xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/infrun.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /* Target-struct-independent code to start (run) and stop an inferior
2    process.
3 
4    Copyright (C) 1986-2019 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "common/gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observable.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "progspace-and-thread.h"
68 #include "common/gdb_optional.h"
69 #include "arch-utils.h"
70 #include "common/scope-exit.h"
71 
72 /* Prototypes for local functions */
73 
74 static void sig_print_info (enum gdb_signal);
75 
76 static void sig_print_header (void);
77 
78 static int follow_fork (void);
79 
80 static int follow_fork_inferior (int follow_child, int detach_fork);
81 
82 static void follow_inferior_reset_breakpoints (void);
83 
84 static int currently_stepping (struct thread_info *tp);
85 
86 void nullify_last_target_wait_ptid (void);
87 
88 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
89 
90 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
91 
92 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
93 
94 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
95 
96 static void resume (gdb_signal sig);
97 
98 /* Asynchronous signal handler registered as event loop source for
99    when we have pending events ready to be passed to the core.  */
100 static struct async_event_handler *infrun_async_inferior_event_token;
101 
102 /* Stores whether infrun_async was previously enabled or disabled.
103    Starts off as -1, indicating "never enabled/disabled".  */
104 static int infrun_is_async = -1;
105 
106 /* See infrun.h.  */
107 
108 void
109 infrun_async (int enable)
110 {
111   if (infrun_is_async != enable)
112     {
113       infrun_is_async = enable;
114 
115       if (debug_infrun)
116 	fprintf_unfiltered (gdb_stdlog,
117 			    "infrun: infrun_async(%d)\n",
118 			    enable);
119 
120       if (enable)
121 	mark_async_event_handler (infrun_async_inferior_event_token);
122       else
123 	clear_async_event_handler (infrun_async_inferior_event_token);
124     }
125 }
126 
127 /* See infrun.h.  */
128 
129 void
130 mark_infrun_async_event_handler (void)
131 {
132   mark_async_event_handler (infrun_async_inferior_event_token);
133 }
134 
135 /* When set, stop the 'step' command if we enter a function which has
136    no line number information.  The normal behavior is that we step
137    over such function.  */
138 int step_stop_if_no_debug = 0;
139 static void
140 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
141 			    struct cmd_list_element *c, const char *value)
142 {
143   fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
144 }
145 
146 /* proceed and normal_stop use this to notify the user when the
147    inferior stopped in a different thread than it had been running
148    in.  */
149 
150 static ptid_t previous_inferior_ptid;
151 
152 /* If set (default for legacy reasons), when following a fork, GDB
153    will detach from one of the fork branches, child or parent.
154    Exactly which branch is detached depends on 'set follow-fork-mode'
155    setting.  */
156 
157 static int detach_fork = 1;
158 
159 int debug_displaced = 0;
160 static void
161 show_debug_displaced (struct ui_file *file, int from_tty,
162 		      struct cmd_list_element *c, const char *value)
163 {
164   fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
165 }
166 
167 unsigned int debug_infrun = 0;
168 static void
169 show_debug_infrun (struct ui_file *file, int from_tty,
170 		   struct cmd_list_element *c, const char *value)
171 {
172   fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
173 }
174 
175 
176 /* Support for disabling address space randomization.  */
177 
178 int disable_randomization = 1;
179 
180 static void
181 show_disable_randomization (struct ui_file *file, int from_tty,
182 			    struct cmd_list_element *c, const char *value)
183 {
184   if (target_supports_disable_randomization ())
185     fprintf_filtered (file,
186 		      _("Disabling randomization of debuggee's "
187 			"virtual address space is %s.\n"),
188 		      value);
189   else
190     fputs_filtered (_("Disabling randomization of debuggee's "
191 		      "virtual address space is unsupported on\n"
192 		      "this platform.\n"), file);
193 }
194 
195 static void
196 set_disable_randomization (const char *args, int from_tty,
197 			   struct cmd_list_element *c)
198 {
199   if (!target_supports_disable_randomization ())
200     error (_("Disabling randomization of debuggee's "
201 	     "virtual address space is unsupported on\n"
202 	     "this platform."));
203 }
204 
205 /* User interface for non-stop mode.  */
206 
207 int non_stop = 0;
208 static int non_stop_1 = 0;
209 
210 static void
211 set_non_stop (const char *args, int from_tty,
212 	      struct cmd_list_element *c)
213 {
214   if (target_has_execution)
215     {
216       non_stop_1 = non_stop;
217       error (_("Cannot change this setting while the inferior is running."));
218     }
219 
220   non_stop = non_stop_1;
221 }
222 
223 static void
224 show_non_stop (struct ui_file *file, int from_tty,
225 	       struct cmd_list_element *c, const char *value)
226 {
227   fprintf_filtered (file,
228 		    _("Controlling the inferior in non-stop mode is %s.\n"),
229 		    value);
230 }
231 
232 /* "Observer mode" is somewhat like a more extreme version of
233    non-stop, in which all GDB operations that might affect the
234    target's execution have been disabled.  */
235 
236 int observer_mode = 0;
237 static int observer_mode_1 = 0;
238 
239 static void
240 set_observer_mode (const char *args, int from_tty,
241 		   struct cmd_list_element *c)
242 {
243   if (target_has_execution)
244     {
245       observer_mode_1 = observer_mode;
246       error (_("Cannot change this setting while the inferior is running."));
247     }
248 
249   observer_mode = observer_mode_1;
250 
251   may_write_registers = !observer_mode;
252   may_write_memory = !observer_mode;
253   may_insert_breakpoints = !observer_mode;
254   may_insert_tracepoints = !observer_mode;
255   /* We can insert fast tracepoints in or out of observer mode,
256      but enable them if we're going into this mode.  */
257   if (observer_mode)
258     may_insert_fast_tracepoints = 1;
259   may_stop = !observer_mode;
260   update_target_permissions ();
261 
262   /* Going *into* observer mode we must force non-stop, then
263      going out we leave it that way.  */
264   if (observer_mode)
265     {
266       pagination_enabled = 0;
267       non_stop = non_stop_1 = 1;
268     }
269 
270   if (from_tty)
271     printf_filtered (_("Observer mode is now %s.\n"),
272 		     (observer_mode ? "on" : "off"));
273 }
274 
275 static void
276 show_observer_mode (struct ui_file *file, int from_tty,
277 		    struct cmd_list_element *c, const char *value)
278 {
279   fprintf_filtered (file, _("Observer mode is %s.\n"), value);
280 }
281 
282 /* This updates the value of observer mode based on changes in
283    permissions.  Note that we are deliberately ignoring the values of
284    may-write-registers and may-write-memory, since the user may have
285    reason to enable these during a session, for instance to turn on a
286    debugging-related global.  */
287 
288 void
289 update_observer_mode (void)
290 {
291   int newval;
292 
293   newval = (!may_insert_breakpoints
294 	    && !may_insert_tracepoints
295 	    && may_insert_fast_tracepoints
296 	    && !may_stop
297 	    && non_stop);
298 
299   /* Let the user know if things change.  */
300   if (newval != observer_mode)
301     printf_filtered (_("Observer mode is now %s.\n"),
302 		     (newval ? "on" : "off"));
303 
304   observer_mode = observer_mode_1 = newval;
305 }
306 
307 /* Tables of how to react to signals; the user sets them.  */
308 
309 static unsigned char signal_stop[GDB_SIGNAL_LAST];
310 static unsigned char signal_print[GDB_SIGNAL_LAST];
311 static unsigned char signal_program[GDB_SIGNAL_LAST];
312 
313 /* Table of signals that are registered with "catch signal".  A
314    non-zero entry indicates that the signal is caught by some "catch
315    signal" command.  */
316 static unsigned char signal_catch[GDB_SIGNAL_LAST];
317 
318 /* Table of signals that the target may silently handle.
319    This is automatically determined from the flags above,
320    and simply cached here.  */
321 static unsigned char signal_pass[GDB_SIGNAL_LAST];
322 
323 #define SET_SIGS(nsigs,sigs,flags) \
324   do { \
325     int signum = (nsigs); \
326     while (signum-- > 0) \
327       if ((sigs)[signum]) \
328 	(flags)[signum] = 1; \
329   } while (0)
330 
331 #define UNSET_SIGS(nsigs,sigs,flags) \
332   do { \
333     int signum = (nsigs); \
334     while (signum-- > 0) \
335       if ((sigs)[signum]) \
336 	(flags)[signum] = 0; \
337   } while (0)
338 
339 /* Update the target's copy of SIGNAL_PROGRAM.  The sole purpose of
340    this function is to avoid exporting `signal_program'.  */
341 
342 void
343 update_signals_program_target (void)
344 {
345   target_program_signals (signal_program);
346 }
347 
348 /* Value to pass to target_resume() to cause all threads to resume.  */
349 
350 #define RESUME_ALL minus_one_ptid
351 
352 /* Command list pointer for the "stop" placeholder.  */
353 
354 static struct cmd_list_element *stop_command;
355 
356 /* Nonzero if we want to give control to the user when we're notified
357    of shared library events by the dynamic linker.  */
358 int stop_on_solib_events;
359 
360 /* Enable or disable optional shared library event breakpoints
361    as appropriate when the above flag is changed.  */
362 
363 static void
364 set_stop_on_solib_events (const char *args,
365 			  int from_tty, struct cmd_list_element *c)
366 {
367   update_solib_breakpoints ();
368 }
369 
370 static void
371 show_stop_on_solib_events (struct ui_file *file, int from_tty,
372 			   struct cmd_list_element *c, const char *value)
373 {
374   fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
375 		    value);
376 }
377 
378 /* Nonzero after stop if current stack frame should be printed.  */
379 
380 static int stop_print_frame;
381 
382 /* This is a cached copy of the pid/waitstatus of the last event
383    returned by target_wait()/deprecated_target_wait_hook().  This
384    information is returned by get_last_target_status().  */
385 static ptid_t target_last_wait_ptid;
386 static struct target_waitstatus target_last_waitstatus;
387 
388 void init_thread_stepping_state (struct thread_info *tss);
389 
390 static const char follow_fork_mode_child[] = "child";
391 static const char follow_fork_mode_parent[] = "parent";
392 
393 static const char *const follow_fork_mode_kind_names[] = {
394   follow_fork_mode_child,
395   follow_fork_mode_parent,
396   NULL
397 };
398 
399 static const char *follow_fork_mode_string = follow_fork_mode_parent;
400 static void
401 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 			      struct cmd_list_element *c, const char *value)
403 {
404   fprintf_filtered (file,
405 		    _("Debugger response to a program "
406 		      "call of fork or vfork is \"%s\".\n"),
407 		    value);
408 }
409 
410 
411 /* Handle changes to the inferior list based on the type of fork,
412    which process is being followed, and whether the other process
413    should be detached.  On entry inferior_ptid must be the ptid of
414    the fork parent.  At return inferior_ptid is the ptid of the
415    followed inferior.  */
416 
417 static int
418 follow_fork_inferior (int follow_child, int detach_fork)
419 {
420   int has_vforked;
421   ptid_t parent_ptid, child_ptid;
422 
423   has_vforked = (inferior_thread ()->pending_follow.kind
424 		 == TARGET_WAITKIND_VFORKED);
425   parent_ptid = inferior_ptid;
426   child_ptid = inferior_thread ()->pending_follow.value.related_pid;
427 
428   if (has_vforked
429       && !non_stop /* Non-stop always resumes both branches.  */
430       && current_ui->prompt_state == PROMPT_BLOCKED
431       && !(follow_child || detach_fork || sched_multi))
432     {
433       /* The parent stays blocked inside the vfork syscall until the
434 	 child execs or exits.  If we don't let the child run, then
435 	 the parent stays blocked.  If we're telling the parent to run
436 	 in the foreground, the user will not be able to ctrl-c to get
437 	 back the terminal, effectively hanging the debug session.  */
438       fprintf_filtered (gdb_stderr, _("\
439 Can not resume the parent process over vfork in the foreground while\n\
440 holding the child stopped.  Try \"set detach-on-fork\" or \
441 \"set schedule-multiple\".\n"));
442       /* FIXME output string > 80 columns.  */
443       return 1;
444     }
445 
446   if (!follow_child)
447     {
448       /* Detach new forked process?  */
449       if (detach_fork)
450 	{
451 	  /* Before detaching from the child, remove all breakpoints
452 	     from it.  If we forked, then this has already been taken
453 	     care of by infrun.c.  If we vforked however, any
454 	     breakpoint inserted in the parent is visible in the
455 	     child, even those added while stopped in a vfork
456 	     catchpoint.  This will remove the breakpoints from the
457 	     parent also, but they'll be reinserted below.  */
458 	  if (has_vforked)
459 	    {
460 	      /* Keep breakpoints list in sync.  */
461 	      remove_breakpoints_inf (current_inferior ());
462 	    }
463 
464 	  if (print_inferior_events)
465 	    {
466 	      /* Ensure that we have a process ptid.  */
467 	      ptid_t process_ptid = ptid_t (child_ptid.pid ());
468 
469 	      target_terminal::ours_for_output ();
470 	      fprintf_filtered (gdb_stdlog,
471 				_("[Detaching after %s from child %s]\n"),
472 				has_vforked ? "vfork" : "fork",
473 				target_pid_to_str (process_ptid));
474 	    }
475 	}
476       else
477 	{
478 	  struct inferior *parent_inf, *child_inf;
479 
480 	  /* Add process to GDB's tables.  */
481 	  child_inf = add_inferior (child_ptid.pid ());
482 
483 	  parent_inf = current_inferior ();
484 	  child_inf->attach_flag = parent_inf->attach_flag;
485 	  copy_terminal_info (child_inf, parent_inf);
486 	  child_inf->gdbarch = parent_inf->gdbarch;
487 	  copy_inferior_target_desc_info (child_inf, parent_inf);
488 
489 	  scoped_restore_current_pspace_and_thread restore_pspace_thread;
490 
491 	  inferior_ptid = child_ptid;
492 	  add_thread_silent (inferior_ptid);
493 	  set_current_inferior (child_inf);
494 	  child_inf->symfile_flags = SYMFILE_NO_READ;
495 
496 	  /* If this is a vfork child, then the address-space is
497 	     shared with the parent.  */
498 	  if (has_vforked)
499 	    {
500 	      child_inf->pspace = parent_inf->pspace;
501 	      child_inf->aspace = parent_inf->aspace;
502 
503 	      /* The parent will be frozen until the child is done
504 		 with the shared region.  Keep track of the
505 		 parent.  */
506 	      child_inf->vfork_parent = parent_inf;
507 	      child_inf->pending_detach = 0;
508 	      parent_inf->vfork_child = child_inf;
509 	      parent_inf->pending_detach = 0;
510 	    }
511 	  else
512 	    {
513 	      child_inf->aspace = new_address_space ();
514 	      child_inf->pspace = new program_space (child_inf->aspace);
515 	      child_inf->removable = 1;
516 	      set_current_program_space (child_inf->pspace);
517 	      clone_program_space (child_inf->pspace, parent_inf->pspace);
518 
519 	      /* Let the shared library layer (e.g., solib-svr4) learn
520 		 about this new process, relocate the cloned exec, pull
521 		 in shared libraries, and install the solib event
522 		 breakpoint.  If a "cloned-VM" event was propagated
523 		 better throughout the core, this wouldn't be
524 		 required.  */
525 	      solib_create_inferior_hook (0);
526 	    }
527 	}
528 
529       if (has_vforked)
530 	{
531 	  struct inferior *parent_inf;
532 
533 	  parent_inf = current_inferior ();
534 
535 	  /* If we detached from the child, then we have to be careful
536 	     to not insert breakpoints in the parent until the child
537 	     is done with the shared memory region.  However, if we're
538 	     staying attached to the child, then we can and should
539 	     insert breakpoints, so that we can debug it.  A
540 	     subsequent child exec or exit is enough to know when does
541 	     the child stops using the parent's address space.  */
542 	  parent_inf->waiting_for_vfork_done = detach_fork;
543 	  parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 	}
545     }
546   else
547     {
548       /* Follow the child.  */
549       struct inferior *parent_inf, *child_inf;
550       struct program_space *parent_pspace;
551 
552       if (print_inferior_events)
553 	{
554 	  std::string parent_pid = target_pid_to_str (parent_ptid);
555 	  std::string child_pid = target_pid_to_str (child_ptid);
556 
557 	  target_terminal::ours_for_output ();
558 	  fprintf_filtered (gdb_stdlog,
559 			    _("[Attaching after %s %s to child %s]\n"),
560 			    parent_pid.c_str (),
561 			    has_vforked ? "vfork" : "fork",
562 			    child_pid.c_str ());
563 	}
564 
565       /* Add the new inferior first, so that the target_detach below
566 	 doesn't unpush the target.  */
567 
568       child_inf = add_inferior (child_ptid.pid ());
569 
570       parent_inf = current_inferior ();
571       child_inf->attach_flag = parent_inf->attach_flag;
572       copy_terminal_info (child_inf, parent_inf);
573       child_inf->gdbarch = parent_inf->gdbarch;
574       copy_inferior_target_desc_info (child_inf, parent_inf);
575 
576       parent_pspace = parent_inf->pspace;
577 
578       /* If we're vforking, we want to hold on to the parent until the
579 	 child exits or execs.  At child exec or exit time we can
580 	 remove the old breakpoints from the parent and detach or
581 	 resume debugging it.  Otherwise, detach the parent now; we'll
582 	 want to reuse it's program/address spaces, but we can't set
583 	 them to the child before removing breakpoints from the
584 	 parent, otherwise, the breakpoints module could decide to
585 	 remove breakpoints from the wrong process (since they'd be
586 	 assigned to the same address space).  */
587 
588       if (has_vforked)
589 	{
590 	  gdb_assert (child_inf->vfork_parent == NULL);
591 	  gdb_assert (parent_inf->vfork_child == NULL);
592 	  child_inf->vfork_parent = parent_inf;
593 	  child_inf->pending_detach = 0;
594 	  parent_inf->vfork_child = child_inf;
595 	  parent_inf->pending_detach = detach_fork;
596 	  parent_inf->waiting_for_vfork_done = 0;
597 	}
598       else if (detach_fork)
599 	{
600 	  if (print_inferior_events)
601 	    {
602 	      /* Ensure that we have a process ptid.  */
603 	      ptid_t process_ptid = ptid_t (parent_ptid.pid ());
604 
605 	      target_terminal::ours_for_output ();
606 	      fprintf_filtered (gdb_stdlog,
607 				_("[Detaching after fork from "
608 				  "parent %s]\n"),
609 				target_pid_to_str (process_ptid));
610 	    }
611 
612 	  target_detach (parent_inf, 0);
613 	}
614 
615       /* Note that the detach above makes PARENT_INF dangling.  */
616 
617       /* Add the child thread to the appropriate lists, and switch to
618 	 this new thread, before cloning the program space, and
619 	 informing the solib layer about this new process.  */
620 
621       inferior_ptid = child_ptid;
622       add_thread_silent (inferior_ptid);
623       set_current_inferior (child_inf);
624 
625       /* If this is a vfork child, then the address-space is shared
626 	 with the parent.  If we detached from the parent, then we can
627 	 reuse the parent's program/address spaces.  */
628       if (has_vforked || detach_fork)
629 	{
630 	  child_inf->pspace = parent_pspace;
631 	  child_inf->aspace = child_inf->pspace->aspace;
632 	}
633       else
634 	{
635 	  child_inf->aspace = new_address_space ();
636 	  child_inf->pspace = new program_space (child_inf->aspace);
637 	  child_inf->removable = 1;
638 	  child_inf->symfile_flags = SYMFILE_NO_READ;
639 	  set_current_program_space (child_inf->pspace);
640 	  clone_program_space (child_inf->pspace, parent_pspace);
641 
642 	  /* Let the shared library layer (e.g., solib-svr4) learn
643 	     about this new process, relocate the cloned exec, pull in
644 	     shared libraries, and install the solib event breakpoint.
645 	     If a "cloned-VM" event was propagated better throughout
646 	     the core, this wouldn't be required.  */
647 	  solib_create_inferior_hook (0);
648 	}
649     }
650 
651   return target_follow_fork (follow_child, detach_fork);
652 }
653 
654 /* Tell the target to follow the fork we're stopped at.  Returns true
655    if the inferior should be resumed; false, if the target for some
656    reason decided it's best not to resume.  */
657 
658 static int
659 follow_fork (void)
660 {
661   int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
662   int should_resume = 1;
663   struct thread_info *tp;
664 
665   /* Copy user stepping state to the new inferior thread.  FIXME: the
666      followed fork child thread should have a copy of most of the
667      parent thread structure's run control related fields, not just these.
668      Initialized to avoid "may be used uninitialized" warnings from gcc.  */
669   struct breakpoint *step_resume_breakpoint = NULL;
670   struct breakpoint *exception_resume_breakpoint = NULL;
671   CORE_ADDR step_range_start = 0;
672   CORE_ADDR step_range_end = 0;
673   struct frame_id step_frame_id = { 0 };
674   struct thread_fsm *thread_fsm = NULL;
675 
676   if (!non_stop)
677     {
678       ptid_t wait_ptid;
679       struct target_waitstatus wait_status;
680 
681       /* Get the last target status returned by target_wait().  */
682       get_last_target_status (&wait_ptid, &wait_status);
683 
684       /* If not stopped at a fork event, then there's nothing else to
685 	 do.  */
686       if (wait_status.kind != TARGET_WAITKIND_FORKED
687 	  && wait_status.kind != TARGET_WAITKIND_VFORKED)
688 	return 1;
689 
690       /* Check if we switched over from WAIT_PTID, since the event was
691 	 reported.  */
692       if (wait_ptid != minus_one_ptid
693 	  && inferior_ptid != wait_ptid)
694 	{
695 	  /* We did.  Switch back to WAIT_PTID thread, to tell the
696 	     target to follow it (in either direction).  We'll
697 	     afterwards refuse to resume, and inform the user what
698 	     happened.  */
699 	  thread_info *wait_thread
700 	    = find_thread_ptid (wait_ptid);
701 	  switch_to_thread (wait_thread);
702 	  should_resume = 0;
703 	}
704     }
705 
706   tp = inferior_thread ();
707 
708   /* If there were any forks/vforks that were caught and are now to be
709      followed, then do so now.  */
710   switch (tp->pending_follow.kind)
711     {
712     case TARGET_WAITKIND_FORKED:
713     case TARGET_WAITKIND_VFORKED:
714       {
715 	ptid_t parent, child;
716 
717 	/* If the user did a next/step, etc, over a fork call,
718 	   preserve the stepping state in the fork child.  */
719 	if (follow_child && should_resume)
720 	  {
721 	    step_resume_breakpoint = clone_momentary_breakpoint
722 					 (tp->control.step_resume_breakpoint);
723 	    step_range_start = tp->control.step_range_start;
724 	    step_range_end = tp->control.step_range_end;
725 	    step_frame_id = tp->control.step_frame_id;
726 	    exception_resume_breakpoint
727 	      = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
728 	    thread_fsm = tp->thread_fsm;
729 
730 	    /* For now, delete the parent's sr breakpoint, otherwise,
731 	       parent/child sr breakpoints are considered duplicates,
732 	       and the child version will not be installed.  Remove
733 	       this when the breakpoints module becomes aware of
734 	       inferiors and address spaces.  */
735 	    delete_step_resume_breakpoint (tp);
736 	    tp->control.step_range_start = 0;
737 	    tp->control.step_range_end = 0;
738 	    tp->control.step_frame_id = null_frame_id;
739 	    delete_exception_resume_breakpoint (tp);
740 	    tp->thread_fsm = NULL;
741 	  }
742 
743 	parent = inferior_ptid;
744 	child = tp->pending_follow.value.related_pid;
745 
746 	/* Set up inferior(s) as specified by the caller, and tell the
747 	   target to do whatever is necessary to follow either parent
748 	   or child.  */
749 	if (follow_fork_inferior (follow_child, detach_fork))
750 	  {
751 	    /* Target refused to follow, or there's some other reason
752 	       we shouldn't resume.  */
753 	    should_resume = 0;
754 	  }
755 	else
756 	  {
757 	    /* This pending follow fork event is now handled, one way
758 	       or another.  The previous selected thread may be gone
759 	       from the lists by now, but if it is still around, need
760 	       to clear the pending follow request.  */
761 	    tp = find_thread_ptid (parent);
762 	    if (tp)
763 	      tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
764 
765 	    /* This makes sure we don't try to apply the "Switched
766 	       over from WAIT_PID" logic above.  */
767 	    nullify_last_target_wait_ptid ();
768 
769 	    /* If we followed the child, switch to it...  */
770 	    if (follow_child)
771 	      {
772 		thread_info *child_thr = find_thread_ptid (child);
773 		switch_to_thread (child_thr);
774 
775 		/* ... and preserve the stepping state, in case the
776 		   user was stepping over the fork call.  */
777 		if (should_resume)
778 		  {
779 		    tp = inferior_thread ();
780 		    tp->control.step_resume_breakpoint
781 		      = step_resume_breakpoint;
782 		    tp->control.step_range_start = step_range_start;
783 		    tp->control.step_range_end = step_range_end;
784 		    tp->control.step_frame_id = step_frame_id;
785 		    tp->control.exception_resume_breakpoint
786 		      = exception_resume_breakpoint;
787 		    tp->thread_fsm = thread_fsm;
788 		  }
789 		else
790 		  {
791 		    /* If we get here, it was because we're trying to
792 		       resume from a fork catchpoint, but, the user
793 		       has switched threads away from the thread that
794 		       forked.  In that case, the resume command
795 		       issued is most likely not applicable to the
796 		       child, so just warn, and refuse to resume.  */
797 		    warning (_("Not resuming: switched threads "
798 			       "before following fork child."));
799 		  }
800 
801 		/* Reset breakpoints in the child as appropriate.  */
802 		follow_inferior_reset_breakpoints ();
803 	      }
804 	  }
805       }
806       break;
807     case TARGET_WAITKIND_SPURIOUS:
808       /* Nothing to follow.  */
809       break;
810     default:
811       internal_error (__FILE__, __LINE__,
812 		      "Unexpected pending_follow.kind %d\n",
813 		      tp->pending_follow.kind);
814       break;
815     }
816 
817   return should_resume;
818 }
819 
820 static void
821 follow_inferior_reset_breakpoints (void)
822 {
823   struct thread_info *tp = inferior_thread ();
824 
825   /* Was there a step_resume breakpoint?  (There was if the user
826      did a "next" at the fork() call.)  If so, explicitly reset its
827      thread number.  Cloned step_resume breakpoints are disabled on
828      creation, so enable it here now that it is associated with the
829      correct thread.
830 
831      step_resumes are a form of bp that are made to be per-thread.
832      Since we created the step_resume bp when the parent process
833      was being debugged, and now are switching to the child process,
834      from the breakpoint package's viewpoint, that's a switch of
835      "threads".  We must update the bp's notion of which thread
836      it is for, or it'll be ignored when it triggers.  */
837 
838   if (tp->control.step_resume_breakpoint)
839     {
840       breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
841       tp->control.step_resume_breakpoint->loc->enabled = 1;
842     }
843 
844   /* Treat exception_resume breakpoints like step_resume breakpoints.  */
845   if (tp->control.exception_resume_breakpoint)
846     {
847       breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
848       tp->control.exception_resume_breakpoint->loc->enabled = 1;
849     }
850 
851   /* Reinsert all breakpoints in the child.  The user may have set
852      breakpoints after catching the fork, in which case those
853      were never set in the child, but only in the parent.  This makes
854      sure the inserted breakpoints match the breakpoint list.  */
855 
856   breakpoint_re_set ();
857   insert_breakpoints ();
858 }
859 
860 /* The child has exited or execed: resume threads of the parent the
861    user wanted to be executing.  */
862 
863 static int
864 proceed_after_vfork_done (struct thread_info *thread,
865 			  void *arg)
866 {
867   int pid = * (int *) arg;
868 
869   if (thread->ptid.pid () == pid
870       && thread->state == THREAD_RUNNING
871       && !thread->executing
872       && !thread->stop_requested
873       && thread->suspend.stop_signal == GDB_SIGNAL_0)
874     {
875       if (debug_infrun)
876 	fprintf_unfiltered (gdb_stdlog,
877 			    "infrun: resuming vfork parent thread %s\n",
878 			    target_pid_to_str (thread->ptid));
879 
880       switch_to_thread (thread);
881       clear_proceed_status (0);
882       proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
883     }
884 
885   return 0;
886 }
887 
888 /* Save/restore inferior_ptid, current program space and current
889    inferior.  Only use this if the current context points at an exited
890    inferior (and therefore there's no current thread to save).  */
891 class scoped_restore_exited_inferior
892 {
893 public:
894   scoped_restore_exited_inferior ()
895     : m_saved_ptid (&inferior_ptid)
896   {}
897 
898 private:
899   scoped_restore_tmpl<ptid_t> m_saved_ptid;
900   scoped_restore_current_program_space m_pspace;
901   scoped_restore_current_inferior m_inferior;
902 };
903 
904 /* Called whenever we notice an exec or exit event, to handle
905    detaching or resuming a vfork parent.  */
906 
907 static void
908 handle_vfork_child_exec_or_exit (int exec)
909 {
910   struct inferior *inf = current_inferior ();
911 
912   if (inf->vfork_parent)
913     {
914       int resume_parent = -1;
915 
916       /* This exec or exit marks the end of the shared memory region
917 	 between the parent and the child.  If the user wanted to
918 	 detach from the parent, now is the time.  */
919 
920       if (inf->vfork_parent->pending_detach)
921 	{
922 	  struct thread_info *tp;
923 	  struct program_space *pspace;
924 	  struct address_space *aspace;
925 
926 	  /* follow-fork child, detach-on-fork on.  */
927 
928 	  inf->vfork_parent->pending_detach = 0;
929 
930 	  gdb::optional<scoped_restore_exited_inferior>
931 	    maybe_restore_inferior;
932 	  gdb::optional<scoped_restore_current_pspace_and_thread>
933 	    maybe_restore_thread;
934 
935 	  /* If we're handling a child exit, then inferior_ptid points
936 	     at the inferior's pid, not to a thread.  */
937 	  if (!exec)
938 	    maybe_restore_inferior.emplace ();
939 	  else
940 	    maybe_restore_thread.emplace ();
941 
942 	  /* We're letting loose of the parent.  */
943 	  tp = any_live_thread_of_inferior (inf->vfork_parent);
944 	  switch_to_thread (tp);
945 
946 	  /* We're about to detach from the parent, which implicitly
947 	     removes breakpoints from its address space.  There's a
948 	     catch here: we want to reuse the spaces for the child,
949 	     but, parent/child are still sharing the pspace at this
950 	     point, although the exec in reality makes the kernel give
951 	     the child a fresh set of new pages.  The problem here is
952 	     that the breakpoints module being unaware of this, would
953 	     likely chose the child process to write to the parent
954 	     address space.  Swapping the child temporarily away from
955 	     the spaces has the desired effect.  Yes, this is "sort
956 	     of" a hack.  */
957 
958 	  pspace = inf->pspace;
959 	  aspace = inf->aspace;
960 	  inf->aspace = NULL;
961 	  inf->pspace = NULL;
962 
963 	  if (print_inferior_events)
964 	    {
965 	      const char *pidstr
966 		= target_pid_to_str (ptid_t (inf->vfork_parent->pid));
967 
968 	      target_terminal::ours_for_output ();
969 
970 	      if (exec)
971 		{
972 		  fprintf_filtered (gdb_stdlog,
973 				    _("[Detaching vfork parent %s "
974 				      "after child exec]\n"), pidstr);
975 		}
976 	      else
977 		{
978 		  fprintf_filtered (gdb_stdlog,
979 				    _("[Detaching vfork parent %s "
980 				      "after child exit]\n"), pidstr);
981 		}
982 	    }
983 
984 	  target_detach (inf->vfork_parent, 0);
985 
986 	  /* Put it back.  */
987 	  inf->pspace = pspace;
988 	  inf->aspace = aspace;
989 	}
990       else if (exec)
991 	{
992 	  /* We're staying attached to the parent, so, really give the
993 	     child a new address space.  */
994 	  inf->pspace = new program_space (maybe_new_address_space ());
995 	  inf->aspace = inf->pspace->aspace;
996 	  inf->removable = 1;
997 	  set_current_program_space (inf->pspace);
998 
999 	  resume_parent = inf->vfork_parent->pid;
1000 
1001 	  /* Break the bonds.  */
1002 	  inf->vfork_parent->vfork_child = NULL;
1003 	}
1004       else
1005 	{
1006 	  struct program_space *pspace;
1007 
1008 	  /* If this is a vfork child exiting, then the pspace and
1009 	     aspaces were shared with the parent.  Since we're
1010 	     reporting the process exit, we'll be mourning all that is
1011 	     found in the address space, and switching to null_ptid,
1012 	     preparing to start a new inferior.  But, since we don't
1013 	     want to clobber the parent's address/program spaces, we
1014 	     go ahead and create a new one for this exiting
1015 	     inferior.  */
1016 
1017 	  /* Switch to null_ptid while running clone_program_space, so
1018 	     that clone_program_space doesn't want to read the
1019 	     selected frame of a dead process.  */
1020 	  scoped_restore restore_ptid
1021 	    = make_scoped_restore (&inferior_ptid, null_ptid);
1022 
1023 	  /* This inferior is dead, so avoid giving the breakpoints
1024 	     module the option to write through to it (cloning a
1025 	     program space resets breakpoints).  */
1026 	  inf->aspace = NULL;
1027 	  inf->pspace = NULL;
1028 	  pspace = new program_space (maybe_new_address_space ());
1029 	  set_current_program_space (pspace);
1030 	  inf->removable = 1;
1031 	  inf->symfile_flags = SYMFILE_NO_READ;
1032 	  clone_program_space (pspace, inf->vfork_parent->pspace);
1033 	  inf->pspace = pspace;
1034 	  inf->aspace = pspace->aspace;
1035 
1036 	  resume_parent = inf->vfork_parent->pid;
1037 	  /* Break the bonds.  */
1038 	  inf->vfork_parent->vfork_child = NULL;
1039 	}
1040 
1041       inf->vfork_parent = NULL;
1042 
1043       gdb_assert (current_program_space == inf->pspace);
1044 
1045       if (non_stop && resume_parent != -1)
1046 	{
1047 	  /* If the user wanted the parent to be running, let it go
1048 	     free now.  */
1049 	  scoped_restore_current_thread restore_thread;
1050 
1051 	  if (debug_infrun)
1052 	    fprintf_unfiltered (gdb_stdlog,
1053 				"infrun: resuming vfork parent process %d\n",
1054 				resume_parent);
1055 
1056 	  iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1057 	}
1058     }
1059 }
1060 
1061 /* Enum strings for "set|show follow-exec-mode".  */
1062 
1063 static const char follow_exec_mode_new[] = "new";
1064 static const char follow_exec_mode_same[] = "same";
1065 static const char *const follow_exec_mode_names[] =
1066 {
1067   follow_exec_mode_new,
1068   follow_exec_mode_same,
1069   NULL,
1070 };
1071 
1072 static const char *follow_exec_mode_string = follow_exec_mode_same;
1073 static void
1074 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 			      struct cmd_list_element *c, const char *value)
1076 {
1077   fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"),  value);
1078 }
1079 
1080 /* EXEC_FILE_TARGET is assumed to be non-NULL.  */
1081 
1082 static void
1083 follow_exec (ptid_t ptid, char *exec_file_target)
1084 {
1085   struct inferior *inf = current_inferior ();
1086   int pid = ptid.pid ();
1087   ptid_t process_ptid;
1088 
1089   /* This is an exec event that we actually wish to pay attention to.
1090      Refresh our symbol table to the newly exec'd program, remove any
1091      momentary bp's, etc.
1092 
1093      If there are breakpoints, they aren't really inserted now,
1094      since the exec() transformed our inferior into a fresh set
1095      of instructions.
1096 
1097      We want to preserve symbolic breakpoints on the list, since
1098      we have hopes that they can be reset after the new a.out's
1099      symbol table is read.
1100 
1101      However, any "raw" breakpoints must be removed from the list
1102      (e.g., the solib bp's), since their address is probably invalid
1103      now.
1104 
1105      And, we DON'T want to call delete_breakpoints() here, since
1106      that may write the bp's "shadow contents" (the instruction
1107      value that was overwritten witha TRAP instruction).  Since
1108      we now have a new a.out, those shadow contents aren't valid.  */
1109 
1110   mark_breakpoints_out ();
1111 
1112   /* The target reports the exec event to the main thread, even if
1113      some other thread does the exec, and even if the main thread was
1114      stopped or already gone.  We may still have non-leader threads of
1115      the process on our list.  E.g., on targets that don't have thread
1116      exit events (like remote); or on native Linux in non-stop mode if
1117      there were only two threads in the inferior and the non-leader
1118      one is the one that execs (and nothing forces an update of the
1119      thread list up to here).  When debugging remotely, it's best to
1120      avoid extra traffic, when possible, so avoid syncing the thread
1121      list with the target, and instead go ahead and delete all threads
1122      of the process but one that reported the event.  Note this must
1123      be done before calling update_breakpoints_after_exec, as
1124      otherwise clearing the threads' resources would reference stale
1125      thread breakpoints -- it may have been one of these threads that
1126      stepped across the exec.  We could just clear their stepping
1127      states, but as long as we're iterating, might as well delete
1128      them.  Deleting them now rather than at the next user-visible
1129      stop provides a nicer sequence of events for user and MI
1130      notifications.  */
1131   for (thread_info *th : all_threads_safe ())
1132     if (th->ptid.pid () == pid && th->ptid != ptid)
1133       delete_thread (th);
1134 
1135   /* We also need to clear any left over stale state for the
1136      leader/event thread.  E.g., if there was any step-resume
1137      breakpoint or similar, it's gone now.  We cannot truly
1138      step-to-next statement through an exec().  */
1139   thread_info *th = inferior_thread ();
1140   th->control.step_resume_breakpoint = NULL;
1141   th->control.exception_resume_breakpoint = NULL;
1142   th->control.single_step_breakpoints = NULL;
1143   th->control.step_range_start = 0;
1144   th->control.step_range_end = 0;
1145 
1146   /* The user may have had the main thread held stopped in the
1147      previous image (e.g., schedlock on, or non-stop).  Release
1148      it now.  */
1149   th->stop_requested = 0;
1150 
1151   update_breakpoints_after_exec ();
1152 
1153   /* What is this a.out's name?  */
1154   process_ptid = ptid_t (pid);
1155   printf_unfiltered (_("%s is executing new program: %s\n"),
1156 		     target_pid_to_str (process_ptid),
1157 		     exec_file_target);
1158 
1159   /* We've followed the inferior through an exec.  Therefore, the
1160      inferior has essentially been killed & reborn.  */
1161 
1162   gdb_flush (gdb_stdout);
1163 
1164   breakpoint_init_inferior (inf_execd);
1165 
1166   gdb::unique_xmalloc_ptr<char> exec_file_host
1167     = exec_file_find (exec_file_target, NULL);
1168 
1169   /* If we were unable to map the executable target pathname onto a host
1170      pathname, tell the user that.  Otherwise GDB's subsequent behavior
1171      is confusing.  Maybe it would even be better to stop at this point
1172      so that the user can specify a file manually before continuing.  */
1173   if (exec_file_host == NULL)
1174     warning (_("Could not load symbols for executable %s.\n"
1175 	       "Do you need \"set sysroot\"?"),
1176 	     exec_file_target);
1177 
1178   /* Reset the shared library package.  This ensures that we get a
1179      shlib event when the child reaches "_start", at which point the
1180      dld will have had a chance to initialize the child.  */
1181   /* Also, loading a symbol file below may trigger symbol lookups, and
1182      we don't want those to be satisfied by the libraries of the
1183      previous incarnation of this process.  */
1184   no_shared_libraries (NULL, 0);
1185 
1186   if (follow_exec_mode_string == follow_exec_mode_new)
1187     {
1188       /* The user wants to keep the old inferior and program spaces
1189 	 around.  Create a new fresh one, and switch to it.  */
1190 
1191       /* Do exit processing for the original inferior before setting the new
1192 	 inferior's pid.  Having two inferiors with the same pid would confuse
1193 	 find_inferior_p(t)id.  Transfer the terminal state and info from the
1194 	  old to the new inferior.  */
1195       inf = add_inferior_with_spaces ();
1196       swap_terminal_info (inf, current_inferior ());
1197       exit_inferior_silent (current_inferior ());
1198 
1199       inf->pid = pid;
1200       target_follow_exec (inf, exec_file_target);
1201 
1202       set_current_inferior (inf);
1203       set_current_program_space (inf->pspace);
1204       add_thread (ptid);
1205     }
1206   else
1207     {
1208       /* The old description may no longer be fit for the new image.
