1 /* Target-struct-independent code to start (run) and stop an inferior 2 process. 3 4 Copyright (C) 1986-2019 Free Software Foundation, Inc. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 20 21 #include "defs.h" 22 #include "infrun.h" 23 #include <ctype.h> 24 #include "symtab.h" 25 #include "frame.h" 26 #include "inferior.h" 27 #include "breakpoint.h" 28 #include "common/gdb_wait.h" 29 #include "gdbcore.h" 30 #include "gdbcmd.h" 31 #include "cli/cli-script.h" 32 #include "target.h" 33 #include "gdbthread.h" 34 #include "annotate.h" 35 #include "symfile.h" 36 #include "top.h" 37 #include <signal.h> 38 #include "inf-loop.h" 39 #include "regcache.h" 40 #include "value.h" 41 #include "observable.h" 42 #include "language.h" 43 #include "solib.h" 44 #include "main.h" 45 #include "dictionary.h" 46 #include "block.h" 47 #include "mi/mi-common.h" 48 #include "event-top.h" 49 #include "record.h" 50 #include "record-full.h" 51 #include "inline-frame.h" 52 #include "jit.h" 53 #include "tracepoint.h" 54 #include "continuations.h" 55 #include "interps.h" 56 #include "skip.h" 57 #include "probe.h" 58 #include "objfiles.h" 59 #include "completer.h" 60 #include "target-descriptions.h" 61 #include "target-dcache.h" 62 #include "terminal.h" 63 #include "solist.h" 64 #include "event-loop.h" 65 #include "thread-fsm.h" 66 #include "common/enum-flags.h" 67 #include "progspace-and-thread.h" 68 #include "common/gdb_optional.h" 69 #include "arch-utils.h" 70 #include "common/scope-exit.h" 71 72 /* Prototypes for local functions */ 73 74 static void sig_print_info (enum gdb_signal); 75 76 static void sig_print_header (void); 77 78 static int follow_fork (void); 79 80 static int follow_fork_inferior (int follow_child, int detach_fork); 81 82 static void follow_inferior_reset_breakpoints (void); 83 84 static int currently_stepping (struct thread_info *tp); 85 86 void nullify_last_target_wait_ptid (void); 87 88 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *); 89 90 static void insert_step_resume_breakpoint_at_caller (struct frame_info *); 91 92 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR); 93 94 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc); 95 96 static void resume (gdb_signal sig); 97 98 /* Asynchronous signal handler registered as event loop source for 99 when we have pending events ready to be passed to the core. */ 100 static struct async_event_handler *infrun_async_inferior_event_token; 101 102 /* Stores whether infrun_async was previously enabled or disabled. 103 Starts off as -1, indicating "never enabled/disabled". */ 104 static int infrun_is_async = -1; 105 106 /* See infrun.h. */ 107 108 void 109 infrun_async (int enable) 110 { 111 if (infrun_is_async != enable) 112 { 113 infrun_is_async = enable; 114 115 if (debug_infrun) 116 fprintf_unfiltered (gdb_stdlog, 117 "infrun: infrun_async(%d)\n", 118 enable); 119 120 if (enable) 121 mark_async_event_handler (infrun_async_inferior_event_token); 122 else 123 clear_async_event_handler (infrun_async_inferior_event_token); 124 } 125 } 126 127 /* See infrun.h. */ 128 129 void 130 mark_infrun_async_event_handler (void) 131 { 132 mark_async_event_handler (infrun_async_inferior_event_token); 133 } 134 135 /* When set, stop the 'step' command if we enter a function which has 136 no line number information. The normal behavior is that we step 137 over such function. */ 138 int step_stop_if_no_debug = 0; 139 static void 140 show_step_stop_if_no_debug (struct ui_file *file, int from_tty, 141 struct cmd_list_element *c, const char *value) 142 { 143 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); 144 } 145 146 /* proceed and normal_stop use this to notify the user when the 147 inferior stopped in a different thread than it had been running 148 in. */ 149 150 static ptid_t previous_inferior_ptid; 151 152 /* If set (default for legacy reasons), when following a fork, GDB 153 will detach from one of the fork branches, child or parent. 154 Exactly which branch is detached depends on 'set follow-fork-mode' 155 setting. */ 156 157 static int detach_fork = 1; 158 159 int debug_displaced = 0; 160 static void 161 show_debug_displaced (struct ui_file *file, int from_tty, 162 struct cmd_list_element *c, const char *value) 163 { 164 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value); 165 } 166 167 unsigned int debug_infrun = 0; 168 static void 169 show_debug_infrun (struct ui_file *file, int from_tty, 170 struct cmd_list_element *c, const char *value) 171 { 172 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); 173 } 174 175 176 /* Support for disabling address space randomization. */ 177 178 int disable_randomization = 1; 179 180 static void 181 show_disable_randomization (struct ui_file *file, int from_tty, 182 struct cmd_list_element *c, const char *value) 183 { 184 if (target_supports_disable_randomization ()) 185 fprintf_filtered (file, 186 _("Disabling randomization of debuggee's " 187 "virtual address space is %s.\n"), 188 value); 189 else 190 fputs_filtered (_("Disabling randomization of debuggee's " 191 "virtual address space is unsupported on\n" 192 "this platform.\n"), file); 193 } 194 195 static void 196 set_disable_randomization (const char *args, int from_tty, 197 struct cmd_list_element *c) 198 { 199 if (!target_supports_disable_randomization ()) 200 error (_("Disabling randomization of debuggee's " 201 "virtual address space is unsupported on\n" 202 "this platform.")); 203 } 204 205 /* User interface for non-stop mode. */ 206 207 int non_stop = 0; 208 static int non_stop_1 = 0; 209 210 static void 211 set_non_stop (const char *args, int from_tty, 212 struct cmd_list_element *c) 213 { 214 if (target_has_execution) 215 { 216 non_stop_1 = non_stop; 217 error (_("Cannot change this setting while the inferior is running.")); 218 } 219 220 non_stop = non_stop_1; 221 } 222 223 static void 224 show_non_stop (struct ui_file *file, int from_tty, 225 struct cmd_list_element *c, const char *value) 226 { 227 fprintf_filtered (file, 228 _("Controlling the inferior in non-stop mode is %s.\n"), 229 value); 230 } 231 232 /* "Observer mode" is somewhat like a more extreme version of 233 non-stop, in which all GDB operations that might affect the 234 target's execution have been disabled. */ 235 236 int observer_mode = 0; 237 static int observer_mode_1 = 0; 238 239 static void 240 set_observer_mode (const char *args, int from_tty, 241 struct cmd_list_element *c) 242 { 243 if (target_has_execution) 244 { 245 observer_mode_1 = observer_mode; 246 error (_("Cannot change this setting while the inferior is running.")); 247 } 248 249 observer_mode = observer_mode_1; 250 251 may_write_registers = !observer_mode; 252 may_write_memory = !observer_mode; 253 may_insert_breakpoints = !observer_mode; 254 may_insert_tracepoints = !observer_mode; 255 /* We can insert fast tracepoints in or out of observer mode, 256 but enable them if we're going into this mode. */ 257 if (observer_mode) 258 may_insert_fast_tracepoints = 1; 259 may_stop = !observer_mode; 260 update_target_permissions (); 261 262 /* Going *into* observer mode we must force non-stop, then 263 going out we leave it that way. */ 264 if (observer_mode) 265 { 266 pagination_enabled = 0; 267 non_stop = non_stop_1 = 1; 268 } 269 270 if (from_tty) 271 printf_filtered (_("Observer mode is now %s.\n"), 272 (observer_mode ? "on" : "off")); 273 } 274 275 static void 276 show_observer_mode (struct ui_file *file, int from_tty, 277 struct cmd_list_element *c, const char *value) 278 { 279 fprintf_filtered (file, _("Observer mode is %s.\n"), value); 280 } 281 282 /* This updates the value of observer mode based on changes in 283 permissions. Note that we are deliberately ignoring the values of 284 may-write-registers and may-write-memory, since the user may have 285 reason to enable these during a session, for instance to turn on a 286 debugging-related global. */ 287 288 void 289 update_observer_mode (void) 290 { 291 int newval; 292 293 newval = (!may_insert_breakpoints 294 && !may_insert_tracepoints 295 && may_insert_fast_tracepoints 296 && !may_stop 297 && non_stop); 298 299 /* Let the user know if things change. */ 300 if (newval != observer_mode) 301 printf_filtered (_("Observer mode is now %s.\n"), 302 (newval ? "on" : "off")); 303 304 observer_mode = observer_mode_1 = newval; 305 } 306 307 /* Tables of how to react to signals; the user sets them. */ 308 309 static unsigned char signal_stop[GDB_SIGNAL_LAST]; 310 static unsigned char signal_print[GDB_SIGNAL_LAST]; 311 static unsigned char signal_program[GDB_SIGNAL_LAST]; 312 313 /* Table of signals that are registered with "catch signal". A 314 non-zero entry indicates that the signal is caught by some "catch 315 signal" command. */ 316 static unsigned char signal_catch[GDB_SIGNAL_LAST]; 317 318 /* Table of signals that the target may silently handle. 319 This is automatically determined from the flags above, 320 and simply cached here. */ 321 static unsigned char signal_pass[GDB_SIGNAL_LAST]; 322 323 #define SET_SIGS(nsigs,sigs,flags) \ 324 do { \ 325 int signum = (nsigs); \ 326 while (signum-- > 0) \ 327 if ((sigs)[signum]) \ 328 (flags)[signum] = 1; \ 329 } while (0) 330 331 #define UNSET_SIGS(nsigs,sigs,flags) \ 332 do { \ 333 int signum = (nsigs); \ 334 while (signum-- > 0) \ 335 if ((sigs)[signum]) \ 336 (flags)[signum] = 0; \ 337 } while (0) 338 339 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of 340 this function is to avoid exporting `signal_program'. */ 341 342 void 343 update_signals_program_target (void) 344 { 345 target_program_signals (signal_program); 346 } 347 348 /* Value to pass to target_resume() to cause all threads to resume. */ 349 350 #define RESUME_ALL minus_one_ptid 351 352 /* Command list pointer for the "stop" placeholder. */ 353 354 static struct cmd_list_element *stop_command; 355 356 /* Nonzero if we want to give control to the user when we're notified 357 of shared library events by the dynamic linker. */ 358 int stop_on_solib_events; 359 360 /* Enable or disable optional shared library event breakpoints 361 as appropriate when the above flag is changed. */ 362 363 static void 364 set_stop_on_solib_events (const char *args, 365 int from_tty, struct cmd_list_element *c) 366 { 367 update_solib_breakpoints (); 368 } 369 370 static void 371 show_stop_on_solib_events (struct ui_file *file, int from_tty, 372 struct cmd_list_element *c, const char *value) 373 { 374 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), 375 value); 376 } 377 378 /* Nonzero after stop if current stack frame should be printed. */ 379 380 static int stop_print_frame; 381 382 /* This is a cached copy of the pid/waitstatus of the last event 383 returned by target_wait()/deprecated_target_wait_hook(). This 384 information is returned by get_last_target_status(). */ 385 static ptid_t target_last_wait_ptid; 386 static struct target_waitstatus target_last_waitstatus; 387 388 void init_thread_stepping_state (struct thread_info *tss); 389 390 static const char follow_fork_mode_child[] = "child"; 391 static const char follow_fork_mode_parent[] = "parent"; 392 393 static const char *const follow_fork_mode_kind_names[] = { 394 follow_fork_mode_child, 395 follow_fork_mode_parent, 396 NULL 397 }; 398 399 static const char *follow_fork_mode_string = follow_fork_mode_parent; 400 static void 401 show_follow_fork_mode_string (struct ui_file *file, int from_tty, 402 struct cmd_list_element *c, const char *value) 403 { 404 fprintf_filtered (file, 405 _("Debugger response to a program " 406 "call of fork or vfork is \"%s\".\n"), 407 value); 408 } 409 410 411 /* Handle changes to the inferior list based on the type of fork, 412 which process is being followed, and whether the other process 413 should be detached. On entry inferior_ptid must be the ptid of 414 the fork parent. At return inferior_ptid is the ptid of the 415 followed inferior. */ 416 417 static int 418 follow_fork_inferior (int follow_child, int detach_fork) 419 { 420 int has_vforked; 421 ptid_t parent_ptid, child_ptid; 422 423 has_vforked = (inferior_thread ()->pending_follow.kind 424 == TARGET_WAITKIND_VFORKED); 425 parent_ptid = inferior_ptid; 426 child_ptid = inferior_thread ()->pending_follow.value.related_pid; 427 428 if (has_vforked 429 && !non_stop /* Non-stop always resumes both branches. */ 430 && current_ui->prompt_state == PROMPT_BLOCKED 431 && !(follow_child || detach_fork || sched_multi)) 432 { 433 /* The parent stays blocked inside the vfork syscall until the 434 child execs or exits. If we don't let the child run, then 435 the parent stays blocked. If we're telling the parent to run 436 in the foreground, the user will not be able to ctrl-c to get 437 back the terminal, effectively hanging the debug session. */ 438 fprintf_filtered (gdb_stderr, _("\ 439 Can not resume the parent process over vfork in the foreground while\n\ 440 holding the child stopped. Try \"set detach-on-fork\" or \ 441 \"set schedule-multiple\".\n")); 442 /* FIXME output string > 80 columns. */ 443 return 1; 444 } 445 446 if (!follow_child) 447 { 448 /* Detach new forked process? */ 449 if (detach_fork) 450 { 451 /* Before detaching from the child, remove all breakpoints 452 from it. If we forked, then this has already been taken 453 care of by infrun.c. If we vforked however, any 454 breakpoint inserted in the parent is visible in the 455 child, even those added while stopped in a vfork 456 catchpoint. This will remove the breakpoints from the 457 parent also, but they'll be reinserted below. */ 458 if (has_vforked) 459 { 460 /* Keep breakpoints list in sync. */ 461 remove_breakpoints_inf (current_inferior ()); 462 } 463 464 if (print_inferior_events) 465 { 466 /* Ensure that we have a process ptid. */ 467 ptid_t process_ptid = ptid_t (child_ptid.pid ()); 468 469 target_terminal::ours_for_output (); 470 fprintf_filtered (gdb_stdlog, 471 _("[Detaching after %s from child %s]\n"), 472 has_vforked ? "vfork" : "fork", 473 target_pid_to_str (process_ptid)); 474 } 475 } 476 else 477 { 478 struct inferior *parent_inf, *child_inf; 479 480 /* Add process to GDB's tables. */ 481 child_inf = add_inferior (child_ptid.pid ()); 482 483 parent_inf = current_inferior (); 484 child_inf->attach_flag = parent_inf->attach_flag; 485 copy_terminal_info (child_inf, parent_inf); 486 child_inf->gdbarch = parent_inf->gdbarch; 487 copy_inferior_target_desc_info (child_inf, parent_inf); 488 489 scoped_restore_current_pspace_and_thread restore_pspace_thread; 490 491 inferior_ptid = child_ptid; 492 add_thread_silent (inferior_ptid); 493 set_current_inferior (child_inf); 494 child_inf->symfile_flags = SYMFILE_NO_READ; 495 496 /* If this is a vfork child, then the address-space is 497 shared with the parent. */ 498 if (has_vforked) 499 { 500 child_inf->pspace = parent_inf->pspace; 501 child_inf->aspace = parent_inf->aspace; 502 503 /* The parent will be frozen until the child is done 504 with the shared region. Keep track of the 505 parent. */ 506 child_inf->vfork_parent = parent_inf; 507 child_inf->pending_detach = 0; 508 parent_inf->vfork_child = child_inf; 509 parent_inf->pending_detach = 0; 510 } 511 else 512 { 513 child_inf->aspace = new_address_space (); 514 child_inf->pspace = new program_space (child_inf->aspace); 515 child_inf->removable = 1; 516 set_current_program_space (child_inf->pspace); 517 clone_program_space (child_inf->pspace, parent_inf->pspace); 518 519 /* Let the shared library layer (e.g., solib-svr4) learn 520 about this new process, relocate the cloned exec, pull 521 in shared libraries, and install the solib event 522 breakpoint. If a "cloned-VM" event was propagated 523 better throughout the core, this wouldn't be 524 required. */ 525 solib_create_inferior_hook (0); 526 } 527 } 528 529 if (has_vforked) 530 { 531 struct inferior *parent_inf; 532 533 parent_inf = current_inferior (); 534 535 /* If we detached from the child, then we have to be careful 536 to not insert breakpoints in the parent until the child 537 is done with the shared memory region. However, if we're 538 staying attached to the child, then we can and should 539 insert breakpoints, so that we can debug it. A 540 subsequent child exec or exit is enough to know when does 541 the child stops using the parent's address space. */ 542 parent_inf->waiting_for_vfork_done = detach_fork; 543 parent_inf->pspace->breakpoints_not_allowed = detach_fork; 544 } 545 } 546 else 547 { 548 /* Follow the child. */ 549 struct inferior *parent_inf, *child_inf; 550 struct program_space *parent_pspace; 551 552 if (print_inferior_events) 553 { 554 std::string parent_pid = target_pid_to_str (parent_ptid); 555 std::string child_pid = target_pid_to_str (child_ptid); 556 557 target_terminal::ours_for_output (); 558 fprintf_filtered (gdb_stdlog, 559 _("[Attaching after %s %s to child %s]\n"), 560 parent_pid.c_str (), 561 has_vforked ? "vfork" : "fork", 562 child_pid.c_str ()); 563 } 564 565 /* Add the new inferior first, so that the target_detach below 566 doesn't unpush the target. */ 567 568 child_inf = add_inferior (child_ptid.pid ()); 569 570 parent_inf = current_inferior (); 571 child_inf->attach_flag = parent_inf->attach_flag; 572 copy_terminal_info (child_inf, parent_inf); 573 child_inf->gdbarch = parent_inf->gdbarch; 574 copy_inferior_target_desc_info (child_inf, parent_inf); 575 576 parent_pspace = parent_inf->pspace; 577 578 /* If we're vforking, we want to hold on to the parent until the 579 child exits or execs. At child exec or exit time we can 580 remove the old breakpoints from the parent and detach or 581 resume debugging it. Otherwise, detach the parent now; we'll 582 want to reuse it's program/address spaces, but we can't set 583 them to the child before removing breakpoints from the 584 parent, otherwise, the breakpoints module could decide to 585 remove breakpoints from the wrong process (since they'd be 586 assigned to the same address space). */ 587 588 if (has_vforked) 589 { 590 gdb_assert (child_inf->vfork_parent == NULL); 591 gdb_assert (parent_inf->vfork_child == NULL); 592 child_inf->vfork_parent = parent_inf; 593 child_inf->pending_detach = 0; 594 parent_inf->vfork_child = child_inf; 595 parent_inf->pending_detach = detach_fork; 596 parent_inf->waiting_for_vfork_done = 0; 597 } 598 else if (detach_fork) 599 { 600 if (print_inferior_events) 601 { 602 /* Ensure that we have a process ptid. */ 603 ptid_t process_ptid = ptid_t (parent_ptid.pid ()); 604 605 target_terminal::ours_for_output (); 606 fprintf_filtered (gdb_stdlog, 607 _("[Detaching after fork from " 608 "parent %s]\n"), 609 target_pid_to_str (process_ptid)); 610 } 611 612 target_detach (parent_inf, 0); 613 } 614 615 /* Note that the detach above makes PARENT_INF dangling. */ 616 617 /* Add the child thread to the appropriate lists, and switch to 618 this new thread, before cloning the program space, and 619 informing the solib layer about this new process. */ 620 621 inferior_ptid = child_ptid; 622 add_thread_silent (inferior_ptid); 623 set_current_inferior (child_inf); 624 625 /* If this is a vfork child, then the address-space is shared 626 with the parent. If we detached from the parent, then we can 627 reuse the parent's program/address spaces. */ 628 if (has_vforked || detach_fork) 629 { 630 child_inf->pspace = parent_pspace; 631 child_inf->aspace = child_inf->pspace->aspace; 632 } 633 else 634 { 635 child_inf->aspace = new_address_space (); 636 child_inf->pspace = new program_space (child_inf->aspace); 637 child_inf->removable = 1; 638 child_inf->symfile_flags = SYMFILE_NO_READ; 639 set_current_program_space (child_inf->pspace); 640 clone_program_space (child_inf->pspace, parent_pspace); 641 642 /* Let the shared library layer (e.g., solib-svr4) learn 643 about this new process, relocate the cloned exec, pull in 644 shared libraries, and install the solib event breakpoint. 645 If a "cloned-VM" event was propagated better throughout 646 the core, this wouldn't be required. */ 647 solib_create_inferior_hook (0); 648 } 649 } 650 651 return target_follow_fork (follow_child, detach_fork); 652 } 653 654 /* Tell the target to follow the fork we're stopped at. Returns true 655 if the inferior should be resumed; false, if the target for some 656 reason decided it's best not to resume. */ 657 658 static int 659 follow_fork (void) 660 { 661 int follow_child = (follow_fork_mode_string == follow_fork_mode_child); 662 int should_resume = 1; 663 struct thread_info *tp; 664 665 /* Copy user stepping state to the new inferior thread. FIXME: the 666 followed fork child thread should have a copy of most of the 667 parent thread structure's run control related fields, not just these. 668 Initialized to avoid "may be used uninitialized" warnings from gcc. */ 669 struct breakpoint *step_resume_breakpoint = NULL; 670 struct breakpoint *exception_resume_breakpoint = NULL; 671 CORE_ADDR step_range_start = 0; 672 CORE_ADDR step_range_end = 0; 673 struct frame_id step_frame_id = { 0 }; 674 struct thread_fsm *thread_fsm = NULL; 675 676 if (!non_stop) 677 { 678 ptid_t wait_ptid; 679 struct target_waitstatus wait_status; 680 681 /* Get the last target status returned by target_wait(). */ 682 get_last_target_status (&wait_ptid, &wait_status); 683 684 /* If not stopped at a fork event, then there's nothing else to 685 do. */ 686 if (wait_status.kind != TARGET_WAITKIND_FORKED 687 && wait_status.kind != TARGET_WAITKIND_VFORKED) 688 return 1; 689 690 /* Check if we switched over from WAIT_PTID, since the event was 691 reported. */ 692 if (wait_ptid != minus_one_ptid 693 && inferior_ptid != wait_ptid) 694 { 695 /* We did. Switch back to WAIT_PTID thread, to tell the 696 target to follow it (in either direction). We'll 697 afterwards refuse to resume, and inform the user what 698 happened. */ 699 thread_info *wait_thread 700 = find_thread_ptid (wait_ptid); 701 switch_to_thread (wait_thread); 702 should_resume = 0; 703 } 704 } 705 706 tp = inferior_thread (); 707 708 /* If there were any forks/vforks that were caught and are now to be 709 followed, then do so now. */ 710 switch (tp->pending_follow.kind) 711 { 712 case TARGET_WAITKIND_FORKED: 713 case TARGET_WAITKIND_VFORKED: 714 { 715 ptid_t parent, child; 716 717 /* If the user did a next/step, etc, over a fork call, 718 preserve the stepping state in the fork child. */ 719 if (follow_child && should_resume) 720 { 721 step_resume_breakpoint = clone_momentary_breakpoint 722 (tp->control.step_resume_breakpoint); 723 step_range_start = tp->control.step_range_start; 724 step_range_end = tp->control.step_range_end; 725 step_frame_id = tp->control.step_frame_id; 726 exception_resume_breakpoint 727 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint); 728 thread_fsm = tp->thread_fsm; 729 730 /* For now, delete the parent's sr breakpoint, otherwise, 731 parent/child sr breakpoints are considered duplicates, 732 and the child version will not be installed. Remove 733 this when the breakpoints module becomes aware of 734 inferiors and address spaces. */ 735 delete_step_resume_breakpoint (tp); 736 tp->control.step_range_start = 0; 737 tp->control.step_range_end = 0; 738 tp->control.step_frame_id = null_frame_id; 739 delete_exception_resume_breakpoint (tp); 740 tp->thread_fsm = NULL; 741 } 742 743 parent = inferior_ptid; 744 child = tp->pending_follow.value.related_pid; 745 746 /* Set up inferior(s) as specified by the caller, and tell the 747 target to do whatever is necessary to follow either parent 748 or child. */ 749 if (follow_fork_inferior (follow_child, detach_fork)) 750 { 751 /* Target refused to follow, or there's some other reason 752 we shouldn't resume. */ 753 should_resume = 0; 754 } 755 else 756 { 757 /* This pending follow fork event is now handled, one way 758 or another. The previous selected thread may be gone 759 from the lists by now, but if it is still around, need 760 to clear the pending follow request. */ 761 tp = find_thread_ptid (parent); 762 if (tp) 763 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS; 764 765 /* This makes sure we don't try to apply the "Switched 766 over from WAIT_PID" logic above. */ 767 nullify_last_target_wait_ptid (); 768 769 /* If we followed the child, switch to it... */ 770 if (follow_child) 771 { 772 thread_info *child_thr = find_thread_ptid (child); 773 switch_to_thread (child_thr); 774 775 /* ... and preserve the stepping state, in case the 776 user was stepping over the fork call. */ 777 if (should_resume) 778 { 779 tp = inferior_thread (); 780 tp->control.step_resume_breakpoint 781 = step_resume_breakpoint; 782 tp->control.step_range_start = step_range_start; 783 tp->control.step_range_end = step_range_end; 784 tp->control.step_frame_id = step_frame_id; 785 tp->control.exception_resume_breakpoint 786 = exception_resume_breakpoint; 787 tp->thread_fsm = thread_fsm; 788 } 789 else 790 { 791 /* If we get here, it was because we're trying to 792 resume from a fork catchpoint, but, the user 793 has switched threads away from the thread that 794 forked. In that case, the resume command 795 issued is most likely not applicable to the 796 child, so just warn, and refuse to resume. */ 797 warning (_("Not resuming: switched threads " 798 "before following fork child.")); 799 } 800 801 /* Reset breakpoints in the child as appropriate. */ 802 follow_inferior_reset_breakpoints (); 803 } 804 } 805 } 806 break; 807 case TARGET_WAITKIND_SPURIOUS: 808 /* Nothing to follow. */ 809 break; 810 default: 811 internal_error (__FILE__, __LINE__, 812 "Unexpected pending_follow.kind %d\n", 813 tp->pending_follow.kind); 814 break; 815 } 816 817 return should_resume; 818 } 819 820 static void 821 follow_inferior_reset_breakpoints (void) 822 { 823 struct thread_info *tp = inferior_thread (); 824 825 /* Was there a step_resume breakpoint? (There was if the user 826 did a "next" at the fork() call.) If so, explicitly reset its 827 thread number. Cloned step_resume breakpoints are disabled on 828 creation, so enable it here now that it is associated with the 829 correct thread. 830 831 step_resumes are a form of bp that are made to be per-thread. 832 Since we created the step_resume bp when the parent process 833 was being debugged, and now are switching to the child process, 834 from the breakpoint package's viewpoint, that's a switch of 835 "threads". We must update the bp's notion of which thread 836 it is for, or it'll be ignored when it triggers. */ 837 838 if (tp->control.step_resume_breakpoint) 839 { 840 breakpoint_re_set_thread (tp->control.step_resume_breakpoint); 841 tp->control.step_resume_breakpoint->loc->enabled = 1; 842 } 843 844 /* Treat exception_resume breakpoints like step_resume breakpoints. */ 845 if (tp->control.exception_resume_breakpoint) 846 { 847 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint); 848 tp->control.exception_resume_breakpoint->loc->enabled = 1; 849 } 850 851 /* Reinsert all breakpoints in the child. The user may have set 852 breakpoints after catching the fork, in which case those 853 were never set in the child, but only in the parent. This makes 854 sure the inserted breakpoints match the breakpoint list. */ 855 856 breakpoint_re_set (); 857 insert_breakpoints (); 858 } 859 860 /* The child has exited or execed: resume threads of the parent the 861 user wanted to be executing. */ 862 863 static int 864 proceed_after_vfork_done (struct thread_info *thread, 865 void *arg) 866 { 867 int pid = * (int *) arg; 868 869 if (thread->ptid.pid () == pid 870 && thread->state == THREAD_RUNNING 871 && !thread->executing 872 && !thread->stop_requested 873 && thread->suspend.stop_signal == GDB_SIGNAL_0) 874 { 875 if (debug_infrun) 876 fprintf_unfiltered (gdb_stdlog, 877 "infrun: resuming vfork parent thread %s\n", 878 target_pid_to_str (thread->ptid)); 879 880 switch_to_thread (thread); 881 clear_proceed_status (0); 882 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT); 883 } 884 885 return 0; 886 } 887 888 /* Save/restore inferior_ptid, current program space and current 889 inferior. Only use this if the current context points at an exited 890 inferior (and therefore there's no current thread to save). */ 891 class scoped_restore_exited_inferior 892 { 893 public: 894 scoped_restore_exited_inferior () 895 : m_saved_ptid (&inferior_ptid) 896 {} 897 898 private: 899 scoped_restore_tmpl<ptid_t> m_saved_ptid; 900 scoped_restore_current_program_space m_pspace; 901 scoped_restore_current_inferior m_inferior; 902 }; 903 904 /* Called whenever we notice an exec or exit event, to handle 905 detaching or resuming a vfork parent. */ 906 907 static void 908 handle_vfork_child_exec_or_exit (int exec) 909 { 910 struct inferior *inf = current_inferior (); 911 912 if (inf->vfork_parent) 913 { 914 int resume_parent = -1; 915 916 /* This exec or exit marks the end of the shared memory region 917 between the parent and the child. If the user wanted to 918 detach from the parent, now is the time. */ 919 920 if (inf->vfork_parent->pending_detach) 921 { 922 struct thread_info *tp; 923 struct program_space *pspace; 924 struct address_space *aspace; 925 926 /* follow-fork child, detach-on-fork on. */ 927 928 inf->vfork_parent->pending_detach = 0; 929 930 gdb::optional<scoped_restore_exited_inferior> 931 maybe_restore_inferior; 932 gdb::optional<scoped_restore_current_pspace_and_thread> 933 maybe_restore_thread; 934 935 /* If we're handling a child exit, then inferior_ptid points 936 at the inferior's pid, not to a thread. */ 937 if (!exec) 938 maybe_restore_inferior.emplace (); 939 else 940 maybe_restore_thread.emplace (); 941 942 /* We're letting loose of the parent. */ 943 tp = any_live_thread_of_inferior (inf->vfork_parent); 944 switch_to_thread (tp); 945 946 /* We're about to detach from the parent, which implicitly 947 removes breakpoints from its address space. There's a 948 catch here: we want to reuse the spaces for the child, 949 but, parent/child are still sharing the pspace at this 950 point, although the exec in reality makes the kernel give 951 the child a fresh set of new pages. The problem here is 952 that the breakpoints module being unaware of this, would 953 likely chose the child process to write to the parent 954 address space. Swapping the child temporarily away from 955 the spaces has the desired effect. Yes, this is "sort 956 of" a hack. */ 957 958 pspace = inf->pspace; 959 aspace = inf->aspace; 960 inf->aspace = NULL; 961 inf->pspace = NULL; 962 963 if (print_inferior_events) 964 { 965 const char *pidstr 966 = target_pid_to_str (ptid_t (inf->vfork_parent->pid)); 967 968 target_terminal::ours_for_output (); 969 970 if (exec) 971 { 972 fprintf_filtered (gdb_stdlog, 973 _("[Detaching vfork parent %s " 974 "after child exec]\n"), pidstr); 975 } 976 else 977 { 978 fprintf_filtered (gdb_stdlog, 979 _("[Detaching vfork parent %s " 980 "after child exit]\n"), pidstr); 981 } 982 } 983 984 target_detach (inf->vfork_parent, 0); 985 986 /* Put it back. */ 987 inf->pspace = pspace; 988 inf->aspace = aspace; 989 } 990 else if (exec) 991 { 992 /* We're staying attached to the parent, so, really give the 993 child a new address space. */ 994 inf->pspace = new program_space (maybe_new_address_space ()); 995 inf->aspace = inf->pspace->aspace; 996 inf->removable = 1; 997 set_current_program_space (inf->pspace); 998 999 resume_parent = inf->vfork_parent->pid; 1000 1001 /* Break the bonds. */ 1002 inf->vfork_parent->vfork_child = NULL; 1003 } 1004 else 1005 { 1006 struct program_space *pspace; 1007 1008 /* If this is a vfork child exiting, then the pspace and 1009 aspaces were shared with the parent. Since we're 1010 reporting the process exit, we'll be mourning all that is 1011 found in the address space, and switching to null_ptid, 1012 preparing to start a new inferior. But, since we don't 1013 want to clobber the parent's address/program spaces, we 1014 go ahead and create a new one for this exiting 1015 inferior. */ 1016 1017 /* Switch to null_ptid while running clone_program_space, so 1018 that clone_program_space doesn't want to read the 1019 selected frame of a dead process. */ 1020 scoped_restore restore_ptid 1021 = make_scoped_restore (&inferior_ptid, null_ptid); 1022 1023 /* This inferior is dead, so avoid giving the breakpoints 1024 module the option to write through to it (cloning a 1025 program space resets breakpoints). */ 1026 inf->aspace = NULL; 1027 inf->pspace = NULL; 1028 pspace = new program_space (maybe_new_address_space ()); 1029 set_current_program_space (pspace); 1030 inf->removable = 1; 1031 inf->symfile_flags = SYMFILE_NO_READ; 1032 clone_program_space (pspace, inf->vfork_parent->pspace); 1033 inf->pspace = pspace; 1034 inf->aspace = pspace->aspace; 1035 1036 resume_parent = inf->vfork_parent->pid; 1037 /* Break the bonds. */ 1038 inf->vfork_parent->vfork_child = NULL; 1039 } 1040 1041 inf->vfork_parent = NULL; 1042 1043 gdb_assert (current_program_space == inf->pspace); 1044 1045 if (non_stop && resume_parent != -1) 1046 { 1047 /* If the user wanted the parent to be running, let it go 1048 free now. */ 1049 scoped_restore_current_thread restore_thread; 1050 1051 if (debug_infrun) 1052 fprintf_unfiltered (gdb_stdlog, 1053 "infrun: resuming vfork parent process %d\n", 1054 resume_parent); 1055 1056 iterate_over_threads (proceed_after_vfork_done, &resume_parent); 1057 } 1058 } 1059 } 1060 1061 /* Enum strings for "set|show follow-exec-mode". */ 1062 1063 static const char follow_exec_mode_new[] = "new"; 1064 static const char follow_exec_mode_same[] = "same"; 1065 static const char *const follow_exec_mode_names[] = 1066 { 1067 follow_exec_mode_new, 1068 follow_exec_mode_same, 1069 NULL, 1070 }; 1071 1072 static const char *follow_exec_mode_string = follow_exec_mode_same; 1073 static void 1074 show_follow_exec_mode_string (struct ui_file *file, int from_tty, 1075 struct cmd_list_element *c, const char *value) 1076 { 1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value); 1078 } 1079 1080 /* EXEC_FILE_TARGET is assumed to be non-NULL. */ 1081 1082 static void 1083 follow_exec (ptid_t ptid, char *exec_file_target) 1084 { 1085 struct inferior *inf = current_inferior (); 1086 int pid = ptid.pid (); 1087 ptid_t process_ptid; 1088 1089 /* This is an exec event that we actually wish to pay attention to. 1090 Refresh our symbol table to the newly exec'd program, remove any 1091 momentary bp's, etc. 1092 1093 If there are breakpoints, they aren't really inserted now, 1094 since the exec() transformed our inferior into a fresh set 1095 of instructions. 