xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/infrun.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Target-struct-independent code to start (run) and stop an inferior
2    process.
3 
4    Copyright (C) 1986-2016 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 
68 /* Prototypes for local functions */
69 
70 static void signals_info (char *, int);
71 
72 static void handle_command (char *, int);
73 
74 static void sig_print_info (enum gdb_signal);
75 
76 static void sig_print_header (void);
77 
78 static void resume_cleanups (void *);
79 
80 static int hook_stop_stub (void *);
81 
82 static int restore_selected_frame (void *);
83 
84 static int follow_fork (void);
85 
86 static int follow_fork_inferior (int follow_child, int detach_fork);
87 
88 static void follow_inferior_reset_breakpoints (void);
89 
90 static void set_schedlock_func (char *args, int from_tty,
91 				struct cmd_list_element *c);
92 
93 static int currently_stepping (struct thread_info *tp);
94 
95 void _initialize_infrun (void);
96 
97 void nullify_last_target_wait_ptid (void);
98 
99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100 
101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102 
103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104 
105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106 
107 /* Asynchronous signal handler registered as event loop source for
108    when we have pending events ready to be passed to the core.  */
109 static struct async_event_handler *infrun_async_inferior_event_token;
110 
111 /* Stores whether infrun_async was previously enabled or disabled.
112    Starts off as -1, indicating "never enabled/disabled".  */
113 static int infrun_is_async = -1;
114 
115 /* See infrun.h.  */
116 
117 void
118 infrun_async (int enable)
119 {
120   if (infrun_is_async != enable)
121     {
122       infrun_is_async = enable;
123 
124       if (debug_infrun)
125 	fprintf_unfiltered (gdb_stdlog,
126 			    "infrun: infrun_async(%d)\n",
127 			    enable);
128 
129       if (enable)
130 	mark_async_event_handler (infrun_async_inferior_event_token);
131       else
132 	clear_async_event_handler (infrun_async_inferior_event_token);
133     }
134 }
135 
136 /* See infrun.h.  */
137 
138 void
139 mark_infrun_async_event_handler (void)
140 {
141   mark_async_event_handler (infrun_async_inferior_event_token);
142 }
143 
144 /* When set, stop the 'step' command if we enter a function which has
145    no line number information.  The normal behavior is that we step
146    over such function.  */
147 int step_stop_if_no_debug = 0;
148 static void
149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 			    struct cmd_list_element *c, const char *value)
151 {
152   fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153 }
154 
155 /* proceed and normal_stop use this to notify the user when the
156    inferior stopped in a different thread than it had been running
157    in.  */
158 
159 static ptid_t previous_inferior_ptid;
160 
161 /* If set (default for legacy reasons), when following a fork, GDB
162    will detach from one of the fork branches, child or parent.
163    Exactly which branch is detached depends on 'set follow-fork-mode'
164    setting.  */
165 
166 static int detach_fork = 1;
167 
168 int debug_displaced = 0;
169 static void
170 show_debug_displaced (struct ui_file *file, int from_tty,
171 		      struct cmd_list_element *c, const char *value)
172 {
173   fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174 }
175 
176 unsigned int debug_infrun = 0;
177 static void
178 show_debug_infrun (struct ui_file *file, int from_tty,
179 		   struct cmd_list_element *c, const char *value)
180 {
181   fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182 }
183 
184 
185 /* Support for disabling address space randomization.  */
186 
187 int disable_randomization = 1;
188 
189 static void
190 show_disable_randomization (struct ui_file *file, int from_tty,
191 			    struct cmd_list_element *c, const char *value)
192 {
193   if (target_supports_disable_randomization ())
194     fprintf_filtered (file,
195 		      _("Disabling randomization of debuggee's "
196 			"virtual address space is %s.\n"),
197 		      value);
198   else
199     fputs_filtered (_("Disabling randomization of debuggee's "
200 		      "virtual address space is unsupported on\n"
201 		      "this platform.\n"), file);
202 }
203 
204 static void
205 set_disable_randomization (char *args, int from_tty,
206 			   struct cmd_list_element *c)
207 {
208   if (!target_supports_disable_randomization ())
209     error (_("Disabling randomization of debuggee's "
210 	     "virtual address space is unsupported on\n"
211 	     "this platform."));
212 }
213 
214 /* User interface for non-stop mode.  */
215 
216 int non_stop = 0;
217 static int non_stop_1 = 0;
218 
219 static void
220 set_non_stop (char *args, int from_tty,
221 	      struct cmd_list_element *c)
222 {
223   if (target_has_execution)
224     {
225       non_stop_1 = non_stop;
226       error (_("Cannot change this setting while the inferior is running."));
227     }
228 
229   non_stop = non_stop_1;
230 }
231 
232 static void
233 show_non_stop (struct ui_file *file, int from_tty,
234 	       struct cmd_list_element *c, const char *value)
235 {
236   fprintf_filtered (file,
237 		    _("Controlling the inferior in non-stop mode is %s.\n"),
238 		    value);
239 }
240 
241 /* "Observer mode" is somewhat like a more extreme version of
242    non-stop, in which all GDB operations that might affect the
243    target's execution have been disabled.  */
244 
245 int observer_mode = 0;
246 static int observer_mode_1 = 0;
247 
248 static void
249 set_observer_mode (char *args, int from_tty,
250 		   struct cmd_list_element *c)
251 {
252   if (target_has_execution)
253     {
254       observer_mode_1 = observer_mode;
255       error (_("Cannot change this setting while the inferior is running."));
256     }
257 
258   observer_mode = observer_mode_1;
259 
260   may_write_registers = !observer_mode;
261   may_write_memory = !observer_mode;
262   may_insert_breakpoints = !observer_mode;
263   may_insert_tracepoints = !observer_mode;
264   /* We can insert fast tracepoints in or out of observer mode,
265      but enable them if we're going into this mode.  */
266   if (observer_mode)
267     may_insert_fast_tracepoints = 1;
268   may_stop = !observer_mode;
269   update_target_permissions ();
270 
271   /* Going *into* observer mode we must force non-stop, then
272      going out we leave it that way.  */
273   if (observer_mode)
274     {
275       pagination_enabled = 0;
276       non_stop = non_stop_1 = 1;
277     }
278 
279   if (from_tty)
280     printf_filtered (_("Observer mode is now %s.\n"),
281 		     (observer_mode ? "on" : "off"));
282 }
283 
284 static void
285 show_observer_mode (struct ui_file *file, int from_tty,
286 		    struct cmd_list_element *c, const char *value)
287 {
288   fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289 }
290 
291 /* This updates the value of observer mode based on changes in
292    permissions.  Note that we are deliberately ignoring the values of
293    may-write-registers and may-write-memory, since the user may have
294    reason to enable these during a session, for instance to turn on a
295    debugging-related global.  */
296 
297 void
298 update_observer_mode (void)
299 {
300   int newval;
301 
302   newval = (!may_insert_breakpoints
303 	    && !may_insert_tracepoints
304 	    && may_insert_fast_tracepoints
305 	    && !may_stop
306 	    && non_stop);
307 
308   /* Let the user know if things change.  */
309   if (newval != observer_mode)
310     printf_filtered (_("Observer mode is now %s.\n"),
311 		     (newval ? "on" : "off"));
312 
313   observer_mode = observer_mode_1 = newval;
314 }
315 
316 /* Tables of how to react to signals; the user sets them.  */
317 
318 static unsigned char *signal_stop;
319 static unsigned char *signal_print;
320 static unsigned char *signal_program;
321 
322 /* Table of signals that are registered with "catch signal".  A
323    non-zero entry indicates that the signal is caught by some "catch
324    signal" command.  This has size GDB_SIGNAL_LAST, to accommodate all
325    signals.  */
326 static unsigned char *signal_catch;
327 
328 /* Table of signals that the target may silently handle.
329    This is automatically determined from the flags above,
330    and simply cached here.  */
331 static unsigned char *signal_pass;
332 
333 #define SET_SIGS(nsigs,sigs,flags) \
334   do { \
335     int signum = (nsigs); \
336     while (signum-- > 0) \
337       if ((sigs)[signum]) \
338 	(flags)[signum] = 1; \
339   } while (0)
340 
341 #define UNSET_SIGS(nsigs,sigs,flags) \
342   do { \
343     int signum = (nsigs); \
344     while (signum-- > 0) \
345       if ((sigs)[signum]) \
346 	(flags)[signum] = 0; \
347   } while (0)
348 
349 /* Update the target's copy of SIGNAL_PROGRAM.  The sole purpose of
350    this function is to avoid exporting `signal_program'.  */
351 
352 void
353 update_signals_program_target (void)
354 {
355   target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
356 }
357 
358 /* Value to pass to target_resume() to cause all threads to resume.  */
359 
360 #define RESUME_ALL minus_one_ptid
361 
362 /* Command list pointer for the "stop" placeholder.  */
363 
364 static struct cmd_list_element *stop_command;
365 
366 /* Nonzero if we want to give control to the user when we're notified
367    of shared library events by the dynamic linker.  */
368 int stop_on_solib_events;
369 
370 /* Enable or disable optional shared library event breakpoints
371    as appropriate when the above flag is changed.  */
372 
373 static void
374 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375 {
376   update_solib_breakpoints ();
377 }
378 
379 static void
380 show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 			   struct cmd_list_element *c, const char *value)
382 {
383   fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 		    value);
385 }
386 
387 /* Nonzero after stop if current stack frame should be printed.  */
388 
389 static int stop_print_frame;
390 
391 /* This is a cached copy of the pid/waitstatus of the last event
392    returned by target_wait()/deprecated_target_wait_hook().  This
393    information is returned by get_last_target_status().  */
394 static ptid_t target_last_wait_ptid;
395 static struct target_waitstatus target_last_waitstatus;
396 
397 static void context_switch (ptid_t ptid);
398 
399 void init_thread_stepping_state (struct thread_info *tss);
400 
401 static const char follow_fork_mode_child[] = "child";
402 static const char follow_fork_mode_parent[] = "parent";
403 
404 static const char *const follow_fork_mode_kind_names[] = {
405   follow_fork_mode_child,
406   follow_fork_mode_parent,
407   NULL
408 };
409 
410 static const char *follow_fork_mode_string = follow_fork_mode_parent;
411 static void
412 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 			      struct cmd_list_element *c, const char *value)
414 {
415   fprintf_filtered (file,
416 		    _("Debugger response to a program "
417 		      "call of fork or vfork is \"%s\".\n"),
418 		    value);
419 }
420 
421 
422 /* Handle changes to the inferior list based on the type of fork,
423    which process is being followed, and whether the other process
424    should be detached.  On entry inferior_ptid must be the ptid of
425    the fork parent.  At return inferior_ptid is the ptid of the
426    followed inferior.  */
427 
428 static int
429 follow_fork_inferior (int follow_child, int detach_fork)
430 {
431   int has_vforked;
432   ptid_t parent_ptid, child_ptid;
433 
434   has_vforked = (inferior_thread ()->pending_follow.kind
435 		 == TARGET_WAITKIND_VFORKED);
436   parent_ptid = inferior_ptid;
437   child_ptid = inferior_thread ()->pending_follow.value.related_pid;
438 
439   if (has_vforked
440       && !non_stop /* Non-stop always resumes both branches.  */
441       && current_ui->prompt_state == PROMPT_BLOCKED
442       && !(follow_child || detach_fork || sched_multi))
443     {
444       /* The parent stays blocked inside the vfork syscall until the
445 	 child execs or exits.  If we don't let the child run, then
446 	 the parent stays blocked.  If we're telling the parent to run
447 	 in the foreground, the user will not be able to ctrl-c to get
448 	 back the terminal, effectively hanging the debug session.  */
449       fprintf_filtered (gdb_stderr, _("\
450 Can not resume the parent process over vfork in the foreground while\n\
451 holding the child stopped.  Try \"set detach-on-fork\" or \
452 \"set schedule-multiple\".\n"));
453       /* FIXME output string > 80 columns.  */
454       return 1;
455     }
456 
457   if (!follow_child)
458     {
459       /* Detach new forked process?  */
460       if (detach_fork)
461 	{
462 	  /* Before detaching from the child, remove all breakpoints
463 	     from it.  If we forked, then this has already been taken
464 	     care of by infrun.c.  If we vforked however, any
465 	     breakpoint inserted in the parent is visible in the
466 	     child, even those added while stopped in a vfork
467 	     catchpoint.  This will remove the breakpoints from the
468 	     parent also, but they'll be reinserted below.  */
469 	  if (has_vforked)
470 	    {
471 	      /* Keep breakpoints list in sync.  */
472 	      remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 	    }
474 
475 	  if (info_verbose || debug_infrun)
476 	    {
477 	      /* Ensure that we have a process ptid.  */
478 	      ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479 
480 	      target_terminal_ours_for_output ();
481 	      fprintf_filtered (gdb_stdlog,
482 				_("Detaching after %s from child %s.\n"),
483 				has_vforked ? "vfork" : "fork",
484 				target_pid_to_str (process_ptid));
485 	    }
486 	}
487       else
488 	{
489 	  struct inferior *parent_inf, *child_inf;
490 	  struct cleanup *old_chain;
491 
492 	  /* Add process to GDB's tables.  */
493 	  child_inf = add_inferior (ptid_get_pid (child_ptid));
494 
495 	  parent_inf = current_inferior ();
496 	  child_inf->attach_flag = parent_inf->attach_flag;
497 	  copy_terminal_info (child_inf, parent_inf);
498 	  child_inf->gdbarch = parent_inf->gdbarch;
499 	  copy_inferior_target_desc_info (child_inf, parent_inf);
500 
501 	  old_chain = save_inferior_ptid ();
502 	  save_current_program_space ();
503 
504 	  inferior_ptid = child_ptid;
505 	  add_thread (inferior_ptid);
506 	  child_inf->symfile_flags = SYMFILE_NO_READ;
507 
508 	  /* If this is a vfork child, then the address-space is
509 	     shared with the parent.  */
510 	  if (has_vforked)
511 	    {
512 	      child_inf->pspace = parent_inf->pspace;
513 	      child_inf->aspace = parent_inf->aspace;
514 
515 	      /* The parent will be frozen until the child is done
516 		 with the shared region.  Keep track of the
517 		 parent.  */
518 	      child_inf->vfork_parent = parent_inf;
519 	      child_inf->pending_detach = 0;
520 	      parent_inf->vfork_child = child_inf;
521 	      parent_inf->pending_detach = 0;
522 	    }
523 	  else
524 	    {
525 	      child_inf->aspace = new_address_space ();
526 	      child_inf->pspace = add_program_space (child_inf->aspace);
527 	      child_inf->removable = 1;
528 	      set_current_program_space (child_inf->pspace);
529 	      clone_program_space (child_inf->pspace, parent_inf->pspace);
530 
531 	      /* Let the shared library layer (e.g., solib-svr4) learn
532 		 about this new process, relocate the cloned exec, pull
533 		 in shared libraries, and install the solib event
534 		 breakpoint.  If a "cloned-VM" event was propagated
535 		 better throughout the core, this wouldn't be
536 		 required.  */
537 	      solib_create_inferior_hook (0);
538 	    }
539 
540 	  do_cleanups (old_chain);
541 	}
542 
543       if (has_vforked)
544 	{
545 	  struct inferior *parent_inf;
546 
547 	  parent_inf = current_inferior ();
548 
549 	  /* If we detached from the child, then we have to be careful
550 	     to not insert breakpoints in the parent until the child
551 	     is done with the shared memory region.  However, if we're
552 	     staying attached to the child, then we can and should
553 	     insert breakpoints, so that we can debug it.  A
554 	     subsequent child exec or exit is enough to know when does
555 	     the child stops using the parent's address space.  */
556 	  parent_inf->waiting_for_vfork_done = detach_fork;
557 	  parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 	}
559     }
560   else
561     {
562       /* Follow the child.  */
563       struct inferior *parent_inf, *child_inf;
564       struct program_space *parent_pspace;
565 
566       if (info_verbose || debug_infrun)
567 	{
568 	  target_terminal_ours_for_output ();
569 	  fprintf_filtered (gdb_stdlog,
570 			    _("Attaching after %s %s to child %s.\n"),
571 			    target_pid_to_str (parent_ptid),
572 			    has_vforked ? "vfork" : "fork",
573 			    target_pid_to_str (child_ptid));
574 	}
575 
576       /* Add the new inferior first, so that the target_detach below
577 	 doesn't unpush the target.  */
578 
579       child_inf = add_inferior (ptid_get_pid (child_ptid));
580 
581       parent_inf = current_inferior ();
582       child_inf->attach_flag = parent_inf->attach_flag;
583       copy_terminal_info (child_inf, parent_inf);
584       child_inf->gdbarch = parent_inf->gdbarch;
585       copy_inferior_target_desc_info (child_inf, parent_inf);
586 
587       parent_pspace = parent_inf->pspace;
588 
589       /* If we're vforking, we want to hold on to the parent until the
590 	 child exits or execs.  At child exec or exit time we can
591 	 remove the old breakpoints from the parent and detach or
592 	 resume debugging it.  Otherwise, detach the parent now; we'll
593 	 want to reuse it's program/address spaces, but we can't set
594 	 them to the child before removing breakpoints from the
595 	 parent, otherwise, the breakpoints module could decide to
596 	 remove breakpoints from the wrong process (since they'd be
597 	 assigned to the same address space).  */
598 
599       if (has_vforked)
600 	{
601 	  gdb_assert (child_inf->vfork_parent == NULL);
602 	  gdb_assert (parent_inf->vfork_child == NULL);
603 	  child_inf->vfork_parent = parent_inf;
604 	  child_inf->pending_detach = 0;
605 	  parent_inf->vfork_child = child_inf;
606 	  parent_inf->pending_detach = detach_fork;
607 	  parent_inf->waiting_for_vfork_done = 0;
608 	}
609       else if (detach_fork)
610 	{
611 	  if (info_verbose || debug_infrun)
612 	    {
613 	      /* Ensure that we have a process ptid.  */
614 	      ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615 
616 	      target_terminal_ours_for_output ();
617 	      fprintf_filtered (gdb_stdlog,
618 				_("Detaching after fork from "
619 				  "child %s.\n"),
620 				target_pid_to_str (process_ptid));
621 	    }
622 
623 	  target_detach (NULL, 0);
624 	}
625 
626       /* Note that the detach above makes PARENT_INF dangling.  */
627 
628       /* Add the child thread to the appropriate lists, and switch to
629 	 this new thread, before cloning the program space, and
630 	 informing the solib layer about this new process.  */
631 
632       inferior_ptid = child_ptid;
633       add_thread (inferior_ptid);
634 
635       /* If this is a vfork child, then the address-space is shared
636 	 with the parent.  If we detached from the parent, then we can
637 	 reuse the parent's program/address spaces.  */
638       if (has_vforked || detach_fork)
639 	{
640 	  child_inf->pspace = parent_pspace;
641 	  child_inf->aspace = child_inf->pspace->aspace;
642 	}
643       else
644 	{
645 	  child_inf->aspace = new_address_space ();
646 	  child_inf->pspace = add_program_space (child_inf->aspace);
647 	  child_inf->removable = 1;
648 	  child_inf->symfile_flags = SYMFILE_NO_READ;
649 	  set_current_program_space (child_inf->pspace);
650 	  clone_program_space (child_inf->pspace, parent_pspace);
651 
652 	  /* Let the shared library layer (e.g., solib-svr4) learn
653 	     about this new process, relocate the cloned exec, pull in
654 	     shared libraries, and install the solib event breakpoint.
655 	     If a "cloned-VM" event was propagated better throughout
656 	     the core, this wouldn't be required.  */
657 	  solib_create_inferior_hook (0);
658 	}
659     }
660 
661   return target_follow_fork (follow_child, detach_fork);
662 }
663 
664 /* Tell the target to follow the fork we're stopped at.  Returns true
665    if the inferior should be resumed; false, if the target for some
666    reason decided it's best not to resume.  */
667 
668 static int
669 follow_fork (void)
670 {
671   int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
672   int should_resume = 1;
673   struct thread_info *tp;
674 
675   /* Copy user stepping state to the new inferior thread.  FIXME: the
676      followed fork child thread should have a copy of most of the
677      parent thread structure's run control related fields, not just these.
678      Initialized to avoid "may be used uninitialized" warnings from gcc.  */
679   struct breakpoint *step_resume_breakpoint = NULL;
680   struct breakpoint *exception_resume_breakpoint = NULL;
681   CORE_ADDR step_range_start = 0;
682   CORE_ADDR step_range_end = 0;
683   struct frame_id step_frame_id = { 0 };
684   struct thread_fsm *thread_fsm = NULL;
685 
686   if (!non_stop)
687     {
688       ptid_t wait_ptid;
689       struct target_waitstatus wait_status;
690 
691       /* Get the last target status returned by target_wait().  */
692       get_last_target_status (&wait_ptid, &wait_status);
693 
694       /* If not stopped at a fork event, then there's nothing else to
695 	 do.  */
696       if (wait_status.kind != TARGET_WAITKIND_FORKED
697 	  && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 	return 1;
699 
700       /* Check if we switched over from WAIT_PTID, since the event was
701 	 reported.  */
702       if (!ptid_equal (wait_ptid, minus_one_ptid)
703 	  && !ptid_equal (inferior_ptid, wait_ptid))
704 	{
705 	  /* We did.  Switch back to WAIT_PTID thread, to tell the
706 	     target to follow it (in either direction).  We'll
707 	     afterwards refuse to resume, and inform the user what
708 	     happened.  */
709 	  switch_to_thread (wait_ptid);
710 	  should_resume = 0;
711 	}
712     }
713 
714   tp = inferior_thread ();
715 
716   /* If there were any forks/vforks that were caught and are now to be
717      followed, then do so now.  */
718   switch (tp->pending_follow.kind)
719     {
720     case TARGET_WAITKIND_FORKED:
721     case TARGET_WAITKIND_VFORKED:
722       {
723 	ptid_t parent, child;
724 
725 	/* If the user did a next/step, etc, over a fork call,
726 	   preserve the stepping state in the fork child.  */
727 	if (follow_child && should_resume)
728 	  {
729 	    step_resume_breakpoint = clone_momentary_breakpoint
730 					 (tp->control.step_resume_breakpoint);
731 	    step_range_start = tp->control.step_range_start;
732 	    step_range_end = tp->control.step_range_end;
733 	    step_frame_id = tp->control.step_frame_id;
734 	    exception_resume_breakpoint
735 	      = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
736 	    thread_fsm = tp->thread_fsm;
737 
738 	    /* For now, delete the parent's sr breakpoint, otherwise,
739 	       parent/child sr breakpoints are considered duplicates,
740 	       and the child version will not be installed.  Remove
741 	       this when the breakpoints module becomes aware of
742 	       inferiors and address spaces.  */
743 	    delete_step_resume_breakpoint (tp);
744 	    tp->control.step_range_start = 0;
745 	    tp->control.step_range_end = 0;
746 	    tp->control.step_frame_id = null_frame_id;
747 	    delete_exception_resume_breakpoint (tp);
748 	    tp->thread_fsm = NULL;
749 	  }
750 
751 	parent = inferior_ptid;
752 	child = tp->pending_follow.value.related_pid;
753 
754 	/* Set up inferior(s) as specified by the caller, and tell the
755 	   target to do whatever is necessary to follow either parent
756 	   or child.  */
757 	if (follow_fork_inferior (follow_child, detach_fork))
758 	  {
759 	    /* Target refused to follow, or there's some other reason
760 	       we shouldn't resume.  */
761 	    should_resume = 0;
762 	  }
763 	else
764 	  {
765 	    /* This pending follow fork event is now handled, one way
766 	       or another.  The previous selected thread may be gone
767 	       from the lists by now, but if it is still around, need
768 	       to clear the pending follow request.  */
769 	    tp = find_thread_ptid (parent);
770 	    if (tp)
771 	      tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772 
773 	    /* This makes sure we don't try to apply the "Switched
774 	       over from WAIT_PID" logic above.  */
775 	    nullify_last_target_wait_ptid ();
776 
777 	    /* If we followed the child, switch to it...  */
778 	    if (follow_child)
779 	      {
780 		switch_to_thread (child);
781 
782 		/* ... and preserve the stepping state, in case the
783 		   user was stepping over the fork call.  */
784 		if (should_resume)
785 		  {
786 		    tp = inferior_thread ();
787 		    tp->control.step_resume_breakpoint
788 		      = step_resume_breakpoint;
789 		    tp->control.step_range_start = step_range_start;
790 		    tp->control.step_range_end = step_range_end;
791 		    tp->control.step_frame_id = step_frame_id;
792 		    tp->control.exception_resume_breakpoint
793 		      = exception_resume_breakpoint;
794 		    tp->thread_fsm = thread_fsm;
795 		  }
796 		else
797 		  {
798 		    /* If we get here, it was because we're trying to
799 		       resume from a fork catchpoint, but, the user
800 		       has switched threads away from the thread that
801 		       forked.  In that case, the resume command
802 		       issued is most likely not applicable to the
803 		       child, so just warn, and refuse to resume.  */
804 		    warning (_("Not resuming: switched threads "
805 			       "before following fork child."));
806 		  }
807 
808 		/* Reset breakpoints in the child as appropriate.  */
809 		follow_inferior_reset_breakpoints ();
810 	      }
811 	    else
812 	      switch_to_thread (parent);
813 	  }
814       }
815       break;
816     case TARGET_WAITKIND_SPURIOUS:
817       /* Nothing to follow.  */
818       break;
819     default:
820       internal_error (__FILE__, __LINE__,
821 		      "Unexpected pending_follow.kind %d\n",
822 		      tp->pending_follow.kind);
823       break;
824     }
825 
826   return should_resume;
827 }
828 
829 static void
830 follow_inferior_reset_breakpoints (void)
831 {
832   struct thread_info *tp = inferior_thread ();
833 
834   /* Was there a step_resume breakpoint?  (There was if the user
835      did a "next" at the fork() call.)  If so, explicitly reset its
836      thread number.  Cloned step_resume breakpoints are disabled on
837      creation, so enable it here now that it is associated with the
838      correct thread.
839 
840      step_resumes are a form of bp that are made to be per-thread.
841      Since we created the step_resume bp when the parent process
842      was being debugged, and now are switching to the child process,
843      from the breakpoint package's viewpoint, that's a switch of
844      "threads".  We must update the bp's notion of which thread
845      it is for, or it'll be ignored when it triggers.  */
846 
847   if (tp->control.step_resume_breakpoint)
848     {
849       breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850       tp->control.step_resume_breakpoint->loc->enabled = 1;
851     }
852 
853   /* Treat exception_resume breakpoints like step_resume breakpoints.  */
854   if (tp->control.exception_resume_breakpoint)
855     {
856       breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857       tp->control.exception_resume_breakpoint->loc->enabled = 1;
858     }
859 
860   /* Reinsert all breakpoints in the child.  The user may have set
861      breakpoints after catching the fork, in which case those
862      were never set in the child, but only in the parent.  This makes
863      sure the inserted breakpoints match the breakpoint list.  */
864 
865   breakpoint_re_set ();
866   insert_breakpoints ();
867 }
868 
869 /* The child has exited or execed: resume threads of the parent the
870    user wanted to be executing.  */
871 
872 static int
873 proceed_after_vfork_done (struct thread_info *thread,
874 			  void *arg)
875 {
876   int pid = * (int *) arg;
877 
878   if (ptid_get_pid (thread->ptid) == pid
879       && is_running (thread->ptid)
880       && !is_executing (thread->ptid)
881       && !thread->stop_requested
882       && thread->suspend.stop_signal == GDB_SIGNAL_0)
883     {
884       if (debug_infrun)
885 	fprintf_unfiltered (gdb_stdlog,
886 			    "infrun: resuming vfork parent thread %s\n",
887 			    target_pid_to_str (thread->ptid));
888 
889       switch_to_thread (thread->ptid);
890       clear_proceed_status (0);
891       proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
892     }
893 
894   return 0;
895 }
896 
897 /* Called whenever we notice an exec or exit event, to handle
898    detaching or resuming a vfork parent.  */
899 
900 static void
901 handle_vfork_child_exec_or_exit (int exec)
902 {
903   struct inferior *inf = current_inferior ();
904 
905   if (inf->vfork_parent)
906     {
907       int resume_parent = -1;
908 
909       /* This exec or exit marks the end of the shared memory region
910 	 between the parent and the child.  If the user wanted to
911 	 detach from the parent, now is the time.  */
912 
913       if (inf->vfork_parent->pending_detach)
914 	{
915 	  struct thread_info *tp;
916 	  struct cleanup *old_chain;
917 	  struct program_space *pspace;
918 	  struct address_space *aspace;
919 
920 	  /* follow-fork child, detach-on-fork on.  */
921 
922 	  inf->vfork_parent->pending_detach = 0;
923 
924 	  if (!exec)
925 	    {
926 	      /* If we're handling a child exit, then inferior_ptid
927 		 points at the inferior's pid, not to a thread.  */
928 	      old_chain = save_inferior_ptid ();
929 	      save_current_program_space ();
930 	      save_current_inferior ();
931 	    }
932 	  else
933 	    old_chain = save_current_space_and_thread ();
934 
935 	  /* We're letting loose of the parent.  */
936 	  tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 	  switch_to_thread (tp->ptid);
938 
939 	  /* We're about to detach from the parent, which implicitly
940 	     removes breakpoints from its address space.  There's a
941 	     catch here: we want to reuse the spaces for the child,
942 	     but, parent/child are still sharing the pspace at this
943 	     point, although the exec in reality makes the kernel give
944 	     the child a fresh set of new pages.  The problem here is
945 	     that the breakpoints module being unaware of this, would
946 	     likely chose the child process to write to the parent
947 	     address space.  Swapping the child temporarily away from
948 	     the spaces has the desired effect.  Yes, this is "sort
949 	     of" a hack.  */
950 
951 	  pspace = inf->pspace;
952 	  aspace = inf->aspace;
953 	  inf->aspace = NULL;
954 	  inf->pspace = NULL;
955 
956 	  if (debug_infrun || info_verbose)
957 	    {
958 	      target_terminal_ours_for_output ();
959 
960 	      if (exec)
961 		{
962 		  fprintf_filtered (gdb_stdlog,
963 				    _("Detaching vfork parent process "
964 				      "%d after child exec.\n"),
965 				    inf->vfork_parent->pid);
966 		}
967 	      else
968 		{
969 		  fprintf_filtered (gdb_stdlog,
970 				    _("Detaching vfork parent process "
971 				      "%d after child exit.\n"),
972 				    inf->vfork_parent->pid);
973 		}
974 	    }
975 
976 	  target_detach (NULL, 0);
977 
978 	  /* Put it back.  */
979 	  inf->pspace = pspace;
980 	  inf->aspace = aspace;
981 
982 	  do_cleanups (old_chain);
983 	}
984       else if (exec)
985 	{
986 	  /* We're staying attached to the parent, so, really give the
987 	     child a new address space.  */
988 	  inf->pspace = add_program_space (maybe_new_address_space ());
989 	  inf->aspace = inf->pspace->aspace;
990 	  inf->removable = 1;
991 	  set_current_program_space (inf->pspace);
992 
993 	  resume_parent = inf->vfork_parent->pid;
994 
995 	  /* Break the bonds.  */
996 	  inf->vfork_parent->vfork_child = NULL;
997 	}
998       else
999 	{
1000 	  struct cleanup *old_chain;
1001 	  struct program_space *pspace;
1002 
1003 	  /* If this is a vfork child exiting, then the pspace and
1004 	     aspaces were shared with the parent.  Since we're
1005 	     reporting the process exit, we'll be mourning all that is
1006 	     found in the address space, and switching to null_ptid,
1007 	     preparing to start a new inferior.  But, since we don't
1008 	     want to clobber the parent's address/program spaces, we
1009 	     go ahead and create a new one for this exiting
1010 	     inferior.  */
1011 
1012 	  /* Switch to null_ptid, so that clone_program_space doesn't want
1013 	     to read the selected frame of a dead process.  */
1014 	  old_chain = save_inferior_ptid ();
1015 	  inferior_ptid = null_ptid;
1016 
1017 	  /* This inferior is dead, so avoid giving the breakpoints
1018 	     module the option to write through to it (cloning a
1019 	     program space resets breakpoints).  */
1020 	  inf->aspace = NULL;
1021 	  inf->pspace = NULL;
1022 	  pspace = add_program_space (maybe_new_address_space ());
1023 	  set_current_program_space (pspace);
1024 	  inf->removable = 1;
1025 	  inf->symfile_flags = SYMFILE_NO_READ;
1026 	  clone_program_space (pspace, inf->vfork_parent->pspace);
1027 	  inf->pspace = pspace;
1028 	  inf->aspace = pspace->aspace;
1029 
1030 	  /* Put back inferior_ptid.  We'll continue mourning this
1031 	     inferior.  */
1032 	  do_cleanups (old_chain);
1033 
1034 	  resume_parent = inf->vfork_parent->pid;
1035 	  /* Break the bonds.  */
1036 	  inf->vfork_parent->vfork_child = NULL;
1037 	}
1038 
1039       inf->vfork_parent = NULL;
1040 
1041       gdb_assert (current_program_space == inf->pspace);
1042 
1043       if (non_stop && resume_parent != -1)
1044 	{
1045 	  /* If the user wanted the parent to be running, let it go
1046 	     free now.  */
1047 	  struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048 
1049 	  if (debug_infrun)
1050 	    fprintf_unfiltered (gdb_stdlog,
1051 				"infrun: resuming vfork parent process %d\n",
1052 				resume_parent);
1053 
1054 	  iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055 
1056 	  do_cleanups (old_chain);
1057 	}
1058     }
1059 }
1060 
1061 /* Enum strings for "set|show follow-exec-mode".  */
1062 
1063 static const char follow_exec_mode_new[] = "new";
1064 static const char follow_exec_mode_same[] = "same";
1065 static const char *const follow_exec_mode_names[] =
1066 {
1067   follow_exec_mode_new,
1068   follow_exec_mode_same,
1069   NULL,
1070 };
1071 
1072 static const char *follow_exec_mode_string = follow_exec_mode_same;
1073 static void
1074 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 			      struct cmd_list_element *c, const char *value)
1076 {
1077   fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"),  value);
1078 }
1079 
1080 /* EXECD_PATHNAME is assumed to be non-NULL.  */
1081 
1082 static void
1083 follow_exec (ptid_t ptid, char *execd_pathname)
1084 {
1085   struct thread_info *th, *tmp;
1086   struct inferior *inf = current_inferior ();
1087   int pid = ptid_get_pid (ptid);
1088   ptid_t process_ptid;
1089 
1090   /* This is an exec event that we actually wish to pay attention to.
1091      Refresh our symbol table to the newly exec'd program, remove any
1092      momentary bp's, etc.
1093 
1094      If there are breakpoints, they aren't really inserted now,
1095      since the exec() transformed our inferior into a fresh set
1096      of instructions.
1097 
1098      We want to preserve symbolic breakpoints on the list, since
1099      we have hopes that they can be reset after the new a.out's
1100      symbol table is read.
1101 
1102      However, any "raw" breakpoints must be removed from the list
1103      (e.g., the solib bp's), since their address is probably invalid
1104      now.
1105 
1106      And, we DON'T want to call delete_breakpoints() here, since
1107      that may write the bp's "shadow contents" (the instruction
1108      value that was overwritten witha TRAP instruction).  Since
1109      we now have a new a.out, those shadow contents aren't valid.  */
1110 
1111   mark_breakpoints_out ();
1112 
1113   /* The target reports the exec event to the main thread, even if
1114      some other thread does the exec, and even if the main thread was
1115      stopped or already gone.  We may still have non-leader threads of
1116      the process on our list.  E.g., on targets that don't have thread
1117      exit events (like remote); or on native Linux in non-stop mode if
1118      there were only two threads in the inferior and the non-leader
1119      one is the one that execs (and nothing forces an update of the
1120      thread list up to here).  When debugging remotely, it's best to
1121      avoid extra traffic, when possible, so avoid syncing the thread
1122      list with the target, and instead go ahead and delete all threads
1123      of the process but one that reported the event.  Note this must
1124      be done before calling update_breakpoints_after_exec, as
1125      otherwise clearing the threads' resources would reference stale
1126      thread breakpoints -- it may have been one of these threads that
1127      stepped across the exec.  We could just clear their stepping
1128      states, but as long as we're iterating, might as well delete
1129      them.  Deleting them now rather than at the next user-visible
1130      stop provides a nicer sequence of events for user and MI
1131      notifications.  */
1132   ALL_THREADS_SAFE (th, tmp)
1133     if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1134       delete_thread (th->ptid);
1135 
1136   /* We also need to clear any left over stale state for the
1137      leader/event thread.  E.g., if there was any step-resume
1138      breakpoint or similar, it's gone now.  We cannot truly
1139      step-to-next statement through an exec().  */
1140   th = inferior_thread ();
1141   th->control.step_resume_breakpoint = NULL;
1142   th->control.exception_resume_breakpoint = NULL;
1143   th->control.single_step_breakpoints = NULL;
1144   th->control.step_range_start = 0;
1145   th->control.step_range_end = 0;
1146 
1147   /* The user may have had the main thread held stopped in the
1148      previous image (e.g., schedlock on, or non-stop).  Release
1149      it now.  */
1150   th->stop_requested = 0;
1151 
1152   update_breakpoints_after_exec ();
1153 
1154   /* What is this a.out's name?  */
1155   process_ptid = pid_to_ptid (pid);
1156   printf_unfiltered (_("%s is executing new program: %s\n"),
1157 		     target_pid_to_str (process_ptid),
1158 		     execd_pathname);
1159 
1160   /* We've followed the inferior through an exec.  Therefore, the
1161      inferior has essentially been killed & reborn.  */
1162 
1163   gdb_flush (gdb_stdout);
1164 
1165   breakpoint_init_inferior (inf_execd);
1166 
1167   if (*gdb_sysroot != '\0')
1168     {
1169       char *name = exec_file_find (execd_pathname, NULL);
1170 
1171       execd_pathname = (char *) alloca (strlen (name) + 1);
1172       strcpy (execd_pathname, name);
1173       xfree (name);
1174     }
1175 
1176   /* Reset the shared library package.  This ensures that we get a
1177      shlib event when the child reaches "_start", at which point the
1178      dld will have had a chance to initialize the child.  */
1179   /* Also, loading a symbol file below may trigger symbol lookups, and
1180      we don't want those to be satisfied by the libraries of the
1181      previous incarnation of this process.  */
1182   no_shared_libraries (NULL, 0);
1183 
1184   if (follow_exec_mode_string == follow_exec_mode_new)
1185     {
1186       /* The user wants to keep the old inferior and program spaces
1187 	 around.  Create a new fresh one, and switch to it.  */
1188 
1189       /* Do exit processing for the original inferior before adding
1190 	 the new inferior so we don't have two active inferiors with
1191 	 the same ptid, which can confuse find_inferior_ptid.  */
1192       exit_inferior_num_silent (current_inferior ()->num);
1193 
1194       inf = add_inferior_with_spaces ();
1195       inf->pid = pid;
1196       target_follow_exec (inf, execd_pathname);
1197 
1198       set_current_inferior (inf);
1199       set_current_program_space (inf->pspace);
1200       add_thread (ptid);
1201     }
1202   else
1203     {
1204       /* The old description may no longer be fit for the new image.
1205 	 E.g, a 64-bit process exec'ed a 32-bit process.  Clear the
1206 	 old description; we'll read a new one below.  No need to do
1207 	 this on "follow-exec-mode new", as the old inferior stays
1208 	 around (its description is later cleared/refetched on
1209 	 restart).  */
1210       target_clear_description ();
1211     }
1212 
1213   gdb_assert (current_program_space == inf->pspace);
1214 
1215   /* That a.out is now the one to use.  */
1216   exec_file_attach (execd_pathname, 0);
1217 
1218   /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1219      (Position Independent Executable) main symbol file will get applied by
1220      solib_create_inferior_hook below.  breakpoint_re_set would fail to insert
1221      the breakpoints with the zero displacement.  */
1222 
1223   symbol_file_add (execd_pathname,
1224 		   (inf->symfile_flags
1225 		    | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1226 		   NULL, 0);
1227 
1228   if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1229     set_initial_language ();
1230 
1231   /* If the target can specify a description, read it.  Must do this
1232      after flipping to the new executable (because the target supplied
1233      description must be compatible with the executable's
1234      architecture, and the old executable may e.g., be 32-bit, while
1235      the new one 64-bit), and before anything involving memory or
1236      registers.  */
1237   target_find_description ();
1238 
1239   solib_create_inferior_hook (0);
1240 
1241   jit_inferior_created_hook ();
1242 
1243   breakpoint_re_set ();
1244 
1245   /* Reinsert all breakpoints.  (Those which were symbolic have
1246      been reset to the proper address in the new a.out, thanks
1247      to symbol_file_command...).  */
1248   insert_breakpoints ();
1249 
1250   /* The next resume of this inferior should bring it to the shlib
1251      startup breakpoints.  (If the user had also set bp's on
1252      "main" from the old (parent) process, then they'll auto-
1253      matically get reset there in the new process.).  */
1254 }
1255 
1256 /* The queue of threads that need to do a step-over operation to get
1257    past e.g., a breakpoint.  What technique is used to step over the
1258    breakpoint/watchpoint does not matter -- all threads end up in the
1259    same queue, to maintain rough temporal order of execution, in order
1260    to avoid starvation, otherwise, we could e.g., find ourselves
1261    constantly stepping the same couple threads past their breakpoints
1262    over and over, if the single-step finish fast enough.  */
1263 struct thread_info *step_over_queue_head;
1264 
1265 /* Bit flags indicating what the thread needs to step over.  */
1266 
1267 enum step_over_what_flag
1268   {
1269     /* Step over a breakpoint.  */
1270     STEP_OVER_BREAKPOINT = 1,
1271 
1272     /* Step past a non-continuable watchpoint, in order to let the
1273        instruction execute so we can evaluate the watchpoint
1274        expression.  */
1275     STEP_OVER_WATCHPOINT = 2
1276   };
1277 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1278 
1279 /* Info about an instruction that is being stepped over.  */
1280 
1281 struct step_over_info
1282 {
1283   /* If we're stepping past a breakpoint, this is the address space
1284      and address of the instruction the breakpoint is set at.  We'll
1285      skip inserting all breakpoints here.  Valid iff ASPACE is
1286      non-NULL.  */
1287   struct address_space *aspace;
1288   CORE_ADDR address;
1289 
1290   /* The instruction being stepped over triggers a nonsteppable
1291      watchpoint.  If true, we'll skip inserting watchpoints.  */
1292   int nonsteppable_watchpoint_p;
1293 
1294   /* The thread's global number.  */
1295   int thread;
1296 };
1297 
1298 /* The step-over info of the location that is being stepped over.