1209 	 E.g, a 64-bit process exec'ed a 32-bit process.  Clear the
1210 	 old description; we'll read a new one below.  No need to do
1211 	 this on "follow-exec-mode new", as the old inferior stays
1212 	 around (its description is later cleared/refetched on
1213 	 restart).  */
1214       target_clear_description ();
1215     }
1216 
1217   gdb_assert (current_program_space == inf->pspace);
1218 
1219   /* Attempt to open the exec file.  SYMFILE_DEFER_BP_RESET is used
1220      because the proper displacement for a PIE (Position Independent
1221      Executable) main symbol file will only be computed by
1222      solib_create_inferior_hook below.  breakpoint_re_set would fail
1223      to insert the breakpoints with the zero displacement.  */
1224   try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1225 
1226   /* If the target can specify a description, read it.  Must do this
1227      after flipping to the new executable (because the target supplied
1228      description must be compatible with the executable's
1229      architecture, and the old executable may e.g., be 32-bit, while
1230      the new one 64-bit), and before anything involving memory or
1231      registers.  */
1232   target_find_description ();
1233 
1234   solib_create_inferior_hook (0);
1235 
1236   jit_inferior_created_hook ();
1237 
1238   breakpoint_re_set ();
1239 
1240   /* Reinsert all breakpoints.  (Those which were symbolic have
1241      been reset to the proper address in the new a.out, thanks
1242      to symbol_file_command...).  */
1243   insert_breakpoints ();
1244 
1245   /* The next resume of this inferior should bring it to the shlib
1246      startup breakpoints.  (If the user had also set bp's on
1247      "main" from the old (parent) process, then they'll auto-
1248      matically get reset there in the new process.).  */
1249 }
1250 
1251 /* The queue of threads that need to do a step-over operation to get
1252    past e.g., a breakpoint.  What technique is used to step over the
1253    breakpoint/watchpoint does not matter -- all threads end up in the
1254    same queue, to maintain rough temporal order of execution, in order
1255    to avoid starvation, otherwise, we could e.g., find ourselves
1256    constantly stepping the same couple threads past their breakpoints
1257    over and over, if the single-step finish fast enough.  */
1258 struct thread_info *step_over_queue_head;
1259 
1260 /* Bit flags indicating what the thread needs to step over.  */
1261 
1262 enum step_over_what_flag
1263   {
1264     /* Step over a breakpoint.  */
1265     STEP_OVER_BREAKPOINT = 1,
1266 
1267     /* Step past a non-continuable watchpoint, in order to let the
1268        instruction execute so we can evaluate the watchpoint
1269        expression.  */
1270     STEP_OVER_WATCHPOINT = 2
1271   };
1272 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1273 
1274 /* Info about an instruction that is being stepped over.  */
1275 
1276 struct step_over_info
1277 {
1278   /* If we're stepping past a breakpoint, this is the address space
1279      and address of the instruction the breakpoint is set at.  We'll
1280      skip inserting all breakpoints here.  Valid iff ASPACE is
1281      non-NULL.  */
1282   const address_space *aspace;
1283   CORE_ADDR address;
1284 
1285   /* The instruction being stepped over triggers a nonsteppable
1286      watchpoint.  If true, we'll skip inserting watchpoints.  */
1287   int nonsteppable_watchpoint_p;
1288 
1289   /* The thread's global number.  */
1290   int thread;
1291 };
1292 
1293 /* The step-over info of the location that is being stepped over.
1294 
1295    Note that with async/breakpoint always-inserted mode, a user might
1296    set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1297    being stepped over.  As setting a new breakpoint inserts all
1298    breakpoints, we need to make sure the breakpoint being stepped over
1299    isn't inserted then.  We do that by only clearing the step-over
1300    info when the step-over is actually finished (or aborted).
1301 
1302    Presently GDB can only step over one breakpoint at any given time.
1303    Given threads that can't run code in the same address space as the
1304    breakpoint's can't really miss the breakpoint, GDB could be taught
1305    to step-over at most one breakpoint per address space (so this info
1306    could move to the address space object if/when GDB is extended).
1307    The set of breakpoints being stepped over will normally be much
1308    smaller than the set of all breakpoints, so a flag in the
1309    breakpoint location structure would be wasteful.  A separate list
1310    also saves complexity and run-time, as otherwise we'd have to go
1311    through all breakpoint locations clearing their flag whenever we
1312    start a new sequence.  Similar considerations weigh against storing
1313    this info in the thread object.  Plus, not all step overs actually
1314    have breakpoint locations -- e.g., stepping past a single-step
1315    breakpoint, or stepping to complete a non-continuable
1316    watchpoint.  */
1317 static struct step_over_info step_over_info;
1318 
1319 /* Record the address of the breakpoint/instruction we're currently
1320    stepping over.
1321    N.B. We record the aspace and address now, instead of say just the thread,
1322    because when we need the info later the thread may be running.  */
1323 
1324 static void
1325 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1326 		    int nonsteppable_watchpoint_p,
1327 		    int thread)
1328 {
1329   step_over_info.aspace = aspace;
1330   step_over_info.address = address;
1331   step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1332   step_over_info.thread = thread;
1333 }
1334 
1335 /* Called when we're not longer stepping over a breakpoint / an
1336    instruction, so all breakpoints are free to be (re)inserted.  */
1337 
1338 static void
1339 clear_step_over_info (void)
1340 {
1341   if (debug_infrun)
1342     fprintf_unfiltered (gdb_stdlog,
1343 			"infrun: clear_step_over_info\n");
1344   step_over_info.aspace = NULL;
1345   step_over_info.address = 0;
1346   step_over_info.nonsteppable_watchpoint_p = 0;
1347   step_over_info.thread = -1;
1348 }
1349 
1350 /* See infrun.h.  */
1351 
1352 int
1353 stepping_past_instruction_at (struct address_space *aspace,
1354 			      CORE_ADDR address)
1355 {
1356   return (step_over_info.aspace != NULL
1357 	  && breakpoint_address_match (aspace, address,
1358 				       step_over_info.aspace,
1359 				       step_over_info.address));
1360 }
1361 
1362 /* See infrun.h.  */
1363 
1364 int
1365 thread_is_stepping_over_breakpoint (int thread)
1366 {
1367   return (step_over_info.thread != -1
1368 	  && thread == step_over_info.thread);
1369 }
1370 
1371 /* See infrun.h.  */
1372 
1373 int
1374 stepping_past_nonsteppable_watchpoint (void)
1375 {
1376   return step_over_info.nonsteppable_watchpoint_p;
1377 }
1378 
1379 /* Returns true if step-over info is valid.  */
1380 
1381 static int
1382 step_over_info_valid_p (void)
1383 {
1384   return (step_over_info.aspace != NULL
1385 	  || stepping_past_nonsteppable_watchpoint ());
1386 }
1387 
1388 
1389 /* Displaced stepping.  */
1390 
1391 /* In non-stop debugging mode, we must take special care to manage
1392    breakpoints properly; in particular, the traditional strategy for
1393    stepping a thread past a breakpoint it has hit is unsuitable.
1394    'Displaced stepping' is a tactic for stepping one thread past a
1395    breakpoint it has hit while ensuring that other threads running
1396    concurrently will hit the breakpoint as they should.
1397 
1398    The traditional way to step a thread T off a breakpoint in a
1399    multi-threaded program in all-stop mode is as follows:
1400 
1401    a0) Initially, all threads are stopped, and breakpoints are not
1402        inserted.
1403    a1) We single-step T, leaving breakpoints uninserted.
1404    a2) We insert breakpoints, and resume all threads.
1405 
1406    In non-stop debugging, however, this strategy is unsuitable: we
1407    don't want to have to stop all threads in the system in order to
1408    continue or step T past a breakpoint.  Instead, we use displaced
1409    stepping:
1410 
1411    n0) Initially, T is stopped, other threads are running, and
1412        breakpoints are inserted.
1413    n1) We copy the instruction "under" the breakpoint to a separate
1414        location, outside the main code stream, making any adjustments
1415        to the instruction, register, and memory state as directed by
1416        T's architecture.
1417    n2) We single-step T over the instruction at its new location.
1418    n3) We adjust the resulting register and memory state as directed
1419        by T's architecture.  This includes resetting T's PC to point
1420        back into the main instruction stream.
1421    n4) We resume T.
1422 
1423    This approach depends on the following gdbarch methods:
1424 
1425    - gdbarch_max_insn_length and gdbarch_displaced_step_location
1426      indicate where to copy the instruction, and how much space must
1427      be reserved there.  We use these in step n1.
1428 
1429    - gdbarch_displaced_step_copy_insn copies a instruction to a new
1430      address, and makes any necessary adjustments to the instruction,
1431      register contents, and memory.  We use this in step n1.
1432 
1433    - gdbarch_displaced_step_fixup adjusts registers and memory after
1434      we have successfuly single-stepped the instruction, to yield the
1435      same effect the instruction would have had if we had executed it
1436      at its original address.  We use this in step n3.
1437 
1438    The gdbarch_displaced_step_copy_insn and
1439    gdbarch_displaced_step_fixup functions must be written so that
1440    copying an instruction with gdbarch_displaced_step_copy_insn,
1441    single-stepping across the copied instruction, and then applying
1442    gdbarch_displaced_insn_fixup should have the same effects on the
1443    thread's memory and registers as stepping the instruction in place
1444    would have.  Exactly which responsibilities fall to the copy and
1445    which fall to the fixup is up to the author of those functions.
1446 
1447    See the comments in gdbarch.sh for details.
1448 
1449    Note that displaced stepping and software single-step cannot
1450    currently be used in combination, although with some care I think
1451    they could be made to.  Software single-step works by placing
1452    breakpoints on all possible subsequent instructions; if the
1453    displaced instruction is a PC-relative jump, those breakpoints
1454    could fall in very strange places --- on pages that aren't
1455    executable, or at addresses that are not proper instruction
1456    boundaries.  (We do generally let other threads run while we wait
1457    to hit the software single-step breakpoint, and they might
1458    encounter such a corrupted instruction.)  One way to work around
1459    this would be to have gdbarch_displaced_step_copy_insn fully
1460    simulate the effect of PC-relative instructions (and return NULL)
1461    on architectures that use software single-stepping.
1462 
1463    In non-stop mode, we can have independent and simultaneous step
1464    requests, so more than one thread may need to simultaneously step
1465    over a breakpoint.  The current implementation assumes there is
1466    only one scratch space per process.  In this case, we have to
1467    serialize access to the scratch space.  If thread A wants to step
1468    over a breakpoint, but we are currently waiting for some other
1469    thread to complete a displaced step, we leave thread A stopped and
1470    place it in the displaced_step_request_queue.  Whenever a displaced
1471    step finishes, we pick the next thread in the queue and start a new
1472    displaced step operation on it.  See displaced_step_prepare and
1473    displaced_step_fixup for details.  */
1474 
1475 /* Default destructor for displaced_step_closure.  */
1476 
1477 displaced_step_closure::~displaced_step_closure () = default;
1478 
1479 /* Get the displaced stepping state of process PID.  */
1480 
1481 static displaced_step_inferior_state *
1482 get_displaced_stepping_state (inferior *inf)
1483 {
1484   return &inf->displaced_step_state;
1485 }
1486 
1487 /* Returns true if any inferior has a thread doing a displaced
1488    step.  */
1489 
1490 static bool
1491 displaced_step_in_progress_any_inferior ()
1492 {
1493   for (inferior *i : all_inferiors ())
1494     {
1495       if (i->displaced_step_state.step_thread != nullptr)
1496 	return true;
1497     }
1498 
1499   return false;
1500 }
1501 
1502 /* Return true if thread represented by PTID is doing a displaced
1503    step.  */
1504 
1505 static int
1506 displaced_step_in_progress_thread (thread_info *thread)
1507 {
1508   gdb_assert (thread != NULL);
1509 
1510   return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1511 }
1512 
1513 /* Return true if process PID has a thread doing a displaced step.  */
1514 
1515 static int
1516 displaced_step_in_progress (inferior *inf)
1517 {
1518   return get_displaced_stepping_state (inf)->step_thread != nullptr;
1519 }
1520 
1521 /* If inferior is in displaced stepping, and ADDR equals to starting address
1522    of copy area, return corresponding displaced_step_closure.  Otherwise,
1523    return NULL.  */
1524 
1525 struct displaced_step_closure*
1526 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1527 {
1528   displaced_step_inferior_state *displaced
1529     = get_displaced_stepping_state (current_inferior ());
1530 
1531   /* If checking the mode of displaced instruction in copy area.  */
1532   if (displaced->step_thread != nullptr
1533       && displaced->step_copy == addr)
1534     return displaced->step_closure;
1535 
1536   return NULL;
1537 }
1538 
1539 static void
1540 infrun_inferior_exit (struct inferior *inf)
1541 {
1542   inf->displaced_step_state.reset ();
1543 }
1544 
1545 /* If ON, and the architecture supports it, GDB will use displaced
1546    stepping to step over breakpoints.  If OFF, or if the architecture
1547    doesn't support it, GDB will instead use the traditional
1548    hold-and-step approach.  If AUTO (which is the default), GDB will
1549    decide which technique to use to step over breakpoints depending on
1550    which of all-stop or non-stop mode is active --- displaced stepping
1551    in non-stop mode; hold-and-step in all-stop mode.  */
1552 
1553 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1554 
1555 static void
1556 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1557 				 struct cmd_list_element *c,
1558 				 const char *value)
1559 {
1560   if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1561     fprintf_filtered (file,
1562 		      _("Debugger's willingness to use displaced stepping "
1563 			"to step over breakpoints is %s (currently %s).\n"),
1564 		      value, target_is_non_stop_p () ? "on" : "off");
1565   else
1566     fprintf_filtered (file,
1567 		      _("Debugger's willingness to use displaced stepping "
1568 			"to step over breakpoints is %s.\n"), value);
1569 }
1570 
1571 /* Return non-zero if displaced stepping can/should be used to step
1572    over breakpoints of thread TP.  */
1573 
1574 static int
1575 use_displaced_stepping (struct thread_info *tp)
1576 {
1577   struct regcache *regcache = get_thread_regcache (tp);
1578   struct gdbarch *gdbarch = regcache->arch ();
1579   displaced_step_inferior_state *displaced_state
1580     = get_displaced_stepping_state (tp->inf);
1581 
1582   return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1583 	    && target_is_non_stop_p ())
1584 	   || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1585 	  && gdbarch_displaced_step_copy_insn_p (gdbarch)
1586 	  && find_record_target () == NULL
1587 	  && !displaced_state->failed_before);
1588 }
1589 
1590 /* Clean out any stray displaced stepping state.  */
1591 static void
1592 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1593 {
1594   /* Indicate that there is no cleanup pending.  */
1595   displaced->step_thread = nullptr;
1596 
1597   delete displaced->step_closure;
1598   displaced->step_closure = NULL;
1599 }
1600 
1601 static void
1602 displaced_step_clear_cleanup (void *arg)
1603 {
1604   struct displaced_step_inferior_state *state
1605     = (struct displaced_step_inferior_state *) arg;
1606 
1607   displaced_step_clear (state);
1608 }
1609 
1610 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline.  */
1611 void
1612 displaced_step_dump_bytes (struct ui_file *file,
1613                            const gdb_byte *buf,
1614                            size_t len)
1615 {
1616   int i;
1617 
1618   for (i = 0; i < len; i++)
1619     fprintf_unfiltered (file, "%02x ", buf[i]);
1620   fputs_unfiltered ("\n", file);
1621 }
1622 
1623 /* Prepare to single-step, using displaced stepping.
1624 
1625    Note that we cannot use displaced stepping when we have a signal to
1626    deliver.  If we have a signal to deliver and an instruction to step
1627    over, then after the step, there will be no indication from the
1628    target whether the thread entered a signal handler or ignored the
1629    signal and stepped over the instruction successfully --- both cases
1630    result in a simple SIGTRAP.  In the first case we mustn't do a
1631    fixup, and in the second case we must --- but we can't tell which.
1632    Comments in the code for 'random signals' in handle_inferior_event
1633    explain how we handle this case instead.
1634 
1635    Returns 1 if preparing was successful -- this thread is going to be
1636    stepped now; 0 if displaced stepping this thread got queued; or -1
1637    if this instruction can't be displaced stepped.  */
1638 
1639 static int
1640 displaced_step_prepare_throw (thread_info *tp)
1641 {
1642   regcache *regcache = get_thread_regcache (tp);
1643   struct gdbarch *gdbarch = regcache->arch ();
1644   const address_space *aspace = regcache->aspace ();
1645   CORE_ADDR original, copy;
1646   ULONGEST len;
1647   struct displaced_step_closure *closure;
1648   int status;
1649 
1650   /* We should never reach this function if the architecture does not
1651      support displaced stepping.  */
1652   gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1653 
1654   /* Nor if the thread isn't meant to step over a breakpoint.  */
1655   gdb_assert (tp->control.trap_expected);
1656 
1657   /* Disable range stepping while executing in the scratch pad.  We
1658      want a single-step even if executing the displaced instruction in
1659      the scratch buffer lands within the stepping range (e.g., a
1660      jump/branch).  */
1661   tp->control.may_range_step = 0;
1662 
1663   /* We have to displaced step one thread at a time, as we only have
1664      access to a single scratch space per inferior.  */
1665 
1666   displaced_step_inferior_state *displaced
1667     = get_displaced_stepping_state (tp->inf);
1668 
1669   if (displaced->step_thread != nullptr)
1670     {
1671       /* Already waiting for a displaced step to finish.  Defer this
1672 	 request and place in queue.  */
1673 
1674       if (debug_displaced)
1675 	fprintf_unfiltered (gdb_stdlog,
1676 			    "displaced: deferring step of %s\n",
1677 			    target_pid_to_str (tp->ptid));
1678 
1679       thread_step_over_chain_enqueue (tp);
1680       return 0;
1681     }
1682   else
1683     {
1684       if (debug_displaced)
1685 	fprintf_unfiltered (gdb_stdlog,
1686 			    "displaced: stepping %s now\n",
1687 			    target_pid_to_str (tp->ptid));
1688     }
1689 
1690   displaced_step_clear (displaced);
1691 
1692   scoped_restore_current_thread restore_thread;
1693 
1694   switch_to_thread (tp);
1695 
1696   original = regcache_read_pc (regcache);
1697 
1698   copy = gdbarch_displaced_step_location (gdbarch);
1699   len = gdbarch_max_insn_length (gdbarch);
1700 
1701   if (breakpoint_in_range_p (aspace, copy, len))
1702     {
1703       /* There's a breakpoint set in the scratch pad location range
1704 	 (which is usually around the entry point).  We'd either
1705 	 install it before resuming, which would overwrite/corrupt the
1706 	 scratch pad, or if it was already inserted, this displaced
1707 	 step would overwrite it.  The latter is OK in the sense that
1708 	 we already assume that no thread is going to execute the code
1709 	 in the scratch pad range (after initial startup) anyway, but
1710 	 the former is unacceptable.  Simply punt and fallback to
1711 	 stepping over this breakpoint in-line.  */
1712       if (debug_displaced)
1713 	{
1714 	  fprintf_unfiltered (gdb_stdlog,
1715 			      "displaced: breakpoint set in scratch pad.  "
1716 			      "Stepping over breakpoint in-line instead.\n");
1717 	}
1718 
1719       return -1;
1720     }
1721 
1722   /* Save the original contents of the copy area.  */
1723   displaced->step_saved_copy.resize (len);
1724   status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1725   if (status != 0)
1726     throw_error (MEMORY_ERROR,
1727 		 _("Error accessing memory address %s (%s) for "
1728 		   "displaced-stepping scratch space."),
1729 		 paddress (gdbarch, copy), safe_strerror (status));
1730   if (debug_displaced)
1731     {
1732       fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1733 			  paddress (gdbarch, copy));
1734       displaced_step_dump_bytes (gdb_stdlog,
1735 				 displaced->step_saved_copy.data (),
1736 				 len);
1737     };
1738 
1739   closure = gdbarch_displaced_step_copy_insn (gdbarch,
1740 					      original, copy, regcache);
1741   if (closure == NULL)
1742     {
1743       /* The architecture doesn't know how or want to displaced step
1744 	 this instruction or instruction sequence.  Fallback to
1745 	 stepping over the breakpoint in-line.  */
1746       return -1;
1747     }
1748 
1749   /* Save the information we need to fix things up if the step
1750      succeeds.  */
1751   displaced->step_thread = tp;
1752   displaced->step_gdbarch = gdbarch;
1753   displaced->step_closure = closure;
1754   displaced->step_original = original;
1755   displaced->step_copy = copy;
1756 
1757   cleanup *ignore_cleanups
1758     = make_cleanup (displaced_step_clear_cleanup, displaced);
1759 
1760   /* Resume execution at the copy.  */
1761   regcache_write_pc (regcache, copy);
1762 
1763   discard_cleanups (ignore_cleanups);
1764 
1765   if (debug_displaced)
1766     fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1767 			paddress (gdbarch, copy));
1768 
1769   return 1;
1770 }
1771 
1772 /* Wrapper for displaced_step_prepare_throw that disabled further
1773    attempts at displaced stepping if we get a memory error.  */
1774 
1775 static int
1776 displaced_step_prepare (thread_info *thread)
1777 {
1778   int prepared = -1;
1779 
1780   TRY
1781     {
1782       prepared = displaced_step_prepare_throw (thread);
1783     }
1784   CATCH (ex, RETURN_MASK_ERROR)
1785     {
1786       struct displaced_step_inferior_state *displaced_state;
1787 
1788       if (ex.error != MEMORY_ERROR
1789 	  && ex.error != NOT_SUPPORTED_ERROR)
1790 	throw_exception (ex);
1791 
1792       if (debug_infrun)
1793 	{
1794 	  fprintf_unfiltered (gdb_stdlog,
1795 			      "infrun: disabling displaced stepping: %s\n",
1796 			      ex.message);
1797 	}
1798 
1799       /* Be verbose if "set displaced-stepping" is "on", silent if
1800 	 "auto".  */
1801       if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1802 	{
1803 	  warning (_("disabling displaced stepping: %s"),
1804 		   ex.message);
1805 	}
1806 
1807       /* Disable further displaced stepping attempts.  */
1808       displaced_state
1809 	= get_displaced_stepping_state (thread->inf);
1810       displaced_state->failed_before = 1;
1811     }
1812   END_CATCH
1813 
1814   return prepared;
1815 }
1816 
1817 static void
1818 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1819 		   const gdb_byte *myaddr, int len)
1820 {
1821   scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1822 
1823   inferior_ptid = ptid;
1824   write_memory (memaddr, myaddr, len);
1825 }
1826 
1827 /* Restore the contents of the copy area for thread PTID.  */
1828 
1829 static void
1830 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1831 			ptid_t ptid)
1832 {
1833   ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1834 
1835   write_memory_ptid (ptid, displaced->step_copy,
1836 		     displaced->step_saved_copy.data (), len);
1837   if (debug_displaced)
1838     fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1839 			target_pid_to_str (ptid),
1840 			paddress (displaced->step_gdbarch,
1841 				  displaced->step_copy));
1842 }
1843 
1844 /* If we displaced stepped an instruction successfully, adjust
1845    registers and memory to yield the same effect the instruction would
1846    have had if we had executed it at its original address, and return
1847    1.  If the instruction didn't complete, relocate the PC and return
1848    -1.  If the thread wasn't displaced stepping, return 0.  */
1849 
1850 static int
1851 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1852 {
1853   struct cleanup *old_cleanups;
1854   struct displaced_step_inferior_state *displaced
1855     = get_displaced_stepping_state (event_thread->inf);
1856   int ret;
1857 
1858   /* Was this event for the thread we displaced?  */
1859   if (displaced->step_thread != event_thread)
1860     return 0;
1861 
1862   old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1863 
1864   displaced_step_restore (displaced, displaced->step_thread->ptid);
1865 
1866   /* Fixup may need to read memory/registers.  Switch to the thread
1867      that we're fixing up.  Also, target_stopped_by_watchpoint checks
1868      the current thread.  */
1869   switch_to_thread (event_thread);
1870 
1871   /* Did the instruction complete successfully?  */
1872   if (signal == GDB_SIGNAL_TRAP
1873       && !(target_stopped_by_watchpoint ()
1874 	   && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1875 	       || target_have_steppable_watchpoint)))
1876     {
1877       /* Fix up the resulting state.  */
1878       gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1879                                     displaced->step_closure,
1880                                     displaced->step_original,
1881                                     displaced->step_copy,
1882                                     get_thread_regcache (displaced->step_thread));
1883       ret = 1;
1884     }
1885   else
1886     {
1887       /* Since the instruction didn't complete, all we can do is
1888          relocate the PC.  */
1889       struct regcache *regcache = get_thread_regcache (event_thread);
1890       CORE_ADDR pc = regcache_read_pc (regcache);
1891 
1892       pc = displaced->step_original + (pc - displaced->step_copy);
1893       regcache_write_pc (regcache, pc);
1894       ret = -1;
1895     }
1896 
1897   do_cleanups (old_cleanups);
1898 
1899   displaced->step_thread = nullptr;
1900 
1901   return ret;
1902 }
1903 
1904 /* Data to be passed around while handling an event.  This data is
1905    discarded between events.  */
1906 struct execution_control_state
1907 {
1908   ptid_t ptid;
1909   /* The thread that got the event, if this was a thread event; NULL
1910      otherwise.  */
1911   struct thread_info *event_thread;
1912 
1913   struct target_waitstatus ws;
1914   int stop_func_filled_in;
1915   CORE_ADDR stop_func_start;
1916   CORE_ADDR stop_func_end;
1917   const char *stop_func_name;
1918   int wait_some_more;
1919 
1920   /* True if the event thread hit the single-step breakpoint of
1921      another thread.  Thus the event doesn't cause a stop, the thread
1922      needs to be single-stepped past the single-step breakpoint before
1923      we can switch back to the original stepping thread.  */
1924   int hit_singlestep_breakpoint;
1925 };
1926 
1927 /* Clear ECS and set it to point at TP.  */
1928 
1929 static void
1930 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1931 {
1932   memset (ecs, 0, sizeof (*ecs));
1933   ecs->event_thread = tp;
1934   ecs->ptid = tp->ptid;
1935 }
1936 
1937 static void keep_going_pass_signal (struct execution_control_state *ecs);
1938 static void prepare_to_wait (struct execution_control_state *ecs);
1939 static int keep_going_stepped_thread (struct thread_info *tp);
1940 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1941 
1942 /* Are there any pending step-over requests?  If so, run all we can
1943    now and return true.  Otherwise, return false.  */
1944 
1945 static int
1946 start_step_over (void)
1947 {
1948   struct thread_info *tp, *next;
1949 
1950   /* Don't start a new step-over if we already have an in-line
1951      step-over operation ongoing.  */
1952   if (step_over_info_valid_p ())
1953     return 0;
1954 
1955   for (tp = step_over_queue_head; tp != NULL; tp = next)
1956     {
1957       struct execution_control_state ecss;
1958       struct execution_control_state *ecs = &ecss;
1959       step_over_what step_what;
1960       int must_be_in_line;
1961 
1962       gdb_assert (!tp->stop_requested);
1963 
1964       next = thread_step_over_chain_next (tp);
1965 
1966       /* If this inferior already has a displaced step in process,
1967 	 don't start a new one.  */
1968       if (displaced_step_in_progress (tp->inf))
1969 	continue;
1970 
1971       step_what = thread_still_needs_step_over (tp);
1972       must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1973 			 || ((step_what & STEP_OVER_BREAKPOINT)
1974 			     && !use_displaced_stepping (tp)));
1975 
1976       /* We currently stop all threads of all processes to step-over
1977 	 in-line.  If we need to start a new in-line step-over, let
1978 	 any pending displaced steps finish first.  */
1979       if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1980 	return 0;
1981 
1982       thread_step_over_chain_remove (tp);
1983 
1984       if (step_over_queue_head == NULL)
1985 	{
1986 	  if (debug_infrun)
1987 	    fprintf_unfiltered (gdb_stdlog,
1988 				"infrun: step-over queue now empty\n");
1989 	}
1990 
1991       if (tp->control.trap_expected
1992 	  || tp->resumed
1993 	  || tp->executing)
1994 	{
1995 	  internal_error (__FILE__, __LINE__,
1996 			  "[%s] has inconsistent state: "
1997 			  "trap_expected=%d, resumed=%d, executing=%d\n",
1998 			  target_pid_to_str (tp->ptid),
1999 			  tp->control.trap_expected,
2000 			  tp->resumed,
2001 			  tp->executing);
2002 	}
2003 
2004       if (debug_infrun)
2005 	fprintf_unfiltered (gdb_stdlog,
2006 			    "infrun: resuming [%s] for step-over\n",
2007 			    target_pid_to_str (tp->ptid));
2008 
2009       /* keep_going_pass_signal skips the step-over if the breakpoint
2010 	 is no longer inserted.  In all-stop, we want to keep looking
2011 	 for a thread that needs a step-over instead of resuming TP,
2012 	 because we wouldn't be able to resume anything else until the
2013 	 target stops again.  In non-stop, the resume always resumes
2014 	 only TP, so it's OK to let the thread resume freely.  */
2015       if (!target_is_non_stop_p () && !step_what)
2016 	continue;
2017 
2018       switch_to_thread (tp);
2019       reset_ecs (ecs, tp);
2020       keep_going_pass_signal (ecs);
2021 
2022       if (!ecs->wait_some_more)
2023 	error (_("Command aborted."));
2024 
2025       gdb_assert (tp->resumed);
2026 
2027       /* If we started a new in-line step-over, we're done.  */
2028       if (step_over_info_valid_p ())
2029 	{
2030 	  gdb_assert (tp->control.trap_expected);
2031 	  return 1;
2032 	}
2033 
2034       if (!target_is_non_stop_p ())
2035 	{
2036 	  /* On all-stop, shouldn't have resumed unless we needed a
2037 	     step over.  */
2038 	  gdb_assert (tp->control.trap_expected
2039 		      || tp->step_after_step_resume_breakpoint);
2040 
2041 	  /* With remote targets (at least), in all-stop, we can't
2042 	     issue any further remote commands until the program stops
2043 	     again.  */
2044 	  return 1;
2045 	}
2046 
2047       /* Either the thread no longer needed a step-over, or a new
2048 	 displaced stepping sequence started.  Even in the latter
2049 	 case, continue looking.  Maybe we can also start another
2050 	 displaced step on a thread of other process. */
2051     }
2052 
2053   return 0;
2054 }
2055 
2056 /* Update global variables holding ptids to hold NEW_PTID if they were
2057    holding OLD_PTID.  */
2058 static void
2059 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2060 {
2061   if (inferior_ptid == old_ptid)
2062     inferior_ptid = new_ptid;
2063 }
2064 
2065 
2066 
2067 static const char schedlock_off[] = "off";
2068 static const char schedlock_on[] = "on";
2069 static const char schedlock_step[] = "step";
2070 static const char schedlock_replay[] = "replay";
2071 static const char *const scheduler_enums[] = {
2072   schedlock_off,
2073   schedlock_on,
2074   schedlock_step,
2075   schedlock_replay,
2076   NULL
2077 };
2078 static const char *scheduler_mode = schedlock_replay;
2079 static void
2080 show_scheduler_mode (struct ui_file *file, int from_tty,
2081 		     struct cmd_list_element *c, const char *value)
2082 {
2083   fprintf_filtered (file,
2084 		    _("Mode for locking scheduler "
2085 		      "during execution is \"%s\".\n"),
2086 		    value);
2087 }
2088 
2089 static void
2090 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2091 {
2092   if (!target_can_lock_scheduler)
2093     {
2094       scheduler_mode = schedlock_off;
2095       error (_("Target '%s' cannot support this command."), target_shortname);
2096     }
2097 }
2098 
2099 /* True if execution commands resume all threads of all processes by
2100    default; otherwise, resume only threads of the current inferior
2101    process.  */
2102 int sched_multi = 0;
2103 
2104 /* Try to setup for software single stepping over the specified location.
2105    Return 1 if target_resume() should use hardware single step.
2106 
2107    GDBARCH the current gdbarch.
2108    PC the location to step over.  */
2109 
2110 static int
2111 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2112 {
2113   int hw_step = 1;
2114 
2115   if (execution_direction == EXEC_FORWARD
2116       && gdbarch_software_single_step_p (gdbarch))
2117     hw_step = !insert_single_step_breakpoints (gdbarch);
2118 
2119   return hw_step;
2120 }
2121 
2122 /* See infrun.h.  */
2123 
2124 ptid_t
2125 user_visible_resume_ptid (int step)
2126 {
2127   ptid_t resume_ptid;
2128 
2129   if (non_stop)
2130     {
2131       /* With non-stop mode on, threads are always handled
2132 	 individually.  */
2133       resume_ptid = inferior_ptid;
2134     }
2135   else if ((scheduler_mode == schedlock_on)
2136 	   || (scheduler_mode == schedlock_step && step))
2137     {
2138       /* User-settable 'scheduler' mode requires solo thread
2139 	 resume.  */
2140       resume_ptid = inferior_ptid;
2141     }
2142   else if ((scheduler_mode == schedlock_replay)
2143 	   && target_record_will_replay (minus_one_ptid, execution_direction))
2144     {
2145       /* User-settable 'scheduler' mode requires solo thread resume in replay
2146 	 mode.  */
2147       resume_ptid = inferior_ptid;
2148     }
2149   else if (!sched_multi && target_supports_multi_process ())
2150     {
2151       /* Resume all threads of the current process (and none of other
2152 	 processes).  */
2153       resume_ptid = ptid_t (inferior_ptid.pid ());
2154     }
2155   else
2156     {
2157       /* Resume all threads of all processes.  */
2158       resume_ptid = RESUME_ALL;
2159     }
2160 
2161   return resume_ptid;
2162 }
2163 
2164 /* Return a ptid representing the set of threads that we will resume,
2165    in the perspective of the target, assuming run control handling
2166    does not require leaving some threads stopped (e.g., stepping past
2167    breakpoint).  USER_STEP indicates whether we're about to start the
2168    target for a stepping command.  */
2169 
2170 static ptid_t
2171 internal_resume_ptid (int user_step)
2172 {
2173   /* In non-stop, we always control threads individually.  Note that
2174      the target may always work in non-stop mode even with "set
2175      non-stop off", in which case user_visible_resume_ptid could
2176      return a wildcard ptid.  */
2177   if (target_is_non_stop_p ())
2178     return inferior_ptid;
2179   else
2180     return user_visible_resume_ptid (user_step);
2181 }
2182 
2183 /* Wrapper for target_resume, that handles infrun-specific
2184    bookkeeping.  */
2185 
2186 static void
2187 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2188 {
2189   struct thread_info *tp = inferior_thread ();
2190 
2191   gdb_assert (!tp->stop_requested);
2192 
2193   /* Install inferior's terminal modes.  */
2194   target_terminal::inferior ();
2195 
2196   /* Avoid confusing the next resume, if the next stop/resume
2197      happens to apply to another thread.  */
2198   tp->suspend.stop_signal = GDB_SIGNAL_0;
2199 
2200   /* Advise target which signals may be handled silently.
2201 
2202      If we have removed breakpoints because we are stepping over one
2203      in-line (in any thread), we need to receive all signals to avoid
2204      accidentally skipping a breakpoint during execution of a signal
2205      handler.
2206 
2207      Likewise if we're displaced stepping, otherwise a trap for a
2208      breakpoint in a signal handler might be confused with the
2209      displaced step finishing.  We don't make the displaced_step_fixup
2210      step distinguish the cases instead, because:
2211 
2212      - a backtrace while stopped in the signal handler would show the
2213        scratch pad as frame older than the signal handler, instead of
2214        the real mainline code.
2215 
2216      - when the thread is later resumed, the signal handler would
2217        return to the scratch pad area, which would no longer be
2218        valid.  */
2219   if (step_over_info_valid_p ()
2220       || displaced_step_in_progress (tp->inf))
2221     target_pass_signals ({});
2222   else
2223     target_pass_signals (signal_pass);
2224 
2225   target_resume (resume_ptid, step, sig);
2226 
2227   target_commit_resume ();
2228 }
2229 
2230 /* Resume the inferior.  SIG is the signal to give the inferior
2231    (GDB_SIGNAL_0 for none).  Note: don't call this directly; instead
2232    call 'resume', which handles exceptions.  */
2233 
2234 static void
2235 resume_1 (enum gdb_signal sig)
2236 {
2237   struct regcache *regcache = get_current_regcache ();
2238   struct gdbarch *gdbarch = regcache->arch ();
2239   struct thread_info *tp = inferior_thread ();
2240   CORE_ADDR pc = regcache_read_pc (regcache);
2241   const address_space *aspace = regcache->aspace ();
2242   ptid_t resume_ptid;
2243   /* This represents the user's step vs continue request.  When
2244      deciding whether "set scheduler-locking step" applies, it's the
2245      user's intention that counts.  */
2246   const int user_step = tp->control.stepping_command;
2247   /* This represents what we'll actually request the target to do.
2248      This can decay from a step to a continue, if e.g., we need to
2249      implement single-stepping with breakpoints (software
2250      single-step).  */
2251   int step;
2252 
2253   gdb_assert (!tp->stop_requested);
2254   gdb_assert (!thread_is_in_step_over_chain (tp));
2255 
2256   if (tp->suspend.waitstatus_pending_p)
2257     {
2258       if (debug_infrun)
2259 	{
2260 	  std::string statstr
2261 	    = target_waitstatus_to_string (&tp->suspend.waitstatus);
2262 
2263 	  fprintf_unfiltered (gdb_stdlog,
2264 			      "infrun: resume: thread %s has pending wait "
2265 			      "status %s (currently_stepping=%d).\n",
2266 			      target_pid_to_str (tp->ptid), statstr.c_str (),
2267 			      currently_stepping (tp));
2268 	}
2269 
2270       tp->resumed = 1;
2271 
2272       /* FIXME: What should we do if we are supposed to resume this
2273 	 thread with a signal?  Maybe we should maintain a queue of
2274 	 pending signals to deliver.  */
2275       if (sig != GDB_SIGNAL_0)
2276 	{
2277 	  warning (_("Couldn't deliver signal %s to %s."),
2278 		   gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2279 	}
2280 
2281       tp->suspend.stop_signal = GDB_SIGNAL_0;
2282 
2283       if (target_can_async_p ())
2284 	{
2285 	  target_async (1);
2286 	  /* Tell the event loop we have an event to process. */
2287 	  mark_async_event_handler (infrun_async_inferior_event_token);
2288 	}
2289       return;
2290     }
2291 
2292   tp->stepped_breakpoint = 0;
2293 
2294   /* Depends on stepped_breakpoint.  */
2295   step = currently_stepping (tp);
2296 
2297   if (current_inferior ()->waiting_for_vfork_done)
2298     {
2299       /* Don't try to single-step a vfork parent that is waiting for
2300 	 the child to get out of the shared memory region (by exec'ing
2301 	 or exiting).  This is particularly important on software
2302 	 single-step archs, as the child process would trip on the
2303 	 software single step breakpoint inserted for the parent
2304 	 process.  Since the parent will not actually execute any
2305 	 instruction until the child is out of the shared region (such
2306 	 are vfork's semantics), it is safe to simply continue it.
2307 	 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2308 	 the parent, and tell it to `keep_going', which automatically
2309 	 re-sets it stepping.  */
2310       if (debug_infrun)
2311 	fprintf_unfiltered (gdb_stdlog,
2312 			    "infrun: resume : clear step\n");
2313       step = 0;
2314     }
2315 
2316   if (debug_infrun)
2317     fprintf_unfiltered (gdb_stdlog,
2318 			"infrun: resume (step=%d, signal=%s), "
2319 			"trap_expected=%d, current thread [%s] at %s\n",
2320 			step, gdb_signal_to_symbol_string (sig),
2321 			tp->control.trap_expected,
2322 			target_pid_to_str (inferior_ptid),
2323 			paddress (gdbarch, pc));
2324 
2325   /* Normally, by the time we reach `resume', the breakpoints are either
2326      removed or inserted, as appropriate.  The exception is if we're sitting
2327      at a permanent breakpoint; we need to step over it, but permanent
2328      breakpoints can't be removed.  So we have to test for it here.  */
2329   if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2330     {
2331       if (sig != GDB_SIGNAL_0)
2332 	{
2333 	  /* We have a signal to pass to the inferior.  The resume
2334 	     may, or may not take us to the signal handler.  If this
2335 	     is a step, we'll need to stop in the signal handler, if
2336 	     there's one, (if the target supports stepping into
2337 	     handlers), or in the next mainline instruction, if
2338 	     there's no handler.  If this is a continue, we need to be
2339 	     sure to run the handler with all breakpoints inserted.