1096 1097 We want to preserve symbolic breakpoints on the list, since 1098 we have hopes that they can be reset after the new a.out's 1099 symbol table is read. 1100 1101 However, any "raw" breakpoints must be removed from the list 1102 (e.g., the solib bp's), since their address is probably invalid 1103 now. 1104 1105 And, we DON'T want to call delete_breakpoints() here, since 1106 that may write the bp's "shadow contents" (the instruction 1107 value that was overwritten witha TRAP instruction). Since 1108 we now have a new a.out, those shadow contents aren't valid. */ 1109 1110 mark_breakpoints_out (); 1111 1112 /* The target reports the exec event to the main thread, even if 1113 some other thread does the exec, and even if the main thread was 1114 stopped or already gone. We may still have non-leader threads of 1115 the process on our list. E.g., on targets that don't have thread 1116 exit events (like remote); or on native Linux in non-stop mode if 1117 there were only two threads in the inferior and the non-leader 1118 one is the one that execs (and nothing forces an update of the 1119 thread list up to here). When debugging remotely, it's best to 1120 avoid extra traffic, when possible, so avoid syncing the thread 1121 list with the target, and instead go ahead and delete all threads 1122 of the process but one that reported the event. Note this must 1123 be done before calling update_breakpoints_after_exec, as 1124 otherwise clearing the threads' resources would reference stale 1125 thread breakpoints -- it may have been one of these threads that 1126 stepped across the exec. We could just clear their stepping 1127 states, but as long as we're iterating, might as well delete 1128 them. Deleting them now rather than at the next user-visible 1129 stop provides a nicer sequence of events for user and MI 1130 notifications. */ 1131 for (thread_info *th : all_threads_safe ()) 1132 if (th->ptid.pid () == pid && th->ptid != ptid) 1133 delete_thread (th); 1134 1135 /* We also need to clear any left over stale state for the 1136 leader/event thread. E.g., if there was any step-resume 1137 breakpoint or similar, it's gone now. We cannot truly 1138 step-to-next statement through an exec(). */ 1139 thread_info *th = inferior_thread (); 1140 th->control.step_resume_breakpoint = NULL; 1141 th->control.exception_resume_breakpoint = NULL; 1142 th->control.single_step_breakpoints = NULL; 1143 th->control.step_range_start = 0; 1144 th->control.step_range_end = 0; 1145 1146 /* The user may have had the main thread held stopped in the 1147 previous image (e.g., schedlock on, or non-stop). Release 1148 it now. */ 1149 th->stop_requested = 0; 1150 1151 update_breakpoints_after_exec (); 1152 1153 /* What is this a.out's name? */ 1154 process_ptid = ptid_t (pid); 1155 printf_unfiltered (_("%s is executing new program: %s\n"), 1156 target_pid_to_str (process_ptid), 1157 exec_file_target); 1158 1159 /* We've followed the inferior through an exec. Therefore, the 1160 inferior has essentially been killed & reborn. */ 1161 1162 gdb_flush (gdb_stdout); 1163 1164 breakpoint_init_inferior (inf_execd); 1165 1166 gdb::unique_xmalloc_ptr<char> exec_file_host 1167 = exec_file_find (exec_file_target, NULL); 1168 1169 /* If we were unable to map the executable target pathname onto a host 1170 pathname, tell the user that. Otherwise GDB's subsequent behavior 1171 is confusing. Maybe it would even be better to stop at this point 1172 so that the user can specify a file manually before continuing. */ 1173 if (exec_file_host == NULL) 1174 warning (_("Could not load symbols for executable %s.\n" 1175 "Do you need \"set sysroot\"?"), 1176 exec_file_target); 1177 1178 /* Reset the shared library package. This ensures that we get a 1179 shlib event when the child reaches "_start", at which point the 1180 dld will have had a chance to initialize the child. */ 1181 /* Also, loading a symbol file below may trigger symbol lookups, and 1182 we don't want those to be satisfied by the libraries of the 1183 previous incarnation of this process. */ 1184 no_shared_libraries (NULL, 0); 1185 1186 if (follow_exec_mode_string == follow_exec_mode_new) 1187 { 1188 /* The user wants to keep the old inferior and program spaces 1189 around. Create a new fresh one, and switch to it. */ 1190 1191 /* Do exit processing for the original inferior before setting the new 1192 inferior's pid. Having two inferiors with the same pid would confuse 1193 find_inferior_p(t)id. Transfer the terminal state and info from the 1194 old to the new inferior. */ 1195 inf = add_inferior_with_spaces (); 1196 swap_terminal_info (inf, current_inferior ()); 1197 exit_inferior_silent (current_inferior ()); 1198 1199 inf->pid = pid; 1200 target_follow_exec (inf, exec_file_target); 1201 1202 set_current_inferior (inf); 1203 set_current_program_space (inf->pspace); 1204 add_thread (ptid); 1205 } 1206 else 1207 { 1208 /* The old description may no longer be fit for the new image. 1209 E.g, a 64-bit process exec'ed a 32-bit process. Clear the 1210 old description; we'll read a new one below. No need to do 1211 this on "follow-exec-mode new", as the old inferior stays 1212 around (its description is later cleared/refetched on 1213 restart). */ 1214 target_clear_description (); 1215 } 1216 1217 gdb_assert (current_program_space == inf->pspace); 1218 1219 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used 1220 because the proper displacement for a PIE (Position Independent 1221 Executable) main symbol file will only be computed by 1222 solib_create_inferior_hook below. breakpoint_re_set would fail 1223 to insert the breakpoints with the zero displacement. */ 1224 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET); 1225 1226 /* If the target can specify a description, read it. Must do this 1227 after flipping to the new executable (because the target supplied 1228 description must be compatible with the executable's 1229 architecture, and the old executable may e.g., be 32-bit, while 1230 the new one 64-bit), and before anything involving memory or 1231 registers. */ 1232 target_find_description (); 1233 1234 solib_create_inferior_hook (0); 1235 1236 jit_inferior_created_hook (); 1237 1238 breakpoint_re_set (); 1239 1240 /* Reinsert all breakpoints. (Those which were symbolic have 1241 been reset to the proper address in the new a.out, thanks 1242 to symbol_file_command...). */ 1243 insert_breakpoints (); 1244 1245 /* The next resume of this inferior should bring it to the shlib 1246 startup breakpoints. (If the user had also set bp's on 1247 "main" from the old (parent) process, then they'll auto- 1248 matically get reset there in the new process.). */ 1249 } 1250 1251 /* The queue of threads that need to do a step-over operation to get 1252 past e.g., a breakpoint. What technique is used to step over the 1253 breakpoint/watchpoint does not matter -- all threads end up in the 1254 same queue, to maintain rough temporal order of execution, in order 1255 to avoid starvation, otherwise, we could e.g., find ourselves 1256 constantly stepping the same couple threads past their breakpoints 1257 over and over, if the single-step finish fast enough. */ 1258 struct thread_info *step_over_queue_head; 1259 1260 /* Bit flags indicating what the thread needs to step over. */ 1261 1262 enum step_over_what_flag 1263 { 1264 /* Step over a breakpoint. */ 1265 STEP_OVER_BREAKPOINT = 1, 1266 1267 /* Step past a non-continuable watchpoint, in order to let the 1268 instruction execute so we can evaluate the watchpoint 1269 expression. */ 1270 STEP_OVER_WATCHPOINT = 2 1271 }; 1272 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what); 1273 1274 /* Info about an instruction that is being stepped over. */ 1275 1276 struct step_over_info 1277 { 1278 /* If we're stepping past a breakpoint, this is the address space 1279 and address of the instruction the breakpoint is set at. We'll 1280 skip inserting all breakpoints here. Valid iff ASPACE is 1281 non-NULL. */ 1282 const address_space *aspace; 1283 CORE_ADDR address; 1284 1285 /* The instruction being stepped over triggers a nonsteppable 1286 watchpoint. If true, we'll skip inserting watchpoints. */ 1287 int nonsteppable_watchpoint_p; 1288 1289 /* The thread's global number. */ 1290 int thread; 1291 }; 1292 1293 /* The step-over info of the location that is being stepped over. 1294 1295 Note that with async/breakpoint always-inserted mode, a user might 1296 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is 1297 being stepped over. As setting a new breakpoint inserts all 1298 breakpoints, we need to make sure the breakpoint being stepped over 1299 isn't inserted then. We do that by only clearing the step-over 1300 info when the step-over is actually finished (or aborted). 1301 1302 Presently GDB can only step over one breakpoint at any given time. 1303 Given threads that can't run code in the same address space as the 1304 breakpoint's can't really miss the breakpoint, GDB could be taught 1305 to step-over at most one breakpoint per address space (so this info 1306 could move to the address space object if/when GDB is extended). 1307 The set of breakpoints being stepped over will normally be much 1308 smaller than the set of all breakpoints, so a flag in the 1309 breakpoint location structure would be wasteful. A separate list 1310 also saves complexity and run-time, as otherwise we'd have to go 1311 through all breakpoint locations clearing their flag whenever we 1312 start a new sequence. Similar considerations weigh against storing 1313 this info in the thread object. Plus, not all step overs actually 1314 have breakpoint locations -- e.g., stepping past a single-step 1315 breakpoint, or stepping to complete a non-continuable 1316 watchpoint. */ 1317 static struct step_over_info step_over_info; 1318 1319 /* Record the address of the breakpoint/instruction we're currently 1320 stepping over. 1321 N.B. We record the aspace and address now, instead of say just the thread, 1322 because when we need the info later the thread may be running. */ 1323 1324 static void 1325 set_step_over_info (const address_space *aspace, CORE_ADDR address, 1326 int nonsteppable_watchpoint_p, 1327 int thread) 1328 { 1329 step_over_info.aspace = aspace; 1330 step_over_info.address = address; 1331 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p; 1332 step_over_info.thread = thread; 1333 } 1334 1335 /* Called when we're not longer stepping over a breakpoint / an 1336 instruction, so all breakpoints are free to be (re)inserted. */ 1337 1338 static void 1339 clear_step_over_info (void) 1340 { 1341 if (debug_infrun) 1342 fprintf_unfiltered (gdb_stdlog, 1343 "infrun: clear_step_over_info\n"); 1344 step_over_info.aspace = NULL; 1345 step_over_info.address = 0; 1346 step_over_info.nonsteppable_watchpoint_p = 0; 1347 step_over_info.thread = -1; 1348 } 1349 1350 /* See infrun.h. */ 1351 1352 int 1353 stepping_past_instruction_at (struct address_space *aspace, 1354 CORE_ADDR address) 1355 { 1356 return (step_over_info.aspace != NULL 1357 && breakpoint_address_match (aspace, address, 1358 step_over_info.aspace, 1359 step_over_info.address)); 1360 } 1361 1362 /* See infrun.h. */ 1363 1364 int 1365 thread_is_stepping_over_breakpoint (int thread) 1366 { 1367 return (step_over_info.thread != -1 1368 && thread == step_over_info.thread); 1369 } 1370 1371 /* See infrun.h. */ 1372 1373 int 1374 stepping_past_nonsteppable_watchpoint (void) 1375 { 1376 return step_over_info.nonsteppable_watchpoint_p; 1377 } 1378 1379 /* Returns true if step-over info is valid. */ 1380 1381 static int 1382 step_over_info_valid_p (void) 1383 { 1384 return (step_over_info.aspace != NULL 1385 || stepping_past_nonsteppable_watchpoint ()); 1386 } 1387 1388 1389 /* Displaced stepping. */ 1390 1391 /* In non-stop debugging mode, we must take special care to manage 1392 breakpoints properly; in particular, the traditional strategy for 1393 stepping a thread past a breakpoint it has hit is unsuitable. 1394 'Displaced stepping' is a tactic for stepping one thread past a 1395 breakpoint it has hit while ensuring that other threads running 1396 concurrently will hit the breakpoint as they should. 1397 1398 The traditional way to step a thread T off a breakpoint in a 1399 multi-threaded program in all-stop mode is as follows: 1400 1401 a0) Initially, all threads are stopped, and breakpoints are not 1402 inserted. 1403 a1) We single-step T, leaving breakpoints uninserted. 1404 a2) We insert breakpoints, and resume all threads. 1405 1406 In non-stop debugging, however, this strategy is unsuitable: we 1407 don't want to have to stop all threads in the system in order to 1408 continue or step T past a breakpoint. Instead, we use displaced 1409 stepping: 1410 1411 n0) Initially, T is stopped, other threads are running, and 1412 breakpoints are inserted. 1413 n1) We copy the instruction "under" the breakpoint to a separate 1414 location, outside the main code stream, making any adjustments 1415 to the instruction, register, and memory state as directed by 1416 T's architecture. 1417 n2) We single-step T over the instruction at its new location. 1418 n3) We adjust the resulting register and memory state as directed 1419 by T's architecture. This includes resetting T's PC to point 1420 back into the main instruction stream. 1421 n4) We resume T. 1422 1423 This approach depends on the following gdbarch methods: 1424 1425 - gdbarch_max_insn_length and gdbarch_displaced_step_location 1426 indicate where to copy the instruction, and how much space must 1427 be reserved there. We use these in step n1. 1428 1429 - gdbarch_displaced_step_copy_insn copies a instruction to a new 1430 address, and makes any necessary adjustments to the instruction, 1431 register contents, and memory. We use this in step n1. 1432 1433 - gdbarch_displaced_step_fixup adjusts registers and memory after 1434 we have successfuly single-stepped the instruction, to yield the 1435 same effect the instruction would have had if we had executed it 1436 at its original address. We use this in step n3. 1437 1438 The gdbarch_displaced_step_copy_insn and 1439 gdbarch_displaced_step_fixup functions must be written so that 1440 copying an instruction with gdbarch_displaced_step_copy_insn, 1441 single-stepping across the copied instruction, and then applying 1442 gdbarch_displaced_insn_fixup should have the same effects on the 1443 thread's memory and registers as stepping the instruction in place 1444 would have. Exactly which responsibilities fall to the copy and 1445 which fall to the fixup is up to the author of those functions. 1446 1447 See the comments in gdbarch.sh for details. 1448 1449 Note that displaced stepping and software single-step cannot 1450 currently be used in combination, although with some care I think 1451 they could be made to. Software single-step works by placing 1452 breakpoints on all possible subsequent instructions; if the 1453 displaced instruction is a PC-relative jump, those breakpoints 1454 could fall in very strange places --- on pages that aren't 1455 executable, or at addresses that are not proper instruction 1456 boundaries. (We do generally let other threads run while we wait 1457 to hit the software single-step breakpoint, and they might 1458 encounter such a corrupted instruction.) One way to work around 1459 this would be to have gdbarch_displaced_step_copy_insn fully 1460 simulate the effect of PC-relative instructions (and return NULL) 1461 on architectures that use software single-stepping. 1462 1463 In non-stop mode, we can have independent and simultaneous step 1464 requests, so more than one thread may need to simultaneously step 1465 over a breakpoint. The current implementation assumes there is 1466 only one scratch space per process. In this case, we have to 1467 serialize access to the scratch space. If thread A wants to step 1468 over a breakpoint, but we are currently waiting for some other 1469 thread to complete a displaced step, we leave thread A stopped and 1470 place it in the displaced_step_request_queue. Whenever a displaced 1471 step finishes, we pick the next thread in the queue and start a new 1472 displaced step operation on it. See displaced_step_prepare and 1473 displaced_step_fixup for details. */ 1474 1475 /* Default destructor for displaced_step_closure. */ 1476 1477 displaced_step_closure::~displaced_step_closure () = default; 1478 1479 /* Get the displaced stepping state of process PID. */ 1480 1481 static displaced_step_inferior_state * 1482 get_displaced_stepping_state (inferior *inf) 1483 { 1484 return &inf->displaced_step_state; 1485 } 1486 1487 /* Returns true if any inferior has a thread doing a displaced 1488 step. */ 1489 1490 static bool 1491 displaced_step_in_progress_any_inferior () 1492 { 1493 for (inferior *i : all_inferiors ()) 1494 { 1495 if (i->displaced_step_state.step_thread != nullptr) 1496 return true; 1497 } 1498 1499 return false; 1500 } 1501 1502 /* Return true if thread represented by PTID is doing a displaced 1503 step. */ 1504 1505 static int 1506 displaced_step_in_progress_thread (thread_info *thread) 1507 { 1508 gdb_assert (thread != NULL); 1509 1510 return get_displaced_stepping_state (thread->inf)->step_thread == thread; 1511 } 1512 1513 /* Return true if process PID has a thread doing a displaced step. */ 1514 1515 static int 1516 displaced_step_in_progress (inferior *inf) 1517 { 1518 return get_displaced_stepping_state (inf)->step_thread != nullptr; 1519 } 1520 1521 /* If inferior is in displaced stepping, and ADDR equals to starting address 1522 of copy area, return corresponding displaced_step_closure. Otherwise, 1523 return NULL. */ 1524 1525 struct displaced_step_closure* 1526 get_displaced_step_closure_by_addr (CORE_ADDR addr) 1527 { 1528 displaced_step_inferior_state *displaced 1529 = get_displaced_stepping_state (current_inferior ()); 1530 1531 /* If checking the mode of displaced instruction in copy area. */ 1532 if (displaced->step_thread != nullptr 1533 && displaced->step_copy == addr) 1534 return displaced->step_closure; 1535 1536 return NULL; 1537 } 1538 1539 static void 1540 infrun_inferior_exit (struct inferior *inf) 1541 { 1542 inf->displaced_step_state.reset (); 1543 } 1544 1545 /* If ON, and the architecture supports it, GDB will use displaced 1546 stepping to step over breakpoints. If OFF, or if the architecture 1547 doesn't support it, GDB will instead use the traditional 1548 hold-and-step approach. If AUTO (which is the default), GDB will 1549 decide which technique to use to step over breakpoints depending on 1550 which of all-stop or non-stop mode is active --- displaced stepping 1551 in non-stop mode; hold-and-step in all-stop mode. */ 1552 1553 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO; 1554 1555 static void 1556 show_can_use_displaced_stepping (struct ui_file *file, int from_tty, 1557 struct cmd_list_element *c, 1558 const char *value) 1559 { 1560 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO) 1561 fprintf_filtered (file, 1562 _("Debugger's willingness to use displaced stepping " 1563 "to step over breakpoints is %s (currently %s).\n"), 1564 value, target_is_non_stop_p () ? "on" : "off"); 1565 else 1566 fprintf_filtered (file, 1567 _("Debugger's willingness to use displaced stepping " 1568 "to step over breakpoints is %s.\n"), value); 1569 } 1570 1571 /* Return non-zero if displaced stepping can/should be used to step 1572 over breakpoints of thread TP. */ 1573 1574 static int 1575 use_displaced_stepping (struct thread_info *tp) 1576 { 1577 struct regcache *regcache = get_thread_regcache (tp); 1578 struct gdbarch *gdbarch = regcache->arch (); 1579 displaced_step_inferior_state *displaced_state 1580 = get_displaced_stepping_state (tp->inf); 1581 1582 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO 1583 && target_is_non_stop_p ()) 1584 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) 1585 && gdbarch_displaced_step_copy_insn_p (gdbarch) 1586 && find_record_target () == NULL 1587 && !displaced_state->failed_before); 1588 } 1589 1590 /* Clean out any stray displaced stepping state. */ 1591 static void 1592 displaced_step_clear (struct displaced_step_inferior_state *displaced) 1593 { 1594 /* Indicate that there is no cleanup pending. */ 1595 displaced->step_thread = nullptr; 1596 1597 delete displaced->step_closure; 1598 displaced->step_closure = NULL; 1599 } 1600 1601 static void 1602 displaced_step_clear_cleanup (void *arg) 1603 { 1604 struct displaced_step_inferior_state *state 1605 = (struct displaced_step_inferior_state *) arg; 1606 1607 displaced_step_clear (state); 1608 } 1609 1610 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */ 1611 void 1612 displaced_step_dump_bytes (struct ui_file *file, 1613 const gdb_byte *buf, 1614 size_t len) 1615 { 1616 int i; 1617 1618 for (i = 0; i < len; i++) 1619 fprintf_unfiltered (file, "%02x ", buf[i]); 1620 fputs_unfiltered ("\n", file); 1621 } 1622 1623 /* Prepare to single-step, using displaced stepping. 1624 1625 Note that we cannot use displaced stepping when we have a signal to 1626 deliver. If we have a signal to deliver and an instruction to step 1627 over, then after the step, there will be no indication from the 1628 target whether the thread entered a signal handler or ignored the 1629 signal and stepped over the instruction successfully --- both cases 1630 result in a simple SIGTRAP. In the first case we mustn't do a 1631 fixup, and in the second case we must --- but we can't tell which. 1632 Comments in the code for 'random signals' in handle_inferior_event 1633 explain how we handle this case instead. 1634 1635 Returns 1 if preparing was successful -- this thread is going to be 1636 stepped now; 0 if displaced stepping this thread got queued; or -1 1637 if this instruction can't be displaced stepped. */ 1638 1639 static int 1640 displaced_step_prepare_throw (thread_info *tp) 1641 { 1642 regcache *regcache = get_thread_regcache (tp); 1643 struct gdbarch *gdbarch = regcache->arch (); 1644 const address_space *aspace = regcache->aspace (); 1645 CORE_ADDR original, copy; 1646 ULONGEST len; 1647 struct displaced_step_closure *closure; 1648 int status; 1649 1650 /* We should never reach this function if the architecture does not 1651 support displaced stepping. */ 1652 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch)); 1653 1654 /* Nor if the thread isn't meant to step over a breakpoint. */ 1655 gdb_assert (tp->control.trap_expected); 1656 1657 /* Disable range stepping while executing in the scratch pad. We 1658 want a single-step even if executing the displaced instruction in 1659 the scratch buffer lands within the stepping range (e.g., a 1660 jump/branch). */ 1661 tp->control.may_range_step = 0; 1662 1663 /* We have to displaced step one thread at a time, as we only have 1664 access to a single scratch space per inferior. */ 1665 1666 displaced_step_inferior_state *displaced 1667 = get_displaced_stepping_state (tp->inf); 1668 1669 if (displaced->step_thread != nullptr) 1670 { 1671 /* Already waiting for a displaced step to finish. Defer this 1672 request and place in queue. */ 1673 1674 if (debug_displaced) 1675 fprintf_unfiltered (gdb_stdlog, 1676 "displaced: deferring step of %s\n", 1677 target_pid_to_str (tp->ptid)); 1678 1679 thread_step_over_chain_enqueue (tp); 1680 return 0; 1681 } 1682 else 1683 { 1684 if (debug_displaced) 1685 fprintf_unfiltered (gdb_stdlog, 1686 "displaced: stepping %s now\n", 1687 target_pid_to_str (tp->ptid)); 1688 } 1689 1690 displaced_step_clear (displaced); 1691 1692 scoped_restore_current_thread restore_thread; 1693 1694 switch_to_thread (tp); 1695 1696 original = regcache_read_pc (regcache); 1697 1698 copy = gdbarch_displaced_step_location (gdbarch); 1699 len = gdbarch_max_insn_length (gdbarch); 1700 1701 if (breakpoint_in_range_p (aspace, copy, len)) 1702 { 1703 /* There's a breakpoint set in the scratch pad location range 1704 (which is usually around the entry point). We'd either 1705 install it before resuming, which would overwrite/corrupt the 1706 scratch pad, or if it was already inserted, this displaced 1707 step would overwrite it. The latter is OK in the sense that 1708 we already assume that no thread is going to execute the code 1709 in the scratch pad range (after initial startup) anyway, but 1710 the former is unacceptable. Simply punt and fallback to 1711 stepping over this breakpoint in-line. */ 1712 if (debug_displaced) 1713 { 1714 fprintf_unfiltered (gdb_stdlog, 1715 "displaced: breakpoint set in scratch pad. " 1716 "Stepping over breakpoint in-line instead.\n"); 1717 } 1718 1719 return -1; 1720 } 1721 1722 /* Save the original contents of the copy area. */ 1723 displaced->step_saved_copy.resize (len); 1724 status = target_read_memory (copy, displaced->step_saved_copy.data (), len); 1725 if (status != 0) 1726 throw_error (MEMORY_ERROR, 1727 _("Error accessing memory address %s (%s) for " 1728 "displaced-stepping scratch space."), 1729 paddress (gdbarch, copy), safe_strerror (status)); 1730 if (debug_displaced) 1731 { 1732 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ", 1733 paddress (gdbarch, copy)); 1734 displaced_step_dump_bytes (gdb_stdlog, 1735 displaced->step_saved_copy.data (), 1736 len); 1737 }; 1738 1739 closure = gdbarch_displaced_step_copy_insn (gdbarch, 1740 original, copy, regcache); 1741 if (closure == NULL) 1742 { 1743 /* The architecture doesn't know how or want to displaced step 1744 this instruction or instruction sequence. Fallback to 1745 stepping over the breakpoint in-line. */ 1746 return -1; 1747 } 1748 1749 /* Save the information we need to fix things up if the step 1750 succeeds. */ 1751 displaced->step_thread = tp; 1752 displaced->step_gdbarch = gdbarch; 1753 displaced->step_closure = closure; 1754 displaced->step_original = original; 1755 displaced->step_copy = copy; 1756 1757 cleanup *ignore_cleanups 1758 = make_cleanup (displaced_step_clear_cleanup, displaced); 1759 1760 /* Resume execution at the copy. */ 1761 regcache_write_pc (regcache, copy); 1762 1763 discard_cleanups (ignore_cleanups); 1764 1765 if (debug_displaced) 1766 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n", 1767 paddress (gdbarch, copy)); 1768 1769 return 1; 1770 } 1771 1772 /* Wrapper for displaced_step_prepare_throw that disabled further 1773 attempts at displaced stepping if we get a memory error. */ 1774 1775 static int 1776 displaced_step_prepare (thread_info *thread) 1777 { 1778 int prepared = -1; 1779 1780 TRY 1781 { 1782 prepared = displaced_step_prepare_throw (thread); 1783 } 1784 CATCH (ex, RETURN_MASK_ERROR) 1785 { 1786 struct displaced_step_inferior_state *displaced_state; 1787 1788 if (ex.error != MEMORY_ERROR 1789 && ex.error != NOT_SUPPORTED_ERROR) 1790 throw_exception (ex); 1791 1792 if (debug_infrun) 1793 { 1794 fprintf_unfiltered (gdb_stdlog, 1795 "infrun: disabling displaced stepping: %s\n", 1796 ex.message); 1797 } 1798 1799 /* Be verbose if "set displaced-stepping" is "on", silent if 1800 "auto". */ 1801 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) 1802 { 1803 warning (_("disabling displaced stepping: %s"), 1804 ex.message); 1805 } 1806 1807 /* Disable further displaced stepping attempts. */ 1808 displaced_state 1809 = get_displaced_stepping_state (thread->inf); 1810 displaced_state->failed_before = 1; 1811 } 1812 END_CATCH 1813 1814 return prepared; 1815 } 1816 1817 static void 1818 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, 1819 const gdb_byte *myaddr, int len) 1820 { 1821 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); 1822 1823 inferior_ptid = ptid; 1824 write_memory (memaddr, myaddr, len); 1825 } 1826 1827 /* Restore the contents of the copy area for thread PTID. */ 1828 1829 static void 1830 displaced_step_restore (struct displaced_step_inferior_state *displaced, 1831 ptid_t ptid) 1832 { 1833 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch); 1834 1835 write_memory_ptid (ptid, displaced->step_copy, 1836 displaced->step_saved_copy.data (), len); 1837 if (debug_displaced) 1838 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n", 1839 target_pid_to_str (ptid), 1840 paddress (displaced->step_gdbarch, 1841 displaced->step_copy)); 1842 } 1843 1844 /* If we displaced stepped an instruction successfully, adjust 1845 registers and memory to yield the same effect the instruction would 1846 have had if we had executed it at its original address, and return 1847 1. If the instruction didn't complete, relocate the PC and return 1848 -1. If the thread wasn't displaced stepping, return 0. */ 1849 1850 static int 1851 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal) 1852 { 1853 struct cleanup *old_cleanups; 1854 struct displaced_step_inferior_state *displaced 1855 = get_displaced_stepping_state (event_thread->inf); 1856 int ret; 1857 1858 /* Was this event for the thread we displaced? */ 1859 if (displaced->step_thread != event_thread) 1860 return 0; 1861 1862 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced); 1863 1864 displaced_step_restore (displaced, displaced->step_thread->ptid); 1865 1866 /* Fixup may need to read memory/registers. Switch to the thread 1867 that we're fixing up. Also, target_stopped_by_watchpoint checks 1868 the current thread. */ 1869 switch_to_thread (event_thread); 1870 1871 /* Did the instruction complete successfully? */ 1872 if (signal == GDB_SIGNAL_TRAP 1873 && !