_clean_up (thr->thread_fsm, thr); 3818 3819 if (!non_stop) 3820 { 3821 ALL_NON_EXITED_THREADS (thr) 3822 { 3823 if (thr->thread_fsm == NULL) 3824 continue; 3825 if (thr == ecs->event_thread) 3826 continue; 3827 3828 switch_to_thread (thr->ptid); 3829 thread_fsm_clean_up (thr->thread_fsm, thr); 3830 } 3831 3832 if (ecs->event_thread != NULL) 3833 switch_to_thread (ecs->event_thread->ptid); 3834 } 3835 } 3836 3837 /* Helper for all_uis_check_sync_execution_done that works on the 3838 current UI. */ 3839 3840 static void 3841 check_curr_ui_sync_execution_done (void) 3842 { 3843 struct ui *ui = current_ui; 3844 3845 if (ui->prompt_state == PROMPT_NEEDED 3846 && ui->async 3847 && !gdb_in_secondary_prompt_p (ui)) 3848 { 3849 target_terminal_ours (); 3850 observer_notify_sync_execution_done (); 3851 ui_register_input_event_handler (ui); 3852 } 3853 } 3854 3855 /* See infrun.h. */ 3856 3857 void 3858 all_uis_check_sync_execution_done (void) 3859 { 3860 struct switch_thru_all_uis state; 3861 3862 SWITCH_THRU_ALL_UIS (state) 3863 { 3864 check_curr_ui_sync_execution_done (); 3865 } 3866 } 3867 3868 /* See infrun.h. */ 3869 3870 void 3871 all_uis_on_sync_execution_starting (void) 3872 { 3873 struct switch_thru_all_uis state; 3874 3875 SWITCH_THRU_ALL_UIS (state) 3876 { 3877 if (current_ui->prompt_state == PROMPT_NEEDED) 3878 async_disable_stdin (); 3879 } 3880 } 3881 3882 /* A cleanup that restores the execution direction to the value saved 3883 in *ARG. */ 3884 3885 static void 3886 restore_execution_direction (void *arg) 3887 { 3888 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg; 3889 3890 execution_direction = *save_exec_dir; 3891 } 3892 3893 /* Asynchronous version of wait_for_inferior. It is called by the 3894 event loop whenever a change of state is detected on the file 3895 descriptor corresponding to the target. It can be called more than 3896 once to complete a single execution command. In such cases we need 3897 to keep the state in a global variable ECSS. If it is the last time 3898 that this function is called for a single execution command, then 3899 report to the user that the inferior has stopped, and do the 3900 necessary cleanups. */ 3901 3902 void 3903 fetch_inferior_event (void *client_data) 3904 { 3905 struct execution_control_state ecss; 3906 struct execution_control_state *ecs = &ecss; 3907 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); 3908 struct cleanup *ts_old_chain; 3909 enum exec_direction_kind save_exec_dir = execution_direction; 3910 int cmd_done = 0; 3911 ptid_t waiton_ptid = minus_one_ptid; 3912 3913 memset (ecs, 0, sizeof (*ecs)); 3914 3915 /* Events are always processed with the main UI as current UI. This 3916 way, warnings, debug output, etc. are always consistently sent to 3917 the main console. */ 3918 make_cleanup_restore_current_ui (); 3919 current_ui = main_ui; 3920 3921 /* End up with readline processing input, if necessary. */ 3922 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL); 3923 3924 /* We're handling a live event, so make sure we're doing live 3925 debugging. If we're looking at traceframes while the target is 3926 running, we're going to need to get back to that mode after 3927 handling the event. */ 3928 if (non_stop) 3929 { 3930 make_cleanup_restore_current_traceframe (); 3931 set_current_traceframe (-1); 3932 } 3933 3934 if (non_stop) 3935 /* In non-stop mode, the user/frontend should not notice a thread 3936 switch due to internal events. Make sure we reverse to the 3937 user selected thread and frame after handling the event and 3938 running any breakpoint commands. */ 3939 make_cleanup_restore_current_thread (); 3940 3941 overlay_cache_invalid = 1; 3942 /* Flush target cache before starting to handle each event. Target 3943 was running and cache could be stale. This is just a heuristic. 3944 Running threads may modify target memory, but we don't get any 3945 event. */ 3946 target_dcache_invalidate (); 3947 3948 make_cleanup (restore_execution_direction, &save_exec_dir); 3949 execution_direction = target_execution_direction (); 3950 3951 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 3952 target_can_async_p () ? TARGET_WNOHANG : 0); 3953 3954 if (debug_infrun) 3955 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); 3956 3957 /* If an error happens while handling the event, propagate GDB's 3958 knowledge of the executing state to the frontend/user running 3959 state. */ 3960 if (!target_is_non_stop_p ()) 3961 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); 3962 else 3963 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid); 3964 3965 /* Get executed before make_cleanup_restore_current_thread above to apply 3966 still for the thread which has thrown the exception. */ 3967 make_bpstat_clear_actions_cleanup (); 3968 3969 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL); 3970 3971 /* Now figure out what to do with the result of the result. */ 3972 handle_inferior_event (ecs); 3973 3974 if (!ecs->wait_some_more) 3975 { 3976 struct inferior *inf = find_inferior_ptid (ecs->ptid); 3977 int should_stop = 1; 3978 struct thread_info *thr = ecs->event_thread; 3979 int should_notify_stop = 1; 3980 3981 delete_just_stopped_threads_infrun_breakpoints (); 3982 3983 if (thr != NULL) 3984 { 3985 struct thread_fsm *thread_fsm = thr->thread_fsm; 3986 3987 if (thread_fsm != NULL) 3988 should_stop = thread_fsm_should_stop (thread_fsm, thr); 3989 } 3990 3991 if (!should_stop) 3992 { 3993 keep_going (ecs); 3994 } 3995 else 3996 { 3997 clean_up_just_stopped_threads_fsms (ecs); 3998 3999 if (thr != NULL && thr->thread_fsm != NULL) 4000 { 4001 should_notify_stop 4002 = thread_fsm_should_notify_stop (thr->thread_fsm); 4003 } 4004 4005 if (should_notify_stop) 4006 { 4007 int proceeded = 0; 4008 4009 /* We may not find an inferior if this was a process exit. */ 4010 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY) 4011 proceeded = normal_stop (); 4012 4013 if (!proceeded) 4014 { 4015 inferior_event_handler (INF_EXEC_COMPLETE, NULL); 4016 cmd_done = 1; 4017 } 4018 } 4019 } 4020 } 4021 4022 /* No error, don't finish the thread states yet. */ 4023 discard_cleanups (ts_old_chain); 4024 4025 /* Revert thread and frame. */ 4026 do_cleanups (old_chain); 4027 4028 /* If a UI was in sync execution mode, and now isn't, restore its 4029 prompt (a synchronous execution command has finished, and we're 4030 ready for input). */ 4031 all_uis_check_sync_execution_done (); 4032 4033 if (cmd_done 4034 && exec_done_display_p 4035 && (ptid_equal (inferior_ptid, null_ptid) 4036 || !is_running (inferior_ptid))) 4037 printf_unfiltered (_("completed.\n")); 4038 } 4039 4040 /* Record the frame and location we're currently stepping through. */ 4041 void 4042 set_step_info (struct frame_info *frame, struct symtab_and_line sal) 4043 { 4044 struct thread_info *tp = inferior_thread (); 4045 4046 tp->control.step_frame_id = get_frame_id (frame); 4047 tp->control.step_stack_frame_id = get_stack_frame_id (frame); 4048 4049 tp->current_symtab = sal.symtab; 4050 tp->current_line = sal.line; 4051 } 4052 4053 /* Clear context switchable stepping state. */ 4054 4055 void 4056 init_thread_stepping_state (struct thread_info *tss) 4057 { 4058 tss->stepped_breakpoint = 0; 4059 tss->stepping_over_breakpoint = 0; 4060 tss->stepping_over_watchpoint = 0; 4061 tss->step_after_step_resume_breakpoint = 0; 4062 } 4063 4064 /* Set the cached copy of the last ptid/waitstatus. */ 4065 4066 void 4067 set_last_target_status (ptid_t ptid, struct target_waitstatus status) 4068 { 4069 target_last_wait_ptid = ptid; 4070 target_last_waitstatus = status; 4071 } 4072 4073 /* Return the cached copy of the last pid/waitstatus returned by 4074 target_wait()/deprecated_target_wait_hook(). The data is actually 4075 cached by handle_inferior_event(), which gets called immediately 4076 after target_wait()/deprecated_target_wait_hook(). */ 4077 4078 void 4079 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) 4080 { 4081 *ptidp = target_last_wait_ptid; 4082 *status = target_last_waitstatus; 4083 } 4084 4085 void 4086 nullify_last_target_wait_ptid (void) 4087 { 4088 target_last_wait_ptid = minus_one_ptid; 4089 } 4090 4091 /* Switch thread contexts. */ 4092 4093 static void 4094 context_switch (ptid_t ptid) 4095 { 4096 if (debug_infrun && !ptid_equal (ptid, inferior_ptid)) 4097 { 4098 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ", 4099 target_pid_to_str (inferior_ptid)); 4100 fprintf_unfiltered (gdb_stdlog, "to %s\n", 4101 target_pid_to_str (ptid)); 4102 } 4103 4104 switch_to_thread (ptid); 4105 } 4106 4107 /* If the target can't tell whether we've hit breakpoints 4108 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP, 4109 check whether that could have been caused by a breakpoint. If so, 4110 adjust the PC, per gdbarch_decr_pc_after_break. */ 4111 4112 static void 4113 adjust_pc_after_break (struct thread_info *thread, 4114 struct target_waitstatus *ws) 4115 { 4116 struct regcache *regcache; 4117 struct gdbarch *gdbarch; 4118 struct address_space *aspace; 4119 CORE_ADDR breakpoint_pc, decr_pc; 4120 4121 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If 4122 we aren't, just return. 4123 4124 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not 4125 affected by gdbarch_decr_pc_after_break. Other waitkinds which are 4126 implemented by software breakpoints should be handled through the normal 4127 breakpoint layer. 4128 4129 NOTE drow/2004-01-31: On some targets, breakpoints may generate 4130 different signals (SIGILL or SIGEMT for instance), but it is less 4131 clear where the PC is pointing afterwards. It may not match 4132 gdbarch_decr_pc_after_break. I don't know any specific target that 4133 generates these signals at breakpoints (the code has been in GDB since at 4134 least 1992) so I can not guess how to handle them here. 4135 4136 In earlier versions of GDB, a target with 4137 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a 4138 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any 4139 target with both of these set in GDB history, and it seems unlikely to be 4140 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ 4141 4142 if (ws->kind != TARGET_WAITKIND_STOPPED) 4143 return; 4144 4145 if (ws->value.sig != GDB_SIGNAL_TRAP) 4146 return; 4147 4148 /* In reverse execution, when a breakpoint is hit, the instruction 4149 under it has already been de-executed. The reported PC always 4150 points at the breakpoint address, so adjusting it further would 4151 be wrong. E.g., consider this case on a decr_pc_after_break == 1 4152 architecture: 4153 4154 B1 0x08000000 : INSN1 4155 B2 0x08000001 : INSN2 4156 0x08000002 : INSN3 4157 PC -> 0x08000003 : INSN4 4158 4159 Say you're stopped at 0x08000003 as above. Reverse continuing 4160 from that point should hit B2 as below. Reading the PC when the 4161 SIGTRAP is reported should read 0x08000001 and INSN2 should have 4162 been de-executed already. 4163 4164 B1 0x08000000 : INSN1 4165 B2 PC -> 0x08000001 : INSN2 4166 0x08000002 : INSN3 4167 0x08000003 : INSN4 4168 4169 We can't apply the same logic as for forward execution, because 4170 we would wrongly adjust the PC to 0x08000000, since there's a 4171 breakpoint at PC - 1. We'd then report a hit on B1, although 4172 INSN1 hadn't been de-executed yet. Doing nothing is the correct 4173 behaviour. */ 4174 if (execution_direction == EXEC_REVERSE) 4175 return; 4176 4177 /* If the target can tell whether the thread hit a SW breakpoint, 4178 trust it. Targets that can tell also adjust the PC 4179 themselves. */ 4180 if (target_supports_stopped_by_sw_breakpoint ()) 4181 return; 4182 4183 /* Note that relying on whether a breakpoint is planted in memory to 4184 determine this can fail. E.g,. the breakpoint could have been 4185 removed since. Or the thread could have been told to step an 4186 instruction the size of a breakpoint instruction, and only 4187 _after_ was a breakpoint inserted at its address. */ 4188 4189 /* If this target does not decrement the PC after breakpoints, then 4190 we have nothing to do. */ 4191 regcache = get_thread_regcache (thread->ptid); 4192 gdbarch = get_regcache_arch (regcache); 4193 4194 decr_pc = gdbarch_decr_pc_after_break (gdbarch); 4195 if (decr_pc == 0) 4196 return; 4197 4198 aspace = get_regcache_aspace (regcache); 4199 4200 /* Find the location where (if we've hit a breakpoint) the 4201 breakpoint would be. */ 4202 breakpoint_pc = regcache_read_pc (regcache) - decr_pc; 4203 4204 /* If the target can't tell whether a software breakpoint triggered, 4205 fallback to figuring it out based on breakpoints we think were 4206 inserted in the target, and on whether the thread was stepped or 4207 continued. */ 4208 4209 /* Check whether there actually is a software breakpoint inserted at 4210 that location. 4211 4212 If in non-stop mode, a race condition is possible where we've 4213 removed a breakpoint, but stop events for that breakpoint were 4214 already queued and arrive later. To suppress those spurious 4215 SIGTRAPs, we keep a list of such breakpoint locations for a bit, 4216 and retire them after a number of stop events are reported. Note 4217 this is an heuristic and can thus get confused. The real fix is 4218 to get the "stopped by SW BP and needs adjustment" info out of 4219 the target/kernel (and thus never reach here; see above). */ 4220 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc) 4221 || (target_is_non_stop_p () 4222 && moribund_breakpoint_here_p (aspace, breakpoint_pc))) 4223 { 4224 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL); 4225 4226 if (record_full_is_used ()) 4227 record_full_gdb_operation_disable_set (); 4228 4229 /* When using hardware single-step, a SIGTRAP is reported for both 4230 a completed single-step and a software breakpoint. Need to 4231 differentiate between the two, as the latter needs adjusting 4232 but the former does not. 4233 4234 The SIGTRAP can be due to a completed hardware single-step only if 4235 - we didn't insert software single-step breakpoints 4236 - this thread is currently being stepped 4237 4238 If any of these events did not occur, we must have stopped due 4239 to hitting a software breakpoint, and have to back up to the 4240 breakpoint address. 4241 4242 As a special case, we could have hardware single-stepped a 4243 software breakpoint. In this case (prev_pc == breakpoint_pc), 4244 we also need to back up to the breakpoint address. */ 4245 4246 if (thread_has_single_step_breakpoints_set (thread) 4247 || !currently_stepping (thread) 4248 || (thread->stepped_breakpoint 4249 && thread->prev_pc == breakpoint_pc)) 4250 regcache_write_pc (regcache, breakpoint_pc); 4251 4252 do_cleanups (old_cleanups); 4253 } 4254 } 4255 4256 static int 4257 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id) 4258 { 4259 for (frame = get_prev_frame (frame); 4260 frame != NULL; 4261 frame = get_prev_frame (frame)) 4262 { 4263 if (frame_id_eq (get_frame_id (frame), step_frame_id)) 4264 return 1; 4265 if (get_frame_type (frame) != INLINE_FRAME) 4266 break; 4267 } 4268 4269 return 0; 4270 } 4271 4272 /* Auxiliary function that handles syscall entry/return events. 4273 It returns 1 if the inferior should keep going (and GDB 4274 should ignore the event), or 0 if the event deserves to be 4275 processed. */ 4276 4277 static int 4278 handle_syscall_event (struct execution_control_state *ecs) 4279 { 4280 struct regcache *regcache; 4281 int syscall_number; 4282 4283 if (!ptid_equal (ecs->ptid, inferior_ptid)) 4284 context_switch (ecs->ptid); 4285 4286 regcache = get_thread_regcache (ecs->ptid); 4287 syscall_number = ecs->ws.value.syscall_number; 4288 stop_pc = regcache_read_pc (regcache); 4289 4290 if (catch_syscall_enabled () > 0 4291 && catching_syscall_number (syscall_number) > 0) 4292 { 4293 if (debug_infrun) 4294 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n", 4295 syscall_number); 4296 4297 ecs->event_thread->control.stop_bpstat 4298 = bpstat_stop_status (get_regcache_aspace (regcache), 4299 stop_pc, ecs->ptid, &ecs->ws); 4300 4301 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) 4302 { 4303 /* Catchpoint hit. */ 4304 return 0; 4305 } 4306 } 4307 4308 /* If no catchpoint triggered for this, then keep going. */ 4309 keep_going (ecs); 4310 return 1; 4311 } 4312 4313 /* Lazily fill in the execution_control_state's stop_func_* fields. */ 4314 4315 static void 4316 fill_in_stop_func (struct gdbarch *gdbarch, 4317 struct execution_control_state *ecs) 4318 { 4319 if (!ecs->stop_func_filled_in) 4320 { 4321 /* Don't care about return value; stop_func_start and stop_func_name 4322 will both be 0 if it doesn't work. */ 4323 find_pc_partial_function (stop_pc, &ecs->stop_func_name, 4324 &ecs->stop_func_start, &ecs->stop_func_end); 4325 ecs->stop_func_start 4326 += gdbarch_deprecated_function_start_offset (gdbarch); 4327 4328 if (gdbarch_skip_entrypoint_p (gdbarch)) 4329 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch, 4330 ecs->stop_func_start); 4331 4332 ecs->stop_func_filled_in = 1; 4333 } 4334 } 4335 4336 4337 /* Return the STOP_SOON field of the inferior pointed at by PTID. */ 4338 4339 static enum stop_kind 4340 get_inferior_stop_soon (ptid_t ptid) 4341 { 4342 struct inferior *inf = find_inferior_ptid (ptid); 4343 4344 gdb_assert (inf != NULL); 4345 return inf->control.stop_soon; 4346 } 4347 4348 /* Wait for one event. Store the resulting waitstatus in WS, and 4349 return the event ptid. */ 4350 4351 static ptid_t 4352 wait_one (struct target_waitstatus *ws) 4353 { 4354 ptid_t event_ptid; 4355 ptid_t wait_ptid = minus_one_ptid; 4356 4357 overlay_cache_invalid = 1; 4358 4359 /* Flush target cache before starting to handle each event. 4360 Target was running and cache could be stale. This is just a 4361 heuristic. Running threads may modify target memory, but we 4362 don't get any event. */ 4363 target_dcache_invalidate (); 4364 4365 if (deprecated_target_wait_hook) 4366 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0); 4367 else 4368 event_ptid = target_wait (wait_ptid, ws, 0); 4369 4370 if (debug_infrun) 4371 print_target_wait_results (wait_ptid, event_ptid, ws); 4372 4373 return event_ptid; 4374 } 4375 4376 /* Generate a wrapper for target_stopped_by_REASON that works on PTID 4377 instead of the current thread. */ 4378 #define THREAD_STOPPED_BY(REASON) \ 4379 static int \ 4380 thread_stopped_by_ ## REASON (ptid_t ptid) \ 4381 { \ 4382 struct cleanup *old_chain; \ 4383 int res; \ 4384 \ 4385 old_chain = save_inferior_ptid (); \ 4386 inferior_ptid = ptid; \ 4387 \ 4388 res = target_stopped_by_ ## REASON (); \ 4389 \ 4390 do_cleanups (old_chain); \ 4391 \ 4392 return res; \ 4393 } 4394 4395 /* Generate thread_stopped_by_watchpoint. */ 4396 THREAD_STOPPED_BY (watchpoint) 4397 /* Generate thread_stopped_by_sw_breakpoint. */ 4398 THREAD_STOPPED_BY (sw_breakpoint) 4399 /* Generate thread_stopped_by_hw_breakpoint. */ 4400 THREAD_STOPPED_BY (hw_breakpoint) 4401 4402 /* Cleanups that switches to the PTID pointed at by PTID_P. */ 4403 4404 static void 4405 switch_to_thread_cleanup (void *ptid_p) 4406 { 4407 ptid_t ptid = *(ptid_t *) ptid_p; 4408 4409 switch_to_thread (ptid); 4410 } 4411 4412 /* Save the thread's event and stop reason to process it later. */ 4413 4414 static void 4415 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws) 4416 { 4417 struct regcache *regcache; 4418 struct address_space *aspace; 4419 4420 if (debug_infrun) 4421 { 4422 char *statstr; 4423 4424 statstr = target_waitstatus_to_string (ws); 4425 fprintf_unfiltered (gdb_stdlog, 4426 "infrun: saving status %s for %d.%ld.%ld\n", 4427 statstr, 4428 ptid_get_pid (tp->ptid), 4429 ptid_get_lwp (tp->ptid), 4430 ptid_get_tid (tp->ptid)); 4431 xfree (statstr); 4432 } 4433 4434 /* Record for later. */ 4435 tp->suspend.waitstatus = *ws; 4436 tp->suspend.waitstatus_pending_p = 1; 4437 4438 regcache = get_thread_regcache (tp->ptid); 4439 aspace = get_regcache_aspace (regcache); 4440 4441 if (ws->kind == TARGET_WAITKIND_STOPPED 4442 && ws->value.sig == GDB_SIGNAL_TRAP) 4443 { 4444 CORE_ADDR pc = regcache_read_pc (regcache); 4445 4446 adjust_pc_after_break (tp, &tp->suspend.waitstatus); 4447 4448 if (thread_stopped_by_watchpoint (tp->ptid)) 4449 { 4450 tp->suspend.stop_reason 4451 = TARGET_STOPPED_BY_WATCHPOINT; 4452 } 4453 else if (target_supports_stopped_by_sw_breakpoint () 4454 && thread_stopped_by_sw_breakpoint (tp->ptid)) 4455 { 4456 tp->suspend.stop_reason 4457 = TARGET_STOPPED_BY_SW_BREAKPOINT; 4458 } 4459 else if (target_supports_stopped_by_hw_breakpoint () 4460 && thread_stopped_by_hw_breakpoint (tp->ptid)) 4461 { 4462 tp->suspend.stop_reason 4463 = TARGET_STOPPED_BY_HW_BREAKPOINT; 4464 } 4465 else if (!target_supports_stopped_by_hw_breakpoint () 4466 && hardware_breakpoint_inserted_here_p (aspace, 4467 pc)) 4468 { 4469 tp->suspend.stop_reason 4470 = TARGET_STOPPED_BY_HW_BREAKPOINT; 4471 } 4472 else if (!target_supports_stopped_by_sw_breakpoint () 4473 && software_breakpoint_inserted_here_p (aspace, 4474 pc)) 4475 { 4476 tp->suspend.stop_reason 4477 = TARGET_STOPPED_BY_SW_BREAKPOINT; 4478 } 4479 else if (!thread_has_single_step_breakpoints_set (tp) 4480 && currently_stepping (tp)) 4481 { 4482 tp->suspend.stop_reason 4483 = TARGET_STOPPED_BY_SINGLE_STEP; 4484 } 4485 } 4486 } 4487 4488 /* A cleanup that disables thread create/exit events. */ 4489 4490 static void 4491 disable_thread_events (void *arg) 4492 { 4493 target_thread_events (0); 4494 } 4495 4496 /* See infrun.h. */ 4497 4498 void 4499 stop_all_threads (void) 4500 { 4501 /* We may need multiple passes to discover all threads. */ 4502 int pass; 4503 int iterations = 0; 4504 ptid_t entry_ptid; 4505 struct cleanup *old_chain; 4506 4507 gdb_assert (target_is_non_stop_p ()); 4508 4509 if (debug_infrun) 4510 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n"); 4511 4512 entry_ptid = inferior_ptid; 4513 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid); 4514 4515 target_thread_events (1); 4516 make_cleanup (disable_thread_events, NULL); 4517 4518 /* Request threads to stop, and then wait for the stops. Because 4519 threads we already know about can spawn more threads while we're 4520 trying to stop them, and we only learn about new threads when we 4521 update the thread list, do this in a loop, and keep iterating 4522 until two passes find no threads that need to be stopped. */ 4523 for (pass = 0; pass < 2; pass++, iterations++) 4524 { 4525 if (debug_infrun) 4526 fprintf_unfiltered (gdb_stdlog, 4527 "infrun: stop_all_threads, pass=%d, " 4528 "iterations=%d\n", pass, iterations); 4529 while (1) 4530 { 4531 ptid_t event_ptid; 4532 struct target_waitstatus ws; 4533 int need_wait = 0; 4534 struct thread_info *t; 4535 4536 update_thread_list (); 4537 4538 /* Go through all threads looking for threads that we need 4539 to tell the target to stop. */ 4540 ALL_NON_EXITED_THREADS (t) 4541 { 4542 if (t->executing) 4543 { 4544 /* If already stopping, don't request a stop again. 