2340 	     In all cases, set a breakpoint at the current address
2341 	     (where the handler returns to), and once that breakpoint
2342 	     is hit, resume skipping the permanent breakpoint.  If
2343 	     that breakpoint isn't hit, then we've stepped into the
2344 	     signal handler (or hit some other event).  We'll delete
2345 	     the step-resume breakpoint then.  */
2346 
2347 	  if (debug_infrun)
2348 	    fprintf_unfiltered (gdb_stdlog,
2349 				"infrun: resume: skipping permanent breakpoint, "
2350 				"deliver signal first\n");
2351 
2352 	  clear_step_over_info ();
2353 	  tp->control.trap_expected = 0;
2354 
2355 	  if (tp->control.step_resume_breakpoint == NULL)
2356 	    {
2357 	      /* Set a "high-priority" step-resume, as we don't want
2358 		 user breakpoints at PC to trigger (again) when this
2359 		 hits.  */
2360 	      insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2361 	      gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2362 
2363 	      tp->step_after_step_resume_breakpoint = step;
2364 	    }
2365 
2366 	  insert_breakpoints ();
2367 	}
2368       else
2369 	{
2370 	  /* There's no signal to pass, we can go ahead and skip the
2371 	     permanent breakpoint manually.  */
2372 	  if (debug_infrun)
2373 	    fprintf_unfiltered (gdb_stdlog,
2374 				"infrun: resume: skipping permanent breakpoint\n");
2375 	  gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2376 	  /* Update pc to reflect the new address from which we will
2377 	     execute instructions.  */
2378 	  pc = regcache_read_pc (regcache);
2379 
2380 	  if (step)
2381 	    {
2382 	      /* We've already advanced the PC, so the stepping part
2383 		 is done.  Now we need to arrange for a trap to be
2384 		 reported to handle_inferior_event.  Set a breakpoint
2385 		 at the current PC, and run to it.  Don't update
2386 		 prev_pc, because if we end in
2387 		 switch_back_to_stepped_thread, we want the "expected
2388 		 thread advanced also" branch to be taken.  IOW, we
2389 		 don't want this thread to step further from PC
2390 		 (overstep).  */
2391 	      gdb_assert (!step_over_info_valid_p ());
2392 	      insert_single_step_breakpoint (gdbarch, aspace, pc);
2393 	      insert_breakpoints ();
2394 
2395 	      resume_ptid = internal_resume_ptid (user_step);
2396 	      do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2397 	      tp->resumed = 1;
2398 	      return;
2399 	    }
2400 	}
2401     }
2402 
2403   /* If we have a breakpoint to step over, make sure to do a single
2404      step only.  Same if we have software watchpoints.  */
2405   if (tp->control.trap_expected || bpstat_should_step ())
2406     tp->control.may_range_step = 0;
2407 
2408   /* If enabled, step over breakpoints by executing a copy of the
2409      instruction at a different address.
2410 
2411      We can't use displaced stepping when we have a signal to deliver;
2412      the comments for displaced_step_prepare explain why.  The
2413      comments in the handle_inferior event for dealing with 'random
2414      signals' explain what we do instead.
2415 
2416      We can't use displaced stepping when we are waiting for vfork_done
2417      event, displaced stepping breaks the vfork child similarly as single
2418      step software breakpoint.  */
2419   if (tp->control.trap_expected
2420       && use_displaced_stepping (tp)
2421       && !step_over_info_valid_p ()
2422       && sig == GDB_SIGNAL_0
2423       && !current_inferior ()->waiting_for_vfork_done)
2424     {
2425       int prepared = displaced_step_prepare (tp);
2426 
2427       if (prepared == 0)
2428 	{
2429 	  if (debug_infrun)
2430 	    fprintf_unfiltered (gdb_stdlog,
2431 				"Got placed in step-over queue\n");
2432 
2433 	  tp->control.trap_expected = 0;
2434 	  return;
2435 	}
2436       else if (prepared < 0)
2437 	{
2438 	  /* Fallback to stepping over the breakpoint in-line.  */
2439 
2440 	  if (target_is_non_stop_p ())
2441 	    stop_all_threads ();
2442 
2443 	  set_step_over_info (regcache->aspace (),
2444 			      regcache_read_pc (regcache), 0, tp->global_num);
2445 
2446 	  step = maybe_software_singlestep (gdbarch, pc);
2447 
2448 	  insert_breakpoints ();
2449 	}
2450       else if (prepared > 0)
2451 	{
2452 	  struct displaced_step_inferior_state *displaced;
2453 
2454 	  /* Update pc to reflect the new address from which we will
2455 	     execute instructions due to displaced stepping.  */
2456 	  pc = regcache_read_pc (get_thread_regcache (tp));
2457 
2458 	  displaced = get_displaced_stepping_state (tp->inf);
2459 	  step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2460 						       displaced->step_closure);
2461 	}
2462     }
2463 
2464   /* Do we need to do it the hard way, w/temp breakpoints?  */
2465   else if (step)
2466     step = maybe_software_singlestep (gdbarch, pc);
2467 
2468   /* Currently, our software single-step implementation leads to different
2469      results than hardware single-stepping in one situation: when stepping
2470      into delivering a signal which has an associated signal handler,
2471      hardware single-step will stop at the first instruction of the handler,
2472      while software single-step will simply skip execution of the handler.
2473 
2474      For now, this difference in behavior is accepted since there is no
2475      easy way to actually implement single-stepping into a signal handler
2476      without kernel support.
2477 
2478      However, there is one scenario where this difference leads to follow-on
2479      problems: if we're stepping off a breakpoint by removing all breakpoints
2480      and then single-stepping.  In this case, the software single-step
2481      behavior means that even if there is a *breakpoint* in the signal
2482      handler, GDB still would not stop.
2483 
2484      Fortunately, we can at least fix this particular issue.  We detect
2485      here the case where we are about to deliver a signal while software
2486      single-stepping with breakpoints removed.  In this situation, we
2487      revert the decisions to remove all breakpoints and insert single-
2488      step breakpoints, and instead we install a step-resume breakpoint
2489      at the current address, deliver the signal without stepping, and
2490      once we arrive back at the step-resume breakpoint, actually step
2491      over the breakpoint we originally wanted to step over.  */
2492   if (thread_has_single_step_breakpoints_set (tp)
2493       && sig != GDB_SIGNAL_0
2494       && step_over_info_valid_p ())
2495     {
2496       /* If we have nested signals or a pending signal is delivered
2497 	 immediately after a handler returns, might might already have
2498 	 a step-resume breakpoint set on the earlier handler.  We cannot
2499 	 set another step-resume breakpoint; just continue on until the
2500 	 original breakpoint is hit.  */
2501       if (tp->control.step_resume_breakpoint == NULL)
2502 	{
2503 	  insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2504 	  tp->step_after_step_resume_breakpoint = 1;
2505 	}
2506 
2507       delete_single_step_breakpoints (tp);
2508 
2509       clear_step_over_info ();
2510       tp->control.trap_expected = 0;
2511 
2512       insert_breakpoints ();
2513     }
2514 
2515   /* If STEP is set, it's a request to use hardware stepping
2516      facilities.  But in that case, we should never
2517      use singlestep breakpoint.  */
2518   gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2519 
2520   /* Decide the set of threads to ask the target to resume.  */
2521   if (tp->control.trap_expected)
2522     {
2523       /* We're allowing a thread to run past a breakpoint it has
2524 	 hit, either by single-stepping the thread with the breakpoint
2525 	 removed, or by displaced stepping, with the breakpoint inserted.
2526 	 In the former case, we need to single-step only this thread,
2527 	 and keep others stopped, as they can miss this breakpoint if
2528 	 allowed to run.  That's not really a problem for displaced
2529 	 stepping, but, we still keep other threads stopped, in case
2530 	 another thread is also stopped for a breakpoint waiting for
2531 	 its turn in the displaced stepping queue.  */
2532       resume_ptid = inferior_ptid;
2533     }
2534   else
2535     resume_ptid = internal_resume_ptid (user_step);
2536 
2537   if (execution_direction != EXEC_REVERSE
2538       && step && breakpoint_inserted_here_p (aspace, pc))
2539     {
2540       /* There are two cases where we currently need to step a
2541 	 breakpoint instruction when we have a signal to deliver:
2542 
2543 	 - See handle_signal_stop where we handle random signals that
2544 	 could take out us out of the stepping range.  Normally, in
2545 	 that case we end up continuing (instead of stepping) over the
2546 	 signal handler with a breakpoint at PC, but there are cases
2547 	 where we should _always_ single-step, even if we have a
2548 	 step-resume breakpoint, like when a software watchpoint is
2549 	 set.  Assuming single-stepping and delivering a signal at the
2550 	 same time would takes us to the signal handler, then we could
2551 	 have removed the breakpoint at PC to step over it.  However,
2552 	 some hardware step targets (like e.g., Mac OS) can't step
2553 	 into signal handlers, and for those, we need to leave the
2554 	 breakpoint at PC inserted, as otherwise if the handler
2555 	 recurses and executes PC again, it'll miss the breakpoint.
2556 	 So we leave the breakpoint inserted anyway, but we need to
2557 	 record that we tried to step a breakpoint instruction, so
2558 	 that adjust_pc_after_break doesn't end up confused.
2559 
2560          - In non-stop if we insert a breakpoint (e.g., a step-resume)
2561 	 in one thread after another thread that was stepping had been
2562 	 momentarily paused for a step-over.  When we re-resume the
2563 	 stepping thread, it may be resumed from that address with a
2564 	 breakpoint that hasn't trapped yet.  Seen with
2565 	 gdb.threads/non-stop-fair-events.exp, on targets that don't
2566 	 do displaced stepping.  */
2567 
2568       if (debug_infrun)
2569 	fprintf_unfiltered (gdb_stdlog,
2570 			    "infrun: resume: [%s] stepped breakpoint\n",
2571 			    target_pid_to_str (tp->ptid));
2572 
2573       tp->stepped_breakpoint = 1;
2574 
2575       /* Most targets can step a breakpoint instruction, thus
2576 	 executing it normally.  But if this one cannot, just
2577 	 continue and we will hit it anyway.  */
2578       if (gdbarch_cannot_step_breakpoint (gdbarch))
2579 	step = 0;
2580     }
2581 
2582   if (debug_displaced
2583       && tp->control.trap_expected
2584       && use_displaced_stepping (tp)
2585       && !step_over_info_valid_p ())
2586     {
2587       struct regcache *resume_regcache = get_thread_regcache (tp);
2588       struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2589       CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2590       gdb_byte buf[4];
2591 
2592       fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2593 			  paddress (resume_gdbarch, actual_pc));
2594       read_memory (actual_pc, buf, sizeof (buf));
2595       displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2596     }
2597 
2598   if (tp->control.may_range_step)
2599     {
2600       /* If we're resuming a thread with the PC out of the step
2601 	 range, then we're doing some nested/finer run control
2602 	 operation, like stepping the thread out of the dynamic
2603 	 linker or the displaced stepping scratch pad.  We
2604 	 shouldn't have allowed a range step then.  */
2605       gdb_assert (pc_in_thread_step_range (pc, tp));
2606     }
2607 
2608   do_target_resume (resume_ptid, step, sig);
2609   tp->resumed = 1;
2610 }
2611 
2612 /* Resume the inferior.  SIG is the signal to give the inferior
2613    (GDB_SIGNAL_0 for none).  This is a wrapper around 'resume_1' that
2614    rolls back state on error.  */
2615 
2616 static void
2617 resume (gdb_signal sig)
2618 {
2619   TRY
2620     {
2621       resume_1 (sig);
2622     }
2623   CATCH (ex, RETURN_MASK_ALL)
2624     {
2625       /* If resuming is being aborted for any reason, delete any
2626 	 single-step breakpoint resume_1 may have created, to avoid
2627 	 confusing the following resumption, and to avoid leaving
2628 	 single-step breakpoints perturbing other threads, in case
2629 	 we're running in non-stop mode.  */
2630       if (inferior_ptid != null_ptid)
2631 	delete_single_step_breakpoints (inferior_thread ());
2632       throw_exception (ex);
2633     }
2634   END_CATCH
2635 }
2636 
2637 
2638 /* Proceeding.  */
2639 
2640 /* See infrun.h.  */
2641 
2642 /* Counter that tracks number of user visible stops.  This can be used
2643    to tell whether a command has proceeded the inferior past the
2644    current location.  This allows e.g., inferior function calls in
2645    breakpoint commands to not interrupt the command list.  When the
2646    call finishes successfully, the inferior is standing at the same
2647    breakpoint as if nothing happened (and so we don't call
2648    normal_stop).  */
2649 static ULONGEST current_stop_id;
2650 
2651 /* See infrun.h.  */
2652 
2653 ULONGEST
2654 get_stop_id (void)
2655 {
2656   return current_stop_id;
2657 }
2658 
2659 /* Called when we report a user visible stop.  */
2660 
2661 static void
2662 new_stop_id (void)
2663 {
2664   current_stop_id++;
2665 }
2666 
2667 /* Clear out all variables saying what to do when inferior is continued.
2668    First do this, then set the ones you want, then call `proceed'.  */
2669 
2670 static void
2671 clear_proceed_status_thread (struct thread_info *tp)
2672 {
2673   if (debug_infrun)
2674     fprintf_unfiltered (gdb_stdlog,
2675 			"infrun: clear_proceed_status_thread (%s)\n",
2676 			target_pid_to_str (tp->ptid));
2677 
2678   /* If we're starting a new sequence, then the previous finished
2679      single-step is no longer relevant.  */
2680   if (tp->suspend.waitstatus_pending_p)
2681     {
2682       if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2683 	{
2684 	  if (debug_infrun)
2685 	    fprintf_unfiltered (gdb_stdlog,
2686 				"infrun: clear_proceed_status: pending "
2687 				"event of %s was a finished step. "
2688 				"Discarding.\n",
2689 				target_pid_to_str (tp->ptid));
2690 
2691 	  tp->suspend.waitstatus_pending_p = 0;
2692 	  tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2693 	}
2694       else if (debug_infrun)
2695 	{
2696 	  std::string statstr
2697 	    = target_waitstatus_to_string (&tp->suspend.waitstatus);
2698 
2699 	  fprintf_unfiltered (gdb_stdlog,
2700 			      "infrun: clear_proceed_status_thread: thread %s "
2701 			      "has pending wait status %s "
2702 			      "(currently_stepping=%d).\n",
2703 			      target_pid_to_str (tp->ptid), statstr.c_str (),
2704 			      currently_stepping (tp));
2705 	}
2706     }
2707 
2708   /* If this signal should not be seen by program, give it zero.
2709      Used for debugging signals.  */
2710   if (!signal_pass_state (tp->suspend.stop_signal))
2711     tp->suspend.stop_signal = GDB_SIGNAL_0;
2712 
2713   delete tp->thread_fsm;
2714   tp->thread_fsm = NULL;
2715 
2716   tp->control.trap_expected = 0;
2717   tp->control.step_range_start = 0;
2718   tp->control.step_range_end = 0;
2719   tp->control.may_range_step = 0;
2720   tp->control.step_frame_id = null_frame_id;
2721   tp->control.step_stack_frame_id = null_frame_id;
2722   tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2723   tp->control.step_start_function = NULL;
2724   tp->stop_requested = 0;
2725 
2726   tp->control.stop_step = 0;
2727 
2728   tp->control.proceed_to_finish = 0;
2729 
2730   tp->control.stepping_command = 0;
2731 
2732   /* Discard any remaining commands or status from previous stop.  */
2733   bpstat_clear (&tp->control.stop_bpstat);
2734 }
2735 
2736 void
2737 clear_proceed_status (int step)
2738 {
2739   /* With scheduler-locking replay, stop replaying other threads if we're
2740      not replaying the user-visible resume ptid.
2741 
2742      This is a convenience feature to not require the user to explicitly
2743      stop replaying the other threads.  We're assuming that the user's
2744      intent is to resume tracing the recorded process.  */
2745   if (!non_stop && scheduler_mode == schedlock_replay
2746       && target_record_is_replaying (minus_one_ptid)
2747       && !target_record_will_replay (user_visible_resume_ptid (step),
2748 				     execution_direction))
2749     target_record_stop_replaying ();
2750 
2751   if (!non_stop && inferior_ptid != null_ptid)
2752     {
2753       ptid_t resume_ptid = user_visible_resume_ptid (step);
2754 
2755       /* In all-stop mode, delete the per-thread status of all threads
2756 	 we're about to resume, implicitly and explicitly.  */
2757       for (thread_info *tp : all_non_exited_threads (resume_ptid))
2758 	clear_proceed_status_thread (tp);
2759     }
2760 
2761   if (inferior_ptid != null_ptid)
2762     {
2763       struct inferior *inferior;
2764 
2765       if (non_stop)
2766 	{
2767 	  /* If in non-stop mode, only delete the per-thread status of
2768 	     the current thread.  */
2769 	  clear_proceed_status_thread (inferior_thread ());
2770 	}
2771 
2772       inferior = current_inferior ();
2773       inferior->control.stop_soon = NO_STOP_QUIETLY;
2774     }
2775 
2776   gdb::observers::about_to_proceed.notify ();
2777 }
2778 
2779 /* Returns true if TP is still stopped at a breakpoint that needs
2780    stepping-over in order to make progress.  If the breakpoint is gone
2781    meanwhile, we can skip the whole step-over dance.  */
2782 
2783 static int
2784 thread_still_needs_step_over_bp (struct thread_info *tp)
2785 {
2786   if (tp->stepping_over_breakpoint)
2787     {
2788       struct regcache *regcache = get_thread_regcache (tp);
2789 
2790       if (breakpoint_here_p (regcache->aspace (),
2791 			     regcache_read_pc (regcache))
2792 	  == ordinary_breakpoint_here)
2793 	return 1;
2794 
2795       tp->stepping_over_breakpoint = 0;
2796     }
2797 
2798   return 0;
2799 }
2800 
2801 /* Check whether thread TP still needs to start a step-over in order
2802    to make progress when resumed.  Returns an bitwise or of enum
2803    step_over_what bits, indicating what needs to be stepped over.  */
2804 
2805 static step_over_what
2806 thread_still_needs_step_over (struct thread_info *tp)
2807 {
2808   step_over_what what = 0;
2809 
2810   if (thread_still_needs_step_over_bp (tp))
2811     what |= STEP_OVER_BREAKPOINT;
2812 
2813   if (tp->stepping_over_watchpoint
2814       && !target_have_steppable_watchpoint)
2815     what |= STEP_OVER_WATCHPOINT;
2816 
2817   return what;
2818 }
2819 
2820 /* Returns true if scheduler locking applies.  STEP indicates whether
2821    we're about to do a step/next-like command to a thread.  */
2822 
2823 static int
2824 schedlock_applies (struct thread_info *tp)
2825 {
2826   return (scheduler_mode == schedlock_on
2827 	  || (scheduler_mode == schedlock_step
2828 	      && tp->control.stepping_command)
2829 	  || (scheduler_mode == schedlock_replay
2830 	      && target_record_will_replay (minus_one_ptid,
2831 					    execution_direction)));
2832 }
2833 
2834 /* Basic routine for continuing the program in various fashions.
2835 
2836    ADDR is the address to resume at, or -1 for resume where stopped.
2837    SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2838    or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2839 
2840    You should call clear_proceed_status before calling proceed.  */
2841 
2842 void
2843 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2844 {
2845   struct regcache *regcache;
2846   struct gdbarch *gdbarch;
2847   CORE_ADDR pc;
2848   ptid_t resume_ptid;
2849   struct execution_control_state ecss;
2850   struct execution_control_state *ecs = &ecss;
2851   int started;
2852 
2853   /* If we're stopped at a fork/vfork, follow the branch set by the
2854      "set follow-fork-mode" command; otherwise, we'll just proceed
2855      resuming the current thread.  */
2856   if (!follow_fork ())
2857     {
2858       /* The target for some reason decided not to resume.  */
2859       normal_stop ();
2860       if (target_can_async_p ())
2861 	inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2862       return;
2863     }
2864 
2865   /* We'll update this if & when we switch to a new thread.  */
2866   previous_inferior_ptid = inferior_ptid;
2867 
2868   regcache = get_current_regcache ();
2869   gdbarch = regcache->arch ();
2870   const address_space *aspace = regcache->aspace ();
2871 
2872   pc = regcache_read_pc (regcache);
2873   thread_info *cur_thr = inferior_thread ();
2874 
2875   /* Fill in with reasonable starting values.  */
2876   init_thread_stepping_state (cur_thr);
2877 
2878   gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2879 
2880   if (addr == (CORE_ADDR) -1)
2881     {
2882       if (pc == cur_thr->suspend.stop_pc
2883 	  && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2884 	  && execution_direction != EXEC_REVERSE)
2885 	/* There is a breakpoint at the address we will resume at,
2886 	   step one instruction before inserting breakpoints so that
2887 	   we do not stop right away (and report a second hit at this
2888 	   breakpoint).
2889 
2890 	   Note, we don't do this in reverse, because we won't
2891 	   actually be executing the breakpoint insn anyway.
2892 	   We'll be (un-)executing the previous instruction.  */
2893 	cur_thr->stepping_over_breakpoint = 1;
2894       else if (gdbarch_single_step_through_delay_p (gdbarch)
2895 	       && gdbarch_single_step_through_delay (gdbarch,
2896 						     get_current_frame ()))
2897 	/* We stepped onto an instruction that needs to be stepped
2898 	   again before re-inserting the breakpoint, do so.  */
2899 	cur_thr->stepping_over_breakpoint = 1;
2900     }
2901   else
2902     {
2903       regcache_write_pc (regcache, addr);
2904     }
2905 
2906   if (siggnal != GDB_SIGNAL_DEFAULT)
2907     cur_thr->suspend.stop_signal = siggnal;
2908 
2909   resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
2910 
2911   /* If an exception is thrown from this point on, make sure to
2912      propagate GDB's knowledge of the executing state to the
2913      frontend/user running state.  */
2914   scoped_finish_thread_state finish_state (resume_ptid);
2915 
2916   /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2917      threads (e.g., we might need to set threads stepping over
2918      breakpoints first), from the user/frontend's point of view, all
2919      threads in RESUME_PTID are now running.  Unless we're calling an
2920      inferior function, as in that case we pretend the inferior
2921      doesn't run at all.  */
2922   if (!cur_thr->control.in_infcall)
2923    set_running (resume_ptid, 1);
2924 
2925   if (debug_infrun)
2926     fprintf_unfiltered (gdb_stdlog,
2927 			"infrun: proceed (addr=%s, signal=%s)\n",
2928 			paddress (gdbarch, addr),
2929 			gdb_signal_to_symbol_string (siggnal));
2930 
2931   annotate_starting ();
2932 
2933   /* Make sure that output from GDB appears before output from the
2934      inferior.  */
2935   gdb_flush (gdb_stdout);
2936 
2937   /* Since we've marked the inferior running, give it the terminal.  A
2938      QUIT/Ctrl-C from here on is forwarded to the target (which can
2939      still detect attempts to unblock a stuck connection with repeated
2940      Ctrl-C from within target_pass_ctrlc).  */
2941   target_terminal::inferior ();
2942 
2943   /* In a multi-threaded task we may select another thread and
2944      then continue or step.
2945 
2946      But if a thread that we're resuming had stopped at a breakpoint,
2947      it will immediately cause another breakpoint stop without any
2948      execution (i.e. it will report a breakpoint hit incorrectly).  So
2949      we must step over it first.
2950 
2951      Look for threads other than the current (TP) that reported a
2952      breakpoint hit and haven't been resumed yet since.  */
2953 
2954   /* If scheduler locking applies, we can avoid iterating over all
2955      threads.  */
2956   if (!non_stop && !schedlock_applies (cur_thr))
2957     {
2958       for (thread_info *tp : all_non_exited_threads (resume_ptid))
2959 	{
2960 	  /* Ignore the current thread here.  It's handled
2961 	     afterwards.  */
2962 	  if (tp == cur_thr)
2963 	    continue;
2964 
2965 	  if (!thread_still_needs_step_over (tp))
2966 	    continue;
2967 
2968 	  gdb_assert (!thread_is_in_step_over_chain (tp));
2969 
2970 	  if (debug_infrun)
2971 	    fprintf_unfiltered (gdb_stdlog,
2972 				"infrun: need to step-over [%s] first\n",
2973 				target_pid_to_str (tp->ptid));
2974 
2975 	  thread_step_over_chain_enqueue (tp);
2976 	}
2977     }
2978 
2979   /* Enqueue the current thread last, so that we move all other
2980      threads over their breakpoints first.  */
2981   if (cur_thr->stepping_over_breakpoint)
2982     thread_step_over_chain_enqueue (cur_thr);
2983 
2984   /* If the thread isn't started, we'll still need to set its prev_pc,
2985      so that switch_back_to_stepped_thread knows the thread hasn't
2986      advanced.  Must do this before resuming any thread, as in
2987      all-stop/remote, once we resume we can't send any other packet
2988      until the target stops again.  */
2989   cur_thr->prev_pc = regcache_read_pc (regcache);
2990 
2991   {
2992     scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
2993 
2994     started = start_step_over ();
2995 
2996     if (step_over_info_valid_p ())
2997       {
2998 	/* Either this thread started a new in-line step over, or some
2999 	   other thread was already doing one.  In either case, don't
3000 	   resume anything else until the step-over is finished.  */
3001       }
3002     else if (started && !target_is_non_stop_p ())
3003       {
3004 	/* A new displaced stepping sequence was started.  In all-stop,
3005 	   we can't talk to the target anymore until it next stops.  */
3006       }
3007     else if (!non_stop && target_is_non_stop_p ())
3008       {
3009 	/* In all-stop, but the target is always in non-stop mode.
3010 	   Start all other threads that are implicitly resumed too.  */
3011       for (thread_info *tp : all_non_exited_threads (resume_ptid))
3012         {
3013 	  if (tp->resumed)
3014 	    {
3015 	      if (debug_infrun)
3016 		fprintf_unfiltered (gdb_stdlog,
3017 				    "infrun: proceed: [%s] resumed\n",
3018 				    target_pid_to_str (tp->ptid));
3019 	      gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3020 	      continue;
3021 	    }
3022 
3023 	  if (thread_is_in_step_over_chain (tp))
3024 	    {
3025 	      if (debug_infrun)
3026 		fprintf_unfiltered (gdb_stdlog,
3027 				    "infrun: proceed: [%s] needs step-over\n",
3028 				    target_pid_to_str (tp->ptid));
3029 	      continue;
3030 	    }
3031 
3032 	  if (debug_infrun)
3033 	    fprintf_unfiltered (gdb_stdlog,
3034 				"infrun: proceed: resuming %s\n",
3035 				target_pid_to_str (tp->ptid));
3036 
3037 	  reset_ecs (ecs, tp);
3038 	  switch_to_thread (tp);
3039 	  keep_going_pass_signal (ecs);
3040 	  if (!ecs->wait_some_more)
3041 	    error (_("Command aborted."));
3042 	}
3043       }
3044     else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3045       {
3046 	/* The thread wasn't started, and isn't queued, run it now.  */
3047 	reset_ecs (ecs, cur_thr);
3048 	switch_to_thread (cur_thr);
3049 	keep_going_pass_signal (ecs);
3050 	if (!ecs->wait_some_more)
3051 	  error (_("Command aborted."));
3052       }
3053   }
3054 
3055   target_commit_resume ();
3056 
3057   finish_state.release ();
3058 
3059   /* Tell the event loop to wait for it to stop.  If the target
3060      supports asynchronous execution, it'll do this from within
3061      target_resume.  */
3062   if (!target_can_async_p ())
3063     mark_async_event_handler (infrun_async_inferior_event_token);
3064 }
3065 
3066 
3067 /* Start remote-debugging of a machine over a serial link.  */
3068 
3069 void
3070 start_remote (int from_tty)
3071 {
3072   struct inferior *inferior;
3073 
3074   inferior = current_inferior ();
3075   inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3076 
3077   /* Always go on waiting for the target, regardless of the mode.  */
3078   /* FIXME: cagney/1999-09-23: At present it isn't possible to
3079      indicate to wait_for_inferior that a target should timeout if
3080      nothing is returned (instead of just blocking).  Because of this,
3081      targets expecting an immediate response need to, internally, set
3082      things up so that the target_wait() is forced to eventually
3083      timeout.  */
3084   /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3085      differentiate to its caller what the state of the target is after
3086      the initial open has been performed.  Here we're assuming that
3087      the target has stopped.  It should be possible to eventually have
3088      target_open() return to the caller an indication that the target
3089      is currently running and GDB state should be set to the same as
3090      for an async run.  */
3091   wait_for_inferior ();
3092 
3093   /* Now that the inferior has stopped, do any bookkeeping like
3094      loading shared libraries.  We want to do this before normal_stop,
3095      so that the displayed frame is up to date.  */
3096   post_create_inferior (current_top_target (), from_tty);
3097 
3098   normal_stop ();
3099 }
3100 
3101 /* Initialize static vars when a new inferior begins.  */
3102 
3103 void
3104 init_wait_for_inferior (void)
3105 {
3106   /* These are meaningless until the first time through wait_for_inferior.  */
3107 
3108   breakpoint_init_inferior (inf_starting);
3109 
3110   clear_proceed_status (0);
3111 
3112   target_last_wait_ptid = minus_one_ptid;
3113 
3114   previous_inferior_ptid = inferior_ptid;
3115 }
3116 
3117 
3118 
3119 static void handle_inferior_event (struct execution_control_state *ecs);
3120 
3121 static void handle_step_into_function (struct gdbarch *gdbarch,
3122 				       struct execution_control_state *ecs);
3123 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3124 						struct execution_control_state *ecs);
3125 static void handle_signal_stop (struct execution_control_state *ecs);
3126 static void check_exception_resume (struct execution_control_state *,
3127 				    struct frame_info *);
3128 
3129 static void end_stepping_range (struct execution_control_state *ecs);
3130 static void stop_waiting (struct execution_control_state *ecs);
3131 static void keep_going (struct execution_control_state *ecs);
3132 static void process_event_stop_test (struct execution_control_state *ecs);
3133 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3134 
3135 /* This function is attached as a "thread_stop_requested" observer.
3136    Cleanup local state that assumed the PTID was to be resumed, and
3137    report the stop to the frontend.  */
3138 
3139 static void
3140 infrun_thread_stop_requested (ptid_t ptid)
3141 {
3142   /* PTID was requested to stop.  If the thread was already stopped,
3143      but the user/frontend doesn't know about that yet (e.g., the
3144      thread had been temporarily paused for some step-over), set up
3145      for reporting the stop now.  */
3146   for (thread_info *tp : all_threads (ptid))
3147     {
3148       if (tp->state != THREAD_RUNNING)
3149 	continue;
3150       if (tp->executing)
3151 	continue;
3152 
3153       /* Remove matching threads from the step-over queue, so
3154 	 start_step_over doesn't try to resume them
3155 	 automatically.  */
3156       if (thread_is_in_step_over_chain (tp))
3157 	thread_step_over_chain_remove (tp);
3158 
3159       /* If the thread is stopped, but the user/frontend doesn't
3160 	 know about that yet, queue a pending event, as if the
3161 	 thread had just stopped now.  Unless the thread already had
3162 	 a pending event.  */
3163       if (!tp->suspend.waitstatus_pending_p)
3164 	{
3165 	  tp->suspend.waitstatus_pending_p = 1;
3166 	  tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3167 	  tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3168 	}
3169 
3170       /* Clear the inline-frame state, since we're re-processing the
3171 	 stop.  */
3172       clear_inline_frame_state (tp->ptid);
3173 
3174       /* If this thread was paused because some other thread was
3175 	 doing an inline-step over, let that finish first.  Once
3176 	 that happens, we'll restart all threads and consume pending
3177 	 stop events then.  */
3178       if (step_over_info_valid_p ())
3179 	continue;
3180 
3181       /* Otherwise we can process the (new) pending event now.  Set
3182 	 it so this pending event is considered by
3183 	 do_target_wait.  */
3184       tp->resumed = 1;
3185     }
3186 }
3187 
3188 static void
3189 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3190 {
3191   if (target_last_wait_ptid == tp->ptid)
3192     nullify_last_target_wait_ptid ();
3193 }
3194 
3195 /* Delete the step resume, single-step and longjmp/exception resume
3196    breakpoints of TP.  */
3197 
3198 static void
3199 delete_thread_infrun_breakpoints (struct thread_info *tp)
3200 {
3201   delete_step_resume_breakpoint (tp);
3202   delete_exception_resume_breakpoint (tp);
3203   delete_single_step_breakpoints (tp);
3204 }
3205 
3206 /* If the target still has execution, call FUNC for each thread that
3207    just stopped.  In all-stop, that's all the non-exited threads; in
3208    non-stop, that's the current thread, only.  */
3209 
3210 typedef void (*for_each_just_stopped_thread_callback_func)
3211   (struct thread_info *tp);
3212 
3213 static void
3214 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3215 {
3216   if (!target_has_execution || inferior_ptid == null_ptid)
3217     return;
3218 
3219   if (target_is_non_stop_p ())
3220     {
3221       /* If in non-stop mode, only the current thread stopped.  */
3222       func (inferior_thread ());
3223     }
3224   else
3225     {
3226       /* In all-stop mode, all threads have stopped.  */
3227       for (thread_info *tp : all_non_exited_threads ())
3228 	func (tp);
3229     }
3230 }
3231 
3232 /* Delete the step resume and longjmp/exception resume breakpoints of
3233    the threads that just stopped.  */
3234 
3235 static void
3236 delete_just_stopped_threads_infrun_breakpoints (void)
3237 {
3238   for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3239 }
3240 
3241 /* Delete the single-step breakpoints of the threads that just
3242    stopped.  */
3243 
3244 static void
3245 delete_just_stopped_threads_single_step_breakpoints (void)
3246 {
3247   for_each_just_stopped_thread (delete_single_step_breakpoints);
3248 }
3249 
3250 /* See infrun.h.  */
3251 
3252 void
3253 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3254 			   const struct target_waitstatus *ws)
3255 {
3256   std::string status_string = target_waitstatus_to_string (ws);
3257   string_file stb;
3258 
3259   /* The text is split over several lines because it was getting too long.
3260      Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3261      output as a unit; we want only one timestamp printed if debug_timestamp
3262      is set.  */
3263 
3264   stb.printf ("infrun: target_wait (%d.%ld.%ld",
3265 	      waiton_ptid.pid (),
3266 	      waiton_ptid.lwp (),
3267 	      waiton_ptid.tid ());
3268   if (waiton_ptid.pid () != -1)
3269     stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3270   stb.printf (", status) =\n");
3271   stb.printf ("infrun:   %d.%ld.%ld [%s],\n",
3272 	      result_ptid.pid (),
3273 	      result_ptid.lwp (),
3274 	      result_ptid.tid (),
3275 	      target_pid_to_str (result_ptid));
3276   stb.printf ("infrun:   %s\n", status_string.c_str ());
3277 
3278   /* This uses %s in part to handle %'s in the text, but also to avoid
3279      a gcc error: the format attribute requires a string literal.  */
3280   fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3281 }
3282 
3283 /* Select a thread at random, out of those which are resumed and have
3284    had events.  */
3285 
3286 static struct thread_info *
3287 random_pending_event_thread (ptid_t waiton_ptid)
3288 {
3289   int num_events = 0;
3290 
3291   auto has_event = [] (thread_info *tp)
3292     {
3293       return (tp->resumed
3294 	      && tp->suspend.waitstatus_pending_p);
3295     };
3296 
3297   /* First see how many events we have.  Count only resumed threads
3298      that have an event pending.  */
3299   for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3300     if (has_event (tp))
3301       num_events++;
3302 
3303   if (num_events == 0)
3304     return NULL;
3305 
3306   /* Now randomly pick a thread out of those that have had events.  */
3307   int random_selector = (int) ((num_events * (double) rand ())
3308 			       / (RAND_MAX + 1.0));
3309 
3310   if (debug_infrun && num_events > 1)
3311     fprintf_unfiltered (gdb_stdlog,
3312 			"infrun: Found %d events, selecting #%d\n",
3313 			num_events, random_selector);
3314 
3315   /* Select the Nth thread that has had an event.  */
3316   for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3317     if (has_event (tp))
3318       if (random_selector-- == 0)
3319 	return tp;
3320 
3321   gdb_assert_not_reached ("event thread not found");
3322 }
3323 
3324 /* Wrapper for target_wait that first checks whether threads have
3325    pending statuses to report before actually asking the target for
3326    more events.  */
3327 
3328 static ptid_t
3329 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3330 {
3331   ptid_t event_ptid;
3332   struct thread_info *tp;
3333 
3334   /* First check if there is a resumed thread with a wait status
3335      pending.  */
3336   if (ptid == minus_one_ptid || ptid.is_pid ())
3337     {
3338       tp = random_pending_event_thread (ptid);
3339     }
3340   else
3341     {
3342       if (debug_infrun)
3343 	fprintf_unfiltered (gdb_stdlog,
3344 			    "infrun: Waiting for specific thread %s.\n",
3345 			    target_pid_to_str (ptid));
3346 
3347       /* We have a specific thread to check.  */
3348       tp = find_thread_ptid (ptid);
3349       gdb_assert (tp != NULL);
3350       if (!tp->suspend.waitstatus_pending_p)
3351 	tp = NULL;
3352     }
3353 
3354   if (tp != NULL
3355       && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3356 	  || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3357     {
3358       struct regcache *regcache = get_thread_regcache (tp);
3359       struct gdbarch *gdbarch = regcache->arch ();
3360       CORE_ADDR pc;
3361       int discard = 0;
3362 
3363       pc = regcache_read_pc (regcache);
3364 
3365       if (pc != tp->suspend.stop_pc)
3366 	{
3367 	  if (debug_infrun)
3368 	    fprintf_unfiltered (gdb_stdlog,
3369 				"infrun: PC of %s changed.  was=%s, now=%s\n",
3370 				target_pid_to_str (tp->ptid),
3371 				paddress (gdbarch, tp->suspend.stop_pc),
3372 				paddress (gdbarch, pc));
3373 	  discard = 1;
3374 	}
3375       else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3376 	{
3377 	  if (debug_infrun)
3378 	    fprintf_unfiltered (gdb_stdlog,
3379 				"infrun: previous breakpoint of %s, at %s gone\n",
3380 				target_pid_to_str (tp->ptid),
3381 				paddress (gdbarch, pc));
3382 
3383 	  discard = 1;
3384 	}
3385 
3386       if (discard)
3387 	{
3388 	  if (debug_infrun)
3389 	    fprintf_unfiltered (gdb_stdlog,
3390 				"infrun: pending event of %s cancelled.\n",
3391 				target_pid_to_str (tp->ptid));
3392 
3393 	  tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3394 	  tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3395 	}
3396     }
3397 
3398   if (tp != NULL)
3399     {
3400       if (debug_infrun)
3401 	{
3402 	  std::string statstr
3403 	    = target_waitstatus_to_string (&tp->suspend.waitstatus);
3404 
3405 	  fprintf_unfiltered (gdb_stdlog,
3406 			      "infrun: Using pending wait status %s for %s.\n",
3407 			      statstr.c_str (),
3408 			      target_pid_to_str (tp->ptid));
3409 	}
3410 
3411       /* Now that we've selected our final event LWP, un-adjust its PC
3412 	 if it was a software breakpoint (and the target doesn't
3413 	 always adjust the PC itself).  */
3414       if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3415 	  && !target_supports_stopped_by_sw_breakpoint ())
3416 	{
3417 	  struct regcache *regcache;
3418 	  struct gdbarch *gdbarch;
3419 	  int decr_pc;
3420 
3421 	  regcache = get_thread_regcache (tp);
3422 	  gdbarch = regcache->arch ();
3423 
3424 	  decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3425 	  if (decr_pc != 0)
3426 	    {
3427 	      CORE_ADDR pc;
3428 
3429 	      pc = regcache_read_pc (regcache);
3430 	      regcache_write_pc (regcache, pc + decr_pc);
3431 	    }
3432 	}
3433 
3434       tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3435       *status = tp->suspend.waitstatus;
3436       tp->suspend.waitstatus_pending_p = 0;
3437 
3438       /* Wake up the event loop again, until all pending events are
3439 	 processed.  */
3440       if (target_is_async_p ())
3441 	mark_async_event_handler (infrun_async_inferior_event_token);
3442       return tp->ptid;
3443     }
3444 
3445   /* But if we don't find one, we'll have to wait.  */
3446 
3447   if (deprecated_target_wait_hook)
3448     event_ptid = deprecated_target_wait_hook (ptid, status, options);
3449   else
3450     event_ptid = target_wait (ptid, status, options);
3451 
3452   return event_ptid;
3453 }
3454 
3455 /* Prepare and stabilize the inferior for detaching it.  E.g.,
3456    detaching while a thread is displaced stepping is a recipe for
3457    crashing it, as nothing would readjust the PC out of the scratch
3458    pad.  */
3459 
3460 void
3461 prepare_for_detach (void)
3462 {
3463   struct inferior *inf = current_inferior ();
3464   ptid_t pid_ptid = ptid_t (inf->pid);
3465 
3466   displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3467 
3468   /* Is any thread of this process displaced stepping?  If not,
3469      there's nothing else to do.  */
3470   if (displaced->step_thread == nullptr)
3471     return;
3472 
3473   if (debug_infrun)
3474     fprintf_unfiltered (gdb_stdlog,
3475 			"displaced-stepping in-process while detaching");
3476 
3477   scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3478 
3479   while (displaced->step_thread != nullptr)
3480     {
3481       struct execution_control_state ecss;
3482       struct execution_control_state *ecs;
3483 
3484       ecs = &ecss;
3485       memset (ecs, 0, sizeof (*ecs));
3486 
3487       overlay_cache_invalid = 1;
3488       /* Flush target cache before starting to handle each event.