(target_stopped_by_watchpoint () 1874 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch) 1875 || target_have_steppable_watchpoint))) 1876 { 1877 /* Fix up the resulting state. */ 1878 gdbarch_displaced_step_fixup (displaced->step_gdbarch, 1879 displaced->step_closure, 1880 displaced->step_original, 1881 displaced->step_copy, 1882 get_thread_regcache (displaced->step_thread)); 1883 ret = 1; 1884 } 1885 else 1886 { 1887 /* Since the instruction didn't complete, all we can do is 1888 relocate the PC. */ 1889 struct regcache *regcache = get_thread_regcache (event_thread); 1890 CORE_ADDR pc = regcache_read_pc (regcache); 1891 1892 pc = displaced->step_original + (pc - displaced->step_copy); 1893 regcache_write_pc (regcache, pc); 1894 ret = -1; 1895 } 1896 1897 do_cleanups (old_cleanups); 1898 1899 displaced->step_thread = nullptr; 1900 1901 return ret; 1902 } 1903 1904 /* Data to be passed around while handling an event. This data is 1905 discarded between events. */ 1906 struct execution_control_state 1907 { 1908 ptid_t ptid; 1909 /* The thread that got the event, if this was a thread event; NULL 1910 otherwise. */ 1911 struct thread_info *event_thread; 1912 1913 struct target_waitstatus ws; 1914 int stop_func_filled_in; 1915 CORE_ADDR stop_func_start; 1916 CORE_ADDR stop_func_end; 1917 const char *stop_func_name; 1918 int wait_some_more; 1919 1920 /* True if the event thread hit the single-step breakpoint of 1921 another thread. Thus the event doesn't cause a stop, the thread 1922 needs to be single-stepped past the single-step breakpoint before 1923 we can switch back to the original stepping thread. */ 1924 int hit_singlestep_breakpoint; 1925 }; 1926 1927 /* Clear ECS and set it to point at TP. */ 1928 1929 static void 1930 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp) 1931 { 1932 memset (ecs, 0, sizeof (*ecs)); 1933 ecs->event_thread = tp; 1934 ecs->ptid = tp->ptid; 1935 } 1936 1937 static void keep_going_pass_signal (struct execution_control_state *ecs); 1938 static void prepare_to_wait (struct execution_control_state *ecs); 1939 static int keep_going_stepped_thread (struct thread_info *tp); 1940 static step_over_what thread_still_needs_step_over (struct thread_info *tp); 1941 1942 /* Are there any pending step-over requests? If so, run all we can 1943 now and return true. Otherwise, return false. */ 1944 1945 static int 1946 start_step_over (void) 1947 { 1948 struct thread_info *tp, *next; 1949 1950 /* Don't start a new step-over if we already have an in-line 1951 step-over operation ongoing. */ 1952 if (step_over_info_valid_p ()) 1953 return 0; 1954 1955 for (tp = step_over_queue_head; tp != NULL; tp = next) 1956 { 1957 struct execution_control_state ecss; 1958 struct execution_control_state *ecs = &ecss; 1959 step_over_what step_what; 1960 int must_be_in_line; 1961 1962 gdb_assert (!tp->stop_requested); 1963 1964 next = thread_step_over_chain_next (tp); 1965 1966 /* If this inferior already has a displaced step in process, 1967 don't start a new one. */ 1968 if (displaced_step_in_progress (tp->inf)) 1969 continue; 1970 1971 step_what = thread_still_needs_step_over (tp); 1972 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT) 1973 || ((step_what & STEP_OVER_BREAKPOINT) 1974 && !use_displaced_stepping (tp))); 1975 1976 /* We currently stop all threads of all processes to step-over 1977 in-line. If we need to start a new in-line step-over, let 1978 any pending displaced steps finish first. */ 1979 if (must_be_in_line && displaced_step_in_progress_any_inferior ()) 1980 return 0; 1981 1982 thread_step_over_chain_remove (tp); 1983 1984 if (step_over_queue_head == NULL) 1985 { 1986 if (debug_infrun) 1987 fprintf_unfiltered (gdb_stdlog, 1988 "infrun: step-over queue now empty\n"); 1989 } 1990 1991 if (tp->control.trap_expected 1992 || tp->resumed 1993 || tp->executing) 1994 { 1995 internal_error (__FILE__, __LINE__, 1996 "[%s] has inconsistent state: " 1997 "trap_expected=%d, resumed=%d, executing=%d\n", 1998 target_pid_to_str (tp->ptid), 1999 tp->control.trap_expected, 2000 tp->resumed, 2001 tp->executing); 2002 } 2003 2004 if (debug_infrun) 2005 fprintf_unfiltered (gdb_stdlog, 2006 "infrun: resuming [%s] for step-over\n", 2007 target_pid_to_str (tp->ptid)); 2008 2009 /* keep_going_pass_signal skips the step-over if the breakpoint 2010 is no longer inserted. In all-stop, we want to keep looking 2011 for a thread that needs a step-over instead of resuming TP, 2012 because we wouldn't be able to resume anything else until the 2013 target stops again. In non-stop, the resume always resumes 2014 only TP, so it's OK to let the thread resume freely. */ 2015 if (!target_is_non_stop_p () && !step_what) 2016 continue; 2017 2018 switch_to_thread (tp); 2019 reset_ecs (ecs, tp); 2020 keep_going_pass_signal (ecs); 2021 2022 if (!ecs->wait_some_more) 2023 error (_("Command aborted.")); 2024 2025 gdb_assert (tp->resumed); 2026 2027 /* If we started a new in-line step-over, we're done. */ 2028 if (step_over_info_valid_p ()) 2029 { 2030 gdb_assert (tp->control.trap_expected); 2031 return 1; 2032 } 2033 2034 if (!target_is_non_stop_p ()) 2035 { 2036 /* On all-stop, shouldn't have resumed unless we needed a 2037 step over. */ 2038 gdb_assert (tp->control.trap_expected 2039 || tp->step_after_step_resume_breakpoint); 2040 2041 /* With remote targets (at least), in all-stop, we can't 2042 issue any further remote commands until the program stops 2043 again. */ 2044 return 1; 2045 } 2046 2047 /* Either the thread no longer needed a step-over, or a new 2048 displaced stepping sequence started. Even in the latter 2049 case, continue looking. Maybe we can also start another 2050 displaced step on a thread of other process. */ 2051 } 2052 2053 return 0; 2054 } 2055 2056 /* Update global variables holding ptids to hold NEW_PTID if they were 2057 holding OLD_PTID. */ 2058 static void 2059 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) 2060 { 2061 if (inferior_ptid == old_ptid) 2062 inferior_ptid = new_ptid; 2063 } 2064 2065 2066 2067 static const char schedlock_off[] = "off"; 2068 static const char schedlock_on[] = "on"; 2069 static const char schedlock_step[] = "step"; 2070 static const char schedlock_replay[] = "replay"; 2071 static const char *const scheduler_enums[] = { 2072 schedlock_off, 2073 schedlock_on, 2074 schedlock_step, 2075 schedlock_replay, 2076 NULL 2077 }; 2078 static const char *scheduler_mode = schedlock_replay; 2079 static void 2080 show_scheduler_mode (struct ui_file *file, int from_tty, 2081 struct cmd_list_element *c, const char *value) 2082 { 2083 fprintf_filtered (file, 2084 _("Mode for locking scheduler " 2085 "during execution is \"%s\".\n"), 2086 value); 2087 } 2088 2089 static void 2090 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c) 2091 { 2092 if (!target_can_lock_scheduler) 2093 { 2094 scheduler_mode = schedlock_off; 2095 error (_("Target '%s' cannot support this command."), target_shortname); 2096 } 2097 } 2098 2099 /* True if execution commands resume all threads of all processes by 2100 default; otherwise, resume only threads of the current inferior 2101 process. */ 2102 int sched_multi = 0; 2103 2104 /* Try to setup for software single stepping over the specified location. 2105 Return 1 if target_resume() should use hardware single step. 2106 2107 GDBARCH the current gdbarch. 2108 PC the location to step over. */ 2109 2110 static int 2111 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc) 2112 { 2113 int hw_step = 1; 2114 2115 if (execution_direction == EXEC_FORWARD 2116 && gdbarch_software_single_step_p (gdbarch)) 2117 hw_step = !insert_single_step_breakpoints (gdbarch); 2118 2119 return hw_step; 2120 } 2121 2122 /* See infrun.h. */ 2123 2124 ptid_t 2125 user_visible_resume_ptid (int step) 2126 { 2127 ptid_t resume_ptid; 2128 2129 if (non_stop) 2130 { 2131 /* With non-stop mode on, threads are always handled 2132 individually. */ 2133 resume_ptid = inferior_ptid; 2134 } 2135 else if ((scheduler_mode == schedlock_on) 2136 || (scheduler_mode == schedlock_step && step)) 2137 { 2138 /* User-settable 'scheduler' mode requires solo thread 2139 resume. */ 2140 resume_ptid = inferior_ptid; 2141 } 2142 else if ((scheduler_mode == schedlock_replay) 2143 && target_record_will_replay (minus_one_ptid, execution_direction)) 2144 { 2145 /* User-settable 'scheduler' mode requires solo thread resume in replay 2146 mode. */ 2147 resume_ptid = inferior_ptid; 2148 } 2149 else if (!sched_multi && target_supports_multi_process ()) 2150 { 2151 /* Resume all threads of the current process (and none of other 2152 processes). */ 2153 resume_ptid = ptid_t (inferior_ptid.pid ()); 2154 } 2155 else 2156 { 2157 /* Resume all threads of all processes. */ 2158 resume_ptid = RESUME_ALL; 2159 } 2160 2161 return resume_ptid; 2162 } 2163 2164 /* Return a ptid representing the set of threads that we will resume, 2165 in the perspective of the target, assuming run control handling 2166 does not require leaving some threads stopped (e.g., stepping past 2167 breakpoint). USER_STEP indicates whether we're about to start the 2168 target for a stepping command. */ 2169 2170 static ptid_t 2171 internal_resume_ptid (int user_step) 2172 { 2173 /* In non-stop, we always control threads individually. Note that 2174 the target may always work in non-stop mode even with "set 2175 non-stop off", in which case user_visible_resume_ptid could 2176 return a wildcard ptid. */ 2177 if (target_is_non_stop_p ()) 2178 return inferior_ptid; 2179 else 2180 return user_visible_resume_ptid (user_step); 2181 } 2182 2183 /* Wrapper for target_resume, that handles infrun-specific 2184 bookkeeping. */ 2185 2186 static void 2187 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig) 2188 { 2189 struct thread_info *tp = inferior_thread (); 2190 2191 gdb_assert (!tp->stop_requested); 2192 2193 /* Install inferior's terminal modes. */ 2194 target_terminal::inferior (); 2195 2196 /* Avoid confusing the next resume, if the next stop/resume 2197 happens to apply to another thread. */ 2198 tp->suspend.stop_signal = GDB_SIGNAL_0; 2199 2200 /* Advise target which signals may be handled silently. 2201 2202 If we have removed breakpoints because we are stepping over one 2203 in-line (in any thread), we need to receive all signals to avoid 2204 accidentally skipping a breakpoint during execution of a signal 2205 handler. 2206 2207 Likewise if we're displaced stepping, otherwise a trap for a 2208 breakpoint in a signal handler might be confused with the 2209 displaced step finishing. We don't make the displaced_step_fixup 2210 step distinguish the cases instead, because: 2211 2212 - a backtrace while stopped in the signal handler would show the 2213 scratch pad as frame older than the signal handler, instead of 2214 the real mainline code. 2215 2216 - when the thread is later resumed, the signal handler would 2217 return to the scratch pad area, which would no longer be 2218 valid. */ 2219 if (step_over_info_valid_p () 2220 || displaced_step_in_progress (tp->inf)) 2221 target_pass_signals ({}); 2222 else 2223 target_pass_signals (signal_pass); 2224 2225 target_resume (resume_ptid, step, sig); 2226 2227 target_commit_resume (); 2228 } 2229 2230 /* Resume the inferior. SIG is the signal to give the inferior 2231 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead 2232 call 'resume', which handles exceptions. */ 2233 2234 static void 2235 resume_1 (enum gdb_signal sig) 2236 { 2237 struct regcache *regcache = get_current_regcache (); 2238 struct gdbarch *gdbarch = regcache->arch (); 2239 struct thread_info *tp = inferior_thread (); 2240 CORE_ADDR pc = regcache_read_pc (regcache); 2241 const address_space *aspace = regcache->aspace (); 2242 ptid_t resume_ptid; 2243 /* This represents the user's step vs continue request. When 2244 deciding whether "set scheduler-locking step" applies, it's the 2245 user's intention that counts. */ 2246 const int user_step = tp->control.stepping_command; 2247 /* This represents what we'll actually request the target to do. 2248 This can decay from a step to a continue, if e.g., we need to 2249 implement single-stepping with breakpoints (software 2250 single-step). */ 2251 int step; 2252 2253 gdb_assert (!tp->stop_requested); 2254 gdb_assert (!thread_is_in_step_over_chain (tp)); 2255 2256 if (tp->suspend.waitstatus_pending_p) 2257 { 2258 if (debug_infrun) 2259 { 2260 std::string statstr 2261 = target_waitstatus_to_string (&tp->suspend.waitstatus); 2262 2263 fprintf_unfiltered (gdb_stdlog, 2264 "infrun: resume: thread %s has pending wait " 2265 "status %s (currently_stepping=%d).\n", 2266 target_pid_to_str (tp->ptid), statstr.c_str (), 2267 currently_stepping (tp)); 2268 } 2269 2270 tp->resumed = 1; 2271 2272 /* FIXME: What should we do if we are supposed to resume this 2273 thread with a signal? Maybe we should maintain a queue of 2274 pending signals to deliver. */ 2275 if (sig != GDB_SIGNAL_0) 2276 { 2277 warning (_("Couldn't deliver signal %s to %s."), 2278 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid)); 2279 } 2280 2281 tp->suspend.stop_signal = GDB_SIGNAL_0; 2282 2283 if (target_can_async_p ()) 2284 { 2285 target_async (1); 2286 /* Tell the event loop we have an event to process. */ 2287 mark_async_event_handler (infrun_async_inferior_event_token); 2288 } 2289 return; 2290 } 2291 2292 tp->stepped_breakpoint = 0; 2293 2294 /* Depends on stepped_breakpoint. */ 2295 step = currently_stepping (tp); 2296 2297 if (current_inferior ()->waiting_for_vfork_done) 2298 { 2299 /* Don't try to single-step a vfork parent that is waiting for 2300 the child to get out of the shared memory region (by exec'ing 2301 or exiting). This is particularly important on software 2302 single-step archs, as the child process would trip on the 2303 software single step breakpoint inserted for the parent 2304 process. Since the parent will not actually execute any 2305 instruction until the child is out of the shared region (such 2306 are vfork's semantics), it is safe to simply continue it. 2307 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for 2308 the parent, and tell it to `keep_going', which automatically 2309 re-sets it stepping. */ 2310 if (debug_infrun) 2311 fprintf_unfiltered (gdb_stdlog, 2312 "infrun: resume : clear step\n"); 2313 step = 0; 2314 } 2315 2316 if (debug_infrun) 2317 fprintf_unfiltered (gdb_stdlog, 2318 "infrun: resume (step=%d, signal=%s), " 2319 "trap_expected=%d, current thread [%s] at %s\n", 2320 step, gdb_signal_to_symbol_string (sig), 2321 tp->control.trap_expected, 2322 target_pid_to_str (inferior_ptid), 2323 paddress (gdbarch, pc)); 2324 2325 /* Normally, by the time we reach `resume', the breakpoints are either 2326 removed or inserted, as appropriate. The exception is if we're sitting 2327 at a permanent breakpoint; we need to step over it, but permanent 2328 breakpoints can't be removed. So we have to test for it here. */ 2329 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) 2330 { 2331 if (sig != GDB_SIGNAL_0) 2332 { 2333 /* We have a signal to pass to the inferior. The resume 2334 may, or may not take us to the signal handler. If this 2335 is a step, we'll need to stop in the signal handler, if 2336 there's one, (if the target supports stepping into 2337 handlers), or in the next mainline instruction, if 2338 there's no handler. If this is a continue, we need to be 2339 sure to run the handler with all breakpoints inserted. 2340 In all cases, set a breakpoint at the current address 2341 (where the handler returns to), and once that breakpoint 2342 is hit, resume skipping the permanent breakpoint. If 2343 that breakpoint isn't hit, then we've stepped into the 2344 signal handler (or hit some other event). We'll delete 2345 the step-resume breakpoint then. */ 2346 2347 if (debug_infrun) 2348 fprintf_unfiltered (gdb_stdlog, 2349 "infrun: resume: skipping permanent breakpoint, " 2350 "deliver signal first\n"); 2351 2352 clear_step_over_info (); 2353 tp->control.trap_expected = 0; 2354 2355 if (tp->control.step_resume_breakpoint == NULL) 2356 { 2357 /* Set a "high-priority" step-resume, as we don't want 2358 user breakpoints at PC to trigger (again) when this 2359 hits. */ 2360 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); 2361 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent); 2362 2363 tp->step_after_step_resume_breakpoint = step; 2364 } 2365 2366 insert_breakpoints (); 2367 } 2368 else 2369 { 2370 /* There's no signal to pass, we can go ahead and skip the 2371 permanent breakpoint manually. */ 2372 if (debug_infrun) 2373 fprintf_unfiltered (gdb_stdlog, 2374 "infrun: resume: skipping permanent breakpoint\n"); 2375 gdbarch_skip_permanent_breakpoint (gdbarch, regcache); 2376 /* Update pc to reflect the new address from which we will 2377 execute instructions. */ 2378 pc = regcache_read_pc (regcache); 2379 2380 if (step) 2381 { 2382 /* We've already advanced the PC, so the stepping part 2383 is done. Now we need to arrange for a trap to be 2384 reported to handle_inferior_event. Set a breakpoint 2385 at the current PC, and run to it. Don't update 2386 prev_pc, because if we end in 2387 switch_back_to_stepped_thread, we want the "expected 2388 thread advanced also" branch to be taken. IOW, we 2389 don't want this thread to step further from PC 2390 (overstep). */ 2391 gdb_assert (!step_over_info_valid_p ()); 2392 insert_single_step_breakpoint (gdbarch, aspace, pc); 2393 insert_breakpoints (); 2394 2395 resume_ptid = internal_resume_ptid (user_step); 2396 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); 2397 tp->resumed = 1; 2398 return; 2399 } 2400 } 2401 } 2402 2403 /* If we have a breakpoint to step over, make sure to do a single 2404 step only. Same if we have software watchpoints. */ 2405 if (tp->control.trap_expected || bpstat_should_step ()) 2406 tp->control.may_range_step = 0; 2407 2408 /* If enabled, step over breakpoints by executing a copy of the 2409 instruction at a different address. 2410 2411 We can't use displaced stepping when we have a signal to deliver; 2412 the comments for displaced_step_prepare explain why. The 2413 comments in the handle_inferior event for dealing with 'random 2414 signals' explain what we do instead. 2415 2416 We can't use displaced stepping when we are waiting for vfork_done 2417 event, displaced stepping breaks the vfork child similarly as single 2418 step software breakpoint. */ 2419 if (tp->control.trap_expected 2420 && use_displaced_stepping (tp) 2421 && !step_over_info_valid_p () 2422 && sig == GDB_SIGNAL_0 2423 && !current_inferior ()->waiting_for_vfork_done) 2424 { 2425 int prepared = displaced_step_prepare (tp); 2426 2427 if (prepared == 0) 2428 { 2429 if (debug_infrun) 2430 fprintf_unfiltered (gdb_stdlog, 2431 "Got placed in step-over queue\n"); 2432 2433 tp->control.trap_expected = 0; 2434 return; 2435 } 2436 else if (prepared < 0) 2437 { 2438 /* Fallback to stepping over the breakpoint in-line. */ 2439 2440 if (target_is_non_stop_p ()) 2441 stop_all_threads (); 2442 2443 set_step_over_info (regcache->aspace (), 2444 regcache_read_pc (regcache), 0, tp->global_num); 2445 2446 step = maybe_software_singlestep (gdbarch, pc); 2447 2448 insert_breakpoints (); 2449 } 2450 else if (prepared > 0) 2451 { 2452 struct displaced_step_inferior_state *displaced; 2453 2454 /* Update pc to reflect the new address from which we will 2455 execute instructions due to displaced stepping. */ 2456 pc = regcache_read_pc (get_thread_regcache (tp)); 2457 2458 displaced = get_displaced_stepping_state (tp->inf); 2459 step = gdbarch_displaced_step_hw_singlestep (gdbarch, 2460 displaced->step_closure); 2461 } 2462 } 2463 2464 /* Do we need to do it the hard way, w/temp breakpoints? */ 2465 else if (step) 2466 step = maybe_software_singlestep (gdbarch, pc); 2467 2468 /* Currently, our software single-step implementation leads to different 2469 results than hardware single-stepping in one situation: when stepping 2470 into delivering a signal which has an associated signal handler, 2471 hardware single-step will stop at the first instruction of the handler, 2472 while software single-step will simply skip execution of the handler. 2473 2474 For now, this difference in behavior is accepted since there is no 2475 easy way to actually implement single-stepping into a signal handler 2476 without kernel support. 2477 2478 However, there is one scenario where this difference leads to follow-on 2479 problems: if we're stepping off a breakpoint by removing all breakpoints 2480 and then single-stepping. In this case, the software single-step 2481 behavior means that even if there is a *breakpoint* in the signal 2482 handler, GDB still would not stop. 2483 2484 Fortunately, we can at least fix this particular issue. We detect 2485 here the case where we are about to deliver a signal while software 2486 single-stepping with breakpoints removed. In this situation, we 2487 revert the decisions to remove all breakpoints and insert single- 2488 step breakpoints, and instead we install a step-resume breakpoint 2489 at the current address, deliver the signal without stepping, and 2490 once we arrive back at the step-resume breakpoint, actually step 2491 over the breakpoint we originally wanted to step over. */ 2492 if (thread_has_single_step_breakpoints_set (tp) 2493 && sig != GDB_SIGNAL_0 2494 && step_over_info_valid_p ()) 2495 { 2496 /* If we have nested signals or a pending signal is delivered 2497 immediately after a handler returns, might might already have 2498 a step-resume breakpoint set on the earlier handler. We cannot 2499 set another step-resume breakpoint; just continue on until the 2500 original breakpoint is hit. */ 2501 if (tp->control.step_resume_breakpoint == NULL) 2502 { 2503 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); 2504 tp->step_after_step_resume_breakpoint = 1; 2505 } 2506 2507 delete_single_step_breakpoints (tp); 2508 2509 clear_step_over_info (); 2510 tp->control.trap_expected = 0; 2511 2512 insert_breakpoints (); 2513 } 2514 2515 /* If STEP is set, it's a request to use hardware stepping 2516 facilities. But in that case, we should never 2517 use singlestep breakpoint. */ 2518 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step)); 2519 2520 /* Decide the set of threads to ask the target to resume. */ 2521 if (tp->control.trap_expected) 2522 { 2523 /* We're allowing a thread to run past a breakpoint it has 2524 hit, either by single-stepping the thread with the breakpoint 2525 removed, or by displaced stepping, with the breakpoint inserted. 2526 In the former case, we need to single-step only this thread, 2527 and keep others stopped, as they can miss this breakpoint if 2528 allowed to run. That's not really a problem for displaced 2529 stepping, but, we still keep other threads stopped, in case 2530 another thread is also stopped for a breakpoint waiting for 2531 its turn in the displaced stepping queue. */ 2532 resume_ptid = inferior_ptid; 2533 } 2534 else 2535 resume_ptid = internal_resume_ptid (user_step); 2536 2537 if (execution_direction != EXEC_REVERSE 2538 && step && breakpoint_inserted_here_p (aspace, pc)) 2539 { 2540 /* There are two cases where we currently need to step a 2541 breakpoint instruction when we have a signal to deliver: 2542 2543 - See handle_signal_stop where we handle random signals that 2544 could take out us out of the stepping range. Normally, in 2545 that case we end up continuing (instead of stepping) over the 2546 signal handler with a breakpoint at PC, but there are cases 2547 where we should _always_ single-step, even if we have a 2548 step-resume breakpoint, like when a software watchpoint is 2549 set. Assuming single-stepping and delivering a signal at the 2550 same time would takes us to the signal handler, then we could 2551 have removed the breakpoint at PC to step over it. However, 2552 some hardware step targets (like e.g., Mac OS) can't step 2553 into signal handlers, and for those, we need to leave the 2554 breakpoint at PC inserted, as otherwise if the handler 2555 recurses and executes PC again, it'll miss the breakpoint. 2556 So we leave the breakpoint inserted anyway, but we need to 2557 record that we tried to step a breakpoint instruction, so 2558 that adjust_pc_after_break doesn't end up confused. 2559 2560 - In non-stop if we insert a breakpoint (e.g., a step-resume) 2561 in one thread after another thread that was stepping had been 2562 momentarily paused for a step-over. When we re-resume the 2563 stepping thread, it may be resumed from that address with a 2564 breakpoint that hasn't trapped yet. Seen with 2565 gdb.threads/non-stop-fair-events.exp, on targets that don't 2566 do displaced stepping. */ 2567 2568 if (debug_infrun) 2569 fprintf_unfiltered (gdb_stdlog, 2570 "infrun: resume: [%s] stepped breakpoint\n", 2571 target_pid_to_str (tp->ptid)); 2572 2573 tp->stepped_breakpoint = 1; 2574 2575 /* Most targets can step a breakpoint instruction, thus 2576 executing it normally. But if this one cannot, just 2577 continue and we will hit it anyway. */ 2578 if (gdbarch_cannot_step_breakpoint (gdbarch)) 2579 step = 0; 2580 } 2581 2582 if (debug_displaced 2583 && tp->control.trap_expected 2584 && use_displaced_stepping (tp) 2585 && !step_over_info_valid_p ()) 2586 { 2587 struct regcache *resume_regcache = get_thread_regcache (tp); 2588 struct gdbarch *resume_gdbarch = resume_regcache->arch (); 2589 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache); 2590 gdb_byte buf[4]; 2591 2592 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", 2593 paddress (resume_gdbarch, actual_pc)); 2594 read_memory (actual_pc, buf, sizeof (buf)); 2595 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); 2596 } 2597 2598 if (tp->control.may_range_step) 2599 { 2600 /* If we're resuming a thread with the PC out of the step 2601 range, then we're doing some nested/finer run control 2602 operation, like stepping the thread out of the dynamic 2603 linker or the displaced stepping scratch pad. We 2604 shouldn't have allowed a range step then. */ 2605 gdb_assert (pc_in_thread_step_range (pc, tp)); 2606 } 2607 2608 do_target_resume (resume_ptid, step, sig); 2609 tp->resumed = 1; 2610 } 2611 2612 /* Resume the inferior. SIG is the signal to give the inferior 2613 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that 2614 rolls back state on error. */ 2615 2616 static void 2617 resume (gdb_signal sig) 2618 { 2619 TRY 2620 { 2621 resume_1 (sig); 2622 } 2623 CATCH (ex, RETURN_MASK_ALL) 2624 { 2625 /* If resuming is being aborted for any reason, delete any 2626 single-step breakpoint resume_1 may have created, to avoid 2627 confusing the following resumption, and to avoid leaving 2628 single-step breakpoints perturbing other threads, in case 2629 we're running in non-stop mode. */ 2630 if (inferior_ptid != null_ptid) 2631 delete_single_step_breakpoints (inferior_thread ()); 2632 throw_exception (ex); 2633 } 2634 END_CATCH 2635 } 2636 2637 2638 /* Proceeding. */ 2639 2640 /* See infrun.h. */ 2641 2642 /* Counter that tracks number of user visible stops. This can be used 2643 to tell whether a command has proceeded the inferior past the 2644 current location. This allows e.g., inferior function calls in 2645 breakpoint commands to not interrupt the command list. When the 2646 call finishes successfully, the inferior is standing at the same 2647 breakpoint as if nothing happened (and so we don't call 2648 normal_stop). */ 2649 static ULONGEST current_stop_id; 2650 2651 /* See infrun.h. */ 2652 2653 ULONGEST 2654 get_stop_id (void) 2655 { 2656 return current_stop_id; 2657 } 2658 2659 /* Called when we report a user visible stop. */ 2660 2661 static void 2662 new_stop_id (void) 2663 { 2664 current_stop_id++; 2665 } 2666 2667 /* Clear out all variables saying what to do when inferior is continued. 2668 First do this, then set the ones you want, then call `proceed'. */ 2669 2670 static void 2671 clear_proceed_status_thread (struct thread_info *tp) 2672 { 2673 if (debug_infrun) 2674 fprintf_unfiltered (gdb_stdlog, 2675 "infrun: clear_proceed_status_thread (%s)\n", 2676 target_pid_to_str (tp->ptid)); 2677 2678 /* If we're starting a new sequence, then the previous finished 2679 single-step is no longer relevant. */ 2680 if (tp->suspend.waitstatus_pending_p) 2681 { 2682 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP) 2683 { 2684 if (debug_infrun) 2685 fprintf_unfiltered (gdb_stdlog, 2686 "infrun: clear_proceed_status: pending " 2687 "event of %s was a finished step. " 2688 "Discarding.\n", 2689 target_pid_to_str (tp->ptid)); 2690 2691 tp->suspend.waitstatus_pending_p = 0; 2692 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; 2693 } 2694 else if (debug_infrun) 2695 { 2696 std::string statstr 2697 = target_waitstatus_to_string (&tp->suspend.waitstatus); 2698 2699 fprintf_unfiltered (gdb_stdlog, 2700 "infrun: clear_proceed_status_thread: thread %s " 2701 "has pending wait status %s " 2702 "(currently_stepping=%d).\n", 2703 target_pid_to_str (tp->ptid), statstr.c_str (), 2704 currently_stepping (tp)); 2705 } 2706 } 2707 2708 /* If this signal should not be seen by program, give it zero. 2709 Used for debugging signals. */ 2710 if (!signal_pass_state (tp->suspend.stop_signal)) 2711 tp->suspend.stop_signal = GDB_SIGNAL_0; 2712 2713 delete tp->thread_fsm; 2714 tp->thread_fsm = NULL; 2715 2716 tp->control.trap_expected = 0; 2717 tp->control.step_range_start = 0; 2718 tp->control.step_range_end = 0; 2719 tp->control.may_range_step = 0; 2720 tp->control.step_frame_id = null_frame_id; 2721 tp->control.step_stack_frame_id = null_frame_id; 2722 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE; 2723 tp->control.step_start_function = NULL; 2724 tp->stop_requested = 0; 2725 2726 tp->control.stop_step = 0; 2727 2728 tp->control.proceed_to_finish = 0; 2729 2730 tp->control.stepping_command = 0; 2731 2732 /* Discard any remaining commands or status from previous stop. */ 2733 bpstat_clear (&tp->control.stop_bpstat); 2734 } 2735 2736 void 2737 clear_proceed_status (int step) 2738 { 2739 /* With scheduler-locking replay, stop replaying other threads if we're 2740 not replaying the user-visible resume ptid. 2741 2742 This is a convenience feature to not require the user to explicitly 2743 stop replaying the other threads. We're assuming that the user's 2744 intent is to resume tracing the recorded process. */ 2745 if (!non_stop && scheduler_mode == schedlock_replay 2746 && target_record_is_replaying (minus_one_ptid) 2747 && !target_record_will_replay (user_visible_resume_ptid (step), 2748 execution_direction)) 2749 target_record_stop_replaying (); 2750 2751 if (!non_stop && inferior_ptid != null_ptid) 2752 { 2753 ptid_t resume_ptid = user_visible_resume_ptid (step); 2754 2755 /* In all-stop mode, delete the per-thread status of all threads 2756 we're about to resume, implicitly and explicitly. */ 2757 for (thread_info *tp : all_non_exited_threads (resume_ptid)) 2758 clear_proceed_status_thread (tp); 2759 } 2760 2761 if (inferior_ptid != null_ptid) 2762 { 2763 struct inferior *inferior; 2764 2765 if (non_stop) 2766 { 2767 /* If in non-stop mode, only delete the per-thread status of 2768 the current thread. */ 2769 clear_proceed_status_thread (inferior_thread ()); 2770 } 2771 2772 inferior = current_inferior (); 2773 inferior->control.stop_soon = NO_STOP_QUIETLY; 2774 } 2775 2776 gdb::observers::about_to_proceed.notify (); 2777 } 2778 2779 /* Returns true if TP is still stopped at a breakpoint that needs 2780 stepping-over in order to make progress. If the breakpoint is gone 2781 meanwhile, we can skip the whole step-over dance. */ 2782 2783 static int 2784 thread_still_needs_step_over_bp (struct thread_info *tp) 2785 { 2786 if (tp->stepping_over_breakpoint) 2787 { 2788 struct regcache *regcache = get_thread_regcache (tp); 2789 2790 if (breakpoint_here_p (regcache->aspace (), 2791 regcache_read_pc (regcache)) 2792 == ordinary_breakpoint_here) 2793 return 1; 2794 2795 tp->stepping_over_breakpoint = 0; 2796 } 2797 2798 return 0; 2799 } 2800 2801 /* Check whether thread TP still needs to start a step-over in order 2802 to make progress when resumed. Returns an bitwise or of enum 2803 step_over_what bits, indicating what needs to be stepped over. */ 2804 2805 static step_over_what 2806 thread_still_needs_step_over (struct thread_info *tp) 2807 { 2808 step_over_what what = 0; 2809 2810 if (thread_still_needs_step_over_bp (tp)) 2811 what |= STEP_OVER_BREAKPOINT; 2812 2813 if (tp->stepping_over_watchpoint 2814 && !target_have_steppable_watchpoint) 2815 what |= STEP_OVER_WATCHPOINT; 2816 2817 return what; 2818 } 2819 2820 /* Returns true if scheduler locking applies. STEP indicates whether 2821 we're about to do a step/next-like command to a thread. */ 2822 2823 static int 2824 schedlock_applies (struct thread_info *tp) 2825 { 2826 return (scheduler_mode == schedlock_on 2827 || (scheduler_mode == schedlock_step 2828 && tp->control.stepping_command) 2829 || (scheduler_mode == schedlock_replay 2830 && target_record_will_replay (minus_one_ptid, 2831 execution_direction))); 2832 } 2833 2834 /* Basic routine for continuing the program in various fashions. 2835 2836 ADDR is the address to resume at, or -1 for resume where stopped. 2837 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none, 2838 or GDB_SIGNAL_DEFAULT for act according to how it stopped. 2839 2840 You should call clear_proceed_status before calling proceed. */ 2841 2842 void 2843 proceed (CORE_ADDR addr, enum gdb_signal siggnal) 2844 { 2845 struct regcache *regcache; 2846 struct gdbarch *gdbarch; 2847 CORE_ADDR pc; 2848 ptid_t resume_ptid; 2849 struct execution_control_state ecss; 2850 struct execution_control_state *ecs = &ecss; 2851 int started; 2852 2853 /* If we're stopped at a fork/vfork, follow the branch set by the 2854 "set follow-fork-mode" command; otherwise, we'll just proceed 2855 resuming the current thread. */ 2856 if (!follow_fork ()) 2857 { 2858 /* The target for some reason decided not to resume. */ 2859 normal_stop (); 2860 if (target_can_async_p ()) 2861 inferior_event_handler (INF_EXEC_COMPLETE, NULL); 2862 return; 2863 } 2864 2865 /* We'll update this if & when we switch to a new thread. */ 2866 previous_inferior_ptid = inferior_ptid; 2867 2868 regcache = get_current_regcache (); 2869 gdbarch = regcache->arch (); 2870 const address_space *aspace = regcache->aspace (); 2871 2872 pc = regcache_read_pc (regcache); 2873 thread_info *cur_thr = inferior_thread (); 2874 2875 /* Fill in with reasonable starting values. */ 2876 init_thread_stepping_state (cur_thr); 2877 2878 gdb_assert (!thread_is_in_step_over_chain (cur_thr)); 2879 2880 if (addr == (CORE_ADDR) -1) 2881 { 2882 if (pc == cur_thr->suspend.stop_pc 2883 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here 2884 && execution_direction != EXEC_REVERSE) 2885 /* There is a breakpoint at the address we will resume at, 2886 step one instruction before inserting breakpoints so that 2887 we do not stop right away (and report a second hit at this 2888 breakpoint). 