4545 We just haven't seen the notification yet. */ 4546 if (!t->stop_requested) 4547 { 4548 if (debug_infrun) 4549 fprintf_unfiltered (gdb_stdlog, 4550 "infrun: %s executing, " 4551 "need stop\n", 4552 target_pid_to_str (t->ptid)); 4553 target_stop (t->ptid); 4554 t->stop_requested = 1; 4555 } 4556 else 4557 { 4558 if (debug_infrun) 4559 fprintf_unfiltered (gdb_stdlog, 4560 "infrun: %s executing, " 4561 "already stopping\n", 4562 target_pid_to_str (t->ptid)); 4563 } 4564 4565 if (t->stop_requested) 4566 need_wait = 1; 4567 } 4568 else 4569 { 4570 if (debug_infrun) 4571 fprintf_unfiltered (gdb_stdlog, 4572 "infrun: %s not executing\n", 4573 target_pid_to_str (t->ptid)); 4574 4575 /* The thread may be not executing, but still be 4576 resumed with a pending status to process. */ 4577 t->resumed = 0; 4578 } 4579 } 4580 4581 if (!need_wait) 4582 break; 4583 4584 /* If we find new threads on the second iteration, restart 4585 over. We want to see two iterations in a row with all 4586 threads stopped. */ 4587 if (pass > 0) 4588 pass = -1; 4589 4590 event_ptid = wait_one (&ws); 4591 if (ws.kind == TARGET_WAITKIND_NO_RESUMED) 4592 { 4593 /* All resumed threads exited. */ 4594 } 4595 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED 4596 || ws.kind == TARGET_WAITKIND_EXITED 4597 || ws.kind == TARGET_WAITKIND_SIGNALLED) 4598 { 4599 if (debug_infrun) 4600 { 4601 ptid_t ptid = pid_to_ptid (ws.value.integer); 4602 4603 fprintf_unfiltered (gdb_stdlog, 4604 "infrun: %s exited while " 4605 "stopping threads\n", 4606 target_pid_to_str (ptid)); 4607 } 4608 } 4609 else 4610 { 4611 struct inferior *inf; 4612 4613 t = find_thread_ptid (event_ptid); 4614 if (t == NULL) 4615 t = add_thread (event_ptid); 4616 4617 t->stop_requested = 0; 4618 t->executing = 0; 4619 t->resumed = 0; 4620 t->control.may_range_step = 0; 4621 4622 /* This may be the first time we see the inferior report 4623 a stop. */ 4624 inf = find_inferior_ptid (event_ptid); 4625 if (inf->needs_setup) 4626 { 4627 switch_to_thread_no_regs (t); 4628 setup_inferior (0); 4629 } 4630 4631 if (ws.kind == TARGET_WAITKIND_STOPPED 4632 && ws.value.sig == GDB_SIGNAL_0) 4633 { 4634 /* We caught the event that we intended to catch, so 4635 there's no event pending. */ 4636 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE; 4637 t->suspend.waitstatus_pending_p = 0; 4638 4639 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0) 4640 { 4641 /* Add it back to the step-over queue. */ 4642 if (debug_infrun) 4643 { 4644 fprintf_unfiltered (gdb_stdlog, 4645 "infrun: displaced-step of %s " 4646 "canceled: adding back to the " 4647 "step-over queue\n", 4648 target_pid_to_str (t->ptid)); 4649 } 4650 t->control.trap_expected = 0; 4651 thread_step_over_chain_enqueue (t); 4652 } 4653 } 4654 else 4655 { 4656 enum gdb_signal sig; 4657 struct regcache *regcache; 4658 4659 if (debug_infrun) 4660 { 4661 char *statstr; 4662 4663 statstr = target_waitstatus_to_string (&ws); 4664 fprintf_unfiltered (gdb_stdlog, 4665 "infrun: target_wait %s, saving " 4666 "status for %d.%ld.%ld\n", 4667 statstr, 4668 ptid_get_pid (t->ptid), 4669 ptid_get_lwp (t->ptid), 4670 ptid_get_tid (t->ptid)); 4671 xfree (statstr); 4672 } 4673 4674 /* Record for later. */ 4675 save_waitstatus (t, &ws); 4676 4677 sig = (ws.kind == TARGET_WAITKIND_STOPPED 4678 ? ws.value.sig : GDB_SIGNAL_0); 4679 4680 if (displaced_step_fixup (t->ptid, sig) < 0) 4681 { 4682 /* Add it back to the step-over queue. */ 4683 t->control.trap_expected = 0; 4684 thread_step_over_chain_enqueue (t); 4685 } 4686 4687 regcache = get_thread_regcache (t->ptid); 4688 t->suspend.stop_pc = regcache_read_pc (regcache); 4689 4690 if (debug_infrun) 4691 { 4692 fprintf_unfiltered (gdb_stdlog, 4693 "infrun: saved stop_pc=%s for %s " 4694 "(currently_stepping=%d)\n", 4695 paddress (target_gdbarch (), 4696 t->suspend.stop_pc), 4697 target_pid_to_str (t->ptid), 4698 currently_stepping (t)); 4699 } 4700 } 4701 } 4702 } 4703 } 4704 4705 do_cleanups (old_chain); 4706 4707 if (debug_infrun) 4708 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n"); 4709 } 4710 4711 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */ 4712 4713 static int 4714 handle_no_resumed (struct execution_control_state *ecs) 4715 { 4716 struct inferior *inf; 4717 struct thread_info *thread; 4718 4719 if (target_can_async_p ()) 4720 { 4721 struct ui *ui; 4722 int any_sync = 0; 4723 4724 ALL_UIS (ui) 4725 { 4726 if (ui->prompt_state == PROMPT_BLOCKED) 4727 { 4728 any_sync = 1; 4729 break; 4730 } 4731 } 4732 if (!any_sync) 4733 { 4734 /* There were no unwaited-for children left in the target, but, 4735 we're not synchronously waiting for events either. Just 4736 ignore. */ 4737 4738 if (debug_infrun) 4739 fprintf_unfiltered (gdb_stdlog, 4740 "infrun: TARGET_WAITKIND_NO_RESUMED " 4741 "(ignoring: bg)\n"); 4742 prepare_to_wait (ecs); 4743 return 1; 4744 } 4745 } 4746 4747 /* Otherwise, if we were running a synchronous execution command, we 4748 may need to cancel it and give the user back the terminal. 4749 4750 In non-stop mode, the target can't tell whether we've already 4751 consumed previous stop events, so it can end up sending us a 4752 no-resumed event like so: 4753 4754 #0 - thread 1 is left stopped 4755 4756 #1 - thread 2 is resumed and hits breakpoint 4757 -> TARGET_WAITKIND_STOPPED 4758 4759 #2 - thread 3 is resumed and exits 4760 this is the last resumed thread, so 4761 -> TARGET_WAITKIND_NO_RESUMED 4762 4763 #3 - gdb processes stop for thread 2 and decides to re-resume 4764 it. 4765 4766 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event. 4767 thread 2 is now resumed, so the event should be ignored. 4768 4769 IOW, if the stop for thread 2 doesn't end a foreground command, 4770 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED 4771 event. But it could be that the event meant that thread 2 itself 4772 (or whatever other thread was the last resumed thread) exited. 4773 4774 To address this we refresh the thread list and check whether we 4775 have resumed threads _now_. In the example above, this removes 4776 thread 3 from the thread list. If thread 2 was re-resumed, we 4777 ignore this event. If we find no thread resumed, then we cancel 4778 the synchronous command show "no unwaited-for " to the user. */ 4779 update_thread_list (); 4780 4781 ALL_NON_EXITED_THREADS (thread) 4782 { 4783 if (thread->executing 4784 || thread->suspend.waitstatus_pending_p) 4785 { 4786 /* There were no unwaited-for children left in the target at 4787 some point, but there are now. Just ignore. */ 4788 if (debug_infrun) 4789 fprintf_unfiltered (gdb_stdlog, 4790 "infrun: TARGET_WAITKIND_NO_RESUMED " 4791 "(ignoring: found resumed)\n"); 4792 prepare_to_wait (ecs); 4793 return 1; 4794 } 4795 } 4796 4797 /* Note however that we may find no resumed thread because the whole 4798 process exited meanwhile (thus updating the thread list results 4799 in an empty thread list). In this case we know we'll be getting 4800 a process exit event shortly. */ 4801 ALL_INFERIORS (inf) 4802 { 4803 if (inf->pid == 0) 4804 continue; 4805 4806 thread = any_live_thread_of_process (inf->pid); 4807 if (thread == NULL) 4808 { 4809 if (debug_infrun) 4810 fprintf_unfiltered (gdb_stdlog, 4811 "infrun: TARGET_WAITKIND_NO_RESUMED " 4812 "(expect process exit)\n"); 4813 prepare_to_wait (ecs); 4814 return 1; 4815 } 4816 } 4817 4818 /* Go ahead and report the event. */ 4819 return 0; 4820 } 4821 4822 /* Given an execution control state that has been freshly filled in by 4823 an event from the inferior, figure out what it means and take 4824 appropriate action. 4825 4826 The alternatives are: 4827 4828 1) stop_waiting and return; to really stop and return to the 4829 debugger. 4830 4831 2) keep_going and return; to wait for the next event (set 4832 ecs->event_thread->stepping_over_breakpoint to 1 to single step 4833 once). */ 4834 4835 static void 4836 handle_inferior_event_1 (struct execution_control_state *ecs) 4837 { 4838 enum stop_kind stop_soon; 4839 4840 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE) 4841 { 4842 /* We had an event in the inferior, but we are not interested in 4843 handling it at this level. The lower layers have already 4844 done what needs to be done, if anything. 4845 4846 One of the possible circumstances for this is when the 4847 inferior produces output for the console. The inferior has 4848 not stopped, and we are ignoring the event. Another possible 4849 circumstance is any event which the lower level knows will be 4850 reported multiple times without an intervening resume. */ 4851 if (debug_infrun) 4852 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n"); 4853 prepare_to_wait (ecs); 4854 return; 4855 } 4856 4857 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED) 4858 { 4859 if (debug_infrun) 4860 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n"); 4861 prepare_to_wait (ecs); 4862 return; 4863 } 4864 4865 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED 4866 && handle_no_resumed (ecs)) 4867 return; 4868 4869 /* Cache the last pid/waitstatus. */ 4870 set_last_target_status (ecs->ptid, ecs->ws); 4871 4872 /* Always clear state belonging to the previous time we stopped. */ 4873 stop_stack_dummy = STOP_NONE; 4874 4875 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED) 4876 { 4877 /* No unwaited-for children left. IOW, all resumed children 4878 have exited. */ 4879 if (debug_infrun) 4880 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n"); 4881 4882 stop_print_frame = 0; 4883 stop_waiting (ecs); 4884 return; 4885 } 4886 4887 if (ecs->ws.kind != TARGET_WAITKIND_EXITED 4888 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) 4889 { 4890 ecs->event_thread = find_thread_ptid (ecs->ptid); 4891 /* If it's a new thread, add it to the thread database. */ 4892 if (ecs->event_thread == NULL) 4893 ecs->event_thread = add_thread (ecs->ptid); 4894 4895 /* Disable range stepping. If the next step request could use a 4896 range, this will be end up re-enabled then. */ 4897 ecs->event_thread->control.may_range_step = 0; 4898 } 4899 4900 /* Dependent on valid ECS->EVENT_THREAD. */ 4901 adjust_pc_after_break (ecs->event_thread, &ecs->ws); 4902 4903 /* Dependent on the current PC value modified by adjust_pc_after_break. */ 4904 reinit_frame_cache (); 4905 4906 breakpoint_retire_moribund (); 4907 4908 /* First, distinguish signals caused by the debugger from signals 4909 that have to do with the program's own actions. Note that 4910 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending 4911 on the operating system version. Here we detect when a SIGILL or 4912 SIGEMT is really a breakpoint and change it to SIGTRAP. We do 4913 something similar for SIGSEGV, since a SIGSEGV will be generated 4914 when we're trying to execute a breakpoint instruction on a 4915 non-executable stack. This happens for call dummy breakpoints 4916 for architectures like SPARC that place call dummies on the 4917 stack. */ 4918 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED 4919 && (ecs->ws.value.sig == GDB_SIGNAL_ILL 4920 || ecs->ws.value.sig == GDB_SIGNAL_SEGV 4921 || ecs->ws.value.sig == GDB_SIGNAL_EMT)) 4922 { 4923 struct regcache *regcache = get_thread_regcache (ecs->ptid); 4924 4925 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), 4926 regcache_read_pc (regcache))) 4927 { 4928 if (debug_infrun) 4929 fprintf_unfiltered (gdb_stdlog, 4930 "infrun: Treating signal as SIGTRAP\n"); 4931 ecs->ws.value.sig = GDB_SIGNAL_TRAP; 4932 } 4933 } 4934 4935 /* Mark the non-executing threads accordingly. In all-stop, all 4936 threads of all processes are stopped when we get any event 4937 reported. In non-stop mode, only the event thread stops. */ 4938 { 4939 ptid_t mark_ptid; 4940 4941 if (!target_is_non_stop_p ()) 4942 mark_ptid = minus_one_ptid; 4943 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED 4944 || ecs->ws.kind == TARGET_WAITKIND_EXITED) 4945 { 4946 /* If we're handling a process exit in non-stop mode, even 4947 though threads haven't been deleted yet, one would think 4948 that there is nothing to do, as threads of the dead process 4949 will be soon deleted, and threads of any other process were 4950 left running. However, on some targets, threads survive a 4951 process exit event. E.g., for the "checkpoint" command, 4952 when the current checkpoint/fork exits, linux-fork.c 4953 automatically switches to another fork from within 4954 target_mourn_inferior, by associating the same 4955 inferior/thread to another fork. We haven't mourned yet at 4956 this point, but we must mark any threads left in the 4957 process as not-executing so that finish_thread_state marks 4958 them stopped (in the user's perspective) if/when we present 4959 the stop to the user. */ 4960 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid)); 4961 } 4962 else 4963 mark_ptid = ecs->ptid; 4964 4965 set_executing (mark_ptid, 0); 4966 4967 /* Likewise the resumed flag. */ 4968 set_resumed (mark_ptid, 0); 4969 } 4970 4971 switch (ecs->ws.kind) 4972 { 4973 case TARGET_WAITKIND_LOADED: 4974 if (debug_infrun) 4975 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n"); 4976 if (!ptid_equal (ecs->ptid, inferior_ptid)) 4977 context_switch (ecs->ptid); 4978 /* Ignore gracefully during startup of the inferior, as it might 4979 be the shell which has just loaded some objects, otherwise 4980 add the symbols for the newly loaded objects. Also ignore at 4981 the beginning of an attach or remote session; we will query 4982 the full list of libraries once the connection is 4983 established. */ 4984 4985 stop_soon = get_inferior_stop_soon (ecs->ptid); 4986 if (stop_soon == NO_STOP_QUIETLY) 4987 { 4988 struct regcache *regcache; 4989 4990 regcache = get_thread_regcache (ecs->ptid); 4991 4992 handle_solib_event (); 4993 4994 ecs->event_thread->control.stop_bpstat 4995 = bpstat_stop_status (get_regcache_aspace (regcache), 4996 stop_pc, ecs->ptid, &ecs->ws); 4997 4998 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) 4999 { 5000 /* A catchpoint triggered. */ 5001 process_event_stop_test (ecs); 5002 return; 5003 } 5004 5005 /* If requested, stop when the dynamic linker notifies 5006 gdb of events. This allows the user to get control 5007 and place breakpoints in initializer routines for 5008 dynamically loaded objects (among other things). */ 5009 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 5010 if (stop_on_solib_events) 5011 { 5012 /* Make sure we print "Stopped due to solib-event" in 5013 normal_stop. */ 5014 stop_print_frame = 1; 5015 5016 stop_waiting (ecs); 5017 return; 5018 } 5019 } 5020 5021 /* If we are skipping through a shell, or through shared library 5022 loading that we aren't interested in, resume the program. If 5023 we're running the program normally, also resume. */ 5024 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY) 5025 { 5026 /* Loading of shared libraries might have changed breakpoint 5027 addresses. Make sure new breakpoints are inserted. */ 5028 if (stop_soon == NO_STOP_QUIETLY) 5029 insert_breakpoints (); 5030 resume (GDB_SIGNAL_0); 5031 prepare_to_wait (ecs); 5032 return; 5033 } 5034 5035 /* But stop if we're attaching or setting up a remote 5036 connection. */ 5037 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP 5038 || stop_soon == STOP_QUIETLY_REMOTE) 5039 { 5040 if (debug_infrun) 5041 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); 5042 stop_waiting (ecs); 5043 return; 5044 } 5045 5046 internal_error (__FILE__, __LINE__, 5047 _("unhandled stop_soon: %d"), (int) stop_soon); 5048 5049 case TARGET_WAITKIND_SPURIOUS: 5050 if (debug_infrun) 5051 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n"); 5052 if (!ptid_equal (ecs->ptid, inferior_ptid)) 5053 context_switch (ecs->ptid); 5054 resume (GDB_SIGNAL_0); 5055 prepare_to_wait (ecs); 5056 return; 5057 5058 case TARGET_WAITKIND_THREAD_CREATED: 5059 if (debug_infrun) 5060 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n"); 5061 if (!ptid_equal (ecs->ptid, inferior_ptid)) 5062 context_switch (ecs->ptid); 5063 if (!switch_back_to_stepped_thread (ecs)) 5064 keep_going (ecs); 5065 return; 5066 5067 case TARGET_WAITKIND_EXITED: 5068 case TARGET_WAITKIND_SIGNALLED: 5069 if (debug_infrun) 5070 { 5071 if (ecs->ws.kind == TARGET_WAITKIND_EXITED) 5072 fprintf_unfiltered (gdb_stdlog, 5073 "infrun: TARGET_WAITKIND_EXITED\n"); 5074 else 5075 fprintf_unfiltered (gdb_stdlog, 5076 "infrun: TARGET_WAITKIND_SIGNALLED\n"); 5077 } 5078 5079 inferior_ptid = ecs->ptid; 5080 set_current_inferior (find_inferior_ptid (ecs->ptid)); 5081 set_current_program_space (current_inferior ()->pspace); 5082 handle_vfork_child_exec_or_exit (0); 5083 target_terminal_ours (); /* Must do this before mourn anyway. */ 5084 5085 /* Clearing any previous state of convenience variables. */ 5086 clear_exit_convenience_vars (); 5087 5088 if (ecs->ws.kind == TARGET_WAITKIND_EXITED) 5089 { 5090 /* Record the exit code in the convenience variable $_exitcode, so 5091 that the user can inspect this again later. */ 5092 set_internalvar_integer (lookup_internalvar ("_exitcode"), 5093 (LONGEST) ecs->ws.value.integer); 5094 5095 /* Also record this in the inferior itself. */ 5096 current_inferior ()->has_exit_code = 1; 5097 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer; 5098 5099 /* Support the --return-child-result option. */ 5100 return_child_result_value = ecs->ws.value.integer; 5101 5102 observer_notify_exited (ecs->ws.value.integer); 5103 } 5104 else 5105 { 5106 struct regcache *regcache = get_thread_regcache (ecs->ptid); 5107 struct gdbarch *gdbarch = get_regcache_arch (regcache); 5108 5109 if (gdbarch_gdb_signal_to_target_p (gdbarch)) 5110 { 5111 /* Set the value of the internal variable $_exitsignal, 5112 which holds the signal uncaught by the inferior. */ 5113 set_internalvar_integer (lookup_internalvar ("_exitsignal"), 5114 gdbarch_gdb_signal_to_target (gdbarch, 5115 ecs->ws.value.sig)); 5116 } 5117 else 5118 { 5119 /* We don't have access to the target's method used for 5120 converting between signal numbers (GDB's internal 5121 representation <-> target's representation). 5122 Therefore, we cannot do a good job at displaying this 5123 information to the user. It's better to just warn 5124 her about it (if infrun debugging is enabled), and 5125 give up. */ 5126 if (debug_infrun) 5127 fprintf_filtered (gdb_stdlog, _("\ 5128 Cannot fill $_exitsignal with the correct signal number.\n")); 5129 } 5130 5131 observer_notify_signal_exited (ecs->ws.value.sig); 5132 } 5133 5134 gdb_flush (gdb_stdout); 5135 target_mourn_inferior (); 5136 stop_print_frame = 0; 5137 stop_waiting (ecs); 5138 return; 5139 5140 /* The following are the only cases in which we keep going; 5141 the above cases end in a continue or goto. */ 5142 case TARGET_WAITKIND_FORKED: 5143 case TARGET_WAITKIND_VFORKED: 5144 if (debug_infrun) 5145 { 5146 if (ecs->ws.kind == TARGET_WAITKIND_FORKED) 5147 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n"); 5148 else 5149 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n"); 5150 } 5151 5152 /* Check whether the inferior is displaced stepping. */ 5153 { 5154 struct regcache *regcache = get_thread_regcache (ecs->ptid); 5155 struct gdbarch *gdbarch = get_regcache_arch (regcache); 5156 5157 /* If checking displaced stepping is supported, and thread 5158 ecs->ptid is displaced stepping. */ 5159 if (displaced_step_in_progress_thread (ecs->ptid)) 5160 { 5161 struct inferior *parent_inf 5162 = find_inferior_ptid (ecs->ptid); 5163 struct regcache *child_regcache; 5164 CORE_ADDR parent_pc; 5165 5166 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED, 5167 indicating that the displaced stepping of syscall instruction 5168 has been done. Perform cleanup for parent process here. Note 5169 that this operation also cleans up the child process for vfork, 5170 because their pages are shared. */ 5171 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP); 5172 /* Start a new step-over in another thread if there's one 5173 that needs it. */ 5174 start_step_over (); 5175 5176 if (ecs->ws.kind == TARGET_WAITKIND_FORKED) 5177 { 5178 struct displaced_step_inferior_state *displaced 5179 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid)); 5180 5181 /* Restore scratch pad for child process. */ 5182 displaced_step_restore (displaced, ecs->ws.value.related_pid); 5183 } 5184 5185 /* Since the vfork/fork syscall instruction was executed in the scratchpad, 5186 the child's PC is also within the scratchpad. Set the child's PC 5187 to the parent's PC value, which has already been fixed up. 5188 FIXME: we use the parent's aspace here, although we're touching 5189 the child, because the child hasn't been added to the inferior 5190 list yet at this point. */ 5191 5192 child_regcache 5193 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid, 5194 gdbarch, 5195 parent_inf->aspace); 5196 /* Read PC value of parent process. */ 5197 parent_pc = regcache_read_pc (regcache); 5198 5199 if (debug_displaced) 5200 fprintf_unfiltered (gdb_stdlog, 5201 "displaced: write child pc from %s to %s\n", 5202 paddress (gdbarch, 5203 regcache_read_pc (child_regcache)), 5204 paddress (gdbarch, parent_pc)); 5205 5206 regcache_write_pc (child_regcache, parent_pc); 5207 } 5208 } 5209 5210 if (!ptid_equal (ecs->ptid, inferior_ptid)) 5211 context_switch (ecs->ptid); 5212 5213 /* Immediately detach breakpoints from the child before there's 5214 any chance of letting the user delete breakpoints from the 5215 breakpoint lists. If we don't do this early, it's easy to 5216 leave left over traps in the child, vis: "break foo; catch 5217 fork; c; <fork>; del; c; <child calls foo>". We only follow 5218 the fork on the last `continue', and by that time the 5219 breakpoint at "foo" is long gone from the breakpoint table. 5220 If we vforked, then we don't need to unpatch here, since both 5221 parent and child are sharing the same memory pages; we'll 5222 need to unpatch at follow/detach time instead to be certain 5223 that new breakpoints added between catchpoint hit time and 5224 vfork follow are detached. */ 5225 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED) 5226 { 5227 /* This won't actually modify the breakpoint list, but will 5228 physically remove the breakpoints from the child. */ 5229 detach_breakpoints (ecs->ws.value.related_pid); 5230 } 5231 5232 delete_just_stopped_threads_single_step_breakpoints (); 5233 5234 /* In case the event is caught by a catchpoint, remember that 5235 the event is to be followed at the next resume of the thread, 5236 and not immediately. */ 5237 ecs->event_thread->pending_follow = ecs->ws; 5238 5239 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); 5240 5241 ecs->event_thread->control.stop_bpstat 5242 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), 5243 stop_pc, ecs->ptid, &ecs->ws); 5244 5245 /* If no catchpoint triggered for this, then keep going. Note 5246 that we're interested in knowing the bpstat actually causes a 5247 stop, not just if it may explain the signal. Software 5248 watchpoints, for example, always appear in the bpstat. */ 5249 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) 5250 { 5251 ptid_t parent; 5252 ptid_t child; 5253 int should_resume; 5254 int follow_child 5255 = (follow_fork_mode_string == follow_fork_mode_child); 5256 5257 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 5258 5259 should_resume = follow_fork (); 5260 5261 parent = ecs->ptid; 5262 child = ecs->ws.value.related_pid; 5263 5264 /* At this point, the parent is marked running, and the 5265 child is marked stopped. */ 5266 5267 /* If not resuming the parent, mark it stopped. */ 5268 if (follow_child && !detach_fork && !non_stop && !sched_multi) 5269 set_running (parent, 0); 5270 5271 /* If resuming the child, mark it running. */ 5272 if (follow_child || (!detach_fork && (non_stop || sched_multi))) 5273 set_running (child, 1); 5274 5275 /* In non-stop mode, also resume the other branch. */ 5276 if (!detach_fork && (non_stop 5277 || (sched_multi && target_is_non_stop_p ()))) 5278 { 5279 if (follow_child) 5280 switch_to_thread (parent); 5281 else 5282 switch_to_thread (child); 5283 5284 ecs->event_thread = inferior_thread (); 5285 ecs->ptid = inferior_ptid; 5286 keep_going (ecs); 5287 } 5288 5289 if (follow_child) 5290 switch_to_thread (child); 5291 else 5292 switch_to_thread (parent); 5293 5294 ecs->event_thread = inferior_thread (); 5295 ecs->ptid = inferior_ptid; 5296 5297 if (should_resume) 5298 keep_going (ecs); 5299 else 5300 stop_waiting (ecs); 5301 return; 5302 } 5303 process_event_stop_test (ecs); 5304 return; 5305 5306 case TARGET_WAITKIND_VFORK_DONE: 5307 /* Done with the shared memory region. Re-insert breakpoints in 5308 the parent, and keep going. */ 5309 5310 if (debug_infrun) 5311 fprintf_unfiltered (gdb_stdlog, 5312 "infrun: TARGET_WAITKIND_VFORK_DONE\n"); 5313 5314 if (!ptid_equal (ecs->ptid, inferior_ptid)) 5315 context_switch (ecs->ptid); 5316 5317 current_inferior ()->waiting_for_vfork_done = 0; 5318 current_inferior ()->pspace->breakpoints_not_allowed = 0; 5319 /* This also takes care of reinserting breakpoints in the 5320 previously locked inferior. */ 5321 keep_going (ecs); 5322 return; 5323 5324 case TARGET_WAITKIND_EXECD: 5325 if (debug_infrun) 5326 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n"); 5327 5328 if (!ptid_equal (ecs->ptid, inferior_ptid)) 5329 context_switch (ecs->ptid); 5330 5331 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); 5332 5333 /* Do whatever is necessary to the parent branch of the vfork. */ 5334 handle_vfork_child_exec_or_exit (1); 5335 5336 /* This causes the eventpoints and symbol table to be reset. 