1299 
1300    Note that with async/breakpoint always-inserted mode, a user might
1301    set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1302    being stepped over.  As setting a new breakpoint inserts all
1303    breakpoints, we need to make sure the breakpoint being stepped over
1304    isn't inserted then.  We do that by only clearing the step-over
1305    info when the step-over is actually finished (or aborted).
1306 
1307    Presently GDB can only step over one breakpoint at any given time.
1308    Given threads that can't run code in the same address space as the
1309    breakpoint's can't really miss the breakpoint, GDB could be taught
1310    to step-over at most one breakpoint per address space (so this info
1311    could move to the address space object if/when GDB is extended).
1312    The set of breakpoints being stepped over will normally be much
1313    smaller than the set of all breakpoints, so a flag in the
1314    breakpoint location structure would be wasteful.  A separate list
1315    also saves complexity and run-time, as otherwise we'd have to go
1316    through all breakpoint locations clearing their flag whenever we
1317    start a new sequence.  Similar considerations weigh against storing
1318    this info in the thread object.  Plus, not all step overs actually
1319    have breakpoint locations -- e.g., stepping past a single-step
1320    breakpoint, or stepping to complete a non-continuable
1321    watchpoint.  */
1322 static struct step_over_info step_over_info;
1323 
1324 /* Record the address of the breakpoint/instruction we're currently
1325    stepping over.  */
1326 
1327 static void
1328 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1329 		    int nonsteppable_watchpoint_p,
1330 		    int thread)
1331 {
1332   step_over_info.aspace = aspace;
1333   step_over_info.address = address;
1334   step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335   step_over_info.thread = thread;
1336 }
1337 
1338 /* Called when we're not longer stepping over a breakpoint / an
1339    instruction, so all breakpoints are free to be (re)inserted.  */
1340 
1341 static void
1342 clear_step_over_info (void)
1343 {
1344   if (debug_infrun)
1345     fprintf_unfiltered (gdb_stdlog,
1346 			"infrun: clear_step_over_info\n");
1347   step_over_info.aspace = NULL;
1348   step_over_info.address = 0;
1349   step_over_info.nonsteppable_watchpoint_p = 0;
1350   step_over_info.thread = -1;
1351 }
1352 
1353 /* See infrun.h.  */
1354 
1355 int
1356 stepping_past_instruction_at (struct address_space *aspace,
1357 			      CORE_ADDR address)
1358 {
1359   return (step_over_info.aspace != NULL
1360 	  && breakpoint_address_match (aspace, address,
1361 				       step_over_info.aspace,
1362 				       step_over_info.address));
1363 }
1364 
1365 /* See infrun.h.  */
1366 
1367 int
1368 thread_is_stepping_over_breakpoint (int thread)
1369 {
1370   return (step_over_info.thread != -1
1371 	  && thread == step_over_info.thread);
1372 }
1373 
1374 /* See infrun.h.  */
1375 
1376 int
1377 stepping_past_nonsteppable_watchpoint (void)
1378 {
1379   return step_over_info.nonsteppable_watchpoint_p;
1380 }
1381 
1382 /* Returns true if step-over info is valid.  */
1383 
1384 static int
1385 step_over_info_valid_p (void)
1386 {
1387   return (step_over_info.aspace != NULL
1388 	  || stepping_past_nonsteppable_watchpoint ());
1389 }
1390 
1391 
1392 /* Displaced stepping.  */
1393 
1394 /* In non-stop debugging mode, we must take special care to manage
1395    breakpoints properly; in particular, the traditional strategy for
1396    stepping a thread past a breakpoint it has hit is unsuitable.
1397    'Displaced stepping' is a tactic for stepping one thread past a
1398    breakpoint it has hit while ensuring that other threads running
1399    concurrently will hit the breakpoint as they should.
1400 
1401    The traditional way to step a thread T off a breakpoint in a
1402    multi-threaded program in all-stop mode is as follows:
1403 
1404    a0) Initially, all threads are stopped, and breakpoints are not
1405        inserted.
1406    a1) We single-step T, leaving breakpoints uninserted.
1407    a2) We insert breakpoints, and resume all threads.
1408 
1409    In non-stop debugging, however, this strategy is unsuitable: we
1410    don't want to have to stop all threads in the system in order to
1411    continue or step T past a breakpoint.  Instead, we use displaced
1412    stepping:
1413 
1414    n0) Initially, T is stopped, other threads are running, and
1415        breakpoints are inserted.
1416    n1) We copy the instruction "under" the breakpoint to a separate
1417        location, outside the main code stream, making any adjustments
1418        to the instruction, register, and memory state as directed by
1419        T's architecture.
1420    n2) We single-step T over the instruction at its new location.
1421    n3) We adjust the resulting register and memory state as directed
1422        by T's architecture.  This includes resetting T's PC to point
1423        back into the main instruction stream.
1424    n4) We resume T.
1425 
1426    This approach depends on the following gdbarch methods:
1427 
1428    - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429      indicate where to copy the instruction, and how much space must
1430      be reserved there.  We use these in step n1.
1431 
1432    - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433      address, and makes any necessary adjustments to the instruction,
1434      register contents, and memory.  We use this in step n1.
1435 
1436    - gdbarch_displaced_step_fixup adjusts registers and memory after
1437      we have successfuly single-stepped the instruction, to yield the
1438      same effect the instruction would have had if we had executed it
1439      at its original address.  We use this in step n3.
1440 
1441    - gdbarch_displaced_step_free_closure provides cleanup.
1442 
1443    The gdbarch_displaced_step_copy_insn and
1444    gdbarch_displaced_step_fixup functions must be written so that
1445    copying an instruction with gdbarch_displaced_step_copy_insn,
1446    single-stepping across the copied instruction, and then applying
1447    gdbarch_displaced_insn_fixup should have the same effects on the
1448    thread's memory and registers as stepping the instruction in place
1449    would have.  Exactly which responsibilities fall to the copy and
1450    which fall to the fixup is up to the author of those functions.
1451 
1452    See the comments in gdbarch.sh for details.
1453 
1454    Note that displaced stepping and software single-step cannot
1455    currently be used in combination, although with some care I think
1456    they could be made to.  Software single-step works by placing
1457    breakpoints on all possible subsequent instructions; if the
1458    displaced instruction is a PC-relative jump, those breakpoints
1459    could fall in very strange places --- on pages that aren't
1460    executable, or at addresses that are not proper instruction
1461    boundaries.  (We do generally let other threads run while we wait
1462    to hit the software single-step breakpoint, and they might
1463    encounter such a corrupted instruction.)  One way to work around
1464    this would be to have gdbarch_displaced_step_copy_insn fully
1465    simulate the effect of PC-relative instructions (and return NULL)
1466    on architectures that use software single-stepping.
1467 
1468    In non-stop mode, we can have independent and simultaneous step
1469    requests, so more than one thread may need to simultaneously step
1470    over a breakpoint.  The current implementation assumes there is
1471    only one scratch space per process.  In this case, we have to
1472    serialize access to the scratch space.  If thread A wants to step
1473    over a breakpoint, but we are currently waiting for some other
1474    thread to complete a displaced step, we leave thread A stopped and
1475    place it in the displaced_step_request_queue.  Whenever a displaced
1476    step finishes, we pick the next thread in the queue and start a new
1477    displaced step operation on it.  See displaced_step_prepare and
1478    displaced_step_fixup for details.  */
1479 
1480 /* Per-inferior displaced stepping state.  */
1481 struct displaced_step_inferior_state
1482 {
1483   /* Pointer to next in linked list.  */
1484   struct displaced_step_inferior_state *next;
1485 
1486   /* The process this displaced step state refers to.  */
1487   int pid;
1488 
1489   /* True if preparing a displaced step ever failed.  If so, we won't
1490      try displaced stepping for this inferior again.  */
1491   int failed_before;
1492 
1493   /* If this is not null_ptid, this is the thread carrying out a
1494      displaced single-step in process PID.  This thread's state will
1495      require fixing up once it has completed its step.  */
1496   ptid_t step_ptid;
1497 
1498   /* The architecture the thread had when we stepped it.  */
1499   struct gdbarch *step_gdbarch;
1500 
1501   /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502      for post-step cleanup.  */
1503   struct displaced_step_closure *step_closure;
1504 
1505   /* The address of the original instruction, and the copy we
1506      made.  */
1507   CORE_ADDR step_original, step_copy;
1508 
1509   /* Saved contents of copy area.  */
1510   gdb_byte *step_saved_copy;
1511 };
1512 
1513 /* The list of states of processes involved in displaced stepping
1514    presently.  */
1515 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516 
1517 /* Get the displaced stepping state of process PID.  */
1518 
1519 static struct displaced_step_inferior_state *
1520 get_displaced_stepping_state (int pid)
1521 {
1522   struct displaced_step_inferior_state *state;
1523 
1524   for (state = displaced_step_inferior_states;
1525        state != NULL;
1526        state = state->next)
1527     if (state->pid == pid)
1528       return state;
1529 
1530   return NULL;
1531 }
1532 
1533 /* Returns true if any inferior has a thread doing a displaced
1534    step.  */
1535 
1536 static int
1537 displaced_step_in_progress_any_inferior (void)
1538 {
1539   struct displaced_step_inferior_state *state;
1540 
1541   for (state = displaced_step_inferior_states;
1542        state != NULL;
1543        state = state->next)
1544     if (!ptid_equal (state->step_ptid, null_ptid))
1545       return 1;
1546 
1547   return 0;
1548 }
1549 
1550 /* Return true if thread represented by PTID is doing a displaced
1551    step.  */
1552 
1553 static int
1554 displaced_step_in_progress_thread (ptid_t ptid)
1555 {
1556   struct displaced_step_inferior_state *displaced;
1557 
1558   gdb_assert (!ptid_equal (ptid, null_ptid));
1559 
1560   displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561 
1562   return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563 }
1564 
1565 /* Return true if process PID has a thread doing a displaced step.  */
1566 
1567 static int
1568 displaced_step_in_progress (int pid)
1569 {
1570   struct displaced_step_inferior_state *displaced;
1571 
1572   displaced = get_displaced_stepping_state (pid);
1573   if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574     return 1;
1575 
1576   return 0;
1577 }
1578 
1579 /* Add a new displaced stepping state for process PID to the displaced
1580    stepping state list, or return a pointer to an already existing
1581    entry, if it already exists.  Never returns NULL.  */
1582 
1583 static struct displaced_step_inferior_state *
1584 add_displaced_stepping_state (int pid)
1585 {
1586   struct displaced_step_inferior_state *state;
1587 
1588   for (state = displaced_step_inferior_states;
1589        state != NULL;
1590        state = state->next)
1591     if (state->pid == pid)
1592       return state;
1593 
1594   state = XCNEW (struct displaced_step_inferior_state);
1595   state->pid = pid;
1596   state->next = displaced_step_inferior_states;
1597   displaced_step_inferior_states = state;
1598 
1599   return state;
1600 }
1601 
1602 /* If inferior is in displaced stepping, and ADDR equals to starting address
1603    of copy area, return corresponding displaced_step_closure.  Otherwise,
1604    return NULL.  */
1605 
1606 struct displaced_step_closure*
1607 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608 {
1609   struct displaced_step_inferior_state *displaced
1610     = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611 
1612   /* If checking the mode of displaced instruction in copy area.  */
1613   if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614      && (displaced->step_copy == addr))
1615     return displaced->step_closure;
1616 
1617   return NULL;
1618 }
1619 
1620 /* Remove the displaced stepping state of process PID.  */
1621 
1622 static void
1623 remove_displaced_stepping_state (int pid)
1624 {
1625   struct displaced_step_inferior_state *it, **prev_next_p;
1626 
1627   gdb_assert (pid != 0);
1628 
1629   it = displaced_step_inferior_states;
1630   prev_next_p = &displaced_step_inferior_states;
1631   while (it)
1632     {
1633       if (it->pid == pid)
1634 	{
1635 	  *prev_next_p = it->next;
1636 	  xfree (it);
1637 	  return;
1638 	}
1639 
1640       prev_next_p = &it->next;
1641       it = *prev_next_p;
1642     }
1643 }
1644 
1645 static void
1646 infrun_inferior_exit (struct inferior *inf)
1647 {
1648   remove_displaced_stepping_state (inf->pid);
1649 }
1650 
1651 /* If ON, and the architecture supports it, GDB will use displaced
1652    stepping to step over breakpoints.  If OFF, or if the architecture
1653    doesn't support it, GDB will instead use the traditional
1654    hold-and-step approach.  If AUTO (which is the default), GDB will
1655    decide which technique to use to step over breakpoints depending on
1656    which of all-stop or non-stop mode is active --- displaced stepping
1657    in non-stop mode; hold-and-step in all-stop mode.  */
1658 
1659 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1660 
1661 static void
1662 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 				 struct cmd_list_element *c,
1664 				 const char *value)
1665 {
1666   if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1667     fprintf_filtered (file,
1668 		      _("Debugger's willingness to use displaced stepping "
1669 			"to step over breakpoints is %s (currently %s).\n"),
1670 		      value, target_is_non_stop_p () ? "on" : "off");
1671   else
1672     fprintf_filtered (file,
1673 		      _("Debugger's willingness to use displaced stepping "
1674 			"to step over breakpoints is %s.\n"), value);
1675 }
1676 
1677 /* Return non-zero if displaced stepping can/should be used to step
1678    over breakpoints of thread TP.  */
1679 
1680 static int
1681 use_displaced_stepping (struct thread_info *tp)
1682 {
1683   struct regcache *regcache = get_thread_regcache (tp->ptid);
1684   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685   struct displaced_step_inferior_state *displaced_state;
1686 
1687   displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688 
1689   return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 	    && target_is_non_stop_p ())
1691 	   || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1692 	  && gdbarch_displaced_step_copy_insn_p (gdbarch)
1693 	  && find_record_target () == NULL
1694 	  && (displaced_state == NULL
1695 	      || !displaced_state->failed_before));
1696 }
1697 
1698 /* Clean out any stray displaced stepping state.  */
1699 static void
1700 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1701 {
1702   /* Indicate that there is no cleanup pending.  */
1703   displaced->step_ptid = null_ptid;
1704 
1705   if (displaced->step_closure)
1706     {
1707       gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708                                            displaced->step_closure);
1709       displaced->step_closure = NULL;
1710     }
1711 }
1712 
1713 static void
1714 displaced_step_clear_cleanup (void *arg)
1715 {
1716   struct displaced_step_inferior_state *state
1717     = (struct displaced_step_inferior_state *) arg;
1718 
1719   displaced_step_clear (state);
1720 }
1721 
1722 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline.  */
1723 void
1724 displaced_step_dump_bytes (struct ui_file *file,
1725                            const gdb_byte *buf,
1726                            size_t len)
1727 {
1728   int i;
1729 
1730   for (i = 0; i < len; i++)
1731     fprintf_unfiltered (file, "%02x ", buf[i]);
1732   fputs_unfiltered ("\n", file);
1733 }
1734 
1735 /* Prepare to single-step, using displaced stepping.
1736 
1737    Note that we cannot use displaced stepping when we have a signal to
1738    deliver.  If we have a signal to deliver and an instruction to step
1739    over, then after the step, there will be no indication from the
1740    target whether the thread entered a signal handler or ignored the
1741    signal and stepped over the instruction successfully --- both cases
1742    result in a simple SIGTRAP.  In the first case we mustn't do a
1743    fixup, and in the second case we must --- but we can't tell which.
1744    Comments in the code for 'random signals' in handle_inferior_event
1745    explain how we handle this case instead.
1746 
1747    Returns 1 if preparing was successful -- this thread is going to be
1748    stepped now; 0 if displaced stepping this thread got queued; or -1
1749    if this instruction can't be displaced stepped.  */
1750 
1751 static int
1752 displaced_step_prepare_throw (ptid_t ptid)
1753 {
1754   struct cleanup *old_cleanups, *ignore_cleanups;
1755   struct thread_info *tp = find_thread_ptid (ptid);
1756   struct regcache *regcache = get_thread_regcache (ptid);
1757   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1758   struct address_space *aspace = get_regcache_aspace (regcache);
1759   CORE_ADDR original, copy;
1760   ULONGEST len;
1761   struct displaced_step_closure *closure;
1762   struct displaced_step_inferior_state *displaced;
1763   int status;
1764 
1765   /* We should never reach this function if the architecture does not
1766      support displaced stepping.  */
1767   gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768 
1769   /* Nor if the thread isn't meant to step over a breakpoint.  */
1770   gdb_assert (tp->control.trap_expected);
1771 
1772   /* Disable range stepping while executing in the scratch pad.  We
1773      want a single-step even if executing the displaced instruction in
1774      the scratch buffer lands within the stepping range (e.g., a
1775      jump/branch).  */
1776   tp->control.may_range_step = 0;
1777 
1778   /* We have to displaced step one thread at a time, as we only have
1779      access to a single scratch space per inferior.  */
1780 
1781   displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782 
1783   if (!ptid_equal (displaced->step_ptid, null_ptid))
1784     {
1785       /* Already waiting for a displaced step to finish.  Defer this
1786 	 request and place in queue.  */
1787 
1788       if (debug_displaced)
1789 	fprintf_unfiltered (gdb_stdlog,
1790 			    "displaced: deferring step of %s\n",
1791 			    target_pid_to_str (ptid));
1792 
1793       thread_step_over_chain_enqueue (tp);
1794       return 0;
1795     }
1796   else
1797     {
1798       if (debug_displaced)
1799 	fprintf_unfiltered (gdb_stdlog,
1800 			    "displaced: stepping %s now\n",
1801 			    target_pid_to_str (ptid));
1802     }
1803 
1804   displaced_step_clear (displaced);
1805 
1806   old_cleanups = save_inferior_ptid ();
1807   inferior_ptid = ptid;
1808 
1809   original = regcache_read_pc (regcache);
1810 
1811   copy = gdbarch_displaced_step_location (gdbarch);
1812   len = gdbarch_max_insn_length (gdbarch);
1813 
1814   if (breakpoint_in_range_p (aspace, copy, len))
1815     {
1816       /* There's a breakpoint set in the scratch pad location range
1817 	 (which is usually around the entry point).  We'd either
1818 	 install it before resuming, which would overwrite/corrupt the
1819 	 scratch pad, or if it was already inserted, this displaced
1820 	 step would overwrite it.  The latter is OK in the sense that
1821 	 we already assume that no thread is going to execute the code
1822 	 in the scratch pad range (after initial startup) anyway, but
1823 	 the former is unacceptable.  Simply punt and fallback to
1824 	 stepping over this breakpoint in-line.  */
1825       if (debug_displaced)
1826 	{
1827 	  fprintf_unfiltered (gdb_stdlog,
1828 			      "displaced: breakpoint set in scratch pad.  "
1829 			      "Stepping over breakpoint in-line instead.\n");
1830 	}
1831 
1832       do_cleanups (old_cleanups);
1833       return -1;
1834     }
1835 
1836   /* Save the original contents of the copy area.  */
1837   displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1838   ignore_cleanups = make_cleanup (free_current_contents,
1839 				  &displaced->step_saved_copy);
1840   status = target_read_memory (copy, displaced->step_saved_copy, len);
1841   if (status != 0)
1842     throw_error (MEMORY_ERROR,
1843 		 _("Error accessing memory address %s (%s) for "
1844 		   "displaced-stepping scratch space."),
1845 		 paddress (gdbarch, copy), safe_strerror (status));
1846   if (debug_displaced)
1847     {
1848       fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 			  paddress (gdbarch, copy));
1850       displaced_step_dump_bytes (gdb_stdlog,
1851 				 displaced->step_saved_copy,
1852 				 len);
1853     };
1854 
1855   closure = gdbarch_displaced_step_copy_insn (gdbarch,
1856 					      original, copy, regcache);
1857   if (closure == NULL)
1858     {
1859       /* The architecture doesn't know how or want to displaced step
1860 	 this instruction or instruction sequence.  Fallback to
1861 	 stepping over the breakpoint in-line.  */
1862       do_cleanups (old_cleanups);
1863       return -1;
1864     }
1865 
1866   /* Save the information we need to fix things up if the step
1867      succeeds.  */
1868   displaced->step_ptid = ptid;
1869   displaced->step_gdbarch = gdbarch;
1870   displaced->step_closure = closure;
1871   displaced->step_original = original;
1872   displaced->step_copy = copy;
1873 
1874   make_cleanup (displaced_step_clear_cleanup, displaced);
1875 
1876   /* Resume execution at the copy.  */
1877   regcache_write_pc (regcache, copy);
1878 
1879   discard_cleanups (ignore_cleanups);
1880 
1881   do_cleanups (old_cleanups);
1882 
1883   if (debug_displaced)
1884     fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 			paddress (gdbarch, copy));
1886 
1887   return 1;
1888 }
1889 
1890 /* Wrapper for displaced_step_prepare_throw that disabled further
1891    attempts at displaced stepping if we get a memory error.  */
1892 
1893 static int
1894 displaced_step_prepare (ptid_t ptid)
1895 {
1896   int prepared = -1;
1897 
1898   TRY
1899     {
1900       prepared = displaced_step_prepare_throw (ptid);
1901     }
1902   CATCH (ex, RETURN_MASK_ERROR)
1903     {
1904       struct displaced_step_inferior_state *displaced_state;
1905 
1906       if (ex.error != MEMORY_ERROR
1907 	  && ex.error != NOT_SUPPORTED_ERROR)
1908 	throw_exception (ex);
1909 
1910       if (debug_infrun)
1911 	{
1912 	  fprintf_unfiltered (gdb_stdlog,
1913 			      "infrun: disabling displaced stepping: %s\n",
1914 			      ex.message);
1915 	}
1916 
1917       /* Be verbose if "set displaced-stepping" is "on", silent if
1918 	 "auto".  */
1919       if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 	{
1921 	  warning (_("disabling displaced stepping: %s"),
1922 		   ex.message);
1923 	}
1924 
1925       /* Disable further displaced stepping attempts.  */
1926       displaced_state
1927 	= get_displaced_stepping_state (ptid_get_pid (ptid));
1928       displaced_state->failed_before = 1;
1929     }
1930   END_CATCH
1931 
1932   return prepared;
1933 }
1934 
1935 static void
1936 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 		   const gdb_byte *myaddr, int len)
1938 {
1939   struct cleanup *ptid_cleanup = save_inferior_ptid ();
1940 
1941   inferior_ptid = ptid;
1942   write_memory (memaddr, myaddr, len);
1943   do_cleanups (ptid_cleanup);
1944 }
1945 
1946 /* Restore the contents of the copy area for thread PTID.  */
1947 
1948 static void
1949 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 			ptid_t ptid)
1951 {
1952   ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953 
1954   write_memory_ptid (ptid, displaced->step_copy,
1955 		     displaced->step_saved_copy, len);
1956   if (debug_displaced)
1957     fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 			target_pid_to_str (ptid),
1959 			paddress (displaced->step_gdbarch,
1960 				  displaced->step_copy));
1961 }
1962 
1963 /* If we displaced stepped an instruction successfully, adjust
1964    registers and memory to yield the same effect the instruction would
1965    have had if we had executed it at its original address, and return
1966    1.  If the instruction didn't complete, relocate the PC and return
1967    -1.  If the thread wasn't displaced stepping, return 0.  */
1968 
1969 static int
1970 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1971 {
1972   struct cleanup *old_cleanups;
1973   struct displaced_step_inferior_state *displaced
1974     = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1975   int ret;
1976 
1977   /* Was any thread of this process doing a displaced step?  */
1978   if (displaced == NULL)
1979     return 0;
1980 
1981   /* Was this event for the pid we displaced?  */
1982   if (ptid_equal (displaced->step_ptid, null_ptid)
1983       || ! ptid_equal (displaced->step_ptid, event_ptid))
1984     return 0;
1985 
1986   old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1987 
1988   displaced_step_restore (displaced, displaced->step_ptid);
1989 
1990   /* Fixup may need to read memory/registers.  Switch to the thread
1991      that we're fixing up.  Also, target_stopped_by_watchpoint checks
1992      the current thread.  */
1993   switch_to_thread (event_ptid);
1994 
1995   /* Did the instruction complete successfully?  */
1996   if (signal == GDB_SIGNAL_TRAP
1997       && !(target_stopped_by_watchpoint ()
1998 	   && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 	       || target_have_steppable_watchpoint)))
2000     {
2001       /* Fix up the resulting state.  */
2002       gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003                                     displaced->step_closure,
2004                                     displaced->step_original,
2005                                     displaced->step_copy,
2006                                     get_thread_regcache (displaced->step_ptid));
2007       ret = 1;
2008     }
2009   else
2010     {
2011       /* Since the instruction didn't complete, all we can do is
2012          relocate the PC.  */
2013       struct regcache *regcache = get_thread_regcache (event_ptid);
2014       CORE_ADDR pc = regcache_read_pc (regcache);
2015 
2016       pc = displaced->step_original + (pc - displaced->step_copy);
2017       regcache_write_pc (regcache, pc);
2018       ret = -1;
2019     }
2020 
2021   do_cleanups (old_cleanups);
2022 
2023   displaced->step_ptid = null_ptid;
2024 
2025   return ret;
2026 }
2027 
2028 /* Data to be passed around while handling an event.  This data is
2029    discarded between events.  */
2030 struct execution_control_state
2031 {
2032   ptid_t ptid;
2033   /* The thread that got the event, if this was a thread event; NULL
2034      otherwise.  */
2035   struct thread_info *event_thread;
2036 
2037   struct target_waitstatus ws;
2038   int stop_func_filled_in;
2039   CORE_ADDR stop_func_start;
2040   CORE_ADDR stop_func_end;
2041   const char *stop_func_name;
2042   int wait_some_more;
2043 
2044   /* True if the event thread hit the single-step breakpoint of
2045      another thread.  Thus the event doesn't cause a stop, the thread
2046      needs to be single-stepped past the single-step breakpoint before
2047      we can switch back to the original stepping thread.  */
2048   int hit_singlestep_breakpoint;
2049 };
2050 
2051 /* Clear ECS and set it to point at TP.  */
2052 
2053 static void
2054 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055 {
2056   memset (ecs, 0, sizeof (*ecs));
2057   ecs->event_thread = tp;
2058   ecs->ptid = tp->ptid;
2059 }
2060 
2061 static void keep_going_pass_signal (struct execution_control_state *ecs);
2062 static void prepare_to_wait (struct execution_control_state *ecs);
2063 static int keep_going_stepped_thread (struct thread_info *tp);
2064 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2065 
2066 /* Are there any pending step-over requests?  If so, run all we can
2067    now and return true.  Otherwise, return false.  */
2068 
2069 static int
2070 start_step_over (void)
2071 {
2072   struct thread_info *tp, *next;
2073 
2074   /* Don't start a new step-over if we already have an in-line
2075      step-over operation ongoing.  */
2076   if (step_over_info_valid_p ())
2077     return 0;
2078 
2079   for (tp = step_over_queue_head; tp != NULL; tp = next)
2080     {
2081       struct execution_control_state ecss;
2082       struct execution_control_state *ecs = &ecss;
2083       step_over_what step_what;
2084       int must_be_in_line;
2085 
2086       next = thread_step_over_chain_next (tp);
2087 
2088       /* If this inferior already has a displaced step in process,
2089 	 don't start a new one.  */
2090       if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2091 	continue;
2092 
2093       step_what = thread_still_needs_step_over (tp);
2094       must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2095 			 || ((step_what & STEP_OVER_BREAKPOINT)
2096 			     && !use_displaced_stepping (tp)));
2097 
2098       /* We currently stop all threads of all processes to step-over
2099 	 in-line.  If we need to start a new in-line step-over, let
2100 	 any pending displaced steps finish first.  */
2101       if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2102 	return 0;
2103 
2104       thread_step_over_chain_remove (tp);
2105 
2106       if (step_over_queue_head == NULL)
2107 	{
2108 	  if (debug_infrun)
2109 	    fprintf_unfiltered (gdb_stdlog,
2110 				"infrun: step-over queue now empty\n");
2111 	}
2112 
2113       if (tp->control.trap_expected
2114 	  || tp->resumed
2115 	  || tp->executing)
2116 	{
2117 	  internal_error (__FILE__, __LINE__,
2118 			  "[%s] has inconsistent state: "
2119 			  "trap_expected=%d, resumed=%d, executing=%d\n",
2120 			  target_pid_to_str (tp->ptid),
2121 			  tp->control.trap_expected,
2122 			  tp->resumed,
2123 			  tp->executing);
2124 	}
2125 
2126       if (debug_infrun)
2127 	fprintf_unfiltered (gdb_stdlog,
2128 			    "infrun: resuming [%s] for step-over\n",
2129 			    target_pid_to_str (tp->ptid));
2130 
2131       /* keep_going_pass_signal skips the step-over if the breakpoint
2132 	 is no longer inserted.  In all-stop, we want to keep looking
2133 	 for a thread that needs a step-over instead of resuming TP,
2134 	 because we wouldn't be able to resume anything else until the
2135 	 target stops again.  In non-stop, the resume always resumes
2136 	 only TP, so it's OK to let the thread resume freely.  */
2137       if (!target_is_non_stop_p () && !step_what)
2138 	continue;
2139 
2140       switch_to_thread (tp->ptid);
2141       reset_ecs (ecs, tp);
2142       keep_going_pass_signal (ecs);
2143 
2144       if (!ecs->wait_some_more)
2145 	error (_("Command aborted."));
2146 
2147       gdb_assert (tp->resumed);
2148 
2149       /* If we started a new in-line step-over, we're done.  */
2150       if (step_over_info_valid_p ())
2151 	{
2152 	  gdb_assert (tp->control.trap_expected);
2153 	  return 1;
2154 	}
2155 
2156       if (!target_is_non_stop_p ())
2157 	{
2158 	  /* On all-stop, shouldn't have resumed unless we needed a
2159 	     step over.  */
2160 	  gdb_assert (tp->control.trap_expected
2161 		      || tp->step_after_step_resume_breakpoint);
2162 
2163 	  /* With remote targets (at least), in all-stop, we can't
2164 	     issue any further remote commands until the program stops
2165 	     again.  */
2166 	  return 1;
2167 	}
2168 
2169       /* Either the thread no longer needed a step-over, or a new
2170 	 displaced stepping sequence started.  Even in the latter
2171 	 case, continue looking.  Maybe we can also start another
2172 	 displaced step on a thread of other process. */
2173     }
2174 
2175   return 0;
2176 }
2177 
2178 /* Update global variables holding ptids to hold NEW_PTID if they were
2179    holding OLD_PTID.  */
2180 static void
2181 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2182 {
2183   struct displaced_step_inferior_state *displaced;
2184 
2185   if (ptid_equal (inferior_ptid, old_ptid))
2186     inferior_ptid = new_ptid;
2187 
2188   for (displaced = displaced_step_inferior_states;
2189        displaced;
2190        displaced = displaced->next)
2191     {
2192       if (ptid_equal (displaced->step_ptid, old_ptid))
2193 	displaced->step_ptid = new_ptid;
2194     }
2195 }
2196 
2197 
2198 /* Resuming.  */
2199 
2200 /* Things to clean up if we QUIT out of resume ().  */
2201 static void
2202 resume_cleanups (void *ignore)
2203 {
2204   if (!ptid_equal (inferior_ptid, null_ptid))
2205     delete_single_step_breakpoints (inferior_thread ());
2206 
2207   normal_stop ();
2208 }
2209 
2210 static const char schedlock_off[] = "off";
2211 static const char schedlock_on[] = "on";
2212 static const char schedlock_step[] = "step";
2213 static const char schedlock_replay[] = "replay";
2214 static const char *const scheduler_enums[] = {
2215   schedlock_off,
2216   schedlock_on,
2217   schedlock_step,
2218   schedlock_replay,
2219   NULL
2220 };
2221 static const char *scheduler_mode = schedlock_replay;
2222 static void
2223 show_scheduler_mode (struct ui_file *file, int from_tty,
2224 		     struct cmd_list_element *c, const char *value)
2225 {
2226   fprintf_filtered (file,
2227 		    _("Mode for locking scheduler "
2228 		      "during execution is \"%s\".\n"),
2229 		    value);
2230 }
2231 
2232 static void
2233 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2234 {
2235   if (!target_can_lock_scheduler)
2236     {
2237       scheduler_mode = schedlock_off;
2238       error (_("Target '%s' cannot support this command."), target_shortname);
2239     }
2240 }
2241 
2242 /* True if execution commands resume all threads of all processes by
2243    default; otherwise, resume only threads of the current inferior
2244    process.  */
2245 int sched_multi = 0;
2246 
2247 /* Try to setup for software single stepping over the specified location.
2248    Return 1 if target_resume() should use hardware single step.
2249 
2250    GDBARCH the current gdbarch.
2251    PC the location to step over.  */
2252 
2253 static int
2254 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2255 {
2256   int hw_step = 1;
2257 
2258   if (execution_direction == EXEC_FORWARD
2259       && gdbarch_software_single_step_p (gdbarch)
2260       && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2261     {
2262       hw_step = 0;
2263     }
2264   return hw_step;
2265 }
2266 
2267 /* See infrun.h.  */
2268 
2269 ptid_t
2270 user_visible_resume_ptid (int step)
2271 {
2272   ptid_t resume_ptid;
2273 
2274   if (non_stop)
2275     {
2276       /* With non-stop mode on, threads are always handled
2277 	 individually.  */
2278       resume_ptid = inferior_ptid;
2279     }
2280   else if ((scheduler_mode == schedlock_on)
2281 	   || (scheduler_mode == schedlock_step && step))
2282     {
2283       /* User-settable 'scheduler' mode requires solo thread
2284 	 resume.  */
2285       resume_ptid = inferior_ptid;
2286     }
2287   else if ((scheduler_mode == schedlock_replay)
2288 	   && target_record_will_replay (minus_one_ptid, execution_direction))
2289     {
2290       /* User-settable 'scheduler' mode requires solo thread resume in replay
2291 	 mode.  */
2292       resume_ptid = inferior_ptid;
2293     }
2294   else if (!sched_multi && target_supports_multi_process ())
2295     {
2296       /* Resume all threads of the current process (and none of other
2297 	 processes).  */
2298       resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2299     }
2300   else
2301     {
2302       /* Resume all threads of all processes.  */
2303       resume_ptid = RESUME_ALL;
2304     }
2305 
2306   return resume_ptid;
2307 }
2308 
2309 /* Return a ptid representing the set of threads that we will resume,
2310    in the perspective of the target, assuming run control handling
2311    does not require leaving some threads stopped (e.g., stepping past
2312    breakpoint).  USER_STEP indicates whether we're about to start the
2313    target for a stepping command.  */
2314 
2315 static ptid_t
2316 internal_resume_ptid (int user_step)
2317 {
2318   /* In non-stop, we always control threads individually.  Note that
2319      the target may always work in non-stop mode even with "set
2320      non-stop off", in which case user_visible_resume_ptid could
2321      return a wildcard ptid.  */
2322   if (target_is_non_stop_p ())
2323     return inferior_ptid;
2324   else
2325     return user_visible_resume_ptid (user_step);
2326 }
2327 
2328 /* Wrapper for target_resume, that handles infrun-specific
2329    bookkeeping.  */
2330 
2331 static void
2332 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2333 {
2334   struct thread_info *tp = inferior_thread ();
2335 
2336   /* Install inferior's terminal modes.  */
2337   target_terminal_inferior ();
2338 
2339   /* Avoid confusing the next resume, if the next stop/resume
2340      happens to apply to another thread.  */
2341   tp->suspend.stop_signal = GDB_SIGNAL_0;
2342 
2343   /* Advise target which signals may be handled silently.
2344 
2345      If we have removed breakpoints because we are stepping over one
2346      in-line (in any thread), we need to receive all signals to avoid
2347      accidentally skipping a breakpoint during execution of a signal
2348      handler.
2349 
2350      Likewise if we're displaced stepping, otherwise a trap for a
2351      breakpoint in a signal handler might be confused with the
2352      displaced step finishing.  We don't make the displaced_step_fixup
2353      step distinguish the cases instead, because:
2354 
2355      - a backtrace while stopped in the signal handler would show the
2356        scratch pad as frame older than the signal handler, instead of
2357        the real mainline code.
2358 
2359      - when the thread is later resumed, the signal handler would
2360        return to the scratch pad area, which would no longer be
2361        valid.  */
2362   if (step_over_info_valid_p ()
2363       || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2364     target_pass_signals (0, NULL);
2365   else
2366     target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2367 
2368   target_resume (resume_ptid, step, sig);
2369 }
2370 
2371 /* Resume the inferior, but allow a QUIT.  This is useful if the user
2372    wants to interrupt some lengthy single-stepping operation
2373    (for child processes, the SIGINT goes to the inferior, and so
2374    we get a SIGINT random_signal, but for remote debugging and perhaps
2375    other targets, that's not true).
2376 
2377    SIG is the signal to give the inferior (zero for none).  */
2378 void
2379 resume (enum gdb_signal sig)
2380 {
2381   struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2382   struct regcache *regcache = get_current_regcache ();
2383   struct gdbarch *gdbarch = get_regcache_arch (regcache);
2384   struct thread_info *tp = inferior_thread ();
2385   CORE_ADDR pc = regcache_read_pc (regcache);
2386   struct address_space *aspace = get_regcache_aspace (regcache);
2387   ptid_t resume_ptid;
2388   /* This represents the user's step vs continue request.  When
2389      deciding whether "set scheduler-locking step" applies, it's the
2390      user's intention that counts.  */
2391   const int user_step = tp->control.stepping_command;
2392   /* This represents what we'll actually request the target to do.
2393      This can decay from a step to a continue, if e.g., we need to
2394      implement single-stepping with breakpoints (software
2395      single-step).  */
2396   int step;
2397 
2398   gdb_assert (!thread_is_in_step_over_chain (tp));
2399 
2400   QUIT;
2401 
2402   if (tp->suspend.waitstatus_pending_p)
2403     {
2404       if (debug_infrun)
2405 	{
2406 	  char *statstr;
2407 
2408 	  statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2409 	  fprintf_unfiltered (gdb_stdlog,
2410 			      "infrun: resume: thread %s has pending wait status %s "
2411 			      "(currently_stepping=%d).\n",
2412 			      target_pid_to_str (tp->ptid),  statstr,
2413 			      currently_stepping (tp));
2414 	  xfree (statstr);
2415 	}
2416 
2417       tp->resumed = 1;
2418 
2419       /* FIXME: What should we do if we are supposed to resume this
2420 	 thread with a signal?  Maybe we should maintain a queue of
2421 	 pending signals to deliver.  */
2422       if (sig != GDB_SIGNAL_0)
2423 	{
2424 	  warning (_("Couldn't deliver signal %s to %s."),
2425 		   gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2426 	}
2427 
2428       tp->suspend.stop_signal = GDB_SIGNAL_0;
2429       discard_cleanups (old_cleanups);
2430 
2431       if (target_can_async_p ())
2432 	target_async (1);
2433       return;
2434     }
2435 
2436   tp->stepped_breakpoint = 0;
2437 
2438   /* Depends on stepped_breakpoint.  */
2439   step = currently_stepping (tp);
2440 
2441   if (current_inferior ()->waiting_for_vfork_done)
2442     {
2443       /* Don't try to single-step a vfork parent that is waiting for
2444 	 the child to get out of the shared memory region (by exec'ing
2445 	 or exiting).  This is particularly important on software
2446 	 single-step archs, as the child process would trip on the
2447 	 software single step breakpoint inserted for the parent
2448 	 process.  Since the parent will not actually execute any
2449 	 instruction until the child is out of the shared region (such
2450 	 are vfork's semantics), it is safe to simply continue it.
2451 	 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2452 	 the parent, and tell it to `keep_going', which automatically
2453 	 re-sets it stepping.  */
2454       if (debug_infrun)
2455 	fprintf_unfiltered (gdb_stdlog,
2456 			    "infrun: resume : clear step\n");
2457       step = 0;
2458     }
2459 
2460   if (debug_infrun)
2461     fprintf_unfiltered (gdb_stdlog,
2462 			"infrun: resume (step=%d, signal=%s), "
2463 			"trap_expected=%d, current thread [%s] at %s\n",
2464 			step, gdb_signal_to_symbol_string (sig),
2465 			tp->control.trap_expected,
2466 			target_pid_to_str (inferior_ptid),
2467 			paddress (gdbarch, pc));
2468 
2469   /* Normally, by the time we reach `resume', the breakpoints are either
2470      removed or inserted, as appropriate.  The exception is if we're sitting
2471      at a permanent breakpoint; we need to step over it, but permanent
2472      breakpoints can't be removed.  So we have to test for it here.  */
2473   if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2474     {
2475       if (sig != GDB_SIGNAL_0)
2476 	{
2477 	  /* We have a signal to pass to the inferior.  The resume
2478 	     may, or may not take us to the signal handler.  If this
2479 	     is a step, we'll need to stop in the signal handler, if
2480 	     there's one, (if the target supports stepping into
2481 	     handlers), or in the next mainline instruction, if
2482 	     there's no handler.  If this is a continue, we need to be
2483 	     sure to run the handler with all breakpoints inserted.