2889 2890 Note, we don't do this in reverse, because we won't 2891 actually be executing the breakpoint insn anyway. 2892 We'll be (un-)executing the previous instruction. */ 2893 cur_thr->stepping_over_breakpoint = 1; 2894 else if (gdbarch_single_step_through_delay_p (gdbarch) 2895 && gdbarch_single_step_through_delay (gdbarch, 2896 get_current_frame ())) 2897 /* We stepped onto an instruction that needs to be stepped 2898 again before re-inserting the breakpoint, do so. */ 2899 cur_thr->stepping_over_breakpoint = 1; 2900 } 2901 else 2902 { 2903 regcache_write_pc (regcache, addr); 2904 } 2905 2906 if (siggnal != GDB_SIGNAL_DEFAULT) 2907 cur_thr->suspend.stop_signal = siggnal; 2908 2909 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command); 2910 2911 /* If an exception is thrown from this point on, make sure to 2912 propagate GDB's knowledge of the executing state to the 2913 frontend/user running state. */ 2914 scoped_finish_thread_state finish_state (resume_ptid); 2915 2916 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer 2917 threads (e.g., we might need to set threads stepping over 2918 breakpoints first), from the user/frontend's point of view, all 2919 threads in RESUME_PTID are now running. Unless we're calling an 2920 inferior function, as in that case we pretend the inferior 2921 doesn't run at all. */ 2922 if (!cur_thr->control.in_infcall) 2923 set_running (resume_ptid, 1); 2924 2925 if (debug_infrun) 2926 fprintf_unfiltered (gdb_stdlog, 2927 "infrun: proceed (addr=%s, signal=%s)\n", 2928 paddress (gdbarch, addr), 2929 gdb_signal_to_symbol_string (siggnal)); 2930 2931 annotate_starting (); 2932 2933 /* Make sure that output from GDB appears before output from the 2934 inferior. */ 2935 gdb_flush (gdb_stdout); 2936 2937 /* Since we've marked the inferior running, give it the terminal. A 2938 QUIT/Ctrl-C from here on is forwarded to the target (which can 2939 still detect attempts to unblock a stuck connection with repeated 2940 Ctrl-C from within target_pass_ctrlc). */ 2941 target_terminal::inferior (); 2942 2943 /* In a multi-threaded task we may select another thread and 2944 then continue or step. 2945 2946 But if a thread that we're resuming had stopped at a breakpoint, 2947 it will immediately cause another breakpoint stop without any 2948 execution (i.e. it will report a breakpoint hit incorrectly). So 2949 we must step over it first. 2950 2951 Look for threads other than the current (TP) that reported a 2952 breakpoint hit and haven't been resumed yet since. */ 2953 2954 /* If scheduler locking applies, we can avoid iterating over all 2955 threads. */ 2956 if (!non_stop && !schedlock_applies (cur_thr)) 2957 { 2958 for (thread_info *tp : all_non_exited_threads (resume_ptid)) 2959 { 2960 /* Ignore the current thread here. It's handled 2961 afterwards. */ 2962 if (tp == cur_thr) 2963 continue; 2964 2965 if (!thread_still_needs_step_over (tp)) 2966 continue; 2967 2968 gdb_assert (!thread_is_in_step_over_chain (tp)); 2969 2970 if (debug_infrun) 2971 fprintf_unfiltered (gdb_stdlog, 2972 "infrun: need to step-over [%s] first\n", 2973 target_pid_to_str (tp->ptid)); 2974 2975 thread_step_over_chain_enqueue (tp); 2976 } 2977 } 2978 2979 /* Enqueue the current thread last, so that we move all other 2980 threads over their breakpoints first. */ 2981 if (cur_thr->stepping_over_breakpoint) 2982 thread_step_over_chain_enqueue (cur_thr); 2983 2984 /* If the thread isn't started, we'll still need to set its prev_pc, 2985 so that switch_back_to_stepped_thread knows the thread hasn't 2986 advanced. Must do this before resuming any thread, as in 2987 all-stop/remote, once we resume we can't send any other packet 2988 until the target stops again. */ 2989 cur_thr->prev_pc = regcache_read_pc (regcache); 2990 2991 { 2992 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume (); 2993 2994 started = start_step_over (); 2995 2996 if (step_over_info_valid_p ()) 2997 { 2998 /* Either this thread started a new in-line step over, or some 2999 other thread was already doing one. In either case, don't 3000 resume anything else until the step-over is finished. */ 3001 } 3002 else if (started && !target_is_non_stop_p ()) 3003 { 3004 /* A new displaced stepping sequence was started. In all-stop, 3005 we can't talk to the target anymore until it next stops. */ 3006 } 3007 else if (!non_stop && target_is_non_stop_p ()) 3008 { 3009 /* In all-stop, but the target is always in non-stop mode. 3010 Start all other threads that are implicitly resumed too. */ 3011 for (thread_info *tp : all_non_exited_threads (resume_ptid)) 3012 { 3013 if (tp->resumed) 3014 { 3015 if (debug_infrun) 3016 fprintf_unfiltered (gdb_stdlog, 3017 "infrun: proceed: [%s] resumed\n", 3018 target_pid_to_str (tp->ptid)); 3019 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); 3020 continue; 3021 } 3022 3023 if (thread_is_in_step_over_chain (tp)) 3024 { 3025 if (debug_infrun) 3026 fprintf_unfiltered (gdb_stdlog, 3027 "infrun: proceed: [%s] needs step-over\n", 3028 target_pid_to_str (tp->ptid)); 3029 continue; 3030 } 3031 3032 if (debug_infrun) 3033 fprintf_unfiltered (gdb_stdlog, 3034 "infrun: proceed: resuming %s\n", 3035 target_pid_to_str (tp->ptid)); 3036 3037 reset_ecs (ecs, tp); 3038 switch_to_thread (tp); 3039 keep_going_pass_signal (ecs); 3040 if (!ecs->wait_some_more) 3041 error (_("Command aborted.")); 3042 } 3043 } 3044 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr)) 3045 { 3046 /* The thread wasn't started, and isn't queued, run it now. */ 3047 reset_ecs (ecs, cur_thr); 3048 switch_to_thread (cur_thr); 3049 keep_going_pass_signal (ecs); 3050 if (!ecs->wait_some_more) 3051 error (_("Command aborted.")); 3052 } 3053 } 3054 3055 target_commit_resume (); 3056 3057 finish_state.release (); 3058 3059 /* Tell the event loop to wait for it to stop. If the target 3060 supports asynchronous execution, it'll do this from within 3061 target_resume. */ 3062 if (!target_can_async_p ()) 3063 mark_async_event_handler (infrun_async_inferior_event_token); 3064 } 3065 3066 3067 /* Start remote-debugging of a machine over a serial link. */ 3068 3069 void 3070 start_remote (int from_tty) 3071 { 3072 struct inferior *inferior; 3073 3074 inferior = current_inferior (); 3075 inferior->control.stop_soon = STOP_QUIETLY_REMOTE; 3076 3077 /* Always go on waiting for the target, regardless of the mode. */ 3078 /* FIXME: cagney/1999-09-23: At present it isn't possible to 3079 indicate to wait_for_inferior that a target should timeout if 3080 nothing is returned (instead of just blocking). Because of this, 3081 targets expecting an immediate response need to, internally, set 3082 things up so that the target_wait() is forced to eventually 3083 timeout. */ 3084 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to 3085 differentiate to its caller what the state of the target is after 3086 the initial open has been performed. Here we're assuming that 3087 the target has stopped. It should be possible to eventually have 3088 target_open() return to the caller an indication that the target 3089 is currently running and GDB state should be set to the same as 3090 for an async run. */ 3091 wait_for_inferior (); 3092 3093 /* Now that the inferior has stopped, do any bookkeeping like 3094 loading shared libraries. We want to do this before normal_stop, 3095 so that the displayed frame is up to date. */ 3096 post_create_inferior (current_top_target (), from_tty); 3097 3098 normal_stop (); 3099 } 3100 3101 /* Initialize static vars when a new inferior begins. */ 3102 3103 void 3104 init_wait_for_inferior (void) 3105 { 3106 /* These are meaningless until the first time through wait_for_inferior. */ 3107 3108 breakpoint_init_inferior (inf_starting); 3109 3110 clear_proceed_status (0); 3111 3112 target_last_wait_ptid = minus_one_ptid; 3113 3114 previous_inferior_ptid = inferior_ptid; 3115 } 3116 3117 3118 3119 static void handle_inferior_event (struct execution_control_state *ecs); 3120 3121 static void handle_step_into_function (struct gdbarch *gdbarch, 3122 struct execution_control_state *ecs); 3123 static void handle_step_into_function_backward (struct gdbarch *gdbarch, 3124 struct execution_control_state *ecs); 3125 static void handle_signal_stop (struct execution_control_state *ecs); 3126 static void check_exception_resume (struct execution_control_state *, 3127 struct frame_info *); 3128 3129 static void end_stepping_range (struct execution_control_state *ecs); 3130 static void stop_waiting (struct execution_control_state *ecs); 3131 static void keep_going (struct execution_control_state *ecs); 3132 static void process_event_stop_test (struct execution_control_state *ecs); 3133 static int switch_back_to_stepped_thread (struct execution_control_state *ecs); 3134 3135 /* This function is attached as a "thread_stop_requested" observer. 3136 Cleanup local state that assumed the PTID was to be resumed, and 3137 report the stop to the frontend. */ 3138 3139 static void 3140 infrun_thread_stop_requested (ptid_t ptid) 3141 { 3142 /* PTID was requested to stop. If the thread was already stopped, 3143 but the user/frontend doesn't know about that yet (e.g., the 3144 thread had been temporarily paused for some step-over), set up 3145 for reporting the stop now. */ 3146 for (thread_info *tp : all_threads (ptid)) 3147 { 3148 if (tp->state != THREAD_RUNNING) 3149 continue; 3150 if (tp->executing) 3151 continue; 3152 3153 /* Remove matching threads from the step-over queue, so 3154 start_step_over doesn't try to resume them 3155 automatically. */ 3156 if (thread_is_in_step_over_chain (tp)) 3157 thread_step_over_chain_remove (tp); 3158 3159 /* If the thread is stopped, but the user/frontend doesn't 3160 know about that yet, queue a pending event, as if the 3161 thread had just stopped now. Unless the thread already had 3162 a pending event. */ 3163 if (!tp->suspend.waitstatus_pending_p) 3164 { 3165 tp->suspend.waitstatus_pending_p = 1; 3166 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED; 3167 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0; 3168 } 3169 3170 /* Clear the inline-frame state, since we're re-processing the 3171 stop. */ 3172 clear_inline_frame_state (tp->ptid); 3173 3174 /* If this thread was paused because some other thread was 3175 doing an inline-step over, let that finish first. Once 3176 that happens, we'll restart all threads and consume pending 3177 stop events then. */ 3178 if (step_over_info_valid_p ()) 3179 continue; 3180 3181 /* Otherwise we can process the (new) pending event now. Set 3182 it so this pending event is considered by 3183 do_target_wait. */ 3184 tp->resumed = 1; 3185 } 3186 } 3187 3188 static void 3189 infrun_thread_thread_exit (struct thread_info *tp, int silent) 3190 { 3191 if (target_last_wait_ptid == tp->ptid) 3192 nullify_last_target_wait_ptid (); 3193 } 3194 3195 /* Delete the step resume, single-step and longjmp/exception resume 3196 breakpoints of TP. */ 3197 3198 static void 3199 delete_thread_infrun_breakpoints (struct thread_info *tp) 3200 { 3201 delete_step_resume_breakpoint (tp); 3202 delete_exception_resume_breakpoint (tp); 3203 delete_single_step_breakpoints (tp); 3204 } 3205 3206 /* If the target still has execution, call FUNC for each thread that 3207 just stopped. In all-stop, that's all the non-exited threads; in 3208 non-stop, that's the current thread, only. */ 3209 3210 typedef void (*for_each_just_stopped_thread_callback_func) 3211 (struct thread_info *tp); 3212 3213 static void 3214 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func) 3215 { 3216 if (!target_has_execution || inferior_ptid == null_ptid) 3217 return; 3218 3219 if (target_is_non_stop_p ()) 3220 { 3221 /* If in non-stop mode, only the current thread stopped. */ 3222 func (inferior_thread ()); 3223 } 3224 else 3225 { 3226 /* In all-stop mode, all threads have stopped. */ 3227 for (thread_info *tp : all_non_exited_threads ()) 3228 func (tp); 3229 } 3230 } 3231 3232 /* Delete the step resume and longjmp/exception resume breakpoints of 3233 the threads that just stopped. */ 3234 3235 static void 3236 delete_just_stopped_threads_infrun_breakpoints (void) 3237 { 3238 for_each_just_stopped_thread (delete_thread_infrun_breakpoints); 3239 } 3240 3241 /* Delete the single-step breakpoints of the threads that just 3242 stopped. */ 3243 3244 static void 3245 delete_just_stopped_threads_single_step_breakpoints (void) 3246 { 3247 for_each_just_stopped_thread (delete_single_step_breakpoints); 3248 } 3249 3250 /* See infrun.h. */ 3251 3252 void 3253 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid, 3254 const struct target_waitstatus *ws) 3255 { 3256 std::string status_string = target_waitstatus_to_string (ws); 3257 string_file stb; 3258 3259 /* The text is split over several lines because it was getting too long. 3260 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still 3261 output as a unit; we want only one timestamp printed if debug_timestamp 3262 is set. */ 3263 3264 stb.printf ("infrun: target_wait (%d.%ld.%ld", 3265 waiton_ptid.pid (), 3266 waiton_ptid.lwp (), 3267 waiton_ptid.tid ()); 3268 if (waiton_ptid.pid () != -1) 3269 stb.printf (" [%s]", target_pid_to_str (waiton_ptid)); 3270 stb.printf (", status) =\n"); 3271 stb.printf ("infrun: %d.%ld.%ld [%s],\n", 3272 result_ptid.pid (), 3273 result_ptid.lwp (), 3274 result_ptid.tid (), 3275 target_pid_to_str (result_ptid)); 3276 stb.printf ("infrun: %s\n", status_string.c_str ()); 3277 3278 /* This uses %s in part to handle %'s in the text, but also to avoid 3279 a gcc error: the format attribute requires a string literal. */ 3280 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ()); 3281 } 3282 3283 /* Select a thread at random, out of those which are resumed and have 3284 had events. */ 3285 3286 static struct thread_info * 3287 random_pending_event_thread (ptid_t waiton_ptid) 3288 { 3289 int num_events = 0; 3290 3291 auto has_event = [] (thread_info *tp) 3292 { 3293 return (tp->resumed 3294 && tp->suspend.waitstatus_pending_p); 3295 }; 3296 3297 /* First see how many events we have. Count only resumed threads 3298 that have an event pending. */ 3299 for (thread_info *tp : all_non_exited_threads (waiton_ptid)) 3300 if (has_event (tp)) 3301 num_events++; 3302 3303 if (num_events == 0) 3304 return NULL; 3305 3306 /* Now randomly pick a thread out of those that have had events. */ 3307 int random_selector = (int) ((num_events * (double) rand ()) 3308 / (RAND_MAX + 1.0)); 3309 3310 if (debug_infrun && num_events > 1) 3311 fprintf_unfiltered (gdb_stdlog, 3312 "infrun: Found %d events, selecting #%d\n", 3313 num_events, random_selector); 3314 3315 /* Select the Nth thread that has had an event. */ 3316 for (thread_info *tp : all_non_exited_threads (waiton_ptid)) 3317 if (has_event (tp)) 3318 if (random_selector-- == 0) 3319 return tp; 3320 3321 gdb_assert_not_reached ("event thread not found"); 3322 } 3323 3324 /* Wrapper for target_wait that first checks whether threads have 3325 pending statuses to report before actually asking the target for 3326 more events. */ 3327 3328 static ptid_t 3329 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options) 3330 { 3331 ptid_t event_ptid; 3332 struct thread_info *tp; 3333 3334 /* First check if there is a resumed thread with a wait status 3335 pending. */ 3336 if (ptid == minus_one_ptid || ptid.is_pid ()) 3337 { 3338 tp = random_pending_event_thread (ptid); 3339 } 3340 else 3341 { 3342 if (debug_infrun) 3343 fprintf_unfiltered (gdb_stdlog, 3344 "infrun: Waiting for specific thread %s.\n", 3345 target_pid_to_str (ptid)); 3346 3347 /* We have a specific thread to check. */ 3348 tp = find_thread_ptid (ptid); 3349 gdb_assert (tp != NULL); 3350 if (!tp->suspend.waitstatus_pending_p) 3351 tp = NULL; 3352 } 3353 3354 if (tp != NULL 3355 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 3356 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)) 3357 { 3358 struct regcache *regcache = get_thread_regcache (tp); 3359 struct gdbarch *gdbarch = regcache->arch (); 3360 CORE_ADDR pc; 3361 int discard = 0; 3362 3363 pc = regcache_read_pc (regcache); 3364 3365 if (pc != tp->suspend.stop_pc) 3366 { 3367 if (debug_infrun) 3368 fprintf_unfiltered (gdb_stdlog, 3369 "infrun: PC of %s changed. was=%s, now=%s\n", 3370 target_pid_to_str (tp->ptid), 3371 paddress (gdbarch, tp->suspend.stop_pc), 3372 paddress (gdbarch, pc)); 3373 discard = 1; 3374 } 3375 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc)) 3376 { 3377 if (debug_infrun) 3378 fprintf_unfiltered (gdb_stdlog, 3379 "infrun: previous breakpoint of %s, at %s gone\n", 3380 target_pid_to_str (tp->ptid), 3381 paddress (gdbarch, pc)); 3382 3383 discard = 1; 3384 } 3385 3386 if (discard) 3387 { 3388 if (debug_infrun) 3389 fprintf_unfiltered (gdb_stdlog, 3390 "infrun: pending event of %s cancelled.\n", 3391 target_pid_to_str (tp->ptid)); 3392 3393 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS; 3394 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; 3395 } 3396 } 3397 3398 if (tp != NULL) 3399 { 3400 if (debug_infrun) 3401 { 3402 std::string statstr 3403 = target_waitstatus_to_string (&tp->suspend.waitstatus); 3404 3405 fprintf_unfiltered (gdb_stdlog, 3406 "infrun: Using pending wait status %s for %s.\n", 3407 statstr.c_str (), 3408 target_pid_to_str (tp->ptid)); 3409 } 3410 3411 /* Now that we've selected our final event LWP, un-adjust its PC 3412 if it was a software breakpoint (and the target doesn't 3413 always adjust the PC itself). */ 3414 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 3415 && !target_supports_stopped_by_sw_breakpoint ()) 3416 { 3417 struct regcache *regcache; 3418 struct gdbarch *gdbarch; 3419 int decr_pc; 3420 3421 regcache = get_thread_regcache (tp); 3422 gdbarch = regcache->arch (); 3423 3424 decr_pc = gdbarch_decr_pc_after_break (gdbarch); 3425 if (decr_pc != 0) 3426 { 3427 CORE_ADDR pc; 3428 3429 pc = regcache_read_pc (regcache); 3430 regcache_write_pc (regcache, pc + decr_pc); 3431 } 3432 } 3433 3434 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON; 3435 *status = tp->suspend.waitstatus; 3436 tp->suspend.waitstatus_pending_p = 0; 3437 3438 /* Wake up the event loop again, until all pending events are 3439 processed. */ 3440 if (target_is_async_p ()) 3441 mark_async_event_handler (infrun_async_inferior_event_token); 3442 return tp->ptid; 3443 } 3444 3445 /* But if we don't find one, we'll have to wait. */ 3446 3447 if (deprecated_target_wait_hook) 3448 event_ptid = deprecated_target_wait_hook (ptid, status, options); 3449 else 3450 event_ptid = target_wait (ptid, status, options); 3451 3452 return event_ptid; 3453 } 3454 3455 /* Prepare and stabilize the inferior for detaching it. E.g., 3456 detaching while a thread is displaced stepping is a recipe for 3457 crashing it, as nothing would readjust the PC out of the scratch 3458 pad. */ 3459 3460 void 3461 prepare_for_detach (void) 3462 { 3463 struct inferior *inf = current_inferior (); 3464 ptid_t pid_ptid = ptid_t (inf->pid); 3465 3466 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf); 3467 3468 /* Is any thread of this process displaced stepping? If not, 3469 there's nothing else to do. */ 3470 if (displaced->step_thread == nullptr) 3471 return; 3472 3473 if (debug_infrun) 3474 fprintf_unfiltered (gdb_stdlog, 3475 "displaced-stepping in-process while detaching"); 3476 3477 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true); 3478 3479 while (displaced->step_thread != nullptr) 3480 { 3481 struct execution_control_state ecss; 3482 struct execution_control_state *ecs; 3483 3484 ecs = &ecss; 3485 memset (ecs, 0, sizeof (*ecs)); 3486 3487 overlay_cache_invalid = 1; 3488 /* Flush target cache before starting to handle each event. 3489 Target was running and cache could be stale. This is just a 3490 heuristic. Running threads may modify target memory, but we 3491 don't get any event. */ 3492 target_dcache_invalidate (); 3493 3494 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0); 3495 3496 if (debug_infrun) 3497 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws); 3498 3499 /* If an error happens while handling the event, propagate GDB's 3500 knowledge of the executing state to the frontend/user running 3501 state. */ 3502 scoped_finish_thread_state finish_state (minus_one_ptid); 3503 3504 /* Now figure out what to do with the result of the result. */ 3505 handle_inferior_event (ecs); 3506 3507 /* No error, don't finish the state yet. */ 3508 finish_state.release (); 3509 3510 /* Breakpoints and watchpoints are not installed on the target 3511 at this point, and signals are passed directly to the 3512 inferior, so this must mean the process is gone. */ 3513 if (!ecs->wait_some_more) 3514 { 3515 restore_detaching.release (); 3516 error (_("Program exited while detaching")); 3517 } 3518 } 3519 3520 restore_detaching.release (); 3521 } 3522 3523 /* Wait for control to return from inferior to debugger. 3524 3525 If inferior gets a signal, we may decide to start it up again 3526 instead of returning. That is why there is a loop in this function. 3527 When this function actually returns it means the inferior 3528 should be left stopped and GDB should read more commands. */ 3529 3530 void 3531 wait_for_inferior (void) 3532 { 3533 if (debug_infrun) 3534 fprintf_unfiltered 3535 (gdb_stdlog, "infrun: wait_for_inferior ()\n"); 3536 3537 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); }; 3538 3539 /* If an error happens while handling the event, propagate GDB's 3540 knowledge of the executing state to the frontend/user running 3541 state. */ 3542 scoped_finish_thread_state finish_state (minus_one_ptid); 3543 3544 while (1) 3545 { 3546 struct execution_control_state ecss; 3547 struct execution_control_state *ecs = &ecss; 3548 ptid_t waiton_ptid = minus_one_ptid; 3549 3550 memset (ecs, 0, sizeof (*ecs)); 3551 3552 overlay_cache_invalid = 1; 3553 3554 /* Flush target cache before starting to handle each event. 3555 Target was running and cache could be stale. This is just a 3556 heuristic. Running threads may modify target memory, but we 3557 don't get any event. */ 3558 target_dcache_invalidate (); 3559 3560 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0); 3561 3562 if (debug_infrun) 3563 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); 3564 3565 /* Now figure out what to do with the result of the result. */ 3566 handle_inferior_event (ecs); 3567 3568 if (!ecs->wait_some_more) 3569 break; 3570 } 3571 3572 /* No error, don't finish the state yet. */ 3573 finish_state.release (); 3574 } 3575 3576 /* Cleanup that reinstalls the readline callback handler, if the 3577 target is running in the background. If while handling the target 3578 event something triggered a secondary prompt, like e.g., a 3579 pagination prompt, we'll have removed the callback handler (see 3580 gdb_readline_wrapper_line). Need to do this as we go back to the 3581 event loop, ready to process further input. Note this has no 3582 effect if the handler hasn't actually been removed, because calling 3583 rl_callback_handler_install resets the line buffer, thus losing 3584 input. */ 3585 3586 static void 3587 reinstall_readline_callback_handler_cleanup () 3588 { 3589 struct ui *ui = current_ui; 3590 3591 if (!ui->async) 3592 { 3593 /* We're not going back to the top level event loop yet. Don't 3594 install the readline callback, as it'd prep the terminal, 3595 readline-style (raw, noecho) (e.g., --batch). We'll install 3596 it the next time the prompt is displayed, when we're ready 3597 for input. */ 3598 return; 3599 } 3600 3601 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED) 3602 gdb_rl_callback_handler_reinstall (); 3603 } 3604 3605 /* Clean up the FSMs of threads that are now stopped. In non-stop, 3606 that's just the event thread. In all-stop, that's all threads. */ 3607 3608 static void 3609 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs) 3610 { 3611 if (ecs->event_thread != NULL 3612 && ecs->event_thread->thread_fsm != NULL) 3613 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread); 3614 3615 if (!non_stop) 3616 { 3617 for (thread_info *thr : all_non_exited_threads ()) 3618 { 3619 if (thr->thread_fsm == NULL) 3620 continue; 3621 if (thr == ecs->event_thread) 3622 continue; 3623 3624 switch_to_thread (thr); 3625 thr->thread_fsm->clean_up (thr); 3626 } 3627 3628 if (ecs->event_thread != NULL) 3629 switch_to_thread (ecs->event_thread); 3630 } 3631 } 3632 3633 /* Helper for all_uis_check_sync_execution_done that works on the 3634 current UI. */ 3635 3636 static void 3637 check_curr_ui_sync_execution_done (void) 3638 { 3639 struct ui *ui = current_ui; 3640 3641 if (ui->prompt_state == PROMPT_NEEDED 3642 && ui->async 3643 && !gdb_in_secondary_prompt_p (ui)) 3644 { 3645 target_terminal::ours (); 3646 gdb::observers::sync_execution_done.notify (); 3647 ui_register_input_event_handler (ui); 3648 } 3649 } 3650 3651 /* See infrun.h. */ 3652 3653 void 3654 all_uis_check_sync_execution_done (void) 3655 { 3656 SWITCH_THRU_ALL_UIS () 3657 { 3658 check_curr_ui_sync_execution_done (); 3659 } 3660 } 3661 3662 /* See infrun.h. */ 3663 3664 void 3665 all_uis_on_sync_execution_starting (void) 3666 { 3667 SWITCH_THRU_ALL_UIS () 3668 { 3669 if (current_ui->prompt_state == PROMPT_NEEDED) 3670 async_disable_stdin (); 3671 } 3672 } 3673 3674 /* Asynchronous version of wait_for_inferior. It is called by the 3675 event loop whenever a change of state is detected on the file 3676 descriptor corresponding to the target. It can be called more than 3677 once to complete a single execution command. In such cases we need 3678 to keep the state in a global variable ECSS. If it is the last time 3679 that this function is called for a single execution command, then 3680 report to the user that the inferior has stopped, and do the 3681 necessary cleanups. */ 3682 3683 void 3684 fetch_inferior_event (void *client_data) 3685 { 3686 struct execution_control_state ecss; 3687 struct execution_control_state *ecs = &ecss; 3688 int cmd_done = 0; 3689 ptid_t waiton_ptid = minus_one_ptid; 3690 3691 memset (ecs, 0, sizeof (*ecs)); 3692 3693 /* Events are always processed with the main UI as current UI. This 3694 way, warnings, debug output, etc. are always consistently sent to 3695 the main console. */ 3696 scoped_restore save_ui = make_scoped_restore (¤t_ui, main_ui); 3697 3698 /* End up with readline processing input, if necessary. */ 3699 { 3700 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); }; 3701 3702 /* We're handling a live event, so make sure we're doing live 3703 debugging. If we're looking at traceframes while the target is 3704 running, we're going to need to get back to that mode after 3705 handling the event. */ 3706 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe; 3707 if (non_stop) 3708 { 3709 maybe_restore_traceframe.emplace (); 3710 set_current_traceframe (-1); 3711 } 3712 3713 gdb::optional<scoped_restore_current_thread> maybe_restore_thread; 3714 3715 if (non_stop) 3716 /* In non-stop mode, the user/frontend should not notice a thread 3717 switch due to internal events. Make sure we reverse to the 3718 user selected thread and frame after handling the event and 3719 running any breakpoint commands. */ 3720 maybe_restore_thread.emplace (); 3721 3722 overlay_cache_invalid = 1; 3723 /* Flush target cache before starting to handle each event. Target 3724 was running and cache could be stale. This is just a heuristic. 3725 Running threads may modify target memory, but we don't get any 3726 event. */ 3727 target_dcache_invalidate (); 3728 3729 scoped_restore save_exec_dir 3730 = make_scoped_restore (&execution_direction, 3731 target_execution_direction ()); 3732 3733 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 3734 target_can_async_p () ? TARGET_WNOHANG : 0); 3735 3736 if (debug_infrun) 3737 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); 3738 3739 /* If an error happens while handling the event, propagate GDB's 3740 knowledge of the executing state to the frontend/user running 3741 state. */ 3742 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid; 3743 scoped_finish_thread_state finish_state (finish_ptid); 3744 3745 /* Get executed before scoped_restore_current_thread above to apply 3746 still for the thread which has thrown the exception. */ 3747 auto defer_bpstat_clear 3748 = make_scope_exit (bpstat_clear_actions); 3749 auto defer_delete_threads 3750 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints); 3751 3752 /* Now figure out what to do with the result of the result. */ 3753 handle_inferior_event (ecs); 3754 3755 if (!ecs->wait_some_more) 3756 { 3757 struct inferior *inf = find_inferior_ptid (ecs->ptid); 3758 int should_stop = 1; 3759 struct thread_info *thr = ecs->event_thread; 3760 3761 delete_just_stopped_threads_infrun_breakpoints (); 3762 3763 if (thr != NULL) 3764 { 3765 struct thread_fsm *thread_fsm = thr->thread_fsm; 3766 3767 if (thread_fsm != NULL) 3768 should_stop = thread_fsm->should_stop (thr); 3769 } 3770 3771 if (!should_stop) 3772 { 3773 keep_going (ecs); 3774 } 3775 else 3776 { 3777 bool should_notify_stop = true; 3778 int proceeded = 0; 3779 3780 clean_up_just_stopped_threads_fsms (ecs); 3781 3782 if (thr != NULL && thr->thread_fsm != NULL) 3783 should_notify_stop = thr->thread_fsm->should_notify_stop (); 3784 3785 if (should_notify_stop) 3786 { 3787 /* We may not find an inferior if this was a process exit. */ 3788 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY) 3789 proceeded = normal_stop (); 3790 } 3791 3792 if (!proceeded) 3793 { 3794 inferior_event_handler (INF_EXEC_COMPLETE, NULL); 3795 cmd_done = 1; 3796 } 3797 } 3798 } 3799 3800 defer_delete_threads.release (); 3801 defer_bpstat_clear.release (); 3802 3803 /* No error, don't finish the thread states yet. */ 3804 finish_state.release (); 3805 3806 /* This scope is used to ensure that readline callbacks are 3807 reinstalled here. */ 3808 } 3809 3810 /* If a UI was in sync execution mode, and now isn't, restore its 3811 prompt (a synchronous execution command has finished, and we're 3812 ready for input). */ 3813 all_uis_check_sync_execution_done (); 3814 3815 if (cmd_done 3816 && exec_done_display_p 3817 && (inferior_ptid == null_ptid 3818 || inferior_thread ()->state != THREAD_RUNNING)) 3819 printf_unfiltered (_("completed.\n")); 3820 } 3821 3822 /* Record the frame and location we're currently stepping through. */ 3823 void 3824 set_step_info (struct frame_info *frame, struct symtab_and_line sal) 3825 { 3826 struct thread_info *tp = inferior_thread (); 3827 3828 tp->control.step_frame_id = get_frame_id (frame); 3829 tp->control.step_stack_frame_id = get_stack_frame_id (frame); 3830 3831 tp->current_symtab = sal.symtab; 3832 tp->current_line = sal.line; 3833 } 3834 3835 /* Clear context switchable stepping state. */ 3836 3837 void 3838 init_thread_stepping_state (struct thread_info *tss) 3839 { 3840 tss->stepped_breakpoint = 0; 3841 tss->stepping_over_breakpoint = 0; 3842 tss->stepping_over_watchpoint = 0; 3843 tss->step_after_step_resume_breakpoint = 0; 3844 } 3845 3846 /* Set the cached copy of the last ptid/waitstatus. */ 3847 3848 void 3849 set_last_target_status (ptid_t ptid, struct target_waitstatus status) 3850 { 3851 target_last_wait_ptid = ptid; 3852 target_last_waitstatus = status; 3853 } 3854 3855 /* Return the cached copy of the last pid/waitstatus returned by 3856 target_wait()/deprecated_target_wait_hook(). The data is actually 3857 cached by handle_inferior_event(), which gets called immediately 3858 after target_wait()/deprecated_target_wait_hook(). */ 3859 3860 void 3861 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) 3862 { 3863 *ptidp = target_last_wait_ptid; 3864 *status = target_last_waitstatus; 3865 } 3866 3867 void 3868 nullify_last_target_wait_ptid (void) 3869 { 3870 target_last_wait_ptid = minus_one_ptid; 3871 } 3872 3873 /* Switch thread contexts. */ 3874 3875 static void 3876 context_switch (execution_control_state *ecs) 3877 { 3878 if (debug_infrun 3879 && ecs->ptid != inferior_ptid 3880 && ecs->event_thread != inferior_thread ()) 3881 { 3882 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ", 3883 target_pid_to_str (inferior_ptid)); 3884 fprintf_unfiltered (gdb_stdlog, "to %s\n", 3885 target_pid_to_str (ecs->ptid)); 3886 } 3887 3888 switch_to_thread (ecs->event_thread); 3889 } 3890 3891 /* If the target can't tell whether we've hit breakpoints 3892 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP, 3893 check whether that could have been caused by a breakpoint. If so, 3894 adjust the PC, per gdbarch_decr_pc_after_break. */ 3895 3896 static void 3897 adjust_pc_after_break (struct thread_info *thread, 3898 struct target_waitstatus *ws) 3899 { 3900 struct regcache *regcache; 3901 struct gdbarch *gdbarch; 3902 CORE_ADDR breakpoint_pc, decr_pc; 3903 3904 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If 3905 we aren't, just return. 