5337 Must do this now, before trying to determine whether to 5338 stop. */ 5339 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname); 5340 5341 /* In follow_exec we may have deleted the original thread and 5342 created a new one. Make sure that the event thread is the 5343 execd thread for that case (this is a nop otherwise). */ 5344 ecs->event_thread = inferior_thread (); 5345 5346 ecs->event_thread->control.stop_bpstat 5347 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), 5348 stop_pc, ecs->ptid, &ecs->ws); 5349 5350 /* Note that this may be referenced from inside 5351 bpstat_stop_status above, through inferior_has_execd. */ 5352 xfree (ecs->ws.value.execd_pathname); 5353 ecs->ws.value.execd_pathname = NULL; 5354 5355 /* If no catchpoint triggered for this, then keep going. */ 5356 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) 5357 { 5358 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 5359 keep_going (ecs); 5360 return; 5361 } 5362 process_event_stop_test (ecs); 5363 return; 5364 5365 /* Be careful not to try to gather much state about a thread 5366 that's in a syscall. It's frequently a losing proposition. */ 5367 case TARGET_WAITKIND_SYSCALL_ENTRY: 5368 if (debug_infrun) 5369 fprintf_unfiltered (gdb_stdlog, 5370 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n"); 5371 /* Getting the current syscall number. */ 5372 if (handle_syscall_event (ecs) == 0) 5373 process_event_stop_test (ecs); 5374 return; 5375 5376 /* Before examining the threads further, step this thread to 5377 get it entirely out of the syscall. (We get notice of the 5378 event when the thread is just on the verge of exiting a 5379 syscall. Stepping one instruction seems to get it back 5380 into user code.) */ 5381 case TARGET_WAITKIND_SYSCALL_RETURN: 5382 if (debug_infrun) 5383 fprintf_unfiltered (gdb_stdlog, 5384 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n"); 5385 if (handle_syscall_event (ecs) == 0) 5386 process_event_stop_test (ecs); 5387 return; 5388 5389 case TARGET_WAITKIND_STOPPED: 5390 if (debug_infrun) 5391 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n"); 5392 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig; 5393 handle_signal_stop (ecs); 5394 return; 5395 5396 case TARGET_WAITKIND_NO_HISTORY: 5397 if (debug_infrun) 5398 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n"); 5399 /* Reverse execution: target ran out of history info. */ 5400 5401 /* Switch to the stopped thread. */ 5402 if (!ptid_equal (ecs->ptid, inferior_ptid)) 5403 context_switch (ecs->ptid); 5404 if (debug_infrun) 5405 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); 5406 5407 delete_just_stopped_threads_single_step_breakpoints (); 5408 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid)); 5409 observer_notify_no_history (); 5410 stop_waiting (ecs); 5411 return; 5412 } 5413 } 5414 5415 /* A wrapper around handle_inferior_event_1, which also makes sure 5416 that all temporary struct value objects that were created during 5417 the handling of the event get deleted at the end. */ 5418 5419 static void 5420 handle_inferior_event (struct execution_control_state *ecs) 5421 { 5422 struct value *mark = value_mark (); 5423 5424 handle_inferior_event_1 (ecs); 5425 /* Purge all temporary values created during the event handling, 5426 as it could be a long time before we return to the command level 5427 where such values would otherwise be purged. */ 5428 value_free_to_mark (mark); 5429 } 5430 5431 /* Restart threads back to what they were trying to do back when we 5432 paused them for an in-line step-over. The EVENT_THREAD thread is 5433 ignored. */ 5434 5435 static void 5436 restart_threads (struct thread_info *event_thread) 5437 { 5438 struct thread_info *tp; 5439 5440 /* In case the instruction just stepped spawned a new thread. */ 5441 update_thread_list (); 5442 5443 ALL_NON_EXITED_THREADS (tp) 5444 { 5445 if (tp == event_thread) 5446 { 5447 if (debug_infrun) 5448 fprintf_unfiltered (gdb_stdlog, 5449 "infrun: restart threads: " 5450 "[%s] is event thread\n", 5451 target_pid_to_str (tp->ptid)); 5452 continue; 5453 } 5454 5455 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall)) 5456 { 5457 if (debug_infrun) 5458 fprintf_unfiltered (gdb_stdlog, 5459 "infrun: restart threads: " 5460 "[%s] not meant to be running\n", 5461 target_pid_to_str (tp->ptid)); 5462 continue; 5463 } 5464 5465 if (tp->resumed) 5466 { 5467 if (debug_infrun) 5468 fprintf_unfiltered (gdb_stdlog, 5469 "infrun: restart threads: [%s] resumed\n", 5470 target_pid_to_str (tp->ptid)); 5471 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); 5472 continue; 5473 } 5474 5475 if (thread_is_in_step_over_chain (tp)) 5476 { 5477 if (debug_infrun) 5478 fprintf_unfiltered (gdb_stdlog, 5479 "infrun: restart threads: " 5480 "[%s] needs step-over\n", 5481 target_pid_to_str (tp->ptid)); 5482 gdb_assert (!tp->resumed); 5483 continue; 5484 } 5485 5486 5487 if (tp->suspend.waitstatus_pending_p) 5488 { 5489 if (debug_infrun) 5490 fprintf_unfiltered (gdb_stdlog, 5491 "infrun: restart threads: " 5492 "[%s] has pending status\n", 5493 target_pid_to_str (tp->ptid)); 5494 tp->resumed = 1; 5495 continue; 5496 } 5497 5498 /* If some thread needs to start a step-over at this point, it 5499 should still be in the step-over queue, and thus skipped 5500 above. */ 5501 if (thread_still_needs_step_over (tp)) 5502 { 5503 internal_error (__FILE__, __LINE__, 5504 "thread [%s] needs a step-over, but not in " 5505 "step-over queue\n", 5506 target_pid_to_str (tp->ptid)); 5507 } 5508 5509 if (currently_stepping (tp)) 5510 { 5511 if (debug_infrun) 5512 fprintf_unfiltered (gdb_stdlog, 5513 "infrun: restart threads: [%s] was stepping\n", 5514 target_pid_to_str (tp->ptid)); 5515 keep_going_stepped_thread (tp); 5516 } 5517 else 5518 { 5519 struct execution_control_state ecss; 5520 struct execution_control_state *ecs = &ecss; 5521 5522 if (debug_infrun) 5523 fprintf_unfiltered (gdb_stdlog, 5524 "infrun: restart threads: [%s] continuing\n", 5525 target_pid_to_str (tp->ptid)); 5526 reset_ecs (ecs, tp); 5527 switch_to_thread (tp->ptid); 5528 keep_going_pass_signal (ecs); 5529 } 5530 } 5531 } 5532 5533 /* Callback for iterate_over_threads. Find a resumed thread that has 5534 a pending waitstatus. */ 5535 5536 static int 5537 resumed_thread_with_pending_status (struct thread_info *tp, 5538 void *arg) 5539 { 5540 return (tp->resumed 5541 && tp->suspend.waitstatus_pending_p); 5542 } 5543 5544 /* Called when we get an event that may finish an in-line or 5545 out-of-line (displaced stepping) step-over started previously. 5546 Return true if the event is processed and we should go back to the 5547 event loop; false if the caller should continue processing the 5548 event. */ 5549 5550 static int 5551 finish_step_over (struct execution_control_state *ecs) 5552 { 5553 int had_step_over_info; 5554 5555 displaced_step_fixup (ecs->ptid, 5556 ecs->event_thread->suspend.stop_signal); 5557 5558 had_step_over_info = step_over_info_valid_p (); 5559 5560 if (had_step_over_info) 5561 { 5562 /* If we're stepping over a breakpoint with all threads locked, 5563 then only the thread that was stepped should be reporting 5564 back an event. */ 5565 gdb_assert (ecs->event_thread->control.trap_expected); 5566 5567 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) 5568 clear_step_over_info (); 5569 } 5570 5571 if (!target_is_non_stop_p ()) 5572 return 0; 5573 5574 /* Start a new step-over in another thread if there's one that 5575 needs it. */ 5576 start_step_over (); 5577 5578 /* If we were stepping over a breakpoint before, and haven't started 5579 a new in-line step-over sequence, then restart all other threads 5580 (except the event thread). We can't do this in all-stop, as then 5581 e.g., we wouldn't be able to issue any other remote packet until 5582 these other threads stop. */ 5583 if (had_step_over_info && !step_over_info_valid_p ()) 5584 { 5585 struct thread_info *pending; 5586 5587 /* If we only have threads with pending statuses, the restart 5588 below won't restart any thread and so nothing re-inserts the 5589 breakpoint we just stepped over. But we need it inserted 5590 when we later process the pending events, otherwise if 5591 another thread has a pending event for this breakpoint too, 5592 we'd discard its event (because the breakpoint that 5593 originally caused the event was no longer inserted). */ 5594 context_switch (ecs->ptid); 5595 insert_breakpoints (); 5596 5597 restart_threads (ecs->event_thread); 5598 5599 /* If we have events pending, go through handle_inferior_event 5600 again, picking up a pending event at random. This avoids 5601 thread starvation. */ 5602 5603 /* But not if we just stepped over a watchpoint in order to let 5604 the instruction execute so we can evaluate its expression. 5605 The set of watchpoints that triggered is recorded in the 5606 breakpoint objects themselves (see bp->watchpoint_triggered). 5607 If we processed another event first, that other event could 5608 clobber this info. */ 5609 if (ecs->event_thread->stepping_over_watchpoint) 5610 return 0; 5611 5612 pending = iterate_over_threads (resumed_thread_with_pending_status, 5613 NULL); 5614 if (pending != NULL) 5615 { 5616 struct thread_info *tp = ecs->event_thread; 5617 struct regcache *regcache; 5618 5619 if (debug_infrun) 5620 { 5621 fprintf_unfiltered (gdb_stdlog, 5622 "infrun: found resumed threads with " 5623 "pending events, saving status\n"); 5624 } 5625 5626 gdb_assert (pending != tp); 5627 5628 /* Record the event thread's event for later. */ 5629 save_waitstatus (tp, &ecs->ws); 5630 /* This was cleared early, by handle_inferior_event. Set it 5631 so this pending event is considered by 5632 do_target_wait. */ 5633 tp->resumed = 1; 5634 5635 gdb_assert (!tp->executing); 5636 5637 regcache = get_thread_regcache (tp->ptid); 5638 tp->suspend.stop_pc = regcache_read_pc (regcache); 5639 5640 if (debug_infrun) 5641 { 5642 fprintf_unfiltered (gdb_stdlog, 5643 "infrun: saved stop_pc=%s for %s " 5644 "(currently_stepping=%d)\n", 5645 paddress (target_gdbarch (), 5646 tp->suspend.stop_pc), 5647 target_pid_to_str (tp->ptid), 5648 currently_stepping (tp)); 5649 } 5650 5651 /* This in-line step-over finished; clear this so we won't 5652 start a new one. This is what handle_signal_stop would 5653 do, if we returned false. */ 5654 tp->stepping_over_breakpoint = 0; 5655 5656 /* Wake up the event loop again. */ 5657 mark_async_event_handler (infrun_async_inferior_event_token); 5658 5659 prepare_to_wait (ecs); 5660 return 1; 5661 } 5662 } 5663 5664 return 0; 5665 } 5666 5667 /* Come here when the program has stopped with a signal. */ 5668 5669 static void 5670 handle_signal_stop (struct execution_control_state *ecs) 5671 { 5672 struct frame_info *frame; 5673 struct gdbarch *gdbarch; 5674 int stopped_by_watchpoint; 5675 enum stop_kind stop_soon; 5676 int random_signal; 5677 5678 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED); 5679 5680 /* Do we need to clean up the state of a thread that has 5681 completed a displaced single-step? (Doing so usually affects 5682 the PC, so do it here, before we set stop_pc.) */ 5683 if (finish_step_over (ecs)) 5684 return; 5685 5686 /* If we either finished a single-step or hit a breakpoint, but 5687 the user wanted this thread to be stopped, pretend we got a 5688 SIG0 (generic unsignaled stop). */ 5689 if (ecs->event_thread->stop_requested 5690 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) 5691 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 5692 5693 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); 5694 5695 if (debug_infrun) 5696 { 5697 struct regcache *regcache = get_thread_regcache (ecs->ptid); 5698 struct gdbarch *gdbarch = get_regcache_arch (regcache); 5699 struct cleanup *old_chain = save_inferior_ptid (); 5700 5701 inferior_ptid = ecs->ptid; 5702 5703 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n", 5704 paddress (gdbarch, stop_pc)); 5705 if (target_stopped_by_watchpoint ()) 5706 { 5707 CORE_ADDR addr; 5708 5709 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n"); 5710 5711 if (target_stopped_data_address (¤t_target, &addr)) 5712 fprintf_unfiltered (gdb_stdlog, 5713 "infrun: stopped data address = %s\n", 5714 paddress (gdbarch, addr)); 5715 else 5716 fprintf_unfiltered (gdb_stdlog, 5717 "infrun: (no data address available)\n"); 5718 } 5719 5720 do_cleanups (old_chain); 5721 } 5722 5723 /* This is originated from start_remote(), start_inferior() and 5724 shared libraries hook functions. */ 5725 stop_soon = get_inferior_stop_soon (ecs->ptid); 5726 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) 5727 { 5728 if (!ptid_equal (ecs->ptid, inferior_ptid)) 5729 context_switch (ecs->ptid); 5730 if (debug_infrun) 5731 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); 5732 stop_print_frame = 1; 5733 stop_waiting (ecs); 5734 return; 5735 } 5736 5737 /* This originates from attach_command(). We need to overwrite 5738 the stop_signal here, because some kernels don't ignore a 5739 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call. 5740 See more comments in inferior.h. On the other hand, if we 5741 get a non-SIGSTOP, report it to the user - assume the backend 5742 will handle the SIGSTOP if it should show up later. 5743 5744 Also consider that the attach is complete when we see a 5745 SIGTRAP. Some systems (e.g. Windows), and stubs supporting 5746 target extended-remote report it instead of a SIGSTOP 5747 (e.g. gdbserver). We already rely on SIGTRAP being our 5748 signal, so this is no exception. 5749 5750 Also consider that the attach is complete when we see a 5751 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell 5752 the target to stop all threads of the inferior, in case the 5753 low level attach operation doesn't stop them implicitly. If 5754 they weren't stopped implicitly, then the stub will report a 5755 GDB_SIGNAL_0, meaning: stopped for no particular reason 5756 other than GDB's request. */ 5757 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP 5758 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP 5759 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP 5760 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0)) 5761 { 5762 stop_print_frame = 1; 5763 stop_waiting (ecs); 5764 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 5765 return; 5766 } 5767 5768 /* See if something interesting happened to the non-current thread. If 5769 so, then switch to that thread. */ 5770 if (!ptid_equal (ecs->ptid, inferior_ptid)) 5771 { 5772 if (debug_infrun) 5773 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); 5774 5775 context_switch (ecs->ptid); 5776 5777 if (deprecated_context_hook) 5778 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid)); 5779 } 5780 5781 /* At this point, get hold of the now-current thread's frame. */ 5782 frame = get_current_frame (); 5783 gdbarch = get_frame_arch (frame); 5784 5785 /* Pull the single step breakpoints out of the target. */ 5786 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) 5787 { 5788 struct regcache *regcache; 5789 struct address_space *aspace; 5790 CORE_ADDR pc; 5791 5792 regcache = get_thread_regcache (ecs->ptid); 5793 aspace = get_regcache_aspace (regcache); 5794 pc = regcache_read_pc (regcache); 5795 5796 /* However, before doing so, if this single-step breakpoint was 5797 actually for another thread, set this thread up for moving 5798 past it. */ 5799 if (!thread_has_single_step_breakpoint_here (ecs->event_thread, 5800 aspace, pc)) 5801 { 5802 if (single_step_breakpoint_inserted_here_p (aspace, pc)) 5803 { 5804 if (debug_infrun) 5805 { 5806 fprintf_unfiltered (gdb_stdlog, 5807 "infrun: [%s] hit another thread's " 5808 "single-step breakpoint\n", 5809 target_pid_to_str (ecs->ptid)); 5810 } 5811 ecs->hit_singlestep_breakpoint = 1; 5812 } 5813 } 5814 else 5815 { 5816 if (debug_infrun) 5817 { 5818 fprintf_unfiltered (gdb_stdlog, 5819 "infrun: [%s] hit its " 5820 "single-step breakpoint\n", 5821 target_pid_to_str (ecs->ptid)); 5822 } 5823 } 5824 } 5825 delete_just_stopped_threads_single_step_breakpoints (); 5826 5827 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP 5828 && ecs->event_thread->control.trap_expected 5829 && ecs->event_thread->stepping_over_watchpoint) 5830 stopped_by_watchpoint = 0; 5831 else 5832 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws); 5833 5834 /* If necessary, step over this watchpoint. We'll be back to display 5835 it in a moment. */ 5836 if (stopped_by_watchpoint 5837 && (target_have_steppable_watchpoint 5838 || gdbarch_have_nonsteppable_watchpoint (gdbarch))) 5839 { 5840 /* At this point, we are stopped at an instruction which has 5841 attempted to write to a piece of memory under control of 5842 a watchpoint. The instruction hasn't actually executed 5843 yet. If we were to evaluate the watchpoint expression 5844 now, we would get the old value, and therefore no change 5845 would seem to have occurred. 5846 5847 In order to make watchpoints work `right', we really need 5848 to complete the memory write, and then evaluate the 5849 watchpoint expression. We do this by single-stepping the 5850 target. 5851 5852 It may not be necessary to disable the watchpoint to step over 5853 it. For example, the PA can (with some kernel cooperation) 5854 single step over a watchpoint without disabling the watchpoint. 5855 5856 It is far more common to need to disable a watchpoint to step 5857 the inferior over it. If we have non-steppable watchpoints, 5858 we must disable the current watchpoint; it's simplest to 5859 disable all watchpoints. 5860 5861 Any breakpoint at PC must also be stepped over -- if there's 5862 one, it will have already triggered before the watchpoint 5863 triggered, and we either already reported it to the user, or 5864 it didn't cause a stop and we called keep_going. In either 5865 case, if there was a breakpoint at PC, we must be trying to 5866 step past it. */ 5867 ecs->event_thread->stepping_over_watchpoint = 1; 5868 keep_going (ecs); 5869 return; 5870 } 5871 5872 ecs->event_thread->stepping_over_breakpoint = 0; 5873 ecs->event_thread->stepping_over_watchpoint = 0; 5874 bpstat_clear (&ecs->event_thread->control.stop_bpstat); 5875 ecs->event_thread->control.stop_step = 0; 5876 stop_print_frame = 1; 5877 stopped_by_random_signal = 0; 5878 5879 /* Hide inlined functions starting here, unless we just performed stepi or 5880 nexti. After stepi and nexti, always show the innermost frame (not any 5881 inline function call sites). */ 5882 if (ecs->event_thread->control.step_range_end != 1) 5883 { 5884 struct address_space *aspace = 5885 get_regcache_aspace (get_thread_regcache (ecs->ptid)); 5886 5887 /* skip_inline_frames is expensive, so we avoid it if we can 5888 determine that the address is one where functions cannot have 5889 been inlined. This improves performance with inferiors that 5890 load a lot of shared libraries, because the solib event 5891 breakpoint is defined as the address of a function (i.e. not 5892 inline). Note that we have to check the previous PC as well 5893 as the current one to catch cases when we have just 5894 single-stepped off a breakpoint prior to reinstating it. 5895 Note that we're assuming that the code we single-step to is 5896 not inline, but that's not definitive: there's nothing 5897 preventing the event breakpoint function from containing 5898 inlined code, and the single-step ending up there. If the 5899 user had set a breakpoint on that inlined code, the missing 5900 skip_inline_frames call would break things. Fortunately 5901 that's an extremely unlikely scenario. */ 5902 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws) 5903 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP 5904 && ecs->event_thread->control.trap_expected 5905 && pc_at_non_inline_function (aspace, 5906 ecs->event_thread->prev_pc, 5907 &ecs->ws))) 5908 { 5909 skip_inline_frames (ecs->ptid); 5910 5911 /* Re-fetch current thread's frame in case that invalidated 5912 the frame cache. */ 5913 frame = get_current_frame (); 5914 gdbarch = get_frame_arch (frame); 5915 } 5916 } 5917 5918 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP 5919 && ecs->event_thread->control.trap_expected 5920 && gdbarch_single_step_through_delay_p (gdbarch) 5921 && currently_stepping (ecs->event_thread)) 5922 { 5923 /* We're trying to step off a breakpoint. Turns out that we're 5924 also on an instruction that needs to be stepped multiple 5925 times before it's been fully executing. E.g., architectures 5926 with a delay slot. It needs to be stepped twice, once for 5927 the instruction and once for the delay slot. */ 5928 int step_through_delay 5929 = gdbarch_single_step_through_delay (gdbarch, frame); 5930 5931 if (debug_infrun && step_through_delay) 5932 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); 5933 if (ecs->event_thread->control.step_range_end == 0 5934 && step_through_delay) 5935 { 5936 /* The user issued a continue when stopped at a breakpoint. 5937 Set up for another trap and get out of here. */ 5938 ecs->event_thread->stepping_over_breakpoint = 1; 5939 keep_going (ecs); 5940 return; 5941 } 5942 else if (step_through_delay) 5943 { 5944 /* The user issued a step when stopped at a breakpoint. 5945 Maybe we should stop, maybe we should not - the delay 5946 slot *might* correspond to a line of source. In any 5947 case, don't decide that here, just set 5948 ecs->stepping_over_breakpoint, making sure we 5949 single-step again before breakpoints are re-inserted. */ 5950 ecs->event_thread->stepping_over_breakpoint = 1; 5951 } 5952 } 5953 5954 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that 5955 handles this event. */ 5956 ecs->event_thread->control.stop_bpstat 5957 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), 5958 stop_pc, ecs->ptid, &ecs->ws); 5959 5960 /* Following in case break condition called a 5961 function. */ 5962 stop_print_frame = 1; 5963 5964 /* This is where we handle "moribund" watchpoints. Unlike 5965 software breakpoints traps, hardware watchpoint traps are 5966 always distinguishable from random traps. If no high-level 5967 watchpoint is associated with the reported stop data address 5968 anymore, then the bpstat does not explain the signal --- 5969 simply make sure to ignore it if `stopped_by_watchpoint' is 5970 set. */ 5971 5972 if (debug_infrun 5973 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP 5974 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, 5975 GDB_SIGNAL_TRAP) 5976 && stopped_by_watchpoint) 5977 fprintf_unfiltered (gdb_stdlog, 5978 "infrun: no user watchpoint explains " 5979 "watchpoint SIGTRAP, ignoring\n"); 5980 5981 /* NOTE: cagney/2003-03-29: These checks for a random signal 5982 at one stage in the past included checks for an inferior 5983 function call's call dummy's return breakpoint. The original 5984 comment, that went with the test, read: 5985 5986 ``End of a stack dummy. Some systems (e.g. Sony news) give 5987 another signal besides SIGTRAP, so check here as well as 5988 above.'' 