2484 	     In all cases, set a breakpoint at the current address
2485 	     (where the handler returns to), and once that breakpoint
2486 	     is hit, resume skipping the permanent breakpoint.  If
2487 	     that breakpoint isn't hit, then we've stepped into the
2488 	     signal handler (or hit some other event).  We'll delete
2489 	     the step-resume breakpoint then.  */
2490 
2491 	  if (debug_infrun)
2492 	    fprintf_unfiltered (gdb_stdlog,
2493 				"infrun: resume: skipping permanent breakpoint, "
2494 				"deliver signal first\n");
2495 
2496 	  clear_step_over_info ();
2497 	  tp->control.trap_expected = 0;
2498 
2499 	  if (tp->control.step_resume_breakpoint == NULL)
2500 	    {
2501 	      /* Set a "high-priority" step-resume, as we don't want
2502 		 user breakpoints at PC to trigger (again) when this
2503 		 hits.  */
2504 	      insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 	      gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2506 
2507 	      tp->step_after_step_resume_breakpoint = step;
2508 	    }
2509 
2510 	  insert_breakpoints ();
2511 	}
2512       else
2513 	{
2514 	  /* There's no signal to pass, we can go ahead and skip the
2515 	     permanent breakpoint manually.  */
2516 	  if (debug_infrun)
2517 	    fprintf_unfiltered (gdb_stdlog,
2518 				"infrun: resume: skipping permanent breakpoint\n");
2519 	  gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2520 	  /* Update pc to reflect the new address from which we will
2521 	     execute instructions.  */
2522 	  pc = regcache_read_pc (regcache);
2523 
2524 	  if (step)
2525 	    {
2526 	      /* We've already advanced the PC, so the stepping part
2527 		 is done.  Now we need to arrange for a trap to be
2528 		 reported to handle_inferior_event.  Set a breakpoint
2529 		 at the current PC, and run to it.  Don't update
2530 		 prev_pc, because if we end in
2531 		 switch_back_to_stepped_thread, we want the "expected
2532 		 thread advanced also" branch to be taken.  IOW, we
2533 		 don't want this thread to step further from PC
2534 		 (overstep).  */
2535 	      gdb_assert (!step_over_info_valid_p ());
2536 	      insert_single_step_breakpoint (gdbarch, aspace, pc);
2537 	      insert_breakpoints ();
2538 
2539 	      resume_ptid = internal_resume_ptid (user_step);
2540 	      do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2541 	      discard_cleanups (old_cleanups);
2542 	      tp->resumed = 1;
2543 	      return;
2544 	    }
2545 	}
2546     }
2547 
2548   /* If we have a breakpoint to step over, make sure to do a single
2549      step only.  Same if we have software watchpoints.  */
2550   if (tp->control.trap_expected || bpstat_should_step ())
2551     tp->control.may_range_step = 0;
2552 
2553   /* If enabled, step over breakpoints by executing a copy of the
2554      instruction at a different address.
2555 
2556      We can't use displaced stepping when we have a signal to deliver;
2557      the comments for displaced_step_prepare explain why.  The
2558      comments in the handle_inferior event for dealing with 'random
2559      signals' explain what we do instead.
2560 
2561      We can't use displaced stepping when we are waiting for vfork_done
2562      event, displaced stepping breaks the vfork child similarly as single
2563      step software breakpoint.  */
2564   if (tp->control.trap_expected
2565       && use_displaced_stepping (tp)
2566       && !step_over_info_valid_p ()
2567       && sig == GDB_SIGNAL_0
2568       && !current_inferior ()->waiting_for_vfork_done)
2569     {
2570       int prepared = displaced_step_prepare (inferior_ptid);
2571 
2572       if (prepared == 0)
2573 	{
2574 	  if (debug_infrun)
2575 	    fprintf_unfiltered (gdb_stdlog,
2576 				"Got placed in step-over queue\n");
2577 
2578 	  tp->control.trap_expected = 0;
2579 	  discard_cleanups (old_cleanups);
2580 	  return;
2581 	}
2582       else if (prepared < 0)
2583 	{
2584 	  /* Fallback to stepping over the breakpoint in-line.  */
2585 
2586 	  if (target_is_non_stop_p ())
2587 	    stop_all_threads ();
2588 
2589 	  set_step_over_info (get_regcache_aspace (regcache),
2590 			      regcache_read_pc (regcache), 0, tp->global_num);
2591 
2592 	  step = maybe_software_singlestep (gdbarch, pc);
2593 
2594 	  insert_breakpoints ();
2595 	}
2596       else if (prepared > 0)
2597 	{
2598 	  struct displaced_step_inferior_state *displaced;
2599 
2600 	  /* Update pc to reflect the new address from which we will
2601 	     execute instructions due to displaced stepping.  */
2602 	  pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2603 
2604 	  displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2605 	  step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2606 						       displaced->step_closure);
2607 	}
2608     }
2609 
2610   /* Do we need to do it the hard way, w/temp breakpoints?  */
2611   else if (step)
2612     step = maybe_software_singlestep (gdbarch, pc);
2613 
2614   /* Currently, our software single-step implementation leads to different
2615      results than hardware single-stepping in one situation: when stepping
2616      into delivering a signal which has an associated signal handler,
2617      hardware single-step will stop at the first instruction of the handler,
2618      while software single-step will simply skip execution of the handler.
2619 
2620      For now, this difference in behavior is accepted since there is no
2621      easy way to actually implement single-stepping into a signal handler
2622      without kernel support.
2623 
2624      However, there is one scenario where this difference leads to follow-on
2625      problems: if we're stepping off a breakpoint by removing all breakpoints
2626      and then single-stepping.  In this case, the software single-step
2627      behavior means that even if there is a *breakpoint* in the signal
2628      handler, GDB still would not stop.
2629 
2630      Fortunately, we can at least fix this particular issue.  We detect
2631      here the case where we are about to deliver a signal while software
2632      single-stepping with breakpoints removed.  In this situation, we
2633      revert the decisions to remove all breakpoints and insert single-
2634      step breakpoints, and instead we install a step-resume breakpoint
2635      at the current address, deliver the signal without stepping, and
2636      once we arrive back at the step-resume breakpoint, actually step
2637      over the breakpoint we originally wanted to step over.  */
2638   if (thread_has_single_step_breakpoints_set (tp)
2639       && sig != GDB_SIGNAL_0
2640       && step_over_info_valid_p ())
2641     {
2642       /* If we have nested signals or a pending signal is delivered
2643 	 immediately after a handler returns, might might already have
2644 	 a step-resume breakpoint set on the earlier handler.  We cannot
2645 	 set another step-resume breakpoint; just continue on until the
2646 	 original breakpoint is hit.  */
2647       if (tp->control.step_resume_breakpoint == NULL)
2648 	{
2649 	  insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2650 	  tp->step_after_step_resume_breakpoint = 1;
2651 	}
2652 
2653       delete_single_step_breakpoints (tp);
2654 
2655       clear_step_over_info ();
2656       tp->control.trap_expected = 0;
2657 
2658       insert_breakpoints ();
2659     }
2660 
2661   /* If STEP is set, it's a request to use hardware stepping
2662      facilities.  But in that case, we should never
2663      use singlestep breakpoint.  */
2664   gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2665 
2666   /* Decide the set of threads to ask the target to resume.  */
2667   if (tp->control.trap_expected)
2668     {
2669       /* We're allowing a thread to run past a breakpoint it has
2670 	 hit, either by single-stepping the thread with the breakpoint
2671 	 removed, or by displaced stepping, with the breakpoint inserted.
2672 	 In the former case, we need to single-step only this thread,
2673 	 and keep others stopped, as they can miss this breakpoint if
2674 	 allowed to run.  That's not really a problem for displaced
2675 	 stepping, but, we still keep other threads stopped, in case
2676 	 another thread is also stopped for a breakpoint waiting for
2677 	 its turn in the displaced stepping queue.  */
2678       resume_ptid = inferior_ptid;
2679     }
2680   else
2681     resume_ptid = internal_resume_ptid (user_step);
2682 
2683   if (execution_direction != EXEC_REVERSE
2684       && step && breakpoint_inserted_here_p (aspace, pc))
2685     {
2686       /* There are two cases where we currently need to step a
2687 	 breakpoint instruction when we have a signal to deliver:
2688 
2689 	 - See handle_signal_stop where we handle random signals that
2690 	 could take out us out of the stepping range.  Normally, in
2691 	 that case we end up continuing (instead of stepping) over the
2692 	 signal handler with a breakpoint at PC, but there are cases
2693 	 where we should _always_ single-step, even if we have a
2694 	 step-resume breakpoint, like when a software watchpoint is
2695 	 set.  Assuming single-stepping and delivering a signal at the
2696 	 same time would takes us to the signal handler, then we could
2697 	 have removed the breakpoint at PC to step over it.  However,
2698 	 some hardware step targets (like e.g., Mac OS) can't step
2699 	 into signal handlers, and for those, we need to leave the
2700 	 breakpoint at PC inserted, as otherwise if the handler
2701 	 recurses and executes PC again, it'll miss the breakpoint.
2702 	 So we leave the breakpoint inserted anyway, but we need to
2703 	 record that we tried to step a breakpoint instruction, so
2704 	 that adjust_pc_after_break doesn't end up confused.
2705 
2706          - In non-stop if we insert a breakpoint (e.g., a step-resume)
2707 	 in one thread after another thread that was stepping had been
2708 	 momentarily paused for a step-over.  When we re-resume the
2709 	 stepping thread, it may be resumed from that address with a
2710 	 breakpoint that hasn't trapped yet.  Seen with
2711 	 gdb.threads/non-stop-fair-events.exp, on targets that don't
2712 	 do displaced stepping.  */
2713 
2714       if (debug_infrun)
2715 	fprintf_unfiltered (gdb_stdlog,
2716 			    "infrun: resume: [%s] stepped breakpoint\n",
2717 			    target_pid_to_str (tp->ptid));
2718 
2719       tp->stepped_breakpoint = 1;
2720 
2721       /* Most targets can step a breakpoint instruction, thus
2722 	 executing it normally.  But if this one cannot, just
2723 	 continue and we will hit it anyway.  */
2724       if (gdbarch_cannot_step_breakpoint (gdbarch))
2725 	step = 0;
2726     }
2727 
2728   if (debug_displaced
2729       && tp->control.trap_expected
2730       && use_displaced_stepping (tp)
2731       && !step_over_info_valid_p ())
2732     {
2733       struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2734       struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2735       CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2736       gdb_byte buf[4];
2737 
2738       fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2739 			  paddress (resume_gdbarch, actual_pc));
2740       read_memory (actual_pc, buf, sizeof (buf));
2741       displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2742     }
2743 
2744   if (tp->control.may_range_step)
2745     {
2746       /* If we're resuming a thread with the PC out of the step
2747 	 range, then we're doing some nested/finer run control
2748 	 operation, like stepping the thread out of the dynamic
2749 	 linker or the displaced stepping scratch pad.  We
2750 	 shouldn't have allowed a range step then.  */
2751       gdb_assert (pc_in_thread_step_range (pc, tp));
2752     }
2753 
2754   do_target_resume (resume_ptid, step, sig);
2755   tp->resumed = 1;
2756   discard_cleanups (old_cleanups);
2757 }
2758 
2759 /* Proceeding.  */
2760 
2761 /* See infrun.h.  */
2762 
2763 /* Counter that tracks number of user visible stops.  This can be used
2764    to tell whether a command has proceeded the inferior past the
2765    current location.  This allows e.g., inferior function calls in
2766    breakpoint commands to not interrupt the command list.  When the
2767    call finishes successfully, the inferior is standing at the same
2768    breakpoint as if nothing happened (and so we don't call
2769    normal_stop).  */
2770 static ULONGEST current_stop_id;
2771 
2772 /* See infrun.h.  */
2773 
2774 ULONGEST
2775 get_stop_id (void)
2776 {
2777   return current_stop_id;
2778 }
2779 
2780 /* Called when we report a user visible stop.  */
2781 
2782 static void
2783 new_stop_id (void)
2784 {
2785   current_stop_id++;
2786 }
2787 
2788 /* Clear out all variables saying what to do when inferior is continued.
2789    First do this, then set the ones you want, then call `proceed'.  */
2790 
2791 static void
2792 clear_proceed_status_thread (struct thread_info *tp)
2793 {
2794   if (debug_infrun)
2795     fprintf_unfiltered (gdb_stdlog,
2796 			"infrun: clear_proceed_status_thread (%s)\n",
2797 			target_pid_to_str (tp->ptid));
2798 
2799   /* If we're starting a new sequence, then the previous finished
2800      single-step is no longer relevant.  */
2801   if (tp->suspend.waitstatus_pending_p)
2802     {
2803       if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2804 	{
2805 	  if (debug_infrun)
2806 	    fprintf_unfiltered (gdb_stdlog,
2807 				"infrun: clear_proceed_status: pending "
2808 				"event of %s was a finished step. "
2809 				"Discarding.\n",
2810 				target_pid_to_str (tp->ptid));
2811 
2812 	  tp->suspend.waitstatus_pending_p = 0;
2813 	  tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2814 	}
2815       else if (debug_infrun)
2816 	{
2817 	  char *statstr;
2818 
2819 	  statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2820 	  fprintf_unfiltered (gdb_stdlog,
2821 			      "infrun: clear_proceed_status_thread: thread %s "
2822 			      "has pending wait status %s "
2823 			      "(currently_stepping=%d).\n",
2824 			      target_pid_to_str (tp->ptid), statstr,
2825 			      currently_stepping (tp));
2826 	  xfree (statstr);
2827 	}
2828     }
2829 
2830   /* If this signal should not be seen by program, give it zero.
2831      Used for debugging signals.  */
2832   if (!signal_pass_state (tp->suspend.stop_signal))
2833     tp->suspend.stop_signal = GDB_SIGNAL_0;
2834 
2835   thread_fsm_delete (tp->thread_fsm);
2836   tp->thread_fsm = NULL;
2837 
2838   tp->control.trap_expected = 0;
2839   tp->control.step_range_start = 0;
2840   tp->control.step_range_end = 0;
2841   tp->control.may_range_step = 0;
2842   tp->control.step_frame_id = null_frame_id;
2843   tp->control.step_stack_frame_id = null_frame_id;
2844   tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2845   tp->control.step_start_function = NULL;
2846   tp->stop_requested = 0;
2847 
2848   tp->control.stop_step = 0;
2849 
2850   tp->control.proceed_to_finish = 0;
2851 
2852   tp->control.stepping_command = 0;
2853 
2854   /* Discard any remaining commands or status from previous stop.  */
2855   bpstat_clear (&tp->control.stop_bpstat);
2856 }
2857 
2858 void
2859 clear_proceed_status (int step)
2860 {
2861   /* With scheduler-locking replay, stop replaying other threads if we're
2862      not replaying the user-visible resume ptid.
2863 
2864      This is a convenience feature to not require the user to explicitly
2865      stop replaying the other threads.  We're assuming that the user's
2866      intent is to resume tracing the recorded process.  */
2867   if (!non_stop && scheduler_mode == schedlock_replay
2868       && target_record_is_replaying (minus_one_ptid)
2869       && !target_record_will_replay (user_visible_resume_ptid (step),
2870 				     execution_direction))
2871     target_record_stop_replaying ();
2872 
2873   if (!non_stop)
2874     {
2875       struct thread_info *tp;
2876       ptid_t resume_ptid;
2877 
2878       resume_ptid = user_visible_resume_ptid (step);
2879 
2880       /* In all-stop mode, delete the per-thread status of all threads
2881 	 we're about to resume, implicitly and explicitly.  */
2882       ALL_NON_EXITED_THREADS (tp)
2883         {
2884 	  if (!ptid_match (tp->ptid, resume_ptid))
2885 	    continue;
2886 	  clear_proceed_status_thread (tp);
2887 	}
2888     }
2889 
2890   if (!ptid_equal (inferior_ptid, null_ptid))
2891     {
2892       struct inferior *inferior;
2893 
2894       if (non_stop)
2895 	{
2896 	  /* If in non-stop mode, only delete the per-thread status of
2897 	     the current thread.  */
2898 	  clear_proceed_status_thread (inferior_thread ());
2899 	}
2900 
2901       inferior = current_inferior ();
2902       inferior->control.stop_soon = NO_STOP_QUIETLY;
2903     }
2904 
2905   observer_notify_about_to_proceed ();
2906 }
2907 
2908 /* Returns true if TP is still stopped at a breakpoint that needs
2909    stepping-over in order to make progress.  If the breakpoint is gone
2910    meanwhile, we can skip the whole step-over dance.  */
2911 
2912 static int
2913 thread_still_needs_step_over_bp (struct thread_info *tp)
2914 {
2915   if (tp->stepping_over_breakpoint)
2916     {
2917       struct regcache *regcache = get_thread_regcache (tp->ptid);
2918 
2919       if (breakpoint_here_p (get_regcache_aspace (regcache),
2920 			     regcache_read_pc (regcache))
2921 	  == ordinary_breakpoint_here)
2922 	return 1;
2923 
2924       tp->stepping_over_breakpoint = 0;
2925     }
2926 
2927   return 0;
2928 }
2929 
2930 /* Check whether thread TP still needs to start a step-over in order
2931    to make progress when resumed.  Returns an bitwise or of enum
2932    step_over_what bits, indicating what needs to be stepped over.  */
2933 
2934 static step_over_what
2935 thread_still_needs_step_over (struct thread_info *tp)
2936 {
2937   step_over_what what = 0;
2938 
2939   if (thread_still_needs_step_over_bp (tp))
2940     what |= STEP_OVER_BREAKPOINT;
2941 
2942   if (tp->stepping_over_watchpoint
2943       && !target_have_steppable_watchpoint)
2944     what |= STEP_OVER_WATCHPOINT;
2945 
2946   return what;
2947 }
2948 
2949 /* Returns true if scheduler locking applies.  STEP indicates whether
2950    we're about to do a step/next-like command to a thread.  */
2951 
2952 static int
2953 schedlock_applies (struct thread_info *tp)
2954 {
2955   return (scheduler_mode == schedlock_on
2956 	  || (scheduler_mode == schedlock_step
2957 	      && tp->control.stepping_command)
2958 	  || (scheduler_mode == schedlock_replay
2959 	      && target_record_will_replay (minus_one_ptid,
2960 					    execution_direction)));
2961 }
2962 
2963 /* Basic routine for continuing the program in various fashions.
2964 
2965    ADDR is the address to resume at, or -1 for resume where stopped.
2966    SIGGNAL is the signal to give it, or 0 for none,
2967    or -1 for act according to how it stopped.
2968    STEP is nonzero if should trap after one instruction.
2969    -1 means return after that and print nothing.
2970    You should probably set various step_... variables
2971    before calling here, if you are stepping.
2972 
2973    You should call clear_proceed_status before calling proceed.  */
2974 
2975 void
2976 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2977 {
2978   struct regcache *regcache;
2979   struct gdbarch *gdbarch;
2980   struct thread_info *tp;
2981   CORE_ADDR pc;
2982   struct address_space *aspace;
2983   ptid_t resume_ptid;
2984   struct execution_control_state ecss;
2985   struct execution_control_state *ecs = &ecss;
2986   struct cleanup *old_chain;
2987   int started;
2988 
2989   /* If we're stopped at a fork/vfork, follow the branch set by the
2990      "set follow-fork-mode" command; otherwise, we'll just proceed
2991      resuming the current thread.  */
2992   if (!follow_fork ())
2993     {
2994       /* The target for some reason decided not to resume.  */
2995       normal_stop ();
2996       if (target_can_async_p ())
2997 	inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2998       return;
2999     }
3000 
3001   /* We'll update this if & when we switch to a new thread.  */
3002   previous_inferior_ptid = inferior_ptid;
3003 
3004   regcache = get_current_regcache ();
3005   gdbarch = get_regcache_arch (regcache);
3006   aspace = get_regcache_aspace (regcache);
3007   pc = regcache_read_pc (regcache);
3008   tp = inferior_thread ();
3009 
3010   /* Fill in with reasonable starting values.  */
3011   init_thread_stepping_state (tp);
3012 
3013   gdb_assert (!thread_is_in_step_over_chain (tp));
3014 
3015   if (addr == (CORE_ADDR) -1)
3016     {
3017       if (pc == stop_pc
3018 	  && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3019 	  && execution_direction != EXEC_REVERSE)
3020 	/* There is a breakpoint at the address we will resume at,
3021 	   step one instruction before inserting breakpoints so that
3022 	   we do not stop right away (and report a second hit at this
3023 	   breakpoint).
3024 
3025 	   Note, we don't do this in reverse, because we won't
3026 	   actually be executing the breakpoint insn anyway.
3027 	   We'll be (un-)executing the previous instruction.  */
3028 	tp->stepping_over_breakpoint = 1;
3029       else if (gdbarch_single_step_through_delay_p (gdbarch)
3030 	       && gdbarch_single_step_through_delay (gdbarch,
3031 						     get_current_frame ()))
3032 	/* We stepped onto an instruction that needs to be stepped
3033 	   again before re-inserting the breakpoint, do so.  */
3034 	tp->stepping_over_breakpoint = 1;
3035     }
3036   else
3037     {
3038       regcache_write_pc (regcache, addr);
3039     }
3040 
3041   if (siggnal != GDB_SIGNAL_DEFAULT)
3042     tp->suspend.stop_signal = siggnal;
3043 
3044   resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3045 
3046   /* If an exception is thrown from this point on, make sure to
3047      propagate GDB's knowledge of the executing state to the
3048      frontend/user running state.  */
3049   old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3050 
3051   /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3052      threads (e.g., we might need to set threads stepping over
3053      breakpoints first), from the user/frontend's point of view, all
3054      threads in RESUME_PTID are now running.  Unless we're calling an
3055      inferior function, as in that case we pretend the inferior
3056      doesn't run at all.  */
3057   if (!tp->control.in_infcall)
3058    set_running (resume_ptid, 1);
3059 
3060   if (debug_infrun)
3061     fprintf_unfiltered (gdb_stdlog,
3062 			"infrun: proceed (addr=%s, signal=%s)\n",
3063 			paddress (gdbarch, addr),
3064 			gdb_signal_to_symbol_string (siggnal));
3065 
3066   annotate_starting ();
3067 
3068   /* Make sure that output from GDB appears before output from the
3069      inferior.  */
3070   gdb_flush (gdb_stdout);
3071 
3072   /* In a multi-threaded task we may select another thread and
3073      then continue or step.
3074 
3075      But if a thread that we're resuming had stopped at a breakpoint,
3076      it will immediately cause another breakpoint stop without any
3077      execution (i.e. it will report a breakpoint hit incorrectly).  So
3078      we must step over it first.
3079 
3080      Look for threads other than the current (TP) that reported a
3081      breakpoint hit and haven't been resumed yet since.  */
3082 
3083   /* If scheduler locking applies, we can avoid iterating over all
3084      threads.  */
3085   if (!non_stop && !schedlock_applies (tp))
3086     {
3087       struct thread_info *current = tp;
3088 
3089       ALL_NON_EXITED_THREADS (tp)
3090         {
3091 	  /* Ignore the current thread here.  It's handled
3092 	     afterwards.  */
3093 	  if (tp == current)
3094 	    continue;
3095 
3096 	  /* Ignore threads of processes we're not resuming.  */
3097 	  if (!ptid_match (tp->ptid, resume_ptid))
3098 	    continue;
3099 
3100 	  if (!thread_still_needs_step_over (tp))
3101 	    continue;
3102 
3103 	  gdb_assert (!thread_is_in_step_over_chain (tp));
3104 
3105 	  if (debug_infrun)
3106 	    fprintf_unfiltered (gdb_stdlog,
3107 				"infrun: need to step-over [%s] first\n",
3108 				target_pid_to_str (tp->ptid));
3109 
3110 	  thread_step_over_chain_enqueue (tp);
3111 	}
3112 
3113       tp = current;
3114     }
3115 
3116   /* Enqueue the current thread last, so that we move all other
3117      threads over their breakpoints first.  */
3118   if (tp->stepping_over_breakpoint)
3119     thread_step_over_chain_enqueue (tp);
3120 
3121   /* If the thread isn't started, we'll still need to set its prev_pc,
3122      so that switch_back_to_stepped_thread knows the thread hasn't
3123      advanced.  Must do this before resuming any thread, as in
3124      all-stop/remote, once we resume we can't send any other packet
3125      until the target stops again.  */
3126   tp->prev_pc = regcache_read_pc (regcache);
3127 
3128   started = start_step_over ();
3129 
3130   if (step_over_info_valid_p ())
3131     {
3132       /* Either this thread started a new in-line step over, or some
3133 	 other thread was already doing one.  In either case, don't
3134 	 resume anything else until the step-over is finished.  */
3135     }
3136   else if (started && !target_is_non_stop_p ())
3137     {
3138       /* A new displaced stepping sequence was started.  In all-stop,
3139 	 we can't talk to the target anymore until it next stops.  */
3140     }
3141   else if (!non_stop && target_is_non_stop_p ())
3142     {
3143       /* In all-stop, but the target is always in non-stop mode.
3144 	 Start all other threads that are implicitly resumed too.  */
3145       ALL_NON_EXITED_THREADS (tp)
3146         {
3147 	  /* Ignore threads of processes we're not resuming.  */
3148 	  if (!ptid_match (tp->ptid, resume_ptid))
3149 	    continue;
3150 
3151 	  if (tp->resumed)
3152 	    {
3153 	      if (debug_infrun)
3154 		fprintf_unfiltered (gdb_stdlog,
3155 				    "infrun: proceed: [%s] resumed\n",
3156 				    target_pid_to_str (tp->ptid));
3157 	      gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3158 	      continue;
3159 	    }
3160 
3161 	  if (thread_is_in_step_over_chain (tp))
3162 	    {
3163 	      if (debug_infrun)
3164 		fprintf_unfiltered (gdb_stdlog,
3165 				    "infrun: proceed: [%s] needs step-over\n",
3166 				    target_pid_to_str (tp->ptid));
3167 	      continue;
3168 	    }
3169 
3170 	  if (debug_infrun)
3171 	    fprintf_unfiltered (gdb_stdlog,
3172 				"infrun: proceed: resuming %s\n",
3173 				target_pid_to_str (tp->ptid));
3174 
3175 	  reset_ecs (ecs, tp);
3176 	  switch_to_thread (tp->ptid);
3177 	  keep_going_pass_signal (ecs);
3178 	  if (!ecs->wait_some_more)
3179 	    error (_("Command aborted."));
3180 	}
3181     }
3182   else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3183     {
3184       /* The thread wasn't started, and isn't queued, run it now.  */
3185       reset_ecs (ecs, tp);
3186       switch_to_thread (tp->ptid);
3187       keep_going_pass_signal (ecs);
3188       if (!ecs->wait_some_more)
3189 	error (_("Command aborted."));
3190     }
3191 
3192   discard_cleanups (old_chain);
3193 
3194   /* Tell the event loop to wait for it to stop.  If the target
3195      supports asynchronous execution, it'll do this from within
3196      target_resume.  */
3197   if (!target_can_async_p ())
3198     mark_async_event_handler (infrun_async_inferior_event_token);
3199 }
3200 
3201 
3202 /* Start remote-debugging of a machine over a serial link.  */
3203 
3204 void
3205 start_remote (int from_tty)
3206 {
3207   struct inferior *inferior;
3208 
3209   inferior = current_inferior ();
3210   inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3211 
3212   /* Always go on waiting for the target, regardless of the mode.  */
3213   /* FIXME: cagney/1999-09-23: At present it isn't possible to
3214      indicate to wait_for_inferior that a target should timeout if
3215      nothing is returned (instead of just blocking).  Because of this,
3216      targets expecting an immediate response need to, internally, set
3217      things up so that the target_wait() is forced to eventually
3218      timeout.  */
3219   /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3220      differentiate to its caller what the state of the target is after
3221      the initial open has been performed.  Here we're assuming that
3222      the target has stopped.  It should be possible to eventually have
3223      target_open() return to the caller an indication that the target
3224      is currently running and GDB state should be set to the same as
3225      for an async run.  */
3226   wait_for_inferior ();
3227 
3228   /* Now that the inferior has stopped, do any bookkeeping like
3229      loading shared libraries.  We want to do this before normal_stop,
3230      so that the displayed frame is up to date.  */
3231   post_create_inferior (&current_target, from_tty);
3232 
3233   normal_stop ();
3234 }
3235 
3236 /* Initialize static vars when a new inferior begins.  */
3237 
3238 void
3239 init_wait_for_inferior (void)
3240 {
3241   /* These are meaningless until the first time through wait_for_inferior.  */
3242 
3243   breakpoint_init_inferior (inf_starting);
3244 
3245   clear_proceed_status (0);
3246 
3247   target_last_wait_ptid = minus_one_ptid;
3248 
3249   previous_inferior_ptid = inferior_ptid;
3250 
3251   /* Discard any skipped inlined frames.  */
3252   clear_inline_frame_state (minus_one_ptid);
3253 }
3254 
3255 
3256 
3257 static void handle_inferior_event (struct execution_control_state *ecs);
3258 
3259 static void handle_step_into_function (struct gdbarch *gdbarch,
3260 				       struct execution_control_state *ecs);
3261 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3262 						struct execution_control_state *ecs);
3263 static void handle_signal_stop (struct execution_control_state *ecs);
3264 static void check_exception_resume (struct execution_control_state *,
3265 				    struct frame_info *);
3266 
3267 static void end_stepping_range (struct execution_control_state *ecs);
3268 static void stop_waiting (struct execution_control_state *ecs);
3269 static void keep_going (struct execution_control_state *ecs);
3270 static void process_event_stop_test (struct execution_control_state *ecs);
3271 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3272 
3273 /* Callback for iterate over threads.  If the thread is stopped, but
3274    the user/frontend doesn't know about that yet, go through
3275    normal_stop, as if the thread had just stopped now.  ARG points at
3276    a ptid.  If PTID is MINUS_ONE_PTID, applies to all threads.  If
3277    ptid_is_pid(PTID) is true, applies to all threads of the process
3278    pointed at by PTID.  Otherwise, apply only to the thread pointed by
3279    PTID.  */
3280 
3281 static int
3282 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3283 {
3284   ptid_t ptid = * (ptid_t *) arg;
3285 
3286   if ((ptid_equal (info->ptid, ptid)
3287        || ptid_equal (minus_one_ptid, ptid)
3288        || (ptid_is_pid (ptid)
3289 	   && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3290       && is_running (info->ptid)
3291       && !is_executing (info->ptid))
3292     {
3293       struct cleanup *old_chain;
3294       struct execution_control_state ecss;
3295       struct execution_control_state *ecs = &ecss;
3296 
3297       memset (ecs, 0, sizeof (*ecs));
3298 
3299       old_chain = make_cleanup_restore_current_thread ();
3300 
3301       overlay_cache_invalid = 1;
3302       /* Flush target cache before starting to handle each event.
3303 	 Target was running and cache could be stale.  This is just a
3304 	 heuristic.  Running threads may modify target memory, but we
3305 	 don't get any event.  */
3306       target_dcache_invalidate ();
3307 
3308       /* Go through handle_inferior_event/normal_stop, so we always
3309 	 have consistent output as if the stop event had been
3310 	 reported.  */
3311       ecs->ptid = info->ptid;
3312       ecs->event_thread = info;
3313       ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3314       ecs->ws.value.sig = GDB_SIGNAL_0;
3315 
3316       handle_inferior_event (ecs);
3317 
3318       if (!ecs->wait_some_more)
3319 	{
3320 	  /* Cancel any running execution command.  */
3321 	  thread_cancel_execution_command (info);
3322 
3323 	  normal_stop ();
3324 	}
3325 
3326       do_cleanups (old_chain);
3327     }
3328 
3329   return 0;
3330 }
3331 
3332 /* This function is attached as a "thread_stop_requested" observer.
3333    Cleanup local state that assumed the PTID was to be resumed, and
3334    report the stop to the frontend.  */
3335 
3336 static void
3337 infrun_thread_stop_requested (ptid_t ptid)
3338 {
3339   struct thread_info *tp;
3340 
3341   /* PTID was requested to stop.  Remove matching threads from the
3342      step-over queue, so we don't try to resume them
3343      automatically.  */
3344   ALL_NON_EXITED_THREADS (tp)
3345     if (ptid_match (tp->ptid, ptid))
3346       {
3347 	if (thread_is_in_step_over_chain (tp))
3348 	  thread_step_over_chain_remove (tp);
3349       }
3350 
3351   iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3352 }
3353 
3354 static void
3355 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3356 {
3357   if (ptid_equal (target_last_wait_ptid, tp->ptid))
3358     nullify_last_target_wait_ptid ();
3359 }
3360 
3361 /* Delete the step resume, single-step and longjmp/exception resume
3362    breakpoints of TP.  */
3363 
3364 static void
3365 delete_thread_infrun_breakpoints (struct thread_info *tp)
3366 {
3367   delete_step_resume_breakpoint (tp);
3368   delete_exception_resume_breakpoint (tp);
3369   delete_single_step_breakpoints (tp);
3370 }
3371 
3372 /* If the target still has execution, call FUNC for each thread that
3373    just stopped.  In all-stop, that's all the non-exited threads; in
3374    non-stop, that's the current thread, only.  */
3375 
3376 typedef void (*for_each_just_stopped_thread_callback_func)
3377   (struct thread_info *tp);
3378 
3379 static void
3380 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3381 {
3382   if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3383     return;
3384 
3385   if (target_is_non_stop_p ())
3386     {
3387       /* If in non-stop mode, only the current thread stopped.  */
3388       func (inferior_thread ());
3389     }
3390   else
3391     {
3392       struct thread_info *tp;
3393 
3394       /* In all-stop mode, all threads have stopped.  */
3395       ALL_NON_EXITED_THREADS (tp)
3396         {
3397 	  func (tp);
3398 	}
3399     }
3400 }
3401 
3402 /* Delete the step resume and longjmp/exception resume breakpoints of
3403    the threads that just stopped.  */
3404 
3405 static void
3406 delete_just_stopped_threads_infrun_breakpoints (void)
3407 {
3408   for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3409 }
3410 
3411 /* Delete the single-step breakpoints of the threads that just
3412    stopped.  */
3413 
3414 static void
3415 delete_just_stopped_threads_single_step_breakpoints (void)
3416 {
3417   for_each_just_stopped_thread (delete_single_step_breakpoints);
3418 }
3419 
3420 /* A cleanup wrapper.  */
3421 
3422 static void
3423 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3424 {
3425   delete_just_stopped_threads_infrun_breakpoints ();
3426 }
3427 
3428 /* See infrun.h.  */
3429 
3430 void
3431 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3432 			   const struct target_waitstatus *ws)
3433 {
3434   char *status_string = target_waitstatus_to_string (ws);
3435   struct ui_file *tmp_stream = mem_fileopen ();
3436   char *text;
3437 
3438   /* The text is split over several lines because it was getting too long.
3439      Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3440      output as a unit; we want only one timestamp printed if debug_timestamp
3441      is set.  */
3442 
3443   fprintf_unfiltered (tmp_stream,
3444 		      "infrun: target_wait (%d.%ld.%ld",
3445 		      ptid_get_pid (waiton_ptid),
3446 		      ptid_get_lwp (waiton_ptid),
3447 		      ptid_get_tid (waiton_ptid));
3448   if (ptid_get_pid (waiton_ptid) != -1)
3449     fprintf_unfiltered (tmp_stream,
3450 			" [%s]", target_pid_to_str (waiton_ptid));
3451   fprintf_unfiltered (tmp_stream, ", status) =\n");
3452   fprintf_unfiltered (tmp_stream,
3453 		      "infrun:   %d.%ld.%ld [%s],\n",
3454 		      ptid_get_pid (result_ptid),
3455 		      ptid_get_lwp (result_ptid),
3456 		      ptid_get_tid (result_ptid),
3457 		      target_pid_to_str (result_ptid));
3458   fprintf_unfiltered (tmp_stream,
3459 		      "infrun:   %s\n",
3460 		      status_string);
3461 
3462   text = ui_file_xstrdup (tmp_stream, NULL);
3463 
3464   /* This uses %s in part to handle %'s in the text, but also to avoid
3465      a gcc error: the format attribute requires a string literal.  */
3466   fprintf_unfiltered (gdb_stdlog, "%s", text);
3467 
3468   xfree (status_string);
3469   xfree (text);
3470   ui_file_delete (tmp_stream);
3471 }
3472 
3473 /* Select a thread at random, out of those which are resumed and have
3474    had events.  */
3475 
3476 static struct thread_info *
3477 random_pending_event_thread (ptid_t waiton_ptid)
3478 {
3479   struct thread_info *event_tp;
3480   int num_events = 0;
3481   int random_selector;
3482 
3483   /* First see how many events we have.  Count only resumed threads
3484      that have an event pending.  */
3485   ALL_NON_EXITED_THREADS (event_tp)
3486     if (ptid_match (event_tp->ptid, waiton_ptid)
3487 	&& event_tp->resumed
3488 	&& event_tp->suspend.waitstatus_pending_p)
3489       num_events++;
3490 
3491   if (num_events == 0)
3492     return NULL;
3493 
3494   /* Now randomly pick a thread out of those that have had events.  */
3495   random_selector = (int)
3496     ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3497 
3498   if (debug_infrun && num_events > 1)
3499     fprintf_unfiltered (gdb_stdlog,
3500 			"infrun: Found %d events, selecting #%d\n",
3501 			num_events, random_selector);
3502 
3503   /* Select the Nth thread that has had an event.  */
3504   ALL_NON_EXITED_THREADS (event_tp)
3505     if (ptid_match (event_tp->ptid, waiton_ptid)
3506 	&& event_tp->resumed
3507 	&& event_tp->suspend.waitstatus_pending_p)
3508       if (random_selector-- == 0)
3509 	break;
3510 
3511   return event_tp;
3512 }
3513 
3514 /* Wrapper for target_wait that first checks whether threads have
3515    pending statuses to report before actually asking the target for
3516    more events.  */
3517 
3518 static ptid_t
3519 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3520 {
3521   ptid_t event_ptid;
3522   struct thread_info *tp;
3523 
3524   /* First check if there is a resumed thread with a wait status
3525      pending.  */
3526   if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3527     {
3528       tp = random_pending_event_thread (ptid);
3529     }
3530   else
3531     {
3532       if (debug_infrun)
3533 	fprintf_unfiltered (gdb_stdlog,
3534 			    "infrun: Waiting for specific thread %s.\n",
3535 			    target_pid_to_str (ptid));
3536 
3537       /* We have a specific thread to check.  */
3538       tp = find_thread_ptid (ptid);
3539       gdb_assert (tp != NULL);
3540       if (!tp->suspend.waitstatus_pending_p)
3541 	tp = NULL;
3542     }
3543 
3544   if (tp != NULL
3545       && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3546 	  || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3547     {
3548       struct regcache *regcache = get_thread_regcache (tp->ptid);
3549       struct gdbarch *gdbarch = get_regcache_arch (regcache);
3550       CORE_ADDR pc;
3551       int discard = 0;
3552 
3553       pc = regcache_read_pc (regcache);
3554 
3555       if (pc != tp->suspend.stop_pc)
3556 	{
3557 	  if (debug_infrun)
3558 	    fprintf_unfiltered (gdb_stdlog,
3559 				"infrun: PC of %s changed.  was=%s, now=%s\n",
3560 				target_pid_to_str (tp->ptid),
3561 				paddress (gdbarch, tp->prev_pc),
3562 				paddress (gdbarch, pc));
3563 	  discard = 1;
3564 	}
3565       else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3566 	{
3567 	  if (debug_infrun)
3568 	    fprintf_unfiltered (gdb_stdlog,
3569 				"infrun: previous breakpoint of %s, at %s gone\n",
3570 				target_pid_to_str (tp->ptid),
3571 				paddress (gdbarch, pc));
3572 
3573 	  discard = 1;
3574 	}
3575 
3576       if (discard)
3577 	{
3578 	  if (debug_infrun)
3579 	    fprintf_unfiltered (gdb_stdlog,
3580 				"infrun: pending event of %s cancelled.\n",
3581 				target_pid_to_str (tp->ptid));
3582 
3583 	  tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3584 	  tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3585 	}
3586     }
3587 
3588   if (tp != NULL)
3589     {
3590       if (debug_infrun)
3591 	{
3592 	  char *statstr;
3593 
3594 	  statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3595 	  fprintf_unfiltered (gdb_stdlog,
3596 			      "infrun: Using pending wait status %s for %s.\n",
3597 			      statstr,
3598 			      target_pid_to_str (tp->ptid));
3599 	  xfree (statstr);
3600 	}
3601 
3602       /* Now that we've selected our final event LWP, un-adjust its PC
3603 	 if it was a software breakpoint (and the target doesn't
3604 	 always adjust the PC itself).  */
3605       if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3606 	  && !target_supports_stopped_by_sw_breakpoint ())
3607 	{
3608 	  struct regcache *regcache;
3609 	  struct gdbarch *gdbarch;
3610 	  int decr_pc;
3611 
3612 	  regcache = get_thread_regcache (tp->ptid);
3613 	  gdbarch = get_regcache_arch (regcache);
3614 
3615 	  decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3616 	  if (decr_pc != 0)
3617 	    {
3618 	      CORE_ADDR pc;
3619 
3620 	      pc = regcache_read_pc (regcache);
3621 	      regcache_write_pc (regcache, pc + decr_pc);
3622 	    }
3623 	}
3624 
3625       tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3626       *status = tp->suspend.waitstatus;
3627       tp->suspend.waitstatus_pending_p = 0;
3628 
3629       /* Wake up the event loop again, until all pending events are
3630 	 processed.  */
3631       if (target_is_async_p ())
3632 	mark_async_event_handler (infrun_async_inferior_event_token);
3633       return tp->ptid;
3634     }
3635 
3636   /* But if we don't find one, we'll have to wait.  */
3637 
3638   if (deprecated_target_wait_hook)
3639     event_ptid = deprecated_target_wait_hook (ptid, status, options);
3640   else
3641     event_ptid = target_wait (ptid, status, options);
3642 
3643   return event_ptid;
3644 }
3645 
3646 /* Prepare and stabilize the inferior for detaching it.  E.g.,
3647    detaching while a thread is displaced stepping is a recipe for
3648    crashing it, as nothing would readjust the PC out of the scratch
3649    pad.  */
3650 
3651 void
3652 prepare_for_detach (void)
3653 {
3654   struct inferior *inf = current_inferior ();
3655   ptid_t pid_ptid = pid_to_ptid (inf->pid);
3656   struct cleanup *old_chain_1;
3657   struct displaced_step_inferior_state *displaced;
3658 
3659   displaced = get_displaced_stepping_state (inf->pid);
3660 
3661   /* Is any thread of this process displaced stepping?  If not,
3662      there's nothing else to do.  */
3663   if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3664     return;
3665 
3666   if (debug_infrun)
3667     fprintf_unfiltered (gdb_stdlog,
3668 			"displaced-stepping in-process while detaching");
3669 
3670   old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3671   inf->detaching = 1;
3672 
3673   while (!ptid_equal (displaced->step_ptid, null_ptid))
3674     {
3675       struct cleanup *old_chain_2;
3676       struct execution_control_state ecss;
3677       struct execution_control_state *ecs;
3678 
3679       ecs = &ecss;
3680       memset (ecs, 0, sizeof (*ecs));
3681 
3682       overlay_cache_invalid = 1;
3683       /* Flush target cache before starting to handle each event.