3489 	 Target was running and cache could be stale.  This is just a
3490 	 heuristic.  Running threads may modify target memory, but we
3491 	 don't get any event.  */
3492       target_dcache_invalidate ();
3493 
3494       ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3495 
3496       if (debug_infrun)
3497 	print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3498 
3499       /* If an error happens while handling the event, propagate GDB's
3500 	 knowledge of the executing state to the frontend/user running
3501 	 state.  */
3502       scoped_finish_thread_state finish_state (minus_one_ptid);
3503 
3504       /* Now figure out what to do with the result of the result.  */
3505       handle_inferior_event (ecs);
3506 
3507       /* No error, don't finish the state yet.  */
3508       finish_state.release ();
3509 
3510       /* Breakpoints and watchpoints are not installed on the target
3511 	 at this point, and signals are passed directly to the
3512 	 inferior, so this must mean the process is gone.  */
3513       if (!ecs->wait_some_more)
3514 	{
3515 	  restore_detaching.release ();
3516 	  error (_("Program exited while detaching"));
3517 	}
3518     }
3519 
3520   restore_detaching.release ();
3521 }
3522 
3523 /* Wait for control to return from inferior to debugger.
3524 
3525    If inferior gets a signal, we may decide to start it up again
3526    instead of returning.  That is why there is a loop in this function.
3527    When this function actually returns it means the inferior
3528    should be left stopped and GDB should read more commands.  */
3529 
3530 void
3531 wait_for_inferior (void)
3532 {
3533   if (debug_infrun)
3534     fprintf_unfiltered
3535       (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3536 
3537   SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3538 
3539   /* If an error happens while handling the event, propagate GDB's
3540      knowledge of the executing state to the frontend/user running
3541      state.  */
3542   scoped_finish_thread_state finish_state (minus_one_ptid);
3543 
3544   while (1)
3545     {
3546       struct execution_control_state ecss;
3547       struct execution_control_state *ecs = &ecss;
3548       ptid_t waiton_ptid = minus_one_ptid;
3549 
3550       memset (ecs, 0, sizeof (*ecs));
3551 
3552       overlay_cache_invalid = 1;
3553 
3554       /* Flush target cache before starting to handle each event.
3555 	 Target was running and cache could be stale.  This is just a
3556 	 heuristic.  Running threads may modify target memory, but we
3557 	 don't get any event.  */
3558       target_dcache_invalidate ();
3559 
3560       ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3561 
3562       if (debug_infrun)
3563 	print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3564 
3565       /* Now figure out what to do with the result of the result.  */
3566       handle_inferior_event (ecs);
3567 
3568       if (!ecs->wait_some_more)
3569 	break;
3570     }
3571 
3572   /* No error, don't finish the state yet.  */
3573   finish_state.release ();
3574 }
3575 
3576 /* Cleanup that reinstalls the readline callback handler, if the
3577    target is running in the background.  If while handling the target
3578    event something triggered a secondary prompt, like e.g., a
3579    pagination prompt, we'll have removed the callback handler (see
3580    gdb_readline_wrapper_line).  Need to do this as we go back to the
3581    event loop, ready to process further input.  Note this has no
3582    effect if the handler hasn't actually been removed, because calling
3583    rl_callback_handler_install resets the line buffer, thus losing
3584    input.  */
3585 
3586 static void
3587 reinstall_readline_callback_handler_cleanup ()
3588 {
3589   struct ui *ui = current_ui;
3590 
3591   if (!ui->async)
3592     {
3593       /* We're not going back to the top level event loop yet.  Don't
3594 	 install the readline callback, as it'd prep the terminal,
3595 	 readline-style (raw, noecho) (e.g., --batch).  We'll install
3596 	 it the next time the prompt is displayed, when we're ready
3597 	 for input.  */
3598       return;
3599     }
3600 
3601   if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3602     gdb_rl_callback_handler_reinstall ();
3603 }
3604 
3605 /* Clean up the FSMs of threads that are now stopped.  In non-stop,
3606    that's just the event thread.  In all-stop, that's all threads.  */
3607 
3608 static void
3609 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3610 {
3611   if (ecs->event_thread != NULL
3612       && ecs->event_thread->thread_fsm != NULL)
3613     ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3614 
3615   if (!non_stop)
3616     {
3617       for (thread_info *thr : all_non_exited_threads ())
3618         {
3619 	  if (thr->thread_fsm == NULL)
3620 	    continue;
3621 	  if (thr == ecs->event_thread)
3622 	    continue;
3623 
3624 	  switch_to_thread (thr);
3625 	  thr->thread_fsm->clean_up (thr);
3626 	}
3627 
3628       if (ecs->event_thread != NULL)
3629 	switch_to_thread (ecs->event_thread);
3630     }
3631 }
3632 
3633 /* Helper for all_uis_check_sync_execution_done that works on the
3634    current UI.  */
3635 
3636 static void
3637 check_curr_ui_sync_execution_done (void)
3638 {
3639   struct ui *ui = current_ui;
3640 
3641   if (ui->prompt_state == PROMPT_NEEDED
3642       && ui->async
3643       && !gdb_in_secondary_prompt_p (ui))
3644     {
3645       target_terminal::ours ();
3646       gdb::observers::sync_execution_done.notify ();
3647       ui_register_input_event_handler (ui);
3648     }
3649 }
3650 
3651 /* See infrun.h.  */
3652 
3653 void
3654 all_uis_check_sync_execution_done (void)
3655 {
3656   SWITCH_THRU_ALL_UIS ()
3657     {
3658       check_curr_ui_sync_execution_done ();
3659     }
3660 }
3661 
3662 /* See infrun.h.  */
3663 
3664 void
3665 all_uis_on_sync_execution_starting (void)
3666 {
3667   SWITCH_THRU_ALL_UIS ()
3668     {
3669       if (current_ui->prompt_state == PROMPT_NEEDED)
3670 	async_disable_stdin ();
3671     }
3672 }
3673 
3674 /* Asynchronous version of wait_for_inferior.  It is called by the
3675    event loop whenever a change of state is detected on the file
3676    descriptor corresponding to the target.  It can be called more than
3677    once to complete a single execution command.  In such cases we need
3678    to keep the state in a global variable ECSS.  If it is the last time
3679    that this function is called for a single execution command, then
3680    report to the user that the inferior has stopped, and do the
3681    necessary cleanups.  */
3682 
3683 void
3684 fetch_inferior_event (void *client_data)
3685 {
3686   struct execution_control_state ecss;
3687   struct execution_control_state *ecs = &ecss;
3688   int cmd_done = 0;
3689   ptid_t waiton_ptid = minus_one_ptid;
3690 
3691   memset (ecs, 0, sizeof (*ecs));
3692 
3693   /* Events are always processed with the main UI as current UI.  This
3694      way, warnings, debug output, etc. are always consistently sent to
3695      the main console.  */
3696   scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3697 
3698   /* End up with readline processing input, if necessary.  */
3699   {
3700     SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3701 
3702     /* We're handling a live event, so make sure we're doing live
3703        debugging.  If we're looking at traceframes while the target is
3704        running, we're going to need to get back to that mode after
3705        handling the event.  */
3706     gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3707     if (non_stop)
3708       {
3709 	maybe_restore_traceframe.emplace ();
3710 	set_current_traceframe (-1);
3711       }
3712 
3713     gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3714 
3715     if (non_stop)
3716       /* In non-stop mode, the user/frontend should not notice a thread
3717 	 switch due to internal events.  Make sure we reverse to the
3718 	 user selected thread and frame after handling the event and
3719 	 running any breakpoint commands.  */
3720       maybe_restore_thread.emplace ();
3721 
3722     overlay_cache_invalid = 1;
3723     /* Flush target cache before starting to handle each event.  Target
3724        was running and cache could be stale.  This is just a heuristic.
3725        Running threads may modify target memory, but we don't get any
3726        event.  */
3727     target_dcache_invalidate ();
3728 
3729     scoped_restore save_exec_dir
3730       = make_scoped_restore (&execution_direction,
3731 			     target_execution_direction ());
3732 
3733     ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3734 				target_can_async_p () ? TARGET_WNOHANG : 0);
3735 
3736     if (debug_infrun)
3737       print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3738 
3739     /* If an error happens while handling the event, propagate GDB's
3740        knowledge of the executing state to the frontend/user running
3741        state.  */
3742     ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3743     scoped_finish_thread_state finish_state (finish_ptid);
3744 
3745     /* Get executed before scoped_restore_current_thread above to apply
3746        still for the thread which has thrown the exception.  */
3747     auto defer_bpstat_clear
3748       = make_scope_exit (bpstat_clear_actions);
3749     auto defer_delete_threads
3750       = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3751 
3752     /* Now figure out what to do with the result of the result.  */
3753     handle_inferior_event (ecs);
3754 
3755     if (!ecs->wait_some_more)
3756       {
3757 	struct inferior *inf = find_inferior_ptid (ecs->ptid);
3758 	int should_stop = 1;
3759 	struct thread_info *thr = ecs->event_thread;
3760 
3761 	delete_just_stopped_threads_infrun_breakpoints ();
3762 
3763 	if (thr != NULL)
3764 	  {
3765 	    struct thread_fsm *thread_fsm = thr->thread_fsm;
3766 
3767 	    if (thread_fsm != NULL)
3768 	      should_stop = thread_fsm->should_stop (thr);
3769 	  }
3770 
3771 	if (!should_stop)
3772 	  {
3773 	    keep_going (ecs);
3774 	  }
3775 	else
3776 	  {
3777 	    bool should_notify_stop = true;
3778 	    int proceeded = 0;
3779 
3780 	    clean_up_just_stopped_threads_fsms (ecs);
3781 
3782 	    if (thr != NULL && thr->thread_fsm != NULL)
3783 	      should_notify_stop = thr->thread_fsm->should_notify_stop ();
3784 
3785 	    if (should_notify_stop)
3786 	      {
3787 		/* We may not find an inferior if this was a process exit.  */
3788 		if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3789 		  proceeded = normal_stop ();
3790 	      }
3791 
3792 	    if (!proceeded)
3793 	      {
3794 		inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3795 		cmd_done = 1;
3796 	      }
3797 	  }
3798       }
3799 
3800     defer_delete_threads.release ();
3801     defer_bpstat_clear.release ();
3802 
3803     /* No error, don't finish the thread states yet.  */
3804     finish_state.release ();
3805 
3806     /* This scope is used to ensure that readline callbacks are
3807        reinstalled here.  */
3808   }
3809 
3810   /* If a UI was in sync execution mode, and now isn't, restore its
3811      prompt (a synchronous execution command has finished, and we're
3812      ready for input).  */
3813   all_uis_check_sync_execution_done ();
3814 
3815   if (cmd_done
3816       && exec_done_display_p
3817       && (inferior_ptid == null_ptid
3818 	  || inferior_thread ()->state != THREAD_RUNNING))
3819     printf_unfiltered (_("completed.\n"));
3820 }
3821 
3822 /* Record the frame and location we're currently stepping through.  */
3823 void
3824 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3825 {
3826   struct thread_info *tp = inferior_thread ();
3827 
3828   tp->control.step_frame_id = get_frame_id (frame);
3829   tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3830 
3831   tp->current_symtab = sal.symtab;
3832   tp->current_line = sal.line;
3833 }
3834 
3835 /* Clear context switchable stepping state.  */
3836 
3837 void
3838 init_thread_stepping_state (struct thread_info *tss)
3839 {
3840   tss->stepped_breakpoint = 0;
3841   tss->stepping_over_breakpoint = 0;
3842   tss->stepping_over_watchpoint = 0;
3843   tss->step_after_step_resume_breakpoint = 0;
3844 }
3845 
3846 /* Set the cached copy of the last ptid/waitstatus.  */
3847 
3848 void
3849 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3850 {
3851   target_last_wait_ptid = ptid;
3852   target_last_waitstatus = status;
3853 }
3854 
3855 /* Return the cached copy of the last pid/waitstatus returned by
3856    target_wait()/deprecated_target_wait_hook().  The data is actually
3857    cached by handle_inferior_event(), which gets called immediately
3858    after target_wait()/deprecated_target_wait_hook().  */
3859 
3860 void
3861 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3862 {
3863   *ptidp = target_last_wait_ptid;
3864   *status = target_last_waitstatus;
3865 }
3866 
3867 void
3868 nullify_last_target_wait_ptid (void)
3869 {
3870   target_last_wait_ptid = minus_one_ptid;
3871 }
3872 
3873 /* Switch thread contexts.  */
3874 
3875 static void
3876 context_switch (execution_control_state *ecs)
3877 {
3878   if (debug_infrun
3879       && ecs->ptid != inferior_ptid
3880       && ecs->event_thread != inferior_thread ())
3881     {
3882       fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3883 			  target_pid_to_str (inferior_ptid));
3884       fprintf_unfiltered (gdb_stdlog, "to %s\n",
3885 			  target_pid_to_str (ecs->ptid));
3886     }
3887 
3888   switch_to_thread (ecs->event_thread);
3889 }
3890 
3891 /* If the target can't tell whether we've hit breakpoints
3892    (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3893    check whether that could have been caused by a breakpoint.  If so,
3894    adjust the PC, per gdbarch_decr_pc_after_break.  */
3895 
3896 static void
3897 adjust_pc_after_break (struct thread_info *thread,
3898 		       struct target_waitstatus *ws)
3899 {
3900   struct regcache *regcache;
3901   struct gdbarch *gdbarch;
3902   CORE_ADDR breakpoint_pc, decr_pc;
3903 
3904   /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP.  If
3905      we aren't, just return.
3906 
3907      We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3908      affected by gdbarch_decr_pc_after_break.  Other waitkinds which are
3909      implemented by software breakpoints should be handled through the normal
3910      breakpoint layer.
3911 
3912      NOTE drow/2004-01-31: On some targets, breakpoints may generate
3913      different signals (SIGILL or SIGEMT for instance), but it is less
3914      clear where the PC is pointing afterwards.  It may not match
3915      gdbarch_decr_pc_after_break.  I don't know any specific target that
3916      generates these signals at breakpoints (the code has been in GDB since at
3917      least 1992) so I can not guess how to handle them here.
3918 
3919      In earlier versions of GDB, a target with
3920      gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3921      watchpoint affected by gdbarch_decr_pc_after_break.  I haven't found any
3922      target with both of these set in GDB history, and it seems unlikely to be
3923      correct, so gdbarch_have_nonsteppable_watchpoint is not checked here.  */
3924 
3925   if (ws->kind != TARGET_WAITKIND_STOPPED)
3926     return;
3927 
3928   if (ws->value.sig != GDB_SIGNAL_TRAP)
3929     return;
3930 
3931   /* In reverse execution, when a breakpoint is hit, the instruction
3932      under it has already been de-executed.  The reported PC always
3933      points at the breakpoint address, so adjusting it further would
3934      be wrong.  E.g., consider this case on a decr_pc_after_break == 1
3935      architecture:
3936 
3937        B1         0x08000000 :   INSN1
3938        B2         0x08000001 :   INSN2
3939 		  0x08000002 :   INSN3
3940 	    PC -> 0x08000003 :   INSN4
3941 
3942      Say you're stopped at 0x08000003 as above.  Reverse continuing
3943      from that point should hit B2 as below.  Reading the PC when the
3944      SIGTRAP is reported should read 0x08000001 and INSN2 should have
3945      been de-executed already.
3946 
3947        B1         0x08000000 :   INSN1
3948        B2   PC -> 0x08000001 :   INSN2
3949 		  0x08000002 :   INSN3
3950 		  0x08000003 :   INSN4
3951 
3952      We can't apply the same logic as for forward execution, because
3953      we would wrongly adjust the PC to 0x08000000, since there's a
3954      breakpoint at PC - 1.  We'd then report a hit on B1, although
3955      INSN1 hadn't been de-executed yet.  Doing nothing is the correct
3956      behaviour.  */
3957   if (execution_direction == EXEC_REVERSE)
3958     return;
3959 
3960   /* If the target can tell whether the thread hit a SW breakpoint,
3961      trust it.  Targets that can tell also adjust the PC
3962      themselves.  */
3963   if (target_supports_stopped_by_sw_breakpoint ())
3964     return;
3965 
3966   /* Note that relying on whether a breakpoint is planted in memory to
3967      determine this can fail.  E.g,. the breakpoint could have been
3968      removed since.  Or the thread could have been told to step an
3969      instruction the size of a breakpoint instruction, and only
3970      _after_ was a breakpoint inserted at its address.  */
3971 
3972   /* If this target does not decrement the PC after breakpoints, then
3973      we have nothing to do.  */
3974   regcache = get_thread_regcache (thread);
3975   gdbarch = regcache->arch ();
3976 
3977   decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3978   if (decr_pc == 0)
3979     return;
3980 
3981   const address_space *aspace = regcache->aspace ();
3982 
3983   /* Find the location where (if we've hit a breakpoint) the
3984      breakpoint would be.  */
3985   breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3986 
3987   /* If the target can't tell whether a software breakpoint triggered,
3988      fallback to figuring it out based on breakpoints we think were
3989      inserted in the target, and on whether the thread was stepped or
3990      continued.  */
3991 
3992   /* Check whether there actually is a software breakpoint inserted at
3993      that location.
3994 
3995      If in non-stop mode, a race condition is possible where we've
3996      removed a breakpoint, but stop events for that breakpoint were
3997      already queued and arrive later.  To suppress those spurious
3998      SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3999      and retire them after a number of stop events are reported.  Note
4000      this is an heuristic and can thus get confused.  The real fix is
4001      to get the "stopped by SW BP and needs adjustment" info out of
4002      the target/kernel (and thus never reach here; see above).  */
4003   if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4004       || (target_is_non_stop_p ()
4005 	  && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4006     {
4007       gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4008 
4009       if (record_full_is_used ())
4010 	restore_operation_disable.emplace
4011 	  (record_full_gdb_operation_disable_set ());
4012 
4013       /* When using hardware single-step, a SIGTRAP is reported for both
4014 	 a completed single-step and a software breakpoint.  Need to
4015 	 differentiate between the two, as the latter needs adjusting
4016 	 but the former does not.
4017 
4018 	 The SIGTRAP can be due to a completed hardware single-step only if
4019 	  - we didn't insert software single-step breakpoints
4020 	  - this thread is currently being stepped
4021 
4022 	 If any of these events did not occur, we must have stopped due
4023 	 to hitting a software breakpoint, and have to back up to the
4024 	 breakpoint address.
4025 
4026 	 As a special case, we could have hardware single-stepped a
4027 	 software breakpoint.  In this case (prev_pc == breakpoint_pc),
4028 	 we also need to back up to the breakpoint address.  */
4029 
4030       if (thread_has_single_step_breakpoints_set (thread)
4031 	  || !currently_stepping (thread)
4032 	  || (thread->stepped_breakpoint
4033 	      && thread->prev_pc == breakpoint_pc))
4034 	regcache_write_pc (regcache, breakpoint_pc);
4035     }
4036 }
4037 
4038 static int
4039 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4040 {
4041   for (frame = get_prev_frame (frame);
4042        frame != NULL;
4043        frame = get_prev_frame (frame))
4044     {
4045       if (frame_id_eq (get_frame_id (frame), step_frame_id))
4046 	return 1;
4047       if (get_frame_type (frame) != INLINE_FRAME)
4048 	break;
4049     }
4050 
4051   return 0;
4052 }
4053 
4054 /* If the event thread has the stop requested flag set, pretend it
4055    stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4056    target_stop).  */
4057 
4058 static bool
4059 handle_stop_requested (struct execution_control_state *ecs)
4060 {
4061   if (ecs->event_thread->stop_requested)
4062     {
4063       ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4064       ecs->ws.value.sig = GDB_SIGNAL_0;
4065       handle_signal_stop (ecs);
4066       return true;
4067     }
4068   return false;
4069 }
4070 
4071 /* Auxiliary function that handles syscall entry/return events.
4072    It returns 1 if the inferior should keep going (and GDB
4073    should ignore the event), or 0 if the event deserves to be
4074    processed.  */
4075 
4076 static int
4077 handle_syscall_event (struct execution_control_state *ecs)
4078 {
4079   struct regcache *regcache;
4080   int syscall_number;
4081 
4082   context_switch (ecs);
4083 
4084   regcache = get_thread_regcache (ecs->event_thread);
4085   syscall_number = ecs->ws.value.syscall_number;
4086   ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4087 
4088   if (catch_syscall_enabled () > 0
4089       && catching_syscall_number (syscall_number) > 0)
4090     {
4091       if (debug_infrun)
4092         fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4093                             syscall_number);
4094 
4095       ecs->event_thread->control.stop_bpstat
4096 	= bpstat_stop_status (regcache->aspace (),
4097 			      ecs->event_thread->suspend.stop_pc,
4098 			      ecs->event_thread, &ecs->ws);
4099 
4100       if (handle_stop_requested (ecs))
4101 	return 0;
4102 
4103       if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4104 	{
4105 	  /* Catchpoint hit.  */
4106 	  return 0;
4107 	}
4108     }
4109 
4110   if (handle_stop_requested (ecs))
4111     return 0;
4112 
4113   /* If no catchpoint triggered for this, then keep going.  */
4114   keep_going (ecs);
4115   return 1;
4116 }
4117 
4118 /* Lazily fill in the execution_control_state's stop_func_* fields.  */
4119 
4120 static void
4121 fill_in_stop_func (struct gdbarch *gdbarch,
4122 		   struct execution_control_state *ecs)
4123 {
4124   if (!ecs->stop_func_filled_in)
4125     {
4126       /* Don't care about return value; stop_func_start and stop_func_name
4127 	 will both be 0 if it doesn't work.  */
4128       find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4129 				         &ecs->stop_func_name,
4130 				         &ecs->stop_func_start,
4131 					 &ecs->stop_func_end);
4132       ecs->stop_func_start
4133 	+= gdbarch_deprecated_function_start_offset (gdbarch);
4134 
4135       if (gdbarch_skip_entrypoint_p (gdbarch))
4136 	ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4137 							ecs->stop_func_start);
4138 
4139       ecs->stop_func_filled_in = 1;
4140     }
4141 }
4142 
4143 
4144 /* Return the STOP_SOON field of the inferior pointed at by ECS.  */
4145 
4146 static enum stop_kind
4147 get_inferior_stop_soon (execution_control_state *ecs)
4148 {
4149   struct inferior *inf = find_inferior_ptid (ecs->ptid);
4150 
4151   gdb_assert (inf != NULL);
4152   return inf->control.stop_soon;
4153 }
4154 
4155 /* Wait for one event.  Store the resulting waitstatus in WS, and
4156    return the event ptid.  */
4157 
4158 static ptid_t
4159 wait_one (struct target_waitstatus *ws)
4160 {
4161   ptid_t event_ptid;
4162   ptid_t wait_ptid = minus_one_ptid;
4163 
4164   overlay_cache_invalid = 1;
4165 
4166   /* Flush target cache before starting to handle each event.
4167      Target was running and cache could be stale.  This is just a
4168      heuristic.  Running threads may modify target memory, but we
4169      don't get any event.  */
4170   target_dcache_invalidate ();
4171 
4172   if (deprecated_target_wait_hook)
4173     event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4174   else
4175     event_ptid = target_wait (wait_ptid, ws, 0);
4176 
4177   if (debug_infrun)
4178     print_target_wait_results (wait_ptid, event_ptid, ws);
4179 
4180   return event_ptid;
4181 }
4182 
4183 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4184    instead of the current thread.  */
4185 #define THREAD_STOPPED_BY(REASON)		\
4186 static int					\
4187 thread_stopped_by_ ## REASON (ptid_t ptid)	\
4188 {						\
4189   scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4190   inferior_ptid = ptid;				\
4191 						\
4192   return target_stopped_by_ ## REASON ();	\
4193 }
4194 
4195 /* Generate thread_stopped_by_watchpoint.  */
4196 THREAD_STOPPED_BY (watchpoint)
4197 /* Generate thread_stopped_by_sw_breakpoint.  */
4198 THREAD_STOPPED_BY (sw_breakpoint)
4199 /* Generate thread_stopped_by_hw_breakpoint.  */
4200 THREAD_STOPPED_BY (hw_breakpoint)
4201 
4202 /* Save the thread's event and stop reason to process it later.  */
4203 
4204 static void
4205 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4206 {
4207   if (debug_infrun)
4208     {
4209       std::string statstr = target_waitstatus_to_string (ws);
4210 
4211       fprintf_unfiltered (gdb_stdlog,
4212 			  "infrun: saving status %s for %d.%ld.%ld\n",
4213 			  statstr.c_str (),
4214 			  tp->ptid.pid (),
4215 			  tp->ptid.lwp (),
4216 			  tp->ptid.tid ());
4217     }
4218 
4219   /* Record for later.  */
4220   tp->suspend.waitstatus = *ws;
4221   tp->suspend.waitstatus_pending_p = 1;
4222 
4223   struct regcache *regcache = get_thread_regcache (tp);
4224   const address_space *aspace = regcache->aspace ();
4225 
4226   if (ws->kind == TARGET_WAITKIND_STOPPED
4227       && ws->value.sig == GDB_SIGNAL_TRAP)
4228     {
4229       CORE_ADDR pc = regcache_read_pc (regcache);
4230 
4231       adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4232 
4233       if (thread_stopped_by_watchpoint (tp->ptid))
4234 	{
4235 	  tp->suspend.stop_reason
4236 	    = TARGET_STOPPED_BY_WATCHPOINT;
4237 	}
4238       else if (target_supports_stopped_by_sw_breakpoint ()
4239 	       && thread_stopped_by_sw_breakpoint (tp->ptid))
4240 	{
4241 	  tp->suspend.stop_reason
4242 	    = TARGET_STOPPED_BY_SW_BREAKPOINT;
4243 	}
4244       else if (target_supports_stopped_by_hw_breakpoint ()
4245 	       && thread_stopped_by_hw_breakpoint (tp->ptid))
4246 	{
4247 	  tp->suspend.stop_reason
4248 	    = TARGET_STOPPED_BY_HW_BREAKPOINT;
4249 	}
4250       else if (!target_supports_stopped_by_hw_breakpoint ()
4251 	       && hardware_breakpoint_inserted_here_p (aspace,
4252 						       pc))
4253 	{
4254 	  tp->suspend.stop_reason
4255 	    = TARGET_STOPPED_BY_HW_BREAKPOINT;
4256 	}
4257       else if (!target_supports_stopped_by_sw_breakpoint ()
4258 	       && software_breakpoint_inserted_here_p (aspace,
4259 						       pc))
4260 	{
4261 	  tp->suspend.stop_reason
4262 	    = TARGET_STOPPED_BY_SW_BREAKPOINT;
4263 	}
4264       else if (!thread_has_single_step_breakpoints_set (tp)
4265 	       && currently_stepping (tp))
4266 	{
4267 	  tp->suspend.stop_reason
4268 	    = TARGET_STOPPED_BY_SINGLE_STEP;
4269 	}
4270     }
4271 }
4272 
4273 /* See infrun.h.  */
4274 
4275 void
4276 stop_all_threads (void)
4277 {
4278   /* We may need multiple passes to discover all threads.  */
4279   int pass;
4280   int iterations = 0;
4281 
4282   gdb_assert (target_is_non_stop_p ());
4283 
4284   if (debug_infrun)
4285     fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4286 
4287   scoped_restore_current_thread restore_thread;
4288 
4289   target_thread_events (1);
4290   SCOPE_EXIT { target_thread_events (0); };
4291 
4292   /* Request threads to stop, and then wait for the stops.  Because
4293      threads we already know about can spawn more threads while we're
4294      trying to stop them, and we only learn about new threads when we
4295      update the thread list, do this in a loop, and keep iterating
4296      until two passes find no threads that need to be stopped.  */
4297   for (pass = 0; pass < 2; pass++, iterations++)
4298     {
4299       if (debug_infrun)
4300 	fprintf_unfiltered (gdb_stdlog,
4301 			    "infrun: stop_all_threads, pass=%d, "
4302 			    "iterations=%d\n", pass, iterations);
4303       while (1)
4304 	{
4305 	  ptid_t event_ptid;
4306 	  struct target_waitstatus ws;
4307 	  int need_wait = 0;
4308 
4309 	  update_thread_list ();
4310 
4311 	  /* Go through all threads looking for threads that we need
4312 	     to tell the target to stop.  */
4313 	  for (thread_info *t : all_non_exited_threads ())
4314 	    {
4315 	      if (t->executing)
4316 		{
4317 		  /* If already stopping, don't request a stop again.
4318 		     We just haven't seen the notification yet.  */
4319 		  if (!t->stop_requested)
4320 		    {
4321 		      if (debug_infrun)
4322 			fprintf_unfiltered (gdb_stdlog,
4323 					    "infrun:   %s executing, "
4324 					    "need stop\n",
4325 					    target_pid_to_str (t->ptid));
4326 		      target_stop (t->ptid);
4327 		      t->stop_requested = 1;
4328 		    }
4329 		  else
4330 		    {
4331 		      if (debug_infrun)
4332 			fprintf_unfiltered (gdb_stdlog,
4333 					    "infrun:   %s executing, "
4334 					    "already stopping\n",
4335 					    target_pid_to_str (t->ptid));
4336 		    }
4337 
4338 		  if (t->stop_requested)
4339 		    need_wait = 1;
4340 		}
4341 	      else
4342 		{
4343 		  if (debug_infrun)
4344 		    fprintf_unfiltered (gdb_stdlog,
4345 					"infrun:   %s not executing\n",
4346 					target_pid_to_str (t->ptid));
4347 
4348 		  /* The thread may be not executing, but still be
4349 		     resumed with a pending status to process.  */
4350 		  t->resumed = 0;
4351 		}
4352 	    }
4353 
4354 	  if (!need_wait)
4355 	    break;
4356 
4357 	  /* If we find new threads on the second iteration, restart
4358 	     over.  We want to see two iterations in a row with all
4359 	     threads stopped.  */
4360 	  if (pass > 0)
4361 	    pass = -1;
4362 
4363 	  event_ptid = wait_one (&ws);
4364 
4365 	  if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4366 	    {
4367 	      /* All resumed threads exited.  */
4368 	    }
4369 	  else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4370 		   || ws.kind == TARGET_WAITKIND_EXITED
4371 		   || ws.kind == TARGET_WAITKIND_SIGNALLED)
4372 	    {
4373 	      if (debug_infrun)
4374 		{
4375 		  ptid_t ptid = ptid_t (ws.value.integer);
4376 
4377 		  fprintf_unfiltered (gdb_stdlog,
4378 				      "infrun: %s exited while "
4379 				      "stopping threads\n",
4380 				      target_pid_to_str (ptid));
4381 		}
4382 	    }
4383 	  else
4384 	    {
4385 	      thread_info *t = find_thread_ptid (event_ptid);
4386 	      if (t == NULL)
4387 		t = add_thread (event_ptid);
4388 
4389 	      t->stop_requested = 0;
4390 	      t->executing = 0;
4391 	      t->resumed = 0;
4392 	      t->control.may_range_step = 0;
4393 
4394 	      /* This may be the first time we see the inferior report
4395 		 a stop.  */
4396 	      inferior *inf = find_inferior_ptid (event_ptid);
4397 	      if (inf->needs_setup)
4398 		{
4399 		  switch_to_thread_no_regs (t);
4400 		  setup_inferior (0);
4401 		}
4402 
4403 	      if (ws.kind == TARGET_WAITKIND_STOPPED
4404 		  && ws.value.sig == GDB_SIGNAL_0)
4405 		{
4406 		  /* We caught the event that we intended to catch, so
4407 		     there's no event pending.  */
4408 		  t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4409 		  t->suspend.waitstatus_pending_p = 0;
4410 
4411 		  if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4412 		    {
4413 		      /* Add it back to the step-over queue.  */
4414 		      if (debug_infrun)
4415 			{
4416 			  fprintf_unfiltered (gdb_stdlog,
4417 					      "infrun: displaced-step of %s "
4418 					      "canceled: adding back to the "
4419 					      "step-over queue\n",
4420 					      target_pid_to_str (t->ptid));
4421 			}
4422 		      t->control.trap_expected = 0;
4423 		      thread_step_over_chain_enqueue (t);
4424 		    }
4425 		}
4426 	      else
4427 		{
4428 		  enum gdb_signal sig;
4429 		  struct regcache *regcache;
4430 
4431 		  if (debug_infrun)
4432 		    {
4433 		      std::string statstr = target_waitstatus_to_string (&ws);
4434 
4435 		      fprintf_unfiltered (gdb_stdlog,
4436 					  "infrun: target_wait %s, saving "
4437 					  "status for %d.%ld.%ld\n",
4438 					  statstr.c_str (),
4439 					  t->ptid.pid (),
4440 					  t->ptid.lwp (),
4441 					  t->ptid.tid ());
4442 		    }
4443 
4444 		  /* Record for later.  */
4445 		  save_waitstatus (t, &ws);
4446 
4447 		  sig = (ws.kind == TARGET_WAITKIND_STOPPED
4448 			 ? ws.value.sig : GDB_SIGNAL_0);
4449 
4450 		  if (displaced_step_fixup (t, sig) < 0)
4451 		    {
4452 		      /* Add it back to the step-over queue.  */
4453 		      t->control.trap_expected = 0;
4454 		      thread_step_over_chain_enqueue (t);
4455 		    }
4456 
4457 		  regcache = get_thread_regcache (t);
4458 		  t->suspend.stop_pc = regcache_read_pc (regcache);
4459 
4460 		  if (debug_infrun)
4461 		    {
4462 		      fprintf_unfiltered (gdb_stdlog,
4463 					  "infrun: saved stop_pc=%s for %s "
4464 					  "(currently_stepping=%d)\n",
4465 					  paddress (target_gdbarch (),
4466 						    t->suspend.stop_pc),
4467 					  target_pid_to_str (t->ptid),
4468 					  currently_stepping (t));
4469 		    }
4470 		}
4471 	    }
4472 	}
4473     }
4474 
4475   if (debug_infrun)
4476     fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4477 }
4478 
4479 /* Handle a TARGET_WAITKIND_NO_RESUMED event.  */
4480 
4481 static int
4482 handle_no_resumed (struct execution_control_state *ecs)
4483 {
4484   if (target_can_async_p ())
4485     {
4486       struct ui *ui;
4487       int any_sync = 0;
4488 
4489       ALL_UIS (ui)
4490 	{
4491 	  if (ui->prompt_state == PROMPT_BLOCKED)
4492 	    {
4493 	      any_sync = 1;
4494 	      break;
4495 	    }
4496 	}
4497       if (!any_sync)
4498 	{
4499 	  /* There were no unwaited-for children left in the target, but,
4500 	     we're not synchronously waiting for events either.  Just
4501 	     ignore.  */
4502 
4503 	  if (debug_infrun)
4504 	    fprintf_unfiltered (gdb_stdlog,
4505 				"infrun: TARGET_WAITKIND_NO_RESUMED "
4506 				"(ignoring: bg)\n");
4507 	  prepare_to_wait (ecs);
4508 	  return 1;
4509 	}
4510     }
4511 
4512   /* Otherwise, if we were running a synchronous execution command, we
4513      may need to cancel it and give the user back the terminal.
4514 
4515      In non-stop mode, the target can't tell whether we've already
4516      consumed previous stop events, so it can end up sending us a
4517      no-resumed event like so:
4518 
4519        #0 - thread 1 is left stopped
4520 
4521        #1 - thread 2 is resumed and hits breakpoint
4522                -> TARGET_WAITKIND_STOPPED
4523 
4524        #2 - thread 3 is resumed and exits
4525             this is the last resumed thread, so
4526 	       -> TARGET_WAITKIND_NO_RESUMED
4527 
4528        #3 - gdb processes stop for thread 2 and decides to re-resume
4529             it.
4530 
4531        #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4532             thread 2 is now resumed, so the event should be ignored.
4533 
4534      IOW, if the stop for thread 2 doesn't end a foreground command,
4535      then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4536      event.  But it could be that the event meant that thread 2 itself
4537      (or whatever other thread was the last resumed thread) exited.
4538 
4539      To address this we refresh the thread list and check whether we
4540      have resumed threads _now_.  In the example above, this removes
4541      thread 3 from the thread list.  If thread 2 was re-resumed, we
4542      ignore this event.  If we find no thread resumed, then we cancel
4543      the synchronous command show "no unwaited-for " to the user.  */
4544   update_thread_list ();
4545 
4546   for (thread_info *thread : all_non_exited_threads ())
4547     {
4548       if (thread->executing
4549 	  || thread->suspend.waitstatus_pending_p)
4550 	{
4551 	  /* There were no unwaited-for children left in the target at
4552 	     some point, but there are now.  Just ignore.  */
4553 	  if (debug_infrun)
4554 	    fprintf_unfiltered (gdb_stdlog,
4555 				"infrun: TARGET_WAITKIND_NO_RESUMED "
4556 				"(ignoring: found resumed)\n");
4557 	  prepare_to_wait (ecs);
4558 	  return 1;
4559 	}
4560     }
4561 
4562   /* Note however that we may find no resumed thread because the whole
4563      process exited meanwhile (thus updating the thread list results
4564      in an empty thread list).  In this case we know we'll be getting
4565      a process exit event shortly.  */
4566   for (inferior *inf : all_inferiors ())
4567     {
4568       if (inf->pid == 0)
4569 	continue;
4570 
4571       thread_info *thread = any_live_thread_of_inferior (inf);
4572       if (thread == NULL)
4573 	{
4574 	  if (debug_infrun)
4575 	    fprintf_unfiltered (gdb_stdlog,
4576 				"infrun: TARGET_WAITKIND_NO_RESUMED "
4577 				"(expect process exit)\n");
4578 	  prepare_to_wait (ecs);
4579 	  return 1;
4580 	}
4581     }
4582 
4583   /* Go ahead and report the event.  */
4584   return 0;
4585 }
4586 
4587 /* Given an execution control state that has been freshly filled in by
4588    an event from the inferior, figure out what it means and take
4589    appropriate action.
4590 
4591    The alternatives are:
4592 
4593    1) stop_waiting and return; to really stop and return to the
4594    debugger.
4595 
4596    2) keep_going and return; to wait for the next event (set
4597    ecs->event_thread->stepping_over_breakpoint to 1 to single step
4598    once).  */
4599 
4600 static void
4601 handle_inferior_event (struct execution_control_state *ecs)
4602 {
4603   /* Make sure that all temporary struct value objects that were
4604      created during the handling of the event get deleted at the
4605      end.  */
4606   scoped_value_mark free_values;
4607 
4608   enum stop_kind stop_soon;
4609 
4610   if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4611     {
4612       /* We had an event in the inferior, but we are not interested in
4613 	 handling it at this level.  The lower layers have already
4614 	 done what needs to be done, if anything.