5989 5990 If someone ever tries to get call dummys on a 5991 non-executable stack to work (where the target would stop 5992 with something like a SIGSEGV), then those tests might need 5993 to be re-instated. Given, however, that the tests were only 5994 enabled when momentary breakpoints were not being used, I 5995 suspect that it won't be the case. 5996 5997 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to 5998 be necessary for call dummies on a non-executable stack on 5999 SPARC. */ 6000 6001 /* See if the breakpoints module can explain the signal. */ 6002 random_signal 6003 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, 6004 ecs->event_thread->suspend.stop_signal); 6005 6006 /* Maybe this was a trap for a software breakpoint that has since 6007 been removed. */ 6008 if (random_signal && target_stopped_by_sw_breakpoint ()) 6009 { 6010 if (program_breakpoint_here_p (gdbarch, stop_pc)) 6011 { 6012 struct regcache *regcache; 6013 int decr_pc; 6014 6015 /* Re-adjust PC to what the program would see if GDB was not 6016 debugging it. */ 6017 regcache = get_thread_regcache (ecs->event_thread->ptid); 6018 decr_pc = gdbarch_decr_pc_after_break (gdbarch); 6019 if (decr_pc != 0) 6020 { 6021 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL); 6022 6023 if (record_full_is_used ()) 6024 record_full_gdb_operation_disable_set (); 6025 6026 regcache_write_pc (regcache, stop_pc + decr_pc); 6027 6028 do_cleanups (old_cleanups); 6029 } 6030 } 6031 else 6032 { 6033 /* A delayed software breakpoint event. Ignore the trap. */ 6034 if (debug_infrun) 6035 fprintf_unfiltered (gdb_stdlog, 6036 "infrun: delayed software breakpoint " 6037 "trap, ignoring\n"); 6038 random_signal = 0; 6039 } 6040 } 6041 6042 /* Maybe this was a trap for a hardware breakpoint/watchpoint that 6043 has since been removed. */ 6044 if (random_signal && target_stopped_by_hw_breakpoint ()) 6045 { 6046 /* A delayed hardware breakpoint event. Ignore the trap. */ 6047 if (debug_infrun) 6048 fprintf_unfiltered (gdb_stdlog, 6049 "infrun: delayed hardware breakpoint/watchpoint " 6050 "trap, ignoring\n"); 6051 random_signal = 0; 6052 } 6053 6054 /* If not, perhaps stepping/nexting can. */ 6055 if (random_signal) 6056 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP 6057 && currently_stepping (ecs->event_thread)); 6058 6059 /* Perhaps the thread hit a single-step breakpoint of _another_ 6060 thread. Single-step breakpoints are transparent to the 6061 breakpoints module. */ 6062 if (random_signal) 6063 random_signal = !ecs->hit_singlestep_breakpoint; 6064 6065 /* No? Perhaps we got a moribund watchpoint. */ 6066 if (random_signal) 6067 random_signal = !stopped_by_watchpoint; 6068 6069 /* For the program's own signals, act according to 6070 the signal handling tables. */ 6071 6072 if (random_signal) 6073 { 6074 /* Signal not for debugging purposes. */ 6075 struct inferior *inf = find_inferior_ptid (ecs->ptid); 6076 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal; 6077 6078 if (debug_infrun) 6079 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n", 6080 gdb_signal_to_symbol_string (stop_signal)); 6081 6082 stopped_by_random_signal = 1; 6083 6084 /* Always stop on signals if we're either just gaining control 6085 of the program, or the user explicitly requested this thread 6086 to remain stopped. */ 6087 if (stop_soon != NO_STOP_QUIETLY 6088 || ecs->event_thread->stop_requested 6089 || (!inf->detaching 6090 && signal_stop_state (ecs->event_thread->suspend.stop_signal))) 6091 { 6092 stop_waiting (ecs); 6093 return; 6094 } 6095 6096 /* Notify observers the signal has "handle print" set. Note we 6097 returned early above if stopping; normal_stop handles the 6098 printing in that case. */ 6099 if (signal_print[ecs->event_thread->suspend.stop_signal]) 6100 { 6101 /* The signal table tells us to print about this signal. */ 6102 target_terminal_ours_for_output (); 6103 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal); 6104 target_terminal_inferior (); 6105 } 6106 6107 /* Clear the signal if it should not be passed. */ 6108 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0) 6109 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 6110 6111 if (ecs->event_thread->prev_pc == stop_pc 6112 && ecs->event_thread->control.trap_expected 6113 && ecs->event_thread->control.step_resume_breakpoint == NULL) 6114 { 6115 int was_in_line; 6116 6117 /* We were just starting a new sequence, attempting to 6118 single-step off of a breakpoint and expecting a SIGTRAP. 6119 Instead this signal arrives. This signal will take us out 6120 of the stepping range so GDB needs to remember to, when 6121 the signal handler returns, resume stepping off that 6122 breakpoint. */ 6123 /* To simplify things, "continue" is forced to use the same 6124 code paths as single-step - set a breakpoint at the 6125 signal return address and then, once hit, step off that 6126 breakpoint. */ 6127 if (debug_infrun) 6128 fprintf_unfiltered (gdb_stdlog, 6129 "infrun: signal arrived while stepping over " 6130 "breakpoint\n"); 6131 6132 was_in_line = step_over_info_valid_p (); 6133 clear_step_over_info (); 6134 insert_hp_step_resume_breakpoint_at_frame (frame); 6135 ecs->event_thread->step_after_step_resume_breakpoint = 1; 6136 /* Reset trap_expected to ensure breakpoints are re-inserted. */ 6137 ecs->event_thread->control.trap_expected = 0; 6138 6139 if (target_is_non_stop_p ()) 6140 { 6141 /* Either "set non-stop" is "on", or the target is 6142 always in non-stop mode. In this case, we have a bit 6143 more work to do. Resume the current thread, and if 6144 we had paused all threads, restart them while the 6145 signal handler runs. */ 6146 keep_going (ecs); 6147 6148 if (was_in_line) 6149 { 6150 restart_threads (ecs->event_thread); 6151 } 6152 else if (debug_infrun) 6153 { 6154 fprintf_unfiltered (gdb_stdlog, 6155 "infrun: no need to restart threads\n"); 6156 } 6157 return; 6158 } 6159 6160 /* If we were nexting/stepping some other thread, switch to 6161 it, so that we don't continue it, losing control. */ 6162 if (!switch_back_to_stepped_thread (ecs)) 6163 keep_going (ecs); 6164 return; 6165 } 6166 6167 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0 6168 && (pc_in_thread_step_range (stop_pc, ecs->event_thread) 6169 || ecs->event_thread->control.step_range_end == 1) 6170 && frame_id_eq (get_stack_frame_id (frame), 6171 ecs->event_thread->control.step_stack_frame_id) 6172 && ecs->event_thread->control.step_resume_breakpoint == NULL) 6173 { 6174 /* The inferior is about to take a signal that will take it 6175 out of the single step range. Set a breakpoint at the 6176 current PC (which is presumably where the signal handler 6177 will eventually return) and then allow the inferior to 6178 run free. 6179 6180 Note that this is only needed for a signal delivered 6181 while in the single-step range. Nested signals aren't a 6182 problem as they eventually all return. */ 6183 if (debug_infrun) 6184 fprintf_unfiltered (gdb_stdlog, 6185 "infrun: signal may take us out of " 6186 "single-step range\n"); 6187 6188 clear_step_over_info (); 6189 insert_hp_step_resume_breakpoint_at_frame (frame); 6190 ecs->event_thread->step_after_step_resume_breakpoint = 1; 6191 /* Reset trap_expected to ensure breakpoints are re-inserted. */ 6192 ecs->event_thread->control.trap_expected = 0; 6193 keep_going (ecs); 6194 return; 6195 } 6196 6197 /* Note: step_resume_breakpoint may be non-NULL. This occures 6198 when either there's a nested signal, or when there's a 6199 pending signal enabled just as the signal handler returns 6200 (leaving the inferior at the step-resume-breakpoint without 6201 actually executing it). Either way continue until the 6202 breakpoint is really hit. */ 6203 6204 if (!switch_back_to_stepped_thread (ecs)) 6205 { 6206 if (debug_infrun) 6207 fprintf_unfiltered (gdb_stdlog, 6208 "infrun: random signal, keep going\n"); 6209 6210 keep_going (ecs); 6211 } 6212 return; 6213 } 6214 6215 process_event_stop_test (ecs); 6216 } 6217 6218 /* Come here when we've got some debug event / signal we can explain 6219 (IOW, not a random signal), and test whether it should cause a 6220 stop, or whether we should resume the inferior (transparently). 6221 E.g., could be a breakpoint whose condition evaluates false; we 6222 could be still stepping within the line; etc. */ 6223 6224 static void 6225 process_event_stop_test (struct execution_control_state *ecs) 6226 { 6227 struct symtab_and_line stop_pc_sal; 6228 struct frame_info *frame; 6229 struct gdbarch *gdbarch; 6230 CORE_ADDR jmp_buf_pc; 6231 struct bpstat_what what; 6232 6233 /* Handle cases caused by hitting a breakpoint. */ 6234 6235 frame = get_current_frame (); 6236 gdbarch = get_frame_arch (frame); 6237 6238 what = bpstat_what (ecs->event_thread->control.stop_bpstat); 6239 6240 if (what.call_dummy) 6241 { 6242 stop_stack_dummy = what.call_dummy; 6243 } 6244 6245 /* A few breakpoint types have callbacks associated (e.g., 6246 bp_jit_event). Run them now. */ 6247 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat); 6248 6249 /* If we hit an internal event that triggers symbol changes, the 6250 current frame will be invalidated within bpstat_what (e.g., if we 6251 hit an internal solib event). Re-fetch it. */ 6252 frame = get_current_frame (); 6253 gdbarch = get_frame_arch (frame); 6254 6255 switch (what.main_action) 6256 { 6257 case BPSTAT_WHAT_SET_LONGJMP_RESUME: 6258 /* If we hit the breakpoint at longjmp while stepping, we 6259 install a momentary breakpoint at the target of the 6260 jmp_buf. */ 6261 6262 if (debug_infrun) 6263 fprintf_unfiltered (gdb_stdlog, 6264 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); 6265 6266 ecs->event_thread->stepping_over_breakpoint = 1; 6267 6268 if (what.is_longjmp) 6269 { 6270 struct value *arg_value; 6271 6272 /* If we set the longjmp breakpoint via a SystemTap probe, 6273 then use it to extract the arguments. The destination PC 6274 is the third argument to the probe. */ 6275 arg_value = probe_safe_evaluate_at_pc (frame, 2); 6276 if (arg_value) 6277 { 6278 jmp_buf_pc = value_as_address (arg_value); 6279 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc); 6280 } 6281 else if (!gdbarch_get_longjmp_target_p (gdbarch) 6282 || !gdbarch_get_longjmp_target (gdbarch, 6283 frame, &jmp_buf_pc)) 6284 { 6285 if (debug_infrun) 6286 fprintf_unfiltered (gdb_stdlog, 6287 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME " 6288 "(!gdbarch_get_longjmp_target)\n"); 6289 keep_going (ecs); 6290 return; 6291 } 6292 6293 /* Insert a breakpoint at resume address. */ 6294 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc); 6295 } 6296 else 6297 check_exception_resume (ecs, frame); 6298 keep_going (ecs); 6299 return; 6300 6301 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: 6302 { 6303 struct frame_info *init_frame; 6304 6305 /* There are several cases to consider. 6306 6307 1. The initiating frame no longer exists. In this case we 6308 must stop, because the exception or longjmp has gone too 6309 far. 6310 6311 2. The initiating frame exists, and is the same as the 6312 current frame. We stop, because the exception or longjmp 6313 has been caught. 6314 6315 3. The initiating frame exists and is different from the 6316 current frame. This means the exception or longjmp has 6317 been caught beneath the initiating frame, so keep going. 6318 6319 4. longjmp breakpoint has been placed just to protect 6320 against stale dummy frames and user is not interested in 6321 stopping around longjmps. */ 6322 6323 if (debug_infrun) 6324 fprintf_unfiltered (gdb_stdlog, 6325 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); 6326 6327 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint 6328 != NULL); 6329 delete_exception_resume_breakpoint (ecs->event_thread); 6330 6331 if (what.is_longjmp) 6332 { 6333 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread); 6334 6335 if (!frame_id_p (ecs->event_thread->initiating_frame)) 6336 { 6337 /* Case 4. */ 6338 keep_going (ecs); 6339 return; 6340 } 6341 } 6342 6343 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame); 6344 6345 if (init_frame) 6346 { 6347 struct frame_id current_id 6348 = get_frame_id (get_current_frame ()); 6349 if (frame_id_eq (current_id, 6350 ecs->event_thread->initiating_frame)) 6351 { 6352 /* Case 2. Fall through. */ 6353 } 6354 else 6355 { 6356 /* Case 3. */ 6357 keep_going (ecs); 6358 return; 6359 } 6360 } 6361 6362 /* For Cases 1 and 2, remove the step-resume breakpoint, if it 6363 exists. */ 6364 delete_step_resume_breakpoint (ecs->event_thread); 6365 6366 end_stepping_range (ecs); 6367 } 6368 return; 6369 6370 case BPSTAT_WHAT_SINGLE: 6371 if (debug_infrun) 6372 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); 6373 ecs->event_thread->stepping_over_breakpoint = 1; 6374 /* Still need to check other stuff, at least the case where we 6375 are stepping and step out of the right range. */ 6376 break; 6377 6378 case BPSTAT_WHAT_STEP_RESUME: 6379 if (debug_infrun) 6380 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); 6381 6382 delete_step_resume_breakpoint (ecs->event_thread); 6383 if (ecs->event_thread->control.proceed_to_finish 6384 && execution_direction == EXEC_REVERSE) 6385 { 6386 struct thread_info *tp = ecs->event_thread; 6387 6388 /* We are finishing a function in reverse, and just hit the 6389 step-resume breakpoint at the start address of the 6390 function, and we're almost there -- just need to back up 6391 by one more single-step, which should take us back to the 6392 function call. */ 6393 tp->control.step_range_start = tp->control.step_range_end = 1; 6394 keep_going (ecs); 6395 return; 6396 } 6397 fill_in_stop_func (gdbarch, ecs); 6398 if (stop_pc == ecs->stop_func_start 6399 && execution_direction == EXEC_REVERSE) 6400 { 6401 /* We are stepping over a function call in reverse, and just 6402 hit the step-resume breakpoint at the start address of 6403 the function. Go back to single-stepping, which should 6404 take us back to the function call. */ 6405 ecs->event_thread->stepping_over_breakpoint = 1; 6406 keep_going (ecs); 6407 return; 6408 } 6409 break; 6410 6411 case BPSTAT_WHAT_STOP_NOISY: 6412 if (debug_infrun) 6413 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); 6414 stop_print_frame = 1; 6415 6416 /* Assume the thread stopped for a breapoint. We'll still check 6417 whether a/the breakpoint is there when the thread is next 6418 resumed. */ 6419 ecs->event_thread->stepping_over_breakpoint = 1; 6420 6421 stop_waiting (ecs); 6422 return; 6423 6424 case BPSTAT_WHAT_STOP_SILENT: 6425 if (debug_infrun) 6426 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); 6427 stop_print_frame = 0; 6428 6429 /* Assume the thread stopped for a breapoint. We'll still check 6430 whether a/the breakpoint is there when the thread is next 6431 resumed. */ 6432 ecs->event_thread->stepping_over_breakpoint = 1; 6433 stop_waiting (ecs); 6434 return; 6435 6436 case BPSTAT_WHAT_HP_STEP_RESUME: 6437 if (debug_infrun) 6438 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n"); 6439 6440 delete_step_resume_breakpoint (ecs->event_thread); 6441 if (ecs->event_thread->step_after_step_resume_breakpoint) 6442 { 6443 /* Back when the step-resume breakpoint was inserted, we 6444 were trying to single-step off a breakpoint. Go back to 6445 doing that. */ 6446 ecs->event_thread->step_after_step_resume_breakpoint = 0; 6447 ecs->event_thread->stepping_over_breakpoint = 1; 6448 keep_going (ecs); 6449 return; 6450 } 6451 break; 6452 6453 case BPSTAT_WHAT_KEEP_CHECKING: 6454 break; 6455 } 6456 6457 /* If we stepped a permanent breakpoint and we had a high priority 6458 step-resume breakpoint for the address we stepped, but we didn't 6459 hit it, then we must have stepped into the signal handler. The 6460 step-resume was only necessary to catch the case of _not_ 6461 stepping into the handler, so delete it, and fall through to 6462 checking whether the step finished. */ 6463 if (ecs->event_thread->stepped_breakpoint) 6464 { 6465 struct breakpoint *sr_bp 6466 = ecs->event_thread->control.step_resume_breakpoint; 6467 6468 if (sr_bp != NULL 6469 && sr_bp->loc->permanent 6470 && sr_bp->type == bp_hp_step_resume 6471 && sr_bp->loc->address == ecs->event_thread->prev_pc) 6472 { 6473 if (debug_infrun) 6474 fprintf_unfiltered (gdb_stdlog, 6475 "infrun: stepped permanent breakpoint, stopped in " 6476 "handler\n"); 6477 delete_step_resume_breakpoint (ecs->event_thread); 6478 ecs->event_thread->step_after_step_resume_breakpoint = 0; 6479 } 6480 } 6481 6482 /* We come here if we hit a breakpoint but should not stop for it. 6483 Possibly we also were stepping and should stop for that. So fall 6484 through and test for stepping. But, if not stepping, do not 6485 stop. */ 6486 6487 /* In all-stop mode, if we're currently stepping but have stopped in 6488 some other thread, we need to switch back to the stepped thread. */ 6489 if (switch_back_to_stepped_thread (ecs)) 6490 return; 6491 6492 if (ecs->event_thread->control.step_resume_breakpoint) 6493 { 6494 if (debug_infrun) 6495 fprintf_unfiltered (gdb_stdlog, 6496 "infrun: step-resume breakpoint is inserted\n"); 6497 6498 /* Having a step-resume breakpoint overrides anything 6499 else having to do with stepping commands until 6500 that breakpoint is reached. */ 6501 keep_going (ecs); 6502 return; 6503 } 6504 6505 if (ecs->event_thread->control.step_range_end == 0) 6506 { 6507 if (debug_infrun) 6508 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); 6509 /* Likewise if we aren't even stepping. */ 6510 keep_going (ecs); 6511 return; 6512 } 6513 6514 /* Re-fetch current thread's frame in case the code above caused 6515 the frame cache to be re-initialized, making our FRAME variable 6516 a dangling pointer. */ 6517 frame = get_current_frame (); 6518 gdbarch = get_frame_arch (frame); 6519 fill_in_stop_func (gdbarch, ecs); 6520 6521 /* If stepping through a line, keep going if still within it. 6522 6523 Note that step_range_end is the address of the first instruction 6524 beyond the step range, and NOT the address of the last instruction 6525 within it! 6526 6527 Note also that during reverse execution, we may be stepping 6528 through a function epilogue and therefore must detect when 6529 the current-frame changes in the middle of a line. */ 6530 6531 if (pc_in_thread_step_range (stop_pc, ecs->event_thread) 6532 && (execution_direction != EXEC_REVERSE 6533 || frame_id_eq (get_frame_id (frame), 6534 ecs->event_thread->control.step_frame_id))) 6535 { 6536 if (debug_infrun) 6537 fprintf_unfiltered 6538 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n", 6539 paddress (gdbarch, ecs->event_thread->control.step_range_start), 6540 paddress (gdbarch, ecs->event_thread->control.step_range_end)); 6541 6542 /* Tentatively re-enable range stepping; `resume' disables it if 6543 necessary (e.g., if we're stepping over a breakpoint or we 6544 have software watchpoints). */ 6545 ecs->event_thread->control.may_range_step = 1; 6546 6547 /* When stepping backward, stop at beginning of line range 6548 (unless it's the function entry point, in which case 6549 keep going back to the call point). */ 6550 if (stop_pc == ecs->event_thread->control.step_range_start 6551 && stop_pc != ecs->stop_func_start 6552 && execution_direction == EXEC_REVERSE) 6553 end_stepping_range (ecs); 6554 else 6555 keep_going (ecs); 6556 6557 return; 6558 } 6559 6560 /* We stepped out of the stepping range. */ 6561 6562 /* If we are stepping at the source level and entered the runtime 6563 loader dynamic symbol resolution code... 6564 6565 EXEC_FORWARD: we keep on single stepping until we exit the run 6566 time loader code and reach the callee's address. 6567 6568 EXEC_REVERSE: we've already executed the callee (backward), and 6569 the runtime loader code is handled just like any other 6570 undebuggable function call. Now we need only keep stepping 6571 backward through the trampoline code, and that's handled further 6572 down, so there is nothing for us to do here. */ 6573 6574 if (execution_direction != EXEC_REVERSE 6575 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE 6576 && in_solib_dynsym_resolve_code (stop_pc)) 6577 { 6578 CORE_ADDR pc_after_resolver = 6579 gdbarch_skip_solib_resolver (gdbarch, stop_pc); 6580 6581 if (debug_infrun) 6582 fprintf_unfiltered (gdb_stdlog, 6583 "infrun: stepped into dynsym resolve code\n"); 6584 6585 if (pc_after_resolver) 6586 { 6587 /* Set up a step-resume breakpoint at the address 6588 indicated by SKIP_SOLIB_RESOLVER. */ 6589 struct symtab_and_line sr_sal; 6590 6591 init_sal (&sr_sal); 6592 sr_sal.pc = pc_after_resolver; 6593 sr_sal.pspace = get_frame_program_space (frame); 6594 6595 insert_step_resume_breakpoint_at_sal (gdbarch, 6596 sr_sal, null_frame_id); 6597 } 6598 6599 keep_going (ecs); 6600 return; 6601 } 6602 6603 if (ecs->event_thread->control.step_range_end != 1 6604 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE 6605 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) 6606 && get_frame_type (frame) == SIGTRAMP_FRAME) 6607 { 6608 if (debug_infrun) 6609 fprintf_unfiltered (gdb_stdlog, 6610 "infrun: stepped into signal trampoline\n"); 6611 /* The inferior, while doing a "step" or "next", has ended up in 6612 a signal trampoline (either by a signal being delivered or by 6613 the signal handler returning). Just single-step until the 6614 inferior leaves the trampoline (either by calling the handler 6615 or returning). */ 6616 keep_going (ecs); 6617 return; 6618 } 6619 6620 /* If we're in the return path from a shared library trampoline, 6621 we want to proceed through the trampoline when stepping. */ 6622 /* macro/2012-04-25: This needs to come before the subroutine 6623 call check below as on some targets return trampolines look 6624 like subroutine calls (MIPS16 return thunks). */ 6625 if (gdbarch_in_solib_return_trampoline (gdbarch, 6626 stop_pc, ecs->stop_func_name) 6627 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) 6628 { 6629 /* Determine where this trampoline returns. */ 6630 CORE_ADDR real_stop_pc; 6631 6632 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); 6633 6634 if (debug_infrun) 6635 fprintf_unfiltered (gdb_stdlog, 6636 "infrun: stepped into solib return tramp\n"); 6637 6638 /* Only proceed through if we know where it's going. */ 6639 if (real_stop_pc) 6640 { 6641 /* And put the step-breakpoint there and go until there. */ 6642 struct symtab_and_line sr_sal; 6643 6644 init_sal (&sr_sal); /* initialize to zeroes */ 6645 sr_sal.pc = real_stop_pc; 6646 sr_sal.section = find_pc_overlay (sr_sal.pc); 6647 sr_sal.pspace = get_frame_program_space (frame); 6648 6649 /* Do not specify what the fp should be when we stop since 6650 on some machines the prologue is where the new fp value 6651 is established. */ 6652 insert_step_resume_breakpoint_at_sal (gdbarch, 6653 sr_sal, null_frame_id); 6654 6655 /* Restart without fiddling with the step ranges or 6656 other state. */ 6657 keep_going (ecs); 6658 return; 6659 } 6660 } 6661 6662 /* Check for subroutine calls. The check for the current frame 6663 equalling the step ID is not necessary - the check of the 6664 previous frame's ID is sufficient - but it is a common case and 6665 cheaper than checking the previous frame's ID. 6666 6667 NOTE: frame_id_eq will never report two invalid frame IDs as 6668 being equal, so to get into this block, both the current and 6669 previous frame must have valid frame IDs. */ 6670 /* The outer_frame_id check is a heuristic to detect stepping 6671 through startup code. If we step over an instruction which 6672 sets the stack pointer from an invalid value to a valid value, 6673 we may detect that as a subroutine call from the mythical 6674 "outermost" function. This could be fixed by marking 6675 outermost frames as !stack_p,code_p,special_p. Then the 6676 initial outermost frame, before sp was valid, would 6677 have code_addr == &_start. See the comment in frame_id_eq 6678 for more. */ 6679 if (!frame_id_eq (get_stack_frame_id (frame), 6680 ecs->event_thread->control.step_stack_frame_id) 6681 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()), 6682 ecs->event_thread->control.step_stack_frame_id) 6683 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id, 6684 outer_frame_id) 6685 || (ecs->event_thread->control.step_start_function 6686 != find_pc_function (stop_pc))))) 6687 { 6688 CORE_ADDR real_stop_pc; 6689 6690 if (debug_infrun) 6691 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); 6692 6693 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE) 6694 { 6695 /* I presume that step_over_calls is only 0 when we're 6696 supposed to be stepping at the assembly language level 6697 ("stepi"). Just stop. */ 6698 /* And this works the same backward as frontward. MVS */ 6699 end_stepping_range (ecs); 6700 return; 6701 } 6702 6703 /* Reverse stepping through solib trampolines. */ 6704 6705 if (execution_direction == EXEC_REVERSE 6706 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE 6707 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) 6708 || (ecs->stop_func_start == 0 6709 && in_solib_dynsym_resolve_code (stop_pc)))) 6710 { 6711 /* Any solib trampoline code can be handled in reverse 6712 by simply continuing to single-step. We have already 6713 executed the solib function (backwards), and a few 6714 steps will take us back through the trampoline to the 6715 caller. */ 6716 keep_going (ecs); 6717 return; 6718 } 6719 6720 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) 6721 { 6722 /* We're doing a "next". 