3906 3907 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not 3908 affected by gdbarch_decr_pc_after_break. Other waitkinds which are 3909 implemented by software breakpoints should be handled through the normal 3910 breakpoint layer. 3911 3912 NOTE drow/2004-01-31: On some targets, breakpoints may generate 3913 different signals (SIGILL or SIGEMT for instance), but it is less 3914 clear where the PC is pointing afterwards. It may not match 3915 gdbarch_decr_pc_after_break. I don't know any specific target that 3916 generates these signals at breakpoints (the code has been in GDB since at 3917 least 1992) so I can not guess how to handle them here. 3918 3919 In earlier versions of GDB, a target with 3920 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a 3921 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any 3922 target with both of these set in GDB history, and it seems unlikely to be 3923 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ 3924 3925 if (ws->kind != TARGET_WAITKIND_STOPPED) 3926 return; 3927 3928 if (ws->value.sig != GDB_SIGNAL_TRAP) 3929 return; 3930 3931 /* In reverse execution, when a breakpoint is hit, the instruction 3932 under it has already been de-executed. The reported PC always 3933 points at the breakpoint address, so adjusting it further would 3934 be wrong. E.g., consider this case on a decr_pc_after_break == 1 3935 architecture: 3936 3937 B1 0x08000000 : INSN1 3938 B2 0x08000001 : INSN2 3939 0x08000002 : INSN3 3940 PC -> 0x08000003 : INSN4 3941 3942 Say you're stopped at 0x08000003 as above. Reverse continuing 3943 from that point should hit B2 as below. Reading the PC when the 3944 SIGTRAP is reported should read 0x08000001 and INSN2 should have 3945 been de-executed already. 3946 3947 B1 0x08000000 : INSN1 3948 B2 PC -> 0x08000001 : INSN2 3949 0x08000002 : INSN3 3950 0x08000003 : INSN4 3951 3952 We can't apply the same logic as for forward execution, because 3953 we would wrongly adjust the PC to 0x08000000, since there's a 3954 breakpoint at PC - 1. We'd then report a hit on B1, although 3955 INSN1 hadn't been de-executed yet. Doing nothing is the correct 3956 behaviour. */ 3957 if (execution_direction == EXEC_REVERSE) 3958 return; 3959 3960 /* If the target can tell whether the thread hit a SW breakpoint, 3961 trust it. Targets that can tell also adjust the PC 3962 themselves. */ 3963 if (target_supports_stopped_by_sw_breakpoint ()) 3964 return; 3965 3966 /* Note that relying on whether a breakpoint is planted in memory to 3967 determine this can fail. E.g,. the breakpoint could have been 3968 removed since. Or the thread could have been told to step an 3969 instruction the size of a breakpoint instruction, and only 3970 _after_ was a breakpoint inserted at its address. */ 3971 3972 /* If this target does not decrement the PC after breakpoints, then 3973 we have nothing to do. */ 3974 regcache = get_thread_regcache (thread); 3975 gdbarch = regcache->arch (); 3976 3977 decr_pc = gdbarch_decr_pc_after_break (gdbarch); 3978 if (decr_pc == 0) 3979 return; 3980 3981 const address_space *aspace = regcache->aspace (); 3982 3983 /* Find the location where (if we've hit a breakpoint) the 3984 breakpoint would be. */ 3985 breakpoint_pc = regcache_read_pc (regcache) - decr_pc; 3986 3987 /* If the target can't tell whether a software breakpoint triggered, 3988 fallback to figuring it out based on breakpoints we think were 3989 inserted in the target, and on whether the thread was stepped or 3990 continued. */ 3991 3992 /* Check whether there actually is a software breakpoint inserted at 3993 that location. 3994 3995 If in non-stop mode, a race condition is possible where we've 3996 removed a breakpoint, but stop events for that breakpoint were 3997 already queued and arrive later. To suppress those spurious 3998 SIGTRAPs, we keep a list of such breakpoint locations for a bit, 3999 and retire them after a number of stop events are reported. Note 4000 this is an heuristic and can thus get confused. The real fix is 4001 to get the "stopped by SW BP and needs adjustment" info out of 4002 the target/kernel (and thus never reach here; see above). */ 4003 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc) 4004 || (target_is_non_stop_p () 4005 && moribund_breakpoint_here_p (aspace, breakpoint_pc))) 4006 { 4007 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable; 4008 4009 if (record_full_is_used ()) 4010 restore_operation_disable.emplace 4011 (record_full_gdb_operation_disable_set ()); 4012 4013 /* When using hardware single-step, a SIGTRAP is reported for both 4014 a completed single-step and a software breakpoint. Need to 4015 differentiate between the two, as the latter needs adjusting 4016 but the former does not. 4017 4018 The SIGTRAP can be due to a completed hardware single-step only if 4019 - we didn't insert software single-step breakpoints 4020 - this thread is currently being stepped 4021 4022 If any of these events did not occur, we must have stopped due 4023 to hitting a software breakpoint, and have to back up to the 4024 breakpoint address. 4025 4026 As a special case, we could have hardware single-stepped a 4027 software breakpoint. In this case (prev_pc == breakpoint_pc), 4028 we also need to back up to the breakpoint address. */ 4029 4030 if (thread_has_single_step_breakpoints_set (thread) 4031 || !currently_stepping (thread) 4032 || (thread->stepped_breakpoint 4033 && thread->prev_pc == breakpoint_pc)) 4034 regcache_write_pc (regcache, breakpoint_pc); 4035 } 4036 } 4037 4038 static int 4039 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id) 4040 { 4041 for (frame = get_prev_frame (frame); 4042 frame != NULL; 4043 frame = get_prev_frame (frame)) 4044 { 4045 if (frame_id_eq (get_frame_id (frame), step_frame_id)) 4046 return 1; 4047 if (get_frame_type (frame) != INLINE_FRAME) 4048 break; 4049 } 4050 4051 return 0; 4052 } 4053 4054 /* If the event thread has the stop requested flag set, pretend it 4055 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to 4056 target_stop). */ 4057 4058 static bool 4059 handle_stop_requested (struct execution_control_state *ecs) 4060 { 4061 if (ecs->event_thread->stop_requested) 4062 { 4063 ecs->ws.kind = TARGET_WAITKIND_STOPPED; 4064 ecs->ws.value.sig = GDB_SIGNAL_0; 4065 handle_signal_stop (ecs); 4066 return true; 4067 } 4068 return false; 4069 } 4070 4071 /* Auxiliary function that handles syscall entry/return events. 4072 It returns 1 if the inferior should keep going (and GDB 4073 should ignore the event), or 0 if the event deserves to be 4074 processed. */ 4075 4076 static int 4077 handle_syscall_event (struct execution_control_state *ecs) 4078 { 4079 struct regcache *regcache; 4080 int syscall_number; 4081 4082 context_switch (ecs); 4083 4084 regcache = get_thread_regcache (ecs->event_thread); 4085 syscall_number = ecs->ws.value.syscall_number; 4086 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache); 4087 4088 if (catch_syscall_enabled () > 0 4089 && catching_syscall_number (syscall_number) > 0) 4090 { 4091 if (debug_infrun) 4092 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n", 4093 syscall_number); 4094 4095 ecs->event_thread->control.stop_bpstat 4096 = bpstat_stop_status (regcache->aspace (), 4097 ecs->event_thread->suspend.stop_pc, 4098 ecs->event_thread, &ecs->ws); 4099 4100 if (handle_stop_requested (ecs)) 4101 return 0; 4102 4103 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) 4104 { 4105 /* Catchpoint hit. */ 4106 return 0; 4107 } 4108 } 4109 4110 if (handle_stop_requested (ecs)) 4111 return 0; 4112 4113 /* If no catchpoint triggered for this, then keep going. */ 4114 keep_going (ecs); 4115 return 1; 4116 } 4117 4118 /* Lazily fill in the execution_control_state's stop_func_* fields. */ 4119 4120 static void 4121 fill_in_stop_func (struct gdbarch *gdbarch, 4122 struct execution_control_state *ecs) 4123 { 4124 if (!ecs->stop_func_filled_in) 4125 { 4126 /* Don't care about return value; stop_func_start and stop_func_name 4127 will both be 0 if it doesn't work. */ 4128 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc, 4129 &ecs->stop_func_name, 4130 &ecs->stop_func_start, 4131 &ecs->stop_func_end); 4132 ecs->stop_func_start 4133 += gdbarch_deprecated_function_start_offset (gdbarch); 4134 4135 if (gdbarch_skip_entrypoint_p (gdbarch)) 4136 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch, 4137 ecs->stop_func_start); 4138 4139 ecs->stop_func_filled_in = 1; 4140 } 4141 } 4142 4143 4144 /* Return the STOP_SOON field of the inferior pointed at by ECS. */ 4145 4146 static enum stop_kind 4147 get_inferior_stop_soon (execution_control_state *ecs) 4148 { 4149 struct inferior *inf = find_inferior_ptid (ecs->ptid); 4150 4151 gdb_assert (inf != NULL); 4152 return inf->control.stop_soon; 4153 } 4154 4155 /* Wait for one event. Store the resulting waitstatus in WS, and 4156 return the event ptid. */ 4157 4158 static ptid_t 4159 wait_one (struct target_waitstatus *ws) 4160 { 4161 ptid_t event_ptid; 4162 ptid_t wait_ptid = minus_one_ptid; 4163 4164 overlay_cache_invalid = 1; 4165 4166 /* Flush target cache before starting to handle each event. 4167 Target was running and cache could be stale. This is just a 4168 heuristic. Running threads may modify target memory, but we 4169 don't get any event. */ 4170 target_dcache_invalidate (); 4171 4172 if (deprecated_target_wait_hook) 4173 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0); 4174 else 4175 event_ptid = target_wait (wait_ptid, ws, 0); 4176 4177 if (debug_infrun) 4178 print_target_wait_results (wait_ptid, event_ptid, ws); 4179 4180 return event_ptid; 4181 } 4182 4183 /* Generate a wrapper for target_stopped_by_REASON that works on PTID 4184 instead of the current thread. */ 4185 #define THREAD_STOPPED_BY(REASON) \ 4186 static int \ 4187 thread_stopped_by_ ## REASON (ptid_t ptid) \ 4188 { \ 4189 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \ 4190 inferior_ptid = ptid; \ 4191 \ 4192 return target_stopped_by_ ## REASON (); \ 4193 } 4194 4195 /* Generate thread_stopped_by_watchpoint. */ 4196 THREAD_STOPPED_BY (watchpoint) 4197 /* Generate thread_stopped_by_sw_breakpoint. */ 4198 THREAD_STOPPED_BY (sw_breakpoint) 4199 /* Generate thread_stopped_by_hw_breakpoint. */ 4200 THREAD_STOPPED_BY (hw_breakpoint) 4201 4202 /* Save the thread's event and stop reason to process it later. */ 4203 4204 static void 4205 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws) 4206 { 4207 if (debug_infrun) 4208 { 4209 std::string statstr = target_waitstatus_to_string (ws); 4210 4211 fprintf_unfiltered (gdb_stdlog, 4212 "infrun: saving status %s for %d.%ld.%ld\n", 4213 statstr.c_str (), 4214 tp->ptid.pid (), 4215 tp->ptid.lwp (), 4216 tp->ptid.tid ()); 4217 } 4218 4219 /* Record for later. */ 4220 tp->suspend.waitstatus = *ws; 4221 tp->suspend.waitstatus_pending_p = 1; 4222 4223 struct regcache *regcache = get_thread_regcache (tp); 4224 const address_space *aspace = regcache->aspace (); 4225 4226 if (ws->kind == TARGET_WAITKIND_STOPPED 4227 && ws->value.sig == GDB_SIGNAL_TRAP) 4228 { 4229 CORE_ADDR pc = regcache_read_pc (regcache); 4230 4231 adjust_pc_after_break (tp, &tp->suspend.waitstatus); 4232 4233 if (thread_stopped_by_watchpoint (tp->ptid)) 4234 { 4235 tp->suspend.stop_reason 4236 = TARGET_STOPPED_BY_WATCHPOINT; 4237 } 4238 else if (target_supports_stopped_by_sw_breakpoint () 4239 && thread_stopped_by_sw_breakpoint (tp->ptid)) 4240 { 4241 tp->suspend.stop_reason 4242 = TARGET_STOPPED_BY_SW_BREAKPOINT; 4243 } 4244 else if (target_supports_stopped_by_hw_breakpoint () 4245 && thread_stopped_by_hw_breakpoint (tp->ptid)) 4246 { 4247 tp->suspend.stop_reason 4248 = TARGET_STOPPED_BY_HW_BREAKPOINT; 4249 } 4250 else if (!target_supports_stopped_by_hw_breakpoint () 4251 && hardware_breakpoint_inserted_here_p (aspace, 4252 pc)) 4253 { 4254 tp->suspend.stop_reason 4255 = TARGET_STOPPED_BY_HW_BREAKPOINT; 4256 } 4257 else if (!target_supports_stopped_by_sw_breakpoint () 4258 && software_breakpoint_inserted_here_p (aspace, 4259 pc)) 4260 { 4261 tp->suspend.stop_reason 4262 = TARGET_STOPPED_BY_SW_BREAKPOINT; 4263 } 4264 else if (!thread_has_single_step_breakpoints_set (tp) 4265 && currently_stepping (tp)) 4266 { 4267 tp->suspend.stop_reason 4268 = TARGET_STOPPED_BY_SINGLE_STEP; 4269 } 4270 } 4271 } 4272 4273 /* See infrun.h. */ 4274 4275 void 4276 stop_all_threads (void) 4277 { 4278 /* We may need multiple passes to discover all threads. */ 4279 int pass; 4280 int iterations = 0; 4281 4282 gdb_assert (target_is_non_stop_p ()); 4283 4284 if (debug_infrun) 4285 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n"); 4286 4287 scoped_restore_current_thread restore_thread; 4288 4289 target_thread_events (1); 4290 SCOPE_EXIT { target_thread_events (0); }; 4291 4292 /* Request threads to stop, and then wait for the stops. Because 4293 threads we already know about can spawn more threads while we're 4294 trying to stop them, and we only learn about new threads when we 4295 update the thread list, do this in a loop, and keep iterating 4296 until two passes find no threads that need to be stopped. */ 4297 for (pass = 0; pass < 2; pass++, iterations++) 4298 { 4299 if (debug_infrun) 4300 fprintf_unfiltered (gdb_stdlog, 4301 "infrun: stop_all_threads, pass=%d, " 4302 "iterations=%d\n", pass, iterations); 4303 while (1) 4304 { 4305 ptid_t event_ptid; 4306 struct target_waitstatus ws; 4307 int need_wait = 0; 4308 4309 update_thread_list (); 4310 4311 /* Go through all threads looking for threads that we need 4312 to tell the target to stop. */ 4313 for (thread_info *t : all_non_exited_threads ()) 4314 { 4315 if (t->executing) 4316 { 4317 /* If already stopping, don't request a stop again. 4318 We just haven't seen the notification yet. */ 4319 if (!t->stop_requested) 4320 { 4321 if (debug_infrun) 4322 fprintf_unfiltered (gdb_stdlog, 4323 "infrun: %s executing, " 4324 "need stop\n", 4325 target_pid_to_str (t->ptid)); 4326 target_stop (t->ptid); 4327 t->stop_requested = 1; 4328 } 4329 else 4330 { 4331 if (debug_infrun) 4332 fprintf_unfiltered (gdb_stdlog, 4333 "infrun: %s executing, " 4334 "already stopping\n", 4335 target_pid_to_str (t->ptid)); 4336 } 4337 4338 if (t->stop_requested) 4339 need_wait = 1; 4340 } 4341 else 4342 { 4343 if (debug_infrun) 4344 fprintf_unfiltered (gdb_stdlog, 4345 "infrun: %s not executing\n", 4346 target_pid_to_str (t->ptid)); 4347 4348 /* The thread may be not executing, but still be 4349 resumed with a pending status to process. */ 4350 t->resumed = 0; 4351 } 4352 } 4353 4354 if (!need_wait) 4355 break; 4356 4357 /* If we find new threads on the second iteration, restart 4358 over. We want to see two iterations in a row with all 4359 threads stopped. */ 4360 if (pass > 0) 4361 pass = -1; 4362 4363 event_ptid = wait_one (&ws); 4364 4365 if (ws.kind == TARGET_WAITKIND_NO_RESUMED) 4366 { 4367 /* All resumed threads exited. */ 4368 } 4369 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED 4370 || ws.kind == TARGET_WAITKIND_EXITED 4371 || ws.kind == TARGET_WAITKIND_SIGNALLED) 4372 { 4373 if (debug_infrun) 4374 { 4375 ptid_t ptid = ptid_t (ws.value.integer); 4376 4377 fprintf_unfiltered (gdb_stdlog, 4378 "infrun: %s exited while " 4379 "stopping threads\n", 4380 target_pid_to_str (ptid)); 4381 } 4382 } 4383 else 4384 { 4385 thread_info *t = find_thread_ptid (event_ptid); 4386 if (t == NULL) 4387 t = add_thread (event_ptid); 4388 4389 t->stop_requested = 0; 4390 t->executing = 0; 4391 t->resumed = 0; 4392 t->control.may_range_step = 0; 4393 4394 /* This may be the first time we see the inferior report 4395 a stop. */ 4396 inferior *inf = find_inferior_ptid (event_ptid); 4397 if (inf->needs_setup) 4398 { 4399 switch_to_thread_no_regs (t); 4400 setup_inferior (0); 4401 } 4402 4403 if (ws.kind == TARGET_WAITKIND_STOPPED 4404 && ws.value.sig == GDB_SIGNAL_0) 4405 { 4406 /* We caught the event that we intended to catch, so 4407 there's no event pending. */ 4408 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE; 4409 t->suspend.waitstatus_pending_p = 0; 4410 4411 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0) 4412 { 4413 /* Add it back to the step-over queue. */ 4414 if (debug_infrun) 4415 { 4416 fprintf_unfiltered (gdb_stdlog, 4417 "infrun: displaced-step of %s " 4418 "canceled: adding back to the " 4419 "step-over queue\n", 4420 target_pid_to_str (t->ptid)); 4421 } 4422 t->control.trap_expected = 0; 4423 thread_step_over_chain_enqueue (t); 4424 } 4425 } 4426 else 4427 { 4428 enum gdb_signal sig; 4429 struct regcache *regcache; 4430 4431 if (debug_infrun) 4432 { 4433 std::string statstr = target_waitstatus_to_string (&ws); 4434 4435 fprintf_unfiltered (gdb_stdlog, 4436 "infrun: target_wait %s, saving " 4437 "status for %d.%ld.%ld\n", 4438 statstr.c_str (), 4439 t->ptid.pid (), 4440 t->ptid.lwp (), 4441 t->ptid.tid ()); 4442 } 4443 4444 /* Record for later. */ 4445 save_waitstatus (t, &ws); 4446 4447 sig = (ws.kind == TARGET_WAITKIND_STOPPED 4448 ? ws.value.sig : GDB_SIGNAL_0); 4449 4450 if (displaced_step_fixup (t, sig) < 0) 4451 { 4452 /* Add it back to the step-over queue. */ 4453 t->control.trap_expected = 0; 4454 thread_step_over_chain_enqueue (t); 4455 } 4456 4457 regcache = get_thread_regcache (t); 4458 t->suspend.stop_pc = regcache_read_pc (regcache); 4459 4460 if (debug_infrun) 4461 { 4462 fprintf_unfiltered (gdb_stdlog, 4463 "infrun: saved stop_pc=%s for %s " 4464 "(currently_stepping=%d)\n", 4465 paddress (target_gdbarch (), 4466 t->suspend.stop_pc), 4467 target_pid_to_str (t->ptid), 4468 currently_stepping (t)); 4469 } 4470 } 4471 } 4472 } 4473 } 4474 4475 if (debug_infrun) 4476 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n"); 4477 } 4478 4479 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */ 4480 4481 static int 4482 handle_no_resumed (struct execution_control_state *ecs) 4483 { 4484 if (target_can_async_p ()) 4485 { 4486 struct ui *ui; 4487 int any_sync = 0; 4488 4489 ALL_UIS (ui) 4490 { 4491 if (ui->prompt_state == PROMPT_BLOCKED) 4492 { 4493 any_sync = 1; 4494 break; 4495 } 4496 } 4497 if (!any_sync) 4498 { 4499 /* There were no unwaited-for children left in the target, but, 4500 we're not synchronously waiting for events either. Just 4501 ignore. */ 4502 4503 if (debug_infrun) 4504 fprintf_unfiltered (gdb_stdlog, 4505 "infrun: TARGET_WAITKIND_NO_RESUMED " 4506 "(ignoring: bg)\n"); 4507 prepare_to_wait (ecs); 4508 return 1; 4509 } 4510 } 4511 4512 /* Otherwise, if we were running a synchronous execution command, we 4513 may need to cancel it and give the user back the terminal. 4514 4515 In non-stop mode, the target can't tell whether we've already 4516 consumed previous stop events, so it can end up sending us a 4517 no-resumed event like so: 4518 4519 #0 - thread 1 is left stopped 4520 4521 #1 - thread 2 is resumed and hits breakpoint 4522 -> TARGET_WAITKIND_STOPPED 4523 4524 #2 - thread 3 is resumed and exits 4525 this is the last resumed thread, so 4526 -> TARGET_WAITKIND_NO_RESUMED 4527 4528 #3 - gdb processes stop for thread 2 and decides to re-resume 4529 it. 4530 4531 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event. 4532 thread 2 is now resumed, so the event should be ignored. 4533 4534 IOW, if the stop for thread 2 doesn't end a foreground command, 4535 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED 4536 event. But it could be that the event meant that thread 2 itself 4537 (or whatever other thread was the last resumed thread) exited. 4538 4539 To address this we refresh the thread list and check whether we 4540 have resumed threads _now_. In the example above, this removes 4541 thread 3 from the thread list. If thread 2 was re-resumed, we 4542 ignore this event. If we find no thread resumed, then we cancel 4543 the synchronous command show "no unwaited-for " to the user. */ 4544 update_thread_list (); 4545 4546 for (thread_info *thread : all_non_exited_threads ()) 4547 { 4548 if (thread->executing 4549 || thread->suspend.waitstatus_pending_p) 4550 { 4551 /* There were no unwaited-for children left in the target at 4552 some point, but there are now. Just ignore. */ 4553 if (debug_infrun) 4554 fprintf_unfiltered (gdb_stdlog, 4555 "infrun: TARGET_WAITKIND_NO_RESUMED " 4556 "(ignoring: found resumed)\n"); 4557 prepare_to_wait (ecs); 4558 return 1; 4559 } 4560 } 4561 4562 /* Note however that we may find no resumed thread because the whole 4563 process exited meanwhile (thus updating the thread list results 4564 in an empty thread list). In this case we know we'll be getting 4565 a process exit event shortly. */ 4566 for (inferior *inf : all_inferiors ()) 4567 { 4568 if (inf->pid == 0) 4569 continue; 4570 4571 thread_info *thread = any_live_thread_of_inferior (inf); 4572 if (thread == NULL) 4573 { 4574 if (debug_infrun) 4575 fprintf_unfiltered (gdb_stdlog, 4576 "infrun: TARGET_WAITKIND_NO_RESUMED " 4577 "(expect process exit)\n"); 4578 prepare_to_wait (ecs); 4579 return 1; 4580 } 4581 } 4582 4583 /* Go ahead and report the event. */ 4584 return 0; 4585 } 4586 4587 /* Given an execution control state that has been freshly filled in by 4588 an event from the inferior, figure out what it means and take 4589 appropriate action. 4590 4591 The alternatives are: 4592 4593 1) stop_waiting and return; to really stop and return to the 4594 debugger. 4595 4596 2) keep_going and return; to wait for the next event (set 4597 ecs->event_thread->stepping_over_breakpoint to 1 to single step 4598 once). */ 4599 4600 static void 4601 handle_inferior_event (struct execution_control_state *ecs) 4602 { 4603 /* Make sure that all temporary struct value objects that were 4604 created during the handling of the event get deleted at the 4605 end. */ 4606 scoped_value_mark free_values; 4607 4608 enum stop_kind stop_soon; 4609 4610 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE) 4611 { 4612 /* We had an event in the inferior, but we are not interested in 4613 handling it at this level. The lower layers have already 4614 done what needs to be done, if anything. 4615 4616 One of the possible circumstances for this is when the 4617 inferior produces output for the console. The inferior has 4618 not stopped, and we are ignoring the event. Another possible 4619 circumstance is any event which the lower level knows will be 4620 reported multiple times without an intervening resume. */ 4621 if (debug_infrun) 4622 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n"); 4623 prepare_to_wait (ecs); 4624 return; 4625 } 4626 4627 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED) 4628 { 4629 if (debug_infrun) 4630 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n"); 4631 prepare_to_wait (ecs); 4632 return; 4633 } 4634 4635 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED 4636 && handle_no_resumed (ecs)) 4637 return; 4638 4639 /* Cache the last pid/waitstatus. */ 4640 set_last_target_status (ecs->ptid, ecs->ws); 4641 4642 /* Always clear state belonging to the previous time we stopped. */ 4643 stop_stack_dummy = STOP_NONE; 4644 4645 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED) 4646 { 4647 /* No unwaited-for children left. IOW, all resumed children 4648 have exited. */ 4649 if (debug_infrun) 4650 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n"); 4651 4652 stop_print_frame = 0; 4653 stop_waiting (ecs); 4654 return; 4655 } 4656 4657 if (ecs->ws.kind != TARGET_WAITKIND_EXITED 4658 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) 4659 { 4660 ecs->event_thread = find_thread_ptid (ecs->ptid); 4661 /* If it's a new thread, add it to the thread database. */ 4662 if (ecs->event_thread == NULL) 4663 ecs->event_thread = add_thread (ecs->ptid); 4664 4665 /* Disable range stepping. If the next step request could use a 4666 range, this will be end up re-enabled then. */ 4667 ecs->event_thread->control.may_range_step = 0; 4668 } 4669 4670 /* Dependent on valid ECS->EVENT_THREAD. */ 4671 adjust_pc_after_break (ecs->event_thread, &ecs->ws); 4672 4673 /* Dependent on the current PC value modified by adjust_pc_after_break. */ 4674 reinit_frame_cache (); 4675 4676 breakpoint_retire_moribund (); 4677 4678 /* First, distinguish signals caused by the debugger from signals 4679 that have to do with the program's own actions. Note that 4680 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending 4681 on the operating system version. Here we detect when a SIGILL or 4682 SIGEMT is really a breakpoint and change it to SIGTRAP. We do 4683 something similar for SIGSEGV, since a SIGSEGV will be generated 4684 when we're trying to execute a breakpoint instruction on a 4685 non-executable stack. This happens for call dummy breakpoints 4686 for architectures like SPARC that place call dummies on the 4687 stack. */ 4688 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED 4689 && (ecs->ws.value.sig == GDB_SIGNAL_ILL 4690 || ecs->ws.value.sig == GDB_SIGNAL_SEGV 4691 || ecs->ws.value.sig == GDB_SIGNAL_EMT)) 4692 { 4693 struct regcache *regcache = get_thread_regcache (ecs->event_thread); 4694 4695 if (breakpoint_inserted_here_p (regcache->aspace (), 4696 regcache_read_pc (regcache))) 4697 { 4698 if (debug_infrun) 4699 fprintf_unfiltered (gdb_stdlog, 4700 "infrun: Treating signal as SIGTRAP\n"); 4701 ecs->ws.value.sig = GDB_SIGNAL_TRAP; 4702 } 4703 } 4704 4705 /* Mark the non-executing threads accordingly. In all-stop, all 4706 threads of all processes are stopped when we get any event 4707 reported. In non-stop mode, only the event thread stops. */ 4708 { 4709 ptid_t mark_ptid; 4710 4711 if (!target_is_non_stop_p ()) 4712 mark_ptid = minus_one_ptid; 4713 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED 4714 || ecs->ws.kind == TARGET_WAITKIND_EXITED) 4715 { 4716 /* If we're handling a process exit in non-stop mode, even 4717 though threads haven't been deleted yet, one would think 4718 that there is nothing to do, as threads of the dead process 4719 will be soon deleted, and threads of any other process were 4720 left running. However, on some targets, threads survive a 4721 process exit event. E.g., for the "checkpoint" command, 4722 when the current checkpoint/fork exits, linux-fork.c 4723 automatically switches to another fork from within 4724 target_mourn_inferior, by associating the same 4725 inferior/thread to another fork. We haven't mourned yet at 4726 this point, but we must mark any threads left in the 4727 process as not-executing so that finish_thread_state marks 4728 them stopped (in the user's perspective) if/when we present 4729 the stop to the user. */ 4730 mark_ptid = ptid_t (ecs->ptid.pid ()); 4731 } 4732 else 4733 mark_ptid = ecs->ptid; 4734 4735 set_executing (mark_ptid, 0); 4736 4737 /* Likewise the resumed flag. */ 4738 set_resumed (mark_ptid, 0); 4739 } 4740 4741 switch (ecs->ws.kind) 4742 { 4743 case TARGET_WAITKIND_LOADED: 4744 if (debug_infrun) 4745 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n"); 4746 context_switch (ecs); 4747 /* Ignore gracefully during startup of the inferior, as it might 4748 be the shell which has just loaded some objects, otherwise 4749 add the symbols for the newly loaded objects. Also ignore at 4750 the beginning of an attach or remote session; we will query 4751 the full list of libraries once the connection is 4752 established. */ 4753 4754 stop_soon = get_inferior_stop_soon (ecs); 4755 if (stop_soon == NO_STOP_QUIETLY) 4756 { 4757 struct regcache *regcache; 4758 4759 regcache = get_thread_regcache (ecs->event_thread); 4760 4761 handle_solib_event (); 4762 4763 ecs->event_thread->control.stop_bpstat 4764 = bpstat_stop_status (regcache->aspace (), 4765 ecs->event_thread->suspend.stop_pc, 4766 ecs->event_thread, &ecs->ws); 4767 4768 if (handle_stop_requested (ecs)) 4769 return; 4770 4771 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) 4772 { 4773 /* A catchpoint triggered. */ 4774 process_event_stop_test (ecs); 4775 return; 4776 } 4777 4778 /* If requested, stop when the dynamic linker notifies 4779 gdb of events. This allows the user to get control 4780 and place breakpoints in initializer routines for 4781 dynamically loaded objects (among other things). */ 4782 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 4783 if (stop_on_solib_events) 4784 { 4785 /* Make sure we print "Stopped due to solib-event" in 4786 normal_stop. */ 4787 stop_print_frame = 1; 4788 4789 stop_waiting (ecs); 4790 return; 4791 } 4792 } 4793 4794 /* If we are skipping through a shell, or through shared library 4795 loading that we aren't interested in, resume the program. If 4796 we're running the program normally, also resume. */ 4797 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY) 4798 { 4799 /* Loading of shared libraries might have changed breakpoint 4800 addresses. Make sure new breakpoints are inserted. */ 4801 if (stop_soon == NO_STOP_QUIETLY) 4802 insert_breakpoints (); 4803 resume (GDB_SIGNAL_0); 4804 prepare_to_wait (ecs); 4805 return; 4806 } 4807 4808 /* But stop if we're attaching or setting up a remote 4809 connection. */ 4810 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP 4811 || stop_soon == STOP_QUIETLY_REMOTE) 4812 { 4813 if (debug_infrun) 4814 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); 4815 stop_waiting (ecs); 4816 return; 4817 } 4818 4819 internal_error (__FILE__, __LINE__, 4820 _("unhandled stop_soon: %d"), (int) stop_soon); 4821 4822 case TARGET_WAITKIND_SPURIOUS: 4823 if (debug_infrun) 4824 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n"); 4825 if (handle_stop_requested (ecs)) 4826 return; 4827 context_switch (ecs); 4828 resume (GDB_SIGNAL_0); 4829 prepare_to_wait (ecs); 4830 return; 4831 4832 case TARGET_WAITKIND_THREAD_CREATED: 4833 if (debug_infrun) 4834 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n"); 4835 if (handle_stop_requested (ecs)) 4836 return; 4837 context_switch (ecs); 4838 if (!switch_back_to_stepped_thread (ecs)) 4839 keep_going (ecs); 4840 return; 4841 4842 case TARGET_WAITKIND_EXITED: 4843 case TARGET_WAITKIND_SIGNALLED: 4844 if (debug_infrun) 4845 { 4846 if (ecs->ws.kind == TARGET_WAITKIND_EXITED) 4847 fprintf_unfiltered (gdb_stdlog, 4848 "infrun: TARGET_WAITKIND_EXITED\n"); 4849 else 4850 fprintf_unfiltered (gdb_stdlog, 4851 "infrun: TARGET_WAITKIND_SIGNALLED\n"); 4852 } 4853 4854 inferior_ptid = ecs->ptid; 4855 set_current_inferior (find_inferior_ptid (ecs->ptid)); 4856 set_current_program_space (current_inferior ()->pspace); 4857 handle_vfork_child_exec_or_exit (0); 4858 target_terminal::ours (); /* Must do this before mourn anyway. */ 4859 4860 /* Clearing any previous state of convenience variables. */ 4861 clear_exit_convenience_vars (); 4862 4863 if (ecs->ws.kind == TARGET_WAITKIND_EXITED) 4864 { 4865 /* Record the exit code in the convenience variable $_exitcode, so 4866 that the user can inspect this again later. */ 4867 set_internalvar_integer (lookup_internalvar ("_exitcode"), 4868 (LONGEST) ecs->ws.value.integer); 4869 4870 /* Also record this in the inferior itself. */ 4871 current_inferior ()->has_exit_code = 1; 4872 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer; 4873 4874 /* Support the --return-child-result option. */ 4875 return_child_result_value = ecs->ws.value.integer; 4876 4877 gdb::observers::exited.notify (ecs->ws.value.integer); 4878 } 4879 else 4880 { 4881 struct gdbarch *gdbarch = current_inferior ()->gdbarch; 4882 4883 if (gdbarch_gdb_signal_to_target_p (gdbarch)) 4884 { 4885 /* Set the value of the internal variable $_exitsignal, 4886 which holds the signal uncaught by the inferior. */ 4887 set_internalvar_integer (lookup_internalvar ("_exitsignal"), 4888 gdbarch_gdb_signal_to_target (gdbarch, 4889 ecs->ws.value.sig)); 4890 } 4891 else 4892 { 4893 /* We don't have access to the target's method used for 4894 converting between signal numbers (GDB's internal 4895 representation <-> target's representation). 4896 Therefore, we cannot do a good job at displaying this 4897 information to the user. It's better to just warn 4898 her about it (if infrun debugging is enabled), and 4899 give up. */ 4900 if (debug_infrun) 4901 fprintf_filtered (gdb_stdlog, _("\ 4902 Cannot fill $_exitsignal with the correct signal number.