4615 
4616 	 One of the possible circumstances for this is when the
4617 	 inferior produces output for the console.  The inferior has
4618 	 not stopped, and we are ignoring the event.  Another possible
4619 	 circumstance is any event which the lower level knows will be
4620 	 reported multiple times without an intervening resume.  */
4621       if (debug_infrun)
4622 	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4623       prepare_to_wait (ecs);
4624       return;
4625     }
4626 
4627   if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4628     {
4629       if (debug_infrun)
4630 	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4631       prepare_to_wait (ecs);
4632       return;
4633     }
4634 
4635   if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4636       && handle_no_resumed (ecs))
4637     return;
4638 
4639   /* Cache the last pid/waitstatus.  */
4640   set_last_target_status (ecs->ptid, ecs->ws);
4641 
4642   /* Always clear state belonging to the previous time we stopped.  */
4643   stop_stack_dummy = STOP_NONE;
4644 
4645   if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4646     {
4647       /* No unwaited-for children left.  IOW, all resumed children
4648 	 have exited.  */
4649       if (debug_infrun)
4650 	fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4651 
4652       stop_print_frame = 0;
4653       stop_waiting (ecs);
4654       return;
4655     }
4656 
4657   if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4658       && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4659     {
4660       ecs->event_thread = find_thread_ptid (ecs->ptid);
4661       /* If it's a new thread, add it to the thread database.  */
4662       if (ecs->event_thread == NULL)
4663 	ecs->event_thread = add_thread (ecs->ptid);
4664 
4665       /* Disable range stepping.  If the next step request could use a
4666 	 range, this will be end up re-enabled then.  */
4667       ecs->event_thread->control.may_range_step = 0;
4668     }
4669 
4670   /* Dependent on valid ECS->EVENT_THREAD.  */
4671   adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4672 
4673   /* Dependent on the current PC value modified by adjust_pc_after_break.  */
4674   reinit_frame_cache ();
4675 
4676   breakpoint_retire_moribund ();
4677 
4678   /* First, distinguish signals caused by the debugger from signals
4679      that have to do with the program's own actions.  Note that
4680      breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4681      on the operating system version.  Here we detect when a SIGILL or
4682      SIGEMT is really a breakpoint and change it to SIGTRAP.  We do
4683      something similar for SIGSEGV, since a SIGSEGV will be generated
4684      when we're trying to execute a breakpoint instruction on a
4685      non-executable stack.  This happens for call dummy breakpoints
4686      for architectures like SPARC that place call dummies on the
4687      stack.  */
4688   if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4689       && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4690 	  || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4691 	  || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4692     {
4693       struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4694 
4695       if (breakpoint_inserted_here_p (regcache->aspace (),
4696 				      regcache_read_pc (regcache)))
4697 	{
4698 	  if (debug_infrun)
4699 	    fprintf_unfiltered (gdb_stdlog,
4700 				"infrun: Treating signal as SIGTRAP\n");
4701 	  ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4702 	}
4703     }
4704 
4705   /* Mark the non-executing threads accordingly.  In all-stop, all
4706      threads of all processes are stopped when we get any event
4707      reported.  In non-stop mode, only the event thread stops.  */
4708   {
4709     ptid_t mark_ptid;
4710 
4711     if (!target_is_non_stop_p ())
4712       mark_ptid = minus_one_ptid;
4713     else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4714 	     || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4715       {
4716 	/* If we're handling a process exit in non-stop mode, even
4717 	   though threads haven't been deleted yet, one would think
4718 	   that there is nothing to do, as threads of the dead process
4719 	   will be soon deleted, and threads of any other process were
4720 	   left running.  However, on some targets, threads survive a
4721 	   process exit event.  E.g., for the "checkpoint" command,
4722 	   when the current checkpoint/fork exits, linux-fork.c
4723 	   automatically switches to another fork from within
4724 	   target_mourn_inferior, by associating the same
4725 	   inferior/thread to another fork.  We haven't mourned yet at
4726 	   this point, but we must mark any threads left in the
4727 	   process as not-executing so that finish_thread_state marks
4728 	   them stopped (in the user's perspective) if/when we present
4729 	   the stop to the user.  */
4730 	mark_ptid = ptid_t (ecs->ptid.pid ());
4731       }
4732     else
4733       mark_ptid = ecs->ptid;
4734 
4735     set_executing (mark_ptid, 0);
4736 
4737     /* Likewise the resumed flag.  */
4738     set_resumed (mark_ptid, 0);
4739   }
4740 
4741   switch (ecs->ws.kind)
4742     {
4743     case TARGET_WAITKIND_LOADED:
4744       if (debug_infrun)
4745         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4746       context_switch (ecs);
4747       /* Ignore gracefully during startup of the inferior, as it might
4748          be the shell which has just loaded some objects, otherwise
4749          add the symbols for the newly loaded objects.  Also ignore at
4750          the beginning of an attach or remote session; we will query
4751          the full list of libraries once the connection is
4752          established.  */
4753 
4754       stop_soon = get_inferior_stop_soon (ecs);
4755       if (stop_soon == NO_STOP_QUIETLY)
4756 	{
4757 	  struct regcache *regcache;
4758 
4759 	  regcache = get_thread_regcache (ecs->event_thread);
4760 
4761 	  handle_solib_event ();
4762 
4763 	  ecs->event_thread->control.stop_bpstat
4764 	    = bpstat_stop_status (regcache->aspace (),
4765 				  ecs->event_thread->suspend.stop_pc,
4766 				  ecs->event_thread, &ecs->ws);
4767 
4768 	  if (handle_stop_requested (ecs))
4769 	    return;
4770 
4771 	  if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4772 	    {
4773 	      /* A catchpoint triggered.  */
4774 	      process_event_stop_test (ecs);
4775 	      return;
4776 	    }
4777 
4778 	  /* If requested, stop when the dynamic linker notifies
4779 	     gdb of events.  This allows the user to get control
4780 	     and place breakpoints in initializer routines for
4781 	     dynamically loaded objects (among other things).  */
4782 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4783 	  if (stop_on_solib_events)
4784 	    {
4785 	      /* Make sure we print "Stopped due to solib-event" in
4786 		 normal_stop.  */
4787 	      stop_print_frame = 1;
4788 
4789 	      stop_waiting (ecs);
4790 	      return;
4791 	    }
4792 	}
4793 
4794       /* If we are skipping through a shell, or through shared library
4795 	 loading that we aren't interested in, resume the program.  If
4796 	 we're running the program normally, also resume.  */
4797       if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4798 	{
4799 	  /* Loading of shared libraries might have changed breakpoint
4800 	     addresses.  Make sure new breakpoints are inserted.  */
4801 	  if (stop_soon == NO_STOP_QUIETLY)
4802 	    insert_breakpoints ();
4803 	  resume (GDB_SIGNAL_0);
4804 	  prepare_to_wait (ecs);
4805 	  return;
4806 	}
4807 
4808       /* But stop if we're attaching or setting up a remote
4809 	 connection.  */
4810       if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4811 	  || stop_soon == STOP_QUIETLY_REMOTE)
4812 	{
4813 	  if (debug_infrun)
4814 	    fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4815 	  stop_waiting (ecs);
4816 	  return;
4817 	}
4818 
4819       internal_error (__FILE__, __LINE__,
4820 		      _("unhandled stop_soon: %d"), (int) stop_soon);
4821 
4822     case TARGET_WAITKIND_SPURIOUS:
4823       if (debug_infrun)
4824         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4825       if (handle_stop_requested (ecs))
4826 	return;
4827       context_switch (ecs);
4828       resume (GDB_SIGNAL_0);
4829       prepare_to_wait (ecs);
4830       return;
4831 
4832     case TARGET_WAITKIND_THREAD_CREATED:
4833       if (debug_infrun)
4834         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
4835       if (handle_stop_requested (ecs))
4836 	return;
4837       context_switch (ecs);
4838       if (!switch_back_to_stepped_thread (ecs))
4839 	keep_going (ecs);
4840       return;
4841 
4842     case TARGET_WAITKIND_EXITED:
4843     case TARGET_WAITKIND_SIGNALLED:
4844       if (debug_infrun)
4845 	{
4846 	  if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4847 	    fprintf_unfiltered (gdb_stdlog,
4848 				"infrun: TARGET_WAITKIND_EXITED\n");
4849 	  else
4850 	    fprintf_unfiltered (gdb_stdlog,
4851 				"infrun: TARGET_WAITKIND_SIGNALLED\n");
4852 	}
4853 
4854       inferior_ptid = ecs->ptid;
4855       set_current_inferior (find_inferior_ptid (ecs->ptid));
4856       set_current_program_space (current_inferior ()->pspace);
4857       handle_vfork_child_exec_or_exit (0);
4858       target_terminal::ours ();	/* Must do this before mourn anyway.  */
4859 
4860       /* Clearing any previous state of convenience variables.  */
4861       clear_exit_convenience_vars ();
4862 
4863       if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4864 	{
4865 	  /* Record the exit code in the convenience variable $_exitcode, so
4866 	     that the user can inspect this again later.  */
4867 	  set_internalvar_integer (lookup_internalvar ("_exitcode"),
4868 				   (LONGEST) ecs->ws.value.integer);
4869 
4870 	  /* Also record this in the inferior itself.  */
4871 	  current_inferior ()->has_exit_code = 1;
4872 	  current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4873 
4874 	  /* Support the --return-child-result option.  */
4875 	  return_child_result_value = ecs->ws.value.integer;
4876 
4877 	  gdb::observers::exited.notify (ecs->ws.value.integer);
4878 	}
4879       else
4880 	{
4881 	  struct gdbarch *gdbarch = current_inferior ()->gdbarch;
4882 
4883 	  if (gdbarch_gdb_signal_to_target_p (gdbarch))
4884 	    {
4885 	      /* Set the value of the internal variable $_exitsignal,
4886 		 which holds the signal uncaught by the inferior.  */
4887 	      set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4888 				       gdbarch_gdb_signal_to_target (gdbarch,
4889 							  ecs->ws.value.sig));
4890 	    }
4891 	  else
4892 	    {
4893 	      /* We don't have access to the target's method used for
4894 		 converting between signal numbers (GDB's internal
4895 		 representation <-> target's representation).
4896 		 Therefore, we cannot do a good job at displaying this
4897 		 information to the user.  It's better to just warn
4898 		 her about it (if infrun debugging is enabled), and
4899 		 give up.  */
4900 	      if (debug_infrun)
4901 		fprintf_filtered (gdb_stdlog, _("\
4902 Cannot fill $_exitsignal with the correct signal number.\n"));
4903 	    }
4904 
4905 	  gdb::observers::signal_exited.notify (ecs->ws.value.sig);
4906 	}
4907 
4908       gdb_flush (gdb_stdout);
4909       target_mourn_inferior (inferior_ptid);
4910       stop_print_frame = 0;
4911       stop_waiting (ecs);
4912       return;
4913 
4914       /* The following are the only cases in which we keep going;
4915          the above cases end in a continue or goto.  */
4916     case TARGET_WAITKIND_FORKED:
4917     case TARGET_WAITKIND_VFORKED:
4918       if (debug_infrun)
4919 	{
4920 	  if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4921 	    fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4922 	  else
4923 	    fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4924 	}
4925 
4926       /* Check whether the inferior is displaced stepping.  */
4927       {
4928 	struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4929 	struct gdbarch *gdbarch = regcache->arch ();
4930 
4931 	/* If checking displaced stepping is supported, and thread
4932 	   ecs->ptid is displaced stepping.  */
4933 	if (displaced_step_in_progress_thread (ecs->event_thread))
4934 	  {
4935 	    struct inferior *parent_inf
4936 	      = find_inferior_ptid (ecs->ptid);
4937 	    struct regcache *child_regcache;
4938 	    CORE_ADDR parent_pc;
4939 
4940 	    /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4941 	       indicating that the displaced stepping of syscall instruction
4942 	       has been done.  Perform cleanup for parent process here.  Note
4943 	       that this operation also cleans up the child process for vfork,
4944 	       because their pages are shared.  */
4945 	    displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
4946 	    /* Start a new step-over in another thread if there's one
4947 	       that needs it.  */
4948 	    start_step_over ();
4949 
4950 	    if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4951 	      {
4952 		struct displaced_step_inferior_state *displaced
4953 		  = get_displaced_stepping_state (parent_inf);
4954 
4955 		/* Restore scratch pad for child process.  */
4956 		displaced_step_restore (displaced, ecs->ws.value.related_pid);
4957 	      }
4958 
4959 	    /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4960 	       the child's PC is also within the scratchpad.  Set the child's PC
4961 	       to the parent's PC value, which has already been fixed up.
4962 	       FIXME: we use the parent's aspace here, although we're touching
4963 	       the child, because the child hasn't been added to the inferior
4964 	       list yet at this point.  */
4965 
4966 	    child_regcache
4967 	      = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4968 						 gdbarch,
4969 						 parent_inf->aspace);
4970 	    /* Read PC value of parent process.  */
4971 	    parent_pc = regcache_read_pc (regcache);
4972 
4973 	    if (debug_displaced)
4974 	      fprintf_unfiltered (gdb_stdlog,
4975 				  "displaced: write child pc from %s to %s\n",
4976 				  paddress (gdbarch,
4977 					    regcache_read_pc (child_regcache)),
4978 				  paddress (gdbarch, parent_pc));
4979 
4980 	    regcache_write_pc (child_regcache, parent_pc);
4981 	  }
4982       }
4983 
4984       context_switch (ecs);
4985 
4986       /* Immediately detach breakpoints from the child before there's
4987 	 any chance of letting the user delete breakpoints from the
4988 	 breakpoint lists.  If we don't do this early, it's easy to
4989 	 leave left over traps in the child, vis: "break foo; catch
4990 	 fork; c; <fork>; del; c; <child calls foo>".  We only follow
4991 	 the fork on the last `continue', and by that time the
4992 	 breakpoint at "foo" is long gone from the breakpoint table.
4993 	 If we vforked, then we don't need to unpatch here, since both
4994 	 parent and child are sharing the same memory pages; we'll
4995 	 need to unpatch at follow/detach time instead to be certain
4996 	 that new breakpoints added between catchpoint hit time and
4997 	 vfork follow are detached.  */
4998       if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4999 	{
5000 	  /* This won't actually modify the breakpoint list, but will
5001 	     physically remove the breakpoints from the child.  */
5002 	  detach_breakpoints (ecs->ws.value.related_pid);
5003 	}
5004 
5005       delete_just_stopped_threads_single_step_breakpoints ();
5006 
5007       /* In case the event is caught by a catchpoint, remember that
5008 	 the event is to be followed at the next resume of the thread,
5009 	 and not immediately.  */
5010       ecs->event_thread->pending_follow = ecs->ws;
5011 
5012       ecs->event_thread->suspend.stop_pc
5013 	= regcache_read_pc (get_thread_regcache (ecs->event_thread));
5014 
5015       ecs->event_thread->control.stop_bpstat
5016 	= bpstat_stop_status (get_current_regcache ()->aspace (),
5017 			      ecs->event_thread->suspend.stop_pc,
5018 			      ecs->event_thread, &ecs->ws);
5019 
5020       if (handle_stop_requested (ecs))
5021 	return;
5022 
5023       /* If no catchpoint triggered for this, then keep going.  Note
5024 	 that we're interested in knowing the bpstat actually causes a
5025 	 stop, not just if it may explain the signal.  Software
5026 	 watchpoints, for example, always appear in the bpstat.  */
5027       if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5028 	{
5029 	  int should_resume;
5030 	  int follow_child
5031 	    = (follow_fork_mode_string == follow_fork_mode_child);
5032 
5033 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5034 
5035 	  should_resume = follow_fork ();
5036 
5037 	  thread_info *parent = ecs->event_thread;
5038 	  thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
5039 
5040 	  /* At this point, the parent is marked running, and the
5041 	     child is marked stopped.  */
5042 
5043 	  /* If not resuming the parent, mark it stopped.  */
5044 	  if (follow_child && !detach_fork && !non_stop && !sched_multi)
5045 	    parent->set_running (false);
5046 
5047 	  /* If resuming the child, mark it running.  */
5048 	  if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5049 	    child->set_running (true);
5050 
5051 	  /* In non-stop mode, also resume the other branch.  */
5052 	  if (!detach_fork && (non_stop
5053 			       || (sched_multi && target_is_non_stop_p ())))
5054 	    {
5055 	      if (follow_child)
5056 		switch_to_thread (parent);
5057 	      else
5058 		switch_to_thread (child);
5059 
5060 	      ecs->event_thread = inferior_thread ();
5061 	      ecs->ptid = inferior_ptid;
5062 	      keep_going (ecs);
5063 	    }
5064 
5065 	  if (follow_child)
5066 	    switch_to_thread (child);
5067 	  else
5068 	    switch_to_thread (parent);
5069 
5070 	  ecs->event_thread = inferior_thread ();
5071 	  ecs->ptid = inferior_ptid;
5072 
5073 	  if (should_resume)
5074 	    keep_going (ecs);
5075 	  else
5076 	    stop_waiting (ecs);
5077 	  return;
5078 	}
5079       process_event_stop_test (ecs);
5080       return;
5081 
5082     case TARGET_WAITKIND_VFORK_DONE:
5083       /* Done with the shared memory region.  Re-insert breakpoints in
5084 	 the parent, and keep going.  */
5085 
5086       if (debug_infrun)
5087 	fprintf_unfiltered (gdb_stdlog,
5088 			    "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5089 
5090       context_switch (ecs);
5091 
5092       current_inferior ()->waiting_for_vfork_done = 0;
5093       current_inferior ()->pspace->breakpoints_not_allowed = 0;
5094 
5095       if (handle_stop_requested (ecs))
5096 	return;
5097 
5098       /* This also takes care of reinserting breakpoints in the
5099 	 previously locked inferior.  */
5100       keep_going (ecs);
5101       return;
5102 
5103     case TARGET_WAITKIND_EXECD:
5104       if (debug_infrun)
5105         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5106 
5107       /* Note we can't read registers yet (the stop_pc), because we
5108 	 don't yet know the inferior's post-exec architecture.
5109 	 'stop_pc' is explicitly read below instead.  */
5110       switch_to_thread_no_regs (ecs->event_thread);
5111 
5112       /* Do whatever is necessary to the parent branch of the vfork.  */
5113       handle_vfork_child_exec_or_exit (1);
5114 
5115       /* This causes the eventpoints and symbol table to be reset.
5116          Must do this now, before trying to determine whether to
5117          stop.  */
5118       follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5119 
5120       /* In follow_exec we may have deleted the original thread and
5121 	 created a new one.  Make sure that the event thread is the
5122 	 execd thread for that case (this is a nop otherwise).  */
5123       ecs->event_thread = inferior_thread ();
5124 
5125       ecs->event_thread->suspend.stop_pc
5126 	= regcache_read_pc (get_thread_regcache (ecs->event_thread));
5127 
5128       ecs->event_thread->control.stop_bpstat
5129 	= bpstat_stop_status (get_current_regcache ()->aspace (),
5130 			      ecs->event_thread->suspend.stop_pc,
5131 			      ecs->event_thread, &ecs->ws);
5132 
5133       /* Note that this may be referenced from inside
5134 	 bpstat_stop_status above, through inferior_has_execd.  */
5135       xfree (ecs->ws.value.execd_pathname);
5136       ecs->ws.value.execd_pathname = NULL;
5137 
5138       if (handle_stop_requested (ecs))
5139 	return;
5140 
5141       /* If no catchpoint triggered for this, then keep going.  */
5142       if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5143 	{
5144 	  ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5145 	  keep_going (ecs);
5146 	  return;
5147 	}
5148       process_event_stop_test (ecs);
5149       return;
5150 
5151       /* Be careful not to try to gather much state about a thread
5152          that's in a syscall.  It's frequently a losing proposition.  */
5153     case TARGET_WAITKIND_SYSCALL_ENTRY:
5154       if (debug_infrun)
5155         fprintf_unfiltered (gdb_stdlog,
5156 			    "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5157       /* Getting the current syscall number.  */
5158       if (handle_syscall_event (ecs) == 0)
5159 	process_event_stop_test (ecs);
5160       return;
5161 
5162       /* Before examining the threads further, step this thread to
5163          get it entirely out of the syscall.  (We get notice of the
5164          event when the thread is just on the verge of exiting a
5165          syscall.  Stepping one instruction seems to get it back
5166          into user code.)  */
5167     case TARGET_WAITKIND_SYSCALL_RETURN:
5168       if (debug_infrun)
5169         fprintf_unfiltered (gdb_stdlog,
5170 			    "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5171       if (handle_syscall_event (ecs) == 0)
5172 	process_event_stop_test (ecs);
5173       return;
5174 
5175     case TARGET_WAITKIND_STOPPED:
5176       if (debug_infrun)
5177         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5178       handle_signal_stop (ecs);
5179       return;
5180 
5181     case TARGET_WAITKIND_NO_HISTORY:
5182       if (debug_infrun)
5183         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5184       /* Reverse execution: target ran out of history info.  */
5185 
5186       /* Switch to the stopped thread.  */
5187       context_switch (ecs);
5188       if (debug_infrun)
5189 	fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5190 
5191       delete_just_stopped_threads_single_step_breakpoints ();
5192       ecs->event_thread->suspend.stop_pc
5193 	= regcache_read_pc (get_thread_regcache (inferior_thread ()));
5194 
5195       if (handle_stop_requested (ecs))
5196 	return;
5197 
5198       gdb::observers::no_history.notify ();
5199       stop_waiting (ecs);
5200       return;
5201     }
5202 }
5203 
5204 /* Restart threads back to what they were trying to do back when we
5205    paused them for an in-line step-over.  The EVENT_THREAD thread is
5206    ignored.  */
5207 
5208 static void
5209 restart_threads (struct thread_info *event_thread)
5210 {
5211   /* In case the instruction just stepped spawned a new thread.  */
5212   update_thread_list ();
5213 
5214   for (thread_info *tp : all_non_exited_threads ())
5215     {
5216       if (tp == event_thread)
5217 	{
5218 	  if (debug_infrun)
5219 	    fprintf_unfiltered (gdb_stdlog,
5220 				"infrun: restart threads: "
5221 				"[%s] is event thread\n",
5222 				target_pid_to_str (tp->ptid));
5223 	  continue;
5224 	}
5225 
5226       if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5227 	{
5228 	  if (debug_infrun)
5229 	    fprintf_unfiltered (gdb_stdlog,
5230 				"infrun: restart threads: "
5231 				"[%s] not meant to be running\n",
5232 				target_pid_to_str (tp->ptid));
5233 	  continue;
5234 	}
5235 
5236       if (tp->resumed)
5237 	{
5238 	  if (debug_infrun)
5239 	    fprintf_unfiltered (gdb_stdlog,
5240 				"infrun: restart threads: [%s] resumed\n",
5241 				target_pid_to_str (tp->ptid));
5242 	  gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5243 	  continue;
5244 	}
5245 
5246       if (thread_is_in_step_over_chain (tp))
5247 	{
5248 	  if (debug_infrun)
5249 	    fprintf_unfiltered (gdb_stdlog,
5250 				"infrun: restart threads: "
5251 				"[%s] needs step-over\n",
5252 				target_pid_to_str (tp->ptid));
5253 	  gdb_assert (!tp->resumed);
5254 	  continue;
5255 	}
5256 
5257 
5258       if (tp->suspend.waitstatus_pending_p)
5259 	{
5260 	  if (debug_infrun)
5261 	    fprintf_unfiltered (gdb_stdlog,
5262 				"infrun: restart threads: "
5263 				"[%s] has pending status\n",
5264 				target_pid_to_str (tp->ptid));
5265 	  tp->resumed = 1;
5266 	  continue;
5267 	}
5268 
5269       gdb_assert (!tp->stop_requested);
5270 
5271       /* If some thread needs to start a step-over at this point, it
5272 	 should still be in the step-over queue, and thus skipped
5273 	 above.  */
5274       if (thread_still_needs_step_over (tp))
5275 	{
5276 	  internal_error (__FILE__, __LINE__,
5277 			  "thread [%s] needs a step-over, but not in "
5278 			  "step-over queue\n",
5279 			  target_pid_to_str (tp->ptid));
5280 	}
5281 
5282       if (currently_stepping (tp))
5283 	{
5284 	  if (debug_infrun)
5285 	    fprintf_unfiltered (gdb_stdlog,
5286 				"infrun: restart threads: [%s] was stepping\n",
5287 				target_pid_to_str (tp->ptid));
5288 	  keep_going_stepped_thread (tp);
5289 	}
5290       else
5291 	{
5292 	  struct execution_control_state ecss;
5293 	  struct execution_control_state *ecs = &ecss;
5294 
5295 	  if (debug_infrun)
5296 	    fprintf_unfiltered (gdb_stdlog,
5297 				"infrun: restart threads: [%s] continuing\n",
5298 				target_pid_to_str (tp->ptid));
5299 	  reset_ecs (ecs, tp);
5300 	  switch_to_thread (tp);
5301 	  keep_going_pass_signal (ecs);
5302 	}
5303     }
5304 }
5305 
5306 /* Callback for iterate_over_threads.  Find a resumed thread that has
5307    a pending waitstatus.  */
5308 
5309 static int
5310 resumed_thread_with_pending_status (struct thread_info *tp,
5311 				    void *arg)
5312 {
5313   return (tp->resumed
5314 	  && tp->suspend.waitstatus_pending_p);
5315 }
5316 
5317 /* Called when we get an event that may finish an in-line or
5318    out-of-line (displaced stepping) step-over started previously.
5319    Return true if the event is processed and we should go back to the
5320    event loop; false if the caller should continue processing the
5321    event.  */
5322 
5323 static int
5324 finish_step_over (struct execution_control_state *ecs)
5325 {
5326   int had_step_over_info;
5327 
5328   displaced_step_fixup (ecs->event_thread,
5329 			ecs->event_thread->suspend.stop_signal);
5330 
5331   had_step_over_info = step_over_info_valid_p ();
5332 
5333   if (had_step_over_info)
5334     {
5335       /* If we're stepping over a breakpoint with all threads locked,
5336 	 then only the thread that was stepped should be reporting
5337 	 back an event.  */
5338       gdb_assert (ecs->event_thread->control.trap_expected);
5339 
5340       clear_step_over_info ();
5341     }
5342 
5343   if (!target_is_non_stop_p ())
5344     return 0;
5345 
5346   /* Start a new step-over in another thread if there's one that
5347      needs it.  */
5348   start_step_over ();
5349 
5350   /* If we were stepping over a breakpoint before, and haven't started
5351      a new in-line step-over sequence, then restart all other threads
5352      (except the event thread).  We can't do this in all-stop, as then
5353      e.g., we wouldn't be able to issue any other remote packet until
5354      these other threads stop.  */
5355   if (had_step_over_info && !step_over_info_valid_p ())
5356     {
5357       struct thread_info *pending;
5358 
5359       /* If we only have threads with pending statuses, the restart
5360 	 below won't restart any thread and so nothing re-inserts the
5361 	 breakpoint we just stepped over.  But we need it inserted
5362 	 when we later process the pending events, otherwise if
5363 	 another thread has a pending event for this breakpoint too,
5364 	 we'd discard its event (because the breakpoint that
5365 	 originally caused the event was no longer inserted).  */
5366       context_switch (ecs);
5367       insert_breakpoints ();
5368 
5369       restart_threads (ecs->event_thread);
5370 
5371       /* If we have events pending, go through handle_inferior_event
5372 	 again, picking up a pending event at random.  This avoids
5373 	 thread starvation.  */
5374 
5375       /* But not if we just stepped over a watchpoint in order to let
5376 	 the instruction execute so we can evaluate its expression.
5377 	 The set of watchpoints that triggered is recorded in the
5378 	 breakpoint objects themselves (see bp->watchpoint_triggered).
5379 	 If we processed another event first, that other event could
5380 	 clobber this info.  */
5381       if (ecs->event_thread->stepping_over_watchpoint)
5382 	return 0;
5383 
5384       pending = iterate_over_threads (resumed_thread_with_pending_status,
5385 				      NULL);
5386       if (pending != NULL)
5387 	{
5388 	  struct thread_info *tp = ecs->event_thread;
5389 	  struct regcache *regcache;
5390 
5391 	  if (debug_infrun)
5392 	    {
5393 	      fprintf_unfiltered (gdb_stdlog,
5394 				  "infrun: found resumed threads with "
5395 				  "pending events, saving status\n");
5396 	    }
5397 
5398 	  gdb_assert (pending != tp);
5399 
5400 	  /* Record the event thread's event for later.  */
5401 	  save_waitstatus (tp, &ecs->ws);
5402 	  /* This was cleared early, by handle_inferior_event.  Set it
5403 	     so this pending event is considered by
5404 	     do_target_wait.  */
5405 	  tp->resumed = 1;
5406 
5407 	  gdb_assert (!tp->executing);
5408 
5409 	  regcache = get_thread_regcache (tp);
5410 	  tp->suspend.stop_pc = regcache_read_pc (regcache);
5411 
5412 	  if (debug_infrun)
5413 	    {
5414 	      fprintf_unfiltered (gdb_stdlog,
5415 				  "infrun: saved stop_pc=%s for %s "
5416 				  "(currently_stepping=%d)\n",
5417 				  paddress (target_gdbarch (),
5418 					    tp->suspend.stop_pc),
5419 				  target_pid_to_str (tp->ptid),
5420 				  currently_stepping (tp));
5421 	    }
5422 
5423 	  /* This in-line step-over finished; clear this so we won't
5424 	     start a new one.  This is what handle_signal_stop would
5425 	     do, if we returned false.  */
5426 	  tp->stepping_over_breakpoint = 0;
5427 
5428 	  /* Wake up the event loop again.  */
5429 	  mark_async_event_handler (infrun_async_inferior_event_token);
5430 
5431 	  prepare_to_wait (ecs);
5432 	  return 1;
5433 	}
5434     }
5435 
5436   return 0;
5437 }
5438 
5439 /* Come here when the program has stopped with a signal.  */
5440 
5441 static void
5442 handle_signal_stop (struct execution_control_state *ecs)
5443 {
5444   struct frame_info *frame;
5445   struct gdbarch *gdbarch;
5446   int stopped_by_watchpoint;
5447   enum stop_kind stop_soon;
5448   int random_signal;
5449 
5450   gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5451 
5452   ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5453 
5454   /* Do we need to clean up the state of a thread that has
5455      completed a displaced single-step?  (Doing so usually affects
5456      the PC, so do it here, before we set stop_pc.)  */
5457   if (finish_step_over (ecs))
5458     return;
5459 
5460   /* If we either finished a single-step or hit a breakpoint, but
5461      the user wanted this thread to be stopped, pretend we got a
5462      SIG0 (generic unsignaled stop).  */
5463   if (ecs->event_thread->stop_requested
5464       && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5465     ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5466 
5467   ecs->event_thread->suspend.stop_pc
5468     = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5469 
5470   if (debug_infrun)
5471     {
5472       struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5473       struct gdbarch *reg_gdbarch = regcache->arch ();
5474       scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5475 
5476       inferior_ptid = ecs->ptid;
5477 
5478       fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5479 			  paddress (reg_gdbarch,
5480 				    ecs->event_thread->suspend.stop_pc));
5481       if (target_stopped_by_watchpoint ())
5482 	{
5483           CORE_ADDR addr;
5484 
5485 	  fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5486 
5487 	  if (target_stopped_data_address (current_top_target (), &addr))
5488             fprintf_unfiltered (gdb_stdlog,
5489                                 "infrun: stopped data address = %s\n",
5490                                 paddress (reg_gdbarch, addr));
5491           else
5492             fprintf_unfiltered (gdb_stdlog,
5493                                 "infrun: (no data address available)\n");
5494 	}
5495     }
5496 
5497   /* This is originated from start_remote(), start_inferior() and
5498      shared libraries hook functions.  */
5499   stop_soon = get_inferior_stop_soon (ecs);
5500   if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5501     {
5502       context_switch (ecs);
5503       if (debug_infrun)
5504 	fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5505       stop_print_frame = 1;
5506       stop_waiting (ecs);
5507       return;
5508     }
5509 
5510   /* This originates from attach_command().  We need to overwrite
5511      the stop_signal here, because some kernels don't ignore a
5512      SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5513      See more comments in inferior.h.  On the other hand, if we
5514      get a non-SIGSTOP, report it to the user - assume the backend
5515      will handle the SIGSTOP if it should show up later.
5516 
5517      Also consider that the attach is complete when we see a
5518      SIGTRAP.  Some systems (e.g. Windows), and stubs supporting
5519      target extended-remote report it instead of a SIGSTOP
5520      (e.g. gdbserver).  We already rely on SIGTRAP being our
5521      signal, so this is no exception.
5522 
5523      Also consider that the attach is complete when we see a
5524      GDB_SIGNAL_0.  In non-stop mode, GDB will explicitly tell
5525      the target to stop all threads of the inferior, in case the
5526      low level attach operation doesn't stop them implicitly.  If
5527      they weren't stopped implicitly, then the stub will report a
5528      GDB_SIGNAL_0, meaning: stopped for no particular reason
5529      other than GDB's request.  */
5530   if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5531       && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5532 	  || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5533 	  || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5534     {
5535       stop_print_frame = 1;
5536       stop_waiting (ecs);
5537       ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5538       return;
5539     }
5540 
5541   /* See if something interesting happened to the non-current thread.  If
5542      so, then switch to that thread.  */
5543   if (ecs->ptid != inferior_ptid)
5544     {
5545       if (debug_infrun)
5546 	fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5547 
5548       context_switch (ecs);
5549 
5550       if (deprecated_context_hook)
5551 	deprecated_context_hook (ecs->event_thread->global_num);
5552     }
5553 
5554   /* At this point, get hold of the now-current thread's frame.  */
5555   frame = get_current_frame ();
5556   gdbarch = get_frame_arch (frame);
5557 
5558   /* Pull the single step breakpoints out of the target.  */
5559   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5560     {
5561       struct regcache *regcache;
5562       CORE_ADDR pc;
5563 
5564       regcache = get_thread_regcache (ecs->event_thread);
5565       const address_space *aspace = regcache->aspace ();
5566 
5567       pc = regcache_read_pc (regcache);
5568 
5569       /* However, before doing so, if this single-step breakpoint was
5570 	 actually for another thread, set this thread up for moving
5571 	 past it.  */
5572       if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5573 						   aspace, pc))
5574 	{
5575 	  if (single_step_breakpoint_inserted_here_p (aspace, pc))
5576 	    {
5577 	      if (debug_infrun)
5578 		{
5579 		  fprintf_unfiltered (gdb_stdlog,
5580 				      "infrun: [%s] hit another thread's "
5581 				      "single-step breakpoint\n",
5582 				      target_pid_to_str (ecs->ptid));
5583 		}
5584 	      ecs->hit_singlestep_breakpoint = 1;
5585 	    }
5586 	}
5587       else
5588 	{
5589 	  if (debug_infrun)
5590 	    {
5591 	      fprintf_unfiltered (gdb_stdlog,
5592 				  "infrun: [%s] hit its "
5593 				  "single-step breakpoint\n",
5594 				  target_pid_to_str (ecs->ptid));
5595 	    }
5596 	}
5597     }
5598   delete_just_stopped_threads_single_step_breakpoints ();
5599 
5600   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5601       && ecs->event_thread->control.trap_expected
5602       && ecs->event_thread->stepping_over_watchpoint)
5603     stopped_by_watchpoint = 0;
5604   else
5605     stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5606 
5607   /* If necessary, step over this watchpoint.  We'll be back to display
5608      it in a moment.  */
5609   if (stopped_by_watchpoint
5610       && (target_have_steppable_watchpoint
5611 	  || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5612     {
5613       /* At this point, we are stopped at an instruction which has
5614          attempted to write to a piece of memory under control of
5615          a watchpoint.  The instruction hasn't actually executed
5616          yet.  If we were to evaluate the watchpoint expression
5617          now, we would get the old value, and therefore no change
5618          would seem to have occurred.
5619 
5620          In order to make watchpoints work `right', we really need
5621          to complete the memory write, and then evaluate the
5622          watchpoint expression.  We do this by single-stepping the
5623 	 target.
5624 
5625 	 It may not be necessary to disable the watchpoint to step over
5626 	 it.  For example, the PA can (with some kernel cooperation)
5627 	 single step over a watchpoint without disabling the watchpoint.
5628 
5629 	 It is far more common to need to disable a watchpoint to step
5630 	 the inferior over it.  If we have non-steppable watchpoints,
5631 	 we must disable the current watchpoint; it's simplest to
5632 	 disable all watchpoints.
5633 
5634 	 Any breakpoint at PC must also be stepped over -- if there's
5635 	 one, it will have already triggered before the watchpoint
5636 	 triggered, and we either already reported it to the user, or
5637 	 it didn't cause a stop and we called keep_going.  In either
5638 	 case, if there was a breakpoint at PC, we must be trying to
5639 	 step past it.  */
5640       ecs->event_thread->stepping_over_watchpoint = 1;
5641       keep_going (ecs);
5642       return;
5643     }
5644 
5645   ecs->event_thread->stepping_over_breakpoint = 0;
5646   ecs->event_thread->stepping_over_watchpoint = 0;
5647   bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5648   ecs->event_thread->control.stop_step = 0;
5649   stop_print_frame = 1;
5650   stopped_by_random_signal = 0;
5651   bpstat stop_chain = NULL;
5652 
5653   /* Hide inlined functions starting here, unless we just performed stepi or
5654      nexti.  After stepi and nexti, always show the innermost frame (not any
5655      inline function call sites).  */
5656   if (ecs->event_thread->control.step_range_end != 1)
5657     {
5658       const address_space *aspace
5659 	= get_thread_regcache (ecs->event_thread)->aspace ();
5660 
5661       /* skip_inline_frames is expensive, so we avoid it if we can
5662 	 determine that the address is one where functions cannot have
5663 	 been inlined.  This improves performance with inferiors that
5664 	 load a lot of shared libraries, because the solib event
5665 	 breakpoint is defined as the address of a function (i.e. not
5666 	 inline).  Note that we have to check the previous PC as well
5667 	 as the current one to catch cases when we have just
5668 	 single-stepped off a breakpoint prior to reinstating it.
5669 	 Note that we're assuming that the code we single-step to is
5670 	 not inline, but that's not definitive: there's nothing
5671 	 preventing the event breakpoint function from containing
5672 	 inlined code, and the single-step ending up there.  If the
5673 	 user had set a breakpoint on that inlined code, the missing
5674 	 skip_inline_frames call would break things.  Fortunately
5675 	 that's an extremely unlikely scenario.  */
5676       if (!pc_at_non_inline_function (aspace,
5677 				      ecs->event_thread->suspend.stop_pc,
5678 				      &ecs->ws)
5679 	  && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5680 	       && ecs->event_thread->control.trap_expected
5681 	       && pc_at_non_inline_function (aspace,
5682 					     ecs->event_thread->prev_pc,
5683 					     &ecs->ws)))
5684 	{
5685 	  stop_chain = build_bpstat_chain (aspace,
5686 					   ecs->event_thread->suspend.stop_pc,
5687 					   &ecs->ws);
5688 	  skip_inline_frames (ecs->event_thread, stop_chain);
5689 
5690 	  /* Re-fetch current thread's frame in case that invalidated
5691 	     the frame cache.  */
5692 	  frame = get_current_frame ();
5693 	  gdbarch = get_frame_arch (frame);
5694 	}
5695     }
5696 
5697   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5698       && ecs->event_thread->control.trap_expected
5699       && gdbarch_single_step_through_delay_p (gdbarch)
5700       && currently_stepping (ecs->event_thread))
5701     {
5702       /* We're trying to step off a breakpoint.  Turns out that we're
5703 	 also on an instruction that needs to be stepped multiple
5704 	 times before it's been fully executing.  E.g., architectures
5705 	 with a delay slot.  It needs to be stepped twice, once for
5706 	 the instruction and once for the delay slot.  */
5707       int step_through_delay
5708 	= gdbarch_single_step_through_delay (gdbarch, frame);
5709 
5710       if (debug_infrun && step_through_delay)
5711 	fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5712       if (ecs->event_thread->control.step_range_end == 0
5713 	  && step_through_delay)
5714 	{
5715 	  /* The user issued a continue when stopped at a breakpoint.
5716 	     Set up for another trap and get out of here.  */
5717          ecs->event_thread->stepping_over_breakpoint = 1;
5718          keep_going (ecs);
5719          return;
5720 	}
5721       else if (step_through_delay)
5722 	{
5723 	  /* The user issued a step when stopped at a breakpoint.
5724 	     Maybe we should stop, maybe we should not - the delay
5725 	     slot *might* correspond to a line of source.  In any
5726 	     case, don't decide that here, just set
5727 	     ecs->stepping_over_breakpoint, making sure we
5728 	     single-step again before breakpoints are re-inserted.  */
5729 	  ecs->event_thread->stepping_over_breakpoint = 1;
5730 	}
5731     }
5732 
5733   /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5734      handles this event.  */
5735   ecs->event_thread->control.stop_bpstat
5736     = bpstat_stop_status (get_current_regcache ()->aspace (),
5737 			  ecs->event_thread->suspend.stop_pc,
5738 			  ecs->event_thread, &ecs->ws, stop_chain);
5739 
5740   /* Following in case break condition called a
5741      function.  */
5742   stop_print_frame = 1;
5743 
5744   /* This is where we handle "moribund" watchpoints.  Unlike
5745      software breakpoints traps, hardware watchpoint traps are
5746      always distinguishable from random traps.  If no high-level
5747      watchpoint is associated with the reported stop data address
5748      anymore, then the bpstat does not explain the signal ---
5749      simply make sure to ignore it if `stopped_by_watchpoint' is
5750      set.  */
5751 
5752   if (debug_infrun
5753       && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5754       && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5755 				  GDB_SIGNAL_TRAP)
5756       && stopped_by_watchpoint)
5757     fprintf_unfiltered (gdb_stdlog,
5758 			"infrun: no user watchpoint explains "
5759 			"watchpoint SIGTRAP, ignoring\n");
5760 
5761   /* NOTE: cagney/2003-03-29: These checks for a random signal
5762      at one stage in the past included checks for an inferior
5763      function call's call dummy's return breakpoint.  The original
5764      comment, that went with the test, read:
5765 
5766      ``End of a stack dummy.  Some systems (e.g. Sony news) give
5767      another signal besides SIGTRAP, so check here as well as
5768      above.''