6723 6724 Normal (forward) execution: set a breakpoint at the 6725 callee's return address (the address at which the caller 6726 will resume). 6727 6728 Reverse (backward) execution. set the step-resume 6729 breakpoint at the start of the function that we just 6730 stepped into (backwards), and continue to there. When we 6731 get there, we'll need to single-step back to the caller. */ 6732 6733 if (execution_direction == EXEC_REVERSE) 6734 { 6735 /* If we're already at the start of the function, we've either 6736 just stepped backward into a single instruction function, 6737 or stepped back out of a signal handler to the first instruction 6738 of the function. Just keep going, which will single-step back 6739 to the caller. */ 6740 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0) 6741 { 6742 struct symtab_and_line sr_sal; 6743 6744 /* Normal function call return (static or dynamic). */ 6745 init_sal (&sr_sal); 6746 sr_sal.pc = ecs->stop_func_start; 6747 sr_sal.pspace = get_frame_program_space (frame); 6748 insert_step_resume_breakpoint_at_sal (gdbarch, 6749 sr_sal, null_frame_id); 6750 } 6751 } 6752 else 6753 insert_step_resume_breakpoint_at_caller (frame); 6754 6755 keep_going (ecs); 6756 return; 6757 } 6758 6759 /* If we are in a function call trampoline (a stub between the 6760 calling routine and the real function), locate the real 6761 function. That's what tells us (a) whether we want to step 6762 into it at all, and (b) what prologue we want to run to the 6763 end of, if we do step into it. */ 6764 real_stop_pc = skip_language_trampoline (frame, stop_pc); 6765 if (real_stop_pc == 0) 6766 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); 6767 if (real_stop_pc != 0) 6768 ecs->stop_func_start = real_stop_pc; 6769 6770 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc)) 6771 { 6772 struct symtab_and_line sr_sal; 6773 6774 init_sal (&sr_sal); 6775 sr_sal.pc = ecs->stop_func_start; 6776 sr_sal.pspace = get_frame_program_space (frame); 6777 6778 insert_step_resume_breakpoint_at_sal (gdbarch, 6779 sr_sal, null_frame_id); 6780 keep_going (ecs); 6781 return; 6782 } 6783 6784 /* If we have line number information for the function we are 6785 thinking of stepping into and the function isn't on the skip 6786 list, step into it. 6787 6788 If there are several symtabs at that PC (e.g. with include 6789 files), just want to know whether *any* of them have line 6790 numbers. find_pc_line handles this. */ 6791 { 6792 struct symtab_and_line tmp_sal; 6793 6794 tmp_sal = find_pc_line (ecs->stop_func_start, 0); 6795 if (tmp_sal.line != 0 6796 && !function_name_is_marked_for_skip (ecs->stop_func_name, 6797 &tmp_sal)) 6798 { 6799 if (execution_direction == EXEC_REVERSE) 6800 handle_step_into_function_backward (gdbarch, ecs); 6801 else 6802 handle_step_into_function (gdbarch, ecs); 6803 return; 6804 } 6805 } 6806 6807 /* If we have no line number and the step-stop-if-no-debug is 6808 set, we stop the step so that the user has a chance to switch 6809 in assembly mode. */ 6810 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE 6811 && step_stop_if_no_debug) 6812 { 6813 end_stepping_range (ecs); 6814 return; 6815 } 6816 6817 if (execution_direction == EXEC_REVERSE) 6818 { 6819 /* If we're already at the start of the function, we've either just 6820 stepped backward into a single instruction function without line 6821 number info, or stepped back out of a signal handler to the first 6822 instruction of the function without line number info. Just keep 6823 going, which will single-step back to the caller. */ 6824 if (ecs->stop_func_start != stop_pc) 6825 { 6826 /* Set a breakpoint at callee's start address. 6827 From there we can step once and be back in the caller. */ 6828 struct symtab_and_line sr_sal; 6829 6830 init_sal (&sr_sal); 6831 sr_sal.pc = ecs->stop_func_start; 6832 sr_sal.pspace = get_frame_program_space (frame); 6833 insert_step_resume_breakpoint_at_sal (gdbarch, 6834 sr_sal, null_frame_id); 6835 } 6836 } 6837 else 6838 /* Set a breakpoint at callee's return address (the address 6839 at which the caller will resume). */ 6840 insert_step_resume_breakpoint_at_caller (frame); 6841 6842 keep_going (ecs); 6843 return; 6844 } 6845 6846 /* Reverse stepping through solib trampolines. */ 6847 6848 if (execution_direction == EXEC_REVERSE 6849 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) 6850 { 6851 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) 6852 || (ecs->stop_func_start == 0 6853 && in_solib_dynsym_resolve_code (stop_pc))) 6854 { 6855 /* Any solib trampoline code can be handled in reverse 6856 by simply continuing to single-step. We have already 6857 executed the solib function (backwards), and a few 6858 steps will take us back through the trampoline to the 6859 caller. */ 6860 keep_going (ecs); 6861 return; 6862 } 6863 else if (in_solib_dynsym_resolve_code (stop_pc)) 6864 { 6865 /* Stepped backward into the solib dynsym resolver. 6866 Set a breakpoint at its start and continue, then 6867 one more step will take us out. */ 6868 struct symtab_and_line sr_sal; 6869 6870 init_sal (&sr_sal); 6871 sr_sal.pc = ecs->stop_func_start; 6872 sr_sal.pspace = get_frame_program_space (frame); 6873 insert_step_resume_breakpoint_at_sal (gdbarch, 6874 sr_sal, null_frame_id); 6875 keep_going (ecs); 6876 return; 6877 } 6878 } 6879 6880 stop_pc_sal = find_pc_line (stop_pc, 0); 6881 6882 /* NOTE: tausq/2004-05-24: This if block used to be done before all 6883 the trampoline processing logic, however, there are some trampolines 6884 that have no names, so we should do trampoline handling first. */ 6885 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE 6886 && ecs->stop_func_name == NULL 6887 && stop_pc_sal.line == 0) 6888 { 6889 if (debug_infrun) 6890 fprintf_unfiltered (gdb_stdlog, 6891 "infrun: stepped into undebuggable function\n"); 6892 6893 /* The inferior just stepped into, or returned to, an 6894 undebuggable function (where there is no debugging information 6895 and no line number corresponding to the address where the 6896 inferior stopped). Since we want to skip this kind of code, 6897 we keep going until the inferior returns from this 6898 function - unless the user has asked us not to (via 6899 set step-mode) or we no longer know how to get back 6900 to the call site. */ 6901 if (step_stop_if_no_debug 6902 || !frame_id_p (frame_unwind_caller_id (frame))) 6903 { 6904 /* If we have no line number and the step-stop-if-no-debug 6905 is set, we stop the step so that the user has a chance to 6906 switch in assembly mode. */ 6907 end_stepping_range (ecs); 6908 return; 6909 } 6910 else 6911 { 6912 /* Set a breakpoint at callee's return address (the address 6913 at which the caller will resume). */ 6914 insert_step_resume_breakpoint_at_caller (frame); 6915 keep_going (ecs); 6916 return; 6917 } 6918 } 6919 6920 if (ecs->event_thread->control.step_range_end == 1) 6921 { 6922 /* It is stepi or nexti. We always want to stop stepping after 6923 one instruction. */ 6924 if (debug_infrun) 6925 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); 6926 end_stepping_range (ecs); 6927 return; 6928 } 6929 6930 if (stop_pc_sal.line == 0) 6931 { 6932 /* We have no line number information. That means to stop 6933 stepping (does this always happen right after one instruction, 6934 when we do "s" in a function with no line numbers, 6935 or can this happen as a result of a return or longjmp?). */ 6936 if (debug_infrun) 6937 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); 6938 end_stepping_range (ecs); 6939 return; 6940 } 6941 6942 /* Look for "calls" to inlined functions, part one. If the inline 6943 frame machinery detected some skipped call sites, we have entered 6944 a new inline function. */ 6945 6946 if (frame_id_eq (get_frame_id (get_current_frame ()), 6947 ecs->event_thread->control.step_frame_id) 6948 && inline_skipped_frames (ecs->ptid)) 6949 { 6950 struct symtab_and_line call_sal; 6951 6952 if (debug_infrun) 6953 fprintf_unfiltered (gdb_stdlog, 6954 "infrun: stepped into inlined function\n"); 6955 6956 find_frame_sal (get_current_frame (), &call_sal); 6957 6958 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL) 6959 { 6960 /* For "step", we're going to stop. But if the call site 6961 for this inlined function is on the same source line as 6962 we were previously stepping, go down into the function 6963 first. Otherwise stop at the call site. */ 6964 6965 if (call_sal.line == ecs->event_thread->current_line 6966 && call_sal.symtab == ecs->event_thread->current_symtab) 6967 step_into_inline_frame (ecs->ptid); 6968 6969 end_stepping_range (ecs); 6970 return; 6971 } 6972 else 6973 { 6974 /* For "next", we should stop at the call site if it is on a 6975 different source line. Otherwise continue through the 6976 inlined function. */ 6977 if (call_sal.line == ecs->event_thread->current_line 6978 && call_sal.symtab == ecs->event_thread->current_symtab) 6979 keep_going (ecs); 6980 else 6981 end_stepping_range (ecs); 6982 return; 6983 } 6984 } 6985 6986 /* Look for "calls" to inlined functions, part two. If we are still 6987 in the same real function we were stepping through, but we have 6988 to go further up to find the exact frame ID, we are stepping 6989 through a more inlined call beyond its call site. */ 6990 6991 if (get_frame_type (get_current_frame ()) == INLINE_FRAME 6992 && !frame_id_eq (get_frame_id (get_current_frame ()), 6993 ecs->event_thread->control.step_frame_id) 6994 && stepped_in_from (get_current_frame (), 6995 ecs->event_thread->control.step_frame_id)) 6996 { 6997 if (debug_infrun) 6998 fprintf_unfiltered (gdb_stdlog, 6999 "infrun: stepping through inlined function\n"); 7000 7001 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) 7002 keep_going (ecs); 7003 else 7004 end_stepping_range (ecs); 7005 return; 7006 } 7007 7008 if ((stop_pc == stop_pc_sal.pc) 7009 && (ecs->event_thread->current_line != stop_pc_sal.line 7010 || ecs->event_thread->current_symtab != stop_pc_sal.symtab)) 7011 { 7012 /* We are at the start of a different line. So stop. Note that 7013 we don't stop if we step into the middle of a different line. 7014 That is said to make things like for (;;) statements work 7015 better. */ 7016 if (debug_infrun) 7017 fprintf_unfiltered (gdb_stdlog, 7018 "infrun: stepped to a different line\n"); 7019 end_stepping_range (ecs); 7020 return; 7021 } 7022 7023 /* We aren't done stepping. 7024 7025 Optimize by setting the stepping range to the line. 7026 (We might not be in the original line, but if we entered a 7027 new line in mid-statement, we continue stepping. This makes 7028 things like for(;;) statements work better.) */ 7029 7030 ecs->event_thread->control.step_range_start = stop_pc_sal.pc; 7031 ecs->event_thread->control.step_range_end = stop_pc_sal.end; 7032 ecs->event_thread->control.may_range_step = 1; 7033 set_step_info (frame, stop_pc_sal); 7034 7035 if (debug_infrun) 7036 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); 7037 keep_going (ecs); 7038 } 7039 7040 /* In all-stop mode, if we're currently stepping but have stopped in 7041 some other thread, we may need to switch back to the stepped 7042 thread. Returns true we set the inferior running, false if we left 7043 it stopped (and the event needs further processing). */ 7044 7045 static int 7046 switch_back_to_stepped_thread (struct execution_control_state *ecs) 7047 { 7048 if (!target_is_non_stop_p ()) 7049 { 7050 struct thread_info *tp; 7051 struct thread_info *stepping_thread; 7052 7053 /* If any thread is blocked on some internal breakpoint, and we 7054 simply need to step over that breakpoint to get it going 7055 again, do that first. */ 7056 7057 /* However, if we see an event for the stepping thread, then we 7058 know all other threads have been moved past their breakpoints 7059 already. Let the caller check whether the step is finished, 7060 etc., before deciding to move it past a breakpoint. */ 7061 if (ecs->event_thread->control.step_range_end != 0) 7062 return 0; 7063 7064 /* Check if the current thread is blocked on an incomplete 7065 step-over, interrupted by a random signal. */ 7066 if (ecs->event_thread->control.trap_expected 7067 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP) 7068 { 7069 if (debug_infrun) 7070 { 7071 fprintf_unfiltered (gdb_stdlog, 7072 "infrun: need to finish step-over of [%s]\n", 7073 target_pid_to_str (ecs->event_thread->ptid)); 7074 } 7075 keep_going (ecs); 7076 return 1; 7077 } 7078 7079 /* Check if the current thread is blocked by a single-step 7080 breakpoint of another thread. */ 7081 if (ecs->hit_singlestep_breakpoint) 7082 { 7083 if (debug_infrun) 7084 { 7085 fprintf_unfiltered (gdb_stdlog, 7086 "infrun: need to step [%s] over single-step " 7087 "breakpoint\n", 7088 target_pid_to_str (ecs->ptid)); 7089 } 7090 keep_going (ecs); 7091 return 1; 7092 } 7093 7094 /* If this thread needs yet another step-over (e.g., stepping 7095 through a delay slot), do it first before moving on to 7096 another thread. */ 7097 if (thread_still_needs_step_over (ecs->event_thread)) 7098 { 7099 if (debug_infrun) 7100 { 7101 fprintf_unfiltered (gdb_stdlog, 7102 "infrun: thread [%s] still needs step-over\n", 7103 target_pid_to_str (ecs->event_thread->ptid)); 7104 } 7105 keep_going (ecs); 7106 return 1; 7107 } 7108 7109 /* If scheduler locking applies even if not stepping, there's no 7110 need to walk over threads. Above we've checked whether the 7111 current thread is stepping. If some other thread not the 7112 event thread is stepping, then it must be that scheduler 7113 locking is not in effect. */ 7114 if (schedlock_applies (ecs->event_thread)) 7115 return 0; 7116 7117 /* Otherwise, we no longer expect a trap in the current thread. 7118 Clear the trap_expected flag before switching back -- this is 7119 what keep_going does as well, if we call it. */ 7120 ecs->event_thread->control.trap_expected = 0; 7121 7122 /* Likewise, clear the signal if it should not be passed. */ 7123 if (!signal_program[ecs->event_thread->suspend.stop_signal]) 7124 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 7125 7126 /* Do all pending step-overs before actually proceeding with 7127 step/next/etc. */ 7128 if (start_step_over ()) 7129 { 7130 prepare_to_wait (ecs); 7131 return 1; 7132 } 7133 7134 /* Look for the stepping/nexting thread. */ 7135 stepping_thread = NULL; 7136 7137 ALL_NON_EXITED_THREADS (tp) 7138 { 7139 /* Ignore threads of processes the caller is not 7140 resuming. */ 7141 if (!sched_multi 7142 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid)) 7143 continue; 7144 7145 /* When stepping over a breakpoint, we lock all threads 7146 except the one that needs to move past the breakpoint. 7147 If a non-event thread has this set, the "incomplete 7148 step-over" check above should have caught it earlier. */ 7149 if (tp->control.trap_expected) 7150 { 7151 internal_error (__FILE__, __LINE__, 7152 "[%s] has inconsistent state: " 7153 "trap_expected=%d\n", 7154 target_pid_to_str (tp->ptid), 7155 tp->control.trap_expected); 7156 } 7157 7158 /* Did we find the stepping thread? */ 7159 if (tp->control.step_range_end) 7160 { 7161 /* Yep. There should only one though. */ 7162 gdb_assert (stepping_thread == NULL); 7163 7164 /* The event thread is handled at the top, before we 7165 enter this loop. */ 7166 gdb_assert (tp != ecs->event_thread); 7167 7168 /* If some thread other than the event thread is 7169 stepping, then scheduler locking can't be in effect, 7170 otherwise we wouldn't have resumed the current event 7171 thread in the first place. */ 7172 gdb_assert (!schedlock_applies (tp)); 7173 7174 stepping_thread = tp; 7175 } 7176 } 7177 7178 if (stepping_thread != NULL) 7179 { 7180 if (debug_infrun) 7181 fprintf_unfiltered (gdb_stdlog, 7182 "infrun: switching back to stepped thread\n"); 7183 7184 if (keep_going_stepped_thread (stepping_thread)) 7185 { 7186 prepare_to_wait (ecs); 7187 return 1; 7188 } 7189 } 7190 } 7191 7192 return 0; 7193 } 7194 7195 /* Set a previously stepped thread back to stepping. Returns true on 7196 success, false if the resume is not possible (e.g., the thread 7197 vanished). */ 7198 7199 static int 7200 keep_going_stepped_thread (struct thread_info *tp) 7201 { 7202 struct frame_info *frame; 7203 struct execution_control_state ecss; 7204 struct execution_control_state *ecs = &ecss; 7205 7206 /* If the stepping thread exited, then don't try to switch back and 7207 resume it, which could fail in several different ways depending 7208 on the target. Instead, just keep going. 7209 7210 We can find a stepping dead thread in the thread list in two 7211 cases: 7212 7213 - The target supports thread exit events, and when the target 7214 tries to delete the thread from the thread list, inferior_ptid 7215 pointed at the exiting thread. In such case, calling 7216 delete_thread does not really remove the thread from the list; 7217 instead, the thread is left listed, with 'exited' state. 7218 7219 - The target's debug interface does not support thread exit 7220 events, and so we have no idea whatsoever if the previously 7221 stepping thread is still alive. For that reason, we need to 7222 synchronously query the target now. */ 7223 7224 if (is_exited (tp->ptid) 7225 || !target_thread_alive (tp->ptid)) 7226 { 7227 if (debug_infrun) 7228 fprintf_unfiltered (gdb_stdlog, 7229 "infrun: not resuming previously " 7230 "stepped thread, it has vanished\n"); 7231 7232 delete_thread (tp->ptid); 7233 return 0; 7234 } 7235 7236 if (debug_infrun) 7237 fprintf_unfiltered (gdb_stdlog, 7238 "infrun: resuming previously stepped thread\n"); 7239 7240 reset_ecs (ecs, tp); 7241 switch_to_thread (tp->ptid); 7242 7243 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid)); 7244 frame = get_current_frame (); 7245 7246 /* If the PC of the thread we were trying to single-step has 7247 changed, then that thread has trapped or been signaled, but the 7248 event has not been reported to GDB yet. Re-poll the target 7249 looking for this particular thread's event (i.e. temporarily 7250 enable schedlock) by: 7251 7252 - setting a break at the current PC 7253 - resuming that particular thread, only (by setting trap 7254 expected) 7255 7256 This prevents us continuously moving the single-step breakpoint 7257 forward, one instruction at a time, overstepping. */ 7258 7259 if (stop_pc != tp->prev_pc) 7260 { 7261 ptid_t resume_ptid; 7262 7263 if (debug_infrun) 7264 fprintf_unfiltered (gdb_stdlog, 7265 "infrun: expected thread advanced also (%s -> %s)\n", 7266 paddress (target_gdbarch (), tp->prev_pc), 7267 paddress (target_gdbarch (), stop_pc)); 7268 7269 /* Clear the info of the previous step-over, as it's no longer 7270 valid (if the thread was trying to step over a breakpoint, it 7271 has already succeeded). It's what keep_going would do too, 7272 if we called it. Do this before trying to insert the sss 7273 breakpoint, otherwise if we were previously trying to step 7274 over this exact address in another thread, the breakpoint is 7275 skipped. */ 7276 clear_step_over_info (); 7277 tp->control.trap_expected = 0; 7278 7279 insert_single_step_breakpoint (get_frame_arch (frame), 7280 get_frame_address_space (frame), 7281 stop_pc); 7282 7283 tp->resumed = 1; 7284 resume_ptid = internal_resume_ptid (tp->control.stepping_command); 7285 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); 7286 } 7287 else 7288 { 7289 if (debug_infrun) 7290 fprintf_unfiltered (gdb_stdlog, 7291 "infrun: expected thread still hasn't advanced\n"); 7292 7293 keep_going_pass_signal (ecs); 7294 } 7295 return 1; 7296 } 7297 7298 /* Is thread TP in the middle of (software or hardware) 7299 single-stepping? (Note the result of this function must never be 7300 passed directly as target_resume's STEP parameter.) */ 7301 7302 static int 7303 currently_stepping (struct thread_info *tp) 7304 { 7305 return ((tp->control.step_range_end 7306 && tp->control.step_resume_breakpoint == NULL) 7307 || tp->control.trap_expected 7308 || tp->stepped_breakpoint 7309 || bpstat_should_step ()); 7310 } 7311 7312 /* Inferior has stepped into a subroutine call with source code that 7313 we should not step over. Do step to the first line of code in 7314 it. */ 7315 7316 static void 7317 handle_step_into_function (struct gdbarch *gdbarch, 7318 struct execution_control_state *ecs) 7319 { 7320 struct compunit_symtab *cust; 7321 struct symtab_and_line stop_func_sal, sr_sal; 7322 7323 fill_in_stop_func (gdbarch, ecs); 7324 7325 cust = find_pc_compunit_symtab (stop_pc); 7326 if (cust != NULL && compunit_language (cust) != language_asm) 7327 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch, 7328 ecs->stop_func_start); 7329 7330 stop_func_sal = find_pc_line (ecs->stop_func_start, 0); 7331 /* Use the step_resume_break to step until the end of the prologue, 7332 even if that involves jumps (as it seems to on the vax under 7333 4.2). */ 7334 /* If the prologue ends in the middle of a source line, continue to 7335 the end of that source line (if it is still within the function). 7336 Otherwise, just go to end of prologue. */ 7337 if (stop_func_sal.end 7338 && stop_func_sal.pc != ecs->stop_func_start 7339 && stop_func_sal.end < ecs->stop_func_end) 7340 ecs->stop_func_start = stop_func_sal.end; 7341 7342 /* Architectures which require breakpoint adjustment might not be able 7343 to place a breakpoint at the computed address. If so, the test 7344 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust 7345 ecs->stop_func_start to an address at which a breakpoint may be 7346 legitimately placed. 