\n")); 4903 } 4904 4905 gdb::observers::signal_exited.notify (ecs->ws.value.sig); 4906 } 4907 4908 gdb_flush (gdb_stdout); 4909 target_mourn_inferior (inferior_ptid); 4910 stop_print_frame = 0; 4911 stop_waiting (ecs); 4912 return; 4913 4914 /* The following are the only cases in which we keep going; 4915 the above cases end in a continue or goto. */ 4916 case TARGET_WAITKIND_FORKED: 4917 case TARGET_WAITKIND_VFORKED: 4918 if (debug_infrun) 4919 { 4920 if (ecs->ws.kind == TARGET_WAITKIND_FORKED) 4921 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n"); 4922 else 4923 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n"); 4924 } 4925 4926 /* Check whether the inferior is displaced stepping. */ 4927 { 4928 struct regcache *regcache = get_thread_regcache (ecs->event_thread); 4929 struct gdbarch *gdbarch = regcache->arch (); 4930 4931 /* If checking displaced stepping is supported, and thread 4932 ecs->ptid is displaced stepping. */ 4933 if (displaced_step_in_progress_thread (ecs->event_thread)) 4934 { 4935 struct inferior *parent_inf 4936 = find_inferior_ptid (ecs->ptid); 4937 struct regcache *child_regcache; 4938 CORE_ADDR parent_pc; 4939 4940 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED, 4941 indicating that the displaced stepping of syscall instruction 4942 has been done. Perform cleanup for parent process here. Note 4943 that this operation also cleans up the child process for vfork, 4944 because their pages are shared. */ 4945 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP); 4946 /* Start a new step-over in another thread if there's one 4947 that needs it. */ 4948 start_step_over (); 4949 4950 if (ecs->ws.kind == TARGET_WAITKIND_FORKED) 4951 { 4952 struct displaced_step_inferior_state *displaced 4953 = get_displaced_stepping_state (parent_inf); 4954 4955 /* Restore scratch pad for child process. */ 4956 displaced_step_restore (displaced, ecs->ws.value.related_pid); 4957 } 4958 4959 /* Since the vfork/fork syscall instruction was executed in the scratchpad, 4960 the child's PC is also within the scratchpad. Set the child's PC 4961 to the parent's PC value, which has already been fixed up. 4962 FIXME: we use the parent's aspace here, although we're touching 4963 the child, because the child hasn't been added to the inferior 4964 list yet at this point. */ 4965 4966 child_regcache 4967 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid, 4968 gdbarch, 4969 parent_inf->aspace); 4970 /* Read PC value of parent process. */ 4971 parent_pc = regcache_read_pc (regcache); 4972 4973 if (debug_displaced) 4974 fprintf_unfiltered (gdb_stdlog, 4975 "displaced: write child pc from %s to %s\n", 4976 paddress (gdbarch, 4977 regcache_read_pc (child_regcache)), 4978 paddress (gdbarch, parent_pc)); 4979 4980 regcache_write_pc (child_regcache, parent_pc); 4981 } 4982 } 4983 4984 context_switch (ecs); 4985 4986 /* Immediately detach breakpoints from the child before there's 4987 any chance of letting the user delete breakpoints from the 4988 breakpoint lists. If we don't do this early, it's easy to 4989 leave left over traps in the child, vis: "break foo; catch 4990 fork; c; <fork>; del; c; <child calls foo>". We only follow 4991 the fork on the last `continue', and by that time the 4992 breakpoint at "foo" is long gone from the breakpoint table. 4993 If we vforked, then we don't need to unpatch here, since both 4994 parent and child are sharing the same memory pages; we'll 4995 need to unpatch at follow/detach time instead to be certain 4996 that new breakpoints added between catchpoint hit time and 4997 vfork follow are detached. */ 4998 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED) 4999 { 5000 /* This won't actually modify the breakpoint list, but will 5001 physically remove the breakpoints from the child. */ 5002 detach_breakpoints (ecs->ws.value.related_pid); 5003 } 5004 5005 delete_just_stopped_threads_single_step_breakpoints (); 5006 5007 /* In case the event is caught by a catchpoint, remember that 5008 the event is to be followed at the next resume of the thread, 5009 and not immediately. */ 5010 ecs->event_thread->pending_follow = ecs->ws; 5011 5012 ecs->event_thread->suspend.stop_pc 5013 = regcache_read_pc (get_thread_regcache (ecs->event_thread)); 5014 5015 ecs->event_thread->control.stop_bpstat 5016 = bpstat_stop_status (get_current_regcache ()->aspace (), 5017 ecs->event_thread->suspend.stop_pc, 5018 ecs->event_thread, &ecs->ws); 5019 5020 if (handle_stop_requested (ecs)) 5021 return; 5022 5023 /* If no catchpoint triggered for this, then keep going. Note 5024 that we're interested in knowing the bpstat actually causes a 5025 stop, not just if it may explain the signal. Software 5026 watchpoints, for example, always appear in the bpstat. */ 5027 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) 5028 { 5029 int should_resume; 5030 int follow_child 5031 = (follow_fork_mode_string == follow_fork_mode_child); 5032 5033 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 5034 5035 should_resume = follow_fork (); 5036 5037 thread_info *parent = ecs->event_thread; 5038 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid); 5039 5040 /* At this point, the parent is marked running, and the 5041 child is marked stopped. */ 5042 5043 /* If not resuming the parent, mark it stopped. */ 5044 if (follow_child && !detach_fork && !non_stop && !sched_multi) 5045 parent->set_running (false); 5046 5047 /* If resuming the child, mark it running. */ 5048 if (follow_child || (!detach_fork && (non_stop || sched_multi))) 5049 child->set_running (true); 5050 5051 /* In non-stop mode, also resume the other branch. */ 5052 if (!detach_fork && (non_stop 5053 || (sched_multi && target_is_non_stop_p ()))) 5054 { 5055 if (follow_child) 5056 switch_to_thread (parent); 5057 else 5058 switch_to_thread (child); 5059 5060 ecs->event_thread = inferior_thread (); 5061 ecs->ptid = inferior_ptid; 5062 keep_going (ecs); 5063 } 5064 5065 if (follow_child) 5066 switch_to_thread (child); 5067 else 5068 switch_to_thread (parent); 5069 5070 ecs->event_thread = inferior_thread (); 5071 ecs->ptid = inferior_ptid; 5072 5073 if (should_resume) 5074 keep_going (ecs); 5075 else 5076 stop_waiting (ecs); 5077 return; 5078 } 5079 process_event_stop_test (ecs); 5080 return; 5081 5082 case TARGET_WAITKIND_VFORK_DONE: 5083 /* Done with the shared memory region. Re-insert breakpoints in 5084 the parent, and keep going. */ 5085 5086 if (debug_infrun) 5087 fprintf_unfiltered (gdb_stdlog, 5088 "infrun: TARGET_WAITKIND_VFORK_DONE\n"); 5089 5090 context_switch (ecs); 5091 5092 current_inferior ()->waiting_for_vfork_done = 0; 5093 current_inferior ()->pspace->breakpoints_not_allowed = 0; 5094 5095 if (handle_stop_requested (ecs)) 5096 return; 5097 5098 /* This also takes care of reinserting breakpoints in the 5099 previously locked inferior. */ 5100 keep_going (ecs); 5101 return; 5102 5103 case TARGET_WAITKIND_EXECD: 5104 if (debug_infrun) 5105 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n"); 5106 5107 /* Note we can't read registers yet (the stop_pc), because we 5108 don't yet know the inferior's post-exec architecture. 5109 'stop_pc' is explicitly read below instead. */ 5110 switch_to_thread_no_regs (ecs->event_thread); 5111 5112 /* Do whatever is necessary to the parent branch of the vfork. */ 5113 handle_vfork_child_exec_or_exit (1); 5114 5115 /* This causes the eventpoints and symbol table to be reset. 5116 Must do this now, before trying to determine whether to 5117 stop. */ 5118 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname); 5119 5120 /* In follow_exec we may have deleted the original thread and 5121 created a new one. Make sure that the event thread is the 5122 execd thread for that case (this is a nop otherwise). */ 5123 ecs->event_thread = inferior_thread (); 5124 5125 ecs->event_thread->suspend.stop_pc 5126 = regcache_read_pc (get_thread_regcache (ecs->event_thread)); 5127 5128 ecs->event_thread->control.stop_bpstat 5129 = bpstat_stop_status (get_current_regcache ()->aspace (), 5130 ecs->event_thread->suspend.stop_pc, 5131 ecs->event_thread, &ecs->ws); 5132 5133 /* Note that this may be referenced from inside 5134 bpstat_stop_status above, through inferior_has_execd. */ 5135 xfree (ecs->ws.value.execd_pathname); 5136 ecs->ws.value.execd_pathname = NULL; 5137 5138 if (handle_stop_requested (ecs)) 5139 return; 5140 5141 /* If no catchpoint triggered for this, then keep going. */ 5142 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) 5143 { 5144 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 5145 keep_going (ecs); 5146 return; 5147 } 5148 process_event_stop_test (ecs); 5149 return; 5150 5151 /* Be careful not to try to gather much state about a thread 5152 that's in a syscall. It's frequently a losing proposition. */ 5153 case TARGET_WAITKIND_SYSCALL_ENTRY: 5154 if (debug_infrun) 5155 fprintf_unfiltered (gdb_stdlog, 5156 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n"); 5157 /* Getting the current syscall number. */ 5158 if (handle_syscall_event (ecs) == 0) 5159 process_event_stop_test (ecs); 5160 return; 5161 5162 /* Before examining the threads further, step this thread to 5163 get it entirely out of the syscall. (We get notice of the 5164 event when the thread is just on the verge of exiting a 5165 syscall. Stepping one instruction seems to get it back 5166 into user code.) */ 5167 case TARGET_WAITKIND_SYSCALL_RETURN: 5168 if (debug_infrun) 5169 fprintf_unfiltered (gdb_stdlog, 5170 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n"); 5171 if (handle_syscall_event (ecs) == 0) 5172 process_event_stop_test (ecs); 5173 return; 5174 5175 case TARGET_WAITKIND_STOPPED: 5176 if (debug_infrun) 5177 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n"); 5178 handle_signal_stop (ecs); 5179 return; 5180 5181 case TARGET_WAITKIND_NO_HISTORY: 5182 if (debug_infrun) 5183 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n"); 5184 /* Reverse execution: target ran out of history info. */ 5185 5186 /* Switch to the stopped thread. */ 5187 context_switch (ecs); 5188 if (debug_infrun) 5189 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); 5190 5191 delete_just_stopped_threads_single_step_breakpoints (); 5192 ecs->event_thread->suspend.stop_pc 5193 = regcache_read_pc (get_thread_regcache (inferior_thread ())); 5194 5195 if (handle_stop_requested (ecs)) 5196 return; 5197 5198 gdb::observers::no_history.notify (); 5199 stop_waiting (ecs); 5200 return; 5201 } 5202 } 5203 5204 /* Restart threads back to what they were trying to do back when we 5205 paused them for an in-line step-over. The EVENT_THREAD thread is 5206 ignored. */ 5207 5208 static void 5209 restart_threads (struct thread_info *event_thread) 5210 { 5211 /* In case the instruction just stepped spawned a new thread. */ 5212 update_thread_list (); 5213 5214 for (thread_info *tp : all_non_exited_threads ()) 5215 { 5216 if (tp == event_thread) 5217 { 5218 if (debug_infrun) 5219 fprintf_unfiltered (gdb_stdlog, 5220 "infrun: restart threads: " 5221 "[%s] is event thread\n", 5222 target_pid_to_str (tp->ptid)); 5223 continue; 5224 } 5225 5226 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall)) 5227 { 5228 if (debug_infrun) 5229 fprintf_unfiltered (gdb_stdlog, 5230 "infrun: restart threads: " 5231 "[%s] not meant to be running\n", 5232 target_pid_to_str (tp->ptid)); 5233 continue; 5234 } 5235 5236 if (tp->resumed) 5237 { 5238 if (debug_infrun) 5239 fprintf_unfiltered (gdb_stdlog, 5240 "infrun: restart threads: [%s] resumed\n", 5241 target_pid_to_str (tp->ptid)); 5242 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p); 5243 continue; 5244 } 5245 5246 if (thread_is_in_step_over_chain (tp)) 5247 { 5248 if (debug_infrun) 5249 fprintf_unfiltered (gdb_stdlog, 5250 "infrun: restart threads: " 5251 "[%s] needs step-over\n", 5252 target_pid_to_str (tp->ptid)); 5253 gdb_assert (!tp->resumed); 5254 continue; 5255 } 5256 5257 5258 if (tp->suspend.waitstatus_pending_p) 5259 { 5260 if (debug_infrun) 5261 fprintf_unfiltered (gdb_stdlog, 5262 "infrun: restart threads: " 5263 "[%s] has pending status\n", 5264 target_pid_to_str (tp->ptid)); 5265 tp->resumed = 1; 5266 continue; 5267 } 5268 5269 gdb_assert (!tp->stop_requested); 5270 5271 /* If some thread needs to start a step-over at this point, it 5272 should still be in the step-over queue, and thus skipped 5273 above. */ 5274 if (thread_still_needs_step_over (tp)) 5275 { 5276 internal_error (__FILE__, __LINE__, 5277 "thread [%s] needs a step-over, but not in " 5278 "step-over queue\n", 5279 target_pid_to_str (tp->ptid)); 5280 } 5281 5282 if (currently_stepping (tp)) 5283 { 5284 if (debug_infrun) 5285 fprintf_unfiltered (gdb_stdlog, 5286 "infrun: restart threads: [%s] was stepping\n", 5287 target_pid_to_str (tp->ptid)); 5288 keep_going_stepped_thread (tp); 5289 } 5290 else 5291 { 5292 struct execution_control_state ecss; 5293 struct execution_control_state *ecs = &ecss; 5294 5295 if (debug_infrun) 5296 fprintf_unfiltered (gdb_stdlog, 5297 "infrun: restart threads: [%s] continuing\n", 5298 target_pid_to_str (tp->ptid)); 5299 reset_ecs (ecs, tp); 5300 switch_to_thread (tp); 5301 keep_going_pass_signal (ecs); 5302 } 5303 } 5304 } 5305 5306 /* Callback for iterate_over_threads. Find a resumed thread that has 5307 a pending waitstatus. */ 5308 5309 static int 5310 resumed_thread_with_pending_status (struct thread_info *tp, 5311 void *arg) 5312 { 5313 return (tp->resumed 5314 && tp->suspend.waitstatus_pending_p); 5315 } 5316 5317 /* Called when we get an event that may finish an in-line or 5318 out-of-line (displaced stepping) step-over started previously. 5319 Return true if the event is processed and we should go back to the 5320 event loop; false if the caller should continue processing the 5321 event. */ 5322 5323 static int 5324 finish_step_over (struct execution_control_state *ecs) 5325 { 5326 int had_step_over_info; 5327 5328 displaced_step_fixup (ecs->event_thread, 5329 ecs->event_thread->suspend.stop_signal); 5330 5331 had_step_over_info = step_over_info_valid_p (); 5332 5333 if (had_step_over_info) 5334 { 5335 /* If we're stepping over a breakpoint with all threads locked, 5336 then only the thread that was stepped should be reporting 5337 back an event. */ 5338 gdb_assert (ecs->event_thread->control.trap_expected); 5339 5340 clear_step_over_info (); 5341 } 5342 5343 if (!target_is_non_stop_p ()) 5344 return 0; 5345 5346 /* Start a new step-over in another thread if there's one that 5347 needs it. */ 5348 start_step_over (); 5349 5350 /* If we were stepping over a breakpoint before, and haven't started 5351 a new in-line step-over sequence, then restart all other threads 5352 (except the event thread). We can't do this in all-stop, as then 5353 e.g., we wouldn't be able to issue any other remote packet until 5354 these other threads stop. */ 5355 if (had_step_over_info && !step_over_info_valid_p ()) 5356 { 5357 struct thread_info *pending; 5358 5359 /* If we only have threads with pending statuses, the restart 5360 below won't restart any thread and so nothing re-inserts the 5361 breakpoint we just stepped over. But we need it inserted 5362 when we later process the pending events, otherwise if 5363 another thread has a pending event for this breakpoint too, 5364 we'd discard its event (because the breakpoint that 5365 originally caused the event was no longer inserted). */ 5366 context_switch (ecs); 5367 insert_breakpoints (); 5368 5369 restart_threads (ecs->event_thread); 5370 5371 /* If we have events pending, go through handle_inferior_event 5372 again, picking up a pending event at random. This avoids 5373 thread starvation. */ 5374 5375 /* But not if we just stepped over a watchpoint in order to let 5376 the instruction execute so we can evaluate its expression. 5377 The set of watchpoints that triggered is recorded in the 5378 breakpoint objects themselves (see bp->watchpoint_triggered). 5379 If we processed another event first, that other event could 5380 clobber this info. */ 5381 if (ecs->event_thread->stepping_over_watchpoint) 5382 return 0; 5383 5384 pending = iterate_over_threads (resumed_thread_with_pending_status, 5385 NULL); 5386 if (pending != NULL) 5387 { 5388 struct thread_info *tp = ecs->event_thread; 5389 struct regcache *regcache; 5390 5391 if (debug_infrun) 5392 { 5393 fprintf_unfiltered (gdb_stdlog, 5394 "infrun: found resumed threads with " 5395 "pending events, saving status\n"); 5396 } 5397 5398 gdb_assert (pending != tp); 5399 5400 /* Record the event thread's event for later. */ 5401 save_waitstatus (tp, &ecs->ws); 5402 /* This was cleared early, by handle_inferior_event. Set it 5403 so this pending event is considered by 5404 do_target_wait. */ 5405 tp->resumed = 1; 5406 5407 gdb_assert (!tp->executing); 5408 5409 regcache = get_thread_regcache (tp); 5410 tp->suspend.stop_pc = regcache_read_pc (regcache); 5411 5412 if (debug_infrun) 5413 { 5414 fprintf_unfiltered (gdb_stdlog, 5415 "infrun: saved stop_pc=%s for %s " 5416 "(currently_stepping=%d)\n", 5417 paddress (target_gdbarch (), 5418 tp->suspend.stop_pc), 5419 target_pid_to_str (tp->ptid), 5420 currently_stepping (tp)); 5421 } 5422 5423 /* This in-line step-over finished; clear this so we won't 5424 start a new one. This is what handle_signal_stop would 5425 do, if we returned false. */ 5426 tp->stepping_over_breakpoint = 0; 5427 5428 /* Wake up the event loop again. */ 5429 mark_async_event_handler (infrun_async_inferior_event_token); 5430 5431 prepare_to_wait (ecs); 5432 return 1; 5433 } 5434 } 5435 5436 return 0; 5437 } 5438 5439 /* Come here when the program has stopped with a signal. */ 5440 5441 static void 5442 handle_signal_stop (struct execution_control_state *ecs) 5443 { 5444 struct frame_info *frame; 5445 struct gdbarch *gdbarch; 5446 int stopped_by_watchpoint; 5447 enum stop_kind stop_soon; 5448 int random_signal; 5449 5450 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED); 5451 5452 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig; 5453 5454 /* Do we need to clean up the state of a thread that has 5455 completed a displaced single-step? (Doing so usually affects 5456 the PC, so do it here, before we set stop_pc.) */ 5457 if (finish_step_over (ecs)) 5458 return; 5459 5460 /* If we either finished a single-step or hit a breakpoint, but 5461 the user wanted this thread to be stopped, pretend we got a 5462 SIG0 (generic unsignaled stop). */ 5463 if (ecs->event_thread->stop_requested 5464 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) 5465 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 5466 5467 ecs->event_thread->suspend.stop_pc 5468 = regcache_read_pc (get_thread_regcache (ecs->event_thread)); 5469 5470 if (debug_infrun) 5471 { 5472 struct regcache *regcache = get_thread_regcache (ecs->event_thread); 5473 struct gdbarch *reg_gdbarch = regcache->arch (); 5474 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); 5475 5476 inferior_ptid = ecs->ptid; 5477 5478 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n", 5479 paddress (reg_gdbarch, 5480 ecs->event_thread->suspend.stop_pc)); 5481 if (target_stopped_by_watchpoint ()) 5482 { 5483 CORE_ADDR addr; 5484 5485 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n"); 5486 5487 if (target_stopped_data_address (current_top_target (), &addr)) 5488 fprintf_unfiltered (gdb_stdlog, 5489 "infrun: stopped data address = %s\n", 5490 paddress (reg_gdbarch, addr)); 5491 else 5492 fprintf_unfiltered (gdb_stdlog, 5493 "infrun: (no data address available)\n"); 5494 } 5495 } 5496 5497 /* This is originated from start_remote(), start_inferior() and 5498 shared libraries hook functions. */ 5499 stop_soon = get_inferior_stop_soon (ecs); 5500 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) 5501 { 5502 context_switch (ecs); 5503 if (debug_infrun) 5504 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); 5505 stop_print_frame = 1; 5506 stop_waiting (ecs); 5507 return; 5508 } 5509 5510 /* This originates from attach_command(). We need to overwrite 5511 the stop_signal here, because some kernels don't ignore a 5512 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call. 5513 See more comments in inferior.h. On the other hand, if we 5514 get a non-SIGSTOP, report it to the user - assume the backend 5515 will handle the SIGSTOP if it should show up later. 5516 5517 Also consider that the attach is complete when we see a 5518 SIGTRAP. Some systems (e.g. Windows), and stubs supporting 5519 target extended-remote report it instead of a SIGSTOP 5520 (e.g. gdbserver). We already rely on SIGTRAP being our 5521 signal, so this is no exception. 5522 5523 Also consider that the attach is complete when we see a 5524 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell 5525 the target to stop all threads of the inferior, in case the 5526 low level attach operation doesn't stop them implicitly. If 5527 they weren't stopped implicitly, then the stub will report a 5528 GDB_SIGNAL_0, meaning: stopped for no particular reason 5529 other than GDB's request. */ 5530 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP 5531 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP 5532 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP 5533 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0)) 5534 { 5535 stop_print_frame = 1; 5536 stop_waiting (ecs); 5537 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 5538 return; 5539 } 5540 5541 /* See if something interesting happened to the non-current thread. If 5542 so, then switch to that thread. */ 5543 if (ecs->ptid != inferior_ptid) 5544 { 5545 if (debug_infrun) 5546 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); 5547 5548 context_switch (ecs); 5549 5550 if (deprecated_context_hook) 5551 deprecated_context_hook (ecs->event_thread->global_num); 5552 } 5553 5554 /* At this point, get hold of the now-current thread's frame. */ 5555 frame = get_current_frame (); 5556 gdbarch = get_frame_arch (frame); 5557 5558 /* Pull the single step breakpoints out of the target. */ 5559 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) 5560 { 5561 struct regcache *regcache; 5562 CORE_ADDR pc; 5563 5564 regcache = get_thread_regcache (ecs->event_thread); 5565 const address_space *aspace = regcache->aspace (); 5566 5567 pc = regcache_read_pc (regcache); 5568 5569 /* However, before doing so, if this single-step breakpoint was 5570 actually for another thread, set this thread up for moving 5571 past it. */ 5572 if (!thread_has_single_step_breakpoint_here (ecs->event_thread, 5573 aspace, pc)) 5574 { 5575 if (single_step_breakpoint_inserted_here_p (aspace, pc)) 5576 { 5577 if (debug_infrun) 5578 { 5579 fprintf_unfiltered (gdb_stdlog, 5580 "infrun: [%s] hit another thread's " 5581 "single-step breakpoint\n", 5582 target_pid_to_str (ecs->ptid)); 5583 } 5584 ecs->hit_singlestep_breakpoint = 1; 5585 } 5586 } 5587 else 5588 { 5589 if (debug_infrun) 5590 { 5591 fprintf_unfiltered (gdb_stdlog, 5592 "infrun: [%s] hit its " 5593 "single-step breakpoint\n", 5594 target_pid_to_str (ecs->ptid)); 5595 } 5596 } 5597 } 5598 delete_just_stopped_threads_single_step_breakpoints (); 5599 5600 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP 5601 && ecs->event_thread->control.trap_expected 5602 && ecs->event_thread->stepping_over_watchpoint) 5603 stopped_by_watchpoint = 0; 5604 else 5605 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws); 5606 5607 /* If necessary, step over this watchpoint. We'll be back to display 5608 it in a moment. */ 5609 if (stopped_by_watchpoint 5610 && (target_have_steppable_watchpoint 5611 || gdbarch_have_nonsteppable_watchpoint (gdbarch))) 5612 { 5613 /* At this point, we are stopped at an instruction which has 5614 attempted to write to a piece of memory under control of 5615 a watchpoint. The instruction hasn't actually executed 5616 yet. If we were to evaluate the watchpoint expression 5617 now, we would get the old value, and therefore no change 5618 would seem to have occurred. 5619 5620 In order to make watchpoints work `right', we really need 5621 to complete the memory write, and then evaluate the 5622 watchpoint expression. We do this by single-stepping the 5623 target. 5624 5625 It may not be necessary to disable the watchpoint to step over 5626 it. For example, the PA can (with some kernel cooperation) 5627 single step over a watchpoint without disabling the watchpoint. 5628 5629 It is far more common to need to disable a watchpoint to step 5630 the inferior over it. If we have non-steppable watchpoints, 5631 we must disable the current watchpoint; it's simplest to 5632 disable all watchpoints. 5633 5634 Any breakpoint at PC must also be stepped over -- if there's 5635 one, it will have already triggered before the watchpoint 5636 triggered, and we either already reported it to the user, or 5637 it didn't cause a stop and we called keep_going. In either 5638 case, if there was a breakpoint at PC, we must be trying to 5639 step past it. */ 5640 ecs->event_thread->stepping_over_watchpoint = 1; 5641 keep_going (ecs); 5642 return; 5643 } 5644 5645 ecs->event_thread->stepping_over_breakpoint = 0; 5646 ecs->event_thread->stepping_over_watchpoint = 0; 5647 bpstat_clear (&ecs->event_thread->control.stop_bpstat); 5648 ecs->event_thread->control.stop_step = 0; 5649 stop_print_frame = 1; 5650 stopped_by_random_signal = 0; 5651 bpstat stop_chain = NULL; 5652 5653 /* Hide inlined functions starting here, unless we just performed stepi or 5654 nexti. After stepi and nexti, always show the innermost frame (not any 5655 inline function call sites). */ 5656 if (ecs->event_thread->control.step_range_end != 1) 5657 { 5658 const address_space *aspace 5659 = get_thread_regcache (ecs->event_thread)->aspace (); 5660 5661 /* skip_inline_frames is expensive, so we avoid it if we can 5662 determine that the address is one where functions cannot have 5663 been inlined. This improves performance with inferiors that 5664 load a lot of shared libraries, because the solib event 5665 breakpoint is defined as the address of a function (i.e. not 5666 inline). Note that we have to check the previous PC as well 5667 as the current one to catch cases when we have just 5668 single-stepped off a breakpoint prior to reinstating it. 5669 Note that we're assuming that the code we single-step to is 5670 not inline, but that's not definitive: there's nothing 5671 preventing the event breakpoint function from containing 5672 inlined code, and the single-step ending up there. If the 5673 user had set a breakpoint on that inlined code, the missing 5674 skip_inline_frames call would break things. Fortunately 5675 that's an extremely unlikely scenario. */ 5676 if (!pc_at_non_inline_function (aspace, 5677 ecs->event_thread->suspend.stop_pc, 5678 &ecs->ws) 5679 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP 5680 && ecs->event_thread->control.trap_expected 5681 && pc_at_non_inline_function (aspace, 5682 ecs->event_thread->prev_pc, 5683 &ecs->ws))) 5684 { 5685 stop_chain = build_bpstat_chain (aspace, 5686 ecs->event_thread->suspend.stop_pc, 5687 &ecs->ws); 5688 skip_inline_frames (ecs->event_thread, stop_chain); 5689 5690 /* Re-fetch current thread's frame in case that invalidated 5691 the frame cache. */ 5692 frame = get_current_frame (); 5693 gdbarch = get_frame_arch (frame); 5694 } 5695 } 5696 5697 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP 5698 && ecs->event_thread->control.trap_expected 5699 && gdbarch_single_step_through_delay_p (gdbarch) 5700 && currently_stepping (ecs->event_thread)) 5701 { 5702 /* We're trying to step off a breakpoint. Turns out that we're 5703 also on an instruction that needs to be stepped multiple 5704 times before it's been fully executing. E.g., architectures 5705 with a delay slot. It needs to be stepped twice, once for 5706 the instruction and once for the delay slot. */ 5707 int step_through_delay 5708 = gdbarch_single_step_through_delay (gdbarch, frame); 5709 5710 if (debug_infrun && step_through_delay) 5711 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); 5712 if (ecs->event_thread->control.step_range_end == 0 5713 && step_through_delay) 5714 { 5715 /* The user issued a continue when stopped at a breakpoint. 5716 Set up for another trap and get out of here. */ 5717 ecs->event_thread->stepping_over_breakpoint = 1; 5718 keep_going (ecs); 5719 return; 5720 } 5721 else if (step_through_delay) 5722 { 5723 /* The user issued a step when stopped at a breakpoint. 5724 Maybe we should stop, maybe we should not - the delay 5725 slot *might* correspond to a line of source. In any 5726 case, don't decide that here, just set 5727 ecs->stepping_over_breakpoint, making sure we 5728 single-step again before breakpoints are re-inserted. */ 5729 ecs->event_thread->stepping_over_breakpoint = 1; 5730 } 5731 } 5732 5733 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that 5734 handles this event. */ 5735 ecs->event_thread->control.stop_bpstat 5736 = bpstat_stop_status (get_current_regcache ()->aspace (), 5737 ecs->event_thread->suspend.stop_pc, 5738 ecs->event_thread, &ecs->ws, stop_chain); 5739 5740 /* Following in case break condition called a 5741 function. */ 5742 stop_print_frame = 1; 5743 5744 /* This is where we handle "moribund" watchpoints. Unlike 5745 software breakpoints traps, hardware watchpoint traps are 5746 always distinguishable from random traps. If no high-level 5747 watchpoint is associated with the reported stop data address 5748 anymore, then the bpstat does not explain the signal --- 5749 simply make sure to ignore it if `stopped_by_watchpoint' is 5750 set. */ 5751 5752 if (debug_infrun 5753 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP 5754 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, 5755 GDB_SIGNAL_TRAP) 5756 && stopped_by_watchpoint) 5757 fprintf_unfiltered (gdb_stdlog, 5758 "infrun: no user watchpoint explains " 5759 "watchpoint SIGTRAP, ignoring\n"); 5760 5761 /* NOTE: cagney/2003-03-29: These checks for a random signal 5762 at one stage in the past included checks for an inferior 5763 function call's call dummy's return breakpoint. The original 5764 comment, that went with the test, read: 5765 5766 ``End of a stack dummy. Some systems (e.g. Sony news) give 5767 another signal besides SIGTRAP, so check here as well as 5768 above.'' 5769 5770 If someone ever tries to get call dummys on a 5771 non-executable stack to work (where the target would stop 5772 with something like a SIGSEGV), then those tests might need 5773 to be re-instated. Given, however, that the tests were only 5774 enabled when momentary breakpoints were not being used, I 5775 suspect that it won't be the case. 5776 5777 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to 5778 be necessary for call dummies on a non-executable stack on 5779 SPARC. */ 5780 5781 /* See if the breakpoints module can explain the signal. */ 5782 random_signal 5783 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, 5784 ecs->event_thread->suspend.stop_signal); 5785 5786 /* Maybe this was a trap for a software breakpoint that has since 5787 been removed. */ 5788 if (random_signal && target_stopped_by_sw_breakpoint ()) 5789 { 5790 if (program_breakpoint_here_p (gdbarch, 5791 ecs->event_thread->suspend.stop_pc)) 5792 { 5793 struct regcache *regcache; 5794 int decr_pc; 5795 5796 /* Re-adjust PC to what the program would see if GDB was not 5797 debugging it. */ 5798 regcache = get_thread_regcache (ecs->event_thread); 5799 decr_pc = gdbarch_decr_pc_after_break (gdbarch); 5800 if (decr_pc != 0) 5801 { 5802 gdb::optional<scoped_restore_tmpl<int>> 5803 restore_operation_disable; 5804 5805 if (record_full_is_used ()) 5806 restore_operation_disable.emplace 5807 (record_full_gdb_operation_disable_set ()); 5808 5809 regcache_write_pc (regcache, 5810 ecs->event_thread->suspend.stop_pc + decr_pc); 5811 } 5812 } 5813 else 5814 { 5815 /* A delayed software breakpoint event. Ignore the trap. */ 5816 if (debug_infrun) 5817 fprintf_unfiltered (gdb_stdlog, 5818 "infrun: delayed software breakpoint " 5819 "trap, ignoring\n"); 5820 random_signal = 0; 5821 } 5822 } 5823 5824 /* Maybe this was a trap for a hardware breakpoint/watchpoint that 5825 has since been removed. */ 5826 if (random_signal && target_stopped_by_hw_breakpoint ()) 5827 { 5828 /* A delayed hardware breakpoint event. Ignore the trap. */ 5829 if (debug_infrun) 5830 fprintf_unfiltered (gdb_stdlog, 5831 "infrun: delayed hardware breakpoint/watchpoint " 5832 "trap, ignoring\n"); 5833 random_signal = 0; 5834 } 5835 5836 /* If not, perhaps stepping/nexting can. */ 5837 if (random_signal) 5838 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP 5839 && currently_stepping (ecs->event_thread)); 5840 5841 /* Perhaps the thread hit a single-step breakpoint of _another_ 5842 thread. Single-step breakpoints are transparent to the 5843 breakpoints module. */ 5844 if (random_signal) 5845 random_signal = !ecs->hit_singlestep_breakpoint; 5846 5847 /* No? Perhaps we got a moribund watchpoint. */ 5848 if (random_signal) 5849 random_signal = !stopped_by_watchpoint; 5850 5851 /* Always stop if the user explicitly requested this thread to 5852 remain stopped. */ 5853 if (ecs->event_thread->stop_requested) 5854 { 5855 random_signal = 1; 5856 if (debug_infrun) 5857 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n"); 5858 } 5859 5860 /* For the program's own signals, act according to 5861 the signal handling tables. */ 5862 5863 if (random_signal) 5864 { 5865 /* Signal not for debugging purposes. */ 5866 struct inferior *inf = find_inferior_ptid (ecs->ptid); 5867 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal; 5868 5869 if (debug_infrun) 5870 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n", 5871 gdb_signal_to_symbol_string (stop_signal)); 5872 5873 stopped_by_random_signal = 1; 5874 5875 /* Always stop on signals if we're either just gaining control 5876 of the program, or the user explicitly requested this thread 5877 to remain stopped. */ 5878 if (stop_soon != NO_STOP_QUIETLY 5879 || ecs->event_thread->stop_requested 5880 || (!inf->detaching 5881 && signal_stop_state (ecs->event_thread->suspend.stop_signal))) 5882 { 5883 stop_waiting (ecs); 5884 return; 5885 } 5886 5887 /* Notify observers the signal has "handle print" set. Note we 5888 returned early above if stopping; normal_stop handles the 5889 printing in that case. */ 5890 if (signal_print[ecs->event_thread->suspend.stop_signal]) 5891 { 5892 /* The signal table tells us to print about this signal. */ 5893 target_terminal::ours_for_output (); 5894 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal); 5895 target_terminal::inferior (); 5896 } 5897 5898 /* Clear the signal if it should not be passed. */ 5899 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0) 5900 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 5901 5902 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc 5903 && ecs->event_thread->control.trap_expected 5904 && ecs->event_thread->control.step_resume_breakpoint == NULL) 5905 { 5906 /* We were just starting a new sequence, attempting to 5907 single-step off of a breakpoint and expecting a SIGTRAP. 