3684 	 Target was running and cache could be stale.  This is just a
3685 	 heuristic.  Running threads may modify target memory, but we
3686 	 don't get any event.  */
3687       target_dcache_invalidate ();
3688 
3689       ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3690 
3691       if (debug_infrun)
3692 	print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3693 
3694       /* If an error happens while handling the event, propagate GDB's
3695 	 knowledge of the executing state to the frontend/user running
3696 	 state.  */
3697       old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3698 				  &minus_one_ptid);
3699 
3700       /* Now figure out what to do with the result of the result.  */
3701       handle_inferior_event (ecs);
3702 
3703       /* No error, don't finish the state yet.  */
3704       discard_cleanups (old_chain_2);
3705 
3706       /* Breakpoints and watchpoints are not installed on the target
3707 	 at this point, and signals are passed directly to the
3708 	 inferior, so this must mean the process is gone.  */
3709       if (!ecs->wait_some_more)
3710 	{
3711 	  discard_cleanups (old_chain_1);
3712 	  error (_("Program exited while detaching"));
3713 	}
3714     }
3715 
3716   discard_cleanups (old_chain_1);
3717 }
3718 
3719 /* Wait for control to return from inferior to debugger.
3720 
3721    If inferior gets a signal, we may decide to start it up again
3722    instead of returning.  That is why there is a loop in this function.
3723    When this function actually returns it means the inferior
3724    should be left stopped and GDB should read more commands.  */
3725 
3726 void
3727 wait_for_inferior (void)
3728 {
3729   struct cleanup *old_cleanups;
3730   struct cleanup *thread_state_chain;
3731 
3732   if (debug_infrun)
3733     fprintf_unfiltered
3734       (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3735 
3736   old_cleanups
3737     = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3738 		    NULL);
3739 
3740   /* If an error happens while handling the event, propagate GDB's
3741      knowledge of the executing state to the frontend/user running
3742      state.  */
3743   thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3744 
3745   while (1)
3746     {
3747       struct execution_control_state ecss;
3748       struct execution_control_state *ecs = &ecss;
3749       ptid_t waiton_ptid = minus_one_ptid;
3750 
3751       memset (ecs, 0, sizeof (*ecs));
3752 
3753       overlay_cache_invalid = 1;
3754 
3755       /* Flush target cache before starting to handle each event.
3756 	 Target was running and cache could be stale.  This is just a
3757 	 heuristic.  Running threads may modify target memory, but we
3758 	 don't get any event.  */
3759       target_dcache_invalidate ();
3760 
3761       ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3762 
3763       if (debug_infrun)
3764 	print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3765 
3766       /* Now figure out what to do with the result of the result.  */
3767       handle_inferior_event (ecs);
3768 
3769       if (!ecs->wait_some_more)
3770 	break;
3771     }
3772 
3773   /* No error, don't finish the state yet.  */
3774   discard_cleanups (thread_state_chain);
3775 
3776   do_cleanups (old_cleanups);
3777 }
3778 
3779 /* Cleanup that reinstalls the readline callback handler, if the
3780    target is running in the background.  If while handling the target
3781    event something triggered a secondary prompt, like e.g., a
3782    pagination prompt, we'll have removed the callback handler (see
3783    gdb_readline_wrapper_line).  Need to do this as we go back to the
3784    event loop, ready to process further input.  Note this has no
3785    effect if the handler hasn't actually been removed, because calling
3786    rl_callback_handler_install resets the line buffer, thus losing
3787    input.  */
3788 
3789 static void
3790 reinstall_readline_callback_handler_cleanup (void *arg)
3791 {
3792   struct ui *ui = current_ui;
3793 
3794   if (!ui->async)
3795     {
3796       /* We're not going back to the top level event loop yet.  Don't
3797 	 install the readline callback, as it'd prep the terminal,
3798 	 readline-style (raw, noecho) (e.g., --batch).  We'll install
3799 	 it the next time the prompt is displayed, when we're ready
3800 	 for input.  */
3801       return;
3802     }
3803 
3804   if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3805     gdb_rl_callback_handler_reinstall ();
3806 }
3807 
3808 /* Clean up the FSMs of threads that are now stopped.  In non-stop,
3809    that's just the event thread.  In all-stop, that's all threads.  */
3810 
3811 static void
3812 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3813 {
3814   struct thread_info *thr = ecs->event_thread;
3815 
3816   if (thr != NULL && thr->thread_fsm != NULL)
3817     thread_fsm_clean_up (thr->thread_fsm, thr);
3818 
3819   if (!non_stop)
3820     {
3821       ALL_NON_EXITED_THREADS (thr)
3822         {
3823 	  if (thr->thread_fsm == NULL)
3824 	    continue;
3825 	  if (thr == ecs->event_thread)
3826 	    continue;
3827 
3828 	  switch_to_thread (thr->ptid);
3829 	  thread_fsm_clean_up (thr->thread_fsm, thr);
3830 	}
3831 
3832       if (ecs->event_thread != NULL)
3833 	switch_to_thread (ecs->event_thread->ptid);
3834     }
3835 }
3836 
3837 /* Helper for all_uis_check_sync_execution_done that works on the
3838    current UI.  */
3839 
3840 static void
3841 check_curr_ui_sync_execution_done (void)
3842 {
3843   struct ui *ui = current_ui;
3844 
3845   if (ui->prompt_state == PROMPT_NEEDED
3846       && ui->async
3847       && !gdb_in_secondary_prompt_p (ui))
3848     {
3849       target_terminal_ours ();
3850       observer_notify_sync_execution_done ();
3851       ui_register_input_event_handler (ui);
3852     }
3853 }
3854 
3855 /* See infrun.h.  */
3856 
3857 void
3858 all_uis_check_sync_execution_done (void)
3859 {
3860   struct switch_thru_all_uis state;
3861 
3862   SWITCH_THRU_ALL_UIS (state)
3863     {
3864       check_curr_ui_sync_execution_done ();
3865     }
3866 }
3867 
3868 /* See infrun.h.  */
3869 
3870 void
3871 all_uis_on_sync_execution_starting (void)
3872 {
3873   struct switch_thru_all_uis state;
3874 
3875   SWITCH_THRU_ALL_UIS (state)
3876     {
3877       if (current_ui->prompt_state == PROMPT_NEEDED)
3878 	async_disable_stdin ();
3879     }
3880 }
3881 
3882 /* A cleanup that restores the execution direction to the value saved
3883    in *ARG.  */
3884 
3885 static void
3886 restore_execution_direction (void *arg)
3887 {
3888   enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3889 
3890   execution_direction = *save_exec_dir;
3891 }
3892 
3893 /* Asynchronous version of wait_for_inferior.  It is called by the
3894    event loop whenever a change of state is detected on the file
3895    descriptor corresponding to the target.  It can be called more than
3896    once to complete a single execution command.  In such cases we need
3897    to keep the state in a global variable ECSS.  If it is the last time
3898    that this function is called for a single execution command, then
3899    report to the user that the inferior has stopped, and do the
3900    necessary cleanups.  */
3901 
3902 void
3903 fetch_inferior_event (void *client_data)
3904 {
3905   struct execution_control_state ecss;
3906   struct execution_control_state *ecs = &ecss;
3907   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3908   struct cleanup *ts_old_chain;
3909   enum exec_direction_kind save_exec_dir = execution_direction;
3910   int cmd_done = 0;
3911   ptid_t waiton_ptid = minus_one_ptid;
3912 
3913   memset (ecs, 0, sizeof (*ecs));
3914 
3915   /* Events are always processed with the main UI as current UI.  This
3916      way, warnings, debug output, etc. are always consistently sent to
3917      the main console.  */
3918   make_cleanup_restore_current_ui ();
3919   current_ui = main_ui;
3920 
3921   /* End up with readline processing input, if necessary.  */
3922   make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3923 
3924   /* We're handling a live event, so make sure we're doing live
3925      debugging.  If we're looking at traceframes while the target is
3926      running, we're going to need to get back to that mode after
3927      handling the event.  */
3928   if (non_stop)
3929     {
3930       make_cleanup_restore_current_traceframe ();
3931       set_current_traceframe (-1);
3932     }
3933 
3934   if (non_stop)
3935     /* In non-stop mode, the user/frontend should not notice a thread
3936        switch due to internal events.  Make sure we reverse to the
3937        user selected thread and frame after handling the event and
3938        running any breakpoint commands.  */
3939     make_cleanup_restore_current_thread ();
3940 
3941   overlay_cache_invalid = 1;
3942   /* Flush target cache before starting to handle each event.  Target
3943      was running and cache could be stale.  This is just a heuristic.
3944      Running threads may modify target memory, but we don't get any
3945      event.  */
3946   target_dcache_invalidate ();
3947 
3948   make_cleanup (restore_execution_direction, &save_exec_dir);
3949   execution_direction = target_execution_direction ();
3950 
3951   ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3952 			      target_can_async_p () ? TARGET_WNOHANG : 0);
3953 
3954   if (debug_infrun)
3955     print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3956 
3957   /* If an error happens while handling the event, propagate GDB's
3958      knowledge of the executing state to the frontend/user running
3959      state.  */
3960   if (!target_is_non_stop_p ())
3961     ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3962   else
3963     ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3964 
3965   /* Get executed before make_cleanup_restore_current_thread above to apply
3966      still for the thread which has thrown the exception.  */
3967   make_bpstat_clear_actions_cleanup ();
3968 
3969   make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3970 
3971   /* Now figure out what to do with the result of the result.  */
3972   handle_inferior_event (ecs);
3973 
3974   if (!ecs->wait_some_more)
3975     {
3976       struct inferior *inf = find_inferior_ptid (ecs->ptid);
3977       int should_stop = 1;
3978       struct thread_info *thr = ecs->event_thread;
3979       int should_notify_stop = 1;
3980 
3981       delete_just_stopped_threads_infrun_breakpoints ();
3982 
3983       if (thr != NULL)
3984 	{
3985 	  struct thread_fsm *thread_fsm = thr->thread_fsm;
3986 
3987 	  if (thread_fsm != NULL)
3988 	    should_stop = thread_fsm_should_stop (thread_fsm, thr);
3989 	}
3990 
3991       if (!should_stop)
3992 	{
3993 	  keep_going (ecs);
3994 	}
3995       else
3996 	{
3997 	  clean_up_just_stopped_threads_fsms (ecs);
3998 
3999 	  if (thr != NULL && thr->thread_fsm != NULL)
4000 	    {
4001 	      should_notify_stop
4002 		= thread_fsm_should_notify_stop (thr->thread_fsm);
4003 	    }
4004 
4005 	  if (should_notify_stop)
4006 	    {
4007 	      int proceeded = 0;
4008 
4009 	      /* We may not find an inferior if this was a process exit.  */
4010 	      if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4011 		proceeded = normal_stop ();
4012 
4013 	      if (!proceeded)
4014 		{
4015 		  inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4016 		  cmd_done = 1;
4017 		}
4018 	    }
4019 	}
4020     }
4021 
4022   /* No error, don't finish the thread states yet.  */
4023   discard_cleanups (ts_old_chain);
4024 
4025   /* Revert thread and frame.  */
4026   do_cleanups (old_chain);
4027 
4028   /* If a UI was in sync execution mode, and now isn't, restore its
4029      prompt (a synchronous execution command has finished, and we're
4030      ready for input).  */
4031   all_uis_check_sync_execution_done ();
4032 
4033   if (cmd_done
4034       && exec_done_display_p
4035       && (ptid_equal (inferior_ptid, null_ptid)
4036 	  || !is_running (inferior_ptid)))
4037     printf_unfiltered (_("completed.\n"));
4038 }
4039 
4040 /* Record the frame and location we're currently stepping through.  */
4041 void
4042 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4043 {
4044   struct thread_info *tp = inferior_thread ();
4045 
4046   tp->control.step_frame_id = get_frame_id (frame);
4047   tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4048 
4049   tp->current_symtab = sal.symtab;
4050   tp->current_line = sal.line;
4051 }
4052 
4053 /* Clear context switchable stepping state.  */
4054 
4055 void
4056 init_thread_stepping_state (struct thread_info *tss)
4057 {
4058   tss->stepped_breakpoint = 0;
4059   tss->stepping_over_breakpoint = 0;
4060   tss->stepping_over_watchpoint = 0;
4061   tss->step_after_step_resume_breakpoint = 0;
4062 }
4063 
4064 /* Set the cached copy of the last ptid/waitstatus.  */
4065 
4066 void
4067 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4068 {
4069   target_last_wait_ptid = ptid;
4070   target_last_waitstatus = status;
4071 }
4072 
4073 /* Return the cached copy of the last pid/waitstatus returned by
4074    target_wait()/deprecated_target_wait_hook().  The data is actually
4075    cached by handle_inferior_event(), which gets called immediately
4076    after target_wait()/deprecated_target_wait_hook().  */
4077 
4078 void
4079 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4080 {
4081   *ptidp = target_last_wait_ptid;
4082   *status = target_last_waitstatus;
4083 }
4084 
4085 void
4086 nullify_last_target_wait_ptid (void)
4087 {
4088   target_last_wait_ptid = minus_one_ptid;
4089 }
4090 
4091 /* Switch thread contexts.  */
4092 
4093 static void
4094 context_switch (ptid_t ptid)
4095 {
4096   if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4097     {
4098       fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4099 			  target_pid_to_str (inferior_ptid));
4100       fprintf_unfiltered (gdb_stdlog, "to %s\n",
4101 			  target_pid_to_str (ptid));
4102     }
4103 
4104   switch_to_thread (ptid);
4105 }
4106 
4107 /* If the target can't tell whether we've hit breakpoints
4108    (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4109    check whether that could have been caused by a breakpoint.  If so,
4110    adjust the PC, per gdbarch_decr_pc_after_break.  */
4111 
4112 static void
4113 adjust_pc_after_break (struct thread_info *thread,
4114 		       struct target_waitstatus *ws)
4115 {
4116   struct regcache *regcache;
4117   struct gdbarch *gdbarch;
4118   struct address_space *aspace;
4119   CORE_ADDR breakpoint_pc, decr_pc;
4120 
4121   /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP.  If
4122      we aren't, just return.
4123 
4124      We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4125      affected by gdbarch_decr_pc_after_break.  Other waitkinds which are
4126      implemented by software breakpoints should be handled through the normal
4127      breakpoint layer.
4128 
4129      NOTE drow/2004-01-31: On some targets, breakpoints may generate
4130      different signals (SIGILL or SIGEMT for instance), but it is less
4131      clear where the PC is pointing afterwards.  It may not match
4132      gdbarch_decr_pc_after_break.  I don't know any specific target that
4133      generates these signals at breakpoints (the code has been in GDB since at
4134      least 1992) so I can not guess how to handle them here.
4135 
4136      In earlier versions of GDB, a target with
4137      gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4138      watchpoint affected by gdbarch_decr_pc_after_break.  I haven't found any
4139      target with both of these set in GDB history, and it seems unlikely to be
4140      correct, so gdbarch_have_nonsteppable_watchpoint is not checked here.  */
4141 
4142   if (ws->kind != TARGET_WAITKIND_STOPPED)
4143     return;
4144 
4145   if (ws->value.sig != GDB_SIGNAL_TRAP)
4146     return;
4147 
4148   /* In reverse execution, when a breakpoint is hit, the instruction
4149      under it has already been de-executed.  The reported PC always
4150      points at the breakpoint address, so adjusting it further would
4151      be wrong.  E.g., consider this case on a decr_pc_after_break == 1
4152      architecture:
4153 
4154        B1         0x08000000 :   INSN1
4155        B2         0x08000001 :   INSN2
4156 		  0x08000002 :   INSN3
4157 	    PC -> 0x08000003 :   INSN4
4158 
4159      Say you're stopped at 0x08000003 as above.  Reverse continuing
4160      from that point should hit B2 as below.  Reading the PC when the
4161      SIGTRAP is reported should read 0x08000001 and INSN2 should have
4162      been de-executed already.
4163 
4164        B1         0x08000000 :   INSN1
4165        B2   PC -> 0x08000001 :   INSN2
4166 		  0x08000002 :   INSN3
4167 		  0x08000003 :   INSN4
4168 
4169      We can't apply the same logic as for forward execution, because
4170      we would wrongly adjust the PC to 0x08000000, since there's a
4171      breakpoint at PC - 1.  We'd then report a hit on B1, although
4172      INSN1 hadn't been de-executed yet.  Doing nothing is the correct
4173      behaviour.  */
4174   if (execution_direction == EXEC_REVERSE)
4175     return;
4176 
4177   /* If the target can tell whether the thread hit a SW breakpoint,
4178      trust it.  Targets that can tell also adjust the PC
4179      themselves.  */
4180   if (target_supports_stopped_by_sw_breakpoint ())
4181     return;
4182 
4183   /* Note that relying on whether a breakpoint is planted in memory to
4184      determine this can fail.  E.g,. the breakpoint could have been
4185      removed since.  Or the thread could have been told to step an
4186      instruction the size of a breakpoint instruction, and only
4187      _after_ was a breakpoint inserted at its address.  */
4188 
4189   /* If this target does not decrement the PC after breakpoints, then
4190      we have nothing to do.  */
4191   regcache = get_thread_regcache (thread->ptid);
4192   gdbarch = get_regcache_arch (regcache);
4193 
4194   decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4195   if (decr_pc == 0)
4196     return;
4197 
4198   aspace = get_regcache_aspace (regcache);
4199 
4200   /* Find the location where (if we've hit a breakpoint) the
4201      breakpoint would be.  */
4202   breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4203 
4204   /* If the target can't tell whether a software breakpoint triggered,
4205      fallback to figuring it out based on breakpoints we think were
4206      inserted in the target, and on whether the thread was stepped or
4207      continued.  */
4208 
4209   /* Check whether there actually is a software breakpoint inserted at
4210      that location.
4211 
4212      If in non-stop mode, a race condition is possible where we've
4213      removed a breakpoint, but stop events for that breakpoint were
4214      already queued and arrive later.  To suppress those spurious
4215      SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4216      and retire them after a number of stop events are reported.  Note
4217      this is an heuristic and can thus get confused.  The real fix is
4218      to get the "stopped by SW BP and needs adjustment" info out of
4219      the target/kernel (and thus never reach here; see above).  */
4220   if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4221       || (target_is_non_stop_p ()
4222 	  && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4223     {
4224       struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4225 
4226       if (record_full_is_used ())
4227 	record_full_gdb_operation_disable_set ();
4228 
4229       /* When using hardware single-step, a SIGTRAP is reported for both
4230 	 a completed single-step and a software breakpoint.  Need to
4231 	 differentiate between the two, as the latter needs adjusting
4232 	 but the former does not.
4233 
4234 	 The SIGTRAP can be due to a completed hardware single-step only if
4235 	  - we didn't insert software single-step breakpoints
4236 	  - this thread is currently being stepped
4237 
4238 	 If any of these events did not occur, we must have stopped due
4239 	 to hitting a software breakpoint, and have to back up to the
4240 	 breakpoint address.
4241 
4242 	 As a special case, we could have hardware single-stepped a
4243 	 software breakpoint.  In this case (prev_pc == breakpoint_pc),
4244 	 we also need to back up to the breakpoint address.  */
4245 
4246       if (thread_has_single_step_breakpoints_set (thread)
4247 	  || !currently_stepping (thread)
4248 	  || (thread->stepped_breakpoint
4249 	      && thread->prev_pc == breakpoint_pc))
4250 	regcache_write_pc (regcache, breakpoint_pc);
4251 
4252       do_cleanups (old_cleanups);
4253     }
4254 }
4255 
4256 static int
4257 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4258 {
4259   for (frame = get_prev_frame (frame);
4260        frame != NULL;
4261        frame = get_prev_frame (frame))
4262     {
4263       if (frame_id_eq (get_frame_id (frame), step_frame_id))
4264 	return 1;
4265       if (get_frame_type (frame) != INLINE_FRAME)
4266 	break;
4267     }
4268 
4269   return 0;
4270 }
4271 
4272 /* Auxiliary function that handles syscall entry/return events.
4273    It returns 1 if the inferior should keep going (and GDB
4274    should ignore the event), or 0 if the event deserves to be
4275    processed.  */
4276 
4277 static int
4278 handle_syscall_event (struct execution_control_state *ecs)
4279 {
4280   struct regcache *regcache;
4281   int syscall_number;
4282 
4283   if (!ptid_equal (ecs->ptid, inferior_ptid))
4284     context_switch (ecs->ptid);
4285 
4286   regcache = get_thread_regcache (ecs->ptid);
4287   syscall_number = ecs->ws.value.syscall_number;
4288   stop_pc = regcache_read_pc (regcache);
4289 
4290   if (catch_syscall_enabled () > 0
4291       && catching_syscall_number (syscall_number) > 0)
4292     {
4293       if (debug_infrun)
4294         fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4295                             syscall_number);
4296 
4297       ecs->event_thread->control.stop_bpstat
4298 	= bpstat_stop_status (get_regcache_aspace (regcache),
4299 			      stop_pc, ecs->ptid, &ecs->ws);
4300 
4301       if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4302 	{
4303 	  /* Catchpoint hit.  */
4304 	  return 0;
4305 	}
4306     }
4307 
4308   /* If no catchpoint triggered for this, then keep going.  */
4309   keep_going (ecs);
4310   return 1;
4311 }
4312 
4313 /* Lazily fill in the execution_control_state's stop_func_* fields.  */
4314 
4315 static void
4316 fill_in_stop_func (struct gdbarch *gdbarch,
4317 		   struct execution_control_state *ecs)
4318 {
4319   if (!ecs->stop_func_filled_in)
4320     {
4321       /* Don't care about return value; stop_func_start and stop_func_name
4322 	 will both be 0 if it doesn't work.  */
4323       find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4324 				&ecs->stop_func_start, &ecs->stop_func_end);
4325       ecs->stop_func_start
4326 	+= gdbarch_deprecated_function_start_offset (gdbarch);
4327 
4328       if (gdbarch_skip_entrypoint_p (gdbarch))
4329 	ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4330 							ecs->stop_func_start);
4331 
4332       ecs->stop_func_filled_in = 1;
4333     }
4334 }
4335 
4336 
4337 /* Return the STOP_SOON field of the inferior pointed at by PTID.  */
4338 
4339 static enum stop_kind
4340 get_inferior_stop_soon (ptid_t ptid)
4341 {
4342   struct inferior *inf = find_inferior_ptid (ptid);
4343 
4344   gdb_assert (inf != NULL);
4345   return inf->control.stop_soon;
4346 }
4347 
4348 /* Wait for one event.  Store the resulting waitstatus in WS, and
4349    return the event ptid.  */
4350 
4351 static ptid_t
4352 wait_one (struct target_waitstatus *ws)
4353 {
4354   ptid_t event_ptid;
4355   ptid_t wait_ptid = minus_one_ptid;
4356 
4357   overlay_cache_invalid = 1;
4358 
4359   /* Flush target cache before starting to handle each event.
4360      Target was running and cache could be stale.  This is just a
4361      heuristic.  Running threads may modify target memory, but we
4362      don't get any event.  */
4363   target_dcache_invalidate ();
4364 
4365   if (deprecated_target_wait_hook)
4366     event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4367   else
4368     event_ptid = target_wait (wait_ptid, ws, 0);
4369 
4370   if (debug_infrun)
4371     print_target_wait_results (wait_ptid, event_ptid, ws);
4372 
4373   return event_ptid;
4374 }
4375 
4376 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4377    instead of the current thread.  */
4378 #define THREAD_STOPPED_BY(REASON)		\
4379 static int					\
4380 thread_stopped_by_ ## REASON (ptid_t ptid)	\
4381 {						\
4382   struct cleanup *old_chain;			\
4383   int res;					\
4384 						\
4385   old_chain = save_inferior_ptid ();		\
4386   inferior_ptid = ptid;				\
4387 						\
4388   res = target_stopped_by_ ## REASON ();	\
4389 						\
4390   do_cleanups (old_chain);			\
4391 						\
4392   return res;					\
4393 }
4394 
4395 /* Generate thread_stopped_by_watchpoint.  */
4396 THREAD_STOPPED_BY (watchpoint)
4397 /* Generate thread_stopped_by_sw_breakpoint.  */
4398 THREAD_STOPPED_BY (sw_breakpoint)
4399 /* Generate thread_stopped_by_hw_breakpoint.  */
4400 THREAD_STOPPED_BY (hw_breakpoint)
4401 
4402 /* Cleanups that switches to the PTID pointed at by PTID_P.  */
4403 
4404 static void
4405 switch_to_thread_cleanup (void *ptid_p)
4406 {
4407   ptid_t ptid = *(ptid_t *) ptid_p;
4408 
4409   switch_to_thread (ptid);
4410 }
4411 
4412 /* Save the thread's event and stop reason to process it later.  */
4413 
4414 static void
4415 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4416 {
4417   struct regcache *regcache;
4418   struct address_space *aspace;
4419 
4420   if (debug_infrun)
4421     {
4422       char *statstr;
4423 
4424       statstr = target_waitstatus_to_string (ws);
4425       fprintf_unfiltered (gdb_stdlog,
4426 			  "infrun: saving status %s for %d.%ld.%ld\n",
4427 			  statstr,
4428 			  ptid_get_pid (tp->ptid),
4429 			  ptid_get_lwp (tp->ptid),
4430 			  ptid_get_tid (tp->ptid));
4431       xfree (statstr);
4432     }
4433 
4434   /* Record for later.  */
4435   tp->suspend.waitstatus = *ws;
4436   tp->suspend.waitstatus_pending_p = 1;
4437 
4438   regcache = get_thread_regcache (tp->ptid);
4439   aspace = get_regcache_aspace (regcache);
4440 
4441   if (ws->kind == TARGET_WAITKIND_STOPPED
4442       && ws->value.sig == GDB_SIGNAL_TRAP)
4443     {
4444       CORE_ADDR pc = regcache_read_pc (regcache);
4445 
4446       adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4447 
4448       if (thread_stopped_by_watchpoint (tp->ptid))
4449 	{
4450 	  tp->suspend.stop_reason
4451 	    = TARGET_STOPPED_BY_WATCHPOINT;
4452 	}
4453       else if (target_supports_stopped_by_sw_breakpoint ()
4454 	       && thread_stopped_by_sw_breakpoint (tp->ptid))
4455 	{
4456 	  tp->suspend.stop_reason
4457 	    = TARGET_STOPPED_BY_SW_BREAKPOINT;
4458 	}
4459       else if (target_supports_stopped_by_hw_breakpoint ()
4460 	       && thread_stopped_by_hw_breakpoint (tp->ptid))
4461 	{
4462 	  tp->suspend.stop_reason
4463 	    = TARGET_STOPPED_BY_HW_BREAKPOINT;
4464 	}
4465       else if (!target_supports_stopped_by_hw_breakpoint ()
4466 	       && hardware_breakpoint_inserted_here_p (aspace,
4467 						       pc))
4468 	{
4469 	  tp->suspend.stop_reason
4470 	    = TARGET_STOPPED_BY_HW_BREAKPOINT;
4471 	}
4472       else if (!target_supports_stopped_by_sw_breakpoint ()
4473 	       && software_breakpoint_inserted_here_p (aspace,
4474 						       pc))
4475 	{
4476 	  tp->suspend.stop_reason
4477 	    = TARGET_STOPPED_BY_SW_BREAKPOINT;
4478 	}
4479       else if (!thread_has_single_step_breakpoints_set (tp)
4480 	       && currently_stepping (tp))
4481 	{
4482 	  tp->suspend.stop_reason
4483 	    = TARGET_STOPPED_BY_SINGLE_STEP;
4484 	}
4485     }
4486 }
4487 
4488 /* A cleanup that disables thread create/exit events.  */
4489 
4490 static void
4491 disable_thread_events (void *arg)
4492 {
4493   target_thread_events (0);
4494 }
4495 
4496 /* See infrun.h.  */
4497 
4498 void
4499 stop_all_threads (void)
4500 {
4501   /* We may need multiple passes to discover all threads.  */
4502   int pass;
4503   int iterations = 0;
4504   ptid_t entry_ptid;
4505   struct cleanup *old_chain;
4506 
4507   gdb_assert (target_is_non_stop_p ());
4508 
4509   if (debug_infrun)
4510     fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4511 
4512   entry_ptid = inferior_ptid;
4513   old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4514 
4515   target_thread_events (1);
4516   make_cleanup (disable_thread_events, NULL);
4517 
4518   /* Request threads to stop, and then wait for the stops.  Because
4519      threads we already know about can spawn more threads while we're
4520      trying to stop them, and we only learn about new threads when we
4521      update the thread list, do this in a loop, and keep iterating
4522      until two passes find no threads that need to be stopped.  */
4523   for (pass = 0; pass < 2; pass++, iterations++)
4524     {
4525       if (debug_infrun)
4526 	fprintf_unfiltered (gdb_stdlog,
4527 			    "infrun: stop_all_threads, pass=%d, "
4528 			    "iterations=%d\n", pass, iterations);
4529       while (1)
4530 	{
4531 	  ptid_t event_ptid;
4532 	  struct target_waitstatus ws;
4533 	  int need_wait = 0;
4534 	  struct thread_info *t;
4535 
4536 	  update_thread_list ();
4537 
4538 	  /* Go through all threads looking for threads that we need
4539 	     to tell the target to stop.  */
4540 	  ALL_NON_EXITED_THREADS (t)
4541 	    {
4542 	      if (t->executing)
4543 		{
4544 		  /* If already stopping, don't request a stop again.
4545 		     We just haven't seen the notification yet.  */
4546 		  if (!t->stop_requested)
4547 		    {
4548 		      if (debug_infrun)
4549 			fprintf_unfiltered (gdb_stdlog,
4550 					    "infrun:   %s executing, "
4551 					    "need stop\n",
4552 					    target_pid_to_str (t->ptid));
4553 		      target_stop (t->ptid);
4554 		      t->stop_requested = 1;
4555 		    }
4556 		  else
4557 		    {
4558 		      if (debug_infrun)
4559 			fprintf_unfiltered (gdb_stdlog,
4560 					    "infrun:   %s executing, "
4561 					    "already stopping\n",
4562 					    target_pid_to_str (t->ptid));
4563 		    }
4564 
4565 		  if (t->stop_requested)
4566 		    need_wait = 1;
4567 		}
4568 	      else
4569 		{
4570 		  if (debug_infrun)
4571 		    fprintf_unfiltered (gdb_stdlog,
4572 					"infrun:   %s not executing\n",
4573 					target_pid_to_str (t->ptid));
4574 
4575 		  /* The thread may be not executing, but still be
4576 		     resumed with a pending status to process.  */
4577 		  t->resumed = 0;
4578 		}
4579 	    }
4580 
4581 	  if (!need_wait)
4582 	    break;
4583 
4584 	  /* If we find new threads on the second iteration, restart
4585 	     over.  We want to see two iterations in a row with all
4586 	     threads stopped.  */
4587 	  if (pass > 0)
4588 	    pass = -1;
4589 
4590 	  event_ptid = wait_one (&ws);
4591 	  if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4592 	    {
4593 	      /* All resumed threads exited.  */
4594 	    }
4595 	  else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4596 		   || ws.kind == TARGET_WAITKIND_EXITED
4597 		   || ws.kind == TARGET_WAITKIND_SIGNALLED)
4598 	    {
4599 	      if (debug_infrun)
4600 		{
4601 		  ptid_t ptid = pid_to_ptid (ws.value.integer);
4602 
4603 		  fprintf_unfiltered (gdb_stdlog,
4604 				      "infrun: %s exited while "
4605 				      "stopping threads\n",
4606 				      target_pid_to_str (ptid));
4607 		}
4608 	    }
4609 	  else
4610 	    {
4611 	      struct inferior *inf;
4612 
4613 	      t = find_thread_ptid (event_ptid);
4614 	      if (t == NULL)
4615 		t = add_thread (event_ptid);
4616 
4617 	      t->stop_requested = 0;
4618 	      t->executing = 0;
4619 	      t->resumed = 0;
4620 	      t->control.may_range_step = 0;
4621 
4622 	      /* This may be the first time we see the inferior report
4623 		 a stop.  */
4624 	      inf = find_inferior_ptid (event_ptid);
4625 	      if (inf->needs_setup)
4626 		{
4627 		  switch_to_thread_no_regs (t);
4628 		  setup_inferior (0);
4629 		}
4630 
4631 	      if (ws.kind == TARGET_WAITKIND_STOPPED
4632 		  && ws.value.sig == GDB_SIGNAL_0)
4633 		{
4634 		  /* We caught the event that we intended to catch, so
4635 		     there's no event pending.  */
4636 		  t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4637 		  t->suspend.waitstatus_pending_p = 0;
4638 
4639 		  if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4640 		    {
4641 		      /* Add it back to the step-over queue.  */
4642 		      if (debug_infrun)
4643 			{
4644 			  fprintf_unfiltered (gdb_stdlog,
4645 					      "infrun: displaced-step of %s "
4646 					      "canceled: adding back to the "
4647 					      "step-over queue\n",
4648 					      target_pid_to_str (t->ptid));
4649 			}
4650 		      t->control.trap_expected = 0;
4651 		      thread_step_over_chain_enqueue (t);
4652 		    }
4653 		}
4654 	      else
4655 		{
4656 		  enum gdb_signal sig;
4657 		  struct regcache *regcache;
4658 
4659 		  if (debug_infrun)
4660 		    {
4661 		      char *statstr;
4662 
4663 		      statstr = target_waitstatus_to_string (&ws);
4664 		      fprintf_unfiltered (gdb_stdlog,
4665 					  "infrun: target_wait %s, saving "
4666 					  "status for %d.%ld.%ld\n",
4667 					  statstr,
4668 					  ptid_get_pid (t->ptid),
4669 					  ptid_get_lwp (t->ptid),
4670 					  ptid_get_tid (t->ptid));
4671 		      xfree (statstr);
4672 		    }
4673 
4674 		  /* Record for later.  */
4675 		  save_waitstatus (t, &ws);
4676 
4677 		  sig = (ws.kind == TARGET_WAITKIND_STOPPED
4678 			 ? ws.value.sig : GDB_SIGNAL_0);
4679 
4680 		  if (displaced_step_fixup (t->ptid, sig) < 0)
4681 		    {
4682 		      /* Add it back to the step-over queue.  */
4683 		      t->control.trap_expected = 0;
4684 		      thread_step_over_chain_enqueue (t);
4685 		    }
4686 
4687 		  regcache = get_thread_regcache (t->ptid);
4688 		  t->suspend.stop_pc = regcache_read_pc (regcache);
4689 
4690 		  if (debug_infrun)
4691 		    {
4692 		      fprintf_unfiltered (gdb_stdlog,
4693 					  "infrun: saved stop_pc=%s for %s "
4694 					  "(currently_stepping=%d)\n",
4695 					  paddress (target_gdbarch (),
4696 						    t->suspend.stop_pc),
4697 					  target_pid_to_str (t->ptid),
4698 					  currently_stepping (t));
4699 		    }
4700 		}
4701 	    }
4702 	}
4703     }
4704 
4705   do_cleanups (old_chain);
4706 
4707   if (debug_infrun)
4708     fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4709 }
4710 
4711 /* Handle a TARGET_WAITKIND_NO_RESUMED event.  */
4712 
4713 static int
4714 handle_no_resumed (struct execution_control_state *ecs)
4715 {
4716   struct inferior *inf;
4717   struct thread_info *thread;
4718 
4719   if (target_can_async_p ())
4720     {
4721       struct ui *ui;
4722       int any_sync = 0;
4723 
4724       ALL_UIS (ui)
4725 	{
4726 	  if (ui->prompt_state == PROMPT_BLOCKED)
4727 	    {
4728 	      any_sync = 1;
4729 	      break;
4730 	    }
4731 	}
4732       if (!any_sync)
4733 	{
4734 	  /* There were no unwaited-for children left in the target, but,
4735 	     we're not synchronously waiting for events either.  Just
4736 	     ignore.  */
4737 
4738 	  if (debug_infrun)
4739 	    fprintf_unfiltered (gdb_stdlog,
4740 				"infrun: TARGET_WAITKIND_NO_RESUMED "
4741 				"(ignoring: bg)\n");
4742 	  prepare_to_wait (ecs);
4743 	  return 1;
4744 	}
4745     }
4746 
4747   /* Otherwise, if we were running a synchronous execution command, we
4748      may need to cancel it and give the user back the terminal.
4749 
4750      In non-stop mode, the target can't tell whether we've already
4751      consumed previous stop events, so it can end up sending us a
4752      no-resumed event like so:
4753 
4754        #0 - thread 1 is left stopped
4755 
4756        #1 - thread 2 is resumed and hits breakpoint
4757                -> TARGET_WAITKIND_STOPPED
4758 
4759        #2 - thread 3 is resumed and exits
4760             this is the last resumed thread, so
4761 	       -> TARGET_WAITKIND_NO_RESUMED
4762 
4763        #3 - gdb processes stop for thread 2 and decides to re-resume
4764             it.
4765 
4766        #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4767             thread 2 is now resumed, so the event should be ignored.
4768 
4769      IOW, if the stop for thread 2 doesn't end a foreground command,
4770      then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4771      event.  But it could be that the event meant that thread 2 itself
4772      (or whatever other thread was the last resumed thread) exited.
4773 
4774      To address this we refresh the thread list and check whether we
4775      have resumed threads _now_.  In the example above, this removes
4776      thread 3 from the thread list.  If thread 2 was re-resumed, we
4777      ignore this event.  If we find no thread resumed, then we cancel
4778      the synchronous command show "no unwaited-for " to the user.  */
4779   update_thread_list ();
4780 
4781   ALL_NON_EXITED_THREADS (thread)
4782     {
4783       if (thread->executing
4784 	  || thread->suspend.waitstatus_pending_p)
4785 	{
4786 	  /* There were no unwaited-for children left in the target at
4787 	     some point, but there are now.  Just ignore.  */
4788 	  if (debug_infrun)
4789 	    fprintf_unfiltered (gdb_stdlog,
4790 				"infrun: TARGET_WAITKIND_NO_RESUMED "
4791 				"(ignoring: found resumed)\n");
4792 	  prepare_to_wait (ecs);
4793 	  return 1;
4794 	}
4795     }
4796 
4797   /* Note however that we may find no resumed thread because the whole
4798      process exited meanwhile (thus updating the thread list results
4799      in an empty thread list).  In this case we know we'll be getting
4800      a process exit event shortly.  */
4801   ALL_INFERIORS (inf)
4802     {
4803       if (inf->pid == 0)
4804 	continue;
4805 
4806       thread = any_live_thread_of_process (inf->pid);
4807       if (thread == NULL)
4808 	{
4809 	  if (debug_infrun)
4810 	    fprintf_unfiltered (gdb_stdlog,
4811 				"infrun: TARGET_WAITKIND_NO_RESUMED "
4812 				"(expect process exit)\n");
4813 	  prepare_to_wait (ecs);
4814 	  return 1;
4815 	}
4816     }
4817 
4818   /* Go ahead and report the event.  */
4819   return 0;
4820 }
4821 
4822 /* Given an execution control state that has been freshly filled in by
4823    an event from the inferior, figure out what it means and take
4824    appropriate action.
4825 
4826    The alternatives are:
4827 
4828    1) stop_waiting and return; to really stop and return to the
4829    debugger.
4830 
4831    2) keep_going and return; to wait for the next event (set
4832    ecs->event_thread->stepping_over_breakpoint to 1 to single step
4833    once).  */
4834 
4835 static void
4836 handle_inferior_event_1 (struct execution_control_state *ecs)
4837 {
4838   enum stop_kind stop_soon;
4839 
4840   if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4841     {
4842       /* We had an event in the inferior, but we are not interested in
4843 	 handling it at this level.  The lower layers have already
4844 	 done what needs to be done, if anything.