7347 7348 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not 7349 made, GDB will enter an infinite loop when stepping through 7350 optimized code consisting of VLIW instructions which contain 7351 subinstructions corresponding to different source lines. On 7352 FR-V, it's not permitted to place a breakpoint on any but the 7353 first subinstruction of a VLIW instruction. When a breakpoint is 7354 set, GDB will adjust the breakpoint address to the beginning of 7355 the VLIW instruction. Thus, we need to make the corresponding 7356 adjustment here when computing the stop address. */ 7357 7358 if (gdbarch_adjust_breakpoint_address_p (gdbarch)) 7359 { 7360 ecs->stop_func_start 7361 = gdbarch_adjust_breakpoint_address (gdbarch, 7362 ecs->stop_func_start); 7363 } 7364 7365 if (ecs->stop_func_start == stop_pc) 7366 { 7367 /* We are already there: stop now. */ 7368 end_stepping_range (ecs); 7369 return; 7370 } 7371 else 7372 { 7373 /* Put the step-breakpoint there and go until there. */ 7374 init_sal (&sr_sal); /* initialize to zeroes */ 7375 sr_sal.pc = ecs->stop_func_start; 7376 sr_sal.section = find_pc_overlay (ecs->stop_func_start); 7377 sr_sal.pspace = get_frame_program_space (get_current_frame ()); 7378 7379 /* Do not specify what the fp should be when we stop since on 7380 some machines the prologue is where the new fp value is 7381 established. */ 7382 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id); 7383 7384 /* And make sure stepping stops right away then. */ 7385 ecs->event_thread->control.step_range_end 7386 = ecs->event_thread->control.step_range_start; 7387 } 7388 keep_going (ecs); 7389 } 7390 7391 /* Inferior has stepped backward into a subroutine call with source 7392 code that we should not step over. Do step to the beginning of the 7393 last line of code in it. */ 7394 7395 static void 7396 handle_step_into_function_backward (struct gdbarch *gdbarch, 7397 struct execution_control_state *ecs) 7398 { 7399 struct compunit_symtab *cust; 7400 struct symtab_and_line stop_func_sal; 7401 7402 fill_in_stop_func (gdbarch, ecs); 7403 7404 cust = find_pc_compunit_symtab (stop_pc); 7405 if (cust != NULL && compunit_language (cust) != language_asm) 7406 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch, 7407 ecs->stop_func_start); 7408 7409 stop_func_sal = find_pc_line (stop_pc, 0); 7410 7411 /* OK, we're just going to keep stepping here. */ 7412 if (stop_func_sal.pc == stop_pc) 7413 { 7414 /* We're there already. Just stop stepping now. */ 7415 end_stepping_range (ecs); 7416 } 7417 else 7418 { 7419 /* Else just reset the step range and keep going. 7420 No step-resume breakpoint, they don't work for 7421 epilogues, which can have multiple entry paths. */ 7422 ecs->event_thread->control.step_range_start = stop_func_sal.pc; 7423 ecs->event_thread->control.step_range_end = stop_func_sal.end; 7424 keep_going (ecs); 7425 } 7426 return; 7427 } 7428 7429 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. 7430 This is used to both functions and to skip over code. */ 7431 7432 static void 7433 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch, 7434 struct symtab_and_line sr_sal, 7435 struct frame_id sr_id, 7436 enum bptype sr_type) 7437 { 7438 /* There should never be more than one step-resume or longjmp-resume 7439 breakpoint per thread, so we should never be setting a new 7440 step_resume_breakpoint when one is already active. */ 7441 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL); 7442 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume); 7443 7444 if (debug_infrun) 7445 fprintf_unfiltered (gdb_stdlog, 7446 "infrun: inserting step-resume breakpoint at %s\n", 7447 paddress (gdbarch, sr_sal.pc)); 7448 7449 inferior_thread ()->control.step_resume_breakpoint 7450 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type); 7451 } 7452 7453 void 7454 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, 7455 struct symtab_and_line sr_sal, 7456 struct frame_id sr_id) 7457 { 7458 insert_step_resume_breakpoint_at_sal_1 (gdbarch, 7459 sr_sal, sr_id, 7460 bp_step_resume); 7461 } 7462 7463 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc. 7464 This is used to skip a potential signal handler. 7465 7466 This is called with the interrupted function's frame. The signal 7467 handler, when it returns, will resume the interrupted function at 7468 RETURN_FRAME.pc. */ 7469 7470 static void 7471 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame) 7472 { 7473 struct symtab_and_line sr_sal; 7474 struct gdbarch *gdbarch; 7475 7476 gdb_assert (return_frame != NULL); 7477 init_sal (&sr_sal); /* initialize to zeros */ 7478 7479 gdbarch = get_frame_arch (return_frame); 7480 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame)); 7481 sr_sal.section = find_pc_overlay (sr_sal.pc); 7482 sr_sal.pspace = get_frame_program_space (return_frame); 7483 7484 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal, 7485 get_stack_frame_id (return_frame), 7486 bp_hp_step_resume); 7487 } 7488 7489 /* Insert a "step-resume breakpoint" at the previous frame's PC. This 7490 is used to skip a function after stepping into it (for "next" or if 7491 the called function has no debugging information). 7492 7493 The current function has almost always been reached by single 7494 stepping a call or return instruction. NEXT_FRAME belongs to the 7495 current function, and the breakpoint will be set at the caller's 7496 resume address. 7497 7498 This is a separate function rather than reusing 7499 insert_hp_step_resume_breakpoint_at_frame in order to avoid 7500 get_prev_frame, which may stop prematurely (see the implementation 7501 of frame_unwind_caller_id for an example). */ 7502 7503 static void 7504 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) 7505 { 7506 struct symtab_and_line sr_sal; 7507 struct gdbarch *gdbarch; 7508 7509 /* We shouldn't have gotten here if we don't know where the call site 7510 is. */ 7511 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame))); 7512 7513 init_sal (&sr_sal); /* initialize to zeros */ 7514 7515 gdbarch = frame_unwind_caller_arch (next_frame); 7516 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, 7517 frame_unwind_caller_pc (next_frame)); 7518 sr_sal.section = find_pc_overlay (sr_sal.pc); 7519 sr_sal.pspace = frame_unwind_program_space (next_frame); 7520 7521 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, 7522 frame_unwind_caller_id (next_frame)); 7523 } 7524 7525 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a 7526 new breakpoint at the target of a jmp_buf. The handling of 7527 longjmp-resume uses the same mechanisms used for handling 7528 "step-resume" breakpoints. */ 7529 7530 static void 7531 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc) 7532 { 7533 /* There should never be more than one longjmp-resume breakpoint per 7534 thread, so we should never be setting a new 7535 longjmp_resume_breakpoint when one is already active. */ 7536 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL); 7537 7538 if (debug_infrun) 7539 fprintf_unfiltered (gdb_stdlog, 7540 "infrun: inserting longjmp-resume breakpoint at %s\n", 7541 paddress (gdbarch, pc)); 7542 7543 inferior_thread ()->control.exception_resume_breakpoint = 7544 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume); 7545 } 7546 7547 /* Insert an exception resume breakpoint. TP is the thread throwing 7548 the exception. The block B is the block of the unwinder debug hook 7549 function. FRAME is the frame corresponding to the call to this 7550 function. SYM is the symbol of the function argument holding the 7551 target PC of the exception. */ 7552 7553 static void 7554 insert_exception_resume_breakpoint (struct thread_info *tp, 7555 const struct block *b, 7556 struct frame_info *frame, 7557 struct symbol *sym) 7558 { 7559 TRY 7560 { 7561 struct block_symbol vsym; 7562 struct value *value; 7563 CORE_ADDR handler; 7564 struct breakpoint *bp; 7565 7566 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL); 7567 value = read_var_value (vsym.symbol, vsym.block, frame); 7568 /* If the value was optimized out, revert to the old behavior. */ 7569 if (! value_optimized_out (value)) 7570 { 7571 handler = value_as_address (value); 7572 7573 if (debug_infrun) 7574 fprintf_unfiltered (gdb_stdlog, 7575 "infrun: exception resume at %lx\n", 7576 (unsigned long) handler); 7577 7578 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), 7579 handler, bp_exception_resume); 7580 7581 /* set_momentary_breakpoint_at_pc invalidates FRAME. */ 7582 frame = NULL; 7583 7584 bp->thread = tp->global_num; 7585 inferior_thread ()->control.exception_resume_breakpoint = bp; 7586 } 7587 } 7588 CATCH (e, RETURN_MASK_ERROR) 7589 { 7590 /* We want to ignore errors here. */ 7591 } 7592 END_CATCH 7593 } 7594 7595 /* A helper for check_exception_resume that sets an 7596 exception-breakpoint based on a SystemTap probe. */ 7597 7598 static void 7599 insert_exception_resume_from_probe (struct thread_info *tp, 7600 const struct bound_probe *probe, 7601 struct frame_info *frame) 7602 { 7603 struct value *arg_value; 7604 CORE_ADDR handler; 7605 struct breakpoint *bp; 7606 7607 arg_value = probe_safe_evaluate_at_pc (frame, 1); 7608 if (!arg_value) 7609 return; 7610 7611 handler = value_as_address (arg_value); 7612 7613 if (debug_infrun) 7614 fprintf_unfiltered (gdb_stdlog, 7615 "infrun: exception resume at %s\n", 7616 paddress (get_objfile_arch (probe->objfile), 7617 handler)); 7618 7619 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), 7620 handler, bp_exception_resume); 7621 bp->thread = tp->global_num; 7622 inferior_thread ()->control.exception_resume_breakpoint = bp; 7623 } 7624 7625 /* This is called when an exception has been intercepted. Check to 7626 see whether the exception's destination is of interest, and if so, 7627 set an exception resume breakpoint there. */ 7628 7629 static void 7630 check_exception_resume (struct execution_control_state *ecs, 7631 struct frame_info *frame) 7632 { 7633 struct bound_probe probe; 7634 struct symbol *func; 7635 7636 /* First see if this exception unwinding breakpoint was set via a 7637 SystemTap probe point. If so, the probe has two arguments: the 7638 CFA and the HANDLER. We ignore the CFA, extract the handler, and 7639 set a breakpoint there. */ 7640 probe = find_probe_by_pc (get_frame_pc (frame)); 7641 if (probe.probe) 7642 { 7643 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame); 7644 return; 7645 } 7646 7647 func = get_frame_function (frame); 7648 if (!func) 7649 return; 7650 7651 TRY 7652 { 7653 const struct block *b; 7654 struct block_iterator iter; 7655 struct symbol *sym; 7656 int argno = 0; 7657 7658 /* The exception breakpoint is a thread-specific breakpoint on 7659 the unwinder's debug hook, declared as: 7660 7661 void _Unwind_DebugHook (void *cfa, void *handler); 7662 7663 The CFA argument indicates the frame to which control is 7664 about to be transferred. HANDLER is the destination PC. 7665 7666 We ignore the CFA and set a temporary breakpoint at HANDLER. 7667 This is not extremely efficient but it avoids issues in gdb 7668 with computing the DWARF CFA, and it also works even in weird 7669 cases such as throwing an exception from inside a signal 7670 handler. */ 7671 7672 b = SYMBOL_BLOCK_VALUE (func); 7673 ALL_BLOCK_SYMBOLS (b, iter, sym) 7674 { 7675 if (!SYMBOL_IS_ARGUMENT (sym)) 7676 continue; 7677 7678 if (argno == 0) 7679 ++argno; 7680 else 7681 { 7682 insert_exception_resume_breakpoint (ecs->event_thread, 7683 b, frame, sym); 7684 break; 7685 } 7686 } 7687 } 7688 CATCH (e, RETURN_MASK_ERROR) 7689 { 7690 } 7691 END_CATCH 7692 } 7693 7694 static void 7695 stop_waiting (struct execution_control_state *ecs) 7696 { 7697 if (debug_infrun) 7698 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n"); 7699 7700 clear_step_over_info (); 7701 7702 /* Let callers know we don't want to wait for the inferior anymore. */ 7703 ecs->wait_some_more = 0; 7704 7705 /* If all-stop, but the target is always in non-stop mode, stop all 7706 threads now that we're presenting the stop to the user. */ 7707 if (!non_stop && target_is_non_stop_p ()) 7708 stop_all_threads (); 7709 } 7710 7711 /* Like keep_going, but passes the signal to the inferior, even if the 7712 signal is set to nopass. */ 7713 7714 static void 7715 keep_going_pass_signal (struct execution_control_state *ecs) 7716 { 7717 /* Make sure normal_stop is called if we get a QUIT handled before 7718 reaching resume. */ 7719 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); 7720 7721 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid)); 7722 gdb_assert (!ecs->event_thread->resumed); 7723 7724 /* Save the pc before execution, to compare with pc after stop. */ 7725 ecs->event_thread->prev_pc 7726 = regcache_read_pc (get_thread_regcache (ecs->ptid)); 7727 7728 if (ecs->event_thread->control.trap_expected) 7729 { 7730 struct thread_info *tp = ecs->event_thread; 7731 7732 if (debug_infrun) 7733 fprintf_unfiltered (gdb_stdlog, 7734 "infrun: %s has trap_expected set, " 7735 "resuming to collect trap\n", 7736 target_pid_to_str (tp->ptid)); 7737 7738 /* We haven't yet gotten our trap, and either: intercepted a 7739 non-signal event (e.g., a fork); or took a signal which we 7740 are supposed to pass through to the inferior. Simply 7741 continue. */ 7742 discard_cleanups (old_cleanups); 7743 resume (ecs->event_thread->suspend.stop_signal); 7744 } 7745 else if (step_over_info_valid_p ()) 7746 { 7747 /* Another thread is stepping over a breakpoint in-line. If 7748 this thread needs a step-over too, queue the request. In 7749 either case, this resume must be deferred for later. */ 7750 struct thread_info *tp = ecs->event_thread; 7751 7752 if (ecs->hit_singlestep_breakpoint 7753 || thread_still_needs_step_over (tp)) 7754 { 7755 if (debug_infrun) 7756 fprintf_unfiltered (gdb_stdlog, 7757 "infrun: step-over already in progress: " 7758 "step-over for %s deferred\n", 7759 target_pid_to_str (tp->ptid)); 7760 thread_step_over_chain_enqueue (tp); 7761 } 7762 else 7763 { 7764 if (debug_infrun) 7765 fprintf_unfiltered (gdb_stdlog, 7766 "infrun: step-over in progress: " 7767 "resume of %s deferred\n", 7768 target_pid_to_str (tp->ptid)); 7769 } 7770 7771 discard_cleanups (old_cleanups); 7772 } 7773 else 7774 { 7775 struct regcache *regcache = get_current_regcache (); 7776 int remove_bp; 7777 int remove_wps; 7778 step_over_what step_what; 7779 7780 /* Either the trap was not expected, but we are continuing 7781 anyway (if we got a signal, the user asked it be passed to 7782 the child) 7783 -- or -- 7784 We got our expected trap, but decided we should resume from 7785 it. 7786 7787 We're going to run this baby now! 7788 7789 Note that insert_breakpoints won't try to re-insert 7790 already inserted breakpoints. Therefore, we don't 7791 care if breakpoints were already inserted, or not. */ 7792 7793 /* If we need to step over a breakpoint, and we're not using 7794 displaced stepping to do so, insert all breakpoints 7795 (watchpoints, etc.) but the one we're stepping over, step one 7796 instruction, and then re-insert the breakpoint when that step 7797 is finished. */ 7798 7799 step_what = thread_still_needs_step_over (ecs->event_thread); 7800 7801 remove_bp = (ecs->hit_singlestep_breakpoint 7802 || (step_what & STEP_OVER_BREAKPOINT)); 7803 remove_wps = (step_what & STEP_OVER_WATCHPOINT); 7804 7805 /* We can't use displaced stepping if we need to step past a 7806 watchpoint. The instruction copied to the scratch pad would 7807 still trigger the watchpoint. */ 7808 if (remove_bp 7809 && (remove_wps || !use_displaced_stepping (ecs->event_thread))) 7810 { 7811 set_step_over_info (get_regcache_aspace (regcache), 7812 regcache_read_pc (regcache), remove_wps, 7813 ecs->event_thread->global_num); 7814 } 7815 else if (remove_wps) 7816 set_step_over_info (NULL, 0, remove_wps, -1); 7817 7818 /* If we now need to do an in-line step-over, we need to stop 7819 all other threads. Note this must be done before 7820 insert_breakpoints below, because that removes the breakpoint 7821 we're about to step over, otherwise other threads could miss 7822 it. */ 7823 if (step_over_info_valid_p () && target_is_non_stop_p ()) 7824 stop_all_threads (); 7825 7826 /* Stop stepping if inserting breakpoints fails. */ 7827 TRY 7828 { 7829 insert_breakpoints (); 7830 } 7831 CATCH (e, RETURN_MASK_ERROR) 7832 { 7833 exception_print (gdb_stderr, e); 7834 stop_waiting (ecs); 7835 discard_cleanups (old_cleanups); 7836 return; 7837 } 7838 END_CATCH 7839 7840 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps); 7841 7842 discard_cleanups (old_cleanups); 7843 resume (ecs->event_thread->suspend.stop_signal); 7844 } 7845 7846 prepare_to_wait (ecs); 7847 } 7848 7849 /* Called when we should continue running the inferior, because the 7850 current event doesn't cause a user visible stop. This does the 7851 resuming part; waiting for the next event is done elsewhere. */ 7852 7853 static void 7854 keep_going (struct execution_control_state *ecs) 7855 { 7856 if (ecs->event_thread->control.trap_expected 7857 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) 7858 ecs->event_thread->control.trap_expected = 0; 7859 7860 if (!signal_program[ecs->event_thread->suspend.stop_signal]) 7861 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 7862 keep_going_pass_signal (ecs); 7863 } 7864 7865 /* This function normally comes after a resume, before 7866 handle_inferior_event exits. It takes care of any last bits of 7867 housekeeping, and sets the all-important wait_some_more flag. */ 7868 7869 static void 7870 prepare_to_wait (struct execution_control_state *ecs) 7871 { 7872 if (debug_infrun) 7873 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); 7874 7875 ecs->wait_some_more = 1; 7876 7877 if (!target_is_async_p ()) 7878 mark_infrun_async_event_handler (); 7879 } 7880 7881 /* We are done with the step range of a step/next/si/ni command. 7882 Called once for each n of a "step n" operation. */ 7883 7884 static void 7885 end_stepping_range (struct execution_control_state *ecs) 7886 { 7887 ecs->event_thread->control.stop_step = 1; 7888 stop_waiting (ecs); 7889 } 7890 7891 /* Several print_*_reason functions to print why the inferior has stopped. 7892 We always print something when the inferior exits, or receives a signal. 7893 The rest of the cases are dealt with later on in normal_stop and 7894 print_it_typical. Ideally there should be a call to one of these 7895 print_*_reason functions functions from handle_inferior_event each time 7896 stop_waiting is called. 7897 7898 Note that we don't call these directly, instead we delegate that to 7899 the interpreters, through observers. Interpreters then call these 7900 with whatever uiout is right. */ 7901 7902 void 7903 print_end_stepping_range_reason (struct ui_out *uiout) 7904 { 7905 /* For CLI-like interpreters, print nothing. */ 7906 7907 if (ui_out_is_mi_like_p (uiout)) 7908 { 7909 ui_out_field_string (uiout, "reason", 7910 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); 7911 } 7912 } 7913 7914 void 7915 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal) 7916 { 7917 annotate_signalled (); 7918 if (ui_out_is_mi_like_p (uiout)) 7919 ui_out_field_string 7920 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); 7921 ui_out_text (uiout, "\nProgram terminated with signal "); 7922 annotate_signal_name (); 7923 ui_out_field_string (uiout, "signal-name", 7924 gdb_signal_to_name (siggnal)); 7925 annotate_signal_name_end (); 7926 ui_out_text (uiout, ", "); 7927 annotate_signal_string (); 7928 ui_out_field_string (uiout, "signal-meaning", 7929 gdb_signal_to_string (siggnal)); 7930 annotate_signal_string_end (); 7931 ui_out_text (uiout, ".\n"); 7932 ui_out_text (uiout, "The program no longer exists.\n"); 7933 } 7934 7935 void 7936 print_exited_reason (struct ui_out *uiout, int exitstatus) 7937 { 7938 struct inferior *inf = current_inferior (); 7939 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid)); 7940 7941 annotate_exited (exitstatus); 7942 if (exitstatus) 7943 { 7944 if (ui_out_is_mi_like_p (uiout)) 7945 ui_out_field_string (uiout, "reason", 7946 async_reason_lookup (EXEC_ASYNC_EXITED)); 7947 ui_out_text (uiout, "[Inferior "); 7948 ui_out_text (uiout, plongest (inf->num)); 7949 ui_out_text (uiout, " ("); 7950 ui_out_text (uiout, pidstr); 7951 ui_out_text (uiout, ") exited with code "); 7952 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus); 7953 ui_out_text (uiout, "]\n"); 7954 } 7955 else 7956 { 7957 if (ui_out_is_mi_like_p (uiout)) 7958 ui_out_field_string 7959 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); 7960 ui_out_text (uiout, "[Inferior "); 7961 ui_out_text (uiout, plongest (inf->num)); 7962 ui_out_text (uiout, " ("); 7963 ui_out_text (uiout, pidstr); 7964 ui_out_text (uiout, ") exited normally]\n"); 7965 } 7966 } 7967 7968 /* Some targets/architectures can do extra processing/display of 7969 segmentation faults. E.g., Intel MPX boundary faults. 7970 Call the architecture dependent function to handle the fault. */ 7971 7972 static void 7973 handle_segmentation_fault (struct ui_out *uiout) 7974 { 7975 struct regcache *regcache = get_current_regcache (); 7976 struct gdbarch *gdbarch = get_regcache_arch (regcache); 7977 7978 if (gdbarch_handle_segmentation_fault_p (gdbarch)) 7979 gdbarch_handle_segmentation_fault (gdbarch, uiout); 7980 } 7981 7982 void 7983 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal) 7984 { 7985 struct thread_info *thr = inferior_thread (); 7986 7987 annotate_signal (); 7988 7989 if (ui_out_is_mi_like_p (uiout)) 7990 ; 7991 else if (show_thread_that_caused_stop ()) 7992 { 7993 const char *name; 7994 7995 ui_out_text (uiout, "\nThread "); 7996 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr)); 7997 7998 name = thr->name != NULL ? thr->name : target_thread_name (thr); 7999 if (name != NULL) 8000 { 8001 ui_out_text (uiout, " \""); 8002 ui_out_field_fmt (uiout, "name", "%s", name); 8003 ui_out_text (uiout, "\""); 8004 } 8005 } 8006 else 8007 ui_out_text (uiout, "\nProgram"); 8008 8009 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout)) 8010 ui_out_text (uiout, " stopped"); 8011 else 8012 { 8013 ui_out_text (uiout, " received signal "); 8014 annotate_signal_name (); 8015 if (ui_out_is_mi_like_p (uiout)) 8016 ui_out_field_string 8017 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); 8018 ui_out_field_string (uiout, "signal-name", 8019 gdb_signal_to_name (siggnal)); 8020 annotate_signal_name_end (); 8021 ui_out_text (uiout, ", "); 8022 annotate_signal_string (); 8023 ui_out_field_string (uiout, "signal-meaning", 8024 gdb_signal_to_string (siggnal)); 8025 8026 if (siggnal == GDB_SIGNAL_SEGV) 8027 handle_segmentation_fault (uiout); 8028 8029 annotate_signal_string_end (); 8030 } 8031 ui_out_text (uiout, ".\n"); 8032 } 8033 8034 void 8035 print_no_history_reason (struct ui_out *uiout) 8036 { 8037 ui_out_text (uiout, "\nNo more reverse-execution history.\n"); 8038 } 8039 8040 /* Print current location without a level number, if we have changed 8041 functions or hit a breakpoint. Print source line if we have one. 8042 bpstat_print contains the logic deciding in detail what to print, 8043 based on the event(s) that just occurred. */ 8044 8045 static void 8046 print_stop_location (struct target_waitstatus *ws) 8047 { 8048 int bpstat_ret; 8049 enum print_what source_flag; 8050 int do_frame_printing = 1; 8051 struct thread_info *tp = inferior_thread (); 8052 8053 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind); 8054 switch (bpstat_ret) 8055 { 8056 case PRINT_UNKNOWN: 8057 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or 8058 should) carry around the function and does (or should) use 8059 that when doing a frame comparison. */ 8060 if (tp->control.stop_step 8061 && frame_id_eq (tp->control.step_frame_id, 8062 get_frame_id (get_current_frame ())) 8063 && tp->control.step_start_function == find_pc_function (stop_pc)) 8064 { 8065 /* Finished step, just print source line. */ 8066 source_flag = SRC_LINE; 8067 } 8068 else 8069 { 8070 /* Print location and source line. */ 8071 source_flag = SRC_AND_LOC; 8072 } 8073 break; 8074 case PRINT_SRC_AND_LOC: 8075 /* Print location and source line. */ 8076 source_flag = SRC_AND_LOC; 8077 break; 8078 case PRINT_SRC_ONLY: 8079 source_flag = SRC_LINE; 8080 break; 8081 case PRINT_NOTHING: 8082 /* Something bogus. */ 8083 source_flag = SRC_LINE; 8084 do_frame_printing = 0; 8085 break; 8086 default: 8087 internal_error (__FILE__, __LINE__, _("Unknown value.")); 8088 } 8089 8090 /* The behavior of this routine with respect to the source 8091 flag is: 8092 SRC_LINE: Print only source line 8093 LOCATION: Print only location 8094 SRC_AND_LOC: Print location and source line. */ 8095 if (do_frame_printing) 8096 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1); 8097 } 8098 8099 /* See infrun.h. */ 8100 8101 void 8102 print_stop_event (struct ui_out *uiout) 8103 { 8104 struct cleanup *old_chain; 8105 struct target_waitstatus last; 8106 ptid_t last_ptid; 8107 struct thread_info *tp; 8108 8109 get_last_target_status (&last_ptid, &last); 8110 8111 old_chain = make_cleanup_restore_current_uiout (); 8112 current_uiout = uiout; 8113 8114 print_stop_location (&last); 8115 8116 /* Display the auto-display expressions. */ 8117 do_displays (); 8118 8119 do_cleanups (old_chain); 8120 8121 tp = inferior_thread (); 8122 if (tp->thread_fsm != NULL 8123 && thread_fsm_finished_p (tp->thread_fsm)) 8124 { 8125 struct return_value_info *rv; 8126 8127 rv = thread_fsm_return_value (tp->thread_fsm); 8128 if (rv != NULL) 8129 print_return_value (uiout, rv); 8130 } 8131 } 8132 8133 /* See infrun.h. */ 8134 8135 void 8136 maybe_remove_breakpoints (void) 8137 { 8138 if (!breakpoints_should_be_inserted_now () && target_has_execution) 8139 { 8140 if (remove_breakpoints ()) 8141 { 8142 target_terminal_ours_for_output (); 8143 printf_filtered (_("Cannot remove breakpoints because " 8144 "program is no longer writable.