5769 
5770      If someone ever tries to get call dummys on a
5771      non-executable stack to work (where the target would stop
5772      with something like a SIGSEGV), then those tests might need
5773      to be re-instated.  Given, however, that the tests were only
5774      enabled when momentary breakpoints were not being used, I
5775      suspect that it won't be the case.
5776 
5777      NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5778      be necessary for call dummies on a non-executable stack on
5779      SPARC.  */
5780 
5781   /* See if the breakpoints module can explain the signal.  */
5782   random_signal
5783     = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5784 			       ecs->event_thread->suspend.stop_signal);
5785 
5786   /* Maybe this was a trap for a software breakpoint that has since
5787      been removed.  */
5788   if (random_signal && target_stopped_by_sw_breakpoint ())
5789     {
5790       if (program_breakpoint_here_p (gdbarch,
5791 				     ecs->event_thread->suspend.stop_pc))
5792 	{
5793 	  struct regcache *regcache;
5794 	  int decr_pc;
5795 
5796 	  /* Re-adjust PC to what the program would see if GDB was not
5797 	     debugging it.  */
5798 	  regcache = get_thread_regcache (ecs->event_thread);
5799 	  decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5800 	  if (decr_pc != 0)
5801 	    {
5802 	      gdb::optional<scoped_restore_tmpl<int>>
5803 		restore_operation_disable;
5804 
5805 	      if (record_full_is_used ())
5806 		restore_operation_disable.emplace
5807 		  (record_full_gdb_operation_disable_set ());
5808 
5809 	      regcache_write_pc (regcache,
5810 				 ecs->event_thread->suspend.stop_pc + decr_pc);
5811 	    }
5812 	}
5813       else
5814 	{
5815 	  /* A delayed software breakpoint event.  Ignore the trap.  */
5816 	  if (debug_infrun)
5817 	    fprintf_unfiltered (gdb_stdlog,
5818 				"infrun: delayed software breakpoint "
5819 				"trap, ignoring\n");
5820 	  random_signal = 0;
5821 	}
5822     }
5823 
5824   /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5825      has since been removed.  */
5826   if (random_signal && target_stopped_by_hw_breakpoint ())
5827     {
5828       /* A delayed hardware breakpoint event.  Ignore the trap.  */
5829       if (debug_infrun)
5830 	fprintf_unfiltered (gdb_stdlog,
5831 			    "infrun: delayed hardware breakpoint/watchpoint "
5832 			    "trap, ignoring\n");
5833       random_signal = 0;
5834     }
5835 
5836   /* If not, perhaps stepping/nexting can.  */
5837   if (random_signal)
5838     random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5839 		      && currently_stepping (ecs->event_thread));
5840 
5841   /* Perhaps the thread hit a single-step breakpoint of _another_
5842      thread.  Single-step breakpoints are transparent to the
5843      breakpoints module.  */
5844   if (random_signal)
5845     random_signal = !ecs->hit_singlestep_breakpoint;
5846 
5847   /* No?  Perhaps we got a moribund watchpoint.  */
5848   if (random_signal)
5849     random_signal = !stopped_by_watchpoint;
5850 
5851   /* Always stop if the user explicitly requested this thread to
5852      remain stopped.  */
5853   if (ecs->event_thread->stop_requested)
5854     {
5855       random_signal = 1;
5856       if (debug_infrun)
5857 	fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5858     }
5859 
5860   /* For the program's own signals, act according to
5861      the signal handling tables.  */
5862 
5863   if (random_signal)
5864     {
5865       /* Signal not for debugging purposes.  */
5866       struct inferior *inf = find_inferior_ptid (ecs->ptid);
5867       enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5868 
5869       if (debug_infrun)
5870 	 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5871 			     gdb_signal_to_symbol_string (stop_signal));
5872 
5873       stopped_by_random_signal = 1;
5874 
5875       /* Always stop on signals if we're either just gaining control
5876 	 of the program, or the user explicitly requested this thread
5877 	 to remain stopped.  */
5878       if (stop_soon != NO_STOP_QUIETLY
5879 	  || ecs->event_thread->stop_requested
5880 	  || (!inf->detaching
5881 	      && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5882 	{
5883 	  stop_waiting (ecs);
5884 	  return;
5885 	}
5886 
5887       /* Notify observers the signal has "handle print" set.  Note we
5888 	 returned early above if stopping; normal_stop handles the
5889 	 printing in that case.  */
5890       if (signal_print[ecs->event_thread->suspend.stop_signal])
5891 	{
5892 	  /* The signal table tells us to print about this signal.  */
5893 	  target_terminal::ours_for_output ();
5894 	  gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
5895 	  target_terminal::inferior ();
5896 	}
5897 
5898       /* Clear the signal if it should not be passed.  */
5899       if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5900 	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5901 
5902       if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
5903 	  && ecs->event_thread->control.trap_expected
5904 	  && ecs->event_thread->control.step_resume_breakpoint == NULL)
5905 	{
5906 	  /* We were just starting a new sequence, attempting to
5907 	     single-step off of a breakpoint and expecting a SIGTRAP.
5908 	     Instead this signal arrives.  This signal will take us out
5909 	     of the stepping range so GDB needs to remember to, when
5910 	     the signal handler returns, resume stepping off that
5911 	     breakpoint.  */
5912 	  /* To simplify things, "continue" is forced to use the same
5913 	     code paths as single-step - set a breakpoint at the
5914 	     signal return address and then, once hit, step off that
5915 	     breakpoint.  */
5916           if (debug_infrun)
5917             fprintf_unfiltered (gdb_stdlog,
5918                                 "infrun: signal arrived while stepping over "
5919                                 "breakpoint\n");
5920 
5921 	  insert_hp_step_resume_breakpoint_at_frame (frame);
5922 	  ecs->event_thread->step_after_step_resume_breakpoint = 1;
5923 	  /* Reset trap_expected to ensure breakpoints are re-inserted.  */
5924 	  ecs->event_thread->control.trap_expected = 0;
5925 
5926 	  /* If we were nexting/stepping some other thread, switch to
5927 	     it, so that we don't continue it, losing control.  */
5928 	  if (!switch_back_to_stepped_thread (ecs))
5929 	    keep_going (ecs);
5930 	  return;
5931 	}
5932 
5933       if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5934 	  && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5935 				       ecs->event_thread)
5936 	      || ecs->event_thread->control.step_range_end == 1)
5937 	  && frame_id_eq (get_stack_frame_id (frame),
5938 			  ecs->event_thread->control.step_stack_frame_id)
5939 	  && ecs->event_thread->control.step_resume_breakpoint == NULL)
5940 	{
5941 	  /* The inferior is about to take a signal that will take it
5942 	     out of the single step range.  Set a breakpoint at the
5943 	     current PC (which is presumably where the signal handler
5944 	     will eventually return) and then allow the inferior to
5945 	     run free.
5946 
5947 	     Note that this is only needed for a signal delivered
5948 	     while in the single-step range.  Nested signals aren't a
5949 	     problem as they eventually all return.  */
5950           if (debug_infrun)
5951             fprintf_unfiltered (gdb_stdlog,
5952                                 "infrun: signal may take us out of "
5953                                 "single-step range\n");
5954 
5955 	  clear_step_over_info ();
5956 	  insert_hp_step_resume_breakpoint_at_frame (frame);
5957 	  ecs->event_thread->step_after_step_resume_breakpoint = 1;
5958 	  /* Reset trap_expected to ensure breakpoints are re-inserted.  */
5959 	  ecs->event_thread->control.trap_expected = 0;
5960 	  keep_going (ecs);
5961 	  return;
5962 	}
5963 
5964       /* Note: step_resume_breakpoint may be non-NULL.  This occures
5965 	 when either there's a nested signal, or when there's a
5966 	 pending signal enabled just as the signal handler returns
5967 	 (leaving the inferior at the step-resume-breakpoint without
5968 	 actually executing it).  Either way continue until the
5969 	 breakpoint is really hit.  */
5970 
5971       if (!switch_back_to_stepped_thread (ecs))
5972 	{
5973 	  if (debug_infrun)
5974 	    fprintf_unfiltered (gdb_stdlog,
5975 				"infrun: random signal, keep going\n");
5976 
5977 	  keep_going (ecs);
5978 	}
5979       return;
5980     }
5981 
5982   process_event_stop_test (ecs);
5983 }
5984 
5985 /* Come here when we've got some debug event / signal we can explain
5986    (IOW, not a random signal), and test whether it should cause a
5987    stop, or whether we should resume the inferior (transparently).
5988    E.g., could be a breakpoint whose condition evaluates false; we
5989    could be still stepping within the line; etc.  */
5990 
5991 static void
5992 process_event_stop_test (struct execution_control_state *ecs)
5993 {
5994   struct symtab_and_line stop_pc_sal;
5995   struct frame_info *frame;
5996   struct gdbarch *gdbarch;
5997   CORE_ADDR jmp_buf_pc;
5998   struct bpstat_what what;
5999 
6000   /* Handle cases caused by hitting a breakpoint.  */
6001 
6002   frame = get_current_frame ();
6003   gdbarch = get_frame_arch (frame);
6004 
6005   what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6006 
6007   if (what.call_dummy)
6008     {
6009       stop_stack_dummy = what.call_dummy;
6010     }
6011 
6012   /* A few breakpoint types have callbacks associated (e.g.,
6013      bp_jit_event).  Run them now.  */
6014   bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6015 
6016   /* If we hit an internal event that triggers symbol changes, the
6017      current frame will be invalidated within bpstat_what (e.g., if we
6018      hit an internal solib event).  Re-fetch it.  */
6019   frame = get_current_frame ();
6020   gdbarch = get_frame_arch (frame);
6021 
6022   switch (what.main_action)
6023     {
6024     case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6025       /* If we hit the breakpoint at longjmp while stepping, we
6026 	 install a momentary breakpoint at the target of the
6027 	 jmp_buf.  */
6028 
6029       if (debug_infrun)
6030 	fprintf_unfiltered (gdb_stdlog,
6031 			    "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6032 
6033       ecs->event_thread->stepping_over_breakpoint = 1;
6034 
6035       if (what.is_longjmp)
6036 	{
6037 	  struct value *arg_value;
6038 
6039 	  /* If we set the longjmp breakpoint via a SystemTap probe,
6040 	     then use it to extract the arguments.  The destination PC
6041 	     is the third argument to the probe.  */
6042 	  arg_value = probe_safe_evaluate_at_pc (frame, 2);
6043 	  if (arg_value)
6044 	    {
6045 	      jmp_buf_pc = value_as_address (arg_value);
6046 	      jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6047 	    }
6048 	  else if (!gdbarch_get_longjmp_target_p (gdbarch)
6049 		   || !gdbarch_get_longjmp_target (gdbarch,
6050 						   frame, &jmp_buf_pc))
6051 	    {
6052 	      if (debug_infrun)
6053 		fprintf_unfiltered (gdb_stdlog,
6054 				    "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6055 				    "(!gdbarch_get_longjmp_target)\n");
6056 	      keep_going (ecs);
6057 	      return;
6058 	    }
6059 
6060 	  /* Insert a breakpoint at resume address.  */
6061 	  insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6062 	}
6063       else
6064 	check_exception_resume (ecs, frame);
6065       keep_going (ecs);
6066       return;
6067 
6068     case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6069       {
6070 	struct frame_info *init_frame;
6071 
6072 	/* There are several cases to consider.
6073 
6074 	   1. The initiating frame no longer exists.  In this case we
6075 	   must stop, because the exception or longjmp has gone too
6076 	   far.
6077 
6078 	   2. The initiating frame exists, and is the same as the
6079 	   current frame.  We stop, because the exception or longjmp
6080 	   has been caught.
6081 
6082 	   3. The initiating frame exists and is different from the
6083 	   current frame.  This means the exception or longjmp has
6084 	   been caught beneath the initiating frame, so keep going.
6085 
6086 	   4. longjmp breakpoint has been placed just to protect
6087 	   against stale dummy frames and user is not interested in
6088 	   stopping around longjmps.  */
6089 
6090 	if (debug_infrun)
6091 	  fprintf_unfiltered (gdb_stdlog,
6092 			      "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6093 
6094 	gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6095 		    != NULL);
6096 	delete_exception_resume_breakpoint (ecs->event_thread);
6097 
6098 	if (what.is_longjmp)
6099 	  {
6100 	    check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6101 
6102 	    if (!frame_id_p (ecs->event_thread->initiating_frame))
6103 	      {
6104 		/* Case 4.  */
6105 		keep_going (ecs);
6106 		return;
6107 	      }
6108 	  }
6109 
6110 	init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6111 
6112 	if (init_frame)
6113 	  {
6114 	    struct frame_id current_id
6115 	      = get_frame_id (get_current_frame ());
6116 	    if (frame_id_eq (current_id,
6117 			     ecs->event_thread->initiating_frame))
6118 	      {
6119 		/* Case 2.  Fall through.  */
6120 	      }
6121 	    else
6122 	      {
6123 		/* Case 3.  */
6124 		keep_going (ecs);
6125 		return;
6126 	      }
6127 	  }
6128 
6129 	/* For Cases 1 and 2, remove the step-resume breakpoint, if it
6130 	   exists.  */
6131 	delete_step_resume_breakpoint (ecs->event_thread);
6132 
6133 	end_stepping_range (ecs);
6134       }
6135       return;
6136 
6137     case BPSTAT_WHAT_SINGLE:
6138       if (debug_infrun)
6139 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6140       ecs->event_thread->stepping_over_breakpoint = 1;
6141       /* Still need to check other stuff, at least the case where we
6142 	 are stepping and step out of the right range.  */
6143       break;
6144 
6145     case BPSTAT_WHAT_STEP_RESUME:
6146       if (debug_infrun)
6147 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6148 
6149       delete_step_resume_breakpoint (ecs->event_thread);
6150       if (ecs->event_thread->control.proceed_to_finish
6151 	  && execution_direction == EXEC_REVERSE)
6152 	{
6153 	  struct thread_info *tp = ecs->event_thread;
6154 
6155 	  /* We are finishing a function in reverse, and just hit the
6156 	     step-resume breakpoint at the start address of the
6157 	     function, and we're almost there -- just need to back up
6158 	     by one more single-step, which should take us back to the
6159 	     function call.  */
6160 	  tp->control.step_range_start = tp->control.step_range_end = 1;
6161 	  keep_going (ecs);
6162 	  return;
6163 	}
6164       fill_in_stop_func (gdbarch, ecs);
6165       if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6166 	  && execution_direction == EXEC_REVERSE)
6167 	{
6168 	  /* We are stepping over a function call in reverse, and just
6169 	     hit the step-resume breakpoint at the start address of
6170 	     the function.  Go back to single-stepping, which should
6171 	     take us back to the function call.  */
6172 	  ecs->event_thread->stepping_over_breakpoint = 1;
6173 	  keep_going (ecs);
6174 	  return;
6175 	}
6176       break;
6177 
6178     case BPSTAT_WHAT_STOP_NOISY:
6179       if (debug_infrun)
6180 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6181       stop_print_frame = 1;
6182 
6183       /* Assume the thread stopped for a breapoint.  We'll still check
6184 	 whether a/the breakpoint is there when the thread is next
6185 	 resumed.  */
6186       ecs->event_thread->stepping_over_breakpoint = 1;
6187 
6188       stop_waiting (ecs);
6189       return;
6190 
6191     case BPSTAT_WHAT_STOP_SILENT:
6192       if (debug_infrun)
6193 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6194       stop_print_frame = 0;
6195 
6196       /* Assume the thread stopped for a breapoint.  We'll still check
6197 	 whether a/the breakpoint is there when the thread is next
6198 	 resumed.  */
6199       ecs->event_thread->stepping_over_breakpoint = 1;
6200       stop_waiting (ecs);
6201       return;
6202 
6203     case BPSTAT_WHAT_HP_STEP_RESUME:
6204       if (debug_infrun)
6205 	fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6206 
6207       delete_step_resume_breakpoint (ecs->event_thread);
6208       if (ecs->event_thread->step_after_step_resume_breakpoint)
6209 	{
6210 	  /* Back when the step-resume breakpoint was inserted, we
6211 	     were trying to single-step off a breakpoint.  Go back to
6212 	     doing that.  */
6213 	  ecs->event_thread->step_after_step_resume_breakpoint = 0;
6214 	  ecs->event_thread->stepping_over_breakpoint = 1;
6215 	  keep_going (ecs);
6216 	  return;
6217 	}
6218       break;
6219 
6220     case BPSTAT_WHAT_KEEP_CHECKING:
6221       break;
6222     }
6223 
6224   /* If we stepped a permanent breakpoint and we had a high priority
6225      step-resume breakpoint for the address we stepped, but we didn't
6226      hit it, then we must have stepped into the signal handler.  The
6227      step-resume was only necessary to catch the case of _not_
6228      stepping into the handler, so delete it, and fall through to
6229      checking whether the step finished.  */
6230   if (ecs->event_thread->stepped_breakpoint)
6231     {
6232       struct breakpoint *sr_bp
6233 	= ecs->event_thread->control.step_resume_breakpoint;
6234 
6235       if (sr_bp != NULL
6236 	  && sr_bp->loc->permanent
6237 	  && sr_bp->type == bp_hp_step_resume
6238 	  && sr_bp->loc->address == ecs->event_thread->prev_pc)
6239 	{
6240 	  if (debug_infrun)
6241 	    fprintf_unfiltered (gdb_stdlog,
6242 				"infrun: stepped permanent breakpoint, stopped in "
6243 				"handler\n");
6244 	  delete_step_resume_breakpoint (ecs->event_thread);
6245 	  ecs->event_thread->step_after_step_resume_breakpoint = 0;
6246 	}
6247     }
6248 
6249   /* We come here if we hit a breakpoint but should not stop for it.
6250      Possibly we also were stepping and should stop for that.  So fall
6251      through and test for stepping.  But, if not stepping, do not
6252      stop.  */
6253 
6254   /* In all-stop mode, if we're currently stepping but have stopped in
6255      some other thread, we need to switch back to the stepped thread.  */
6256   if (switch_back_to_stepped_thread (ecs))
6257     return;
6258 
6259   if (ecs->event_thread->control.step_resume_breakpoint)
6260     {
6261       if (debug_infrun)
6262 	 fprintf_unfiltered (gdb_stdlog,
6263 			     "infrun: step-resume breakpoint is inserted\n");
6264 
6265       /* Having a step-resume breakpoint overrides anything
6266          else having to do with stepping commands until
6267          that breakpoint is reached.  */
6268       keep_going (ecs);
6269       return;
6270     }
6271 
6272   if (ecs->event_thread->control.step_range_end == 0)
6273     {
6274       if (debug_infrun)
6275 	 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6276       /* Likewise if we aren't even stepping.  */
6277       keep_going (ecs);
6278       return;
6279     }
6280 
6281   /* Re-fetch current thread's frame in case the code above caused
6282      the frame cache to be re-initialized, making our FRAME variable
6283      a dangling pointer.  */
6284   frame = get_current_frame ();
6285   gdbarch = get_frame_arch (frame);
6286   fill_in_stop_func (gdbarch, ecs);
6287 
6288   /* If stepping through a line, keep going if still within it.
6289 
6290      Note that step_range_end is the address of the first instruction
6291      beyond the step range, and NOT the address of the last instruction
6292      within it!
6293 
6294      Note also that during reverse execution, we may be stepping
6295      through a function epilogue and therefore must detect when
6296      the current-frame changes in the middle of a line.  */
6297 
6298   if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6299 			       ecs->event_thread)
6300       && (execution_direction != EXEC_REVERSE
6301 	  || frame_id_eq (get_frame_id (frame),
6302 			  ecs->event_thread->control.step_frame_id)))
6303     {
6304       if (debug_infrun)
6305 	fprintf_unfiltered
6306 	  (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6307 	   paddress (gdbarch, ecs->event_thread->control.step_range_start),
6308 	   paddress (gdbarch, ecs->event_thread->control.step_range_end));
6309 
6310       /* Tentatively re-enable range stepping; `resume' disables it if
6311 	 necessary (e.g., if we're stepping over a breakpoint or we
6312 	 have software watchpoints).  */
6313       ecs->event_thread->control.may_range_step = 1;
6314 
6315       /* When stepping backward, stop at beginning of line range
6316 	 (unless it's the function entry point, in which case
6317 	 keep going back to the call point).  */
6318       CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6319       if (stop_pc == ecs->event_thread->control.step_range_start
6320 	  && stop_pc != ecs->stop_func_start
6321 	  && execution_direction == EXEC_REVERSE)
6322 	end_stepping_range (ecs);
6323       else
6324 	keep_going (ecs);
6325 
6326       return;
6327     }
6328 
6329   /* We stepped out of the stepping range.  */
6330 
6331   /* If we are stepping at the source level and entered the runtime
6332      loader dynamic symbol resolution code...
6333 
6334      EXEC_FORWARD: we keep on single stepping until we exit the run
6335      time loader code and reach the callee's address.
6336 
6337      EXEC_REVERSE: we've already executed the callee (backward), and
6338      the runtime loader code is handled just like any other
6339      undebuggable function call.  Now we need only keep stepping
6340      backward through the trampoline code, and that's handled further
6341      down, so there is nothing for us to do here.  */
6342 
6343   if (execution_direction != EXEC_REVERSE
6344       && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6345       && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6346     {
6347       CORE_ADDR pc_after_resolver =
6348 	gdbarch_skip_solib_resolver (gdbarch,
6349 				     ecs->event_thread->suspend.stop_pc);
6350 
6351       if (debug_infrun)
6352 	 fprintf_unfiltered (gdb_stdlog,
6353 			     "infrun: stepped into dynsym resolve code\n");
6354 
6355       if (pc_after_resolver)
6356 	{
6357 	  /* Set up a step-resume breakpoint at the address
6358 	     indicated by SKIP_SOLIB_RESOLVER.  */
6359 	  symtab_and_line sr_sal;
6360 	  sr_sal.pc = pc_after_resolver;
6361 	  sr_sal.pspace = get_frame_program_space (frame);
6362 
6363 	  insert_step_resume_breakpoint_at_sal (gdbarch,
6364 						sr_sal, null_frame_id);
6365 	}
6366 
6367       keep_going (ecs);
6368       return;
6369     }
6370 
6371   /* Step through an indirect branch thunk.  */
6372   if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6373       && gdbarch_in_indirect_branch_thunk (gdbarch,
6374 					   ecs->event_thread->suspend.stop_pc))
6375     {
6376       if (debug_infrun)
6377 	 fprintf_unfiltered (gdb_stdlog,
6378 			     "infrun: stepped into indirect branch thunk\n");
6379       keep_going (ecs);
6380       return;
6381     }
6382 
6383   if (ecs->event_thread->control.step_range_end != 1
6384       && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6385 	  || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6386       && get_frame_type (frame) == SIGTRAMP_FRAME)
6387     {
6388       if (debug_infrun)
6389 	 fprintf_unfiltered (gdb_stdlog,
6390 			     "infrun: stepped into signal trampoline\n");
6391       /* The inferior, while doing a "step" or "next", has ended up in
6392          a signal trampoline (either by a signal being delivered or by
6393          the signal handler returning).  Just single-step until the
6394          inferior leaves the trampoline (either by calling the handler
6395          or returning).  */
6396       keep_going (ecs);
6397       return;
6398     }
6399 
6400   /* If we're in the return path from a shared library trampoline,
6401      we want to proceed through the trampoline when stepping.  */
6402   /* macro/2012-04-25: This needs to come before the subroutine
6403      call check below as on some targets return trampolines look
6404      like subroutine calls (MIPS16 return thunks).  */
6405   if (gdbarch_in_solib_return_trampoline (gdbarch,
6406 					  ecs->event_thread->suspend.stop_pc,
6407 					  ecs->stop_func_name)
6408       && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6409     {
6410       /* Determine where this trampoline returns.  */
6411       CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6412       CORE_ADDR real_stop_pc
6413 	= gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6414 
6415       if (debug_infrun)
6416 	 fprintf_unfiltered (gdb_stdlog,
6417 			     "infrun: stepped into solib return tramp\n");
6418 
6419       /* Only proceed through if we know where it's going.  */
6420       if (real_stop_pc)
6421 	{
6422 	  /* And put the step-breakpoint there and go until there.  */
6423 	  symtab_and_line sr_sal;
6424 	  sr_sal.pc = real_stop_pc;
6425 	  sr_sal.section = find_pc_overlay (sr_sal.pc);
6426 	  sr_sal.pspace = get_frame_program_space (frame);
6427 
6428 	  /* Do not specify what the fp should be when we stop since
6429 	     on some machines the prologue is where the new fp value
6430 	     is established.  */
6431 	  insert_step_resume_breakpoint_at_sal (gdbarch,
6432 						sr_sal, null_frame_id);
6433 
6434 	  /* Restart without fiddling with the step ranges or
6435 	     other state.  */
6436 	  keep_going (ecs);
6437 	  return;
6438 	}
6439     }
6440 
6441   /* Check for subroutine calls.  The check for the current frame
6442      equalling the step ID is not necessary - the check of the
6443      previous frame's ID is sufficient - but it is a common case and
6444      cheaper than checking the previous frame's ID.
6445 
6446      NOTE: frame_id_eq will never report two invalid frame IDs as
6447      being equal, so to get into this block, both the current and
6448      previous frame must have valid frame IDs.  */
6449   /* The outer_frame_id check is a heuristic to detect stepping
6450      through startup code.  If we step over an instruction which
6451      sets the stack pointer from an invalid value to a valid value,
6452      we may detect that as a subroutine call from the mythical
6453      "outermost" function.  This could be fixed by marking
6454      outermost frames as !stack_p,code_p,special_p.  Then the
6455      initial outermost frame, before sp was valid, would
6456      have code_addr == &_start.  See the comment in frame_id_eq
6457      for more.  */
6458   if (!frame_id_eq (get_stack_frame_id (frame),
6459 		    ecs->event_thread->control.step_stack_frame_id)
6460       && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6461 		       ecs->event_thread->control.step_stack_frame_id)
6462 	  && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6463 			    outer_frame_id)
6464 	      || (ecs->event_thread->control.step_start_function
6465 		  != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6466     {
6467       CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6468       CORE_ADDR real_stop_pc;
6469 
6470       if (debug_infrun)
6471 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6472 
6473       if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6474 	{
6475 	  /* I presume that step_over_calls is only 0 when we're
6476 	     supposed to be stepping at the assembly language level
6477 	     ("stepi").  Just stop.  */
6478 	  /* And this works the same backward as frontward.  MVS */
6479 	  end_stepping_range (ecs);
6480 	  return;
6481 	}
6482 
6483       /* Reverse stepping through solib trampolines.  */
6484 
6485       if (execution_direction == EXEC_REVERSE
6486 	  && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6487 	  && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6488 	      || (ecs->stop_func_start == 0
6489 		  && in_solib_dynsym_resolve_code (stop_pc))))
6490 	{
6491 	  /* Any solib trampoline code can be handled in reverse
6492 	     by simply continuing to single-step.  We have already
6493 	     executed the solib function (backwards), and a few
6494 	     steps will take us back through the trampoline to the
6495 	     caller.  */
6496 	  keep_going (ecs);
6497 	  return;
6498 	}
6499 
6500       if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6501 	{
6502 	  /* We're doing a "next".
6503 
6504 	     Normal (forward) execution: set a breakpoint at the
6505 	     callee's return address (the address at which the caller
6506 	     will resume).
6507 
6508 	     Reverse (backward) execution.  set the step-resume
6509 	     breakpoint at the start of the function that we just
6510 	     stepped into (backwards), and continue to there.  When we
6511 	     get there, we'll need to single-step back to the caller.  */
6512 
6513 	  if (execution_direction == EXEC_REVERSE)
6514 	    {
6515 	      /* If we're already at the start of the function, we've either
6516 		 just stepped backward into a single instruction function,
6517 		 or stepped back out of a signal handler to the first instruction
6518 		 of the function.  Just keep going, which will single-step back
6519 		 to the caller.  */
6520 	      if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6521 		{
6522 		  /* Normal function call return (static or dynamic).  */
6523 		  symtab_and_line sr_sal;
6524 		  sr_sal.pc = ecs->stop_func_start;
6525 		  sr_sal.pspace = get_frame_program_space (frame);
6526 		  insert_step_resume_breakpoint_at_sal (gdbarch,
6527 							sr_sal, null_frame_id);
6528 		}
6529 	    }
6530 	  else
6531 	    insert_step_resume_breakpoint_at_caller (frame);
6532 
6533 	  keep_going (ecs);
6534 	  return;
6535 	}
6536 
6537       /* If we are in a function call trampoline (a stub between the
6538          calling routine and the real function), locate the real
6539          function.  That's what tells us (a) whether we want to step
6540          into it at all, and (b) what prologue we want to run to the
6541          end of, if we do step into it.  */
6542       real_stop_pc = skip_language_trampoline (frame, stop_pc);
6543       if (real_stop_pc == 0)
6544 	real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6545       if (real_stop_pc != 0)
6546 	ecs->stop_func_start = real_stop_pc;
6547 
6548       if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6549 	{
6550 	  symtab_and_line sr_sal;
6551 	  sr_sal.pc = ecs->stop_func_start;
6552 	  sr_sal.pspace = get_frame_program_space (frame);
6553 
6554 	  insert_step_resume_breakpoint_at_sal (gdbarch,
6555 						sr_sal, null_frame_id);
6556 	  keep_going (ecs);
6557 	  return;
6558 	}
6559 
6560       /* If we have line number information for the function we are
6561 	 thinking of stepping into and the function isn't on the skip
6562 	 list, step into it.
6563 
6564          If there are several symtabs at that PC (e.g. with include
6565          files), just want to know whether *any* of them have line
6566          numbers.  find_pc_line handles this.  */
6567       {
6568 	struct symtab_and_line tmp_sal;
6569 
6570 	tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6571 	if (tmp_sal.line != 0
6572 	    && !function_name_is_marked_for_skip (ecs->stop_func_name,
6573 						  tmp_sal))
6574 	  {
6575 	    if (execution_direction == EXEC_REVERSE)
6576 	      handle_step_into_function_backward (gdbarch, ecs);
6577 	    else
6578 	      handle_step_into_function (gdbarch, ecs);
6579 	    return;
6580 	  }
6581       }
6582 
6583       /* If we have no line number and the step-stop-if-no-debug is
6584          set, we stop the step so that the user has a chance to switch
6585          in assembly mode.  */
6586       if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6587 	  && step_stop_if_no_debug)
6588 	{
6589 	  end_stepping_range (ecs);
6590 	  return;
6591 	}
6592 
6593       if (execution_direction == EXEC_REVERSE)
6594 	{
6595 	  /* If we're already at the start of the function, we've either just
6596 	     stepped backward into a single instruction function without line
6597 	     number info, or stepped back out of a signal handler to the first
6598 	     instruction of the function without line number info.  Just keep
6599 	     going, which will single-step back to the caller.  */
6600 	  if (ecs->stop_func_start != stop_pc)
6601 	    {
6602 	      /* Set a breakpoint at callee's start address.
6603 		 From there we can step once and be back in the caller.  */
6604 	      symtab_and_line sr_sal;
6605 	      sr_sal.pc = ecs->stop_func_start;
6606 	      sr_sal.pspace = get_frame_program_space (frame);
6607 	      insert_step_resume_breakpoint_at_sal (gdbarch,
6608 						    sr_sal, null_frame_id);
6609 	    }
6610 	}
6611       else
6612 	/* Set a breakpoint at callee's return address (the address
6613 	   at which the caller will resume).  */
6614 	insert_step_resume_breakpoint_at_caller (frame);
6615 
6616       keep_going (ecs);
6617       return;
6618     }
6619 
6620   /* Reverse stepping through solib trampolines.  */
6621 
6622   if (execution_direction == EXEC_REVERSE
6623       && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6624     {
6625       CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6626 
6627       if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6628 	  || (ecs->stop_func_start == 0
6629 	      && in_solib_dynsym_resolve_code (stop_pc)))
6630 	{
6631 	  /* Any solib trampoline code can be handled in reverse
6632 	     by simply continuing to single-step.  We have already
6633 	     executed the solib function (backwards), and a few
6634 	     steps will take us back through the trampoline to the
6635 	     caller.  */
6636 	  keep_going (ecs);
6637 	  return;
6638 	}
6639       else if (in_solib_dynsym_resolve_code (stop_pc))
6640 	{
6641 	  /* Stepped backward into the solib dynsym resolver.
6642 	     Set a breakpoint at its start and continue, then
6643 	     one more step will take us out.  */
6644 	  symtab_and_line sr_sal;
6645 	  sr_sal.pc = ecs->stop_func_start;
6646 	  sr_sal.pspace = get_frame_program_space (frame);
6647 	  insert_step_resume_breakpoint_at_sal (gdbarch,
6648 						sr_sal, null_frame_id);
6649 	  keep_going (ecs);
6650 	  return;
6651 	}
6652     }
6653 
6654   stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6655 
6656   /* NOTE: tausq/2004-05-24: This if block used to be done before all
6657      the trampoline processing logic, however, there are some trampolines
6658      that have no names, so we should do trampoline handling first.  */
6659   if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6660       && ecs->stop_func_name == NULL
6661       && stop_pc_sal.line == 0)
6662     {
6663       if (debug_infrun)
6664 	 fprintf_unfiltered (gdb_stdlog,
6665 			     "infrun: stepped into undebuggable function\n");
6666 
6667       /* The inferior just stepped into, or returned to, an
6668          undebuggable function (where there is no debugging information
6669          and no line number corresponding to the address where the
6670          inferior stopped).  Since we want to skip this kind of code,
6671          we keep going until the inferior returns from this
6672          function - unless the user has asked us not to (via
6673          set step-mode) or we no longer know how to get back
6674          to the call site.  */
6675       if (step_stop_if_no_debug
6676 	  || !frame_id_p (frame_unwind_caller_id (frame)))
6677 	{
6678 	  /* If we have no line number and the step-stop-if-no-debug
6679 	     is set, we stop the step so that the user has a chance to
6680 	     switch in assembly mode.  */
6681 	  end_stepping_range (ecs);
6682 	  return;
6683 	}
6684       else
6685 	{
6686 	  /* Set a breakpoint at callee's return address (the address
6687 	     at which the caller will resume).  */
6688 	  insert_step_resume_breakpoint_at_caller (frame);
6689 	  keep_going (ecs);
6690 	  return;
6691 	}
6692     }
6693 
6694   if (ecs->event_thread->control.step_range_end == 1)
6695     {
6696       /* It is stepi or nexti.  We always want to stop stepping after
6697          one instruction.  */
6698       if (debug_infrun)
6699 	 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6700       end_stepping_range (ecs);
6701       return;
6702     }
6703 
6704   if (stop_pc_sal.line == 0)
6705     {
6706       /* We have no line number information.  That means to stop
6707          stepping (does this always happen right after one instruction,
6708          when we do "s" in a function with no line numbers,
6709          or can this happen as a result of a return or longjmp?).  */
6710       if (debug_infrun)
6711 	 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6712       end_stepping_range (ecs);
6713       return;
6714     }
6715 
6716   /* Look for "calls" to inlined functions, part one.  If the inline
6717      frame machinery detected some skipped call sites, we have entered
6718      a new inline function.  */
6719 
6720   if (frame_id_eq (get_frame_id (get_current_frame ()),
6721 		   ecs->event_thread->control.step_frame_id)
6722       && inline_skipped_frames (ecs->event_thread))
6723     {
6724       if (debug_infrun)
6725 	fprintf_unfiltered (gdb_stdlog,
6726 			    "infrun: stepped into inlined function\n");
6727 
6728       symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6729 
6730       if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6731 	{
6732 	  /* For "step", we're going to stop.  But if the call site
6733 	     for this inlined function is on the same source line as
6734 	     we were previously stepping, go down into the function
6735 	     first.  Otherwise stop at the call site.  */
6736 
6737 	  if (call_sal.line == ecs->event_thread->current_line
6738 	      && call_sal.symtab == ecs->event_thread->current_symtab)
6739 	    step_into_inline_frame (ecs->event_thread);
6740 
6741 	  end_stepping_range (ecs);
6742 	  return;
6743 	}
6744       else
6745 	{
6746 	  /* For "next", we should stop at the call site if it is on a
6747 	     different source line.  Otherwise continue through the
6748 	     inlined function.  */
6749 	  if (call_sal.line == ecs->event_thread->current_line
6750 	      && call_sal.symtab == ecs->event_thread->current_symtab)
6751 	    keep_going (ecs);
6752 	  else
6753 	    end_stepping_range (ecs);
6754 	  return;
6755 	}
6756     }
6757 
6758   /* Look for "calls" to inlined functions, part two.  If we are still
6759      in the same real function we were stepping through, but we have
6760      to go further up to find the exact frame ID, we are stepping
6761      through a more inlined call beyond its call site.  */
6762 
6763   if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6764       && !frame_id_eq (get_frame_id (get_current_frame ()),
6765 		       ecs->event_thread->control.step_frame_id)
6766       && stepped_in_from (get_current_frame (),
6767 			  ecs->event_thread->control.step_frame_id))
6768     {
6769       if (debug_infrun)
6770 	fprintf_unfiltered (gdb_stdlog,
6771 			    "infrun: stepping through inlined function\n");
6772 
6773       if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6774 	keep_going (ecs);
6775       else
6776 	end_stepping_range (ecs);
6777       return;
6778     }
6779 
6780   if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
6781       && (ecs->event_thread->current_line != stop_pc_sal.line
6782  	  || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6783     {
6784       /* We are at the start of a different line.  So stop.  Note that
6785          we don't stop if we step into the middle of a different line.
6786          That is said to make things like for (;;) statements work
6787          better.  */
6788       if (debug_infrun)
6789 	 fprintf_unfiltered (gdb_stdlog,
6790 			     "infrun: stepped to a different line\n");
6791       end_stepping_range (ecs);
6792       return;
6793     }
6794 
6795   /* We aren't done stepping.
6796 
6797      Optimize by setting the stepping range to the line.
6798      (We might not be in the original line, but if we entered a
6799      new line in mid-statement, we continue stepping.  This makes
6800      things like for(;;) statements work better.)  */
6801 
6802   ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6803   ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6804   ecs->event_thread->control.may_range_step = 1;
6805   set_step_info (frame, stop_pc_sal);
6806 
6807   if (debug_infrun)
6808      fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6809   keep_going (ecs);
6810 }
6811 
6812 /* In all-stop mode, if we're currently stepping but have stopped in
6813    some other thread, we may need to switch back to the stepped
6814    thread.  Returns true we set the inferior running, false if we left
6815    it stopped (and the event needs further processing).  */
6816 
6817 static int
6818 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6819 {
6820   if (!target_is_non_stop_p ())
6821     {
6822       struct thread_info *stepping_thread;
6823 
6824       /* If any thread is blocked on some internal breakpoint, and we
6825 	 simply need to step over that breakpoint to get it going
6826 	 again, do that first.  */
6827 
6828       /* However, if we see an event for the stepping thread, then we
6829 	 know all other threads have been moved past their breakpoints
6830 	 already.  Let the caller check whether the step is finished,
6831 	 etc., before deciding to move it past a breakpoint.  */
6832       if (ecs->event_thread->control.step_range_end != 0)
6833 	return 0;
6834 
6835       /* Check if the current thread is blocked on an incomplete
6836 	 step-over, interrupted by a random signal.  */
6837       if (ecs->event_thread->control.trap_expected
6838 	  && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6839 	{
6840 	  if (debug_infrun)
6841 	    {
6842 	      fprintf_unfiltered (gdb_stdlog,
6843 				  "infrun: need to finish step-over of [%s]\n",
6844 				  target_pid_to_str (ecs->event_thread->ptid));
6845 	    }
6846 	  keep_going (ecs);
6847 	  return 1;
6848 	}
6849 
6850       /* Check if the current thread is blocked by a single-step
6851 	 breakpoint of another thread.  */
6852       if (ecs->hit_singlestep_breakpoint)
6853        {
6854 	 if (debug_infrun)
6855 	   {
6856 	     fprintf_unfiltered (gdb_stdlog,
6857 				 "infrun: need to step [%s] over single-step "
6858 				 "breakpoint\n",
6859 				 target_pid_to_str (ecs->ptid));
6860 	   }
6861 	 keep_going (ecs);
6862 	 return 1;
6863        }
6864 
6865       /* If this thread needs yet another step-over (e.g., stepping
6866 	 through a delay slot), do it first before moving on to
6867 	 another thread.  */
6868       if (thread_still_needs_step_over (ecs->event_thread))
6869 	{
6870 	  if (debug_infrun)
6871 	    {
6872 	      fprintf_unfiltered (gdb_stdlog,
6873 				  "infrun: thread [%s] still needs step-over\n",
6874 				  target_pid_to_str (ecs->event_thread->ptid));
6875 	    }
6876 	  keep_going (ecs);
6877 	  return 1;
6878 	}
6879 
6880       /* If scheduler locking applies even if not stepping, there's no
6881 	 need to walk over threads.  Above we've checked whether the
6882 	 current thread is stepping.  If some other thread not the
6883 	 event thread is stepping, then it must be that scheduler
6884 	 locking is not in effect.  */
6885       if (schedlock_applies (ecs->event_thread))
6886 	return 0;
6887 
6888       /* Otherwise, we no longer expect a trap in the current thread.