4845 
4846 	 One of the possible circumstances for this is when the
4847 	 inferior produces output for the console.  The inferior has
4848 	 not stopped, and we are ignoring the event.  Another possible
4849 	 circumstance is any event which the lower level knows will be
4850 	 reported multiple times without an intervening resume.  */
4851       if (debug_infrun)
4852 	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4853       prepare_to_wait (ecs);
4854       return;
4855     }
4856 
4857   if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4858     {
4859       if (debug_infrun)
4860 	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4861       prepare_to_wait (ecs);
4862       return;
4863     }
4864 
4865   if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4866       && handle_no_resumed (ecs))
4867     return;
4868 
4869   /* Cache the last pid/waitstatus.  */
4870   set_last_target_status (ecs->ptid, ecs->ws);
4871 
4872   /* Always clear state belonging to the previous time we stopped.  */
4873   stop_stack_dummy = STOP_NONE;
4874 
4875   if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4876     {
4877       /* No unwaited-for children left.  IOW, all resumed children
4878 	 have exited.  */
4879       if (debug_infrun)
4880 	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4881 
4882       stop_print_frame = 0;
4883       stop_waiting (ecs);
4884       return;
4885     }
4886 
4887   if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4888       && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4889     {
4890       ecs->event_thread = find_thread_ptid (ecs->ptid);
4891       /* If it's a new thread, add it to the thread database.  */
4892       if (ecs->event_thread == NULL)
4893 	ecs->event_thread = add_thread (ecs->ptid);
4894 
4895       /* Disable range stepping.  If the next step request could use a
4896 	 range, this will be end up re-enabled then.  */
4897       ecs->event_thread->control.may_range_step = 0;
4898     }
4899 
4900   /* Dependent on valid ECS->EVENT_THREAD.  */
4901   adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4902 
4903   /* Dependent on the current PC value modified by adjust_pc_after_break.  */
4904   reinit_frame_cache ();
4905 
4906   breakpoint_retire_moribund ();
4907 
4908   /* First, distinguish signals caused by the debugger from signals
4909      that have to do with the program's own actions.  Note that
4910      breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4911      on the operating system version.  Here we detect when a SIGILL or
4912      SIGEMT is really a breakpoint and change it to SIGTRAP.  We do
4913      something similar for SIGSEGV, since a SIGSEGV will be generated
4914      when we're trying to execute a breakpoint instruction on a
4915      non-executable stack.  This happens for call dummy breakpoints
4916      for architectures like SPARC that place call dummies on the
4917      stack.  */
4918   if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4919       && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4920 	  || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4921 	  || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4922     {
4923       struct regcache *regcache = get_thread_regcache (ecs->ptid);
4924 
4925       if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4926 				      regcache_read_pc (regcache)))
4927 	{
4928 	  if (debug_infrun)
4929 	    fprintf_unfiltered (gdb_stdlog,
4930 				"infrun: Treating signal as SIGTRAP\n");
4931 	  ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4932 	}
4933     }
4934 
4935   /* Mark the non-executing threads accordingly.  In all-stop, all
4936      threads of all processes are stopped when we get any event
4937      reported.  In non-stop mode, only the event thread stops.  */
4938   {
4939     ptid_t mark_ptid;
4940 
4941     if (!target_is_non_stop_p ())
4942       mark_ptid = minus_one_ptid;
4943     else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4944 	     || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4945       {
4946 	/* If we're handling a process exit in non-stop mode, even
4947 	   though threads haven't been deleted yet, one would think
4948 	   that there is nothing to do, as threads of the dead process
4949 	   will be soon deleted, and threads of any other process were
4950 	   left running.  However, on some targets, threads survive a
4951 	   process exit event.  E.g., for the "checkpoint" command,
4952 	   when the current checkpoint/fork exits, linux-fork.c
4953 	   automatically switches to another fork from within
4954 	   target_mourn_inferior, by associating the same
4955 	   inferior/thread to another fork.  We haven't mourned yet at
4956 	   this point, but we must mark any threads left in the
4957 	   process as not-executing so that finish_thread_state marks
4958 	   them stopped (in the user's perspective) if/when we present
4959 	   the stop to the user.  */
4960 	mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4961       }
4962     else
4963       mark_ptid = ecs->ptid;
4964 
4965     set_executing (mark_ptid, 0);
4966 
4967     /* Likewise the resumed flag.  */
4968     set_resumed (mark_ptid, 0);
4969   }
4970 
4971   switch (ecs->ws.kind)
4972     {
4973     case TARGET_WAITKIND_LOADED:
4974       if (debug_infrun)
4975         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4976       if (!ptid_equal (ecs->ptid, inferior_ptid))
4977 	context_switch (ecs->ptid);
4978       /* Ignore gracefully during startup of the inferior, as it might
4979          be the shell which has just loaded some objects, otherwise
4980          add the symbols for the newly loaded objects.  Also ignore at
4981          the beginning of an attach or remote session; we will query
4982          the full list of libraries once the connection is
4983          established.  */
4984 
4985       stop_soon = get_inferior_stop_soon (ecs->ptid);
4986       if (stop_soon == NO_STOP_QUIETLY)
4987 	{
4988 	  struct regcache *regcache;
4989 
4990 	  regcache = get_thread_regcache (ecs->ptid);
4991 
4992 	  handle_solib_event ();
4993 
4994 	  ecs->event_thread->control.stop_bpstat
4995 	    = bpstat_stop_status (get_regcache_aspace (regcache),
4996 				  stop_pc, ecs->ptid, &ecs->ws);
4997 
4998 	  if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4999 	    {
5000 	      /* A catchpoint triggered.  */
5001 	      process_event_stop_test (ecs);
5002 	      return;
5003 	    }
5004 
5005 	  /* If requested, stop when the dynamic linker notifies
5006 	     gdb of events.  This allows the user to get control
5007 	     and place breakpoints in initializer routines for
5008 	     dynamically loaded objects (among other things).  */
5009 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5010 	  if (stop_on_solib_events)
5011 	    {
5012 	      /* Make sure we print "Stopped due to solib-event" in
5013 		 normal_stop.  */
5014 	      stop_print_frame = 1;
5015 
5016 	      stop_waiting (ecs);
5017 	      return;
5018 	    }
5019 	}
5020 
5021       /* If we are skipping through a shell, or through shared library
5022 	 loading that we aren't interested in, resume the program.  If
5023 	 we're running the program normally, also resume.  */
5024       if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5025 	{
5026 	  /* Loading of shared libraries might have changed breakpoint
5027 	     addresses.  Make sure new breakpoints are inserted.  */
5028 	  if (stop_soon == NO_STOP_QUIETLY)
5029 	    insert_breakpoints ();
5030 	  resume (GDB_SIGNAL_0);
5031 	  prepare_to_wait (ecs);
5032 	  return;
5033 	}
5034 
5035       /* But stop if we're attaching or setting up a remote
5036 	 connection.  */
5037       if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5038 	  || stop_soon == STOP_QUIETLY_REMOTE)
5039 	{
5040 	  if (debug_infrun)
5041 	    fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5042 	  stop_waiting (ecs);
5043 	  return;
5044 	}
5045 
5046       internal_error (__FILE__, __LINE__,
5047 		      _("unhandled stop_soon: %d"), (int) stop_soon);
5048 
5049     case TARGET_WAITKIND_SPURIOUS:
5050       if (debug_infrun)
5051         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5052       if (!ptid_equal (ecs->ptid, inferior_ptid))
5053 	context_switch (ecs->ptid);
5054       resume (GDB_SIGNAL_0);
5055       prepare_to_wait (ecs);
5056       return;
5057 
5058     case TARGET_WAITKIND_THREAD_CREATED:
5059       if (debug_infrun)
5060         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5061       if (!ptid_equal (ecs->ptid, inferior_ptid))
5062 	context_switch (ecs->ptid);
5063       if (!switch_back_to_stepped_thread (ecs))
5064 	keep_going (ecs);
5065       return;
5066 
5067     case TARGET_WAITKIND_EXITED:
5068     case TARGET_WAITKIND_SIGNALLED:
5069       if (debug_infrun)
5070 	{
5071 	  if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5072 	    fprintf_unfiltered (gdb_stdlog,
5073 				"infrun: TARGET_WAITKIND_EXITED\n");
5074 	  else
5075 	    fprintf_unfiltered (gdb_stdlog,
5076 				"infrun: TARGET_WAITKIND_SIGNALLED\n");
5077 	}
5078 
5079       inferior_ptid = ecs->ptid;
5080       set_current_inferior (find_inferior_ptid (ecs->ptid));
5081       set_current_program_space (current_inferior ()->pspace);
5082       handle_vfork_child_exec_or_exit (0);
5083       target_terminal_ours ();	/* Must do this before mourn anyway.  */
5084 
5085       /* Clearing any previous state of convenience variables.  */
5086       clear_exit_convenience_vars ();
5087 
5088       if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5089 	{
5090 	  /* Record the exit code in the convenience variable $_exitcode, so
5091 	     that the user can inspect this again later.  */
5092 	  set_internalvar_integer (lookup_internalvar ("_exitcode"),
5093 				   (LONGEST) ecs->ws.value.integer);
5094 
5095 	  /* Also record this in the inferior itself.  */
5096 	  current_inferior ()->has_exit_code = 1;
5097 	  current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5098 
5099 	  /* Support the --return-child-result option.  */
5100 	  return_child_result_value = ecs->ws.value.integer;
5101 
5102 	  observer_notify_exited (ecs->ws.value.integer);
5103 	}
5104       else
5105 	{
5106 	  struct regcache *regcache = get_thread_regcache (ecs->ptid);
5107 	  struct gdbarch *gdbarch = get_regcache_arch (regcache);
5108 
5109 	  if (gdbarch_gdb_signal_to_target_p (gdbarch))
5110 	    {
5111 	      /* Set the value of the internal variable $_exitsignal,
5112 		 which holds the signal uncaught by the inferior.  */
5113 	      set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5114 				       gdbarch_gdb_signal_to_target (gdbarch,
5115 							  ecs->ws.value.sig));
5116 	    }
5117 	  else
5118 	    {
5119 	      /* We don't have access to the target's method used for
5120 		 converting between signal numbers (GDB's internal
5121 		 representation <-> target's representation).
5122 		 Therefore, we cannot do a good job at displaying this
5123 		 information to the user.  It's better to just warn
5124 		 her about it (if infrun debugging is enabled), and
5125 		 give up.  */
5126 	      if (debug_infrun)
5127 		fprintf_filtered (gdb_stdlog, _("\
5128 Cannot fill $_exitsignal with the correct signal number.\n"));
5129 	    }
5130 
5131 	  observer_notify_signal_exited (ecs->ws.value.sig);
5132 	}
5133 
5134       gdb_flush (gdb_stdout);
5135       target_mourn_inferior ();
5136       stop_print_frame = 0;
5137       stop_waiting (ecs);
5138       return;
5139 
5140       /* The following are the only cases in which we keep going;
5141          the above cases end in a continue or goto.  */
5142     case TARGET_WAITKIND_FORKED:
5143     case TARGET_WAITKIND_VFORKED:
5144       if (debug_infrun)
5145 	{
5146 	  if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5147 	    fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5148 	  else
5149 	    fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5150 	}
5151 
5152       /* Check whether the inferior is displaced stepping.  */
5153       {
5154 	struct regcache *regcache = get_thread_regcache (ecs->ptid);
5155 	struct gdbarch *gdbarch = get_regcache_arch (regcache);
5156 
5157 	/* If checking displaced stepping is supported, and thread
5158 	   ecs->ptid is displaced stepping.  */
5159 	if (displaced_step_in_progress_thread (ecs->ptid))
5160 	  {
5161 	    struct inferior *parent_inf
5162 	      = find_inferior_ptid (ecs->ptid);
5163 	    struct regcache *child_regcache;
5164 	    CORE_ADDR parent_pc;
5165 
5166 	    /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5167 	       indicating that the displaced stepping of syscall instruction
5168 	       has been done.  Perform cleanup for parent process here.  Note
5169 	       that this operation also cleans up the child process for vfork,
5170 	       because their pages are shared.  */
5171 	    displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5172 	    /* Start a new step-over in another thread if there's one
5173 	       that needs it.  */
5174 	    start_step_over ();
5175 
5176 	    if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5177 	      {
5178 		struct displaced_step_inferior_state *displaced
5179 		  = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5180 
5181 		/* Restore scratch pad for child process.  */
5182 		displaced_step_restore (displaced, ecs->ws.value.related_pid);
5183 	      }
5184 
5185 	    /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5186 	       the child's PC is also within the scratchpad.  Set the child's PC
5187 	       to the parent's PC value, which has already been fixed up.
5188 	       FIXME: we use the parent's aspace here, although we're touching
5189 	       the child, because the child hasn't been added to the inferior
5190 	       list yet at this point.  */
5191 
5192 	    child_regcache
5193 	      = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5194 						 gdbarch,
5195 						 parent_inf->aspace);
5196 	    /* Read PC value of parent process.  */
5197 	    parent_pc = regcache_read_pc (regcache);
5198 
5199 	    if (debug_displaced)
5200 	      fprintf_unfiltered (gdb_stdlog,
5201 				  "displaced: write child pc from %s to %s\n",
5202 				  paddress (gdbarch,
5203 					    regcache_read_pc (child_regcache)),
5204 				  paddress (gdbarch, parent_pc));
5205 
5206 	    regcache_write_pc (child_regcache, parent_pc);
5207 	  }
5208       }
5209 
5210       if (!ptid_equal (ecs->ptid, inferior_ptid))
5211 	context_switch (ecs->ptid);
5212 
5213       /* Immediately detach breakpoints from the child before there's
5214 	 any chance of letting the user delete breakpoints from the
5215 	 breakpoint lists.  If we don't do this early, it's easy to
5216 	 leave left over traps in the child, vis: "break foo; catch
5217 	 fork; c; <fork>; del; c; <child calls foo>".  We only follow
5218 	 the fork on the last `continue', and by that time the
5219 	 breakpoint at "foo" is long gone from the breakpoint table.
5220 	 If we vforked, then we don't need to unpatch here, since both
5221 	 parent and child are sharing the same memory pages; we'll
5222 	 need to unpatch at follow/detach time instead to be certain
5223 	 that new breakpoints added between catchpoint hit time and
5224 	 vfork follow are detached.  */
5225       if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5226 	{
5227 	  /* This won't actually modify the breakpoint list, but will
5228 	     physically remove the breakpoints from the child.  */
5229 	  detach_breakpoints (ecs->ws.value.related_pid);
5230 	}
5231 
5232       delete_just_stopped_threads_single_step_breakpoints ();
5233 
5234       /* In case the event is caught by a catchpoint, remember that
5235 	 the event is to be followed at the next resume of the thread,
5236 	 and not immediately.  */
5237       ecs->event_thread->pending_follow = ecs->ws;
5238 
5239       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5240 
5241       ecs->event_thread->control.stop_bpstat
5242 	= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5243 			      stop_pc, ecs->ptid, &ecs->ws);
5244 
5245       /* If no catchpoint triggered for this, then keep going.  Note
5246 	 that we're interested in knowing the bpstat actually causes a
5247 	 stop, not just if it may explain the signal.  Software
5248 	 watchpoints, for example, always appear in the bpstat.  */
5249       if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5250 	{
5251 	  ptid_t parent;
5252 	  ptid_t child;
5253 	  int should_resume;
5254 	  int follow_child
5255 	    = (follow_fork_mode_string == follow_fork_mode_child);
5256 
5257 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5258 
5259 	  should_resume = follow_fork ();
5260 
5261 	  parent = ecs->ptid;
5262 	  child = ecs->ws.value.related_pid;
5263 
5264 	  /* At this point, the parent is marked running, and the
5265 	     child is marked stopped.  */
5266 
5267 	  /* If not resuming the parent, mark it stopped.  */
5268 	  if (follow_child && !detach_fork && !non_stop && !sched_multi)
5269 	    set_running (parent, 0);
5270 
5271 	  /* If resuming the child, mark it running.  */
5272 	  if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5273 	    set_running (child, 1);
5274 
5275 	  /* In non-stop mode, also resume the other branch.  */
5276 	  if (!detach_fork && (non_stop
5277 			       || (sched_multi && target_is_non_stop_p ())))
5278 	    {
5279 	      if (follow_child)
5280 		switch_to_thread (parent);
5281 	      else
5282 		switch_to_thread (child);
5283 
5284 	      ecs->event_thread = inferior_thread ();
5285 	      ecs->ptid = inferior_ptid;
5286 	      keep_going (ecs);
5287 	    }
5288 
5289 	  if (follow_child)
5290 	    switch_to_thread (child);
5291 	  else
5292 	    switch_to_thread (parent);
5293 
5294 	  ecs->event_thread = inferior_thread ();
5295 	  ecs->ptid = inferior_ptid;
5296 
5297 	  if (should_resume)
5298 	    keep_going (ecs);
5299 	  else
5300 	    stop_waiting (ecs);
5301 	  return;
5302 	}
5303       process_event_stop_test (ecs);
5304       return;
5305 
5306     case TARGET_WAITKIND_VFORK_DONE:
5307       /* Done with the shared memory region.  Re-insert breakpoints in
5308 	 the parent, and keep going.  */
5309 
5310       if (debug_infrun)
5311 	fprintf_unfiltered (gdb_stdlog,
5312 			    "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5313 
5314       if (!ptid_equal (ecs->ptid, inferior_ptid))
5315 	context_switch (ecs->ptid);
5316 
5317       current_inferior ()->waiting_for_vfork_done = 0;
5318       current_inferior ()->pspace->breakpoints_not_allowed = 0;
5319       /* This also takes care of reinserting breakpoints in the
5320 	 previously locked inferior.  */
5321       keep_going (ecs);
5322       return;
5323 
5324     case TARGET_WAITKIND_EXECD:
5325       if (debug_infrun)
5326         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5327 
5328       if (!ptid_equal (ecs->ptid, inferior_ptid))
5329 	context_switch (ecs->ptid);
5330 
5331       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5332 
5333       /* Do whatever is necessary to the parent branch of the vfork.  */
5334       handle_vfork_child_exec_or_exit (1);
5335 
5336       /* This causes the eventpoints and symbol table to be reset.
5337          Must do this now, before trying to determine whether to
5338          stop.  */
5339       follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5340 
5341       /* In follow_exec we may have deleted the original thread and
5342 	 created a new one.  Make sure that the event thread is the
5343 	 execd thread for that case (this is a nop otherwise).  */
5344       ecs->event_thread = inferior_thread ();
5345 
5346       ecs->event_thread->control.stop_bpstat
5347 	= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5348 			      stop_pc, ecs->ptid, &ecs->ws);
5349 
5350       /* Note that this may be referenced from inside
5351 	 bpstat_stop_status above, through inferior_has_execd.  */
5352       xfree (ecs->ws.value.execd_pathname);
5353       ecs->ws.value.execd_pathname = NULL;
5354 
5355       /* If no catchpoint triggered for this, then keep going.  */
5356       if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5357 	{
5358 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5359 	  keep_going (ecs);
5360 	  return;
5361 	}
5362       process_event_stop_test (ecs);
5363       return;
5364 
5365       /* Be careful not to try to gather much state about a thread
5366          that's in a syscall.  It's frequently a losing proposition.  */
5367     case TARGET_WAITKIND_SYSCALL_ENTRY:
5368       if (debug_infrun)
5369         fprintf_unfiltered (gdb_stdlog,
5370 			    "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5371       /* Getting the current syscall number.  */
5372       if (handle_syscall_event (ecs) == 0)
5373 	process_event_stop_test (ecs);
5374       return;
5375 
5376       /* Before examining the threads further, step this thread to
5377          get it entirely out of the syscall.  (We get notice of the
5378          event when the thread is just on the verge of exiting a
5379          syscall.  Stepping one instruction seems to get it back
5380          into user code.)  */
5381     case TARGET_WAITKIND_SYSCALL_RETURN:
5382       if (debug_infrun)
5383         fprintf_unfiltered (gdb_stdlog,
5384 			    "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5385       if (handle_syscall_event (ecs) == 0)
5386 	process_event_stop_test (ecs);
5387       return;
5388 
5389     case TARGET_WAITKIND_STOPPED:
5390       if (debug_infrun)
5391         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5392       ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5393       handle_signal_stop (ecs);
5394       return;
5395 
5396     case TARGET_WAITKIND_NO_HISTORY:
5397       if (debug_infrun)
5398         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5399       /* Reverse execution: target ran out of history info.  */
5400 
5401       /* Switch to the stopped thread.  */
5402       if (!ptid_equal (ecs->ptid, inferior_ptid))
5403 	context_switch (ecs->ptid);
5404       if (debug_infrun)
5405 	fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5406 
5407       delete_just_stopped_threads_single_step_breakpoints ();
5408       stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5409       observer_notify_no_history ();
5410       stop_waiting (ecs);
5411       return;
5412     }
5413 }
5414 
5415 /* A wrapper around handle_inferior_event_1, which also makes sure
5416    that all temporary struct value objects that were created during
5417    the handling of the event get deleted at the end.  */
5418 
5419 static void
5420 handle_inferior_event (struct execution_control_state *ecs)
5421 {
5422   struct value *mark = value_mark ();
5423 
5424   handle_inferior_event_1 (ecs);
5425   /* Purge all temporary values created during the event handling,
5426      as it could be a long time before we return to the command level
5427      where such values would otherwise be purged.  */
5428   value_free_to_mark (mark);
5429 }
5430 
5431 /* Restart threads back to what they were trying to do back when we
5432    paused them for an in-line step-over.  The EVENT_THREAD thread is
5433    ignored.  */
5434 
5435 static void
5436 restart_threads (struct thread_info *event_thread)
5437 {
5438   struct thread_info *tp;
5439 
5440   /* In case the instruction just stepped spawned a new thread.  */
5441   update_thread_list ();
5442 
5443   ALL_NON_EXITED_THREADS (tp)
5444     {
5445       if (tp == event_thread)
5446 	{
5447 	  if (debug_infrun)
5448 	    fprintf_unfiltered (gdb_stdlog,
5449 				"infrun: restart threads: "
5450 				"[%s] is event thread\n",
5451 				target_pid_to_str (tp->ptid));
5452 	  continue;
5453 	}
5454 
5455       if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5456 	{
5457 	  if (debug_infrun)
5458 	    fprintf_unfiltered (gdb_stdlog,
5459 				"infrun: restart threads: "
5460 				"[%s] not meant to be running\n",
5461 				target_pid_to_str (tp->ptid));
5462 	  continue;
5463 	}
5464 
5465       if (tp->resumed)
5466 	{
5467 	  if (debug_infrun)
5468 	    fprintf_unfiltered (gdb_stdlog,
5469 				"infrun: restart threads: [%s] resumed\n",
5470 				target_pid_to_str (tp->ptid));
5471 	  gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5472 	  continue;
5473 	}
5474 
5475       if (thread_is_in_step_over_chain (tp))
5476 	{
5477 	  if (debug_infrun)
5478 	    fprintf_unfiltered (gdb_stdlog,
5479 				"infrun: restart threads: "
5480 				"[%s] needs step-over\n",
5481 				target_pid_to_str (tp->ptid));
5482 	  gdb_assert (!tp->resumed);
5483 	  continue;
5484 	}
5485 
5486 
5487       if (tp->suspend.waitstatus_pending_p)
5488 	{
5489 	  if (debug_infrun)
5490 	    fprintf_unfiltered (gdb_stdlog,
5491 				"infrun: restart threads: "
5492 				"[%s] has pending status\n",
5493 				target_pid_to_str (tp->ptid));
5494 	  tp->resumed = 1;
5495 	  continue;
5496 	}
5497 
5498       /* If some thread needs to start a step-over at this point, it
5499 	 should still be in the step-over queue, and thus skipped
5500 	 above.  */
5501       if (thread_still_needs_step_over (tp))
5502 	{
5503 	  internal_error (__FILE__, __LINE__,
5504 			  "thread [%s] needs a step-over, but not in "
5505 			  "step-over queue\n",
5506 			  target_pid_to_str (tp->ptid));
5507 	}
5508 
5509       if (currently_stepping (tp))
5510 	{
5511 	  if (debug_infrun)
5512 	    fprintf_unfiltered (gdb_stdlog,
5513 				"infrun: restart threads: [%s] was stepping\n",
5514 				target_pid_to_str (tp->ptid));
5515 	  keep_going_stepped_thread (tp);
5516 	}
5517       else
5518 	{
5519 	  struct execution_control_state ecss;
5520 	  struct execution_control_state *ecs = &ecss;
5521 
5522 	  if (debug_infrun)
5523 	    fprintf_unfiltered (gdb_stdlog,
5524 				"infrun: restart threads: [%s] continuing\n",
5525 				target_pid_to_str (tp->ptid));
5526 	  reset_ecs (ecs, tp);
5527 	  switch_to_thread (tp->ptid);
5528 	  keep_going_pass_signal (ecs);
5529 	}
5530     }
5531 }
5532 
5533 /* Callback for iterate_over_threads.  Find a resumed thread that has
5534    a pending waitstatus.  */
5535 
5536 static int
5537 resumed_thread_with_pending_status (struct thread_info *tp,
5538 				    void *arg)
5539 {
5540   return (tp->resumed
5541 	  && tp->suspend.waitstatus_pending_p);
5542 }
5543 
5544 /* Called when we get an event that may finish an in-line or
5545    out-of-line (displaced stepping) step-over started previously.
5546    Return true if the event is processed and we should go back to the
5547    event loop; false if the caller should continue processing the
5548    event.  */
5549 
5550 static int
5551 finish_step_over (struct execution_control_state *ecs)
5552 {
5553   int had_step_over_info;
5554 
5555   displaced_step_fixup (ecs->ptid,
5556 			ecs->event_thread->suspend.stop_signal);
5557 
5558   had_step_over_info = step_over_info_valid_p ();
5559 
5560   if (had_step_over_info)
5561     {
5562       /* If we're stepping over a breakpoint with all threads locked,
5563 	 then only the thread that was stepped should be reporting
5564 	 back an event.  */
5565       gdb_assert (ecs->event_thread->control.trap_expected);
5566 
5567       if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5568 	clear_step_over_info ();
5569     }
5570 
5571   if (!target_is_non_stop_p ())
5572     return 0;
5573 
5574   /* Start a new step-over in another thread if there's one that
5575      needs it.  */
5576   start_step_over ();
5577 
5578   /* If we were stepping over a breakpoint before, and haven't started
5579      a new in-line step-over sequence, then restart all other threads
5580      (except the event thread).  We can't do this in all-stop, as then
5581      e.g., we wouldn't be able to issue any other remote packet until
5582      these other threads stop.  */
5583   if (had_step_over_info && !step_over_info_valid_p ())
5584     {
5585       struct thread_info *pending;
5586 
5587       /* If we only have threads with pending statuses, the restart
5588 	 below won't restart any thread and so nothing re-inserts the
5589 	 breakpoint we just stepped over.  But we need it inserted
5590 	 when we later process the pending events, otherwise if
5591 	 another thread has a pending event for this breakpoint too,
5592 	 we'd discard its event (because the breakpoint that
5593 	 originally caused the event was no longer inserted).  */
5594       context_switch (ecs->ptid);
5595       insert_breakpoints ();
5596 
5597       restart_threads (ecs->event_thread);
5598 
5599       /* If we have events pending, go through handle_inferior_event
5600 	 again, picking up a pending event at random.  This avoids
5601 	 thread starvation.  */
5602 
5603       /* But not if we just stepped over a watchpoint in order to let
5604 	 the instruction execute so we can evaluate its expression.
5605 	 The set of watchpoints that triggered is recorded in the
5606 	 breakpoint objects themselves (see bp->watchpoint_triggered).
5607 	 If we processed another event first, that other event could
5608 	 clobber this info.  */
5609       if (ecs->event_thread->stepping_over_watchpoint)
5610 	return 0;
5611 
5612       pending = iterate_over_threads (resumed_thread_with_pending_status,
5613 				      NULL);
5614       if (pending != NULL)
5615 	{
5616 	  struct thread_info *tp = ecs->event_thread;
5617 	  struct regcache *regcache;
5618 
5619 	  if (debug_infrun)
5620 	    {
5621 	      fprintf_unfiltered (gdb_stdlog,
5622 				  "infrun: found resumed threads with "
5623 				  "pending events, saving status\n");
5624 	    }
5625 
5626 	  gdb_assert (pending != tp);
5627 
5628 	  /* Record the event thread's event for later.  */
5629 	  save_waitstatus (tp, &ecs->ws);
5630 	  /* This was cleared early, by handle_inferior_event.  Set it
5631 	     so this pending event is considered by
5632 	     do_target_wait.  */
5633 	  tp->resumed = 1;
5634 
5635 	  gdb_assert (!tp->executing);
5636 
5637 	  regcache = get_thread_regcache (tp->ptid);
5638 	  tp->suspend.stop_pc = regcache_read_pc (regcache);
5639 
5640 	  if (debug_infrun)
5641 	    {
5642 	      fprintf_unfiltered (gdb_stdlog,
5643 				  "infrun: saved stop_pc=%s for %s "
5644 				  "(currently_stepping=%d)\n",
5645 				  paddress (target_gdbarch (),
5646 					    tp->suspend.stop_pc),
5647 				  target_pid_to_str (tp->ptid),
5648 				  currently_stepping (tp));
5649 	    }
5650 
5651 	  /* This in-line step-over finished; clear this so we won't
5652 	     start a new one.  This is what handle_signal_stop would
5653 	     do, if we returned false.  */
5654 	  tp->stepping_over_breakpoint = 0;
5655 
5656 	  /* Wake up the event loop again.  */
5657 	  mark_async_event_handler (infrun_async_inferior_event_token);
5658 
5659 	  prepare_to_wait (ecs);
5660 	  return 1;
5661 	}
5662     }
5663 
5664   return 0;
5665 }
5666 
5667 /* Come here when the program has stopped with a signal.  */
5668 
5669 static void
5670 handle_signal_stop (struct execution_control_state *ecs)
5671 {
5672   struct frame_info *frame;
5673   struct gdbarch *gdbarch;
5674   int stopped_by_watchpoint;
5675   enum stop_kind stop_soon;
5676   int random_signal;
5677 
5678   gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5679 
5680   /* Do we need to clean up the state of a thread that has
5681      completed a displaced single-step?  (Doing so usually affects
5682      the PC, so do it here, before we set stop_pc.)  */
5683   if (finish_step_over (ecs))
5684     return;
5685 
5686   /* If we either finished a single-step or hit a breakpoint, but
5687      the user wanted this thread to be stopped, pretend we got a
5688      SIG0 (generic unsignaled stop).  */
5689   if (ecs->event_thread->stop_requested
5690       && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5691     ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5692 
5693   stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5694 
5695   if (debug_infrun)
5696     {
5697       struct regcache *regcache = get_thread_regcache (ecs->ptid);
5698       struct gdbarch *gdbarch = get_regcache_arch (regcache);
5699       struct cleanup *old_chain = save_inferior_ptid ();
5700 
5701       inferior_ptid = ecs->ptid;
5702 
5703       fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5704                           paddress (gdbarch, stop_pc));
5705       if (target_stopped_by_watchpoint ())
5706 	{
5707           CORE_ADDR addr;
5708 
5709 	  fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5710 
5711           if (target_stopped_data_address (&current_target, &addr))
5712             fprintf_unfiltered (gdb_stdlog,
5713                                 "infrun: stopped data address = %s\n",
5714                                 paddress (gdbarch, addr));
5715           else
5716             fprintf_unfiltered (gdb_stdlog,
5717                                 "infrun: (no data address available)\n");
5718 	}
5719 
5720       do_cleanups (old_chain);
5721     }
5722 
5723   /* This is originated from start_remote(), start_inferior() and
5724      shared libraries hook functions.  */
5725   stop_soon = get_inferior_stop_soon (ecs->ptid);
5726   if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5727     {
5728       if (!ptid_equal (ecs->ptid, inferior_ptid))
5729 	context_switch (ecs->ptid);
5730       if (debug_infrun)
5731 	fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5732       stop_print_frame = 1;
5733       stop_waiting (ecs);
5734       return;
5735     }
5736 
5737   /* This originates from attach_command().  We need to overwrite
5738      the stop_signal here, because some kernels don't ignore a
5739      SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5740      See more comments in inferior.h.  On the other hand, if we
5741      get a non-SIGSTOP, report it to the user - assume the backend
5742      will handle the SIGSTOP if it should show up later.
5743 
5744      Also consider that the attach is complete when we see a
5745      SIGTRAP.  Some systems (e.g. Windows), and stubs supporting
5746      target extended-remote report it instead of a SIGSTOP
5747      (e.g. gdbserver).  We already rely on SIGTRAP being our
5748      signal, so this is no exception.
5749 
5750      Also consider that the attach is complete when we see a
5751      GDB_SIGNAL_0.  In non-stop mode, GDB will explicitly tell
5752      the target to stop all threads of the inferior, in case the
5753      low level attach operation doesn't stop them implicitly.  If
5754      they weren't stopped implicitly, then the stub will report a
5755      GDB_SIGNAL_0, meaning: stopped for no particular reason
5756      other than GDB's request.  */
5757   if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5758       && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5759 	  || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5760 	  || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5761     {
5762       stop_print_frame = 1;
5763       stop_waiting (ecs);
5764       ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5765       return;
5766     }
5767 
5768   /* See if something interesting happened to the non-current thread.  If
5769      so, then switch to that thread.  */
5770   if (!ptid_equal (ecs->ptid, inferior_ptid))
5771     {
5772       if (debug_infrun)
5773 	fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5774 
5775       context_switch (ecs->ptid);
5776 
5777       if (deprecated_context_hook)
5778 	deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5779     }
5780 
5781   /* At this point, get hold of the now-current thread's frame.  */
5782   frame = get_current_frame ();
5783   gdbarch = get_frame_arch (frame);
5784 
5785   /* Pull the single step breakpoints out of the target.  */
5786   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5787     {
5788       struct regcache *regcache;
5789       struct address_space *aspace;
5790       CORE_ADDR pc;
5791 
5792       regcache = get_thread_regcache (ecs->ptid);
5793       aspace = get_regcache_aspace (regcache);
5794       pc = regcache_read_pc (regcache);
5795 
5796       /* However, before doing so, if this single-step breakpoint was
5797 	 actually for another thread, set this thread up for moving
5798 	 past it.  */
5799       if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5800 						   aspace, pc))
5801 	{
5802 	  if (single_step_breakpoint_inserted_here_p (aspace, pc))
5803 	    {
5804 	      if (debug_infrun)
5805 		{
5806 		  fprintf_unfiltered (gdb_stdlog,
5807 				      "infrun: [%s] hit another thread's "
5808 				      "single-step breakpoint\n",
5809 				      target_pid_to_str (ecs->ptid));
5810 		}
5811 	      ecs->hit_singlestep_breakpoint = 1;
5812 	    }
5813 	}
5814       else
5815 	{
5816 	  if (debug_infrun)
5817 	    {
5818 	      fprintf_unfiltered (gdb_stdlog,
5819 				  "infrun: [%s] hit its "
5820 				  "single-step breakpoint\n",
5821 				  target_pid_to_str (ecs->ptid));
5822 	    }
5823 	}
5824     }
5825   delete_just_stopped_threads_single_step_breakpoints ();
5826 
5827   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5828       && ecs->event_thread->control.trap_expected
5829       && ecs->event_thread->stepping_over_watchpoint)
5830     stopped_by_watchpoint = 0;
5831   else
5832     stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5833 
5834   /* If necessary, step over this watchpoint.  We'll be back to display
5835      it in a moment.  */
5836   if (stopped_by_watchpoint
5837       && (target_have_steppable_watchpoint
5838 	  || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5839     {
5840       /* At this point, we are stopped at an instruction which has
5841          attempted to write to a piece of memory under control of
5842          a watchpoint.  The instruction hasn't actually executed
5843          yet.  If we were to evaluate the watchpoint expression
5844          now, we would get the old value, and therefore no change
5845          would seem to have occurred.
5846 
5847          In order to make watchpoints work `right', we really need
5848          to complete the memory write, and then evaluate the
5849          watchpoint expression.  We do this by single-stepping the
5850 	 target.
5851 
5852 	 It may not be necessary to disable the watchpoint to step over
5853 	 it.  For example, the PA can (with some kernel cooperation)
5854 	 single step over a watchpoint without disabling the watchpoint.
5855 
5856 	 It is far more common to need to disable a watchpoint to step
5857 	 the inferior over it.  If we have non-steppable watchpoints,
5858 	 we must disable the current watchpoint; it's simplest to
5859 	 disable all watchpoints.
5860 
5861 	 Any breakpoint at PC must also be stepped over -- if there's
5862 	 one, it will have already triggered before the watchpoint
5863 	 triggered, and we either already reported it to the user, or
5864 	 it didn't cause a stop and we called keep_going.  In either
5865 	 case, if there was a breakpoint at PC, we must be trying to
5866 	 step past it.  */
5867       ecs->event_thread->stepping_over_watchpoint = 1;
5868       keep_going (ecs);
5869       return;
5870     }
5871 
5872   ecs->event_thread->stepping_over_breakpoint = 0;
5873   ecs->event_thread->stepping_over_watchpoint = 0;
5874   bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5875   ecs->event_thread->control.stop_step = 0;
5876   stop_print_frame = 1;
5877   stopped_by_random_signal = 0;
5878 
5879   /* Hide inlined functions starting here, unless we just performed stepi or
5880      nexti.  After stepi and nexti, always show the innermost frame (not any
5881      inline function call sites).  */
5882   if (ecs->event_thread->control.step_range_end != 1)
5883     {
5884       struct address_space *aspace =
5885 	get_regcache_aspace (get_thread_regcache (ecs->ptid));
5886 
5887       /* skip_inline_frames is expensive, so we avoid it if we can
5888 	 determine that the address is one where functions cannot have
5889 	 been inlined.  This improves performance with inferiors that
5890 	 load a lot of shared libraries, because the solib event
5891 	 breakpoint is defined as the address of a function (i.e. not
5892 	 inline).  Note that we have to check the previous PC as well
5893 	 as the current one to catch cases when we have just
5894 	 single-stepped off a breakpoint prior to reinstating it.
5895 	 Note that we're assuming that the code we single-step to is
5896 	 not inline, but that's not definitive: there's nothing
5897 	 preventing the event breakpoint function from containing
5898 	 inlined code, and the single-step ending up there.  If the
5899 	 user had set a breakpoint on that inlined code, the missing
5900 	 skip_inline_frames call would break things.  Fortunately
5901 	 that's an extremely unlikely scenario.  */
5902       if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5903 	  && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5904 	       && ecs->event_thread->control.trap_expected
5905 	       && pc_at_non_inline_function (aspace,
5906 					     ecs->event_thread->prev_pc,
5907 					     &ecs->ws)))
5908 	{
5909 	  skip_inline_frames (ecs->ptid);
5910 
5911 	  /* Re-fetch current thread's frame in case that invalidated
5912 	     the frame cache.  */
5913 	  frame = get_current_frame ();
5914 	  gdbarch = get_frame_arch (frame);
5915 	}
5916     }
5917 
5918   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5919       && ecs->event_thread->control.trap_expected
5920       && gdbarch_single_step_through_delay_p (gdbarch)
5921       && currently_stepping (ecs->event_thread))
5922     {
5923       /* We're trying to step off a breakpoint.  Turns out that we're
5924 	 also on an instruction that needs to be stepped multiple
5925 	 times before it's been fully executing.  E.g., architectures
5926 	 with a delay slot.  It needs to be stepped twice, once for
5927 	 the instruction and once for the delay slot.  */
5928       int step_through_delay
5929 	= gdbarch_single_step_through_delay (gdbarch, frame);
5930 
5931       if (debug_infrun && step_through_delay)
5932 	fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5933       if (ecs->event_thread->control.step_range_end == 0
5934 	  && step_through_delay)
5935 	{
5936 	  /* The user issued a continue when stopped at a breakpoint.
5937 	     Set up for another trap and get out of here.  */
5938          ecs->event_thread->stepping_over_breakpoint = 1;
5939          keep_going (ecs);
5940          return;
5941 	}
5942       else if (step_through_delay)
5943 	{
5944 	  /* The user issued a step when stopped at a breakpoint.
5945 	     Maybe we should stop, maybe we should not - the delay
5946 	     slot *might* correspond to a line of source.  In any
5947 	     case, don't decide that here, just set
5948 	     ecs->stepping_over_breakpoint, making sure we
5949 	     single-step again before breakpoints are re-inserted.  */
5950 	  ecs->event_thread->stepping_over_breakpoint = 1;
5951 	}
5952     }
5953 
5954   /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5955      handles this event.  */
5956   ecs->event_thread->control.stop_bpstat
5957     = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5958 			  stop_pc, ecs->ptid, &ecs->ws);
5959 
5960   /* Following in case break condition called a
5961      function.  */
5962   stop_print_frame = 1;
5963 
5964   /* This is where we handle "moribund" watchpoints.  Unlike
5965      software breakpoints traps, hardware watchpoint traps are
5966      always distinguishable from random traps.  If no high-level
5967      watchpoint is associated with the reported stop data address
5968      anymore, then the bpstat does not explain the signal ---
5969      simply make sure to ignore it if `stopped_by_watchpoint' is
5970      set.  */
5971 
5972   if (debug_infrun
5973       && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5974       && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5975 				  GDB_SIGNAL_TRAP)
5976       && stopped_by_watchpoint)
5977     fprintf_unfiltered (gdb_stdlog,
5978 			"infrun: no user watchpoint explains "
5979 			"watchpoint SIGTRAP, ignoring\n");
5980 
5981   /* NOTE: cagney/2003-03-29: These checks for a random signal
5982      at one stage in the past included checks for an inferior
5983      function call's call dummy's return breakpoint.  The original
5984      comment, that went with the test, read:
5985 
5986      ``End of a stack dummy.  Some systems (e.g. Sony news) give
5987      another signal besides SIGTRAP, so check here as well as
5988      above.''
5989 
5990      If someone ever tries to get call dummys on a
5991      non-executable stack to work (where the target would stop
5992      with something like a SIGSEGV), then those tests might need
5993      to be re-instated.  Given, however, that the tests were only
5994      enabled when momentary breakpoints were not being used, I
5995      suspect that it won't be the case.