\nFurther " 8145 "execution is probably impossible.\n")); 8146 } 8147 } 8148 } 8149 8150 /* The execution context that just caused a normal stop. */ 8151 8152 struct stop_context 8153 { 8154 /* The stop ID. */ 8155 ULONGEST stop_id; 8156 8157 /* The event PTID. */ 8158 8159 ptid_t ptid; 8160 8161 /* If stopp for a thread event, this is the thread that caused the 8162 stop. */ 8163 struct thread_info *thread; 8164 8165 /* The inferior that caused the stop. */ 8166 int inf_num; 8167 }; 8168 8169 /* Returns a new stop context. If stopped for a thread event, this 8170 takes a strong reference to the thread. */ 8171 8172 static struct stop_context * 8173 save_stop_context (void) 8174 { 8175 struct stop_context *sc = XNEW (struct stop_context); 8176 8177 sc->stop_id = get_stop_id (); 8178 sc->ptid = inferior_ptid; 8179 sc->inf_num = current_inferior ()->num; 8180 8181 if (!ptid_equal (inferior_ptid, null_ptid)) 8182 { 8183 /* Take a strong reference so that the thread can't be deleted 8184 yet. */ 8185 sc->thread = inferior_thread (); 8186 sc->thread->refcount++; 8187 } 8188 else 8189 sc->thread = NULL; 8190 8191 return sc; 8192 } 8193 8194 /* Release a stop context previously created with save_stop_context. 8195 Releases the strong reference to the thread as well. */ 8196 8197 static void 8198 release_stop_context_cleanup (void *arg) 8199 { 8200 struct stop_context *sc = (struct stop_context *) arg; 8201 8202 if (sc->thread != NULL) 8203 sc->thread->refcount--; 8204 xfree (sc); 8205 } 8206 8207 /* Return true if the current context no longer matches the saved stop 8208 context. */ 8209 8210 static int 8211 stop_context_changed (struct stop_context *prev) 8212 { 8213 if (!ptid_equal (prev->ptid, inferior_ptid)) 8214 return 1; 8215 if (prev->inf_num != current_inferior ()->num) 8216 return 1; 8217 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED) 8218 return 1; 8219 if (get_stop_id () != prev->stop_id) 8220 return 1; 8221 return 0; 8222 } 8223 8224 /* See infrun.h. */ 8225 8226 int 8227 normal_stop (void) 8228 { 8229 struct target_waitstatus last; 8230 ptid_t last_ptid; 8231 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); 8232 ptid_t pid_ptid; 8233 struct switch_thru_all_uis state; 8234 8235 get_last_target_status (&last_ptid, &last); 8236 8237 new_stop_id (); 8238 8239 /* If an exception is thrown from this point on, make sure to 8240 propagate GDB's knowledge of the executing state to the 8241 frontend/user running state. A QUIT is an easy exception to see 8242 here, so do this before any filtered output. */ 8243 if (!non_stop) 8244 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); 8245 else if (last.kind == TARGET_WAITKIND_SIGNALLED 8246 || last.kind == TARGET_WAITKIND_EXITED) 8247 { 8248 /* On some targets, we may still have live threads in the 8249 inferior when we get a process exit event. E.g., for 8250 "checkpoint", when the current checkpoint/fork exits, 8251 linux-fork.c automatically switches to another fork from 8252 within target_mourn_inferior. */ 8253 if (!ptid_equal (inferior_ptid, null_ptid)) 8254 { 8255 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); 8256 make_cleanup (finish_thread_state_cleanup, &pid_ptid); 8257 } 8258 } 8259 else if (last.kind != TARGET_WAITKIND_NO_RESUMED) 8260 make_cleanup (finish_thread_state_cleanup, &inferior_ptid); 8261 8262 /* As we're presenting a stop, and potentially removing breakpoints, 8263 update the thread list so we can tell whether there are threads 8264 running on the target. With target remote, for example, we can 8265 only learn about new threads when we explicitly update the thread 8266 list. Do this before notifying the interpreters about signal 8267 stops, end of stepping ranges, etc., so that the "new thread" 8268 output is emitted before e.g., "Program received signal FOO", 8269 instead of after. */ 8270 update_thread_list (); 8271 8272 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal) 8273 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal); 8274 8275 /* As with the notification of thread events, we want to delay 8276 notifying the user that we've switched thread context until 8277 the inferior actually stops. 8278 8279 There's no point in saying anything if the inferior has exited. 8280 Note that SIGNALLED here means "exited with a signal", not 8281 "received a signal". 8282 8283 Also skip saying anything in non-stop mode. In that mode, as we 8284 don't want GDB to switch threads behind the user's back, to avoid 8285 races where the user is typing a command to apply to thread x, 8286 but GDB switches to thread y before the user finishes entering 8287 the command, fetch_inferior_event installs a cleanup to restore 8288 the current thread back to the thread the user had selected right 8289 after this event is handled, so we're not really switching, only 8290 informing of a stop. */ 8291 if (!non_stop 8292 && !ptid_equal (previous_inferior_ptid, inferior_ptid) 8293 && target_has_execution 8294 && last.kind != TARGET_WAITKIND_SIGNALLED 8295 && last.kind != TARGET_WAITKIND_EXITED 8296 && last.kind != TARGET_WAITKIND_NO_RESUMED) 8297 { 8298 SWITCH_THRU_ALL_UIS (state) 8299 { 8300 target_terminal_ours_for_output (); 8301 printf_filtered (_("[Switching to %s]\n"), 8302 target_pid_to_str (inferior_ptid)); 8303 annotate_thread_changed (); 8304 } 8305 previous_inferior_ptid = inferior_ptid; 8306 } 8307 8308 if (last.kind == TARGET_WAITKIND_NO_RESUMED) 8309 { 8310 SWITCH_THRU_ALL_UIS (state) 8311 if (current_ui->prompt_state == PROMPT_BLOCKED) 8312 { 8313 target_terminal_ours_for_output (); 8314 printf_filtered (_("No unwaited-for children left.\n")); 8315 } 8316 } 8317 8318 /* Note: this depends on the update_thread_list call above. */ 8319 maybe_remove_breakpoints (); 8320 8321 /* If an auto-display called a function and that got a signal, 8322 delete that auto-display to avoid an infinite recursion. */ 8323 8324 if (stopped_by_random_signal) 8325 disable_current_display (); 8326 8327 SWITCH_THRU_ALL_UIS (state) 8328 { 8329 async_enable_stdin (); 8330 } 8331 8332 /* Let the user/frontend see the threads as stopped. */ 8333 do_cleanups (old_chain); 8334 8335 /* Select innermost stack frame - i.e., current frame is frame 0, 8336 and current location is based on that. Handle the case where the 8337 dummy call is returning after being stopped. E.g. the dummy call 8338 previously hit a breakpoint. (If the dummy call returns 8339 normally, we won't reach here.) Do this before the stop hook is 8340 run, so that it doesn't get to see the temporary dummy frame, 8341 which is not where we'll present the stop. */ 8342 if (has_stack_frames ()) 8343 { 8344 if (stop_stack_dummy == STOP_STACK_DUMMY) 8345 { 8346 /* Pop the empty frame that contains the stack dummy. This 8347 also restores inferior state prior to the call (struct 8348 infcall_suspend_state). */ 8349 struct frame_info *frame = get_current_frame (); 8350 8351 gdb_assert (get_frame_type (frame) == DUMMY_FRAME); 8352 frame_pop (frame); 8353 /* frame_pop calls reinit_frame_cache as the last thing it 8354 does which means there's now no selected frame. */ 8355 } 8356 8357 select_frame (get_current_frame ()); 8358 8359 /* Set the current source location. */ 8360 set_current_sal_from_frame (get_current_frame ()); 8361 } 8362 8363 /* Look up the hook_stop and run it (CLI internally handles problem 8364 of stop_command's pre-hook not existing). */ 8365 if (stop_command != NULL) 8366 { 8367 struct stop_context *saved_context = save_stop_context (); 8368 struct cleanup *old_chain 8369 = make_cleanup (release_stop_context_cleanup, saved_context); 8370 8371 catch_errors (hook_stop_stub, stop_command, 8372 "Error while running hook_stop:\n", RETURN_MASK_ALL); 8373 8374 /* If the stop hook resumes the target, then there's no point in 8375 trying to notify about the previous stop; its context is 8376 gone. Likewise if the command switches thread or inferior -- 8377 the observers would print a stop for the wrong 8378 thread/inferior. */ 8379 if (stop_context_changed (saved_context)) 8380 { 8381 do_cleanups (old_chain); 8382 return 1; 8383 } 8384 do_cleanups (old_chain); 8385 } 8386 8387 /* Notify observers about the stop. This is where the interpreters 8388 print the stop event. */ 8389 if (!ptid_equal (inferior_ptid, null_ptid)) 8390 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat, 8391 stop_print_frame); 8392 else 8393 observer_notify_normal_stop (NULL, stop_print_frame); 8394 8395 annotate_stopped (); 8396 8397 if (target_has_execution) 8398 { 8399 if (last.kind != TARGET_WAITKIND_SIGNALLED 8400 && last.kind != TARGET_WAITKIND_EXITED) 8401 /* Delete the breakpoint we stopped at, if it wants to be deleted. 8402 Delete any breakpoint that is to be deleted at the next stop. */ 8403 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat); 8404 } 8405 8406 /* Try to get rid of automatically added inferiors that are no 8407 longer needed. Keeping those around slows down things linearly. 8408 Note that this never removes the current inferior. */ 8409 prune_inferiors (); 8410 8411 return 0; 8412 } 8413 8414 static int 8415 hook_stop_stub (void *cmd) 8416 { 8417 execute_cmd_pre_hook ((struct cmd_list_element *) cmd); 8418 return (0); 8419 } 8420 8421 int 8422 signal_stop_state (int signo) 8423 { 8424 return signal_stop[signo]; 8425 } 8426 8427 int 8428 signal_print_state (int signo) 8429 { 8430 return signal_print[signo]; 8431 } 8432 8433 int 8434 signal_pass_state (int signo) 8435 { 8436 return signal_program[signo]; 8437 } 8438 8439 static void 8440 signal_cache_update (int signo) 8441 { 8442 if (signo == -1) 8443 { 8444 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++) 8445 signal_cache_update (signo); 8446 8447 return; 8448 } 8449 8450 signal_pass[signo] = (signal_stop[signo] == 0 8451 && signal_print[signo] == 0 8452 && signal_program[signo] == 1 8453 && signal_catch[signo] == 0); 8454 } 8455 8456 int 8457 signal_stop_update (int signo, int state) 8458 { 8459 int ret = signal_stop[signo]; 8460 8461 signal_stop[signo] = state; 8462 signal_cache_update (signo); 8463 return ret; 8464 } 8465 8466 int 8467 signal_print_update (int signo, int state) 8468 { 8469 int ret = signal_print[signo]; 8470 8471 signal_print[signo] = state; 8472 signal_cache_update (signo); 8473 return ret; 8474 } 8475 8476 int 8477 signal_pass_update (int signo, int state) 8478 { 8479 int ret = signal_program[signo]; 8480 8481 signal_program[signo] = state; 8482 signal_cache_update (signo); 8483 return ret; 8484 } 8485 8486 /* Update the global 'signal_catch' from INFO and notify the 8487 target. */ 8488 8489 void 8490 signal_catch_update (const unsigned int *info) 8491 { 8492 int i; 8493 8494 for (i = 0; i < GDB_SIGNAL_LAST; ++i) 8495 signal_catch[i] = info[i] > 0; 8496 signal_cache_update (-1); 8497 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); 8498 } 8499 8500 static void 8501 sig_print_header (void) 8502 { 8503 printf_filtered (_("Signal Stop\tPrint\tPass " 8504 "to program\tDescription\n")); 8505 } 8506 8507 static void 8508 sig_print_info (enum gdb_signal oursig) 8509 { 8510 const char *name = gdb_signal_to_name (oursig); 8511 int name_padding = 13 - strlen (name); 8512 8513 if (name_padding <= 0) 8514 name_padding = 0; 8515 8516 printf_filtered ("%s", name); 8517 printf_filtered ("%*.*s ", name_padding, name_padding, " "); 8518 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); 8519 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); 8520 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); 8521 printf_filtered ("%s\n", gdb_signal_to_string (oursig)); 8522 } 8523 8524 /* Specify how various signals in the inferior should be handled. */ 8525 8526 static void 8527 handle_command (char *args, int from_tty) 8528 { 8529 char **argv; 8530 int digits, wordlen; 8531 int sigfirst, signum, siglast; 8532 enum gdb_signal oursig; 8533 int allsigs; 8534 int nsigs; 8535 unsigned char *sigs; 8536 struct cleanup *old_chain; 8537 8538 if (args == NULL) 8539 { 8540 error_no_arg (_("signal to handle")); 8541 } 8542 8543 /* Allocate and zero an array of flags for which signals to handle. */ 8544 8545 nsigs = (int) GDB_SIGNAL_LAST; 8546 sigs = (unsigned char *) alloca (nsigs); 8547 memset (sigs, 0, nsigs); 8548 8549 /* Break the command line up into args. */ 8550 8551 argv = gdb_buildargv (args); 8552 old_chain = make_cleanup_freeargv (argv); 8553 8554 /* Walk through the args, looking for signal oursigs, signal names, and 8555 actions. Signal numbers and signal names may be interspersed with 8556 actions, with the actions being performed for all signals cumulatively 8557 specified. Signal ranges can be specified as <LOW>-<HIGH>. */ 8558 8559 while (*argv != NULL) 8560 { 8561 wordlen = strlen (*argv); 8562 for (digits = 0; isdigit ((*argv)[digits]); digits++) 8563 {; 8564 } 8565 allsigs = 0; 8566 sigfirst = siglast = -1; 8567 8568 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen)) 8569 { 8570 /* Apply action to all signals except those used by the 8571 debugger. Silently skip those. */ 8572 allsigs = 1; 8573 sigfirst = 0; 8574 siglast = nsigs - 1; 8575 } 8576 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen)) 8577 { 8578 SET_SIGS (nsigs, sigs, signal_stop); 8579 SET_SIGS (nsigs, sigs, signal_print); 8580 } 8581 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen)) 8582 { 8583 UNSET_SIGS (nsigs, sigs, signal_program); 8584 } 8585 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen)) 8586 { 8587 SET_SIGS (nsigs, sigs, signal_print); 8588 } 8589 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen)) 8590 { 8591 SET_SIGS (nsigs, sigs, signal_program); 8592 } 8593 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen)) 8594 { 8595 UNSET_SIGS (nsigs, sigs, signal_stop); 8596 } 8597 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen)) 8598 { 8599 SET_SIGS (nsigs, sigs, signal_program); 8600 } 8601 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen)) 8602 { 8603 UNSET_SIGS (nsigs, sigs, signal_print); 8604 UNSET_SIGS (nsigs, sigs, signal_stop); 8605 } 8606 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen)) 8607 { 8608 UNSET_SIGS (nsigs, sigs, signal_program); 8609 } 8610 else if (digits > 0) 8611 { 8612 /* It is numeric. The numeric signal refers to our own 8613 internal signal numbering from target.h, not to host/target 8614 signal number. This is a feature; users really should be 8615 using symbolic names anyway, and the common ones like 8616 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ 8617 8618 sigfirst = siglast = (int) 8619 gdb_signal_from_command (atoi (*argv)); 8620 if ((*argv)[digits] == '-') 8621 { 8622 siglast = (int) 8623 gdb_signal_from_command (atoi ((*argv) + digits + 1)); 8624 } 8625 if (sigfirst > siglast) 8626 { 8627 /* Bet he didn't figure we'd think of this case... */ 8628 signum = sigfirst; 8629 sigfirst = siglast; 8630 siglast = signum; 8631 } 8632 } 8633 else 8634 { 8635 oursig = gdb_signal_from_name (*argv); 8636 if (oursig != GDB_SIGNAL_UNKNOWN) 8637 { 8638 sigfirst = siglast = (int) oursig; 8639 } 8640 else 8641 { 8642 /* Not a number and not a recognized flag word => complain. */ 8643 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv); 8644 } 8645 } 8646 8647 /* If any signal numbers or symbol names were found, set flags for 8648 which signals to apply actions to. */ 8649 8650 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) 8651 { 8652 switch ((enum gdb_signal) signum) 8653 { 8654 case GDB_SIGNAL_TRAP: 8655 case GDB_SIGNAL_INT: 8656 if (!allsigs && !sigs[signum]) 8657 { 8658 if (query (_("%s is used by the debugger.\n\ 8659 Are you sure you want to change it? "), 8660 gdb_signal_to_name ((enum gdb_signal) signum))) 8661 { 8662 sigs[signum] = 1; 8663 } 8664 else 8665 { 8666 printf_unfiltered (_("Not confirmed, unchanged.\n")); 8667 gdb_flush (gdb_stdout); 8668 } 8669 } 8670 break; 8671 case GDB_SIGNAL_0: 8672 case GDB_SIGNAL_DEFAULT: 8673 case GDB_SIGNAL_UNKNOWN: 8674 /* Make sure that "all" doesn't print these. */ 8675 break; 8676 default: 8677 sigs[signum] = 1; 8678 break; 8679 } 8680 } 8681 8682 argv++; 8683 } 8684 8685 for (signum = 0; signum < nsigs; signum++) 8686 if (sigs[signum]) 8687 { 8688 signal_cache_update (-1); 8689 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); 8690 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); 8691 8692 if (from_tty) 8693 { 8694 /* Show the results. */ 8695 sig_print_header (); 8696 for (; signum < nsigs; signum++) 8697 if (sigs[signum]) 8698 sig_print_info ((enum gdb_signal) signum); 8699 } 8700 8701 break; 8702 } 8703 8704 do_cleanups (old_chain); 8705 } 8706 8707 /* Complete the "handle" command. */ 8708 8709 static VEC (char_ptr) * 8710 handle_completer (struct cmd_list_element *ignore, 8711 const char *text, const char *word) 8712 { 8713 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val; 8714 static const char * const keywords[] = 8715 { 8716 "all", 8717 "stop", 8718 "ignore", 8719 "print", 8720 "pass", 8721 "nostop", 8722 "noignore", 8723 "noprint", 8724 "nopass", 8725 NULL, 8726 }; 8727 8728 vec_signals = signal_completer (ignore, text, word); 8729 vec_keywords = complete_on_enum (keywords, word, word); 8730 8731 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords); 8732 VEC_free (char_ptr, vec_signals); 8733 VEC_free (char_ptr, vec_keywords); 8734 return return_val; 8735 } 8736 8737 enum gdb_signal 8738 gdb_signal_from_command (int num) 8739 { 8740 if (num >= 1 && num <= 15) 8741 return (enum gdb_signal) num; 8742 error (_("Only signals 1-15 are valid as numeric signals.\n\ 8743 Use \"info signals\" for a list of symbolic signals.")); 8744 } 8745 8746 /* Print current contents of the tables set by the handle command. 8747 It is possible we should just be printing signals actually used 8748 by the current target (but for things to work right when switching 8749 targets, all signals should be in the signal tables). */ 8750 8751 static void 8752 signals_info (char *signum_exp, int from_tty) 8753 { 8754 enum gdb_signal oursig; 8755 8756 sig_print_header (); 8757 8758 if (signum_exp) 8759 { 8760 /* First see if this is a symbol name. */ 8761 oursig = gdb_signal_from_name (signum_exp); 8762 if (oursig == GDB_SIGNAL_UNKNOWN) 8763 { 8764 /* No, try numeric. */ 8765 oursig = 8766 gdb_signal_from_command (parse_and_eval_long (signum_exp)); 8767 } 8768 sig_print_info (oursig); 8769 return; 8770 } 8771 8772 printf_filtered ("\n"); 8773 /* These ugly casts brought to you by the native VAX compiler. */ 8774 for (oursig = GDB_SIGNAL_FIRST; 8775 (int) oursig < (int) GDB_SIGNAL_LAST; 8776 oursig = (enum gdb_signal) ((int) oursig + 1)) 8777 { 8778 QUIT; 8779 8780 if (oursig != GDB_SIGNAL_UNKNOWN 8781 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0) 8782 sig_print_info (oursig); 8783 } 8784 8785 printf_filtered (_("\nUse the \"handle\" command " 8786 "to change these tables.\n")); 8787 } 8788 8789 /* The $_siginfo convenience variable is a bit special. We don't know 8790 for sure the type of the value until we actually have a chance to 8791 fetch the data. The type can change depending on gdbarch, so it is 8792 also dependent on which thread you have selected. 8793 8794 1. making $_siginfo be an internalvar that creates a new value on 8795 access. 8796 8797 2. making the value of $_siginfo be an lval_computed value. */ 8798 8799 /* This function implements the lval_computed support for reading a 8800 $_siginfo value. */ 8801 8802 static void 8803 siginfo_value_read (struct value *v) 8804 { 8805 LONGEST transferred; 8806 8807 /* If we can access registers, so can we access $_siginfo. Likewise 8808 vice versa. */ 8809 validate_registers_access (); 8810 8811 transferred = 8812 target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, 8813 NULL, 8814 value_contents_all_raw (v), 8815 value_offset (v), 8816 TYPE_LENGTH (value_type (v))); 8817 8818 if (transferred != TYPE_LENGTH (value_type (v))) 8819 error (_("Unable to read siginfo")); 8820 } 8821 8822 /* This function implements the lval_computed support for writing a 8823 $_siginfo value. */ 8824 8825 static void 8826 siginfo_value_write (struct value *v, struct value *fromval) 8827 { 8828 LONGEST transferred; 8829 8830 /* If we can access registers, so can we access $_siginfo. Likewise 8831 vice versa. */ 8832 validate_registers_access (); 8833 8834 transferred = target_write (¤t_target, 8835 TARGET_OBJECT_SIGNAL_INFO, 8836 NULL, 8837 value_contents_all_raw (fromval), 8838 value_offset (v), 8839 TYPE_LENGTH (value_type (fromval))); 8840 8841 if (transferred != TYPE_LENGTH (value_type (fromval))) 8842 error (_("Unable to write siginfo")); 8843 } 8844 8845 static const struct lval_funcs siginfo_value_funcs = 8846 { 8847 siginfo_value_read, 8848 siginfo_value_write 8849 }; 8850 8851 /* Return a new value with the correct type for the siginfo object of 8852 the current thread using architecture GDBARCH. Return a void value 8853 if there's no object available. */ 8854 8855 static struct value * 8856 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var, 8857 void *ignore) 8858 { 8859 if (target_has_stack 8860 && !ptid_equal (inferior_ptid, null_ptid) 8861 && gdbarch_get_siginfo_type_p (gdbarch)) 8862 { 8863 struct type *type = gdbarch_get_siginfo_type (gdbarch); 8864 8865 return allocate_computed_value (type, &siginfo_value_funcs, NULL); 8866 } 8867 8868 return allocate_value (builtin_type (gdbarch)->builtin_void); 8869 } 8870 8871 8872 /* infcall_suspend_state contains state about the program itself like its 8873 registers and any signal it received when it last stopped. 