6889 	 Clear the trap_expected flag before switching back -- this is
6890 	 what keep_going does as well, if we call it.  */
6891       ecs->event_thread->control.trap_expected = 0;
6892 
6893       /* Likewise, clear the signal if it should not be passed.  */
6894       if (!signal_program[ecs->event_thread->suspend.stop_signal])
6895 	ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6896 
6897       /* Do all pending step-overs before actually proceeding with
6898 	 step/next/etc.  */
6899       if (start_step_over ())
6900 	{
6901 	  prepare_to_wait (ecs);
6902 	  return 1;
6903 	}
6904 
6905       /* Look for the stepping/nexting thread.  */
6906       stepping_thread = NULL;
6907 
6908       for (thread_info *tp : all_non_exited_threads ())
6909         {
6910 	  /* Ignore threads of processes the caller is not
6911 	     resuming.  */
6912 	  if (!sched_multi
6913 	      && tp->ptid.pid () != ecs->ptid.pid ())
6914 	    continue;
6915 
6916 	  /* When stepping over a breakpoint, we lock all threads
6917 	     except the one that needs to move past the breakpoint.
6918 	     If a non-event thread has this set, the "incomplete
6919 	     step-over" check above should have caught it earlier.  */
6920 	  if (tp->control.trap_expected)
6921 	    {
6922 	      internal_error (__FILE__, __LINE__,
6923 			      "[%s] has inconsistent state: "
6924 			      "trap_expected=%d\n",
6925 			      target_pid_to_str (tp->ptid),
6926 			      tp->control.trap_expected);
6927 	    }
6928 
6929 	  /* Did we find the stepping thread?  */
6930 	  if (tp->control.step_range_end)
6931 	    {
6932 	      /* Yep.  There should only one though.  */
6933 	      gdb_assert (stepping_thread == NULL);
6934 
6935 	      /* The event thread is handled at the top, before we
6936 		 enter this loop.  */
6937 	      gdb_assert (tp != ecs->event_thread);
6938 
6939 	      /* If some thread other than the event thread is
6940 		 stepping, then scheduler locking can't be in effect,
6941 		 otherwise we wouldn't have resumed the current event
6942 		 thread in the first place.  */
6943 	      gdb_assert (!schedlock_applies (tp));
6944 
6945 	      stepping_thread = tp;
6946 	    }
6947 	}
6948 
6949       if (stepping_thread != NULL)
6950 	{
6951 	  if (debug_infrun)
6952 	    fprintf_unfiltered (gdb_stdlog,
6953 				"infrun: switching back to stepped thread\n");
6954 
6955 	  if (keep_going_stepped_thread (stepping_thread))
6956 	    {
6957 	      prepare_to_wait (ecs);
6958 	      return 1;
6959 	    }
6960 	}
6961     }
6962 
6963   return 0;
6964 }
6965 
6966 /* Set a previously stepped thread back to stepping.  Returns true on
6967    success, false if the resume is not possible (e.g., the thread
6968    vanished).  */
6969 
6970 static int
6971 keep_going_stepped_thread (struct thread_info *tp)
6972 {
6973   struct frame_info *frame;
6974   struct execution_control_state ecss;
6975   struct execution_control_state *ecs = &ecss;
6976 
6977   /* If the stepping thread exited, then don't try to switch back and
6978      resume it, which could fail in several different ways depending
6979      on the target.  Instead, just keep going.
6980 
6981      We can find a stepping dead thread in the thread list in two
6982      cases:
6983 
6984      - The target supports thread exit events, and when the target
6985        tries to delete the thread from the thread list, inferior_ptid
6986        pointed at the exiting thread.  In such case, calling
6987        delete_thread does not really remove the thread from the list;
6988        instead, the thread is left listed, with 'exited' state.
6989 
6990      - The target's debug interface does not support thread exit
6991        events, and so we have no idea whatsoever if the previously
6992        stepping thread is still alive.  For that reason, we need to
6993        synchronously query the target now.  */
6994 
6995   if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
6996     {
6997       if (debug_infrun)
6998 	fprintf_unfiltered (gdb_stdlog,
6999 			    "infrun: not resuming previously  "
7000 			    "stepped thread, it has vanished\n");
7001 
7002       delete_thread (tp);
7003       return 0;
7004     }
7005 
7006   if (debug_infrun)
7007     fprintf_unfiltered (gdb_stdlog,
7008 			"infrun: resuming previously stepped thread\n");
7009 
7010   reset_ecs (ecs, tp);
7011   switch_to_thread (tp);
7012 
7013   tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7014   frame = get_current_frame ();
7015 
7016   /* If the PC of the thread we were trying to single-step has
7017      changed, then that thread has trapped or been signaled, but the
7018      event has not been reported to GDB yet.  Re-poll the target
7019      looking for this particular thread's event (i.e. temporarily
7020      enable schedlock) by:
7021 
7022      - setting a break at the current PC
7023      - resuming that particular thread, only (by setting trap
7024      expected)
7025 
7026      This prevents us continuously moving the single-step breakpoint
7027      forward, one instruction at a time, overstepping.  */
7028 
7029   if (tp->suspend.stop_pc != tp->prev_pc)
7030     {
7031       ptid_t resume_ptid;
7032 
7033       if (debug_infrun)
7034 	fprintf_unfiltered (gdb_stdlog,
7035 			    "infrun: expected thread advanced also (%s -> %s)\n",
7036 			    paddress (target_gdbarch (), tp->prev_pc),
7037 			    paddress (target_gdbarch (), tp->suspend.stop_pc));
7038 
7039       /* Clear the info of the previous step-over, as it's no longer
7040 	 valid (if the thread was trying to step over a breakpoint, it
7041 	 has already succeeded).  It's what keep_going would do too,
7042 	 if we called it.  Do this before trying to insert the sss
7043 	 breakpoint, otherwise if we were previously trying to step
7044 	 over this exact address in another thread, the breakpoint is
7045 	 skipped.  */
7046       clear_step_over_info ();
7047       tp->control.trap_expected = 0;
7048 
7049       insert_single_step_breakpoint (get_frame_arch (frame),
7050 				     get_frame_address_space (frame),
7051 				     tp->suspend.stop_pc);
7052 
7053       tp->resumed = 1;
7054       resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7055       do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7056     }
7057   else
7058     {
7059       if (debug_infrun)
7060 	fprintf_unfiltered (gdb_stdlog,
7061 			    "infrun: expected thread still hasn't advanced\n");
7062 
7063       keep_going_pass_signal (ecs);
7064     }
7065   return 1;
7066 }
7067 
7068 /* Is thread TP in the middle of (software or hardware)
7069    single-stepping?  (Note the result of this function must never be
7070    passed directly as target_resume's STEP parameter.)  */
7071 
7072 static int
7073 currently_stepping (struct thread_info *tp)
7074 {
7075   return ((tp->control.step_range_end
7076 	   && tp->control.step_resume_breakpoint == NULL)
7077 	  || tp->control.trap_expected
7078 	  || tp->stepped_breakpoint
7079 	  || bpstat_should_step ());
7080 }
7081 
7082 /* Inferior has stepped into a subroutine call with source code that
7083    we should not step over.  Do step to the first line of code in
7084    it.  */
7085 
7086 static void
7087 handle_step_into_function (struct gdbarch *gdbarch,
7088 			   struct execution_control_state *ecs)
7089 {
7090   fill_in_stop_func (gdbarch, ecs);
7091 
7092   compunit_symtab *cust
7093     = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7094   if (cust != NULL && compunit_language (cust) != language_asm)
7095     ecs->stop_func_start
7096       = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7097 
7098   symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7099   /* Use the step_resume_break to step until the end of the prologue,
7100      even if that involves jumps (as it seems to on the vax under
7101      4.2).  */
7102   /* If the prologue ends in the middle of a source line, continue to
7103      the end of that source line (if it is still within the function).
7104      Otherwise, just go to end of prologue.  */
7105   if (stop_func_sal.end
7106       && stop_func_sal.pc != ecs->stop_func_start
7107       && stop_func_sal.end < ecs->stop_func_end)
7108     ecs->stop_func_start = stop_func_sal.end;
7109 
7110   /* Architectures which require breakpoint adjustment might not be able
7111      to place a breakpoint at the computed address.  If so, the test
7112      ``ecs->stop_func_start == stop_pc'' will never succeed.  Adjust
7113      ecs->stop_func_start to an address at which a breakpoint may be
7114      legitimately placed.
7115 
7116      Note:  kevinb/2004-01-19:  On FR-V, if this adjustment is not
7117      made, GDB will enter an infinite loop when stepping through
7118      optimized code consisting of VLIW instructions which contain
7119      subinstructions corresponding to different source lines.  On
7120      FR-V, it's not permitted to place a breakpoint on any but the
7121      first subinstruction of a VLIW instruction.  When a breakpoint is
7122      set, GDB will adjust the breakpoint address to the beginning of
7123      the VLIW instruction.  Thus, we need to make the corresponding
7124      adjustment here when computing the stop address.  */
7125 
7126   if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7127     {
7128       ecs->stop_func_start
7129 	= gdbarch_adjust_breakpoint_address (gdbarch,
7130 					     ecs->stop_func_start);
7131     }
7132 
7133   if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7134     {
7135       /* We are already there: stop now.  */
7136       end_stepping_range (ecs);
7137       return;
7138     }
7139   else
7140     {
7141       /* Put the step-breakpoint there and go until there.  */
7142       symtab_and_line sr_sal;
7143       sr_sal.pc = ecs->stop_func_start;
7144       sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7145       sr_sal.pspace = get_frame_program_space (get_current_frame ());
7146 
7147       /* Do not specify what the fp should be when we stop since on
7148          some machines the prologue is where the new fp value is
7149          established.  */
7150       insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7151 
7152       /* And make sure stepping stops right away then.  */
7153       ecs->event_thread->control.step_range_end
7154         = ecs->event_thread->control.step_range_start;
7155     }
7156   keep_going (ecs);
7157 }
7158 
7159 /* Inferior has stepped backward into a subroutine call with source
7160    code that we should not step over.  Do step to the beginning of the
7161    last line of code in it.  */
7162 
7163 static void
7164 handle_step_into_function_backward (struct gdbarch *gdbarch,
7165 				    struct execution_control_state *ecs)
7166 {
7167   struct compunit_symtab *cust;
7168   struct symtab_and_line stop_func_sal;
7169 
7170   fill_in_stop_func (gdbarch, ecs);
7171 
7172   cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7173   if (cust != NULL && compunit_language (cust) != language_asm)
7174     ecs->stop_func_start
7175       = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7176 
7177   stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7178 
7179   /* OK, we're just going to keep stepping here.  */
7180   if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7181     {
7182       /* We're there already.  Just stop stepping now.  */
7183       end_stepping_range (ecs);
7184     }
7185   else
7186     {
7187       /* Else just reset the step range and keep going.
7188 	 No step-resume breakpoint, they don't work for
7189 	 epilogues, which can have multiple entry paths.  */
7190       ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7191       ecs->event_thread->control.step_range_end = stop_func_sal.end;
7192       keep_going (ecs);
7193     }
7194   return;
7195 }
7196 
7197 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7198    This is used to both functions and to skip over code.  */
7199 
7200 static void
7201 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7202 					struct symtab_and_line sr_sal,
7203 					struct frame_id sr_id,
7204 					enum bptype sr_type)
7205 {
7206   /* There should never be more than one step-resume or longjmp-resume
7207      breakpoint per thread, so we should never be setting a new
7208      step_resume_breakpoint when one is already active.  */
7209   gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7210   gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7211 
7212   if (debug_infrun)
7213     fprintf_unfiltered (gdb_stdlog,
7214 			"infrun: inserting step-resume breakpoint at %s\n",
7215 			paddress (gdbarch, sr_sal.pc));
7216 
7217   inferior_thread ()->control.step_resume_breakpoint
7218     = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7219 }
7220 
7221 void
7222 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7223 				      struct symtab_and_line sr_sal,
7224 				      struct frame_id sr_id)
7225 {
7226   insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7227 					  sr_sal, sr_id,
7228 					  bp_step_resume);
7229 }
7230 
7231 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7232    This is used to skip a potential signal handler.
7233 
7234    This is called with the interrupted function's frame.  The signal
7235    handler, when it returns, will resume the interrupted function at
7236    RETURN_FRAME.pc.  */
7237 
7238 static void
7239 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7240 {
7241   gdb_assert (return_frame != NULL);
7242 
7243   struct gdbarch *gdbarch = get_frame_arch (return_frame);
7244 
7245   symtab_and_line sr_sal;
7246   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7247   sr_sal.section = find_pc_overlay (sr_sal.pc);
7248   sr_sal.pspace = get_frame_program_space (return_frame);
7249 
7250   insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7251 					  get_stack_frame_id (return_frame),
7252 					  bp_hp_step_resume);
7253 }
7254 
7255 /* Insert a "step-resume breakpoint" at the previous frame's PC.  This
7256    is used to skip a function after stepping into it (for "next" or if
7257    the called function has no debugging information).
7258 
7259    The current function has almost always been reached by single
7260    stepping a call or return instruction.  NEXT_FRAME belongs to the
7261    current function, and the breakpoint will be set at the caller's
7262    resume address.
7263 
7264    This is a separate function rather than reusing
7265    insert_hp_step_resume_breakpoint_at_frame in order to avoid
7266    get_prev_frame, which may stop prematurely (see the implementation
7267    of frame_unwind_caller_id for an example).  */
7268 
7269 static void
7270 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7271 {
7272   /* We shouldn't have gotten here if we don't know where the call site
7273      is.  */
7274   gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7275 
7276   struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7277 
7278   symtab_and_line sr_sal;
7279   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7280 					frame_unwind_caller_pc (next_frame));
7281   sr_sal.section = find_pc_overlay (sr_sal.pc);
7282   sr_sal.pspace = frame_unwind_program_space (next_frame);
7283 
7284   insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7285 					frame_unwind_caller_id (next_frame));
7286 }
7287 
7288 /* Insert a "longjmp-resume" breakpoint at PC.  This is used to set a
7289    new breakpoint at the target of a jmp_buf.  The handling of
7290    longjmp-resume uses the same mechanisms used for handling
7291    "step-resume" breakpoints.  */
7292 
7293 static void
7294 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7295 {
7296   /* There should never be more than one longjmp-resume breakpoint per
7297      thread, so we should never be setting a new
7298      longjmp_resume_breakpoint when one is already active.  */
7299   gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7300 
7301   if (debug_infrun)
7302     fprintf_unfiltered (gdb_stdlog,
7303 			"infrun: inserting longjmp-resume breakpoint at %s\n",
7304 			paddress (gdbarch, pc));
7305 
7306   inferior_thread ()->control.exception_resume_breakpoint =
7307     set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7308 }
7309 
7310 /* Insert an exception resume breakpoint.  TP is the thread throwing
7311    the exception.  The block B is the block of the unwinder debug hook
7312    function.  FRAME is the frame corresponding to the call to this
7313    function.  SYM is the symbol of the function argument holding the
7314    target PC of the exception.  */
7315 
7316 static void
7317 insert_exception_resume_breakpoint (struct thread_info *tp,
7318 				    const struct block *b,
7319 				    struct frame_info *frame,
7320 				    struct symbol *sym)
7321 {
7322   TRY
7323     {
7324       struct block_symbol vsym;
7325       struct value *value;
7326       CORE_ADDR handler;
7327       struct breakpoint *bp;
7328 
7329       vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7330 					b, VAR_DOMAIN);
7331       value = read_var_value (vsym.symbol, vsym.block, frame);
7332       /* If the value was optimized out, revert to the old behavior.  */
7333       if (! value_optimized_out (value))
7334 	{
7335 	  handler = value_as_address (value);
7336 
7337 	  if (debug_infrun)
7338 	    fprintf_unfiltered (gdb_stdlog,
7339 				"infrun: exception resume at %lx\n",
7340 				(unsigned long) handler);
7341 
7342 	  bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7343 					       handler,
7344 					       bp_exception_resume).release ();
7345 
7346 	  /* set_momentary_breakpoint_at_pc invalidates FRAME.  */
7347 	  frame = NULL;
7348 
7349 	  bp->thread = tp->global_num;
7350 	  inferior_thread ()->control.exception_resume_breakpoint = bp;
7351 	}
7352     }
7353   CATCH (e, RETURN_MASK_ERROR)
7354     {
7355       /* We want to ignore errors here.  */
7356     }
7357   END_CATCH
7358 }
7359 
7360 /* A helper for check_exception_resume that sets an
7361    exception-breakpoint based on a SystemTap probe.  */
7362 
7363 static void
7364 insert_exception_resume_from_probe (struct thread_info *tp,
7365 				    const struct bound_probe *probe,
7366 				    struct frame_info *frame)
7367 {
7368   struct value *arg_value;
7369   CORE_ADDR handler;
7370   struct breakpoint *bp;
7371 
7372   arg_value = probe_safe_evaluate_at_pc (frame, 1);
7373   if (!arg_value)
7374     return;
7375 
7376   handler = value_as_address (arg_value);
7377 
7378   if (debug_infrun)
7379     fprintf_unfiltered (gdb_stdlog,
7380 			"infrun: exception resume at %s\n",
7381 			paddress (get_objfile_arch (probe->objfile),
7382 				  handler));
7383 
7384   bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7385 				       handler, bp_exception_resume).release ();
7386   bp->thread = tp->global_num;
7387   inferior_thread ()->control.exception_resume_breakpoint = bp;
7388 }
7389 
7390 /* This is called when an exception has been intercepted.  Check to
7391    see whether the exception's destination is of interest, and if so,
7392    set an exception resume breakpoint there.  */
7393 
7394 static void
7395 check_exception_resume (struct execution_control_state *ecs,
7396 			struct frame_info *frame)
7397 {
7398   struct bound_probe probe;
7399   struct symbol *func;
7400 
7401   /* First see if this exception unwinding breakpoint was set via a
7402      SystemTap probe point.  If so, the probe has two arguments: the
7403      CFA and the HANDLER.  We ignore the CFA, extract the handler, and
7404      set a breakpoint there.  */
7405   probe = find_probe_by_pc (get_frame_pc (frame));
7406   if (probe.prob)
7407     {
7408       insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7409       return;
7410     }
7411 
7412   func = get_frame_function (frame);
7413   if (!func)
7414     return;
7415 
7416   TRY
7417     {
7418       const struct block *b;
7419       struct block_iterator iter;
7420       struct symbol *sym;
7421       int argno = 0;
7422 
7423       /* The exception breakpoint is a thread-specific breakpoint on
7424 	 the unwinder's debug hook, declared as:
7425 
7426 	 void _Unwind_DebugHook (void *cfa, void *handler);
7427 
7428 	 The CFA argument indicates the frame to which control is
7429 	 about to be transferred.  HANDLER is the destination PC.
7430 
7431 	 We ignore the CFA and set a temporary breakpoint at HANDLER.
7432 	 This is not extremely efficient but it avoids issues in gdb
7433 	 with computing the DWARF CFA, and it also works even in weird
7434 	 cases such as throwing an exception from inside a signal
7435 	 handler.  */
7436 
7437       b = SYMBOL_BLOCK_VALUE (func);
7438       ALL_BLOCK_SYMBOLS (b, iter, sym)
7439 	{
7440 	  if (!SYMBOL_IS_ARGUMENT (sym))
7441 	    continue;
7442 
7443 	  if (argno == 0)
7444 	    ++argno;
7445 	  else
7446 	    {
7447 	      insert_exception_resume_breakpoint (ecs->event_thread,
7448 						  b, frame, sym);
7449 	      break;
7450 	    }
7451 	}
7452     }
7453   CATCH (e, RETURN_MASK_ERROR)
7454     {
7455     }
7456   END_CATCH
7457 }
7458 
7459 static void
7460 stop_waiting (struct execution_control_state *ecs)
7461 {
7462   if (debug_infrun)
7463     fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7464 
7465   /* Let callers know we don't want to wait for the inferior anymore.  */
7466   ecs->wait_some_more = 0;
7467 
7468   /* If all-stop, but the target is always in non-stop mode, stop all
7469      threads now that we're presenting the stop to the user.  */
7470   if (!non_stop && target_is_non_stop_p ())
7471     stop_all_threads ();
7472 }
7473 
7474 /* Like keep_going, but passes the signal to the inferior, even if the
7475    signal is set to nopass.  */
7476 
7477 static void
7478 keep_going_pass_signal (struct execution_control_state *ecs)
7479 {
7480   gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7481   gdb_assert (!ecs->event_thread->resumed);
7482 
7483   /* Save the pc before execution, to compare with pc after stop.  */
7484   ecs->event_thread->prev_pc
7485     = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7486 
7487   if (ecs->event_thread->control.trap_expected)
7488     {
7489       struct thread_info *tp = ecs->event_thread;
7490 
7491       if (debug_infrun)
7492 	fprintf_unfiltered (gdb_stdlog,
7493 			    "infrun: %s has trap_expected set, "
7494 			    "resuming to collect trap\n",
7495 			    target_pid_to_str (tp->ptid));
7496 
7497       /* We haven't yet gotten our trap, and either: intercepted a
7498 	 non-signal event (e.g., a fork); or took a signal which we
7499 	 are supposed to pass through to the inferior.  Simply
7500 	 continue.  */
7501       resume (ecs->event_thread->suspend.stop_signal);
7502     }
7503   else if (step_over_info_valid_p ())
7504     {
7505       /* Another thread is stepping over a breakpoint in-line.  If
7506 	 this thread needs a step-over too, queue the request.  In
7507 	 either case, this resume must be deferred for later.  */
7508       struct thread_info *tp = ecs->event_thread;
7509 
7510       if (ecs->hit_singlestep_breakpoint
7511 	  || thread_still_needs_step_over (tp))
7512 	{
7513 	  if (debug_infrun)
7514 	    fprintf_unfiltered (gdb_stdlog,
7515 				"infrun: step-over already in progress: "
7516 				"step-over for %s deferred\n",
7517 				target_pid_to_str (tp->ptid));
7518 	  thread_step_over_chain_enqueue (tp);
7519 	}
7520       else
7521 	{
7522 	  if (debug_infrun)
7523 	    fprintf_unfiltered (gdb_stdlog,
7524 				"infrun: step-over in progress: "
7525 				"resume of %s deferred\n",
7526 				target_pid_to_str (tp->ptid));
7527 	}
7528     }
7529   else
7530     {
7531       struct regcache *regcache = get_current_regcache ();
7532       int remove_bp;
7533       int remove_wps;
7534       step_over_what step_what;
7535 
7536       /* Either the trap was not expected, but we are continuing
7537 	 anyway (if we got a signal, the user asked it be passed to
7538 	 the child)
7539 	 -- or --
7540 	 We got our expected trap, but decided we should resume from
7541 	 it.
7542 
7543 	 We're going to run this baby now!
7544 
7545 	 Note that insert_breakpoints won't try to re-insert
7546 	 already inserted breakpoints.  Therefore, we don't
7547 	 care if breakpoints were already inserted, or not.  */
7548 
7549       /* If we need to step over a breakpoint, and we're not using
7550 	 displaced stepping to do so, insert all breakpoints
7551 	 (watchpoints, etc.) but the one we're stepping over, step one
7552 	 instruction, and then re-insert the breakpoint when that step
7553 	 is finished.  */
7554 
7555       step_what = thread_still_needs_step_over (ecs->event_thread);
7556 
7557       remove_bp = (ecs->hit_singlestep_breakpoint
7558 		   || (step_what & STEP_OVER_BREAKPOINT));
7559       remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7560 
7561       /* We can't use displaced stepping if we need to step past a
7562 	 watchpoint.  The instruction copied to the scratch pad would
7563 	 still trigger the watchpoint.  */
7564       if (remove_bp
7565 	  && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7566 	{
7567 	  set_step_over_info (regcache->aspace (),
7568 			      regcache_read_pc (regcache), remove_wps,
7569 			      ecs->event_thread->global_num);
7570 	}
7571       else if (remove_wps)
7572 	set_step_over_info (NULL, 0, remove_wps, -1);
7573 
7574       /* If we now need to do an in-line step-over, we need to stop
7575 	 all other threads.  Note this must be done before
7576 	 insert_breakpoints below, because that removes the breakpoint
7577 	 we're about to step over, otherwise other threads could miss
7578 	 it.  */
7579       if (step_over_info_valid_p () && target_is_non_stop_p ())
7580 	stop_all_threads ();
7581 
7582       /* Stop stepping if inserting breakpoints fails.  */
7583       TRY
7584 	{
7585 	  insert_breakpoints ();
7586 	}
7587       CATCH (e, RETURN_MASK_ERROR)
7588 	{
7589 	  exception_print (gdb_stderr, e);
7590 	  stop_waiting (ecs);
7591 	  clear_step_over_info ();
7592 	  return;
7593 	}
7594       END_CATCH
7595 
7596       ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7597 
7598       resume (ecs->event_thread->suspend.stop_signal);
7599     }
7600 
7601   prepare_to_wait (ecs);
7602 }
7603 
7604 /* Called when we should continue running the inferior, because the
7605    current event doesn't cause a user visible stop.  This does the
7606    resuming part; waiting for the next event is done elsewhere.  */
7607 
7608 static void
7609 keep_going (struct execution_control_state *ecs)
7610 {
7611   if (ecs->event_thread->control.trap_expected
7612       && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7613     ecs->event_thread->control.trap_expected = 0;
7614 
7615   if (!signal_program[ecs->event_thread->suspend.stop_signal])
7616     ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7617   keep_going_pass_signal (ecs);
7618 }
7619 
7620 /* This function normally comes after a resume, before
7621    handle_inferior_event exits.  It takes care of any last bits of
7622    housekeeping, and sets the all-important wait_some_more flag.  */
7623 
7624 static void
7625 prepare_to_wait (struct execution_control_state *ecs)
7626 {
7627   if (debug_infrun)
7628     fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7629 
7630   ecs->wait_some_more = 1;
7631 
7632   if (!target_is_async_p ())
7633     mark_infrun_async_event_handler ();
7634 }
7635 
7636 /* We are done with the step range of a step/next/si/ni command.
7637    Called once for each n of a "step n" operation.  */
7638 
7639 static void
7640 end_stepping_range (struct execution_control_state *ecs)
7641 {
7642   ecs->event_thread->control.stop_step = 1;
7643   stop_waiting (ecs);
7644 }
7645 
7646 /* Several print_*_reason functions to print why the inferior has stopped.
7647    We always print something when the inferior exits, or receives a signal.
7648    The rest of the cases are dealt with later on in normal_stop and
7649    print_it_typical.  Ideally there should be a call to one of these
7650    print_*_reason functions functions from handle_inferior_event each time
7651    stop_waiting is called.
7652 
7653    Note that we don't call these directly, instead we delegate that to
7654    the interpreters, through observers.  Interpreters then call these
7655    with whatever uiout is right.  */
7656 
7657 void
7658 print_end_stepping_range_reason (struct ui_out *uiout)
7659 {
7660   /* For CLI-like interpreters, print nothing.  */
7661 
7662   if (uiout->is_mi_like_p ())
7663     {
7664       uiout->field_string ("reason",
7665 			   async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7666     }
7667 }
7668 
7669 void
7670 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7671 {
7672   annotate_signalled ();
7673   if (uiout->is_mi_like_p ())
7674     uiout->field_string
7675       ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7676   uiout->text ("\nProgram terminated with signal ");
7677   annotate_signal_name ();
7678   uiout->field_string ("signal-name",
7679 		       gdb_signal_to_name (siggnal));
7680   annotate_signal_name_end ();
7681   uiout->text (", ");
7682   annotate_signal_string ();
7683   uiout->field_string ("signal-meaning",
7684 		       gdb_signal_to_string (siggnal));
7685   annotate_signal_string_end ();
7686   uiout->text (".\n");
7687   uiout->text ("The program no longer exists.\n");
7688 }
7689 
7690 void
7691 print_exited_reason (struct ui_out *uiout, int exitstatus)
7692 {
7693   struct inferior *inf = current_inferior ();
7694   const char *pidstr = target_pid_to_str (ptid_t (inf->pid));
7695 
7696   annotate_exited (exitstatus);
7697   if (exitstatus)
7698     {
7699       if (uiout->is_mi_like_p ())
7700 	uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7701       uiout->text ("[Inferior ");
7702       uiout->text (plongest (inf->num));
7703       uiout->text (" (");
7704       uiout->text (pidstr);
7705       uiout->text (") exited with code ");
7706       uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7707       uiout->text ("]\n");
7708     }
7709   else
7710     {
7711       if (uiout->is_mi_like_p ())
7712 	uiout->field_string
7713 	  ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7714       uiout->text ("[Inferior ");
7715       uiout->text (plongest (inf->num));
7716       uiout->text (" (");
7717       uiout->text (pidstr);
7718       uiout->text (") exited normally]\n");
7719     }
7720 }
7721 
7722 /* Some targets/architectures can do extra processing/display of
7723    segmentation faults.  E.g., Intel MPX boundary faults.
7724    Call the architecture dependent function to handle the fault.  */
7725 
7726 static void
7727 handle_segmentation_fault (struct ui_out *uiout)
7728 {
7729   struct regcache *regcache = get_current_regcache ();
7730   struct gdbarch *gdbarch = regcache->arch ();
7731 
7732   if (gdbarch_handle_segmentation_fault_p (gdbarch))
7733     gdbarch_handle_segmentation_fault (gdbarch, uiout);
7734 }
7735 
7736 void
7737 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7738 {
7739   struct thread_info *thr = inferior_thread ();
7740 
7741   annotate_signal ();
7742 
7743   if (uiout->is_mi_like_p ())
7744     ;
7745   else if (show_thread_that_caused_stop ())
7746     {
7747       const char *name;
7748 
7749       uiout->text ("\nThread ");
7750       uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7751 
7752       name = thr->name != NULL ? thr->name : target_thread_name (thr);
7753       if (name != NULL)
7754 	{
7755 	  uiout->text (" \"");
7756 	  uiout->field_fmt ("name", "%s", name);
7757 	  uiout->text ("\"");
7758 	}
7759     }
7760   else
7761     uiout->text ("\nProgram");
7762 
7763   if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7764     uiout->text (" stopped");
7765   else
7766     {
7767       uiout->text (" received signal ");
7768       annotate_signal_name ();
7769       if (uiout->is_mi_like_p ())
7770 	uiout->field_string
7771 	  ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7772       uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7773       annotate_signal_name_end ();
7774       uiout->text (", ");
7775       annotate_signal_string ();
7776       uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7777 
7778       if (siggnal == GDB_SIGNAL_SEGV)
7779 	handle_segmentation_fault (uiout);
7780 
7781       annotate_signal_string_end ();
7782     }
7783   uiout->text (".\n");
7784 }
7785 
7786 void
7787 print_no_history_reason (struct ui_out *uiout)
7788 {
7789   uiout->text ("\nNo more reverse-execution history.\n");
7790 }
7791 
7792 /* Print current location without a level number, if we have changed
7793    functions or hit a breakpoint.  Print source line if we have one.
7794    bpstat_print contains the logic deciding in detail what to print,
7795    based on the event(s) that just occurred.  */
7796 
7797 static void
7798 print_stop_location (struct target_waitstatus *ws)
7799 {
7800   int bpstat_ret;
7801   enum print_what source_flag;
7802   int do_frame_printing = 1;
7803   struct thread_info *tp = inferior_thread ();
7804 
7805   bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7806   switch (bpstat_ret)
7807     {
7808     case PRINT_UNKNOWN:
7809       /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7810 	 should) carry around the function and does (or should) use
7811 	 that when doing a frame comparison.  */
7812       if (tp->control.stop_step
7813 	  && frame_id_eq (tp->control.step_frame_id,
7814 			  get_frame_id (get_current_frame ()))
7815 	  && (tp->control.step_start_function
7816 	      == find_pc_function (tp->suspend.stop_pc)))
7817 	{
7818 	  /* Finished step, just print source line.  */
7819 	  source_flag = SRC_LINE;
7820 	}
7821       else
7822 	{
7823 	  /* Print location and source line.  */
7824 	  source_flag = SRC_AND_LOC;
7825 	}
7826       break;
7827     case PRINT_SRC_AND_LOC:
7828       /* Print location and source line.  */
7829       source_flag = SRC_AND_LOC;
7830       break;
7831     case PRINT_SRC_ONLY:
7832       source_flag = SRC_LINE;
7833       break;
7834     case PRINT_NOTHING:
7835       /* Something bogus.  */
7836       source_flag = SRC_LINE;
7837       do_frame_printing = 0;
7838       break;
7839     default:
7840       internal_error (__FILE__, __LINE__, _("Unknown value."));
7841     }
7842 
7843   /* The behavior of this routine with respect to the source
7844      flag is:
7845      SRC_LINE: Print only source line
7846      LOCATION: Print only location
7847      SRC_AND_LOC: Print location and source line.  */
7848   if (do_frame_printing)
7849     print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7850 }
7851 
7852 /* See infrun.h.  */
7853 
7854 void
7855 print_stop_event (struct ui_out *uiout)
7856 {
7857   struct target_waitstatus last;
7858   ptid_t last_ptid;
7859   struct thread_info *tp;
7860 
7861   get_last_target_status (&last_ptid, &last);
7862 
7863   {
7864     scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
7865 
7866     print_stop_location (&last);
7867 
7868     /* Display the auto-display expressions.  */
7869     do_displays ();
7870   }
7871 
7872   tp = inferior_thread ();
7873   if (tp->thread_fsm != NULL
7874       && tp->thread_fsm->finished_p ())
7875     {
7876       struct return_value_info *rv;
7877 
7878       rv = tp->thread_fsm->return_value ();
7879       if (rv != NULL)
7880 	print_return_value (uiout, rv);
7881     }
7882 }
7883 
7884 /* See infrun.h.  */
7885 
7886 void
7887 maybe_remove_breakpoints (void)
7888 {
7889   if (!breakpoints_should_be_inserted_now () && target_has_execution)
7890     {
7891       if (remove_breakpoints ())
7892 	{
7893 	  target_terminal::ours_for_output ();
7894 	  printf_filtered (_("Cannot remove breakpoints because "
7895 			     "program is no longer writable.\nFurther "
7896 			     "execution is probably impossible.\n"));
7897 	}
7898     }
7899 }
7900 
7901 /* The execution context that just caused a normal stop.  */
7902 
7903 struct stop_context
7904 {
7905   stop_context ();
7906   ~stop_context ();
7907 
7908   DISABLE_COPY_AND_ASSIGN (stop_context);
7909 
7910   bool changed () const;
7911 
7912   /* The stop ID.  */
7913   ULONGEST stop_id;
7914 
7915   /* The event PTID.  */
7916 
7917   ptid_t ptid;
7918 
7919   /* If stopp for a thread event, this is the thread that caused the
7920      stop.  */
7921   struct thread_info *thread;
7922 
7923   /* The inferior that caused the stop.  */
7924   int inf_num;
7925 };
7926 
7927 /* Initializes a new stop context.  If stopped for a thread event, this
7928    takes a strong reference to the thread.  */
7929 
7930 stop_context::stop_context ()
7931 {
7932   stop_id = get_stop_id ();
7933   ptid = inferior_ptid;
7934   inf_num = current_inferior ()->num;
7935 
7936   if (inferior_ptid != null_ptid)
7937     {
7938       /* Take a strong reference so that the thread can't be deleted
7939 	 yet.  */
7940       thread = inferior_thread ();
7941       thread->incref ();
7942     }
7943   else
7944     thread = NULL;
7945 }
7946 
7947 /* Release a stop context previously created with save_stop_context.
7948    Releases the strong reference to the thread as well. */
7949 
7950 stop_context::~stop_context ()
7951 {
7952   if (thread != NULL)
7953     thread->decref ();
7954 }
7955 
7956 /* Return true if the current context no longer matches the saved stop
7957    context.  */
7958 
7959 bool
7960 stop_context::changed () const
7961 {
7962   if (ptid != inferior_ptid)
7963     return true;
7964   if (inf_num != current_inferior ()->num)
7965     return true;
7966   if (thread != NULL && thread->state != THREAD_STOPPED)
7967     return true;
7968   if (get_stop_id () != stop_id)
7969     return true;
7970   return false;
7971 }
7972 
7973 /* See infrun.h.  */
7974 
7975 int
7976 normal_stop (void)
7977 {
7978   struct target_waitstatus last;
7979   ptid_t last_ptid;
7980 
7981   get_last_target_status (&last_ptid, &last);
7982 
7983   new_stop_id ();
7984 
7985   /* If an exception is thrown from this point on, make sure to
7986      propagate GDB's knowledge of the executing state to the
7987      frontend/user running state.  A QUIT is an easy exception to see
7988      here, so do this before any filtered output.  */
7989 
7990   gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7991 
7992   if (!non_stop)
7993     maybe_finish_thread_state.emplace (minus_one_ptid);
7994   else if (last.kind == TARGET_WAITKIND_SIGNALLED
7995 	   || last.kind == TARGET_WAITKIND_EXITED)
7996     {
7997       /* On some targets, we may still have live threads in the
7998 	 inferior when we get a process exit event.  E.g., for
7999 	 "checkpoint", when the current checkpoint/fork exits,
8000 	 linux-fork.c automatically switches to another fork from
8001 	 within target_mourn_inferior.  */
8002       if (inferior_ptid != null_ptid)
8003 	maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
8004     }
8005   else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8006     maybe_finish_thread_state.emplace (inferior_ptid);
8007 
8008   /* As we're presenting a stop, and potentially removing breakpoints,
8009      update the thread list so we can tell whether there are threads
8010      running on the target.  With target remote, for example, we can
8011      only learn about new threads when we explicitly update the thread
8012      list.  Do this before notifying the interpreters about signal
8013      stops, end of stepping ranges, etc., so that the "new thread"
8014      output is emitted before e.g., "Program received signal FOO",
8015      instead of after.  */
8016   update_thread_list ();
8017 
8018   if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8019     gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8020 
8021   /* As with the notification of thread events, we want to delay
8022      notifying the user that we've switched thread context until
8023      the inferior actually stops.
8024 
8025      There's no point in saying anything if the inferior has exited.
8026      Note that SIGNALLED here means "exited with a signal", not
8027      "received a signal".