5996 
5997      NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5998      be necessary for call dummies on a non-executable stack on
5999      SPARC.  */
6000 
6001   /* See if the breakpoints module can explain the signal.  */
6002   random_signal
6003     = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6004 			       ecs->event_thread->suspend.stop_signal);
6005 
6006   /* Maybe this was a trap for a software breakpoint that has since
6007      been removed.  */
6008   if (random_signal && target_stopped_by_sw_breakpoint ())
6009     {
6010       if (program_breakpoint_here_p (gdbarch, stop_pc))
6011 	{
6012 	  struct regcache *regcache;
6013 	  int decr_pc;
6014 
6015 	  /* Re-adjust PC to what the program would see if GDB was not
6016 	     debugging it.  */
6017 	  regcache = get_thread_regcache (ecs->event_thread->ptid);
6018 	  decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6019 	  if (decr_pc != 0)
6020 	    {
6021 	      struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6022 
6023 	      if (record_full_is_used ())
6024 		record_full_gdb_operation_disable_set ();
6025 
6026 	      regcache_write_pc (regcache, stop_pc + decr_pc);
6027 
6028 	      do_cleanups (old_cleanups);
6029 	    }
6030 	}
6031       else
6032 	{
6033 	  /* A delayed software breakpoint event.  Ignore the trap.  */
6034 	  if (debug_infrun)
6035 	    fprintf_unfiltered (gdb_stdlog,
6036 				"infrun: delayed software breakpoint "
6037 				"trap, ignoring\n");
6038 	  random_signal = 0;
6039 	}
6040     }
6041 
6042   /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6043      has since been removed.  */
6044   if (random_signal && target_stopped_by_hw_breakpoint ())
6045     {
6046       /* A delayed hardware breakpoint event.  Ignore the trap.  */
6047       if (debug_infrun)
6048 	fprintf_unfiltered (gdb_stdlog,
6049 			    "infrun: delayed hardware breakpoint/watchpoint "
6050 			    "trap, ignoring\n");
6051       random_signal = 0;
6052     }
6053 
6054   /* If not, perhaps stepping/nexting can.  */
6055   if (random_signal)
6056     random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6057 		      && currently_stepping (ecs->event_thread));
6058 
6059   /* Perhaps the thread hit a single-step breakpoint of _another_
6060      thread.  Single-step breakpoints are transparent to the
6061      breakpoints module.  */
6062   if (random_signal)
6063     random_signal = !ecs->hit_singlestep_breakpoint;
6064 
6065   /* No?  Perhaps we got a moribund watchpoint.  */
6066   if (random_signal)
6067     random_signal = !stopped_by_watchpoint;
6068 
6069   /* For the program's own signals, act according to
6070      the signal handling tables.  */
6071 
6072   if (random_signal)
6073     {
6074       /* Signal not for debugging purposes.  */
6075       struct inferior *inf = find_inferior_ptid (ecs->ptid);
6076       enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6077 
6078       if (debug_infrun)
6079 	 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6080 			     gdb_signal_to_symbol_string (stop_signal));
6081 
6082       stopped_by_random_signal = 1;
6083 
6084       /* Always stop on signals if we're either just gaining control
6085 	 of the program, or the user explicitly requested this thread
6086 	 to remain stopped.  */
6087       if (stop_soon != NO_STOP_QUIETLY
6088 	  || ecs->event_thread->stop_requested
6089 	  || (!inf->detaching
6090 	      && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6091 	{
6092 	  stop_waiting (ecs);
6093 	  return;
6094 	}
6095 
6096       /* Notify observers the signal has "handle print" set.  Note we
6097 	 returned early above if stopping; normal_stop handles the
6098 	 printing in that case.  */
6099       if (signal_print[ecs->event_thread->suspend.stop_signal])
6100 	{
6101 	  /* The signal table tells us to print about this signal.  */
6102 	  target_terminal_ours_for_output ();
6103 	  observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6104 	  target_terminal_inferior ();
6105 	}
6106 
6107       /* Clear the signal if it should not be passed.  */
6108       if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6109 	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6110 
6111       if (ecs->event_thread->prev_pc == stop_pc
6112 	  && ecs->event_thread->control.trap_expected
6113 	  && ecs->event_thread->control.step_resume_breakpoint == NULL)
6114 	{
6115 	  int was_in_line;
6116 
6117 	  /* We were just starting a new sequence, attempting to
6118 	     single-step off of a breakpoint and expecting a SIGTRAP.
6119 	     Instead this signal arrives.  This signal will take us out
6120 	     of the stepping range so GDB needs to remember to, when
6121 	     the signal handler returns, resume stepping off that
6122 	     breakpoint.  */
6123 	  /* To simplify things, "continue" is forced to use the same
6124 	     code paths as single-step - set a breakpoint at the
6125 	     signal return address and then, once hit, step off that
6126 	     breakpoint.  */
6127           if (debug_infrun)
6128             fprintf_unfiltered (gdb_stdlog,
6129                                 "infrun: signal arrived while stepping over "
6130                                 "breakpoint\n");
6131 
6132 	  was_in_line = step_over_info_valid_p ();
6133 	  clear_step_over_info ();
6134 	  insert_hp_step_resume_breakpoint_at_frame (frame);
6135 	  ecs->event_thread->step_after_step_resume_breakpoint = 1;
6136 	  /* Reset trap_expected to ensure breakpoints are re-inserted.  */
6137 	  ecs->event_thread->control.trap_expected = 0;
6138 
6139 	  if (target_is_non_stop_p ())
6140 	    {
6141 	      /* Either "set non-stop" is "on", or the target is
6142 		 always in non-stop mode.  In this case, we have a bit
6143 		 more work to do.  Resume the current thread, and if
6144 		 we had paused all threads, restart them while the
6145 		 signal handler runs.  */
6146 	      keep_going (ecs);
6147 
6148 	      if (was_in_line)
6149 		{
6150 		  restart_threads (ecs->event_thread);
6151 		}
6152 	      else if (debug_infrun)
6153 		{
6154 		  fprintf_unfiltered (gdb_stdlog,
6155 				      "infrun: no need to restart threads\n");
6156 		}
6157 	      return;
6158 	    }
6159 
6160 	  /* If we were nexting/stepping some other thread, switch to
6161 	     it, so that we don't continue it, losing control.  */
6162 	  if (!switch_back_to_stepped_thread (ecs))
6163 	    keep_going (ecs);
6164 	  return;
6165 	}
6166 
6167       if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6168 	  && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6169 	      || ecs->event_thread->control.step_range_end == 1)
6170 	  && frame_id_eq (get_stack_frame_id (frame),
6171 			  ecs->event_thread->control.step_stack_frame_id)
6172 	  && ecs->event_thread->control.step_resume_breakpoint == NULL)
6173 	{
6174 	  /* The inferior is about to take a signal that will take it
6175 	     out of the single step range.  Set a breakpoint at the
6176 	     current PC (which is presumably where the signal handler
6177 	     will eventually return) and then allow the inferior to
6178 	     run free.
6179 
6180 	     Note that this is only needed for a signal delivered
6181 	     while in the single-step range.  Nested signals aren't a
6182 	     problem as they eventually all return.  */
6183           if (debug_infrun)
6184             fprintf_unfiltered (gdb_stdlog,
6185                                 "infrun: signal may take us out of "
6186                                 "single-step range\n");
6187 
6188 	  clear_step_over_info ();
6189 	  insert_hp_step_resume_breakpoint_at_frame (frame);
6190 	  ecs->event_thread->step_after_step_resume_breakpoint = 1;
6191 	  /* Reset trap_expected to ensure breakpoints are re-inserted.  */
6192 	  ecs->event_thread->control.trap_expected = 0;
6193 	  keep_going (ecs);
6194 	  return;
6195 	}
6196 
6197       /* Note: step_resume_breakpoint may be non-NULL.  This occures
6198 	 when either there's a nested signal, or when there's a
6199 	 pending signal enabled just as the signal handler returns
6200 	 (leaving the inferior at the step-resume-breakpoint without
6201 	 actually executing it).  Either way continue until the
6202 	 breakpoint is really hit.  */
6203 
6204       if (!switch_back_to_stepped_thread (ecs))
6205 	{
6206 	  if (debug_infrun)
6207 	    fprintf_unfiltered (gdb_stdlog,
6208 				"infrun: random signal, keep going\n");
6209 
6210 	  keep_going (ecs);
6211 	}
6212       return;
6213     }
6214 
6215   process_event_stop_test (ecs);
6216 }
6217 
6218 /* Come here when we've got some debug event / signal we can explain
6219    (IOW, not a random signal), and test whether it should cause a
6220    stop, or whether we should resume the inferior (transparently).
6221    E.g., could be a breakpoint whose condition evaluates false; we
6222    could be still stepping within the line; etc.  */
6223 
6224 static void
6225 process_event_stop_test (struct execution_control_state *ecs)
6226 {
6227   struct symtab_and_line stop_pc_sal;
6228   struct frame_info *frame;
6229   struct gdbarch *gdbarch;
6230   CORE_ADDR jmp_buf_pc;
6231   struct bpstat_what what;
6232 
6233   /* Handle cases caused by hitting a breakpoint.  */
6234 
6235   frame = get_current_frame ();
6236   gdbarch = get_frame_arch (frame);
6237 
6238   what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6239 
6240   if (what.call_dummy)
6241     {
6242       stop_stack_dummy = what.call_dummy;
6243     }
6244 
6245   /* A few breakpoint types have callbacks associated (e.g.,
6246      bp_jit_event).  Run them now.  */
6247   bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6248 
6249   /* If we hit an internal event that triggers symbol changes, the
6250      current frame will be invalidated within bpstat_what (e.g., if we
6251      hit an internal solib event).  Re-fetch it.  */
6252   frame = get_current_frame ();
6253   gdbarch = get_frame_arch (frame);
6254 
6255   switch (what.main_action)
6256     {
6257     case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6258       /* If we hit the breakpoint at longjmp while stepping, we
6259 	 install a momentary breakpoint at the target of the
6260 	 jmp_buf.  */
6261 
6262       if (debug_infrun)
6263 	fprintf_unfiltered (gdb_stdlog,
6264 			    "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6265 
6266       ecs->event_thread->stepping_over_breakpoint = 1;
6267 
6268       if (what.is_longjmp)
6269 	{
6270 	  struct value *arg_value;
6271 
6272 	  /* If we set the longjmp breakpoint via a SystemTap probe,
6273 	     then use it to extract the arguments.  The destination PC
6274 	     is the third argument to the probe.  */
6275 	  arg_value = probe_safe_evaluate_at_pc (frame, 2);
6276 	  if (arg_value)
6277 	    {
6278 	      jmp_buf_pc = value_as_address (arg_value);
6279 	      jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6280 	    }
6281 	  else if (!gdbarch_get_longjmp_target_p (gdbarch)
6282 		   || !gdbarch_get_longjmp_target (gdbarch,
6283 						   frame, &jmp_buf_pc))
6284 	    {
6285 	      if (debug_infrun)
6286 		fprintf_unfiltered (gdb_stdlog,
6287 				    "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6288 				    "(!gdbarch_get_longjmp_target)\n");
6289 	      keep_going (ecs);
6290 	      return;
6291 	    }
6292 
6293 	  /* Insert a breakpoint at resume address.  */
6294 	  insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6295 	}
6296       else
6297 	check_exception_resume (ecs, frame);
6298       keep_going (ecs);
6299       return;
6300 
6301     case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6302       {
6303 	struct frame_info *init_frame;
6304 
6305 	/* There are several cases to consider.
6306 
6307 	   1. The initiating frame no longer exists.  In this case we
6308 	   must stop, because the exception or longjmp has gone too
6309 	   far.
6310 
6311 	   2. The initiating frame exists, and is the same as the
6312 	   current frame.  We stop, because the exception or longjmp
6313 	   has been caught.
6314 
6315 	   3. The initiating frame exists and is different from the
6316 	   current frame.  This means the exception or longjmp has
6317 	   been caught beneath the initiating frame, so keep going.
6318 
6319 	   4. longjmp breakpoint has been placed just to protect
6320 	   against stale dummy frames and user is not interested in
6321 	   stopping around longjmps.  */
6322 
6323 	if (debug_infrun)
6324 	  fprintf_unfiltered (gdb_stdlog,
6325 			      "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6326 
6327 	gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6328 		    != NULL);
6329 	delete_exception_resume_breakpoint (ecs->event_thread);
6330 
6331 	if (what.is_longjmp)
6332 	  {
6333 	    check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6334 
6335 	    if (!frame_id_p (ecs->event_thread->initiating_frame))
6336 	      {
6337 		/* Case 4.  */
6338 		keep_going (ecs);
6339 		return;
6340 	      }
6341 	  }
6342 
6343 	init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6344 
6345 	if (init_frame)
6346 	  {
6347 	    struct frame_id current_id
6348 	      = get_frame_id (get_current_frame ());
6349 	    if (frame_id_eq (current_id,
6350 			     ecs->event_thread->initiating_frame))
6351 	      {
6352 		/* Case 2.  Fall through.  */
6353 	      }
6354 	    else
6355 	      {
6356 		/* Case 3.  */
6357 		keep_going (ecs);
6358 		return;
6359 	      }
6360 	  }
6361 
6362 	/* For Cases 1 and 2, remove the step-resume breakpoint, if it
6363 	   exists.  */
6364 	delete_step_resume_breakpoint (ecs->event_thread);
6365 
6366 	end_stepping_range (ecs);
6367       }
6368       return;
6369 
6370     case BPSTAT_WHAT_SINGLE:
6371       if (debug_infrun)
6372 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6373       ecs->event_thread->stepping_over_breakpoint = 1;
6374       /* Still need to check other stuff, at least the case where we
6375 	 are stepping and step out of the right range.  */
6376       break;
6377 
6378     case BPSTAT_WHAT_STEP_RESUME:
6379       if (debug_infrun)
6380 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6381 
6382       delete_step_resume_breakpoint (ecs->event_thread);
6383       if (ecs->event_thread->control.proceed_to_finish
6384 	  && execution_direction == EXEC_REVERSE)
6385 	{
6386 	  struct thread_info *tp = ecs->event_thread;
6387 
6388 	  /* We are finishing a function in reverse, and just hit the
6389 	     step-resume breakpoint at the start address of the
6390 	     function, and we're almost there -- just need to back up
6391 	     by one more single-step, which should take us back to the
6392 	     function call.  */
6393 	  tp->control.step_range_start = tp->control.step_range_end = 1;
6394 	  keep_going (ecs);
6395 	  return;
6396 	}
6397       fill_in_stop_func (gdbarch, ecs);
6398       if (stop_pc == ecs->stop_func_start
6399 	  && execution_direction == EXEC_REVERSE)
6400 	{
6401 	  /* We are stepping over a function call in reverse, and just
6402 	     hit the step-resume breakpoint at the start address of
6403 	     the function.  Go back to single-stepping, which should
6404 	     take us back to the function call.  */
6405 	  ecs->event_thread->stepping_over_breakpoint = 1;
6406 	  keep_going (ecs);
6407 	  return;
6408 	}
6409       break;
6410 
6411     case BPSTAT_WHAT_STOP_NOISY:
6412       if (debug_infrun)
6413 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6414       stop_print_frame = 1;
6415 
6416       /* Assume the thread stopped for a breapoint.  We'll still check
6417 	 whether a/the breakpoint is there when the thread is next
6418 	 resumed.  */
6419       ecs->event_thread->stepping_over_breakpoint = 1;
6420 
6421       stop_waiting (ecs);
6422       return;
6423 
6424     case BPSTAT_WHAT_STOP_SILENT:
6425       if (debug_infrun)
6426 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6427       stop_print_frame = 0;
6428 
6429       /* Assume the thread stopped for a breapoint.  We'll still check
6430 	 whether a/the breakpoint is there when the thread is next
6431 	 resumed.  */
6432       ecs->event_thread->stepping_over_breakpoint = 1;
6433       stop_waiting (ecs);
6434       return;
6435 
6436     case BPSTAT_WHAT_HP_STEP_RESUME:
6437       if (debug_infrun)
6438 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6439 
6440       delete_step_resume_breakpoint (ecs->event_thread);
6441       if (ecs->event_thread->step_after_step_resume_breakpoint)
6442 	{
6443 	  /* Back when the step-resume breakpoint was inserted, we
6444 	     were trying to single-step off a breakpoint.  Go back to
6445 	     doing that.  */
6446 	  ecs->event_thread->step_after_step_resume_breakpoint = 0;
6447 	  ecs->event_thread->stepping_over_breakpoint = 1;
6448 	  keep_going (ecs);
6449 	  return;
6450 	}
6451       break;
6452 
6453     case BPSTAT_WHAT_KEEP_CHECKING:
6454       break;
6455     }
6456 
6457   /* If we stepped a permanent breakpoint and we had a high priority
6458      step-resume breakpoint for the address we stepped, but we didn't
6459      hit it, then we must have stepped into the signal handler.  The
6460      step-resume was only necessary to catch the case of _not_
6461      stepping into the handler, so delete it, and fall through to
6462      checking whether the step finished.  */
6463   if (ecs->event_thread->stepped_breakpoint)
6464     {
6465       struct breakpoint *sr_bp
6466 	= ecs->event_thread->control.step_resume_breakpoint;
6467 
6468       if (sr_bp != NULL
6469 	  && sr_bp->loc->permanent
6470 	  && sr_bp->type == bp_hp_step_resume
6471 	  && sr_bp->loc->address == ecs->event_thread->prev_pc)
6472 	{
6473 	  if (debug_infrun)
6474 	    fprintf_unfiltered (gdb_stdlog,
6475 				"infrun: stepped permanent breakpoint, stopped in "
6476 				"handler\n");
6477 	  delete_step_resume_breakpoint (ecs->event_thread);
6478 	  ecs->event_thread->step_after_step_resume_breakpoint = 0;
6479 	}
6480     }
6481 
6482   /* We come here if we hit a breakpoint but should not stop for it.
6483      Possibly we also were stepping and should stop for that.  So fall
6484      through and test for stepping.  But, if not stepping, do not
6485      stop.  */
6486 
6487   /* In all-stop mode, if we're currently stepping but have stopped in
6488      some other thread, we need to switch back to the stepped thread.  */
6489   if (switch_back_to_stepped_thread (ecs))
6490     return;
6491 
6492   if (ecs->event_thread->control.step_resume_breakpoint)
6493     {
6494       if (debug_infrun)
6495 	 fprintf_unfiltered (gdb_stdlog,
6496 			     "infrun: step-resume breakpoint is inserted\n");
6497 
6498       /* Having a step-resume breakpoint overrides anything
6499          else having to do with stepping commands until
6500          that breakpoint is reached.  */
6501       keep_going (ecs);
6502       return;
6503     }
6504 
6505   if (ecs->event_thread->control.step_range_end == 0)
6506     {
6507       if (debug_infrun)
6508 	 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6509       /* Likewise if we aren't even stepping.  */
6510       keep_going (ecs);
6511       return;
6512     }
6513 
6514   /* Re-fetch current thread's frame in case the code above caused
6515      the frame cache to be re-initialized, making our FRAME variable
6516      a dangling pointer.  */
6517   frame = get_current_frame ();
6518   gdbarch = get_frame_arch (frame);
6519   fill_in_stop_func (gdbarch, ecs);
6520 
6521   /* If stepping through a line, keep going if still within it.
6522 
6523      Note that step_range_end is the address of the first instruction
6524      beyond the step range, and NOT the address of the last instruction
6525      within it!
6526 
6527      Note also that during reverse execution, we may be stepping
6528      through a function epilogue and therefore must detect when
6529      the current-frame changes in the middle of a line.  */
6530 
6531   if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6532       && (execution_direction != EXEC_REVERSE
6533 	  || frame_id_eq (get_frame_id (frame),
6534 			  ecs->event_thread->control.step_frame_id)))
6535     {
6536       if (debug_infrun)
6537 	fprintf_unfiltered
6538 	  (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6539 	   paddress (gdbarch, ecs->event_thread->control.step_range_start),
6540 	   paddress (gdbarch, ecs->event_thread->control.step_range_end));
6541 
6542       /* Tentatively re-enable range stepping; `resume' disables it if
6543 	 necessary (e.g., if we're stepping over a breakpoint or we
6544 	 have software watchpoints).  */
6545       ecs->event_thread->control.may_range_step = 1;
6546 
6547       /* When stepping backward, stop at beginning of line range
6548 	 (unless it's the function entry point, in which case
6549 	 keep going back to the call point).  */
6550       if (stop_pc == ecs->event_thread->control.step_range_start
6551 	  && stop_pc != ecs->stop_func_start
6552 	  && execution_direction == EXEC_REVERSE)
6553 	end_stepping_range (ecs);
6554       else
6555 	keep_going (ecs);
6556 
6557       return;
6558     }
6559 
6560   /* We stepped out of the stepping range.  */
6561 
6562   /* If we are stepping at the source level and entered the runtime
6563      loader dynamic symbol resolution code...
6564 
6565      EXEC_FORWARD: we keep on single stepping until we exit the run
6566      time loader code and reach the callee's address.
6567 
6568      EXEC_REVERSE: we've already executed the callee (backward), and
6569      the runtime loader code is handled just like any other
6570      undebuggable function call.  Now we need only keep stepping
6571      backward through the trampoline code, and that's handled further
6572      down, so there is nothing for us to do here.  */
6573 
6574   if (execution_direction != EXEC_REVERSE
6575       && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6576       && in_solib_dynsym_resolve_code (stop_pc))
6577     {
6578       CORE_ADDR pc_after_resolver =
6579 	gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6580 
6581       if (debug_infrun)
6582 	 fprintf_unfiltered (gdb_stdlog,
6583 			     "infrun: stepped into dynsym resolve code\n");
6584 
6585       if (pc_after_resolver)
6586 	{
6587 	  /* Set up a step-resume breakpoint at the address
6588 	     indicated by SKIP_SOLIB_RESOLVER.  */
6589 	  struct symtab_and_line sr_sal;
6590 
6591 	  init_sal (&sr_sal);
6592 	  sr_sal.pc = pc_after_resolver;
6593 	  sr_sal.pspace = get_frame_program_space (frame);
6594 
6595 	  insert_step_resume_breakpoint_at_sal (gdbarch,
6596 						sr_sal, null_frame_id);
6597 	}
6598 
6599       keep_going (ecs);
6600       return;
6601     }
6602 
6603   if (ecs->event_thread->control.step_range_end != 1
6604       && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6605 	  || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6606       && get_frame_type (frame) == SIGTRAMP_FRAME)
6607     {
6608       if (debug_infrun)
6609 	 fprintf_unfiltered (gdb_stdlog,
6610 			     "infrun: stepped into signal trampoline\n");
6611       /* The inferior, while doing a "step" or "next", has ended up in
6612          a signal trampoline (either by a signal being delivered or by
6613          the signal handler returning).  Just single-step until the
6614          inferior leaves the trampoline (either by calling the handler
6615          or returning).  */
6616       keep_going (ecs);
6617       return;
6618     }
6619 
6620   /* If we're in the return path from a shared library trampoline,
6621      we want to proceed through the trampoline when stepping.  */
6622   /* macro/2012-04-25: This needs to come before the subroutine
6623      call check below as on some targets return trampolines look
6624      like subroutine calls (MIPS16 return thunks).  */
6625   if (gdbarch_in_solib_return_trampoline (gdbarch,
6626 					  stop_pc, ecs->stop_func_name)
6627       && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6628     {
6629       /* Determine where this trampoline returns.  */
6630       CORE_ADDR real_stop_pc;
6631 
6632       real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6633 
6634       if (debug_infrun)
6635 	 fprintf_unfiltered (gdb_stdlog,
6636 			     "infrun: stepped into solib return tramp\n");
6637 
6638       /* Only proceed through if we know where it's going.  */
6639       if (real_stop_pc)
6640 	{
6641 	  /* And put the step-breakpoint there and go until there.  */
6642 	  struct symtab_and_line sr_sal;
6643 
6644 	  init_sal (&sr_sal);	/* initialize to zeroes */
6645 	  sr_sal.pc = real_stop_pc;
6646 	  sr_sal.section = find_pc_overlay (sr_sal.pc);
6647 	  sr_sal.pspace = get_frame_program_space (frame);
6648 
6649 	  /* Do not specify what the fp should be when we stop since
6650 	     on some machines the prologue is where the new fp value
6651 	     is established.  */
6652 	  insert_step_resume_breakpoint_at_sal (gdbarch,
6653 						sr_sal, null_frame_id);
6654 
6655 	  /* Restart without fiddling with the step ranges or
6656 	     other state.  */
6657 	  keep_going (ecs);
6658 	  return;
6659 	}
6660     }
6661 
6662   /* Check for subroutine calls.  The check for the current frame
6663      equalling the step ID is not necessary - the check of the
6664      previous frame's ID is sufficient - but it is a common case and
6665      cheaper than checking the previous frame's ID.
6666 
6667      NOTE: frame_id_eq will never report two invalid frame IDs as
6668      being equal, so to get into this block, both the current and
6669      previous frame must have valid frame IDs.  */
6670   /* The outer_frame_id check is a heuristic to detect stepping
6671      through startup code.  If we step over an instruction which
6672      sets the stack pointer from an invalid value to a valid value,
6673      we may detect that as a subroutine call from the mythical
6674      "outermost" function.  This could be fixed by marking
6675      outermost frames as !stack_p,code_p,special_p.  Then the
6676      initial outermost frame, before sp was valid, would
6677      have code_addr == &_start.  See the comment in frame_id_eq
6678      for more.  */
6679   if (!frame_id_eq (get_stack_frame_id (frame),
6680 		    ecs->event_thread->control.step_stack_frame_id)
6681       && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6682 		       ecs->event_thread->control.step_stack_frame_id)
6683 	  && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6684 			    outer_frame_id)
6685 	      || (ecs->event_thread->control.step_start_function
6686 		  != find_pc_function (stop_pc)))))
6687     {
6688       CORE_ADDR real_stop_pc;
6689 
6690       if (debug_infrun)
6691 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6692 
6693       if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6694 	{
6695 	  /* I presume that step_over_calls is only 0 when we're
6696 	     supposed to be stepping at the assembly language level
6697 	     ("stepi").  Just stop.  */
6698 	  /* And this works the same backward as frontward.  MVS */
6699 	  end_stepping_range (ecs);
6700 	  return;
6701 	}
6702 
6703       /* Reverse stepping through solib trampolines.  */
6704 
6705       if (execution_direction == EXEC_REVERSE
6706 	  && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6707 	  && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6708 	      || (ecs->stop_func_start == 0
6709 		  && in_solib_dynsym_resolve_code (stop_pc))))
6710 	{
6711 	  /* Any solib trampoline code can be handled in reverse
6712 	     by simply continuing to single-step.  We have already
6713 	     executed the solib function (backwards), and a few
6714 	     steps will take us back through the trampoline to the
6715 	     caller.  */
6716 	  keep_going (ecs);
6717 	  return;
6718 	}
6719 
6720       if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6721 	{
6722 	  /* We're doing a "next".
6723 
6724 	     Normal (forward) execution: set a breakpoint at the
6725 	     callee's return address (the address at which the caller
6726 	     will resume).
6727 
6728 	     Reverse (backward) execution.  set the step-resume
6729 	     breakpoint at the start of the function that we just
6730 	     stepped into (backwards), and continue to there.  When we
6731 	     get there, we'll need to single-step back to the caller.  */
6732 
6733 	  if (execution_direction == EXEC_REVERSE)
6734 	    {
6735 	      /* If we're already at the start of the function, we've either
6736 		 just stepped backward into a single instruction function,
6737 		 or stepped back out of a signal handler to the first instruction
6738 		 of the function.  Just keep going, which will single-step back
6739 		 to the caller.  */
6740 	      if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6741 		{
6742 		  struct symtab_and_line sr_sal;
6743 
6744 		  /* Normal function call return (static or dynamic).  */
6745 		  init_sal (&sr_sal);
6746 		  sr_sal.pc = ecs->stop_func_start;
6747 		  sr_sal.pspace = get_frame_program_space (frame);
6748 		  insert_step_resume_breakpoint_at_sal (gdbarch,
6749 							sr_sal, null_frame_id);
6750 		}
6751 	    }
6752 	  else
6753 	    insert_step_resume_breakpoint_at_caller (frame);
6754 
6755 	  keep_going (ecs);
6756 	  return;
6757 	}
6758 
6759       /* If we are in a function call trampoline (a stub between the
6760          calling routine and the real function), locate the real
6761          function.  That's what tells us (a) whether we want to step
6762          into it at all, and (b) what prologue we want to run to the
6763          end of, if we do step into it.  */
6764       real_stop_pc = skip_language_trampoline (frame, stop_pc);
6765       if (real_stop_pc == 0)
6766 	real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6767       if (real_stop_pc != 0)
6768 	ecs->stop_func_start = real_stop_pc;
6769 
6770       if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6771 	{
6772 	  struct symtab_and_line sr_sal;
6773 
6774 	  init_sal (&sr_sal);
6775 	  sr_sal.pc = ecs->stop_func_start;
6776 	  sr_sal.pspace = get_frame_program_space (frame);
6777 
6778 	  insert_step_resume_breakpoint_at_sal (gdbarch,
6779 						sr_sal, null_frame_id);
6780 	  keep_going (ecs);
6781 	  return;
6782 	}
6783 
6784       /* If we have line number information for the function we are
6785 	 thinking of stepping into and the function isn't on the skip
6786 	 list, step into it.
6787 
6788          If there are several symtabs at that PC (e.g. with include
6789          files), just want to know whether *any* of them have line
6790          numbers.  find_pc_line handles this.  */
6791       {
6792 	struct symtab_and_line tmp_sal;
6793 
6794 	tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6795 	if (tmp_sal.line != 0
6796 	    && !function_name_is_marked_for_skip (ecs->stop_func_name,
6797 						  &tmp_sal))
6798 	  {
6799 	    if (execution_direction == EXEC_REVERSE)
6800 	      handle_step_into_function_backward (gdbarch, ecs);
6801 	    else
6802 	      handle_step_into_function (gdbarch, ecs);
6803 	    return;
6804 	  }
6805       }
6806 
6807       /* If we have no line number and the step-stop-if-no-debug is
6808          set, we stop the step so that the user has a chance to switch
6809          in assembly mode.  */
6810       if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6811 	  && step_stop_if_no_debug)
6812 	{
6813 	  end_stepping_range (ecs);
6814 	  return;
6815 	}
6816 
6817       if (execution_direction == EXEC_REVERSE)
6818 	{
6819 	  /* If we're already at the start of the function, we've either just
6820 	     stepped backward into a single instruction function without line
6821 	     number info, or stepped back out of a signal handler to the first
6822 	     instruction of the function without line number info.  Just keep
6823 	     going, which will single-step back to the caller.  */
6824 	  if (ecs->stop_func_start != stop_pc)
6825 	    {
6826 	      /* Set a breakpoint at callee's start address.
6827 		 From there we can step once and be back in the caller.  */
6828 	      struct symtab_and_line sr_sal;
6829 
6830 	      init_sal (&sr_sal);
6831 	      sr_sal.pc = ecs->stop_func_start;
6832 	      sr_sal.pspace = get_frame_program_space (frame);
6833 	      insert_step_resume_breakpoint_at_sal (gdbarch,
6834 						    sr_sal, null_frame_id);
6835 	    }
6836 	}
6837       else
6838 	/* Set a breakpoint at callee's return address (the address
6839 	   at which the caller will resume).  */
6840 	insert_step_resume_breakpoint_at_caller (frame);
6841 
6842       keep_going (ecs);
6843       return;
6844     }
6845 
6846   /* Reverse stepping through solib trampolines.  */
6847 
6848   if (execution_direction == EXEC_REVERSE
6849       && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6850     {
6851       if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6852 	  || (ecs->stop_func_start == 0
6853 	      && in_solib_dynsym_resolve_code (stop_pc)))
6854 	{
6855 	  /* Any solib trampoline code can be handled in reverse
6856 	     by simply continuing to single-step.  We have already
6857 	     executed the solib function (backwards), and a few
6858 	     steps will take us back through the trampoline to the
6859 	     caller.  */
6860 	  keep_going (ecs);
6861 	  return;
6862 	}
6863       else if (in_solib_dynsym_resolve_code (stop_pc))
6864 	{
6865 	  /* Stepped backward into the solib dynsym resolver.
6866 	     Set a breakpoint at its start and continue, then
6867 	     one more step will take us out.  */
6868 	  struct symtab_and_line sr_sal;
6869 
6870 	  init_sal (&sr_sal);
6871 	  sr_sal.pc = ecs->stop_func_start;
6872 	  sr_sal.pspace = get_frame_program_space (frame);
6873 	  insert_step_resume_breakpoint_at_sal (gdbarch,
6874 						sr_sal, null_frame_id);
6875 	  keep_going (ecs);
6876 	  return;
6877 	}
6878     }
6879 
6880   stop_pc_sal = find_pc_line (stop_pc, 0);
6881 
6882   /* NOTE: tausq/2004-05-24: This if block used to be done before all
6883      the trampoline processing logic, however, there are some trampolines
6884      that have no names, so we should do trampoline handling first.  */
6885   if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6886       && ecs->stop_func_name == NULL
6887       && stop_pc_sal.line == 0)
6888     {
6889       if (debug_infrun)
6890 	 fprintf_unfiltered (gdb_stdlog,
6891 			     "infrun: stepped into undebuggable function\n");
6892 
6893       /* The inferior just stepped into, or returned to, an
6894          undebuggable function (where there is no debugging information
6895          and no line number corresponding to the address where the
6896          inferior stopped).  Since we want to skip this kind of code,
6897          we keep going until the inferior returns from this
6898          function - unless the user has asked us not to (via
6899          set step-mode) or we no longer know how to get back
6900          to the call site.  */
6901       if (step_stop_if_no_debug
6902 	  || !frame_id_p (frame_unwind_caller_id (frame)))
6903 	{
6904 	  /* If we have no line number and the step-stop-if-no-debug
6905 	     is set, we stop the step so that the user has a chance to
6906 	     switch in assembly mode.  */
6907 	  end_stepping_range (ecs);
6908 	  return;
6909 	}
6910       else
6911 	{
6912 	  /* Set a breakpoint at callee's return address (the address
6913 	     at which the caller will resume).  */
6914 	  insert_step_resume_breakpoint_at_caller (frame);
6915 	  keep_going (ecs);
6916 	  return;
6917 	}
6918     }
6919 
6920   if (ecs->event_thread->control.step_range_end == 1)
6921     {
6922       /* It is stepi or nexti.  We always want to stop stepping after
6923          one instruction.  */
6924       if (debug_infrun)
6925 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6926       end_stepping_range (ecs);
6927       return;
6928     }
6929 
6930   if (stop_pc_sal.line == 0)
6931     {
6932       /* We have no line number information.  That means to stop
6933          stepping (does this always happen right after one instruction,
6934          when we do "s" in a function with no line numbers,
6935          or can this happen as a result of a return or longjmp?).  */
6936       if (debug_infrun)
6937 	 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6938       end_stepping_range (ecs);
6939       return;
6940     }
6941 
6942   /* Look for "calls" to inlined functions, part one.  If the inline
6943      frame machinery detected some skipped call sites, we have entered
6944      a new inline function.  */
6945 
6946   if (frame_id_eq (get_frame_id (get_current_frame ()),
6947 		   ecs->event_thread->control.step_frame_id)
6948       && inline_skipped_frames (ecs->ptid))
6949     {
6950       struct symtab_and_line call_sal;
6951 
6952       if (debug_infrun)
6953 	fprintf_unfiltered (gdb_stdlog,
6954 			    "infrun: stepped into inlined function\n");
6955 
6956       find_frame_sal (get_current_frame (), &call_sal);
6957 
6958       if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6959 	{
6960 	  /* For "step", we're going to stop.  But if the call site
6961 	     for this inlined function is on the same source line as
6962 	     we were previously stepping, go down into the function
6963 	     first.  Otherwise stop at the call site.  */
6964 
6965 	  if (call_sal.line == ecs->event_thread->current_line
6966 	      && call_sal.symtab == ecs->event_thread->current_symtab)
6967 	    step_into_inline_frame (ecs->ptid);
6968 
6969 	  end_stepping_range (ecs);
6970 	  return;
6971 	}
6972       else
6973 	{
6974 	  /* For "next", we should stop at the call site if it is on a
6975 	     different source line.  Otherwise continue through the
6976 	     inlined function.  */
6977 	  if (call_sal.line == ecs->event_thread->current_line
6978 	      && call_sal.symtab == ecs->event_thread->current_symtab)
6979 	    keep_going (ecs);
6980 	  else
6981 	    end_stepping_range (ecs);
6982 	  return;
6983 	}
6984     }
6985 
6986   /* Look for "calls" to inlined functions, part two.  If we are still
6987      in the same real function we were stepping through, but we have
6988      to go further up to find the exact frame ID, we are stepping
6989      through a more inlined call beyond its call site.  */
6990 
6991   if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6992       && !frame_id_eq (get_frame_id (get_current_frame ()),
6993 		       ecs->event_thread->control.step_frame_id)
6994       && stepped_in_from (get_current_frame (),
6995 			  ecs->event_thread->control.step_frame_id))
6996     {
6997       if (debug_infrun)
6998 	fprintf_unfiltered (gdb_stdlog,
6999 			    "infrun: stepping through inlined function\n");
7000 
7001       if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
7002 	keep_going (ecs);
7003       else
7004 	end_stepping_range (ecs);
7005       return;
7006     }
7007 
7008   if ((stop_pc == stop_pc_sal.pc)
7009       && (ecs->event_thread->current_line != stop_pc_sal.line
7010  	  || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7011     {
7012       /* We are at the start of a different line.  So stop.  Note that
7013          we don't stop if we step into the middle of a different line.
7014          That is said to make things like for (;;) statements work
7015          better.  */
7016       if (debug_infrun)
7017 	 fprintf_unfiltered (gdb_stdlog,
7018 			     "infrun: stepped to a different line\n");
7019       end_stepping_range (ecs);
7020       return;
7021     }
7022 
7023   /* We aren't done stepping.
7024 
7025      Optimize by setting the stepping range to the line.
7026      (We might not be in the original line, but if we entered a
7027      new line in mid-statement, we continue stepping.  This makes
7028      things like for(;;) statements work better.)  */
7029 
7030   ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7031   ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7032   ecs->event_thread->control.may_range_step = 1;
7033   set_step_info (frame, stop_pc_sal);
7034 
7035   if (debug_infrun)
7036      fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7037   keep_going (ecs);
7038 }
7039 
7040 /* In all-stop mode, if we're currently stepping but have stopped in
7041    some other thread, we may need to switch back to the stepped
7042    thread.  Returns true we set the inferior running, false if we left
7043    it stopped (and the event needs further processing).  */
7044 
7045 static int
7046 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7047 {
7048   if (!target_is_non_stop_p ())
7049     {
7050       struct thread_info *tp;
7051       struct thread_info *stepping_thread;
7052 
7053       /* If any thread is blocked on some internal breakpoint, and we
7054 	 simply need to step over that breakpoint to get it going
7055 	 again, do that first.  */
7056 
7057       /* However, if we see an event for the stepping thread, then we
7058 	 know all other threads have been moved past their breakpoints
7059 	 already.  Let the caller check whether the step is finished,
7060 	 etc., before deciding to move it past a breakpoint.  */
7061       if (ecs->event_thread->control.step_range_end != 0)
7062 	return 0;
7063 
7064       /* Check if the current thread is blocked on an incomplete
7065 	 step-over, interrupted by a random signal.  */
7066       if (ecs->event_thread->control.trap_expected
7067 	  && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7068 	{
7069 	  if (debug_infrun)
7070 	    {
7071 	      fprintf_unfiltered (gdb_stdlog,
7072 				  "infrun: need to finish step-over of [%s]\n",
7073 				  target_pid_to_str (ecs->event_thread->ptid));
7074 	    }
7075 	  keep_going (ecs);
7076 	  return 1;
7077 	}
7078 
7079       /* Check if the current thread is blocked by a single-step
7080 	 breakpoint of another thread.  */
7081       if (ecs->hit_singlestep_breakpoint)
7082        {
7083 	 if (debug_infrun)
7084 	   {
7085 	     fprintf_unfiltered (gdb_stdlog,
7086 				 "infrun: need to step [%s] over single-step "
7087 				 "breakpoint\n",
7088 				 target_pid_to_str (ecs->ptid));
7089 	   }
7090 	 keep_going (ecs);
7091 	 return 1;
7092        }
7093 
7094       /* If this thread needs yet another step-over (e.g., stepping
7095 	 through a delay slot), do it first before moving on to
7096 	 another thread.  */
7097       if (thread_still_needs_step_over (ecs->event_thread))
7098 	{
7099 	  if (debug_infrun)
7100 	    {
7101 	      fprintf_unfiltered (gdb_stdlog,
7102 				  "infrun: thread [%s] still needs step-over\n",
7103 				  target_pid_to_str (ecs->event_thread->ptid));
7104 	    }
7105 	  keep_going (ecs);
7106 	  return 1;
7107 	}
7108 
7109       /* If scheduler locking applies even if not stepping, there's no
7110 	 need to walk over threads.  Above we've checked whether the
7111 	 current thread is stepping.  If some other thread not the
7112 	 event thread is stepping, then it must be that scheduler
7113 	 locking is not in effect.  */
7114       if (schedlock_applies (ecs->event_thread))
7115 	return 0;
7116 
7117       /* Otherwise, we no longer expect a trap in the current thread.
7118 	 Clear the trap_expected flag before switching back -- this is
7119 	 what keep_going does as well, if we call it.  */
7120       ecs->event_thread->control.trap_expected = 0;
7121 
7122       /* Likewise, clear the signal if it should not be passed.  */
7123       if (!signal_program[ecs->event_thread->suspend.stop_signal])
7124 	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7125 
7126       /* Do all pending step-overs before actually proceeding with
7127 	 step/next/etc.  */
7128       if (start_step_over ())
7129 	{
7130 	  prepare_to_wait (ecs);
7131 	  return 1;
7132 	}
7133 
7134       /* Look for the stepping/nexting thread.  */
7135       stepping_thread = NULL;
7136 
7137       ALL_NON_EXITED_THREADS (tp)
7138         {
7139 	  /* Ignore threads of processes the caller is not
7140 	     resuming.  */
7141 	  if (!sched_multi
7142 	      && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7143 	    continue;
7144 
7145 	  /* When stepping over a breakpoint, we lock all threads
7146 	     except the one that needs to move past the breakpoint.