8874 This state must be restored regardless of how the inferior function call 8875 ends (either successfully, or after it hits a breakpoint or signal) 8876 if the program is to properly continue where it left off. */ 8877 8878 struct infcall_suspend_state 8879 { 8880 struct thread_suspend_state thread_suspend; 8881 8882 /* Other fields: */ 8883 CORE_ADDR stop_pc; 8884 struct regcache *registers; 8885 8886 /* Format of SIGINFO_DATA or NULL if it is not present. */ 8887 struct gdbarch *siginfo_gdbarch; 8888 8889 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of 8890 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the 8891 content would be invalid. */ 8892 gdb_byte *siginfo_data; 8893 }; 8894 8895 struct infcall_suspend_state * 8896 save_infcall_suspend_state (void) 8897 { 8898 struct infcall_suspend_state *inf_state; 8899 struct thread_info *tp = inferior_thread (); 8900 struct regcache *regcache = get_current_regcache (); 8901 struct gdbarch *gdbarch = get_regcache_arch (regcache); 8902 gdb_byte *siginfo_data = NULL; 8903 8904 if (gdbarch_get_siginfo_type_p (gdbarch)) 8905 { 8906 struct type *type = gdbarch_get_siginfo_type (gdbarch); 8907 size_t len = TYPE_LENGTH (type); 8908 struct cleanup *back_to; 8909 8910 siginfo_data = (gdb_byte *) xmalloc (len); 8911 back_to = make_cleanup (xfree, siginfo_data); 8912 8913 if (target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, 8914 siginfo_data, 0, len) == len) 8915 discard_cleanups (back_to); 8916 else 8917 { 8918 /* Errors ignored. */ 8919 do_cleanups (back_to); 8920 siginfo_data = NULL; 8921 } 8922 } 8923 8924 inf_state = XCNEW (struct infcall_suspend_state); 8925 8926 if (siginfo_data) 8927 { 8928 inf_state->siginfo_gdbarch = gdbarch; 8929 inf_state->siginfo_data = siginfo_data; 8930 } 8931 8932 inf_state->thread_suspend = tp->suspend; 8933 8934 /* run_inferior_call will not use the signal due to its `proceed' call with 8935 GDB_SIGNAL_0 anyway. */ 8936 tp->suspend.stop_signal = GDB_SIGNAL_0; 8937 8938 inf_state->stop_pc = stop_pc; 8939 8940 inf_state->registers = regcache_dup (regcache); 8941 8942 return inf_state; 8943 } 8944 8945 /* Restore inferior session state to INF_STATE. */ 8946 8947 void 8948 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state) 8949 { 8950 struct thread_info *tp = inferior_thread (); 8951 struct regcache *regcache = get_current_regcache (); 8952 struct gdbarch *gdbarch = get_regcache_arch (regcache); 8953 8954 tp->suspend = inf_state->thread_suspend; 8955 8956 stop_pc = inf_state->stop_pc; 8957 8958 if (inf_state->siginfo_gdbarch == gdbarch) 8959 { 8960 struct type *type = gdbarch_get_siginfo_type (gdbarch); 8961 8962 /* Errors ignored. */ 8963 target_write (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, 8964 inf_state->siginfo_data, 0, TYPE_LENGTH (type)); 8965 } 8966 8967 /* The inferior can be gone if the user types "print exit(0)" 8968 (and perhaps other times). */ 8969 if (target_has_execution) 8970 /* NB: The register write goes through to the target. */ 8971 regcache_cpy (regcache, inf_state->registers); 8972 8973 discard_infcall_suspend_state (inf_state); 8974 } 8975 8976 static void 8977 do_restore_infcall_suspend_state_cleanup (void *state) 8978 { 8979 restore_infcall_suspend_state ((struct infcall_suspend_state *) state); 8980 } 8981 8982 struct cleanup * 8983 make_cleanup_restore_infcall_suspend_state 8984 (struct infcall_suspend_state *inf_state) 8985 { 8986 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state); 8987 } 8988 8989 void 8990 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state) 8991 { 8992 regcache_xfree (inf_state->registers); 8993 xfree (inf_state->siginfo_data); 8994 xfree (inf_state); 8995 } 8996 8997 struct regcache * 8998 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state) 8999 { 9000 return inf_state->registers; 9001 } 9002 9003 /* infcall_control_state contains state regarding gdb's control of the 9004 inferior itself like stepping control. It also contains session state like 9005 the user's currently selected frame. */ 9006 9007 struct infcall_control_state 9008 { 9009 struct thread_control_state thread_control; 9010 struct inferior_control_state inferior_control; 9011 9012 /* Other fields: */ 9013 enum stop_stack_kind stop_stack_dummy; 9014 int stopped_by_random_signal; 9015 9016 /* ID if the selected frame when the inferior function call was made. */ 9017 struct frame_id selected_frame_id; 9018 }; 9019 9020 /* Save all of the information associated with the inferior<==>gdb 9021 connection. */ 9022 9023 struct infcall_control_state * 9024 save_infcall_control_state (void) 9025 { 9026 struct infcall_control_state *inf_status = 9027 XNEW (struct infcall_control_state); 9028 struct thread_info *tp = inferior_thread (); 9029 struct inferior *inf = current_inferior (); 9030 9031 inf_status->thread_control = tp->control; 9032 inf_status->inferior_control = inf->control; 9033 9034 tp->control.step_resume_breakpoint = NULL; 9035 tp->control.exception_resume_breakpoint = NULL; 9036 9037 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of 9038 chain. If caller's caller is walking the chain, they'll be happier if we 9039 hand them back the original chain when restore_infcall_control_state is 9040 called. */ 9041 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat); 9042 9043 /* Other fields: */ 9044 inf_status->stop_stack_dummy = stop_stack_dummy; 9045 inf_status->stopped_by_random_signal = stopped_by_random_signal; 9046 9047 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL)); 9048 9049 return inf_status; 9050 } 9051 9052 static int 9053 restore_selected_frame (void *args) 9054 { 9055 struct frame_id *fid = (struct frame_id *) args; 9056 struct frame_info *frame; 9057 9058 frame = frame_find_by_id (*fid); 9059 9060 /* If inf_status->selected_frame_id is NULL, there was no previously 9061 selected frame. */ 9062 if (frame == NULL) 9063 { 9064 warning (_("Unable to restore previously selected frame.")); 9065 return 0; 9066 } 9067 9068 select_frame (frame); 9069 9070 return (1); 9071 } 9072 9073 /* Restore inferior session state to INF_STATUS. */ 9074 9075 void 9076 restore_infcall_control_state (struct infcall_control_state *inf_status) 9077 { 9078 struct thread_info *tp = inferior_thread (); 9079 struct inferior *inf = current_inferior (); 9080 9081 if (tp->control.step_resume_breakpoint) 9082 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop; 9083 9084 if (tp->control.exception_resume_breakpoint) 9085 tp->control.exception_resume_breakpoint->disposition 9086 = disp_del_at_next_stop; 9087 9088 /* Handle the bpstat_copy of the chain. */ 9089 bpstat_clear (&tp->control.stop_bpstat); 9090 9091 tp->control = inf_status->thread_control; 9092 inf->control = inf_status->inferior_control; 9093 9094 /* Other fields: */ 9095 stop_stack_dummy = inf_status->stop_stack_dummy; 9096 stopped_by_random_signal = inf_status->stopped_by_random_signal; 9097 9098 if (target_has_stack) 9099 { 9100 /* The point of catch_errors is that if the stack is clobbered, 9101 walking the stack might encounter a garbage pointer and 9102 error() trying to dereference it. */ 9103 if (catch_errors 9104 (restore_selected_frame, &inf_status->selected_frame_id, 9105 "Unable to restore previously selected frame:\n", 9106 RETURN_MASK_ERROR) == 0) 9107 /* Error in restoring the selected frame. Select the innermost 9108 frame. */ 9109 select_frame (get_current_frame ()); 9110 } 9111 9112 xfree (inf_status); 9113 } 9114 9115 static void 9116 do_restore_infcall_control_state_cleanup (void *sts) 9117 { 9118 restore_infcall_control_state ((struct infcall_control_state *) sts); 9119 } 9120 9121 struct cleanup * 9122 make_cleanup_restore_infcall_control_state 9123 (struct infcall_control_state *inf_status) 9124 { 9125 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status); 9126 } 9127 9128 void 9129 discard_infcall_control_state (struct infcall_control_state *inf_status) 9130 { 9131 if (inf_status->thread_control.step_resume_breakpoint) 9132 inf_status->thread_control.step_resume_breakpoint->disposition 9133 = disp_del_at_next_stop; 9134 9135 if (inf_status->thread_control.exception_resume_breakpoint) 9136 inf_status->thread_control.exception_resume_breakpoint->disposition 9137 = disp_del_at_next_stop; 9138 9139 /* See save_infcall_control_state for info on stop_bpstat. */ 9140 bpstat_clear (&inf_status->thread_control.stop_bpstat); 9141 9142 xfree (inf_status); 9143 } 9144 9145 /* restore_inferior_ptid() will be used by the cleanup machinery 9146 to restore the inferior_ptid value saved in a call to 9147 save_inferior_ptid(). */ 9148 9149 static void 9150 restore_inferior_ptid (void *arg) 9151 { 9152 ptid_t *saved_ptid_ptr = (ptid_t *) arg; 9153 9154 inferior_ptid = *saved_ptid_ptr; 9155 xfree (arg); 9156 } 9157 9158 /* Save the value of inferior_ptid so that it may be restored by a 9159 later call to do_cleanups(). Returns the struct cleanup pointer 9160 needed for later doing the cleanup. */ 9161 9162 struct cleanup * 9163 save_inferior_ptid (void) 9164 { 9165 ptid_t *saved_ptid_ptr = XNEW (ptid_t); 9166 9167 *saved_ptid_ptr = inferior_ptid; 9168 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr); 9169 } 9170 9171 /* See infrun.h. */ 9172 9173 void 9174 clear_exit_convenience_vars (void) 9175 { 9176 clear_internalvar (lookup_internalvar ("_exitsignal")); 9177 clear_internalvar (lookup_internalvar ("_exitcode")); 9178 } 9179 9180 9181 /* User interface for reverse debugging: 9182 Set exec-direction / show exec-direction commands 9183 (returns error unless target implements to_set_exec_direction method). */ 9184 9185 enum exec_direction_kind execution_direction = EXEC_FORWARD; 9186 static const char exec_forward[] = "forward"; 9187 static const char exec_reverse[] = "reverse"; 9188 static const char *exec_direction = exec_forward; 9189 static const char *const exec_direction_names[] = { 9190 exec_forward, 9191 exec_reverse, 9192 NULL 9193 }; 9194 9195 static void 9196 set_exec_direction_func (char *args, int from_tty, 9197 struct cmd_list_element *cmd) 9198 { 9199 if (target_can_execute_reverse) 9200 { 9201 if (!strcmp (exec_direction, exec_forward)) 9202 execution_direction = EXEC_FORWARD; 9203 else if (!strcmp (exec_direction, exec_reverse)) 9204 execution_direction = EXEC_REVERSE; 9205 } 9206 else 9207 { 9208 exec_direction = exec_forward; 9209 error (_("Target does not support this operation.")); 9210 } 9211 } 9212 9213 static void 9214 show_exec_direction_func (struct ui_file *out, int from_tty, 9215 struct cmd_list_element *cmd, const char *value) 9216 { 9217 switch (execution_direction) { 9218 case EXEC_FORWARD: 9219 fprintf_filtered (out, _("Forward.\n")); 9220 break; 9221 case EXEC_REVERSE: 9222 fprintf_filtered (out, _("Reverse.\n")); 9223 break; 9224 default: 9225 internal_error (__FILE__, __LINE__, 9226 _("bogus execution_direction value: %d"), 9227 (int) execution_direction); 9228 } 9229 } 9230 9231 static void 9232 show_schedule_multiple (struct ui_file *file, int from_tty, 9233 struct cmd_list_element *c, const char *value) 9234 { 9235 fprintf_filtered (file, _("Resuming the execution of threads " 9236 "of all processes is %s.\n"), value); 9237 } 9238 9239 /* Implementation of `siginfo' variable. */ 9240 9241 static const struct internalvar_funcs siginfo_funcs = 9242 { 9243 siginfo_make_value, 9244 NULL, 9245 NULL 9246 }; 9247 9248 /* Callback for infrun's target events source. This is marked when a 9249 thread has a pending status to process. */ 9250 9251 static void 9252 infrun_async_inferior_event_handler (gdb_client_data data) 9253 { 9254 inferior_event_handler (INF_REG_EVENT, NULL); 9255 } 9256 9257 void 9258 _initialize_infrun (void) 9259 { 9260 int i; 9261 int numsigs; 9262 struct cmd_list_element *c; 9263 9264 /* Register extra event sources in the event loop. */ 9265 infrun_async_inferior_event_token 9266 = create_async_event_handler (infrun_async_inferior_event_handler, NULL); 9267 9268 add_info ("signals", signals_info, _("\ 9269 What debugger does when program gets various signals.\n\ 9270 Specify a signal as argument to print info on that signal only.")); 9271 add_info_alias ("handle", "signals", 0); 9272 9273 c = add_com ("handle", class_run, handle_command, _("\ 9274 Specify how to handle signals.\n\ 9275 Usage: handle SIGNAL [ACTIONS]\n\ 9276 Args are signals and actions to apply to those signals.\n\ 9277 If no actions are specified, the current settings for the specified signals\n\ 9278 will be displayed instead.\n\ 9279 \n\ 9280 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ 9281 from 1-15 are allowed for compatibility with old versions of GDB.\n\ 9282 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ 9283 The special arg \"all\" is recognized to mean all signals except those\n\ 9284 used by the debugger, typically SIGTRAP and SIGINT.\n\ 9285 \n\ 9286 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ 9287 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ 9288 Stop means reenter debugger if this signal happens (implies print).\n\ 9289 Print means print a message if this signal happens.\n\ 9290 Pass means let program see this signal; otherwise program doesn't know.\n\ 9291 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ 9292 Pass and Stop may be combined.\n\ 9293 \n\ 9294 Multiple signals may be specified. Signal numbers and signal names\n\ 9295 may be interspersed with actions, with the actions being performed for\n\ 9296 all signals cumulatively specified.")); 9297 set_cmd_completer (c, handle_completer); 9298 9299 if (!dbx_commands) 9300 stop_command = add_cmd ("stop", class_obscure, 9301 not_just_help_class_command, _("\ 9302 There is no `stop' command, but you can set a hook on `stop'.\n\ 9303 This allows you to set a list of commands to be run each time execution\n\ 9304 of the program stops."), &cmdlist); 9305 9306 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ 9307 Set inferior debugging."), _("\ 9308 Show inferior debugging."), _("\ 9309 When non-zero, inferior specific debugging is enabled."), 9310 NULL, 9311 show_debug_infrun, 9312 &setdebuglist, &showdebuglist); 9313 9314 add_setshow_boolean_cmd ("displaced", class_maintenance, 9315 &debug_displaced, _("\ 9316 Set displaced stepping debugging."), _("\ 9317 Show displaced stepping debugging."), _("\ 9318 When non-zero, displaced stepping specific debugging is enabled."), 9319 NULL, 9320 show_debug_displaced, 9321 &setdebuglist, &showdebuglist); 9322 9323 add_setshow_boolean_cmd ("non-stop", no_class, 9324 &non_stop_1, _("\ 9325 Set whether gdb controls the inferior in non-stop mode."), _("\ 9326 Show whether gdb controls the inferior in non-stop mode."), _("\ 9327 When debugging a multi-threaded program and this setting is\n\ 9328 off (the default, also called all-stop mode), when one thread stops\n\ 9329 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\ 9330 all other threads in the program while you interact with the thread of\n\ 9331 interest. When you continue or step a thread, you can allow the other\n\ 9332 threads to run, or have them remain stopped, but while you inspect any\n\ 9333 thread's state, all threads stop.\n\ 9334 \n\ 9335 In non-stop mode, when one thread stops, other threads can continue\n\ 9336 to run freely. You'll be able to step each thread independently,\n\ 9337 leave it stopped or free to run as needed."), 9338 set_non_stop, 9339 show_non_stop, 9340 &setlist, 9341 &showlist); 9342 9343 numsigs = (int) GDB_SIGNAL_LAST; 9344 signal_stop = XNEWVEC (unsigned char, numsigs); 9345 signal_print = XNEWVEC (unsigned char, numsigs); 9346 signal_program = XNEWVEC (unsigned char, numsigs); 9347 signal_catch = XNEWVEC (unsigned char, numsigs); 9348 signal_pass = XNEWVEC (unsigned char, numsigs); 9349 for (i = 0; i < numsigs; i++) 9350 { 9351 signal_stop[i] = 1; 9352 signal_print[i] = 1; 9353 signal_program[i] = 1; 9354 signal_catch[i] = 0; 9355 } 9356 9357 /* Signals caused by debugger's own actions should not be given to 9358 the program afterwards. 9359 9360 Do not deliver GDB_SIGNAL_TRAP by default, except when the user 9361 explicitly specifies that it should be delivered to the target 9362 program. Typically, that would occur when a user is debugging a 9363 target monitor on a simulator: the target monitor sets a 9364 breakpoint; the simulator encounters this breakpoint and halts 9365 the simulation handing control to GDB; GDB, noting that the stop 9366 address doesn't map to any known breakpoint, returns control back 9367 to the simulator; the simulator then delivers the hardware 9368 equivalent of a GDB_SIGNAL_TRAP to the program being 9369 debugged. */ 9370 signal_program[GDB_SIGNAL_TRAP] = 0; 9371 signal_program[GDB_SIGNAL_INT] = 0; 9372 9373 /* Signals that are not errors should not normally enter the debugger. */ 9374 signal_stop[GDB_SIGNAL_ALRM] = 0; 9375 signal_print[GDB_SIGNAL_ALRM] = 0; 9376 signal_stop[GDB_SIGNAL_VTALRM] = 0; 9377 signal_print[GDB_SIGNAL_VTALRM] = 0; 9378 signal_stop[GDB_SIGNAL_PROF] = 0; 9379 signal_print[GDB_SIGNAL_PROF] = 0; 9380 signal_stop[GDB_SIGNAL_CHLD] = 0; 9381 signal_print[GDB_SIGNAL_CHLD] = 0; 9382 signal_stop[GDB_SIGNAL_IO] = 0; 9383 signal_print[GDB_SIGNAL_IO] = 0; 9384 signal_stop[GDB_SIGNAL_POLL] = 0; 9385 signal_print[GDB_SIGNAL_POLL] = 0; 9386 signal_stop[GDB_SIGNAL_URG] = 0; 9387 signal_print[GDB_SIGNAL_URG] = 0; 9388 signal_stop[GDB_SIGNAL_WINCH] = 0; 9389 signal_print[GDB_SIGNAL_WINCH] = 0; 9390 signal_stop[GDB_SIGNAL_PRIO] = 0; 9391 signal_print[GDB_SIGNAL_PRIO] = 0; 9392 9393 /* These signals are used internally by user-level thread 9394 implementations. (See signal(5) on Solaris.) Like the above 9395 signals, a healthy program receives and handles them as part of 9396 its normal operation. */ 9397 signal_stop[GDB_SIGNAL_LWP] = 0; 9398 signal_print[GDB_SIGNAL_LWP] = 0; 9399 signal_stop[GDB_SIGNAL_WAITING] = 0; 9400 signal_print[GDB_SIGNAL_WAITING] = 0; 9401 signal_stop[GDB_SIGNAL_CANCEL] = 0; 9402 signal_print[GDB_SIGNAL_CANCEL] = 0; 9403 signal_stop[GDB_SIGNAL_LIBRT] = 0; 9404 signal_print[GDB_SIGNAL_LIBRT] = 0; 9405 9406 /* Update cached state. */ 9407 signal_cache_update (-1); 9408 9409 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, 9410 &stop_on_solib_events, _("\ 9411 Set stopping for shared library events."), _("\ 9412 Show stopping for shared library events."), _("\ 9413 If nonzero, gdb will give control to the user when the dynamic linker\n\ 9414 notifies gdb of shared library events. The most common event of interest\n\ 9415 to the user would be loading/unloading of a new library."), 9416 set_stop_on_solib_events, 9417 show_stop_on_solib_events, 9418 &setlist, &showlist); 9419 9420 add_setshow_enum_cmd ("follow-fork-mode", class_run, 9421 follow_fork_mode_kind_names, 9422 &follow_fork_mode_string, _("\ 9423 Set debugger response to a program call of fork or vfork."), _("\ 9424 Show debugger response to a program call of fork or vfork."), _("\ 9425 A fork or vfork creates a new process. follow-fork-mode can be:\n\ 9426 parent - the original process is debugged after a fork\n\ 9427 child - the new process is debugged after a fork\n\ 9428 The unfollowed process will continue to run.\n\ 9429 By default, the debugger will follow the parent process."), 9430 NULL, 9431 show_follow_fork_mode_string, 9432 &setlist, &showlist); 9433 9434 add_setshow_enum_cmd ("follow-exec-mode", class_run, 9435 follow_exec_mode_names, 9436 &follow_exec_mode_string, _("\ 9437 Set debugger response to a program call of exec."), _("\ 9438 Show debugger response to a program call of exec."), _("\ 9439 An exec call replaces the program image of a process.\n\ 9440 \n\ 9441 follow-exec-mode can be:\n\ 9442 \n\ 9443 new - the debugger creates a new inferior and rebinds the process\n\ 9444 to this new inferior. The program the process was running before\n\ 9445 the exec call can be restarted afterwards by restarting the original\n\ 9446 inferior.\n\ 9447 \n\ 9448 same - the debugger keeps the process bound to the same inferior.\n\ 9449 The new executable image replaces the previous executable loaded in\n\ 9450 the inferior. Restarting the inferior after the exec call restarts\n\ 9451 the executable the process was running after the exec call.\n\ 9452 \n\ 9453 By default, the debugger will use the same inferior."), 9454 NULL, 9455 show_follow_exec_mode_string, 9456 &setlist, &showlist); 9457 9458 add_setshow_enum_cmd ("scheduler-locking", class_run, 9459 scheduler_enums, &scheduler_mode, _("\ 9460 Set mode for locking scheduler during execution."), _("\ 9461 Show mode for locking scheduler during execution."), _("\ 9462 off == no locking (threads may preempt at any time)\n\ 9463 on == full locking (no thread except the current thread may run)\n\ 9464 This applies to both normal execution and replay mode.\n\ 9465 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\ 9466 In this mode, other threads may run during other commands.\n\ 9467 This applies to both normal execution and replay mode.\n\ 9468 replay == scheduler locked in replay mode and unlocked during normal execution."), 9469 set_schedlock_func, /* traps on target vector */ 9470 show_scheduler_mode, 9471 &setlist, &showlist); 9472 9473 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\ 9474 Set mode for resuming threads of all processes."), _("\ 9475 Show mode for resuming threads of all processes."), _("\ 9476 When on, execution commands (such as 'continue' or 'next') resume all\n\ 9477 threads of all processes. When off (which is the default), execution\n\ 9478 commands only resume the threads of the current process. The set of\n\ 9479 threads that are resumed is further refined by the scheduler-locking\n\ 9480 mode (see help set scheduler-locking)."), 9481 NULL, 9482 show_schedule_multiple, 9483 &setlist, &showlist); 9484 9485 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ 9486 Set mode of the step operation."), _("\ 9487 Show mode of the step operation."), _("\ 9488 When set, doing a step over a function without debug line information\n\ 9489 will stop at the first instruction of that function. Otherwise, the\n\ 9490 function is skipped and the step command stops at a different source line."), 9491 NULL, 9492 show_step_stop_if_no_debug, 9493 &setlist, &showlist); 9494 9495 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run, 9496 &can_use_displaced_stepping, _("\ 9497 Set debugger's willingness to use displaced stepping."), _("\ 9498 Show debugger's willingness to use displaced stepping."), _("\ 9499 If on, gdb will use displaced stepping to step over breakpoints if it is\n\ 9500 supported by the target architecture. If off, gdb will not use displaced\n\ 9501 stepping to step over breakpoints, even if such is supported by the target\n\ 9502 architecture. If auto (which is the default), gdb will use displaced stepping\n\ 9503 if the target architecture supports it and non-stop mode is active, but will not\n\ 9504 use it in all-stop mode (see help set non-stop)."), 9505 NULL, 9506 show_can_use_displaced_stepping, 9507 &setlist, &showlist); 9508 9509 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names, 9510 &exec_direction, _("Set direction of execution.\n\ 9511 Options are 'forward' or 'reverse'."), 9512 _("Show direction of execution (forward/reverse)."), 9513 _("Tells gdb whether to execute forward or backward."), 9514 set_exec_direction_func, show_exec_direction_func, 9515 &setlist, &showlist); 9516 9517 /* Set/show detach-on-fork: user-settable mode. */ 9518 9519 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\ 9520 Set whether gdb will detach the child of a fork."), _("\ 9521 Show whether gdb will detach the child of a fork."), _("\ 9522 Tells gdb whether to detach the child of a fork."), 9523 NULL, NULL, &setlist, &showlist); 9524 9525 /* Set/show disable address space randomization mode. */ 9526 9527 add_setshow_boolean_cmd ("disable-randomization", class_support, 9528 &disable_randomization, _("\ 9529 Set disabling of debuggee's virtual address space randomization."), _("\ 9530 Show disabling of debuggee's virtual address space randomization."), _("\ 9531 When this mode is on (which is the default), randomization of the virtual\n\ 9532 address space is disabled. Standalone programs run with the randomization\n\ 9533 enabled by default on some platforms."), 9534 &set_disable_randomization, 9535 &show_disable_randomization, 9536 &setlist, &showlist); 9537 9538 /* ptid initializations */ 9539 inferior_ptid = null_ptid; 9540 target_last_wait_ptid = minus_one_ptid; 9541 9542 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed); 9543 observer_attach_thread_stop_requested (infrun_thread_stop_requested); 9544 observer_attach_thread_exit (infrun_thread_thread_exit); 9545 observer_attach_inferior_exit (infrun_inferior_exit); 9546 9547 /* Explicitly create without lookup, since that tries to create a 9548 value with a void typed value, and when we get here, gdbarch 9549 isn't initialized yet. At this point, we're quite sure there 9550 isn't another convenience variable of the same name. */ 9551 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL); 9552 9553 add_setshow_boolean_cmd ("observer", no_class, 9554 &observer_mode_1, _("\ 9555 Set whether gdb controls the inferior in observer mode."), _("\ 9556 Show whether gdb controls the inferior in observer mode."), _("\ 9557 In observer mode, GDB can get data from the inferior, but not\n\ 9558 affect its execution. Registers and memory may not be changed,\n\ 9559 breakpoints may not be set, and the program cannot be interrupted\n\ 9560 or signalled."), 9561 set_observer_mode, 9562 show_observer_mode, 9563 &setlist, 9564 &showlist); 9565 } 9566