5908 Instead this signal arrives. This signal will take us out 5909 of the stepping range so GDB needs to remember to, when 5910 the signal handler returns, resume stepping off that 5911 breakpoint. */ 5912 /* To simplify things, "continue" is forced to use the same 5913 code paths as single-step - set a breakpoint at the 5914 signal return address and then, once hit, step off that 5915 breakpoint. */ 5916 if (debug_infrun) 5917 fprintf_unfiltered (gdb_stdlog, 5918 "infrun: signal arrived while stepping over " 5919 "breakpoint\n"); 5920 5921 insert_hp_step_resume_breakpoint_at_frame (frame); 5922 ecs->event_thread->step_after_step_resume_breakpoint = 1; 5923 /* Reset trap_expected to ensure breakpoints are re-inserted. */ 5924 ecs->event_thread->control.trap_expected = 0; 5925 5926 /* If we were nexting/stepping some other thread, switch to 5927 it, so that we don't continue it, losing control. */ 5928 if (!switch_back_to_stepped_thread (ecs)) 5929 keep_going (ecs); 5930 return; 5931 } 5932 5933 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0 5934 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc, 5935 ecs->event_thread) 5936 || ecs->event_thread->control.step_range_end == 1) 5937 && frame_id_eq (get_stack_frame_id (frame), 5938 ecs->event_thread->control.step_stack_frame_id) 5939 && ecs->event_thread->control.step_resume_breakpoint == NULL) 5940 { 5941 /* The inferior is about to take a signal that will take it 5942 out of the single step range. Set a breakpoint at the 5943 current PC (which is presumably where the signal handler 5944 will eventually return) and then allow the inferior to 5945 run free. 5946 5947 Note that this is only needed for a signal delivered 5948 while in the single-step range. Nested signals aren't a 5949 problem as they eventually all return. */ 5950 if (debug_infrun) 5951 fprintf_unfiltered (gdb_stdlog, 5952 "infrun: signal may take us out of " 5953 "single-step range\n"); 5954 5955 clear_step_over_info (); 5956 insert_hp_step_resume_breakpoint_at_frame (frame); 5957 ecs->event_thread->step_after_step_resume_breakpoint = 1; 5958 /* Reset trap_expected to ensure breakpoints are re-inserted. */ 5959 ecs->event_thread->control.trap_expected = 0; 5960 keep_going (ecs); 5961 return; 5962 } 5963 5964 /* Note: step_resume_breakpoint may be non-NULL. This occures 5965 when either there's a nested signal, or when there's a 5966 pending signal enabled just as the signal handler returns 5967 (leaving the inferior at the step-resume-breakpoint without 5968 actually executing it). Either way continue until the 5969 breakpoint is really hit. */ 5970 5971 if (!switch_back_to_stepped_thread (ecs)) 5972 { 5973 if (debug_infrun) 5974 fprintf_unfiltered (gdb_stdlog, 5975 "infrun: random signal, keep going\n"); 5976 5977 keep_going (ecs); 5978 } 5979 return; 5980 } 5981 5982 process_event_stop_test (ecs); 5983 } 5984 5985 /* Come here when we've got some debug event / signal we can explain 5986 (IOW, not a random signal), and test whether it should cause a 5987 stop, or whether we should resume the inferior (transparently). 5988 E.g., could be a breakpoint whose condition evaluates false; we 5989 could be still stepping within the line; etc. */ 5990 5991 static void 5992 process_event_stop_test (struct execution_control_state *ecs) 5993 { 5994 struct symtab_and_line stop_pc_sal; 5995 struct frame_info *frame; 5996 struct gdbarch *gdbarch; 5997 CORE_ADDR jmp_buf_pc; 5998 struct bpstat_what what; 5999 6000 /* Handle cases caused by hitting a breakpoint. */ 6001 6002 frame = get_current_frame (); 6003 gdbarch = get_frame_arch (frame); 6004 6005 what = bpstat_what (ecs->event_thread->control.stop_bpstat); 6006 6007 if (what.call_dummy) 6008 { 6009 stop_stack_dummy = what.call_dummy; 6010 } 6011 6012 /* A few breakpoint types have callbacks associated (e.g., 6013 bp_jit_event). Run them now. */ 6014 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat); 6015 6016 /* If we hit an internal event that triggers symbol changes, the 6017 current frame will be invalidated within bpstat_what (e.g., if we 6018 hit an internal solib event). Re-fetch it. */ 6019 frame = get_current_frame (); 6020 gdbarch = get_frame_arch (frame); 6021 6022 switch (what.main_action) 6023 { 6024 case BPSTAT_WHAT_SET_LONGJMP_RESUME: 6025 /* If we hit the breakpoint at longjmp while stepping, we 6026 install a momentary breakpoint at the target of the 6027 jmp_buf. */ 6028 6029 if (debug_infrun) 6030 fprintf_unfiltered (gdb_stdlog, 6031 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); 6032 6033 ecs->event_thread->stepping_over_breakpoint = 1; 6034 6035 if (what.is_longjmp) 6036 { 6037 struct value *arg_value; 6038 6039 /* If we set the longjmp breakpoint via a SystemTap probe, 6040 then use it to extract the arguments. The destination PC 6041 is the third argument to the probe. */ 6042 arg_value = probe_safe_evaluate_at_pc (frame, 2); 6043 if (arg_value) 6044 { 6045 jmp_buf_pc = value_as_address (arg_value); 6046 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc); 6047 } 6048 else if (!gdbarch_get_longjmp_target_p (gdbarch) 6049 || !gdbarch_get_longjmp_target (gdbarch, 6050 frame, &jmp_buf_pc)) 6051 { 6052 if (debug_infrun) 6053 fprintf_unfiltered (gdb_stdlog, 6054 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME " 6055 "(!gdbarch_get_longjmp_target)\n"); 6056 keep_going (ecs); 6057 return; 6058 } 6059 6060 /* Insert a breakpoint at resume address. */ 6061 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc); 6062 } 6063 else 6064 check_exception_resume (ecs, frame); 6065 keep_going (ecs); 6066 return; 6067 6068 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: 6069 { 6070 struct frame_info *init_frame; 6071 6072 /* There are several cases to consider. 6073 6074 1. The initiating frame no longer exists. In this case we 6075 must stop, because the exception or longjmp has gone too 6076 far. 6077 6078 2. The initiating frame exists, and is the same as the 6079 current frame. We stop, because the exception or longjmp 6080 has been caught. 6081 6082 3. The initiating frame exists and is different from the 6083 current frame. This means the exception or longjmp has 6084 been caught beneath the initiating frame, so keep going. 6085 6086 4. longjmp breakpoint has been placed just to protect 6087 against stale dummy frames and user is not interested in 6088 stopping around longjmps. */ 6089 6090 if (debug_infrun) 6091 fprintf_unfiltered (gdb_stdlog, 6092 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); 6093 6094 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint 6095 != NULL); 6096 delete_exception_resume_breakpoint (ecs->event_thread); 6097 6098 if (what.is_longjmp) 6099 { 6100 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread); 6101 6102 if (!frame_id_p (ecs->event_thread->initiating_frame)) 6103 { 6104 /* Case 4. */ 6105 keep_going (ecs); 6106 return; 6107 } 6108 } 6109 6110 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame); 6111 6112 if (init_frame) 6113 { 6114 struct frame_id current_id 6115 = get_frame_id (get_current_frame ()); 6116 if (frame_id_eq (current_id, 6117 ecs->event_thread->initiating_frame)) 6118 { 6119 /* Case 2. Fall through. */ 6120 } 6121 else 6122 { 6123 /* Case 3. */ 6124 keep_going (ecs); 6125 return; 6126 } 6127 } 6128 6129 /* For Cases 1 and 2, remove the step-resume breakpoint, if it 6130 exists. */ 6131 delete_step_resume_breakpoint (ecs->event_thread); 6132 6133 end_stepping_range (ecs); 6134 } 6135 return; 6136 6137 case BPSTAT_WHAT_SINGLE: 6138 if (debug_infrun) 6139 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); 6140 ecs->event_thread->stepping_over_breakpoint = 1; 6141 /* Still need to check other stuff, at least the case where we 6142 are stepping and step out of the right range. */ 6143 break; 6144 6145 case BPSTAT_WHAT_STEP_RESUME: 6146 if (debug_infrun) 6147 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); 6148 6149 delete_step_resume_breakpoint (ecs->event_thread); 6150 if (ecs->event_thread->control.proceed_to_finish 6151 && execution_direction == EXEC_REVERSE) 6152 { 6153 struct thread_info *tp = ecs->event_thread; 6154 6155 /* We are finishing a function in reverse, and just hit the 6156 step-resume breakpoint at the start address of the 6157 function, and we're almost there -- just need to back up 6158 by one more single-step, which should take us back to the 6159 function call. */ 6160 tp->control.step_range_start = tp->control.step_range_end = 1; 6161 keep_going (ecs); 6162 return; 6163 } 6164 fill_in_stop_func (gdbarch, ecs); 6165 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start 6166 && execution_direction == EXEC_REVERSE) 6167 { 6168 /* We are stepping over a function call in reverse, and just 6169 hit the step-resume breakpoint at the start address of 6170 the function. Go back to single-stepping, which should 6171 take us back to the function call. */ 6172 ecs->event_thread->stepping_over_breakpoint = 1; 6173 keep_going (ecs); 6174 return; 6175 } 6176 break; 6177 6178 case BPSTAT_WHAT_STOP_NOISY: 6179 if (debug_infrun) 6180 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); 6181 stop_print_frame = 1; 6182 6183 /* Assume the thread stopped for a breapoint. We'll still check 6184 whether a/the breakpoint is there when the thread is next 6185 resumed. */ 6186 ecs->event_thread->stepping_over_breakpoint = 1; 6187 6188 stop_waiting (ecs); 6189 return; 6190 6191 case BPSTAT_WHAT_STOP_SILENT: 6192 if (debug_infrun) 6193 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); 6194 stop_print_frame = 0; 6195 6196 /* Assume the thread stopped for a breapoint. We'll still check 6197 whether a/the breakpoint is there when the thread is next 6198 resumed. */ 6199 ecs->event_thread->stepping_over_breakpoint = 1; 6200 stop_waiting (ecs); 6201 return; 6202 6203 case BPSTAT_WHAT_HP_STEP_RESUME: 6204 if (debug_infrun) 6205 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n"); 6206 6207 delete_step_resume_breakpoint (ecs->event_thread); 6208 if (ecs->event_thread->step_after_step_resume_breakpoint) 6209 { 6210 /* Back when the step-resume breakpoint was inserted, we 6211 were trying to single-step off a breakpoint. Go back to 6212 doing that. */ 6213 ecs->event_thread->step_after_step_resume_breakpoint = 0; 6214 ecs->event_thread->stepping_over_breakpoint = 1; 6215 keep_going (ecs); 6216 return; 6217 } 6218 break; 6219 6220 case BPSTAT_WHAT_KEEP_CHECKING: 6221 break; 6222 } 6223 6224 /* If we stepped a permanent breakpoint and we had a high priority 6225 step-resume breakpoint for the address we stepped, but we didn't 6226 hit it, then we must have stepped into the signal handler. The 6227 step-resume was only necessary to catch the case of _not_ 6228 stepping into the handler, so delete it, and fall through to 6229 checking whether the step finished. */ 6230 if (ecs->event_thread->stepped_breakpoint) 6231 { 6232 struct breakpoint *sr_bp 6233 = ecs->event_thread->control.step_resume_breakpoint; 6234 6235 if (sr_bp != NULL 6236 && sr_bp->loc->permanent 6237 && sr_bp->type == bp_hp_step_resume 6238 && sr_bp->loc->address == ecs->event_thread->prev_pc) 6239 { 6240 if (debug_infrun) 6241 fprintf_unfiltered (gdb_stdlog, 6242 "infrun: stepped permanent breakpoint, stopped in " 6243 "handler\n"); 6244 delete_step_resume_breakpoint (ecs->event_thread); 6245 ecs->event_thread->step_after_step_resume_breakpoint = 0; 6246 } 6247 } 6248 6249 /* We come here if we hit a breakpoint but should not stop for it. 6250 Possibly we also were stepping and should stop for that. So fall 6251 through and test for stepping. But, if not stepping, do not 6252 stop. */ 6253 6254 /* In all-stop mode, if we're currently stepping but have stopped in 6255 some other thread, we need to switch back to the stepped thread. */ 6256 if (switch_back_to_stepped_thread (ecs)) 6257 return; 6258 6259 if (ecs->event_thread->control.step_resume_breakpoint) 6260 { 6261 if (debug_infrun) 6262 fprintf_unfiltered (gdb_stdlog, 6263 "infrun: step-resume breakpoint is inserted\n"); 6264 6265 /* Having a step-resume breakpoint overrides anything 6266 else having to do with stepping commands until 6267 that breakpoint is reached. */ 6268 keep_going (ecs); 6269 return; 6270 } 6271 6272 if (ecs->event_thread->control.step_range_end == 0) 6273 { 6274 if (debug_infrun) 6275 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); 6276 /* Likewise if we aren't even stepping. */ 6277 keep_going (ecs); 6278 return; 6279 } 6280 6281 /* Re-fetch current thread's frame in case the code above caused 6282 the frame cache to be re-initialized, making our FRAME variable 6283 a dangling pointer. */ 6284 frame = get_current_frame (); 6285 gdbarch = get_frame_arch (frame); 6286 fill_in_stop_func (gdbarch, ecs); 6287 6288 /* If stepping through a line, keep going if still within it. 6289 6290 Note that step_range_end is the address of the first instruction 6291 beyond the step range, and NOT the address of the last instruction 6292 within it! 6293 6294 Note also that during reverse execution, we may be stepping 6295 through a function epilogue and therefore must detect when 6296 the current-frame changes in the middle of a line. */ 6297 6298 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc, 6299 ecs->event_thread) 6300 && (execution_direction != EXEC_REVERSE 6301 || frame_id_eq (get_frame_id (frame), 6302 ecs->event_thread->control.step_frame_id))) 6303 { 6304 if (debug_infrun) 6305 fprintf_unfiltered 6306 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n", 6307 paddress (gdbarch, ecs->event_thread->control.step_range_start), 6308 paddress (gdbarch, ecs->event_thread->control.step_range_end)); 6309 6310 /* Tentatively re-enable range stepping; `resume' disables it if 6311 necessary (e.g., if we're stepping over a breakpoint or we 6312 have software watchpoints). */ 6313 ecs->event_thread->control.may_range_step = 1; 6314 6315 /* When stepping backward, stop at beginning of line range 6316 (unless it's the function entry point, in which case 6317 keep going back to the call point). */ 6318 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; 6319 if (stop_pc == ecs->event_thread->control.step_range_start 6320 && stop_pc != ecs->stop_func_start 6321 && execution_direction == EXEC_REVERSE) 6322 end_stepping_range (ecs); 6323 else 6324 keep_going (ecs); 6325 6326 return; 6327 } 6328 6329 /* We stepped out of the stepping range. */ 6330 6331 /* If we are stepping at the source level and entered the runtime 6332 loader dynamic symbol resolution code... 6333 6334 EXEC_FORWARD: we keep on single stepping until we exit the run 6335 time loader code and reach the callee's address. 6336 6337 EXEC_REVERSE: we've already executed the callee (backward), and 6338 the runtime loader code is handled just like any other 6339 undebuggable function call. Now we need only keep stepping 6340 backward through the trampoline code, and that's handled further 6341 down, so there is nothing for us to do here. */ 6342 6343 if (execution_direction != EXEC_REVERSE 6344 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE 6345 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc)) 6346 { 6347 CORE_ADDR pc_after_resolver = 6348 gdbarch_skip_solib_resolver (gdbarch, 6349 ecs->event_thread->suspend.stop_pc); 6350 6351 if (debug_infrun) 6352 fprintf_unfiltered (gdb_stdlog, 6353 "infrun: stepped into dynsym resolve code\n"); 6354 6355 if (pc_after_resolver) 6356 { 6357 /* Set up a step-resume breakpoint at the address 6358 indicated by SKIP_SOLIB_RESOLVER. */ 6359 symtab_and_line sr_sal; 6360 sr_sal.pc = pc_after_resolver; 6361 sr_sal.pspace = get_frame_program_space (frame); 6362 6363 insert_step_resume_breakpoint_at_sal (gdbarch, 6364 sr_sal, null_frame_id); 6365 } 6366 6367 keep_going (ecs); 6368 return; 6369 } 6370 6371 /* Step through an indirect branch thunk. */ 6372 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE 6373 && gdbarch_in_indirect_branch_thunk (gdbarch, 6374 ecs->event_thread->suspend.stop_pc)) 6375 { 6376 if (debug_infrun) 6377 fprintf_unfiltered (gdb_stdlog, 6378 "infrun: stepped into indirect branch thunk\n"); 6379 keep_going (ecs); 6380 return; 6381 } 6382 6383 if (ecs->event_thread->control.step_range_end != 1 6384 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE 6385 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) 6386 && get_frame_type (frame) == SIGTRAMP_FRAME) 6387 { 6388 if (debug_infrun) 6389 fprintf_unfiltered (gdb_stdlog, 6390 "infrun: stepped into signal trampoline\n"); 6391 /* The inferior, while doing a "step" or "next", has ended up in 6392 a signal trampoline (either by a signal being delivered or by 6393 the signal handler returning). Just single-step until the 6394 inferior leaves the trampoline (either by calling the handler 6395 or returning). */ 6396 keep_going (ecs); 6397 return; 6398 } 6399 6400 /* If we're in the return path from a shared library trampoline, 6401 we want to proceed through the trampoline when stepping. */ 6402 /* macro/2012-04-25: This needs to come before the subroutine 6403 call check below as on some targets return trampolines look 6404 like subroutine calls (MIPS16 return thunks). */ 6405 if (gdbarch_in_solib_return_trampoline (gdbarch, 6406 ecs->event_thread->suspend.stop_pc, 6407 ecs->stop_func_name) 6408 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) 6409 { 6410 /* Determine where this trampoline returns. */ 6411 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; 6412 CORE_ADDR real_stop_pc 6413 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); 6414 6415 if (debug_infrun) 6416 fprintf_unfiltered (gdb_stdlog, 6417 "infrun: stepped into solib return tramp\n"); 6418 6419 /* Only proceed through if we know where it's going. */ 6420 if (real_stop_pc) 6421 { 6422 /* And put the step-breakpoint there and go until there. */ 6423 symtab_and_line sr_sal; 6424 sr_sal.pc = real_stop_pc; 6425 sr_sal.section = find_pc_overlay (sr_sal.pc); 6426 sr_sal.pspace = get_frame_program_space (frame); 6427 6428 /* Do not specify what the fp should be when we stop since 6429 on some machines the prologue is where the new fp value 6430 is established. */ 6431 insert_step_resume_breakpoint_at_sal (gdbarch, 6432 sr_sal, null_frame_id); 6433 6434 /* Restart without fiddling with the step ranges or 6435 other state. */ 6436 keep_going (ecs); 6437 return; 6438 } 6439 } 6440 6441 /* Check for subroutine calls. The check for the current frame 6442 equalling the step ID is not necessary - the check of the 6443 previous frame's ID is sufficient - but it is a common case and 6444 cheaper than checking the previous frame's ID. 6445 6446 NOTE: frame_id_eq will never report two invalid frame IDs as 6447 being equal, so to get into this block, both the current and 6448 previous frame must have valid frame IDs. */ 6449 /* The outer_frame_id check is a heuristic to detect stepping 6450 through startup code. If we step over an instruction which 6451 sets the stack pointer from an invalid value to a valid value, 6452 we may detect that as a subroutine call from the mythical 6453 "outermost" function. This could be fixed by marking 6454 outermost frames as !stack_p,code_p,special_p. Then the 6455 initial outermost frame, before sp was valid, would 6456 have code_addr == &_start. See the comment in frame_id_eq 6457 for more. */ 6458 if (!frame_id_eq (get_stack_frame_id (frame), 6459 ecs->event_thread->control.step_stack_frame_id) 6460 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()), 6461 ecs->event_thread->control.step_stack_frame_id) 6462 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id, 6463 outer_frame_id) 6464 || (ecs->event_thread->control.step_start_function 6465 != find_pc_function (ecs->event_thread->suspend.stop_pc))))) 6466 { 6467 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; 6468 CORE_ADDR real_stop_pc; 6469 6470 if (debug_infrun) 6471 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); 6472 6473 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE) 6474 { 6475 /* I presume that step_over_calls is only 0 when we're 6476 supposed to be stepping at the assembly language level 6477 ("stepi"). Just stop. */ 6478 /* And this works the same backward as frontward. MVS */ 6479 end_stepping_range (ecs); 6480 return; 6481 } 6482 6483 /* Reverse stepping through solib trampolines. */ 6484 6485 if (execution_direction == EXEC_REVERSE 6486 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE 6487 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) 6488 || (ecs->stop_func_start == 0 6489 && in_solib_dynsym_resolve_code (stop_pc)))) 6490 { 6491 /* Any solib trampoline code can be handled in reverse 6492 by simply continuing to single-step. We have already 6493 executed the solib function (backwards), and a few 6494 steps will take us back through the trampoline to the 6495 caller. */ 6496 keep_going (ecs); 6497 return; 6498 } 6499 6500 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) 6501 { 6502 /* We're doing a "next". 6503 6504 Normal (forward) execution: set a breakpoint at the 6505 callee's return address (the address at which the caller 6506 will resume). 6507 6508 Reverse (backward) execution. set the step-resume 6509 breakpoint at the start of the function that we just 6510 stepped into (backwards), and continue to there. When we 6511 get there, we'll need to single-step back to the caller. */ 6512 6513 if (execution_direction == EXEC_REVERSE) 6514 { 6515 /* If we're already at the start of the function, we've either 6516 just stepped backward into a single instruction function, 6517 or stepped back out of a signal handler to the first instruction 6518 of the function. Just keep going, which will single-step back 6519 to the caller. */ 6520 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0) 6521 { 6522 /* Normal function call return (static or dynamic). */ 6523 symtab_and_line sr_sal; 6524 sr_sal.pc = ecs->stop_func_start; 6525 sr_sal.pspace = get_frame_program_space (frame); 6526 insert_step_resume_breakpoint_at_sal (gdbarch, 6527 sr_sal, null_frame_id); 6528 } 6529 } 6530 else 6531 insert_step_resume_breakpoint_at_caller (frame); 6532 6533 keep_going (ecs); 6534 return; 6535 } 6536 6537 /* If we are in a function call trampoline (a stub between the 6538 calling routine and the real function), locate the real 6539 function. That's what tells us (a) whether we want to step 6540 into it at all, and (b) what prologue we want to run to the 6541 end of, if we do step into it. */ 6542 real_stop_pc = skip_language_trampoline (frame, stop_pc); 6543 if (real_stop_pc == 0) 6544 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); 6545 if (real_stop_pc != 0) 6546 ecs->stop_func_start = real_stop_pc; 6547 6548 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc)) 6549 { 6550 symtab_and_line sr_sal; 6551 sr_sal.pc = ecs->stop_func_start; 6552 sr_sal.pspace = get_frame_program_space (frame); 6553 6554 insert_step_resume_breakpoint_at_sal (gdbarch, 6555 sr_sal, null_frame_id); 6556 keep_going (ecs); 6557 return; 6558 } 6559 6560 /* If we have line number information for the function we are 6561 thinking of stepping into and the function isn't on the skip 6562 list, step into it. 6563 6564 If there are several symtabs at that PC (e.g. with include 6565 files), just want to know whether *any* of them have line 6566 numbers. find_pc_line handles this. */ 6567 { 6568 struct symtab_and_line tmp_sal; 6569 6570 tmp_sal = find_pc_line (ecs->stop_func_start, 0); 6571 if (tmp_sal.line != 0 6572 && !function_name_is_marked_for_skip (ecs->stop_func_name, 6573 tmp_sal)) 6574 { 6575 if (execution_direction == EXEC_REVERSE) 6576 handle_step_into_function_backward (gdbarch, ecs); 6577 else 6578 handle_step_into_function (gdbarch, ecs); 6579 return; 6580 } 6581 } 6582 6583 /* If we have no line number and the step-stop-if-no-debug is 6584 set, we stop the step so that the user has a chance to switch 6585 in assembly mode. */ 6586 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE 6587 && step_stop_if_no_debug) 6588 { 6589 end_stepping_range (ecs); 6590 return; 6591 } 6592 6593 if (execution_direction == EXEC_REVERSE) 6594 { 6595 /* If we're already at the start of the function, we've either just 6596 stepped backward into a single instruction function without line 6597 number info, or stepped back out of a signal handler to the first 6598 instruction of the function without line number info. Just keep 6599 going, which will single-step back to the caller. */ 6600 if (ecs->stop_func_start != stop_pc) 6601 { 6602 /* Set a breakpoint at callee's start address. 6603 From there we can step once and be back in the caller. */ 6604 symtab_and_line sr_sal; 6605 sr_sal.pc = ecs->stop_func_start; 6606 sr_sal.pspace = get_frame_program_space (frame); 6607 insert_step_resume_breakpoint_at_sal (gdbarch, 6608 sr_sal, null_frame_id); 6609 } 6610 } 6611 else 6612 /* Set a breakpoint at callee's return address (the address 6613 at which the caller will resume). */ 6614 insert_step_resume_breakpoint_at_caller (frame); 6615 6616 keep_going (ecs); 6617 return; 6618 } 6619 6620 /* Reverse stepping through solib trampolines. */ 6621 6622 if (execution_direction == EXEC_REVERSE 6623 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) 6624 { 6625 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc; 6626 6627 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) 6628 || (ecs->stop_func_start == 0 6629 && in_solib_dynsym_resolve_code (stop_pc))) 6630 { 6631 /* Any solib trampoline code can be handled in reverse 6632 by simply continuing to single-step. We have already 6633 executed the solib function (backwards), and a few 6634 steps will take us back through the trampoline to the 6635 caller. */ 6636 keep_going (ecs); 6637 return; 6638 } 6639 else if (in_solib_dynsym_resolve_code (stop_pc)) 6640 { 6641 /* Stepped backward into the solib dynsym resolver. 6642 Set a breakpoint at its start and continue, then 6643 one more step will take us out. */ 6644 symtab_and_line sr_sal; 6645 sr_sal.pc = ecs->stop_func_start; 6646 sr_sal.pspace = get_frame_program_space (frame); 6647 insert_step_resume_breakpoint_at_sal (gdbarch, 6648 sr_sal, null_frame_id); 6649 keep_going (ecs); 6650 return; 6651 } 6652 } 6653 6654 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0); 6655 6656 /* NOTE: tausq/2004-05-24: This if block used to be done before all 6657 the trampoline processing logic, however, there are some trampolines 6658 that have no names, so we should do trampoline handling first. */ 6659 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE 6660 && ecs->stop_func_name == NULL 6661 && stop_pc_sal.line == 0) 6662 { 6663 if (debug_infrun) 6664 fprintf_unfiltered (gdb_stdlog, 6665 "infrun: stepped into undebuggable function\n"); 6666 6667 /* The inferior just stepped into, or returned to, an 6668 undebuggable function (where there is no debugging information 6669 and no line number corresponding to the address where the 6670 inferior stopped). Since we want to skip this kind of code, 6671 we keep going until the inferior returns from this 6672 function - unless the user has asked us not to (via 6673 set step-mode) or we no longer know how to get back 6674 to the call site. */ 6675 if (step_stop_if_no_debug 6676 || !frame_id_p (frame_unwind_caller_id (frame))) 6677 { 6678 /* If we have no line number and the step-stop-if-no-debug 6679 is set, we stop the step so that the user has a chance to 6680 switch in assembly mode. */ 6681 end_stepping_range (ecs); 6682 return; 6683 } 6684 else 6685 { 6686 /* Set a breakpoint at callee's return address (the address 6687 at which the caller will resume). */ 6688 insert_step_resume_breakpoint_at_caller (frame); 6689 keep_going (ecs); 6690 return; 6691 } 6692 } 6693 6694 if (ecs->event_thread->control.step_range_end == 1) 6695 { 6696 /* It is stepi or nexti. We always want to stop stepping after 6697 one instruction. */ 6698 if (debug_infrun) 6699 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); 6700 end_stepping_range (ecs); 6701 return; 6702 } 6703 6704 if (stop_pc_sal.line == 0) 6705 { 6706 /* We have no line number information. That means to stop 6707 stepping (does this always happen right after one instruction, 6708 when we do "s" in a function with no line numbers, 6709 or can this happen as a result of a return or longjmp?). */ 6710 if (debug_infrun) 6711 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); 6712 end_stepping_range (ecs); 6713 return; 6714 } 6715 6716 /* Look for "calls" to inlined functions, part one. If the inline 6717 frame machinery detected some skipped call sites, we have entered 6718 a new inline function. */ 6719 6720 if (frame_id_eq (get_frame_id (get_current_frame ()), 6721 ecs->event_thread->control.step_frame_id) 6722 && inline_skipped_frames (ecs->event_thread)) 6723 { 6724 if (debug_infrun) 6725 fprintf_unfiltered (gdb_stdlog, 6726 "infrun: stepped into inlined function\n"); 6727 6728 symtab_and_line call_sal = find_frame_sal (get_current_frame ()); 6729 6730 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL) 6731 { 6732 /* For "step", we're going to stop. But if the call site 6733 for this inlined function is on the same source line as 6734 we were previously stepping, go down into the function 6735 first. Otherwise stop at the call site. */ 6736 6737 if (call_sal.line == ecs->event_thread->current_line 6738 && call_sal.symtab == ecs->event_thread->current_symtab) 6739 step_into_inline_frame (ecs->event_thread); 6740 6741 end_stepping_range (ecs); 6742 return; 6743 } 6744 else 6745 { 6746 /* For "next", we should stop at the call site if it is on a 6747 different source line. Otherwise continue through the 6748 inlined function. */ 6749 if (call_sal.line == ecs->event_thread->current_line 6750 && call_sal.symtab == ecs->event_thread->current_symtab) 6751 keep_going (ecs); 6752 else 6753 end_stepping_range (ecs); 6754 return; 6755 } 6756 } 6757 6758 /* Look for "calls" to inlined functions, part two. If we are still 6759 in the same real function we were stepping through, but we have 6760 to go further up to find the exact frame ID, we are stepping 6761 through a more inlined call beyond its call site. */ 6762 6763 if (get_frame_type (get_current_frame ()) == INLINE_FRAME 6764 && !frame_id_eq (get_frame_id (get_current_frame ()), 6765 ecs->event_thread->control.step_frame_id) 6766 && stepped_in_from (get_current_frame (), 6767 ecs->event_thread->control.step_frame_id)) 6768 { 6769 if (debug_infrun) 6770 fprintf_unfiltered (gdb_stdlog, 6771 "infrun: stepping through inlined function\n"); 6772 6773 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) 6774 keep_going (ecs); 6775 else 6776 end_stepping_range (ecs); 6777 return; 6778 } 6779 6780 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc) 6781 && (ecs->event_thread->current_line != stop_pc_sal.line 6782 || ecs->event_thread->current_symtab != stop_pc_sal.symtab)) 6783 { 6784 /* We are at the start of a different line. So stop. Note that 6785 we don't stop if we step into the middle of a different line. 6786 That is said to make things like for (;;) statements work 6787 better. */ 6788 if (debug_infrun) 6789 fprintf_unfiltered (gdb_stdlog, 6790 "infrun: stepped to a different line\n"); 6791 end_stepping_range (ecs); 6792 return; 6793 } 6794 6795 /* We aren't done stepping. 