7147 	     If a non-event thread has this set, the "incomplete
7148 	     step-over" check above should have caught it earlier.  */
7149 	  if (tp->control.trap_expected)
7150 	    {
7151 	      internal_error (__FILE__, __LINE__,
7152 			      "[%s] has inconsistent state: "
7153 			      "trap_expected=%d\n",
7154 			      target_pid_to_str (tp->ptid),
7155 			      tp->control.trap_expected);
7156 	    }
7157 
7158 	  /* Did we find the stepping thread?  */
7159 	  if (tp->control.step_range_end)
7160 	    {
7161 	      /* Yep.  There should only one though.  */
7162 	      gdb_assert (stepping_thread == NULL);
7163 
7164 	      /* The event thread is handled at the top, before we
7165 		 enter this loop.  */
7166 	      gdb_assert (tp != ecs->event_thread);
7167 
7168 	      /* If some thread other than the event thread is
7169 		 stepping, then scheduler locking can't be in effect,
7170 		 otherwise we wouldn't have resumed the current event
7171 		 thread in the first place.  */
7172 	      gdb_assert (!schedlock_applies (tp));
7173 
7174 	      stepping_thread = tp;
7175 	    }
7176 	}
7177 
7178       if (stepping_thread != NULL)
7179 	{
7180 	  if (debug_infrun)
7181 	    fprintf_unfiltered (gdb_stdlog,
7182 				"infrun: switching back to stepped thread\n");
7183 
7184 	  if (keep_going_stepped_thread (stepping_thread))
7185 	    {
7186 	      prepare_to_wait (ecs);
7187 	      return 1;
7188 	    }
7189 	}
7190     }
7191 
7192   return 0;
7193 }
7194 
7195 /* Set a previously stepped thread back to stepping.  Returns true on
7196    success, false if the resume is not possible (e.g., the thread
7197    vanished).  */
7198 
7199 static int
7200 keep_going_stepped_thread (struct thread_info *tp)
7201 {
7202   struct frame_info *frame;
7203   struct execution_control_state ecss;
7204   struct execution_control_state *ecs = &ecss;
7205 
7206   /* If the stepping thread exited, then don't try to switch back and
7207      resume it, which could fail in several different ways depending
7208      on the target.  Instead, just keep going.
7209 
7210      We can find a stepping dead thread in the thread list in two
7211      cases:
7212 
7213      - The target supports thread exit events, and when the target
7214        tries to delete the thread from the thread list, inferior_ptid
7215        pointed at the exiting thread.  In such case, calling
7216        delete_thread does not really remove the thread from the list;
7217        instead, the thread is left listed, with 'exited' state.
7218 
7219      - The target's debug interface does not support thread exit
7220        events, and so we have no idea whatsoever if the previously
7221        stepping thread is still alive.  For that reason, we need to
7222        synchronously query the target now.  */
7223 
7224   if (is_exited (tp->ptid)
7225       || !target_thread_alive (tp->ptid))
7226     {
7227       if (debug_infrun)
7228 	fprintf_unfiltered (gdb_stdlog,
7229 			    "infrun: not resuming previously  "
7230 			    "stepped thread, it has vanished\n");
7231 
7232       delete_thread (tp->ptid);
7233       return 0;
7234     }
7235 
7236   if (debug_infrun)
7237     fprintf_unfiltered (gdb_stdlog,
7238 			"infrun: resuming previously stepped thread\n");
7239 
7240   reset_ecs (ecs, tp);
7241   switch_to_thread (tp->ptid);
7242 
7243   stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7244   frame = get_current_frame ();
7245 
7246   /* If the PC of the thread we were trying to single-step has
7247      changed, then that thread has trapped or been signaled, but the
7248      event has not been reported to GDB yet.  Re-poll the target
7249      looking for this particular thread's event (i.e. temporarily
7250      enable schedlock) by:
7251 
7252      - setting a break at the current PC
7253      - resuming that particular thread, only (by setting trap
7254      expected)
7255 
7256      This prevents us continuously moving the single-step breakpoint
7257      forward, one instruction at a time, overstepping.  */
7258 
7259   if (stop_pc != tp->prev_pc)
7260     {
7261       ptid_t resume_ptid;
7262 
7263       if (debug_infrun)
7264 	fprintf_unfiltered (gdb_stdlog,
7265 			    "infrun: expected thread advanced also (%s -> %s)\n",
7266 			    paddress (target_gdbarch (), tp->prev_pc),
7267 			    paddress (target_gdbarch (), stop_pc));
7268 
7269       /* Clear the info of the previous step-over, as it's no longer
7270 	 valid (if the thread was trying to step over a breakpoint, it
7271 	 has already succeeded).  It's what keep_going would do too,
7272 	 if we called it.  Do this before trying to insert the sss
7273 	 breakpoint, otherwise if we were previously trying to step
7274 	 over this exact address in another thread, the breakpoint is
7275 	 skipped.  */
7276       clear_step_over_info ();
7277       tp->control.trap_expected = 0;
7278 
7279       insert_single_step_breakpoint (get_frame_arch (frame),
7280 				     get_frame_address_space (frame),
7281 				     stop_pc);
7282 
7283       tp->resumed = 1;
7284       resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7285       do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7286     }
7287   else
7288     {
7289       if (debug_infrun)
7290 	fprintf_unfiltered (gdb_stdlog,
7291 			    "infrun: expected thread still hasn't advanced\n");
7292 
7293       keep_going_pass_signal (ecs);
7294     }
7295   return 1;
7296 }
7297 
7298 /* Is thread TP in the middle of (software or hardware)
7299    single-stepping?  (Note the result of this function must never be
7300    passed directly as target_resume's STEP parameter.)  */
7301 
7302 static int
7303 currently_stepping (struct thread_info *tp)
7304 {
7305   return ((tp->control.step_range_end
7306 	   && tp->control.step_resume_breakpoint == NULL)
7307 	  || tp->control.trap_expected
7308 	  || tp->stepped_breakpoint
7309 	  || bpstat_should_step ());
7310 }
7311 
7312 /* Inferior has stepped into a subroutine call with source code that
7313    we should not step over.  Do step to the first line of code in
7314    it.  */
7315 
7316 static void
7317 handle_step_into_function (struct gdbarch *gdbarch,
7318 			   struct execution_control_state *ecs)
7319 {
7320   struct compunit_symtab *cust;
7321   struct symtab_and_line stop_func_sal, sr_sal;
7322 
7323   fill_in_stop_func (gdbarch, ecs);
7324 
7325   cust = find_pc_compunit_symtab (stop_pc);
7326   if (cust != NULL && compunit_language (cust) != language_asm)
7327     ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7328 						  ecs->stop_func_start);
7329 
7330   stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7331   /* Use the step_resume_break to step until the end of the prologue,
7332      even if that involves jumps (as it seems to on the vax under
7333      4.2).  */
7334   /* If the prologue ends in the middle of a source line, continue to
7335      the end of that source line (if it is still within the function).
7336      Otherwise, just go to end of prologue.  */
7337   if (stop_func_sal.end
7338       && stop_func_sal.pc != ecs->stop_func_start
7339       && stop_func_sal.end < ecs->stop_func_end)
7340     ecs->stop_func_start = stop_func_sal.end;
7341 
7342   /* Architectures which require breakpoint adjustment might not be able
7343      to place a breakpoint at the computed address.  If so, the test
7344      ``ecs->stop_func_start == stop_pc'' will never succeed.  Adjust
7345      ecs->stop_func_start to an address at which a breakpoint may be
7346      legitimately placed.
7347 
7348      Note:  kevinb/2004-01-19:  On FR-V, if this adjustment is not
7349      made, GDB will enter an infinite loop when stepping through
7350      optimized code consisting of VLIW instructions which contain
7351      subinstructions corresponding to different source lines.  On
7352      FR-V, it's not permitted to place a breakpoint on any but the
7353      first subinstruction of a VLIW instruction.  When a breakpoint is
7354      set, GDB will adjust the breakpoint address to the beginning of
7355      the VLIW instruction.  Thus, we need to make the corresponding
7356      adjustment here when computing the stop address.  */
7357 
7358   if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7359     {
7360       ecs->stop_func_start
7361 	= gdbarch_adjust_breakpoint_address (gdbarch,
7362 					     ecs->stop_func_start);
7363     }
7364 
7365   if (ecs->stop_func_start == stop_pc)
7366     {
7367       /* We are already there: stop now.  */
7368       end_stepping_range (ecs);
7369       return;
7370     }
7371   else
7372     {
7373       /* Put the step-breakpoint there and go until there.  */
7374       init_sal (&sr_sal);	/* initialize to zeroes */
7375       sr_sal.pc = ecs->stop_func_start;
7376       sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7377       sr_sal.pspace = get_frame_program_space (get_current_frame ());
7378 
7379       /* Do not specify what the fp should be when we stop since on
7380          some machines the prologue is where the new fp value is
7381          established.  */
7382       insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7383 
7384       /* And make sure stepping stops right away then.  */
7385       ecs->event_thread->control.step_range_end
7386         = ecs->event_thread->control.step_range_start;
7387     }
7388   keep_going (ecs);
7389 }
7390 
7391 /* Inferior has stepped backward into a subroutine call with source
7392    code that we should not step over.  Do step to the beginning of the
7393    last line of code in it.  */
7394 
7395 static void
7396 handle_step_into_function_backward (struct gdbarch *gdbarch,
7397 				    struct execution_control_state *ecs)
7398 {
7399   struct compunit_symtab *cust;
7400   struct symtab_and_line stop_func_sal;
7401 
7402   fill_in_stop_func (gdbarch, ecs);
7403 
7404   cust = find_pc_compunit_symtab (stop_pc);
7405   if (cust != NULL && compunit_language (cust) != language_asm)
7406     ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7407 						  ecs->stop_func_start);
7408 
7409   stop_func_sal = find_pc_line (stop_pc, 0);
7410 
7411   /* OK, we're just going to keep stepping here.  */
7412   if (stop_func_sal.pc == stop_pc)
7413     {
7414       /* We're there already.  Just stop stepping now.  */
7415       end_stepping_range (ecs);
7416     }
7417   else
7418     {
7419       /* Else just reset the step range and keep going.
7420 	 No step-resume breakpoint, they don't work for
7421 	 epilogues, which can have multiple entry paths.  */
7422       ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7423       ecs->event_thread->control.step_range_end = stop_func_sal.end;
7424       keep_going (ecs);
7425     }
7426   return;
7427 }
7428 
7429 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7430    This is used to both functions and to skip over code.  */
7431 
7432 static void
7433 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7434 					struct symtab_and_line sr_sal,
7435 					struct frame_id sr_id,
7436 					enum bptype sr_type)
7437 {
7438   /* There should never be more than one step-resume or longjmp-resume
7439      breakpoint per thread, so we should never be setting a new
7440      step_resume_breakpoint when one is already active.  */
7441   gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7442   gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7443 
7444   if (debug_infrun)
7445     fprintf_unfiltered (gdb_stdlog,
7446 			"infrun: inserting step-resume breakpoint at %s\n",
7447 			paddress (gdbarch, sr_sal.pc));
7448 
7449   inferior_thread ()->control.step_resume_breakpoint
7450     = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7451 }
7452 
7453 void
7454 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7455 				      struct symtab_and_line sr_sal,
7456 				      struct frame_id sr_id)
7457 {
7458   insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7459 					  sr_sal, sr_id,
7460 					  bp_step_resume);
7461 }
7462 
7463 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7464    This is used to skip a potential signal handler.
7465 
7466    This is called with the interrupted function's frame.  The signal
7467    handler, when it returns, will resume the interrupted function at
7468    RETURN_FRAME.pc.  */
7469 
7470 static void
7471 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7472 {
7473   struct symtab_and_line sr_sal;
7474   struct gdbarch *gdbarch;
7475 
7476   gdb_assert (return_frame != NULL);
7477   init_sal (&sr_sal);		/* initialize to zeros */
7478 
7479   gdbarch = get_frame_arch (return_frame);
7480   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7481   sr_sal.section = find_pc_overlay (sr_sal.pc);
7482   sr_sal.pspace = get_frame_program_space (return_frame);
7483 
7484   insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7485 					  get_stack_frame_id (return_frame),
7486 					  bp_hp_step_resume);
7487 }
7488 
7489 /* Insert a "step-resume breakpoint" at the previous frame's PC.  This
7490    is used to skip a function after stepping into it (for "next" or if
7491    the called function has no debugging information).
7492 
7493    The current function has almost always been reached by single
7494    stepping a call or return instruction.  NEXT_FRAME belongs to the
7495    current function, and the breakpoint will be set at the caller's
7496    resume address.
7497 
7498    This is a separate function rather than reusing
7499    insert_hp_step_resume_breakpoint_at_frame in order to avoid
7500    get_prev_frame, which may stop prematurely (see the implementation
7501    of frame_unwind_caller_id for an example).  */
7502 
7503 static void
7504 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7505 {
7506   struct symtab_and_line sr_sal;
7507   struct gdbarch *gdbarch;
7508 
7509   /* We shouldn't have gotten here if we don't know where the call site
7510      is.  */
7511   gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7512 
7513   init_sal (&sr_sal);		/* initialize to zeros */
7514 
7515   gdbarch = frame_unwind_caller_arch (next_frame);
7516   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7517 					frame_unwind_caller_pc (next_frame));
7518   sr_sal.section = find_pc_overlay (sr_sal.pc);
7519   sr_sal.pspace = frame_unwind_program_space (next_frame);
7520 
7521   insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7522 					frame_unwind_caller_id (next_frame));
7523 }
7524 
7525 /* Insert a "longjmp-resume" breakpoint at PC.  This is used to set a
7526    new breakpoint at the target of a jmp_buf.  The handling of
7527    longjmp-resume uses the same mechanisms used for handling
7528    "step-resume" breakpoints.  */
7529 
7530 static void
7531 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7532 {
7533   /* There should never be more than one longjmp-resume breakpoint per
7534      thread, so we should never be setting a new
7535      longjmp_resume_breakpoint when one is already active.  */
7536   gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7537 
7538   if (debug_infrun)
7539     fprintf_unfiltered (gdb_stdlog,
7540 			"infrun: inserting longjmp-resume breakpoint at %s\n",
7541 			paddress (gdbarch, pc));
7542 
7543   inferior_thread ()->control.exception_resume_breakpoint =
7544     set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7545 }
7546 
7547 /* Insert an exception resume breakpoint.  TP is the thread throwing
7548    the exception.  The block B is the block of the unwinder debug hook
7549    function.  FRAME is the frame corresponding to the call to this
7550    function.  SYM is the symbol of the function argument holding the
7551    target PC of the exception.  */
7552 
7553 static void
7554 insert_exception_resume_breakpoint (struct thread_info *tp,
7555 				    const struct block *b,
7556 				    struct frame_info *frame,
7557 				    struct symbol *sym)
7558 {
7559   TRY
7560     {
7561       struct block_symbol vsym;
7562       struct value *value;
7563       CORE_ADDR handler;
7564       struct breakpoint *bp;
7565 
7566       vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7567       value = read_var_value (vsym.symbol, vsym.block, frame);
7568       /* If the value was optimized out, revert to the old behavior.  */
7569       if (! value_optimized_out (value))
7570 	{
7571 	  handler = value_as_address (value);
7572 
7573 	  if (debug_infrun)
7574 	    fprintf_unfiltered (gdb_stdlog,
7575 				"infrun: exception resume at %lx\n",
7576 				(unsigned long) handler);
7577 
7578 	  bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7579 					       handler, bp_exception_resume);
7580 
7581 	  /* set_momentary_breakpoint_at_pc invalidates FRAME.  */
7582 	  frame = NULL;
7583 
7584 	  bp->thread = tp->global_num;
7585 	  inferior_thread ()->control.exception_resume_breakpoint = bp;
7586 	}
7587     }
7588   CATCH (e, RETURN_MASK_ERROR)
7589     {
7590       /* We want to ignore errors here.  */
7591     }
7592   END_CATCH
7593 }
7594 
7595 /* A helper for check_exception_resume that sets an
7596    exception-breakpoint based on a SystemTap probe.  */
7597 
7598 static void
7599 insert_exception_resume_from_probe (struct thread_info *tp,
7600 				    const struct bound_probe *probe,
7601 				    struct frame_info *frame)
7602 {
7603   struct value *arg_value;
7604   CORE_ADDR handler;
7605   struct breakpoint *bp;
7606 
7607   arg_value = probe_safe_evaluate_at_pc (frame, 1);
7608   if (!arg_value)
7609     return;
7610 
7611   handler = value_as_address (arg_value);
7612 
7613   if (debug_infrun)
7614     fprintf_unfiltered (gdb_stdlog,
7615 			"infrun: exception resume at %s\n",
7616 			paddress (get_objfile_arch (probe->objfile),
7617 				  handler));
7618 
7619   bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7620 				       handler, bp_exception_resume);
7621   bp->thread = tp->global_num;
7622   inferior_thread ()->control.exception_resume_breakpoint = bp;
7623 }
7624 
7625 /* This is called when an exception has been intercepted.  Check to
7626    see whether the exception's destination is of interest, and if so,
7627    set an exception resume breakpoint there.  */
7628 
7629 static void
7630 check_exception_resume (struct execution_control_state *ecs,
7631 			struct frame_info *frame)
7632 {
7633   struct bound_probe probe;
7634   struct symbol *func;
7635 
7636   /* First see if this exception unwinding breakpoint was set via a
7637      SystemTap probe point.  If so, the probe has two arguments: the
7638      CFA and the HANDLER.  We ignore the CFA, extract the handler, and
7639      set a breakpoint there.  */
7640   probe = find_probe_by_pc (get_frame_pc (frame));
7641   if (probe.probe)
7642     {
7643       insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7644       return;
7645     }
7646 
7647   func = get_frame_function (frame);
7648   if (!func)
7649     return;
7650 
7651   TRY
7652     {
7653       const struct block *b;
7654       struct block_iterator iter;
7655       struct symbol *sym;
7656       int argno = 0;
7657 
7658       /* The exception breakpoint is a thread-specific breakpoint on
7659 	 the unwinder's debug hook, declared as:
7660 
7661 	 void _Unwind_DebugHook (void *cfa, void *handler);
7662 
7663 	 The CFA argument indicates the frame to which control is
7664 	 about to be transferred.  HANDLER is the destination PC.
7665 
7666 	 We ignore the CFA and set a temporary breakpoint at HANDLER.
7667 	 This is not extremely efficient but it avoids issues in gdb
7668 	 with computing the DWARF CFA, and it also works even in weird
7669 	 cases such as throwing an exception from inside a signal
7670 	 handler.  */
7671 
7672       b = SYMBOL_BLOCK_VALUE (func);
7673       ALL_BLOCK_SYMBOLS (b, iter, sym)
7674 	{
7675 	  if (!SYMBOL_IS_ARGUMENT (sym))
7676 	    continue;
7677 
7678 	  if (argno == 0)
7679 	    ++argno;
7680 	  else
7681 	    {
7682 	      insert_exception_resume_breakpoint (ecs->event_thread,
7683 						  b, frame, sym);
7684 	      break;
7685 	    }
7686 	}
7687     }
7688   CATCH (e, RETURN_MASK_ERROR)
7689     {
7690     }
7691   END_CATCH
7692 }
7693 
7694 static void
7695 stop_waiting (struct execution_control_state *ecs)
7696 {
7697   if (debug_infrun)
7698     fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7699 
7700   clear_step_over_info ();
7701 
7702   /* Let callers know we don't want to wait for the inferior anymore.  */
7703   ecs->wait_some_more = 0;
7704 
7705   /* If all-stop, but the target is always in non-stop mode, stop all
7706      threads now that we're presenting the stop to the user.  */
7707   if (!non_stop && target_is_non_stop_p ())
7708     stop_all_threads ();
7709 }
7710 
7711 /* Like keep_going, but passes the signal to the inferior, even if the
7712    signal is set to nopass.  */
7713 
7714 static void
7715 keep_going_pass_signal (struct execution_control_state *ecs)
7716 {
7717   /* Make sure normal_stop is called if we get a QUIT handled before
7718      reaching resume.  */
7719   struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7720 
7721   gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7722   gdb_assert (!ecs->event_thread->resumed);
7723 
7724   /* Save the pc before execution, to compare with pc after stop.  */
7725   ecs->event_thread->prev_pc
7726     = regcache_read_pc (get_thread_regcache (ecs->ptid));
7727 
7728   if (ecs->event_thread->control.trap_expected)
7729     {
7730       struct thread_info *tp = ecs->event_thread;
7731 
7732       if (debug_infrun)
7733 	fprintf_unfiltered (gdb_stdlog,
7734 			    "infrun: %s has trap_expected set, "
7735 			    "resuming to collect trap\n",
7736 			    target_pid_to_str (tp->ptid));
7737 
7738       /* We haven't yet gotten our trap, and either: intercepted a
7739 	 non-signal event (e.g., a fork); or took a signal which we
7740 	 are supposed to pass through to the inferior.  Simply
7741 	 continue.  */
7742       discard_cleanups (old_cleanups);
7743       resume (ecs->event_thread->suspend.stop_signal);
7744     }
7745   else if (step_over_info_valid_p ())
7746     {
7747       /* Another thread is stepping over a breakpoint in-line.  If
7748 	 this thread needs a step-over too, queue the request.  In
7749 	 either case, this resume must be deferred for later.  */
7750       struct thread_info *tp = ecs->event_thread;
7751 
7752       if (ecs->hit_singlestep_breakpoint
7753 	  || thread_still_needs_step_over (tp))
7754 	{
7755 	  if (debug_infrun)
7756 	    fprintf_unfiltered (gdb_stdlog,
7757 				"infrun: step-over already in progress: "
7758 				"step-over for %s deferred\n",
7759 				target_pid_to_str (tp->ptid));
7760 	  thread_step_over_chain_enqueue (tp);
7761 	}
7762       else
7763 	{
7764 	  if (debug_infrun)
7765 	    fprintf_unfiltered (gdb_stdlog,
7766 				"infrun: step-over in progress: "
7767 				"resume of %s deferred\n",
7768 				target_pid_to_str (tp->ptid));
7769 	}
7770 
7771       discard_cleanups (old_cleanups);
7772     }
7773   else
7774     {
7775       struct regcache *regcache = get_current_regcache ();
7776       int remove_bp;
7777       int remove_wps;
7778       step_over_what step_what;
7779 
7780       /* Either the trap was not expected, but we are continuing
7781 	 anyway (if we got a signal, the user asked it be passed to
7782 	 the child)
7783 	 -- or --
7784 	 We got our expected trap, but decided we should resume from
7785 	 it.
7786 
7787 	 We're going to run this baby now!
7788 
7789 	 Note that insert_breakpoints won't try to re-insert
7790 	 already inserted breakpoints.  Therefore, we don't
7791 	 care if breakpoints were already inserted, or not.  */
7792 
7793       /* If we need to step over a breakpoint, and we're not using
7794 	 displaced stepping to do so, insert all breakpoints
7795 	 (watchpoints, etc.) but the one we're stepping over, step one
7796 	 instruction, and then re-insert the breakpoint when that step
7797 	 is finished.  */
7798 
7799       step_what = thread_still_needs_step_over (ecs->event_thread);
7800 
7801       remove_bp = (ecs->hit_singlestep_breakpoint
7802 		   || (step_what & STEP_OVER_BREAKPOINT));
7803       remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7804 
7805       /* We can't use displaced stepping if we need to step past a
7806 	 watchpoint.  The instruction copied to the scratch pad would
7807 	 still trigger the watchpoint.  */
7808       if (remove_bp
7809 	  && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7810 	{
7811 	  set_step_over_info (get_regcache_aspace (regcache),
7812 			      regcache_read_pc (regcache), remove_wps,
7813 			      ecs->event_thread->global_num);
7814 	}
7815       else if (remove_wps)
7816 	set_step_over_info (NULL, 0, remove_wps, -1);
7817 
7818       /* If we now need to do an in-line step-over, we need to stop
7819 	 all other threads.  Note this must be done before
7820 	 insert_breakpoints below, because that removes the breakpoint
7821 	 we're about to step over, otherwise other threads could miss
7822 	 it.  */
7823       if (step_over_info_valid_p () && target_is_non_stop_p ())
7824 	stop_all_threads ();
7825 
7826       /* Stop stepping if inserting breakpoints fails.  */
7827       TRY
7828 	{
7829 	  insert_breakpoints ();
7830 	}
7831       CATCH (e, RETURN_MASK_ERROR)
7832 	{
7833 	  exception_print (gdb_stderr, e);
7834 	  stop_waiting (ecs);
7835 	  discard_cleanups (old_cleanups);
7836 	  return;
7837 	}
7838       END_CATCH
7839 
7840       ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7841 
7842       discard_cleanups (old_cleanups);
7843       resume (ecs->event_thread->suspend.stop_signal);
7844     }
7845 
7846   prepare_to_wait (ecs);
7847 }
7848 
7849 /* Called when we should continue running the inferior, because the
7850    current event doesn't cause a user visible stop.  This does the
7851    resuming part; waiting for the next event is done elsewhere.  */
7852 
7853 static void
7854 keep_going (struct execution_control_state *ecs)
7855 {
7856   if (ecs->event_thread->control.trap_expected
7857       && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7858     ecs->event_thread->control.trap_expected = 0;
7859 
7860   if (!signal_program[ecs->event_thread->suspend.stop_signal])
7861     ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7862   keep_going_pass_signal (ecs);
7863 }
7864 
7865 /* This function normally comes after a resume, before
7866    handle_inferior_event exits.  It takes care of any last bits of
7867    housekeeping, and sets the all-important wait_some_more flag.  */
7868 
7869 static void
7870 prepare_to_wait (struct execution_control_state *ecs)
7871 {
7872   if (debug_infrun)
7873     fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7874 
7875   ecs->wait_some_more = 1;
7876 
7877   if (!target_is_async_p ())
7878     mark_infrun_async_event_handler ();
7879 }
7880 
7881 /* We are done with the step range of a step/next/si/ni command.
7882    Called once for each n of a "step n" operation.  */
7883 
7884 static void
7885 end_stepping_range (struct execution_control_state *ecs)
7886 {
7887   ecs->event_thread->control.stop_step = 1;
7888   stop_waiting (ecs);
7889 }
7890 
7891 /* Several print_*_reason functions to print why the inferior has stopped.
7892    We always print something when the inferior exits, or receives a signal.
7893    The rest of the cases are dealt with later on in normal_stop and
7894    print_it_typical.  Ideally there should be a call to one of these
7895    print_*_reason functions functions from handle_inferior_event each time
7896    stop_waiting is called.
7897 
7898    Note that we don't call these directly, instead we delegate that to
7899    the interpreters, through observers.  Interpreters then call these
7900    with whatever uiout is right.  */
7901 
7902 void
7903 print_end_stepping_range_reason (struct ui_out *uiout)
7904 {
7905   /* For CLI-like interpreters, print nothing.  */
7906 
7907   if (ui_out_is_mi_like_p (uiout))
7908     {
7909       ui_out_field_string (uiout, "reason",
7910 			   async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7911     }
7912 }
7913 
7914 void
7915 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7916 {
7917   annotate_signalled ();
7918   if (ui_out_is_mi_like_p (uiout))
7919     ui_out_field_string
7920       (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7921   ui_out_text (uiout, "\nProgram terminated with signal ");
7922   annotate_signal_name ();
7923   ui_out_field_string (uiout, "signal-name",
7924 		       gdb_signal_to_name (siggnal));
7925   annotate_signal_name_end ();
7926   ui_out_text (uiout, ", ");
7927   annotate_signal_string ();
7928   ui_out_field_string (uiout, "signal-meaning",
7929 		       gdb_signal_to_string (siggnal));
7930   annotate_signal_string_end ();
7931   ui_out_text (uiout, ".\n");
7932   ui_out_text (uiout, "The program no longer exists.\n");
7933 }
7934 
7935 void
7936 print_exited_reason (struct ui_out *uiout, int exitstatus)
7937 {
7938   struct inferior *inf = current_inferior ();
7939   const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7940 
7941   annotate_exited (exitstatus);
7942   if (exitstatus)
7943     {
7944       if (ui_out_is_mi_like_p (uiout))
7945 	ui_out_field_string (uiout, "reason",
7946 			     async_reason_lookup (EXEC_ASYNC_EXITED));
7947       ui_out_text (uiout, "[Inferior ");
7948       ui_out_text (uiout, plongest (inf->num));
7949       ui_out_text (uiout, " (");
7950       ui_out_text (uiout, pidstr);
7951       ui_out_text (uiout, ") exited with code ");
7952       ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7953       ui_out_text (uiout, "]\n");
7954     }
7955   else
7956     {
7957       if (ui_out_is_mi_like_p (uiout))
7958 	ui_out_field_string
7959 	  (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7960       ui_out_text (uiout, "[Inferior ");
7961       ui_out_text (uiout, plongest (inf->num));
7962       ui_out_text (uiout, " (");
7963       ui_out_text (uiout, pidstr);
7964       ui_out_text (uiout, ") exited normally]\n");
7965     }
7966 }
7967 
7968 /* Some targets/architectures can do extra processing/display of
7969    segmentation faults.  E.g., Intel MPX boundary faults.
7970    Call the architecture dependent function to handle the fault.  */
7971 
7972 static void
7973 handle_segmentation_fault (struct ui_out *uiout)
7974 {
7975   struct regcache *regcache = get_current_regcache ();
7976   struct gdbarch *gdbarch = get_regcache_arch (regcache);
7977 
7978   if (gdbarch_handle_segmentation_fault_p (gdbarch))
7979     gdbarch_handle_segmentation_fault (gdbarch, uiout);
7980 }
7981 
7982 void
7983 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7984 {
7985   struct thread_info *thr = inferior_thread ();
7986 
7987   annotate_signal ();
7988 
7989   if (ui_out_is_mi_like_p (uiout))
7990     ;
7991   else if (show_thread_that_caused_stop ())
7992     {
7993       const char *name;
7994 
7995       ui_out_text (uiout, "\nThread ");
7996       ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7997 
7998       name = thr->name != NULL ? thr->name : target_thread_name (thr);
7999       if (name != NULL)
8000 	{
8001 	  ui_out_text (uiout, " \"");
8002 	  ui_out_field_fmt (uiout, "name", "%s", name);
8003 	  ui_out_text (uiout, "\"");
8004 	}
8005     }
8006   else
8007     ui_out_text (uiout, "\nProgram");
8008 
8009   if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
8010     ui_out_text (uiout, " stopped");
8011   else
8012     {
8013       ui_out_text (uiout, " received signal ");
8014       annotate_signal_name ();
8015       if (ui_out_is_mi_like_p (uiout))
8016 	ui_out_field_string
8017 	  (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8018       ui_out_field_string (uiout, "signal-name",
8019 			   gdb_signal_to_name (siggnal));
8020       annotate_signal_name_end ();
8021       ui_out_text (uiout, ", ");
8022       annotate_signal_string ();
8023       ui_out_field_string (uiout, "signal-meaning",
8024 			   gdb_signal_to_string (siggnal));
8025 
8026       if (siggnal == GDB_SIGNAL_SEGV)
8027 	handle_segmentation_fault (uiout);
8028 
8029       annotate_signal_string_end ();
8030     }
8031   ui_out_text (uiout, ".\n");
8032 }
8033 
8034 void
8035 print_no_history_reason (struct ui_out *uiout)
8036 {
8037   ui_out_text (uiout, "\nNo more reverse-execution history.\n");
8038 }
8039 
8040 /* Print current location without a level number, if we have changed
8041    functions or hit a breakpoint.  Print source line if we have one.
8042    bpstat_print contains the logic deciding in detail what to print,
8043    based on the event(s) that just occurred.  */
8044 
8045 static void
8046 print_stop_location (struct target_waitstatus *ws)
8047 {
8048   int bpstat_ret;
8049   enum print_what source_flag;
8050   int do_frame_printing = 1;
8051   struct thread_info *tp = inferior_thread ();
8052 
8053   bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8054   switch (bpstat_ret)
8055     {
8056     case PRINT_UNKNOWN:
8057       /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8058 	 should) carry around the function and does (or should) use
8059 	 that when doing a frame comparison.  */
8060       if (tp->control.stop_step
8061 	  && frame_id_eq (tp->control.step_frame_id,
8062 			  get_frame_id (get_current_frame ()))
8063 	  && tp->control.step_start_function == find_pc_function (stop_pc))
8064 	{
8065 	  /* Finished step, just print source line.  */
8066 	  source_flag = SRC_LINE;
8067 	}
8068       else
8069 	{
8070 	  /* Print location and source line.  */
8071 	  source_flag = SRC_AND_LOC;
8072 	}
8073       break;
8074     case PRINT_SRC_AND_LOC:
8075       /* Print location and source line.  */
8076       source_flag = SRC_AND_LOC;
8077       break;
8078     case PRINT_SRC_ONLY:
8079       source_flag = SRC_LINE;
8080       break;
8081     case PRINT_NOTHING:
8082       /* Something bogus.  */
8083       source_flag = SRC_LINE;
8084       do_frame_printing = 0;
8085       break;
8086     default:
8087       internal_error (__FILE__, __LINE__, _("Unknown value."));
8088     }
8089 
8090   /* The behavior of this routine with respect to the source
8091      flag is:
8092      SRC_LINE: Print only source line
8093      LOCATION: Print only location
8094      SRC_AND_LOC: Print location and source line.  */
8095   if (do_frame_printing)
8096     print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8097 }
8098 
8099 /* See infrun.h.  */
8100 
8101 void
8102 print_stop_event (struct ui_out *uiout)
8103 {
8104   struct cleanup *old_chain;
8105   struct target_waitstatus last;
8106   ptid_t last_ptid;
8107   struct thread_info *tp;
8108 
8109   get_last_target_status (&last_ptid, &last);
8110 
8111   old_chain = make_cleanup_restore_current_uiout ();
8112   current_uiout = uiout;
8113 
8114   print_stop_location (&last);
8115 
8116   /* Display the auto-display expressions.  */
8117   do_displays ();
8118 
8119   do_cleanups (old_chain);
8120 
8121   tp = inferior_thread ();
8122   if (tp->thread_fsm != NULL
8123       && thread_fsm_finished_p (tp->thread_fsm))
8124     {
8125       struct return_value_info *rv;
8126 
8127       rv = thread_fsm_return_value (tp->thread_fsm);
8128       if (rv != NULL)
8129 	print_return_value (uiout, rv);
8130     }
8131 }
8132 
8133 /* See infrun.h.  */
8134 
8135 void
8136 maybe_remove_breakpoints (void)
8137 {
8138   if (!breakpoints_should_be_inserted_now () && target_has_execution)
8139     {
8140       if (remove_breakpoints ())
8141 	{
8142 	  target_terminal_ours_for_output ();
8143 	  printf_filtered (_("Cannot remove breakpoints because "
8144 			     "program is no longer writable.\nFurther "
8145 			     "execution is probably impossible.\n"));
8146 	}
8147     }
8148 }
8149 
8150 /* The execution context that just caused a normal stop.  */
8151 
8152 struct stop_context
8153 {
8154   /* The stop ID.  */
8155   ULONGEST stop_id;
8156 
8157   /* The event PTID.  */
8158 
8159   ptid_t ptid;
8160 
8161   /* If stopp for a thread event, this is the thread that caused the
8162      stop.  */
8163   struct thread_info *thread;
8164 
8165   /* The inferior that caused the stop.  */
8166   int inf_num;
8167 };
8168 
8169 /* Returns a new stop context.  If stopped for a thread event, this
8170    takes a strong reference to the thread.  */
8171 
8172 static struct stop_context *
8173 save_stop_context (void)
8174 {
8175   struct stop_context *sc = XNEW (struct stop_context);
8176 
8177   sc->stop_id = get_stop_id ();
8178   sc->ptid = inferior_ptid;
8179   sc->inf_num = current_inferior ()->num;
8180 
8181   if (!ptid_equal (inferior_ptid, null_ptid))
8182     {
8183       /* Take a strong reference so that the thread can't be deleted
8184 	 yet.  */
8185       sc->thread = inferior_thread ();
8186       sc->thread->refcount++;
8187     }
8188   else
8189     sc->thread = NULL;
8190 
8191   return sc;
8192 }
8193 
8194 /* Release a stop context previously created with save_stop_context.
8195    Releases the strong reference to the thread as well. */
8196 
8197 static void
8198 release_stop_context_cleanup (void *arg)
8199 {
8200   struct stop_context *sc = (struct stop_context *) arg;
8201 
8202   if (sc->thread != NULL)
8203     sc->thread->refcount--;
8204   xfree (sc);
8205 }
8206 
8207 /* Return true if the current context no longer matches the saved stop
8208    context.  */
8209 
8210 static int
8211 stop_context_changed (struct stop_context *prev)
8212 {
8213   if (!ptid_equal (prev->ptid, inferior_ptid))
8214     return 1;
8215   if (prev->inf_num != current_inferior ()->num)
8216     return 1;
8217   if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8218     return 1;
8219   if (get_stop_id () != prev->stop_id)
8220     return 1;
8221   return 0;
8222 }
8223 
8224 /* See infrun.h.  */
8225 
8226 int
8227 normal_stop (void)
8228 {
8229   struct target_waitstatus last;
8230   ptid_t last_ptid;
8231   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8232   ptid_t pid_ptid;
8233   struct switch_thru_all_uis state;
8234 
8235   get_last_target_status (&last_ptid, &last);
8236 
8237   new_stop_id ();
8238 
8239   /* If an exception is thrown from this point on, make sure to
8240      propagate GDB's knowledge of the executing state to the
8241      frontend/user running state.  A QUIT is an easy exception to see
8242      here, so do this before any filtered output.  */
8243   if (!non_stop)
8244     make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8245   else if (last.kind == TARGET_WAITKIND_SIGNALLED
8246 	   || last.kind == TARGET_WAITKIND_EXITED)
8247     {
8248       /* On some targets, we may still have live threads in the
8249 	 inferior when we get a process exit event.  E.g., for
8250 	 "checkpoint", when the current checkpoint/fork exits,
8251 	 linux-fork.c automatically switches to another fork from
8252 	 within target_mourn_inferior.  */
8253       if (!ptid_equal (inferior_ptid, null_ptid))
8254 	{
8255 	  pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8256 	  make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8257 	}
8258     }
8259   else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8260     make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8261 
8262   /* As we're presenting a stop, and potentially removing breakpoints,
8263      update the thread list so we can tell whether there are threads
8264      running on the target.  With target remote, for example, we can
8265      only learn about new threads when we explicitly update the thread
8266      list.  Do this before notifying the interpreters about signal
8267      stops, end of stepping ranges, etc., so that the "new thread"
8268      output is emitted before e.g., "Program received signal FOO",
8269      instead of after.  */
8270   update_thread_list ();
8271 
8272   if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8273     observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8274 
8275   /* As with the notification of thread events, we want to delay
8276      notifying the user that we've switched thread context until
8277      the inferior actually stops.
8278 
8279      There's no point in saying anything if the inferior has exited.
8280      Note that SIGNALLED here means "exited with a signal", not
8281      "received a signal".
8282 
8283      Also skip saying anything in non-stop mode.  In that mode, as we
8284      don't want GDB to switch threads behind the user's back, to avoid
8285      races where the user is typing a command to apply to thread x,
8286      but GDB switches to thread y before the user finishes entering
8287      the command, fetch_inferior_event installs a cleanup to restore
8288      the current thread back to the thread the user had selected right
8289      after this event is handled, so we're not really switching, only
8290      informing of a stop.  */
8291   if (!non_stop
8292       && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8293       && target_has_execution
8294       && last.kind != TARGET_WAITKIND_SIGNALLED
8295       && last.kind != TARGET_WAITKIND_EXITED
8296       && last.kind != TARGET_WAITKIND_NO_RESUMED)
8297     {
8298       SWITCH_THRU_ALL_UIS (state)
8299 	{
8300 	  target_terminal_ours_for_output ();
8301 	  printf_filtered (_("[Switching to %s]\n"),
8302 			   target_pid_to_str (inferior_ptid));
8303 	  annotate_thread_changed ();
8304 	}
8305       previous_inferior_ptid = inferior_ptid;
8306     }
8307 
8308   if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8309     {
8310       SWITCH_THRU_ALL_UIS (state)
8311 	if (current_ui->prompt_state == PROMPT_BLOCKED)
8312 	  {
8313 	    target_terminal_ours_for_output ();
8314 	    printf_filtered (_("No unwaited-for children left.\n"));
8315 	  }
8316     }
8317 
8318   /* Note: this depends on the update_thread_list call above.  */
8319   maybe_remove_breakpoints ();
8320 
8321   /* If an auto-display called a function and that got a signal,
8322      delete that auto-display to avoid an infinite recursion.  */
8323 
8324   if (stopped_by_random_signal)
8325     disable_current_display ();
8326 
8327   SWITCH_THRU_ALL_UIS (state)
8328     {
8329       async_enable_stdin ();
8330     }
8331 
8332   /* Let the user/frontend see the threads as stopped.  */
8333   do_cleanups (old_chain);
8334 
8335   /* Select innermost stack frame - i.e., current frame is frame 0,
8336      and current location is based on that.  Handle the case where the
8337      dummy call is returning after being stopped.  E.g. the dummy call
8338      previously hit a breakpoint.  (If the dummy call returns
8339      normally, we won't reach here.)  Do this before the stop hook is
8340      run, so that it doesn't get to see the temporary dummy frame,
8341      which is not where we'll present the stop.  */
8342   if (has_stack_frames ())
8343     {
8344       if (stop_stack_dummy == STOP_STACK_DUMMY)
8345 	{
8346 	  /* Pop the empty frame that contains the stack dummy.  This
8347 	     also restores inferior state prior to the call (struct
8348 	     infcall_suspend_state).  */
8349 	  struct frame_info *frame = get_current_frame ();
8350 
8351 	  gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8352 	  frame_pop (frame);
8353 	  /* frame_pop calls reinit_frame_cache as the last thing it
8354 	     does which means there's now no selected frame.  */
8355 	}
8356 
8357       select_frame (get_current_frame ());
8358 
8359       /* Set the current source location.  */
8360       set_current_sal_from_frame (get_current_frame ());
8361     }
8362 
8363   /* Look up the hook_stop and run it (CLI internally handles problem
8364      of stop_command's pre-hook not existing).  */
8365   if (stop_command != NULL)
8366     {
8367       struct stop_context *saved_context = save_stop_context ();
8368       struct cleanup *old_chain
8369 	= make_cleanup (release_stop_context_cleanup, saved_context);
8370 
8371       catch_errors (hook_stop_stub, stop_command,
8372 		    "Error while running hook_stop:\n", RETURN_MASK_ALL);
8373 
8374       /* If the stop hook resumes the target, then there's no point in
8375 	 trying to notify about the previous stop; its context is
8376 	 gone.  Likewise if the command switches thread or inferior --
8377 	 the observers would print a stop for the wrong
8378 	 thread/inferior.  */
8379       if (stop_context_changed (saved_context))
8380 	{
8381 	  do_cleanups (old_chain);
8382 	  return 1;
8383 	}
8384       do_cleanups (old_chain);
8385     }
8386 
8387   /* Notify observers about the stop.  This is where the interpreters
8388      print the stop event.  */
8389   if (!ptid_equal (inferior_ptid, null_ptid))
8390     observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8391 				 stop_print_frame);
8392   else
8393     observer_notify_normal_stop (NULL, stop_print_frame);
8394 
8395   annotate_stopped ();
8396 
8397   if (target_has_execution)
8398     {
8399       if (last.kind != TARGET_WAITKIND_SIGNALLED
8400 	  && last.kind != TARGET_WAITKIND_EXITED)
8401 	/* Delete the breakpoint we stopped at, if it wants to be deleted.