8028 
8029      Also skip saying anything in non-stop mode.  In that mode, as we
8030      don't want GDB to switch threads behind the user's back, to avoid
8031      races where the user is typing a command to apply to thread x,
8032      but GDB switches to thread y before the user finishes entering
8033      the command, fetch_inferior_event installs a cleanup to restore
8034      the current thread back to the thread the user had selected right
8035      after this event is handled, so we're not really switching, only
8036      informing of a stop.  */
8037   if (!non_stop
8038       && previous_inferior_ptid != inferior_ptid
8039       && target_has_execution
8040       && last.kind != TARGET_WAITKIND_SIGNALLED
8041       && last.kind != TARGET_WAITKIND_EXITED
8042       && last.kind != TARGET_WAITKIND_NO_RESUMED)
8043     {
8044       SWITCH_THRU_ALL_UIS ()
8045 	{
8046 	  target_terminal::ours_for_output ();
8047 	  printf_filtered (_("[Switching to %s]\n"),
8048 			   target_pid_to_str (inferior_ptid));
8049 	  annotate_thread_changed ();
8050 	}
8051       previous_inferior_ptid = inferior_ptid;
8052     }
8053 
8054   if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8055     {
8056       SWITCH_THRU_ALL_UIS ()
8057 	if (current_ui->prompt_state == PROMPT_BLOCKED)
8058 	  {
8059 	    target_terminal::ours_for_output ();
8060 	    printf_filtered (_("No unwaited-for children left.\n"));
8061 	  }
8062     }
8063 
8064   /* Note: this depends on the update_thread_list call above.  */
8065   maybe_remove_breakpoints ();
8066 
8067   /* If an auto-display called a function and that got a signal,
8068      delete that auto-display to avoid an infinite recursion.  */
8069 
8070   if (stopped_by_random_signal)
8071     disable_current_display ();
8072 
8073   SWITCH_THRU_ALL_UIS ()
8074     {
8075       async_enable_stdin ();
8076     }
8077 
8078   /* Let the user/frontend see the threads as stopped.  */
8079   maybe_finish_thread_state.reset ();
8080 
8081   /* Select innermost stack frame - i.e., current frame is frame 0,
8082      and current location is based on that.  Handle the case where the
8083      dummy call is returning after being stopped.  E.g. the dummy call
8084      previously hit a breakpoint.  (If the dummy call returns
8085      normally, we won't reach here.)  Do this before the stop hook is
8086      run, so that it doesn't get to see the temporary dummy frame,
8087      which is not where we'll present the stop.  */
8088   if (has_stack_frames ())
8089     {
8090       if (stop_stack_dummy == STOP_STACK_DUMMY)
8091 	{
8092 	  /* Pop the empty frame that contains the stack dummy.  This
8093 	     also restores inferior state prior to the call (struct
8094 	     infcall_suspend_state).  */
8095 	  struct frame_info *frame = get_current_frame ();
8096 
8097 	  gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8098 	  frame_pop (frame);
8099 	  /* frame_pop calls reinit_frame_cache as the last thing it
8100 	     does which means there's now no selected frame.  */
8101 	}
8102 
8103       select_frame (get_current_frame ());
8104 
8105       /* Set the current source location.  */
8106       set_current_sal_from_frame (get_current_frame ());
8107     }
8108 
8109   /* Look up the hook_stop and run it (CLI internally handles problem
8110      of stop_command's pre-hook not existing).  */
8111   if (stop_command != NULL)
8112     {
8113       stop_context saved_context;
8114 
8115       TRY
8116 	{
8117 	  execute_cmd_pre_hook (stop_command);
8118 	}
8119       CATCH (ex, RETURN_MASK_ALL)
8120 	{
8121 	  exception_fprintf (gdb_stderr, ex,
8122 			     "Error while running hook_stop:\n");
8123 	}
8124       END_CATCH
8125 
8126       /* If the stop hook resumes the target, then there's no point in
8127 	 trying to notify about the previous stop; its context is
8128 	 gone.  Likewise if the command switches thread or inferior --
8129 	 the observers would print a stop for the wrong
8130 	 thread/inferior.  */
8131       if (saved_context.changed ())
8132 	return 1;
8133     }
8134 
8135   /* Notify observers about the stop.  This is where the interpreters
8136      print the stop event.  */
8137   if (inferior_ptid != null_ptid)
8138     gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8139 				 stop_print_frame);
8140   else
8141     gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8142 
8143   annotate_stopped ();
8144 
8145   if (target_has_execution)
8146     {
8147       if (last.kind != TARGET_WAITKIND_SIGNALLED
8148 	  && last.kind != TARGET_WAITKIND_EXITED)
8149 	/* Delete the breakpoint we stopped at, if it wants to be deleted.
8150 	   Delete any breakpoint that is to be deleted at the next stop.  */
8151 	breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8152     }
8153 
8154   /* Try to get rid of automatically added inferiors that are no
8155      longer needed.  Keeping those around slows down things linearly.
8156      Note that this never removes the current inferior.  */
8157   prune_inferiors ();
8158 
8159   return 0;
8160 }
8161 
8162 int
8163 signal_stop_state (int signo)
8164 {
8165   return signal_stop[signo];
8166 }
8167 
8168 int
8169 signal_print_state (int signo)
8170 {
8171   return signal_print[signo];
8172 }
8173 
8174 int
8175 signal_pass_state (int signo)
8176 {
8177   return signal_program[signo];
8178 }
8179 
8180 static void
8181 signal_cache_update (int signo)
8182 {
8183   if (signo == -1)
8184     {
8185       for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8186 	signal_cache_update (signo);
8187 
8188       return;
8189     }
8190 
8191   signal_pass[signo] = (signal_stop[signo] == 0
8192 			&& signal_print[signo] == 0
8193 			&& signal_program[signo] == 1
8194 			&& signal_catch[signo] == 0);
8195 }
8196 
8197 int
8198 signal_stop_update (int signo, int state)
8199 {
8200   int ret = signal_stop[signo];
8201 
8202   signal_stop[signo] = state;
8203   signal_cache_update (signo);
8204   return ret;
8205 }
8206 
8207 int
8208 signal_print_update (int signo, int state)
8209 {
8210   int ret = signal_print[signo];
8211 
8212   signal_print[signo] = state;
8213   signal_cache_update (signo);
8214   return ret;
8215 }
8216 
8217 int
8218 signal_pass_update (int signo, int state)
8219 {
8220   int ret = signal_program[signo];
8221 
8222   signal_program[signo] = state;
8223   signal_cache_update (signo);
8224   return ret;
8225 }
8226 
8227 /* Update the global 'signal_catch' from INFO and notify the
8228    target.  */
8229 
8230 void
8231 signal_catch_update (const unsigned int *info)
8232 {
8233   int i;
8234 
8235   for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8236     signal_catch[i] = info[i] > 0;
8237   signal_cache_update (-1);
8238   target_pass_signals (signal_pass);
8239 }
8240 
8241 static void
8242 sig_print_header (void)
8243 {
8244   printf_filtered (_("Signal        Stop\tPrint\tPass "
8245 		     "to program\tDescription\n"));
8246 }
8247 
8248 static void
8249 sig_print_info (enum gdb_signal oursig)
8250 {
8251   const char *name = gdb_signal_to_name (oursig);
8252   int name_padding = 13 - strlen (name);
8253 
8254   if (name_padding <= 0)
8255     name_padding = 0;
8256 
8257   printf_filtered ("%s", name);
8258   printf_filtered ("%*.*s ", name_padding, name_padding, "                 ");
8259   printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8260   printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8261   printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8262   printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8263 }
8264 
8265 /* Specify how various signals in the inferior should be handled.  */
8266 
8267 static void
8268 handle_command (const char *args, int from_tty)
8269 {
8270   int digits, wordlen;
8271   int sigfirst, siglast;
8272   enum gdb_signal oursig;
8273   int allsigs;
8274 
8275   if (args == NULL)
8276     {
8277       error_no_arg (_("signal to handle"));
8278     }
8279 
8280   /* Allocate and zero an array of flags for which signals to handle.  */
8281 
8282   const size_t nsigs = GDB_SIGNAL_LAST;
8283   unsigned char sigs[nsigs] {};
8284 
8285   /* Break the command line up into args.  */
8286 
8287   gdb_argv built_argv (args);
8288 
8289   /* Walk through the args, looking for signal oursigs, signal names, and
8290      actions.  Signal numbers and signal names may be interspersed with
8291      actions, with the actions being performed for all signals cumulatively
8292      specified.  Signal ranges can be specified as <LOW>-<HIGH>.  */
8293 
8294   for (char *arg : built_argv)
8295     {
8296       wordlen = strlen (arg);
8297       for (digits = 0; isdigit (arg[digits]); digits++)
8298 	{;
8299 	}
8300       allsigs = 0;
8301       sigfirst = siglast = -1;
8302 
8303       if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8304 	{
8305 	  /* Apply action to all signals except those used by the
8306 	     debugger.  Silently skip those.  */
8307 	  allsigs = 1;
8308 	  sigfirst = 0;
8309 	  siglast = nsigs - 1;
8310 	}
8311       else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8312 	{
8313 	  SET_SIGS (nsigs, sigs, signal_stop);
8314 	  SET_SIGS (nsigs, sigs, signal_print);
8315 	}
8316       else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8317 	{
8318 	  UNSET_SIGS (nsigs, sigs, signal_program);
8319 	}
8320       else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8321 	{
8322 	  SET_SIGS (nsigs, sigs, signal_print);
8323 	}
8324       else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8325 	{
8326 	  SET_SIGS (nsigs, sigs, signal_program);
8327 	}
8328       else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8329 	{
8330 	  UNSET_SIGS (nsigs, sigs, signal_stop);
8331 	}
8332       else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8333 	{
8334 	  SET_SIGS (nsigs, sigs, signal_program);
8335 	}
8336       else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8337 	{
8338 	  UNSET_SIGS (nsigs, sigs, signal_print);
8339 	  UNSET_SIGS (nsigs, sigs, signal_stop);
8340 	}
8341       else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8342 	{
8343 	  UNSET_SIGS (nsigs, sigs, signal_program);
8344 	}
8345       else if (digits > 0)
8346 	{
8347 	  /* It is numeric.  The numeric signal refers to our own
8348 	     internal signal numbering from target.h, not to host/target
8349 	     signal  number.  This is a feature; users really should be
8350 	     using symbolic names anyway, and the common ones like
8351 	     SIGHUP, SIGINT, SIGALRM, etc. will work right anyway.  */
8352 
8353 	  sigfirst = siglast = (int)
8354 	    gdb_signal_from_command (atoi (arg));
8355 	  if (arg[digits] == '-')
8356 	    {
8357 	      siglast = (int)
8358 		gdb_signal_from_command (atoi (arg + digits + 1));
8359 	    }
8360 	  if (sigfirst > siglast)
8361 	    {
8362 	      /* Bet he didn't figure we'd think of this case...  */
8363 	      std::swap (sigfirst, siglast);
8364 	    }
8365 	}
8366       else
8367 	{
8368 	  oursig = gdb_signal_from_name (arg);
8369 	  if (oursig != GDB_SIGNAL_UNKNOWN)
8370 	    {
8371 	      sigfirst = siglast = (int) oursig;
8372 	    }
8373 	  else
8374 	    {
8375 	      /* Not a number and not a recognized flag word => complain.  */
8376 	      error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8377 	    }
8378 	}
8379 
8380       /* If any signal numbers or symbol names were found, set flags for
8381          which signals to apply actions to.  */
8382 
8383       for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8384 	{
8385 	  switch ((enum gdb_signal) signum)
8386 	    {
8387 	    case GDB_SIGNAL_TRAP:
8388 	    case GDB_SIGNAL_INT:
8389 	      if (!allsigs && !sigs[signum])
8390 		{
8391 		  if (query (_("%s is used by the debugger.\n\
8392 Are you sure you want to change it? "),
8393 			     gdb_signal_to_name ((enum gdb_signal) signum)))
8394 		    {
8395 		      sigs[signum] = 1;
8396 		    }
8397 		  else
8398 		    {
8399 		      printf_unfiltered (_("Not confirmed, unchanged.\n"));
8400 		      gdb_flush (gdb_stdout);
8401 		    }
8402 		}
8403 	      break;
8404 	    case GDB_SIGNAL_0:
8405 	    case GDB_SIGNAL_DEFAULT:
8406 	    case GDB_SIGNAL_UNKNOWN:
8407 	      /* Make sure that "all" doesn't print these.  */
8408 	      break;
8409 	    default:
8410 	      sigs[signum] = 1;
8411 	      break;
8412 	    }
8413 	}
8414     }
8415 
8416   for (int signum = 0; signum < nsigs; signum++)
8417     if (sigs[signum])
8418       {
8419 	signal_cache_update (-1);
8420 	target_pass_signals (signal_pass);
8421 	target_program_signals (signal_program);
8422 
8423 	if (from_tty)
8424 	  {
8425 	    /* Show the results.  */
8426 	    sig_print_header ();
8427 	    for (; signum < nsigs; signum++)
8428 	      if (sigs[signum])
8429 		sig_print_info ((enum gdb_signal) signum);
8430 	  }
8431 
8432 	break;
8433       }
8434 }
8435 
8436 /* Complete the "handle" command.  */
8437 
8438 static void
8439 handle_completer (struct cmd_list_element *ignore,
8440 		  completion_tracker &tracker,
8441 		  const char *text, const char *word)
8442 {
8443   static const char * const keywords[] =
8444     {
8445       "all",
8446       "stop",
8447       "ignore",
8448       "print",
8449       "pass",
8450       "nostop",
8451       "noignore",
8452       "noprint",
8453       "nopass",
8454       NULL,
8455     };
8456 
8457   signal_completer (ignore, tracker, text, word);
8458   complete_on_enum (tracker, keywords, word, word);
8459 }
8460 
8461 enum gdb_signal
8462 gdb_signal_from_command (int num)
8463 {
8464   if (num >= 1 && num <= 15)
8465     return (enum gdb_signal) num;
8466   error (_("Only signals 1-15 are valid as numeric signals.\n\
8467 Use \"info signals\" for a list of symbolic signals."));
8468 }
8469 
8470 /* Print current contents of the tables set by the handle command.
8471    It is possible we should just be printing signals actually used
8472    by the current target (but for things to work right when switching
8473    targets, all signals should be in the signal tables).  */
8474 
8475 static void
8476 info_signals_command (const char *signum_exp, int from_tty)
8477 {
8478   enum gdb_signal oursig;
8479 
8480   sig_print_header ();
8481 
8482   if (signum_exp)
8483     {
8484       /* First see if this is a symbol name.  */
8485       oursig = gdb_signal_from_name (signum_exp);
8486       if (oursig == GDB_SIGNAL_UNKNOWN)
8487 	{
8488 	  /* No, try numeric.  */
8489 	  oursig =
8490 	    gdb_signal_from_command (parse_and_eval_long (signum_exp));
8491 	}
8492       sig_print_info (oursig);
8493       return;
8494     }
8495 
8496   printf_filtered ("\n");
8497   /* These ugly casts brought to you by the native VAX compiler.  */
8498   for (oursig = GDB_SIGNAL_FIRST;
8499        (int) oursig < (int) GDB_SIGNAL_LAST;
8500        oursig = (enum gdb_signal) ((int) oursig + 1))
8501     {
8502       QUIT;
8503 
8504       if (oursig != GDB_SIGNAL_UNKNOWN
8505 	  && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8506 	sig_print_info (oursig);
8507     }
8508 
8509   printf_filtered (_("\nUse the \"handle\" command "
8510 		     "to change these tables.\n"));
8511 }
8512 
8513 /* The $_siginfo convenience variable is a bit special.  We don't know
8514    for sure the type of the value until we actually have a chance to
8515    fetch the data.  The type can change depending on gdbarch, so it is
8516    also dependent on which thread you have selected.
8517 
8518      1. making $_siginfo be an internalvar that creates a new value on
8519      access.
8520 
8521      2. making the value of $_siginfo be an lval_computed value.  */
8522 
8523 /* This function implements the lval_computed support for reading a
8524    $_siginfo value.  */
8525 
8526 static void
8527 siginfo_value_read (struct value *v)
8528 {
8529   LONGEST transferred;
8530 
8531   /* If we can access registers, so can we access $_siginfo.  Likewise
8532      vice versa.  */
8533   validate_registers_access ();
8534 
8535   transferred =
8536     target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8537 		 NULL,
8538 		 value_contents_all_raw (v),
8539 		 value_offset (v),
8540 		 TYPE_LENGTH (value_type (v)));
8541 
8542   if (transferred != TYPE_LENGTH (value_type (v)))
8543     error (_("Unable to read siginfo"));
8544 }
8545 
8546 /* This function implements the lval_computed support for writing a
8547    $_siginfo value.  */
8548 
8549 static void
8550 siginfo_value_write (struct value *v, struct value *fromval)
8551 {
8552   LONGEST transferred;
8553 
8554   /* If we can access registers, so can we access $_siginfo.  Likewise
8555      vice versa.  */
8556   validate_registers_access ();
8557 
8558   transferred = target_write (current_top_target (),
8559 			      TARGET_OBJECT_SIGNAL_INFO,
8560 			      NULL,
8561 			      value_contents_all_raw (fromval),
8562 			      value_offset (v),
8563 			      TYPE_LENGTH (value_type (fromval)));
8564 
8565   if (transferred != TYPE_LENGTH (value_type (fromval)))
8566     error (_("Unable to write siginfo"));
8567 }
8568 
8569 static const struct lval_funcs siginfo_value_funcs =
8570   {
8571     siginfo_value_read,
8572     siginfo_value_write
8573   };
8574 
8575 /* Return a new value with the correct type for the siginfo object of
8576    the current thread using architecture GDBARCH.  Return a void value
8577    if there's no object available.  */
8578 
8579 static struct value *
8580 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8581 		    void *ignore)
8582 {
8583   if (target_has_stack
8584       && inferior_ptid != null_ptid
8585       && gdbarch_get_siginfo_type_p (gdbarch))
8586     {
8587       struct type *type = gdbarch_get_siginfo_type (gdbarch);
8588 
8589       return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8590     }
8591 
8592   return allocate_value (builtin_type (gdbarch)->builtin_void);
8593 }
8594 
8595 
8596 /* infcall_suspend_state contains state about the program itself like its
8597    registers and any signal it received when it last stopped.
8598    This state must be restored regardless of how the inferior function call
8599    ends (either successfully, or after it hits a breakpoint or signal)
8600    if the program is to properly continue where it left off.  */
8601 
8602 class infcall_suspend_state
8603 {
8604 public:
8605   /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8606      once the inferior function call has finished.  */
8607   infcall_suspend_state (struct gdbarch *gdbarch,
8608                          const struct thread_info *tp,
8609                          struct regcache *regcache)
8610     : m_thread_suspend (tp->suspend),
8611       m_registers (new readonly_detached_regcache (*regcache))
8612   {
8613     gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8614 
8615     if (gdbarch_get_siginfo_type_p (gdbarch))
8616       {
8617         struct type *type = gdbarch_get_siginfo_type (gdbarch);
8618         size_t len = TYPE_LENGTH (type);
8619 
8620         siginfo_data.reset ((gdb_byte *) xmalloc (len));
8621 
8622         if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8623                          siginfo_data.get (), 0, len) != len)
8624           {
8625             /* Errors ignored.  */
8626             siginfo_data.reset (nullptr);
8627           }
8628       }
8629 
8630     if (siginfo_data)
8631       {
8632         m_siginfo_gdbarch = gdbarch;
8633         m_siginfo_data = std::move (siginfo_data);
8634       }
8635   }
8636 
8637   /* Return a pointer to the stored register state.  */
8638 
8639   readonly_detached_regcache *registers () const
8640   {
8641     return m_registers.get ();
8642   }
8643 
8644   /* Restores the stored state into GDBARCH, TP, and REGCACHE.  */
8645 
8646   void restore (struct gdbarch *gdbarch,
8647                 struct thread_info *tp,
8648                 struct regcache *regcache) const
8649   {
8650     tp->suspend = m_thread_suspend;
8651 
8652     if (m_siginfo_gdbarch == gdbarch)
8653       {
8654         struct type *type = gdbarch_get_siginfo_type (gdbarch);
8655 
8656         /* Errors ignored.  */
8657         target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8658                       m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8659       }
8660 
8661     /* The inferior can be gone if the user types "print exit(0)"
8662        (and perhaps other times).  */
8663     if (target_has_execution)
8664       /* NB: The register write goes through to the target.  */
8665       regcache->restore (registers ());
8666   }
8667 
8668 private:
8669   /* How the current thread stopped before the inferior function call was
8670      executed.  */
8671   struct thread_suspend_state m_thread_suspend;
8672 
8673   /* The registers before the inferior function call was executed.  */
8674   std::unique_ptr<readonly_detached_regcache> m_registers;
8675 
8676   /* Format of SIGINFO_DATA or NULL if it is not present.  */
8677   struct gdbarch *m_siginfo_gdbarch = nullptr;
8678 
8679   /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8680      TYPE_LENGTH (gdbarch_get_siginfo_type ()).  For different gdbarch the
8681      content would be invalid.  */
8682   gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8683 };
8684 
8685 infcall_suspend_state_up
8686 save_infcall_suspend_state ()
8687 {
8688   struct thread_info *tp = inferior_thread ();
8689   struct regcache *regcache = get_current_regcache ();
8690   struct gdbarch *gdbarch = regcache->arch ();
8691 
8692   infcall_suspend_state_up inf_state
8693     (new struct infcall_suspend_state (gdbarch, tp, regcache));
8694 
8695   /* Having saved the current state, adjust the thread state, discarding
8696      any stop signal information.  The stop signal is not useful when
8697      starting an inferior function call, and run_inferior_call will not use
8698      the signal due to its `proceed' call with GDB_SIGNAL_0.  */
8699   tp->suspend.stop_signal = GDB_SIGNAL_0;
8700 
8701   return inf_state;
8702 }
8703 
8704 /* Restore inferior session state to INF_STATE.  */
8705 
8706 void
8707 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8708 {
8709   struct thread_info *tp = inferior_thread ();
8710   struct regcache *regcache = get_current_regcache ();
8711   struct gdbarch *gdbarch = regcache->arch ();
8712 
8713   inf_state->restore (gdbarch, tp, regcache);
8714   discard_infcall_suspend_state (inf_state);
8715 }
8716 
8717 void
8718 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8719 {
8720   delete inf_state;
8721 }
8722 
8723 readonly_detached_regcache *
8724 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8725 {
8726   return inf_state->registers ();
8727 }
8728 
8729 /* infcall_control_state contains state regarding gdb's control of the
8730    inferior itself like stepping control.  It also contains session state like
8731    the user's currently selected frame.  */
8732 
8733 struct infcall_control_state
8734 {
8735   struct thread_control_state thread_control;
8736   struct inferior_control_state inferior_control;
8737 
8738   /* Other fields:  */
8739   enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8740   int stopped_by_random_signal = 0;
8741 
8742   /* ID if the selected frame when the inferior function call was made.  */
8743   struct frame_id selected_frame_id {};
8744 };
8745 
8746 /* Save all of the information associated with the inferior<==>gdb
8747    connection.  */
8748 
8749 infcall_control_state_up
8750 save_infcall_control_state ()
8751 {
8752   infcall_control_state_up inf_status (new struct infcall_control_state);
8753   struct thread_info *tp = inferior_thread ();
8754   struct inferior *inf = current_inferior ();
8755 
8756   inf_status->thread_control = tp->control;
8757   inf_status->inferior_control = inf->control;
8758 
8759   tp->control.step_resume_breakpoint = NULL;
8760   tp->control.exception_resume_breakpoint = NULL;
8761 
8762   /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8763      chain.  If caller's caller is walking the chain, they'll be happier if we
8764      hand them back the original chain when restore_infcall_control_state is
8765      called.  */
8766   tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8767 
8768   /* Other fields:  */
8769   inf_status->stop_stack_dummy = stop_stack_dummy;
8770   inf_status->stopped_by_random_signal = stopped_by_random_signal;
8771 
8772   inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8773 
8774   return inf_status;
8775 }
8776 
8777 static void
8778 restore_selected_frame (const frame_id &fid)
8779 {
8780   frame_info *frame = frame_find_by_id (fid);
8781 
8782   /* If inf_status->selected_frame_id is NULL, there was no previously
8783      selected frame.  */
8784   if (frame == NULL)
8785     {
8786       warning (_("Unable to restore previously selected frame."));
8787       return;
8788     }
8789 
8790   select_frame (frame);
8791 }
8792 
8793 /* Restore inferior session state to INF_STATUS.  */
8794 
8795 void
8796 restore_infcall_control_state (struct infcall_control_state *inf_status)
8797 {
8798   struct thread_info *tp = inferior_thread ();
8799   struct inferior *inf = current_inferior ();
8800 
8801   if (tp->control.step_resume_breakpoint)
8802     tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8803 
8804   if (tp->control.exception_resume_breakpoint)
8805     tp->control.exception_resume_breakpoint->disposition
8806       = disp_del_at_next_stop;
8807 
8808   /* Handle the bpstat_copy of the chain.  */
8809   bpstat_clear (&tp->control.stop_bpstat);
8810 
8811   tp->control = inf_status->thread_control;
8812   inf->control = inf_status->inferior_control;
8813 
8814   /* Other fields:  */
8815   stop_stack_dummy = inf_status->stop_stack_dummy;
8816   stopped_by_random_signal = inf_status->stopped_by_random_signal;
8817 
8818   if (target_has_stack)
8819     {
8820       /* The point of the try/catch is that if the stack is clobbered,
8821          walking the stack might encounter a garbage pointer and
8822          error() trying to dereference it.  */
8823       TRY
8824 	{
8825 	  restore_selected_frame (inf_status->selected_frame_id);
8826 	}
8827       CATCH (ex, RETURN_MASK_ERROR)
8828 	{
8829 	  exception_fprintf (gdb_stderr, ex,
8830 			     "Unable to restore previously selected frame:\n");
8831 	  /* Error in restoring the selected frame.  Select the
8832 	     innermost frame.  */
8833 	  select_frame (get_current_frame ());
8834 	}
8835       END_CATCH
8836     }
8837 
8838   delete inf_status;
8839 }
8840 
8841 void
8842 discard_infcall_control_state (struct infcall_control_state *inf_status)
8843 {
8844   if (inf_status->thread_control.step_resume_breakpoint)
8845     inf_status->thread_control.step_resume_breakpoint->disposition
8846       = disp_del_at_next_stop;
8847 
8848   if (inf_status->thread_control.exception_resume_breakpoint)
8849     inf_status->thread_control.exception_resume_breakpoint->disposition
8850       = disp_del_at_next_stop;
8851 
8852   /* See save_infcall_control_state for info on stop_bpstat.  */
8853   bpstat_clear (&inf_status->thread_control.stop_bpstat);
8854 
8855   delete inf_status;
8856 }
8857 
8858 /* See infrun.h.  */
8859 
8860 void
8861 clear_exit_convenience_vars (void)
8862 {
8863   clear_internalvar (lookup_internalvar ("_exitsignal"));
8864   clear_internalvar (lookup_internalvar ("_exitcode"));
8865 }
8866 
8867 
8868 /* User interface for reverse debugging:
8869    Set exec-direction / show exec-direction commands
8870    (returns error unless target implements to_set_exec_direction method).  */
8871 
8872 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8873 static const char exec_forward[] = "forward";
8874 static const char exec_reverse[] = "reverse";
8875 static const char *exec_direction = exec_forward;
8876 static const char *const exec_direction_names[] = {
8877   exec_forward,
8878   exec_reverse,
8879   NULL
8880 };
8881 
8882 static void
8883 set_exec_direction_func (const char *args, int from_tty,
8884 			 struct cmd_list_element *cmd)
8885 {
8886   if (target_can_execute_reverse)
8887     {
8888       if (!strcmp (exec_direction, exec_forward))
8889 	execution_direction = EXEC_FORWARD;
8890       else if (!strcmp (exec_direction, exec_reverse))
8891 	execution_direction = EXEC_REVERSE;
8892     }
8893   else
8894     {
8895       exec_direction = exec_forward;
8896       error (_("Target does not support this operation."));
8897     }
8898 }
8899 
8900 static void
8901 show_exec_direction_func (struct ui_file *out, int from_tty,
8902 			  struct cmd_list_element *cmd, const char *value)
8903 {
8904   switch (execution_direction) {
8905   case EXEC_FORWARD:
8906     fprintf_filtered (out, _("Forward.\n"));
8907     break;
8908   case EXEC_REVERSE:
8909     fprintf_filtered (out, _("Reverse.\n"));
8910     break;
8911   default:
8912     internal_error (__FILE__, __LINE__,
8913 		    _("bogus execution_direction value: %d"),
8914 		    (int) execution_direction);
8915   }
8916 }
8917 
8918 static void
8919 show_schedule_multiple (struct ui_file *file, int from_tty,
8920 			struct cmd_list_element *c, const char *value)
8921 {
8922   fprintf_filtered (file, _("Resuming the execution of threads "
8923 			    "of all processes is %s.\n"), value);
8924 }
8925 
8926 /* Implementation of `siginfo' variable.  */
8927 
8928 static const struct internalvar_funcs siginfo_funcs =
8929 {
8930   siginfo_make_value,
8931   NULL,
8932   NULL
8933 };
8934 
8935 /* Callback for infrun's target events source.  This is marked when a
8936    thread has a pending status to process.  */
8937 
8938 static void
8939 infrun_async_inferior_event_handler (gdb_client_data data)
8940 {
8941   inferior_event_handler (INF_REG_EVENT, NULL);
8942 }
8943 
8944 void
8945 _initialize_infrun (void)
8946 {
8947   struct cmd_list_element *c;
8948 
8949   /* Register extra event sources in the event loop.  */
8950   infrun_async_inferior_event_token
8951     = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8952 
8953   add_info ("signals", info_signals_command, _("\
8954 What debugger does when program gets various signals.\n\
8955 Specify a signal as argument to print info on that signal only."));
8956   add_info_alias ("handle", "signals", 0);
8957 
8958   c = add_com ("handle", class_run, handle_command, _("\
8959 Specify how to handle signals.\n\
8960 Usage: handle SIGNAL [ACTIONS]\n\
8961 Args are signals and actions to apply to those signals.\n\
8962 If no actions are specified, the current settings for the specified signals\n\
8963 will be displayed instead.\n\
8964 \n\
8965 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8966 from 1-15 are allowed for compatibility with old versions of GDB.\n\
8967 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8968 The special arg \"all\" is recognized to mean all signals except those\n\
8969 used by the debugger, typically SIGTRAP and SIGINT.\n\
8970 \n\
8971 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8972 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8973 Stop means reenter debugger if this signal happens (implies print).\n\
8974 Print means print a message if this signal happens.\n\
8975 Pass means let program see this signal; otherwise program doesn't know.\n\
8976 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8977 Pass and Stop may be combined.\n\
8978 \n\
8979 Multiple signals may be specified.  Signal numbers and signal names\n\
8980 may be interspersed with actions, with the actions being performed for\n\
8981 all signals cumulatively specified."));
8982   set_cmd_completer (c, handle_completer);
8983 
8984   if (!dbx_commands)
8985     stop_command = add_cmd ("stop", class_obscure,
8986 			    not_just_help_class_command, _("\
8987 There is no `stop' command, but you can set a hook on `stop'.\n\
8988 This allows you to set a list of commands to be run each time execution\n\
8989 of the program stops."), &cmdlist);
8990 
8991   add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
8992 Set inferior debugging."), _("\
8993 Show inferior debugging."), _("\
8994 When non-zero, inferior specific debugging is enabled."),
8995 			     NULL,
8996 			     show_debug_infrun,
8997 			     &setdebuglist, &showdebuglist);
8998 
8999   add_setshow_boolean_cmd ("displaced", class_maintenance,
9000 			   &debug_displaced, _("\
9001 Set displaced stepping debugging."), _("\
9002 Show displaced stepping debugging."), _("\
9003 When non-zero, displaced stepping specific debugging is enabled."),
9004 			    NULL,
9005 			    show_debug_displaced,
9006 			    &setdebuglist, &showdebuglist);
9007 
9008   add_setshow_boolean_cmd ("non-stop", no_class,
9009 			   &non_stop_1, _("\
9010 Set whether gdb controls the inferior in non-stop mode."), _("\
9011 Show whether gdb controls the inferior in non-stop mode."), _("\
9012 When debugging a multi-threaded program and this setting is\n\
9013 off (the default, also called all-stop mode), when one thread stops\n\
9014 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9015 all other threads in the program while you interact with the thread of\n\
9016 interest.  When you continue or step a thread, you can allow the other\n\
9017 threads to run, or have them remain stopped, but while you inspect any\n\
9018 thread's state, all threads stop.\n\
9019 \n\
9020 In non-stop mode, when one thread stops, other threads can continue\n\
9021 to run freely.  You'll be able to step each thread independently,\n\
9022 leave it stopped or free to run as needed."),
9023 			   set_non_stop,
9024 			   show_non_stop,
9025 			   &setlist,
9026 			   &showlist);
9027 
9028   for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9029     {
9030       signal_stop[i] = 1;
9031       signal_print[i] = 1;
9032       signal_program[i] = 1;
9033       signal_catch[i] = 0;
9034     }
9035 
9036   /* Signals caused by debugger's own actions should not be given to
9037      the program afterwards.
9038 
9039      Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9040      explicitly specifies that it should be delivered to the target
9041      program.  Typically, that would occur when a user is debugging a
9042      target monitor on a simulator: the target monitor sets a
9043      breakpoint; the simulator encounters this breakpoint and halts
9044      the simulation handing control to GDB; GDB, noting that the stop
9045      address doesn't map to any known breakpoint, returns control back
9046      to the simulator; the simulator then delivers the hardware
9047      equivalent of a GDB_SIGNAL_TRAP to the program being
9048      debugged.  */
9049   signal_program[GDB_SIGNAL_TRAP] = 0;
9050   signal_program[GDB_SIGNAL_INT] = 0;
9051 
9052   /* Signals that are not errors should not normally enter the debugger.  */
9053   signal_stop[GDB_SIGNAL_ALRM] = 0;
9054   signal_print[GDB_SIGNAL_ALRM] = 0;
9055   signal_stop[GDB_SIGNAL_VTALRM] = 0;
9056   signal_print[GDB_SIGNAL_VTALRM] = 0;
9057   signal_stop[GDB_SIGNAL_PROF] = 0;
9058   signal_print[GDB_SIGNAL_PROF] = 0;
9059   signal_stop[GDB_SIGNAL_CHLD] = 0;
9060   signal_print[GDB_SIGNAL_CHLD] = 0;
9061   signal_stop[GDB_SIGNAL_IO] = 0;
9062   signal_print[GDB_SIGNAL_IO] = 0;
9063   signal_stop[GDB_SIGNAL_POLL] = 0;
9064   signal_print[GDB_SIGNAL_POLL] = 0;
9065   signal_stop[GDB_SIGNAL_URG] = 0;
9066   signal_print[GDB_SIGNAL_URG] = 0;
9067   signal_stop[GDB_SIGNAL_WINCH] = 0;
9068   signal_print[GDB_SIGNAL_WINCH] = 0;
9069   signal_stop[GDB_SIGNAL_PRIO] = 0;
9070   signal_print[GDB_SIGNAL_PRIO] = 0;
9071 
9072   /* These signals are used internally by user-level thread
9073      implementations.  (See signal(5) on Solaris.)  Like the above
9074      signals, a healthy program receives and handles them as part of
9075      its normal operation.  */
9076   signal_stop[GDB_SIGNAL_LWP] = 0;
9077   signal_print[GDB_SIGNAL_LWP] = 0;
9078   signal_stop[GDB_SIGNAL_WAITING] = 0;
9079   signal_print[GDB_SIGNAL_WAITING] = 0;
9080   signal_stop[GDB_SIGNAL_CANCEL] = 0;
9081   signal_print[GDB_SIGNAL_CANCEL] = 0;
9082   signal_stop[GDB_SIGNAL_LIBRT] = 0;
9083   signal_print[GDB_SIGNAL_LIBRT] = 0;
9084 
9085   /* Update cached state.  */
9086   signal_cache_update (-1);
9087 
9088   add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9089 			    &stop_on_solib_events, _("\
9090 Set stopping for shared library events."), _("\
9091 Show stopping for shared library events."), _("\
9092 If nonzero, gdb will give control to the user when the dynamic linker\n\
9093 notifies gdb of shared library events.  The most common event of interest\n\
9094 to the user would be loading/unloading of a new library."),
9095 			    set_stop_on_solib_events,
9096 			    show_stop_on_solib_events,
9097 			    &setlist, &showlist);
9098 
9099   add_setshow_enum_cmd ("follow-fork-mode", class_run,
9100 			follow_fork_mode_kind_names,
9101 			&follow_fork_mode_string, _("\
9102 Set debugger response to a program call of fork or vfork."), _("\
9103 Show debugger response to a program call of fork or vfork."), _("\
9104 A fork or vfork creates a new process.  follow-fork-mode can be:\n\
9105   parent  - the original process is debugged after a fork\n\
9106   child   - the new process is debugged after a fork\n\
9107 The unfollowed process will continue to run.\n\
9108 By default, the debugger will follow the parent process."),
9109 			NULL,
9110 			show_follow_fork_mode_string,
9111 			&setlist, &showlist);
9112 
9113   add_setshow_enum_cmd ("follow-exec-mode", class_run,
9114 			follow_exec_mode_names,
9115 			&follow_exec_mode_string, _("\
9116 Set debugger response to a program call of exec."), _("\
9117 Show debugger response to a program call of exec."), _("\
9118 An exec call replaces the program image of a process.\n\
9119 \n\
9120 follow-exec-mode can be:\n\
9121 \n\
9122   new - the debugger creates a new inferior and rebinds the process\n\
9123 to this new inferior.  The program the process was running before\n\
9124 the exec call can be restarted afterwards by restarting the original\n\
9125 inferior.\n\
9126 \n\
9127   same - the debugger keeps the process bound to the same inferior.\n\
9128 The new executable image replaces the previous executable loaded in\n\
9129 the inferior.  Restarting the inferior after the exec call restarts\n\
9130 the executable the process was running after the exec call.\n\
9131 \n\
9132 By default, the debugger will use the same inferior."),
9133 			NULL,
9134 			show_follow_exec_mode_string,
9135 			&setlist, &showlist);
9136 
9137   add_setshow_enum_cmd ("scheduler-locking", class_run,
9138 			scheduler_enums, &scheduler_mode, _("\
9139 Set mode for locking scheduler during execution."), _("\
9140 Show mode for locking scheduler during execution."), _("\
9141 off    == no locking (threads may preempt at any time)\n\
9142 on     == full locking (no thread except the current thread may run)\n\
9143           This applies to both normal execution and replay mode.\n\
9144 step   == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9145           In this mode, other threads may run during other commands.\n\
9146           This applies to both normal execution and replay mode.\n\
9147 replay == scheduler locked in replay mode and unlocked during normal execution."),
9148 			set_schedlock_func,	/* traps on target vector */
9149 			show_scheduler_mode,
9150 			&setlist, &showlist);
9151 
9152   add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9153 Set mode for resuming threads of all processes."), _("\
9154 Show mode for resuming threads of all processes."), _("\
9155 When on, execution commands (such as 'continue' or 'next') resume all\n\
9156 threads of all processes.  When off (which is the default), execution\n\
9157 commands only resume the threads of the current process.  The set of\n\
9158 threads that are resumed is further refined by the scheduler-locking\n\
9159 mode (see help set scheduler-locking)."),
9160 			   NULL,
9161 			   show_schedule_multiple,
9162 			   &setlist, &showlist);
9163 
9164   add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9165 Set mode of the step operation."), _("\
9166 Show mode of the step operation."), _("\
9167 When set, doing a step over a function without debug line information\n\
9168 will stop at the first instruction of that function. Otherwise, the\n\
9169 function is skipped and the step command stops at a different source line."),
9170 			   NULL,
9171 			   show_step_stop_if_no_debug,
9172 			   &setlist, &showlist);
9173 
9174   add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9175 				&can_use_displaced_stepping, _("\
9176 Set debugger's willingness to use displaced stepping."), _("\
9177 Show debugger's willingness to use displaced stepping."), _("\
9178 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9179 supported by the target architecture.  If off, gdb will not use displaced\n\
9180 stepping to step over breakpoints, even if such is supported by the target\n\
9181 architecture.  If auto (which is the default), gdb will use displaced stepping\n\
9182 if the target architecture supports it and non-stop mode is active, but will not\n\
9183 use it in all-stop mode (see help set non-stop)."),
9184 				NULL,
9185 				show_can_use_displaced_stepping,
9186 				&setlist, &showlist);
9187 
9188   add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9189 			&exec_direction, _("Set direction of execution.\n\
9190 Options are 'forward' or 'reverse'."),
9191 			_("Show direction of execution (forward/reverse)."),
9192 			_("Tells gdb whether to execute forward or backward."),
9193 			set_exec_direction_func, show_exec_direction_func,
9194 			&setlist, &showlist);
9195 
9196   /* Set/show detach-on-fork: user-settable mode.  */
9197 
9198   add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9199 Set whether gdb will detach the child of a fork."), _("\
9200 Show whether gdb will detach the child of a fork."), _("\
9201 Tells gdb whether to detach the child of a fork."),
9202 			   NULL, NULL, &setlist, &showlist);
9203 
9204   /* Set/show disable address space randomization mode.  */
9205 
9206   add_setshow_boolean_cmd ("disable-randomization", class_support,
9207 			   &disable_randomization, _("\
9208 Set disabling of debuggee's virtual address space randomization."), _("\
9209 Show disabling of debuggee's virtual address space randomization."), _("\
9210 When this mode is on (which is the default), randomization of the virtual\n\
9211 address space is disabled.  Standalone programs run with the randomization\n\
9212 enabled by default on some platforms."),
9213 			   &set_disable_randomization,
9214 			   &show_disable_randomization,
9215 			   &setlist, &showlist);
9216 
9217   /* ptid initializations */
9218   inferior_ptid = null_ptid;
9219   target_last_wait_ptid = minus_one_ptid;
9220 
9221   gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9222   gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9223   gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9224   gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9225 
9226   /* Explicitly create without lookup, since that tries to create a
9227      value with a void typed value, and when we get here, gdbarch
9228      isn't initialized yet.  At this point, we're quite sure there
9229      isn't another convenience variable of the same name.  */
9230   create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9231 
9232   add_setshow_boolean_cmd ("observer", no_class,
9233 			   &observer_mode_1, _("\
9234 Set whether gdb controls the inferior in observer mode."), _("\
9235 Show whether gdb controls the inferior in observer mode."), _("\
9236 In observer mode, GDB can get data from the inferior, but not\n\
9237 affect its execution.  Registers and memory may not be changed,\n\
9238 breakpoints may not be set, and the program cannot be interrupted\n\
9239 or signalled."),
9240 			   set_observer_mode,
9241 			   show_observer_mode,
9242 			   &setlist,
9243 			   &showlist);
9244 }
9245