8402 	   Delete any breakpoint that is to be deleted at the next stop.  */
8403 	breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8404     }
8405 
8406   /* Try to get rid of automatically added inferiors that are no
8407      longer needed.  Keeping those around slows down things linearly.
8408      Note that this never removes the current inferior.  */
8409   prune_inferiors ();
8410 
8411   return 0;
8412 }
8413 
8414 static int
8415 hook_stop_stub (void *cmd)
8416 {
8417   execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8418   return (0);
8419 }
8420 
8421 int
8422 signal_stop_state (int signo)
8423 {
8424   return signal_stop[signo];
8425 }
8426 
8427 int
8428 signal_print_state (int signo)
8429 {
8430   return signal_print[signo];
8431 }
8432 
8433 int
8434 signal_pass_state (int signo)
8435 {
8436   return signal_program[signo];
8437 }
8438 
8439 static void
8440 signal_cache_update (int signo)
8441 {
8442   if (signo == -1)
8443     {
8444       for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8445 	signal_cache_update (signo);
8446 
8447       return;
8448     }
8449 
8450   signal_pass[signo] = (signal_stop[signo] == 0
8451 			&& signal_print[signo] == 0
8452 			&& signal_program[signo] == 1
8453 			&& signal_catch[signo] == 0);
8454 }
8455 
8456 int
8457 signal_stop_update (int signo, int state)
8458 {
8459   int ret = signal_stop[signo];
8460 
8461   signal_stop[signo] = state;
8462   signal_cache_update (signo);
8463   return ret;
8464 }
8465 
8466 int
8467 signal_print_update (int signo, int state)
8468 {
8469   int ret = signal_print[signo];
8470 
8471   signal_print[signo] = state;
8472   signal_cache_update (signo);
8473   return ret;
8474 }
8475 
8476 int
8477 signal_pass_update (int signo, int state)
8478 {
8479   int ret = signal_program[signo];
8480 
8481   signal_program[signo] = state;
8482   signal_cache_update (signo);
8483   return ret;
8484 }
8485 
8486 /* Update the global 'signal_catch' from INFO and notify the
8487    target.  */
8488 
8489 void
8490 signal_catch_update (const unsigned int *info)
8491 {
8492   int i;
8493 
8494   for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8495     signal_catch[i] = info[i] > 0;
8496   signal_cache_update (-1);
8497   target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8498 }
8499 
8500 static void
8501 sig_print_header (void)
8502 {
8503   printf_filtered (_("Signal        Stop\tPrint\tPass "
8504 		     "to program\tDescription\n"));
8505 }
8506 
8507 static void
8508 sig_print_info (enum gdb_signal oursig)
8509 {
8510   const char *name = gdb_signal_to_name (oursig);
8511   int name_padding = 13 - strlen (name);
8512 
8513   if (name_padding <= 0)
8514     name_padding = 0;
8515 
8516   printf_filtered ("%s", name);
8517   printf_filtered ("%*.*s ", name_padding, name_padding, "                 ");
8518   printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8519   printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8520   printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8521   printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8522 }
8523 
8524 /* Specify how various signals in the inferior should be handled.  */
8525 
8526 static void
8527 handle_command (char *args, int from_tty)
8528 {
8529   char **argv;
8530   int digits, wordlen;
8531   int sigfirst, signum, siglast;
8532   enum gdb_signal oursig;
8533   int allsigs;
8534   int nsigs;
8535   unsigned char *sigs;
8536   struct cleanup *old_chain;
8537 
8538   if (args == NULL)
8539     {
8540       error_no_arg (_("signal to handle"));
8541     }
8542 
8543   /* Allocate and zero an array of flags for which signals to handle.  */
8544 
8545   nsigs = (int) GDB_SIGNAL_LAST;
8546   sigs = (unsigned char *) alloca (nsigs);
8547   memset (sigs, 0, nsigs);
8548 
8549   /* Break the command line up into args.  */
8550 
8551   argv = gdb_buildargv (args);
8552   old_chain = make_cleanup_freeargv (argv);
8553 
8554   /* Walk through the args, looking for signal oursigs, signal names, and
8555      actions.  Signal numbers and signal names may be interspersed with
8556      actions, with the actions being performed for all signals cumulatively
8557      specified.  Signal ranges can be specified as <LOW>-<HIGH>.  */
8558 
8559   while (*argv != NULL)
8560     {
8561       wordlen = strlen (*argv);
8562       for (digits = 0; isdigit ((*argv)[digits]); digits++)
8563 	{;
8564 	}
8565       allsigs = 0;
8566       sigfirst = siglast = -1;
8567 
8568       if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8569 	{
8570 	  /* Apply action to all signals except those used by the
8571 	     debugger.  Silently skip those.  */
8572 	  allsigs = 1;
8573 	  sigfirst = 0;
8574 	  siglast = nsigs - 1;
8575 	}
8576       else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8577 	{
8578 	  SET_SIGS (nsigs, sigs, signal_stop);
8579 	  SET_SIGS (nsigs, sigs, signal_print);
8580 	}
8581       else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8582 	{
8583 	  UNSET_SIGS (nsigs, sigs, signal_program);
8584 	}
8585       else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8586 	{
8587 	  SET_SIGS (nsigs, sigs, signal_print);
8588 	}
8589       else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8590 	{
8591 	  SET_SIGS (nsigs, sigs, signal_program);
8592 	}
8593       else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8594 	{
8595 	  UNSET_SIGS (nsigs, sigs, signal_stop);
8596 	}
8597       else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8598 	{
8599 	  SET_SIGS (nsigs, sigs, signal_program);
8600 	}
8601       else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8602 	{
8603 	  UNSET_SIGS (nsigs, sigs, signal_print);
8604 	  UNSET_SIGS (nsigs, sigs, signal_stop);
8605 	}
8606       else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8607 	{
8608 	  UNSET_SIGS (nsigs, sigs, signal_program);
8609 	}
8610       else if (digits > 0)
8611 	{
8612 	  /* It is numeric.  The numeric signal refers to our own
8613 	     internal signal numbering from target.h, not to host/target
8614 	     signal  number.  This is a feature; users really should be
8615 	     using symbolic names anyway, and the common ones like
8616 	     SIGHUP, SIGINT, SIGALRM, etc. will work right anyway.  */
8617 
8618 	  sigfirst = siglast = (int)
8619 	    gdb_signal_from_command (atoi (*argv));
8620 	  if ((*argv)[digits] == '-')
8621 	    {
8622 	      siglast = (int)
8623 		gdb_signal_from_command (atoi ((*argv) + digits + 1));
8624 	    }
8625 	  if (sigfirst > siglast)
8626 	    {
8627 	      /* Bet he didn't figure we'd think of this case...  */
8628 	      signum = sigfirst;
8629 	      sigfirst = siglast;
8630 	      siglast = signum;
8631 	    }
8632 	}
8633       else
8634 	{
8635 	  oursig = gdb_signal_from_name (*argv);
8636 	  if (oursig != GDB_SIGNAL_UNKNOWN)
8637 	    {
8638 	      sigfirst = siglast = (int) oursig;
8639 	    }
8640 	  else
8641 	    {
8642 	      /* Not a number and not a recognized flag word => complain.  */
8643 	      error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8644 	    }
8645 	}
8646 
8647       /* If any signal numbers or symbol names were found, set flags for
8648          which signals to apply actions to.  */
8649 
8650       for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8651 	{
8652 	  switch ((enum gdb_signal) signum)
8653 	    {
8654 	    case GDB_SIGNAL_TRAP:
8655 	    case GDB_SIGNAL_INT:
8656 	      if (!allsigs && !sigs[signum])
8657 		{
8658 		  if (query (_("%s is used by the debugger.\n\
8659 Are you sure you want to change it? "),
8660 			     gdb_signal_to_name ((enum gdb_signal) signum)))
8661 		    {
8662 		      sigs[signum] = 1;
8663 		    }
8664 		  else
8665 		    {
8666 		      printf_unfiltered (_("Not confirmed, unchanged.\n"));
8667 		      gdb_flush (gdb_stdout);
8668 		    }
8669 		}
8670 	      break;
8671 	    case GDB_SIGNAL_0:
8672 	    case GDB_SIGNAL_DEFAULT:
8673 	    case GDB_SIGNAL_UNKNOWN:
8674 	      /* Make sure that "all" doesn't print these.  */
8675 	      break;
8676 	    default:
8677 	      sigs[signum] = 1;
8678 	      break;
8679 	    }
8680 	}
8681 
8682       argv++;
8683     }
8684 
8685   for (signum = 0; signum < nsigs; signum++)
8686     if (sigs[signum])
8687       {
8688 	signal_cache_update (-1);
8689 	target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8690 	target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8691 
8692 	if (from_tty)
8693 	  {
8694 	    /* Show the results.  */
8695 	    sig_print_header ();
8696 	    for (; signum < nsigs; signum++)
8697 	      if (sigs[signum])
8698 		sig_print_info ((enum gdb_signal) signum);
8699 	  }
8700 
8701 	break;
8702       }
8703 
8704   do_cleanups (old_chain);
8705 }
8706 
8707 /* Complete the "handle" command.  */
8708 
8709 static VEC (char_ptr) *
8710 handle_completer (struct cmd_list_element *ignore,
8711 		  const char *text, const char *word)
8712 {
8713   VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8714   static const char * const keywords[] =
8715     {
8716       "all",
8717       "stop",
8718       "ignore",
8719       "print",
8720       "pass",
8721       "nostop",
8722       "noignore",
8723       "noprint",
8724       "nopass",
8725       NULL,
8726     };
8727 
8728   vec_signals = signal_completer (ignore, text, word);
8729   vec_keywords = complete_on_enum (keywords, word, word);
8730 
8731   return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8732   VEC_free (char_ptr, vec_signals);
8733   VEC_free (char_ptr, vec_keywords);
8734   return return_val;
8735 }
8736 
8737 enum gdb_signal
8738 gdb_signal_from_command (int num)
8739 {
8740   if (num >= 1 && num <= 15)
8741     return (enum gdb_signal) num;
8742   error (_("Only signals 1-15 are valid as numeric signals.\n\
8743 Use \"info signals\" for a list of symbolic signals."));
8744 }
8745 
8746 /* Print current contents of the tables set by the handle command.
8747    It is possible we should just be printing signals actually used
8748    by the current target (but for things to work right when switching
8749    targets, all signals should be in the signal tables).  */
8750 
8751 static void
8752 signals_info (char *signum_exp, int from_tty)
8753 {
8754   enum gdb_signal oursig;
8755 
8756   sig_print_header ();
8757 
8758   if (signum_exp)
8759     {
8760       /* First see if this is a symbol name.  */
8761       oursig = gdb_signal_from_name (signum_exp);
8762       if (oursig == GDB_SIGNAL_UNKNOWN)
8763 	{
8764 	  /* No, try numeric.  */
8765 	  oursig =
8766 	    gdb_signal_from_command (parse_and_eval_long (signum_exp));
8767 	}
8768       sig_print_info (oursig);
8769       return;
8770     }
8771 
8772   printf_filtered ("\n");
8773   /* These ugly casts brought to you by the native VAX compiler.  */
8774   for (oursig = GDB_SIGNAL_FIRST;
8775        (int) oursig < (int) GDB_SIGNAL_LAST;
8776        oursig = (enum gdb_signal) ((int) oursig + 1))
8777     {
8778       QUIT;
8779 
8780       if (oursig != GDB_SIGNAL_UNKNOWN
8781 	  && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8782 	sig_print_info (oursig);
8783     }
8784 
8785   printf_filtered (_("\nUse the \"handle\" command "
8786 		     "to change these tables.\n"));
8787 }
8788 
8789 /* The $_siginfo convenience variable is a bit special.  We don't know
8790    for sure the type of the value until we actually have a chance to
8791    fetch the data.  The type can change depending on gdbarch, so it is
8792    also dependent on which thread you have selected.
8793 
8794      1. making $_siginfo be an internalvar that creates a new value on
8795      access.
8796 
8797      2. making the value of $_siginfo be an lval_computed value.  */
8798 
8799 /* This function implements the lval_computed support for reading a
8800    $_siginfo value.  */
8801 
8802 static void
8803 siginfo_value_read (struct value *v)
8804 {
8805   LONGEST transferred;
8806 
8807   /* If we can access registers, so can we access $_siginfo.  Likewise
8808      vice versa.  */
8809   validate_registers_access ();
8810 
8811   transferred =
8812     target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8813 		 NULL,
8814 		 value_contents_all_raw (v),
8815 		 value_offset (v),
8816 		 TYPE_LENGTH (value_type (v)));
8817 
8818   if (transferred != TYPE_LENGTH (value_type (v)))
8819     error (_("Unable to read siginfo"));
8820 }
8821 
8822 /* This function implements the lval_computed support for writing a
8823    $_siginfo value.  */
8824 
8825 static void
8826 siginfo_value_write (struct value *v, struct value *fromval)
8827 {
8828   LONGEST transferred;
8829 
8830   /* If we can access registers, so can we access $_siginfo.  Likewise
8831      vice versa.  */
8832   validate_registers_access ();
8833 
8834   transferred = target_write (&current_target,
8835 			      TARGET_OBJECT_SIGNAL_INFO,
8836 			      NULL,
8837 			      value_contents_all_raw (fromval),
8838 			      value_offset (v),
8839 			      TYPE_LENGTH (value_type (fromval)));
8840 
8841   if (transferred != TYPE_LENGTH (value_type (fromval)))
8842     error (_("Unable to write siginfo"));
8843 }
8844 
8845 static const struct lval_funcs siginfo_value_funcs =
8846   {
8847     siginfo_value_read,
8848     siginfo_value_write
8849   };
8850 
8851 /* Return a new value with the correct type for the siginfo object of
8852    the current thread using architecture GDBARCH.  Return a void value
8853    if there's no object available.  */
8854 
8855 static struct value *
8856 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8857 		    void *ignore)
8858 {
8859   if (target_has_stack
8860       && !ptid_equal (inferior_ptid, null_ptid)
8861       && gdbarch_get_siginfo_type_p (gdbarch))
8862     {
8863       struct type *type = gdbarch_get_siginfo_type (gdbarch);
8864 
8865       return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8866     }
8867 
8868   return allocate_value (builtin_type (gdbarch)->builtin_void);
8869 }
8870 
8871 
8872 /* infcall_suspend_state contains state about the program itself like its
8873    registers and any signal it received when it last stopped.
8874    This state must be restored regardless of how the inferior function call
8875    ends (either successfully, or after it hits a breakpoint or signal)
8876    if the program is to properly continue where it left off.  */
8877 
8878 struct infcall_suspend_state
8879 {
8880   struct thread_suspend_state thread_suspend;
8881 
8882   /* Other fields:  */
8883   CORE_ADDR stop_pc;
8884   struct regcache *registers;
8885 
8886   /* Format of SIGINFO_DATA or NULL if it is not present.  */
8887   struct gdbarch *siginfo_gdbarch;
8888 
8889   /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8890      TYPE_LENGTH (gdbarch_get_siginfo_type ()).  For different gdbarch the
8891      content would be invalid.  */
8892   gdb_byte *siginfo_data;
8893 };
8894 
8895 struct infcall_suspend_state *
8896 save_infcall_suspend_state (void)
8897 {
8898   struct infcall_suspend_state *inf_state;
8899   struct thread_info *tp = inferior_thread ();
8900   struct regcache *regcache = get_current_regcache ();
8901   struct gdbarch *gdbarch = get_regcache_arch (regcache);
8902   gdb_byte *siginfo_data = NULL;
8903 
8904   if (gdbarch_get_siginfo_type_p (gdbarch))
8905     {
8906       struct type *type = gdbarch_get_siginfo_type (gdbarch);
8907       size_t len = TYPE_LENGTH (type);
8908       struct cleanup *back_to;
8909 
8910       siginfo_data = (gdb_byte *) xmalloc (len);
8911       back_to = make_cleanup (xfree, siginfo_data);
8912 
8913       if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8914 		       siginfo_data, 0, len) == len)
8915 	discard_cleanups (back_to);
8916       else
8917 	{
8918 	  /* Errors ignored.  */
8919 	  do_cleanups (back_to);
8920 	  siginfo_data = NULL;
8921 	}
8922     }
8923 
8924   inf_state = XCNEW (struct infcall_suspend_state);
8925 
8926   if (siginfo_data)
8927     {
8928       inf_state->siginfo_gdbarch = gdbarch;
8929       inf_state->siginfo_data = siginfo_data;
8930     }
8931 
8932   inf_state->thread_suspend = tp->suspend;
8933 
8934   /* run_inferior_call will not use the signal due to its `proceed' call with
8935      GDB_SIGNAL_0 anyway.  */
8936   tp->suspend.stop_signal = GDB_SIGNAL_0;
8937 
8938   inf_state->stop_pc = stop_pc;
8939 
8940   inf_state->registers = regcache_dup (regcache);
8941 
8942   return inf_state;
8943 }
8944 
8945 /* Restore inferior session state to INF_STATE.  */
8946 
8947 void
8948 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8949 {
8950   struct thread_info *tp = inferior_thread ();
8951   struct regcache *regcache = get_current_regcache ();
8952   struct gdbarch *gdbarch = get_regcache_arch (regcache);
8953 
8954   tp->suspend = inf_state->thread_suspend;
8955 
8956   stop_pc = inf_state->stop_pc;
8957 
8958   if (inf_state->siginfo_gdbarch == gdbarch)
8959     {
8960       struct type *type = gdbarch_get_siginfo_type (gdbarch);
8961 
8962       /* Errors ignored.  */
8963       target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8964 		    inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8965     }
8966 
8967   /* The inferior can be gone if the user types "print exit(0)"
8968      (and perhaps other times).  */
8969   if (target_has_execution)
8970     /* NB: The register write goes through to the target.  */
8971     regcache_cpy (regcache, inf_state->registers);
8972 
8973   discard_infcall_suspend_state (inf_state);
8974 }
8975 
8976 static void
8977 do_restore_infcall_suspend_state_cleanup (void *state)
8978 {
8979   restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8980 }
8981 
8982 struct cleanup *
8983 make_cleanup_restore_infcall_suspend_state
8984   (struct infcall_suspend_state *inf_state)
8985 {
8986   return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8987 }
8988 
8989 void
8990 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8991 {
8992   regcache_xfree (inf_state->registers);
8993   xfree (inf_state->siginfo_data);
8994   xfree (inf_state);
8995 }
8996 
8997 struct regcache *
8998 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8999 {
9000   return inf_state->registers;
9001 }
9002 
9003 /* infcall_control_state contains state regarding gdb's control of the
9004    inferior itself like stepping control.  It also contains session state like
9005    the user's currently selected frame.  */
9006 
9007 struct infcall_control_state
9008 {
9009   struct thread_control_state thread_control;
9010   struct inferior_control_state inferior_control;
9011 
9012   /* Other fields:  */
9013   enum stop_stack_kind stop_stack_dummy;
9014   int stopped_by_random_signal;
9015 
9016   /* ID if the selected frame when the inferior function call was made.  */
9017   struct frame_id selected_frame_id;
9018 };
9019 
9020 /* Save all of the information associated with the inferior<==>gdb
9021    connection.  */
9022 
9023 struct infcall_control_state *
9024 save_infcall_control_state (void)
9025 {
9026   struct infcall_control_state *inf_status =
9027     XNEW (struct infcall_control_state);
9028   struct thread_info *tp = inferior_thread ();
9029   struct inferior *inf = current_inferior ();
9030 
9031   inf_status->thread_control = tp->control;
9032   inf_status->inferior_control = inf->control;
9033 
9034   tp->control.step_resume_breakpoint = NULL;
9035   tp->control.exception_resume_breakpoint = NULL;
9036 
9037   /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9038      chain.  If caller's caller is walking the chain, they'll be happier if we
9039      hand them back the original chain when restore_infcall_control_state is
9040      called.  */
9041   tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9042 
9043   /* Other fields:  */
9044   inf_status->stop_stack_dummy = stop_stack_dummy;
9045   inf_status->stopped_by_random_signal = stopped_by_random_signal;
9046 
9047   inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9048 
9049   return inf_status;
9050 }
9051 
9052 static int
9053 restore_selected_frame (void *args)
9054 {
9055   struct frame_id *fid = (struct frame_id *) args;
9056   struct frame_info *frame;
9057 
9058   frame = frame_find_by_id (*fid);
9059 
9060   /* If inf_status->selected_frame_id is NULL, there was no previously
9061      selected frame.  */
9062   if (frame == NULL)
9063     {
9064       warning (_("Unable to restore previously selected frame."));
9065       return 0;
9066     }
9067 
9068   select_frame (frame);
9069 
9070   return (1);
9071 }
9072 
9073 /* Restore inferior session state to INF_STATUS.  */
9074 
9075 void
9076 restore_infcall_control_state (struct infcall_control_state *inf_status)
9077 {
9078   struct thread_info *tp = inferior_thread ();
9079   struct inferior *inf = current_inferior ();
9080 
9081   if (tp->control.step_resume_breakpoint)
9082     tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9083 
9084   if (tp->control.exception_resume_breakpoint)
9085     tp->control.exception_resume_breakpoint->disposition
9086       = disp_del_at_next_stop;
9087 
9088   /* Handle the bpstat_copy of the chain.  */
9089   bpstat_clear (&tp->control.stop_bpstat);
9090 
9091   tp->control = inf_status->thread_control;
9092   inf->control = inf_status->inferior_control;
9093 
9094   /* Other fields:  */
9095   stop_stack_dummy = inf_status->stop_stack_dummy;
9096   stopped_by_random_signal = inf_status->stopped_by_random_signal;
9097 
9098   if (target_has_stack)
9099     {
9100       /* The point of catch_errors is that if the stack is clobbered,
9101          walking the stack might encounter a garbage pointer and
9102          error() trying to dereference it.  */
9103       if (catch_errors
9104 	  (restore_selected_frame, &inf_status->selected_frame_id,
9105 	   "Unable to restore previously selected frame:\n",
9106 	   RETURN_MASK_ERROR) == 0)
9107 	/* Error in restoring the selected frame.  Select the innermost
9108 	   frame.  */
9109 	select_frame (get_current_frame ());
9110     }
9111 
9112   xfree (inf_status);
9113 }
9114 
9115 static void
9116 do_restore_infcall_control_state_cleanup (void *sts)
9117 {
9118   restore_infcall_control_state ((struct infcall_control_state *) sts);
9119 }
9120 
9121 struct cleanup *
9122 make_cleanup_restore_infcall_control_state
9123   (struct infcall_control_state *inf_status)
9124 {
9125   return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9126 }
9127 
9128 void
9129 discard_infcall_control_state (struct infcall_control_state *inf_status)
9130 {
9131   if (inf_status->thread_control.step_resume_breakpoint)
9132     inf_status->thread_control.step_resume_breakpoint->disposition
9133       = disp_del_at_next_stop;
9134 
9135   if (inf_status->thread_control.exception_resume_breakpoint)
9136     inf_status->thread_control.exception_resume_breakpoint->disposition
9137       = disp_del_at_next_stop;
9138 
9139   /* See save_infcall_control_state for info on stop_bpstat.  */
9140   bpstat_clear (&inf_status->thread_control.stop_bpstat);
9141 
9142   xfree (inf_status);
9143 }
9144 
9145 /* restore_inferior_ptid() will be used by the cleanup machinery
9146    to restore the inferior_ptid value saved in a call to
9147    save_inferior_ptid().  */
9148 
9149 static void
9150 restore_inferior_ptid (void *arg)
9151 {
9152   ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9153 
9154   inferior_ptid = *saved_ptid_ptr;
9155   xfree (arg);
9156 }
9157 
9158 /* Save the value of inferior_ptid so that it may be restored by a
9159    later call to do_cleanups().  Returns the struct cleanup pointer
9160    needed for later doing the cleanup.  */
9161 
9162 struct cleanup *
9163 save_inferior_ptid (void)
9164 {
9165   ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9166 
9167   *saved_ptid_ptr = inferior_ptid;
9168   return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9169 }
9170 
9171 /* See infrun.h.  */
9172 
9173 void
9174 clear_exit_convenience_vars (void)
9175 {
9176   clear_internalvar (lookup_internalvar ("_exitsignal"));
9177   clear_internalvar (lookup_internalvar ("_exitcode"));
9178 }
9179 
9180 
9181 /* User interface for reverse debugging:
9182    Set exec-direction / show exec-direction commands
9183    (returns error unless target implements to_set_exec_direction method).  */
9184 
9185 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9186 static const char exec_forward[] = "forward";
9187 static const char exec_reverse[] = "reverse";
9188 static const char *exec_direction = exec_forward;
9189 static const char *const exec_direction_names[] = {
9190   exec_forward,
9191   exec_reverse,
9192   NULL
9193 };
9194 
9195 static void
9196 set_exec_direction_func (char *args, int from_tty,
9197 			 struct cmd_list_element *cmd)
9198 {
9199   if (target_can_execute_reverse)
9200     {
9201       if (!strcmp (exec_direction, exec_forward))
9202 	execution_direction = EXEC_FORWARD;
9203       else if (!strcmp (exec_direction, exec_reverse))
9204 	execution_direction = EXEC_REVERSE;
9205     }
9206   else
9207     {
9208       exec_direction = exec_forward;
9209       error (_("Target does not support this operation."));
9210     }
9211 }
9212 
9213 static void
9214 show_exec_direction_func (struct ui_file *out, int from_tty,
9215 			  struct cmd_list_element *cmd, const char *value)
9216 {
9217   switch (execution_direction) {
9218   case EXEC_FORWARD:
9219     fprintf_filtered (out, _("Forward.\n"));
9220     break;
9221   case EXEC_REVERSE:
9222     fprintf_filtered (out, _("Reverse.\n"));
9223     break;
9224   default:
9225     internal_error (__FILE__, __LINE__,
9226 		    _("bogus execution_direction value: %d"),
9227 		    (int) execution_direction);
9228   }
9229 }
9230 
9231 static void
9232 show_schedule_multiple (struct ui_file *file, int from_tty,
9233 			struct cmd_list_element *c, const char *value)
9234 {
9235   fprintf_filtered (file, _("Resuming the execution of threads "
9236 			    "of all processes is %s.\n"), value);
9237 }
9238 
9239 /* Implementation of `siginfo' variable.  */
9240 
9241 static const struct internalvar_funcs siginfo_funcs =
9242 {
9243   siginfo_make_value,
9244   NULL,
9245   NULL
9246 };
9247 
9248 /* Callback for infrun's target events source.  This is marked when a
9249    thread has a pending status to process.  */
9250 
9251 static void
9252 infrun_async_inferior_event_handler (gdb_client_data data)
9253 {
9254   inferior_event_handler (INF_REG_EVENT, NULL);
9255 }
9256 
9257 void
9258 _initialize_infrun (void)
9259 {
9260   int i;
9261   int numsigs;
9262   struct cmd_list_element *c;
9263 
9264   /* Register extra event sources in the event loop.  */
9265   infrun_async_inferior_event_token
9266     = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9267 
9268   add_info ("signals", signals_info, _("\
9269 What debugger does when program gets various signals.\n\
9270 Specify a signal as argument to print info on that signal only."));
9271   add_info_alias ("handle", "signals", 0);
9272 
9273   c = add_com ("handle", class_run, handle_command, _("\
9274 Specify how to handle signals.\n\
9275 Usage: handle SIGNAL [ACTIONS]\n\
9276 Args are signals and actions to apply to those signals.\n\
9277 If no actions are specified, the current settings for the specified signals\n\
9278 will be displayed instead.\n\
9279 \n\
9280 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9281 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9282 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9283 The special arg \"all\" is recognized to mean all signals except those\n\
9284 used by the debugger, typically SIGTRAP and SIGINT.\n\
9285 \n\
9286 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9287 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9288 Stop means reenter debugger if this signal happens (implies print).\n\
9289 Print means print a message if this signal happens.\n\
9290 Pass means let program see this signal; otherwise program doesn't know.\n\
9291 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9292 Pass and Stop may be combined.\n\
9293 \n\
9294 Multiple signals may be specified.  Signal numbers and signal names\n\
9295 may be interspersed with actions, with the actions being performed for\n\
9296 all signals cumulatively specified."));
9297   set_cmd_completer (c, handle_completer);
9298 
9299   if (!dbx_commands)
9300     stop_command = add_cmd ("stop", class_obscure,
9301 			    not_just_help_class_command, _("\
9302 There is no `stop' command, but you can set a hook on `stop'.\n\
9303 This allows you to set a list of commands to be run each time execution\n\
9304 of the program stops."), &cmdlist);
9305 
9306   add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9307 Set inferior debugging."), _("\
9308 Show inferior debugging."), _("\
9309 When non-zero, inferior specific debugging is enabled."),
9310 			     NULL,
9311 			     show_debug_infrun,
9312 			     &setdebuglist, &showdebuglist);
9313 
9314   add_setshow_boolean_cmd ("displaced", class_maintenance,
9315 			   &debug_displaced, _("\
9316 Set displaced stepping debugging."), _("\
9317 Show displaced stepping debugging."), _("\
9318 When non-zero, displaced stepping specific debugging is enabled."),
9319 			    NULL,
9320 			    show_debug_displaced,
9321 			    &setdebuglist, &showdebuglist);
9322 
9323   add_setshow_boolean_cmd ("non-stop", no_class,
9324 			   &non_stop_1, _("\
9325 Set whether gdb controls the inferior in non-stop mode."), _("\
9326 Show whether gdb controls the inferior in non-stop mode."), _("\
9327 When debugging a multi-threaded program and this setting is\n\
9328 off (the default, also called all-stop mode), when one thread stops\n\
9329 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9330 all other threads in the program while you interact with the thread of\n\
9331 interest.  When you continue or step a thread, you can allow the other\n\
9332 threads to run, or have them remain stopped, but while you inspect any\n\
9333 thread's state, all threads stop.\n\
9334 \n\
9335 In non-stop mode, when one thread stops, other threads can continue\n\
9336 to run freely.  You'll be able to step each thread independently,\n\
9337 leave it stopped or free to run as needed."),
9338 			   set_non_stop,
9339 			   show_non_stop,
9340 			   &setlist,
9341 			   &showlist);
9342 
9343   numsigs = (int) GDB_SIGNAL_LAST;
9344   signal_stop = XNEWVEC (unsigned char, numsigs);
9345   signal_print = XNEWVEC (unsigned char, numsigs);
9346   signal_program = XNEWVEC (unsigned char, numsigs);
9347   signal_catch = XNEWVEC (unsigned char, numsigs);
9348   signal_pass = XNEWVEC (unsigned char, numsigs);
9349   for (i = 0; i < numsigs; i++)
9350     {
9351       signal_stop[i] = 1;
9352       signal_print[i] = 1;
9353       signal_program[i] = 1;
9354       signal_catch[i] = 0;
9355     }
9356 
9357   /* Signals caused by debugger's own actions should not be given to
9358      the program afterwards.
9359 
9360      Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9361      explicitly specifies that it should be delivered to the target
9362      program.  Typically, that would occur when a user is debugging a
9363      target monitor on a simulator: the target monitor sets a
9364      breakpoint; the simulator encounters this breakpoint and halts
9365      the simulation handing control to GDB; GDB, noting that the stop
9366      address doesn't map to any known breakpoint, returns control back
9367      to the simulator; the simulator then delivers the hardware
9368      equivalent of a GDB_SIGNAL_TRAP to the program being
9369      debugged.  */
9370   signal_program[GDB_SIGNAL_TRAP] = 0;
9371   signal_program[GDB_SIGNAL_INT] = 0;
9372 
9373   /* Signals that are not errors should not normally enter the debugger.  */
9374   signal_stop[GDB_SIGNAL_ALRM] = 0;
9375   signal_print[GDB_SIGNAL_ALRM] = 0;
9376   signal_stop[GDB_SIGNAL_VTALRM] = 0;
9377   signal_print[GDB_SIGNAL_VTALRM] = 0;
9378   signal_stop[GDB_SIGNAL_PROF] = 0;
9379   signal_print[GDB_SIGNAL_PROF] = 0;
9380   signal_stop[GDB_SIGNAL_CHLD] = 0;
9381   signal_print[GDB_SIGNAL_CHLD] = 0;
9382   signal_stop[GDB_SIGNAL_IO] = 0;
9383   signal_print[GDB_SIGNAL_IO] = 0;
9384   signal_stop[GDB_SIGNAL_POLL] = 0;
9385   signal_print[GDB_SIGNAL_POLL] = 0;
9386   signal_stop[GDB_SIGNAL_URG] = 0;
9387   signal_print[GDB_SIGNAL_URG] = 0;
9388   signal_stop[GDB_SIGNAL_WINCH] = 0;
9389   signal_print[GDB_SIGNAL_WINCH] = 0;
9390   signal_stop[GDB_SIGNAL_PRIO] = 0;
9391   signal_print[GDB_SIGNAL_PRIO] = 0;
9392 
9393   /* These signals are used internally by user-level thread
9394      implementations.  (See signal(5) on Solaris.)  Like the above
9395      signals, a healthy program receives and handles them as part of
9396      its normal operation.  */
9397   signal_stop[GDB_SIGNAL_LWP] = 0;
9398   signal_print[GDB_SIGNAL_LWP] = 0;
9399   signal_stop[GDB_SIGNAL_WAITING] = 0;
9400   signal_print[GDB_SIGNAL_WAITING] = 0;
9401   signal_stop[GDB_SIGNAL_CANCEL] = 0;
9402   signal_print[GDB_SIGNAL_CANCEL] = 0;
9403   signal_stop[GDB_SIGNAL_LIBRT] = 0;
9404   signal_print[GDB_SIGNAL_LIBRT] = 0;
9405 
9406   /* Update cached state.  */
9407   signal_cache_update (-1);
9408 
9409   add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9410 			    &stop_on_solib_events, _("\
9411 Set stopping for shared library events."), _("\
9412 Show stopping for shared library events."), _("\
9413 If nonzero, gdb will give control to the user when the dynamic linker\n\
9414 notifies gdb of shared library events.  The most common event of interest\n\
9415 to the user would be loading/unloading of a new library."),
9416 			    set_stop_on_solib_events,
9417 			    show_stop_on_solib_events,
9418 			    &setlist, &showlist);
9419 
9420   add_setshow_enum_cmd ("follow-fork-mode", class_run,
9421 			follow_fork_mode_kind_names,
9422 			&follow_fork_mode_string, _("\
9423 Set debugger response to a program call of fork or vfork."), _("\
9424 Show debugger response to a program call of fork or vfork."), _("\
9425 A fork or vfork creates a new process.  follow-fork-mode can be:\n\
9426   parent  - the original process is debugged after a fork\n\
9427   child   - the new process is debugged after a fork\n\
9428 The unfollowed process will continue to run.\n\
9429 By default, the debugger will follow the parent process."),
9430 			NULL,
9431 			show_follow_fork_mode_string,
9432 			&setlist, &showlist);
9433 
9434   add_setshow_enum_cmd ("follow-exec-mode", class_run,
9435 			follow_exec_mode_names,
9436 			&follow_exec_mode_string, _("\
9437 Set debugger response to a program call of exec."), _("\
9438 Show debugger response to a program call of exec."), _("\
9439 An exec call replaces the program image of a process.\n\
9440 \n\
9441 follow-exec-mode can be:\n\
9442 \n\
9443   new - the debugger creates a new inferior and rebinds the process\n\
9444 to this new inferior.  The program the process was running before\n\
9445 the exec call can be restarted afterwards by restarting the original\n\
9446 inferior.\n\
9447 \n\
9448   same - the debugger keeps the process bound to the same inferior.\n\
9449 The new executable image replaces the previous executable loaded in\n\
9450 the inferior.  Restarting the inferior after the exec call restarts\n\
9451 the executable the process was running after the exec call.\n\
9452 \n\
9453 By default, the debugger will use the same inferior."),
9454 			NULL,
9455 			show_follow_exec_mode_string,
9456 			&setlist, &showlist);
9457 
9458   add_setshow_enum_cmd ("scheduler-locking", class_run,
9459 			scheduler_enums, &scheduler_mode, _("\
9460 Set mode for locking scheduler during execution."), _("\
9461 Show mode for locking scheduler during execution."), _("\
9462 off    == no locking (threads may preempt at any time)\n\
9463 on     == full locking (no thread except the current thread may run)\n\
9464           This applies to both normal execution and replay mode.\n\
9465 step   == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9466           In this mode, other threads may run during other commands.\n\
9467           This applies to both normal execution and replay mode.\n\
9468 replay == scheduler locked in replay mode and unlocked during normal execution."),
9469 			set_schedlock_func,	/* traps on target vector */
9470 			show_scheduler_mode,
9471 			&setlist, &showlist);
9472 
9473   add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9474 Set mode for resuming threads of all processes."), _("\
9475 Show mode for resuming threads of all processes."), _("\
9476 When on, execution commands (such as 'continue' or 'next') resume all\n\
9477 threads of all processes.  When off (which is the default), execution\n\
9478 commands only resume the threads of the current process.  The set of\n\
9479 threads that are resumed is further refined by the scheduler-locking\n\
9480 mode (see help set scheduler-locking)."),
9481 			   NULL,
9482 			   show_schedule_multiple,
9483 			   &setlist, &showlist);
9484 
9485   add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9486 Set mode of the step operation."), _("\
9487 Show mode of the step operation."), _("\
9488 When set, doing a step over a function without debug line information\n\
9489 will stop at the first instruction of that function. Otherwise, the\n\
9490 function is skipped and the step command stops at a different source line."),
9491 			   NULL,
9492 			   show_step_stop_if_no_debug,
9493 			   &setlist, &showlist);
9494 
9495   add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9496 				&can_use_displaced_stepping, _("\
9497 Set debugger's willingness to use displaced stepping."), _("\
9498 Show debugger's willingness to use displaced stepping."), _("\
9499 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9500 supported by the target architecture.  If off, gdb will not use displaced\n\
9501 stepping to step over breakpoints, even if such is supported by the target\n\
9502 architecture.  If auto (which is the default), gdb will use displaced stepping\n\
9503 if the target architecture supports it and non-stop mode is active, but will not\n\
9504 use it in all-stop mode (see help set non-stop)."),
9505 				NULL,
9506 				show_can_use_displaced_stepping,
9507 				&setlist, &showlist);
9508 
9509   add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9510 			&exec_direction, _("Set direction of execution.\n\
9511 Options are 'forward' or 'reverse'."),
9512 			_("Show direction of execution (forward/reverse)."),
9513 			_("Tells gdb whether to execute forward or backward."),
9514 			set_exec_direction_func, show_exec_direction_func,
9515 			&setlist, &showlist);
9516 
9517   /* Set/show detach-on-fork: user-settable mode.  */
9518 
9519   add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9520 Set whether gdb will detach the child of a fork."), _("\
9521 Show whether gdb will detach the child of a fork."), _("\
9522 Tells gdb whether to detach the child of a fork."),
9523 			   NULL, NULL, &setlist, &showlist);
9524 
9525   /* Set/show disable address space randomization mode.  */
9526 
9527   add_setshow_boolean_cmd ("disable-randomization", class_support,
9528 			   &disable_randomization, _("\
9529 Set disabling of debuggee's virtual address space randomization."), _("\
9530 Show disabling of debuggee's virtual address space randomization."), _("\
9531 When this mode is on (which is the default), randomization of the virtual\n\
9532 address space is disabled.  Standalone programs run with the randomization\n\
9533 enabled by default on some platforms."),
9534 			   &set_disable_randomization,
9535 			   &show_disable_randomization,
9536 			   &setlist, &showlist);
9537 
9538   /* ptid initializations */
9539   inferior_ptid = null_ptid;
9540   target_last_wait_ptid = minus_one_ptid;
9541 
9542   observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9543   observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9544   observer_attach_thread_exit (infrun_thread_thread_exit);
9545   observer_attach_inferior_exit (infrun_inferior_exit);
9546 
9547   /* Explicitly create without lookup, since that tries to create a
9548      value with a void typed value, and when we get here, gdbarch
9549      isn't initialized yet.  At this point, we're quite sure there
9550      isn't another convenience variable of the same name.  */
9551   create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9552 
9553   add_setshow_boolean_cmd ("observer", no_class,
9554 			   &observer_mode_1, _("\
9555 Set whether gdb controls the inferior in observer mode."), _("\
9556 Show whether gdb controls the inferior in observer mode."), _("\
9557 In observer mode, GDB can get data from the inferior, but not\n\
9558 affect its execution.  Registers and memory may not be changed,\n\
9559 breakpoints may not be set, and the program cannot be interrupted\n\
9560 or signalled."),
9561 			   set_observer_mode,
9562 			   show_observer_mode,
9563 			   &setlist,
9564 			   &showlist);
9565 }
9566