6796 6797 Optimize by setting the stepping range to the line. 6798 (We might not be in the original line, but if we entered a 6799 new line in mid-statement, we continue stepping. This makes 6800 things like for(;;) statements work better.) */ 6801 6802 ecs->event_thread->control.step_range_start = stop_pc_sal.pc; 6803 ecs->event_thread->control.step_range_end = stop_pc_sal.end; 6804 ecs->event_thread->control.may_range_step = 1; 6805 set_step_info (frame, stop_pc_sal); 6806 6807 if (debug_infrun) 6808 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); 6809 keep_going (ecs); 6810 } 6811 6812 /* In all-stop mode, if we're currently stepping but have stopped in 6813 some other thread, we may need to switch back to the stepped 6814 thread. Returns true we set the inferior running, false if we left 6815 it stopped (and the event needs further processing). */ 6816 6817 static int 6818 switch_back_to_stepped_thread (struct execution_control_state *ecs) 6819 { 6820 if (!target_is_non_stop_p ()) 6821 { 6822 struct thread_info *stepping_thread; 6823 6824 /* If any thread is blocked on some internal breakpoint, and we 6825 simply need to step over that breakpoint to get it going 6826 again, do that first. */ 6827 6828 /* However, if we see an event for the stepping thread, then we 6829 know all other threads have been moved past their breakpoints 6830 already. Let the caller check whether the step is finished, 6831 etc., before deciding to move it past a breakpoint. */ 6832 if (ecs->event_thread->control.step_range_end != 0) 6833 return 0; 6834 6835 /* Check if the current thread is blocked on an incomplete 6836 step-over, interrupted by a random signal. */ 6837 if (ecs->event_thread->control.trap_expected 6838 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP) 6839 { 6840 if (debug_infrun) 6841 { 6842 fprintf_unfiltered (gdb_stdlog, 6843 "infrun: need to finish step-over of [%s]\n", 6844 target_pid_to_str (ecs->event_thread->ptid)); 6845 } 6846 keep_going (ecs); 6847 return 1; 6848 } 6849 6850 /* Check if the current thread is blocked by a single-step 6851 breakpoint of another thread. */ 6852 if (ecs->hit_singlestep_breakpoint) 6853 { 6854 if (debug_infrun) 6855 { 6856 fprintf_unfiltered (gdb_stdlog, 6857 "infrun: need to step [%s] over single-step " 6858 "breakpoint\n", 6859 target_pid_to_str (ecs->ptid)); 6860 } 6861 keep_going (ecs); 6862 return 1; 6863 } 6864 6865 /* If this thread needs yet another step-over (e.g., stepping 6866 through a delay slot), do it first before moving on to 6867 another thread. */ 6868 if (thread_still_needs_step_over (ecs->event_thread)) 6869 { 6870 if (debug_infrun) 6871 { 6872 fprintf_unfiltered (gdb_stdlog, 6873 "infrun: thread [%s] still needs step-over\n", 6874 target_pid_to_str (ecs->event_thread->ptid)); 6875 } 6876 keep_going (ecs); 6877 return 1; 6878 } 6879 6880 /* If scheduler locking applies even if not stepping, there's no 6881 need to walk over threads. Above we've checked whether the 6882 current thread is stepping. If some other thread not the 6883 event thread is stepping, then it must be that scheduler 6884 locking is not in effect. */ 6885 if (schedlock_applies (ecs->event_thread)) 6886 return 0; 6887 6888 /* Otherwise, we no longer expect a trap in the current thread. 6889 Clear the trap_expected flag before switching back -- this is 6890 what keep_going does as well, if we call it. */ 6891 ecs->event_thread->control.trap_expected = 0; 6892 6893 /* Likewise, clear the signal if it should not be passed. */ 6894 if (!signal_program[ecs->event_thread->suspend.stop_signal]) 6895 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 6896 6897 /* Do all pending step-overs before actually proceeding with 6898 step/next/etc. */ 6899 if (start_step_over ()) 6900 { 6901 prepare_to_wait (ecs); 6902 return 1; 6903 } 6904 6905 /* Look for the stepping/nexting thread. */ 6906 stepping_thread = NULL; 6907 6908 for (thread_info *tp : all_non_exited_threads ()) 6909 { 6910 /* Ignore threads of processes the caller is not 6911 resuming. */ 6912 if (!sched_multi 6913 && tp->ptid.pid () != ecs->ptid.pid ()) 6914 continue; 6915 6916 /* When stepping over a breakpoint, we lock all threads 6917 except the one that needs to move past the breakpoint. 6918 If a non-event thread has this set, the "incomplete 6919 step-over" check above should have caught it earlier. */ 6920 if (tp->control.trap_expected) 6921 { 6922 internal_error (__FILE__, __LINE__, 6923 "[%s] has inconsistent state: " 6924 "trap_expected=%d\n", 6925 target_pid_to_str (tp->ptid), 6926 tp->control.trap_expected); 6927 } 6928 6929 /* Did we find the stepping thread? */ 6930 if (tp->control.step_range_end) 6931 { 6932 /* Yep. There should only one though. */ 6933 gdb_assert (stepping_thread == NULL); 6934 6935 /* The event thread is handled at the top, before we 6936 enter this loop. */ 6937 gdb_assert (tp != ecs->event_thread); 6938 6939 /* If some thread other than the event thread is 6940 stepping, then scheduler locking can't be in effect, 6941 otherwise we wouldn't have resumed the current event 6942 thread in the first place. */ 6943 gdb_assert (!schedlock_applies (tp)); 6944 6945 stepping_thread = tp; 6946 } 6947 } 6948 6949 if (stepping_thread != NULL) 6950 { 6951 if (debug_infrun) 6952 fprintf_unfiltered (gdb_stdlog, 6953 "infrun: switching back to stepped thread\n"); 6954 6955 if (keep_going_stepped_thread (stepping_thread)) 6956 { 6957 prepare_to_wait (ecs); 6958 return 1; 6959 } 6960 } 6961 } 6962 6963 return 0; 6964 } 6965 6966 /* Set a previously stepped thread back to stepping. Returns true on 6967 success, false if the resume is not possible (e.g., the thread 6968 vanished). */ 6969 6970 static int 6971 keep_going_stepped_thread (struct thread_info *tp) 6972 { 6973 struct frame_info *frame; 6974 struct execution_control_state ecss; 6975 struct execution_control_state *ecs = &ecss; 6976 6977 /* If the stepping thread exited, then don't try to switch back and 6978 resume it, which could fail in several different ways depending 6979 on the target. Instead, just keep going. 6980 6981 We can find a stepping dead thread in the thread list in two 6982 cases: 6983 6984 - The target supports thread exit events, and when the target 6985 tries to delete the thread from the thread list, inferior_ptid 6986 pointed at the exiting thread. In such case, calling 6987 delete_thread does not really remove the thread from the list; 6988 instead, the thread is left listed, with 'exited' state. 6989 6990 - The target's debug interface does not support thread exit 6991 events, and so we have no idea whatsoever if the previously 6992 stepping thread is still alive. For that reason, we need to 6993 synchronously query the target now. */ 6994 6995 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid)) 6996 { 6997 if (debug_infrun) 6998 fprintf_unfiltered (gdb_stdlog, 6999 "infrun: not resuming previously " 7000 "stepped thread, it has vanished\n"); 7001 7002 delete_thread (tp); 7003 return 0; 7004 } 7005 7006 if (debug_infrun) 7007 fprintf_unfiltered (gdb_stdlog, 7008 "infrun: resuming previously stepped thread\n"); 7009 7010 reset_ecs (ecs, tp); 7011 switch_to_thread (tp); 7012 7013 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp)); 7014 frame = get_current_frame (); 7015 7016 /* If the PC of the thread we were trying to single-step has 7017 changed, then that thread has trapped or been signaled, but the 7018 event has not been reported to GDB yet. Re-poll the target 7019 looking for this particular thread's event (i.e. temporarily 7020 enable schedlock) by: 7021 7022 - setting a break at the current PC 7023 - resuming that particular thread, only (by setting trap 7024 expected) 7025 7026 This prevents us continuously moving the single-step breakpoint 7027 forward, one instruction at a time, overstepping. */ 7028 7029 if (tp->suspend.stop_pc != tp->prev_pc) 7030 { 7031 ptid_t resume_ptid; 7032 7033 if (debug_infrun) 7034 fprintf_unfiltered (gdb_stdlog, 7035 "infrun: expected thread advanced also (%s -> %s)\n", 7036 paddress (target_gdbarch (), tp->prev_pc), 7037 paddress (target_gdbarch (), tp->suspend.stop_pc)); 7038 7039 /* Clear the info of the previous step-over, as it's no longer 7040 valid (if the thread was trying to step over a breakpoint, it 7041 has already succeeded). It's what keep_going would do too, 7042 if we called it. Do this before trying to insert the sss 7043 breakpoint, otherwise if we were previously trying to step 7044 over this exact address in another thread, the breakpoint is 7045 skipped. */ 7046 clear_step_over_info (); 7047 tp->control.trap_expected = 0; 7048 7049 insert_single_step_breakpoint (get_frame_arch (frame), 7050 get_frame_address_space (frame), 7051 tp->suspend.stop_pc); 7052 7053 tp->resumed = 1; 7054 resume_ptid = internal_resume_ptid (tp->control.stepping_command); 7055 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0); 7056 } 7057 else 7058 { 7059 if (debug_infrun) 7060 fprintf_unfiltered (gdb_stdlog, 7061 "infrun: expected thread still hasn't advanced\n"); 7062 7063 keep_going_pass_signal (ecs); 7064 } 7065 return 1; 7066 } 7067 7068 /* Is thread TP in the middle of (software or hardware) 7069 single-stepping? (Note the result of this function must never be 7070 passed directly as target_resume's STEP parameter.) */ 7071 7072 static int 7073 currently_stepping (struct thread_info *tp) 7074 { 7075 return ((tp->control.step_range_end 7076 && tp->control.step_resume_breakpoint == NULL) 7077 || tp->control.trap_expected 7078 || tp->stepped_breakpoint 7079 || bpstat_should_step ()); 7080 } 7081 7082 /* Inferior has stepped into a subroutine call with source code that 7083 we should not step over. Do step to the first line of code in 7084 it. */ 7085 7086 static void 7087 handle_step_into_function (struct gdbarch *gdbarch, 7088 struct execution_control_state *ecs) 7089 { 7090 fill_in_stop_func (gdbarch, ecs); 7091 7092 compunit_symtab *cust 7093 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc); 7094 if (cust != NULL && compunit_language (cust) != language_asm) 7095 ecs->stop_func_start 7096 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); 7097 7098 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0); 7099 /* Use the step_resume_break to step until the end of the prologue, 7100 even if that involves jumps (as it seems to on the vax under 7101 4.2). */ 7102 /* If the prologue ends in the middle of a source line, continue to 7103 the end of that source line (if it is still within the function). 7104 Otherwise, just go to end of prologue. */ 7105 if (stop_func_sal.end 7106 && stop_func_sal.pc != ecs->stop_func_start 7107 && stop_func_sal.end < ecs->stop_func_end) 7108 ecs->stop_func_start = stop_func_sal.end; 7109 7110 /* Architectures which require breakpoint adjustment might not be able 7111 to place a breakpoint at the computed address. If so, the test 7112 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust 7113 ecs->stop_func_start to an address at which a breakpoint may be 7114 legitimately placed. 7115 7116 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not 7117 made, GDB will enter an infinite loop when stepping through 7118 optimized code consisting of VLIW instructions which contain 7119 subinstructions corresponding to different source lines. On 7120 FR-V, it's not permitted to place a breakpoint on any but the 7121 first subinstruction of a VLIW instruction. When a breakpoint is 7122 set, GDB will adjust the breakpoint address to the beginning of 7123 the VLIW instruction. Thus, we need to make the corresponding 7124 adjustment here when computing the stop address. */ 7125 7126 if (gdbarch_adjust_breakpoint_address_p (gdbarch)) 7127 { 7128 ecs->stop_func_start 7129 = gdbarch_adjust_breakpoint_address (gdbarch, 7130 ecs->stop_func_start); 7131 } 7132 7133 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc) 7134 { 7135 /* We are already there: stop now. */ 7136 end_stepping_range (ecs); 7137 return; 7138 } 7139 else 7140 { 7141 /* Put the step-breakpoint there and go until there. */ 7142 symtab_and_line sr_sal; 7143 sr_sal.pc = ecs->stop_func_start; 7144 sr_sal.section = find_pc_overlay (ecs->stop_func_start); 7145 sr_sal.pspace = get_frame_program_space (get_current_frame ()); 7146 7147 /* Do not specify what the fp should be when we stop since on 7148 some machines the prologue is where the new fp value is 7149 established. */ 7150 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id); 7151 7152 /* And make sure stepping stops right away then. */ 7153 ecs->event_thread->control.step_range_end 7154 = ecs->event_thread->control.step_range_start; 7155 } 7156 keep_going (ecs); 7157 } 7158 7159 /* Inferior has stepped backward into a subroutine call with source 7160 code that we should not step over. Do step to the beginning of the 7161 last line of code in it. */ 7162 7163 static void 7164 handle_step_into_function_backward (struct gdbarch *gdbarch, 7165 struct execution_control_state *ecs) 7166 { 7167 struct compunit_symtab *cust; 7168 struct symtab_and_line stop_func_sal; 7169 7170 fill_in_stop_func (gdbarch, ecs); 7171 7172 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc); 7173 if (cust != NULL && compunit_language (cust) != language_asm) 7174 ecs->stop_func_start 7175 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start); 7176 7177 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0); 7178 7179 /* OK, we're just going to keep stepping here. */ 7180 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc) 7181 { 7182 /* We're there already. Just stop stepping now. */ 7183 end_stepping_range (ecs); 7184 } 7185 else 7186 { 7187 /* Else just reset the step range and keep going. 7188 No step-resume breakpoint, they don't work for 7189 epilogues, which can have multiple entry paths. */ 7190 ecs->event_thread->control.step_range_start = stop_func_sal.pc; 7191 ecs->event_thread->control.step_range_end = stop_func_sal.end; 7192 keep_going (ecs); 7193 } 7194 return; 7195 } 7196 7197 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. 7198 This is used to both functions and to skip over code. */ 7199 7200 static void 7201 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch, 7202 struct symtab_and_line sr_sal, 7203 struct frame_id sr_id, 7204 enum bptype sr_type) 7205 { 7206 /* There should never be more than one step-resume or longjmp-resume 7207 breakpoint per thread, so we should never be setting a new 7208 step_resume_breakpoint when one is already active. */ 7209 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL); 7210 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume); 7211 7212 if (debug_infrun) 7213 fprintf_unfiltered (gdb_stdlog, 7214 "infrun: inserting step-resume breakpoint at %s\n", 7215 paddress (gdbarch, sr_sal.pc)); 7216 7217 inferior_thread ()->control.step_resume_breakpoint 7218 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release (); 7219 } 7220 7221 void 7222 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, 7223 struct symtab_and_line sr_sal, 7224 struct frame_id sr_id) 7225 { 7226 insert_step_resume_breakpoint_at_sal_1 (gdbarch, 7227 sr_sal, sr_id, 7228 bp_step_resume); 7229 } 7230 7231 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc. 7232 This is used to skip a potential signal handler. 7233 7234 This is called with the interrupted function's frame. The signal 7235 handler, when it returns, will resume the interrupted function at 7236 RETURN_FRAME.pc. */ 7237 7238 static void 7239 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame) 7240 { 7241 gdb_assert (return_frame != NULL); 7242 7243 struct gdbarch *gdbarch = get_frame_arch (return_frame); 7244 7245 symtab_and_line sr_sal; 7246 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame)); 7247 sr_sal.section = find_pc_overlay (sr_sal.pc); 7248 sr_sal.pspace = get_frame_program_space (return_frame); 7249 7250 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal, 7251 get_stack_frame_id (return_frame), 7252 bp_hp_step_resume); 7253 } 7254 7255 /* Insert a "step-resume breakpoint" at the previous frame's PC. This 7256 is used to skip a function after stepping into it (for "next" or if 7257 the called function has no debugging information). 7258 7259 The current function has almost always been reached by single 7260 stepping a call or return instruction. NEXT_FRAME belongs to the 7261 current function, and the breakpoint will be set at the caller's 7262 resume address. 7263 7264 This is a separate function rather than reusing 7265 insert_hp_step_resume_breakpoint_at_frame in order to avoid 7266 get_prev_frame, which may stop prematurely (see the implementation 7267 of frame_unwind_caller_id for an example). */ 7268 7269 static void 7270 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) 7271 { 7272 /* We shouldn't have gotten here if we don't know where the call site 7273 is. */ 7274 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame))); 7275 7276 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame); 7277 7278 symtab_and_line sr_sal; 7279 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, 7280 frame_unwind_caller_pc (next_frame)); 7281 sr_sal.section = find_pc_overlay (sr_sal.pc); 7282 sr_sal.pspace = frame_unwind_program_space (next_frame); 7283 7284 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, 7285 frame_unwind_caller_id (next_frame)); 7286 } 7287 7288 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a 7289 new breakpoint at the target of a jmp_buf. The handling of 7290 longjmp-resume uses the same mechanisms used for handling 7291 "step-resume" breakpoints. */ 7292 7293 static void 7294 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc) 7295 { 7296 /* There should never be more than one longjmp-resume breakpoint per 7297 thread, so we should never be setting a new 7298 longjmp_resume_breakpoint when one is already active. */ 7299 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL); 7300 7301 if (debug_infrun) 7302 fprintf_unfiltered (gdb_stdlog, 7303 "infrun: inserting longjmp-resume breakpoint at %s\n", 7304 paddress (gdbarch, pc)); 7305 7306 inferior_thread ()->control.exception_resume_breakpoint = 7307 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release (); 7308 } 7309 7310 /* Insert an exception resume breakpoint. TP is the thread throwing 7311 the exception. The block B is the block of the unwinder debug hook 7312 function. FRAME is the frame corresponding to the call to this 7313 function. SYM is the symbol of the function argument holding the 7314 target PC of the exception. */ 7315 7316 static void 7317 insert_exception_resume_breakpoint (struct thread_info *tp, 7318 const struct block *b, 7319 struct frame_info *frame, 7320 struct symbol *sym) 7321 { 7322 TRY 7323 { 7324 struct block_symbol vsym; 7325 struct value *value; 7326 CORE_ADDR handler; 7327 struct breakpoint *bp; 7328 7329 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym), 7330 b, VAR_DOMAIN); 7331 value = read_var_value (vsym.symbol, vsym.block, frame); 7332 /* If the value was optimized out, revert to the old behavior. */ 7333 if (! value_optimized_out (value)) 7334 { 7335 handler = value_as_address (value); 7336 7337 if (debug_infrun) 7338 fprintf_unfiltered (gdb_stdlog, 7339 "infrun: exception resume at %lx\n", 7340 (unsigned long) handler); 7341 7342 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), 7343 handler, 7344 bp_exception_resume).release (); 7345 7346 /* set_momentary_breakpoint_at_pc invalidates FRAME. */ 7347 frame = NULL; 7348 7349 bp->thread = tp->global_num; 7350 inferior_thread ()->control.exception_resume_breakpoint = bp; 7351 } 7352 } 7353 CATCH (e, RETURN_MASK_ERROR) 7354 { 7355 /* We want to ignore errors here. */ 7356 } 7357 END_CATCH 7358 } 7359 7360 /* A helper for check_exception_resume that sets an 7361 exception-breakpoint based on a SystemTap probe. */ 7362 7363 static void 7364 insert_exception_resume_from_probe (struct thread_info *tp, 7365 const struct bound_probe *probe, 7366 struct frame_info *frame) 7367 { 7368 struct value *arg_value; 7369 CORE_ADDR handler; 7370 struct breakpoint *bp; 7371 7372 arg_value = probe_safe_evaluate_at_pc (frame, 1); 7373 if (!arg_value) 7374 return; 7375 7376 handler = value_as_address (arg_value); 7377 7378 if (debug_infrun) 7379 fprintf_unfiltered (gdb_stdlog, 7380 "infrun: exception resume at %s\n", 7381 paddress (get_objfile_arch (probe->objfile), 7382 handler)); 7383 7384 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), 7385 handler, bp_exception_resume).release (); 7386 bp->thread = tp->global_num; 7387 inferior_thread ()->control.exception_resume_breakpoint = bp; 7388 } 7389 7390 /* This is called when an exception has been intercepted. Check to 7391 see whether the exception's destination is of interest, and if so, 7392 set an exception resume breakpoint there. */ 7393 7394 static void 7395 check_exception_resume (struct execution_control_state *ecs, 7396 struct frame_info *frame) 7397 { 7398 struct bound_probe probe; 7399 struct symbol *func; 7400 7401 /* First see if this exception unwinding breakpoint was set via a 7402 SystemTap probe point. If so, the probe has two arguments: the 7403 CFA and the HANDLER. We ignore the CFA, extract the handler, and 7404 set a breakpoint there. */ 7405 probe = find_probe_by_pc (get_frame_pc (frame)); 7406 if (probe.prob) 7407 { 7408 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame); 7409 return; 7410 } 7411 7412 func = get_frame_function (frame); 7413 if (!func) 7414 return; 7415 7416 TRY 7417 { 7418 const struct block *b; 7419 struct block_iterator iter; 7420 struct symbol *sym; 7421 int argno = 0; 7422 7423 /* The exception breakpoint is a thread-specific breakpoint on 7424 the unwinder's debug hook, declared as: 7425 7426 void _Unwind_DebugHook (void *cfa, void *handler); 7427 7428 The CFA argument indicates the frame to which control is 7429 about to be transferred. HANDLER is the destination PC. 7430 7431 We ignore the CFA and set a temporary breakpoint at HANDLER. 7432 This is not extremely efficient but it avoids issues in gdb 7433 with computing the DWARF CFA, and it also works even in weird 7434 cases such as throwing an exception from inside a signal 7435 handler. */ 7436 7437 b = SYMBOL_BLOCK_VALUE (func); 7438 ALL_BLOCK_SYMBOLS (b, iter, sym) 7439 { 7440 if (!SYMBOL_IS_ARGUMENT (sym)) 7441 continue; 7442 7443 if (argno == 0) 7444 ++argno; 7445 else 7446 { 7447 insert_exception_resume_breakpoint (ecs->event_thread, 7448 b, frame, sym); 7449 break; 7450 } 7451 } 7452 } 7453 CATCH (e, RETURN_MASK_ERROR) 7454 { 7455 } 7456 END_CATCH 7457 } 7458 7459 static void 7460 stop_waiting (struct execution_control_state *ecs) 7461 { 7462 if (debug_infrun) 7463 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n"); 7464 7465 /* Let callers know we don't want to wait for the inferior anymore. */ 7466 ecs->wait_some_more = 0; 7467 7468 /* If all-stop, but the target is always in non-stop mode, stop all 7469 threads now that we're presenting the stop to the user. */ 7470 if (!non_stop && target_is_non_stop_p ()) 7471 stop_all_threads (); 7472 } 7473 7474 /* Like keep_going, but passes the signal to the inferior, even if the 7475 signal is set to nopass. */ 7476 7477 static void 7478 keep_going_pass_signal (struct execution_control_state *ecs) 7479 { 7480 gdb_assert (ecs->event_thread->ptid == inferior_ptid); 7481 gdb_assert (!ecs->event_thread->resumed); 7482 7483 /* Save the pc before execution, to compare with pc after stop. */ 7484 ecs->event_thread->prev_pc 7485 = regcache_read_pc (get_thread_regcache (ecs->event_thread)); 7486 7487 if (ecs->event_thread->control.trap_expected) 7488 { 7489 struct thread_info *tp = ecs->event_thread; 7490 7491 if (debug_infrun) 7492 fprintf_unfiltered (gdb_stdlog, 7493 "infrun: %s has trap_expected set, " 7494 "resuming to collect trap\n", 7495 target_pid_to_str (tp->ptid)); 7496 7497 /* We haven't yet gotten our trap, and either: intercepted a 7498 non-signal event (e.g., a fork); or took a signal which we 7499 are supposed to pass through to the inferior. Simply 7500 continue. */ 7501 resume (ecs->event_thread->suspend.stop_signal); 7502 } 7503 else if (step_over_info_valid_p ()) 7504 { 7505 /* Another thread is stepping over a breakpoint in-line. If 7506 this thread needs a step-over too, queue the request. In 7507 either case, this resume must be deferred for later. */ 7508 struct thread_info *tp = ecs->event_thread; 7509 7510 if (ecs->hit_singlestep_breakpoint 7511 || thread_still_needs_step_over (tp)) 7512 { 7513 if (debug_infrun) 7514 fprintf_unfiltered (gdb_stdlog, 7515 "infrun: step-over already in progress: " 7516 "step-over for %s deferred\n", 7517 target_pid_to_str (tp->ptid)); 7518 thread_step_over_chain_enqueue (tp); 7519 } 7520 else 7521 { 7522 if (debug_infrun) 7523 fprintf_unfiltered (gdb_stdlog, 7524 "infrun: step-over in progress: " 7525 "resume of %s deferred\n", 7526 target_pid_to_str (tp->ptid)); 7527 } 7528 } 7529 else 7530 { 7531 struct regcache *regcache = get_current_regcache (); 7532 int remove_bp; 7533 int remove_wps; 7534 step_over_what step_what; 7535 7536 /* Either the trap was not expected, but we are continuing 7537 anyway (if we got a signal, the user asked it be passed to 7538 the child) 7539 -- or -- 7540 We got our expected trap, but decided we should resume from 7541 it. 7542 7543 We're going to run this baby now! 7544 7545 Note that insert_breakpoints won't try to re-insert 7546 already inserted breakpoints. Therefore, we don't 7547 care if breakpoints were already inserted, or not. */ 7548 7549 /* If we need to step over a breakpoint, and we're not using 7550 displaced stepping to do so, insert all breakpoints 7551 (watchpoints, etc.) but the one we're stepping over, step one 7552 instruction, and then re-insert the breakpoint when that step 7553 is finished. */ 7554 7555 step_what = thread_still_needs_step_over (ecs->event_thread); 7556 7557 remove_bp = (ecs->hit_singlestep_breakpoint 7558 || (step_what & STEP_OVER_BREAKPOINT)); 7559 remove_wps = (step_what & STEP_OVER_WATCHPOINT); 7560 7561 /* We can't use displaced stepping if we need to step past a 7562 watchpoint. The instruction copied to the scratch pad would 7563 still trigger the watchpoint. */ 7564 if (remove_bp 7565 && (remove_wps || !use_displaced_stepping (ecs->event_thread))) 7566 { 7567 set_step_over_info (regcache->aspace (), 7568 regcache_read_pc (regcache), remove_wps, 7569 ecs->event_thread->global_num); 7570 } 7571 else if (remove_wps) 7572 set_step_over_info (NULL, 0, remove_wps, -1); 7573 7574 /* If we now need to do an in-line step-over, we need to stop 7575 all other threads. Note this must be done before 7576 insert_breakpoints below, because that removes the breakpoint 7577 we're about to step over, otherwise other threads could miss 7578 it. */ 7579 if (step_over_info_valid_p () && target_is_non_stop_p ()) 7580 stop_all_threads (); 7581 7582 /* Stop stepping if inserting breakpoints fails. */ 7583 TRY 7584 { 7585 insert_breakpoints (); 7586 } 7587 CATCH (e, RETURN_MASK_ERROR) 7588 { 7589 exception_print (gdb_stderr, e); 7590 stop_waiting (ecs); 7591 clear_step_over_info (); 7592 return; 7593 } 7594 END_CATCH 7595 7596 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps); 7597 7598 resume (ecs->event_thread->suspend.stop_signal); 7599 } 7600 7601 prepare_to_wait (ecs); 7602 } 7603 7604 /* Called when we should continue running the inferior, because the 7605 current event doesn't cause a user visible stop. This does the 7606 resuming part; waiting for the next event is done elsewhere. */ 7607 7608 static void 7609 keep_going (struct execution_control_state *ecs) 7610 { 7611 if (ecs->event_thread->control.trap_expected 7612 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) 7613 ecs->event_thread->control.trap_expected = 0; 7614 7615 if (!signal_program[ecs->event_thread->suspend.stop_signal]) 7616 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; 7617 keep_going_pass_signal (ecs); 7618 } 7619 7620 /* This function normally comes after a resume, before 7621 handle_inferior_event exits. It takes care of any last bits of 7622 housekeeping, and sets the all-important wait_some_more flag. */ 7623 7624 static void 7625 prepare_to_wait (struct execution_control_state *ecs) 7626 { 7627 if (debug_infrun) 7628 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); 7629 7630 ecs->wait_some_more = 1; 7631 7632 if (!target_is_async_p ()) 7633 mark_infrun_async_event_handler (); 7634 } 7635 7636 /* We are done with the step range of a step/next/si/ni command. 7637 Called once for each n of a "step n" operation. */ 7638 7639 static void 7640 end_stepping_range (struct execution_control_state *ecs) 7641 { 7642 ecs->event_thread->control.stop_step = 1; 7643 stop_waiting (ecs); 7644 } 7645 7646 /* Several print_*_reason functions to print why the inferior has stopped. 7647 We always print something when the inferior exits, or receives a signal. 7648 The rest of the cases are dealt with later on in normal_stop and 7649 print_it_typical. Ideally there should be a call to one of these 7650 print_*_reason functions functions from handle_inferior_event each time 7651 stop_waiting is called. 7652 7653 Note that we don't call these directly, instead we delegate that to 7654 the interpreters, through observers. Interpreters then call these 7655 with whatever uiout is right. */ 7656 7657 void 7658 print_end_stepping_range_reason (struct ui_out *uiout) 7659 { 7660 /* For CLI-like interpreters, print nothing. */ 7661 7662 if (uiout->is_mi_like_p ()) 7663 { 7664 uiout->field_string ("reason", 7665 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); 7666 } 7667 } 7668 7669 void 7670 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal) 7671 { 7672 annotate_signalled (); 7673 if (uiout->is_mi_like_p ()) 7674 uiout->field_string 7675 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); 7676 uiout->text ("\nProgram terminated with signal "); 7677 annotate_signal_name (); 7678 uiout->field_string ("signal-name", 7679 gdb_signal_to_name (siggnal)); 7680 annotate_signal_name_end (); 7681 uiout->text (", "); 7682 annotate_signal_string (); 7683 uiout->field_string ("signal-meaning", 7684 gdb_signal_to_string (siggnal)); 7685 annotate_signal_string_end (); 7686 uiout->text (".\n"); 7687 uiout->text ("The program no longer exists.\n"); 7688 } 7689 7690 void 7691 print_exited_reason (struct ui_out *uiout, int exitstatus) 7692 { 7693 struct inferior *inf = current_inferior (); 7694 const char *pidstr = target_pid_to_str (ptid_t (inf->pid)); 7695 7696 annotate_exited (exitstatus); 7697 if (exitstatus) 7698 { 7699 if (uiout->is_mi_like_p ()) 7700 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED)); 7701 uiout->text ("[Inferior "); 7702 uiout->text (plongest (inf->num)); 7703 uiout->text (" ("); 7704 uiout->text (pidstr); 7705 uiout->text (") exited with code "); 7706 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus); 7707 uiout->text ("]\n"); 7708 } 7709 else 7710 { 7711 if (uiout->is_mi_like_p ()) 7712 uiout->field_string 7713 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); 7714 uiout->text ("[Inferior "); 7715 uiout->text (plongest (inf->num)); 7716 uiout->text (" ("); 7717 uiout->text (pidstr); 7718 uiout->text (") exited normally]\n"); 7719 } 7720 } 7721 7722 /* Some targets/architectures can do extra processing/display of 7723 segmentation faults. E.g., Intel MPX boundary faults. 7724 Call the architecture dependent function to handle the fault. */ 7725 7726 static void 7727 handle_segmentation_fault (struct ui_out *uiout) 7728 { 7729 struct regcache *regcache = get_current_regcache (); 7730 struct gdbarch *gdbarch = regcache->arch (); 7731 7732 if (gdbarch_handle_segmentation_fault_p (gdbarch)) 7733 gdbarch_handle_segmentation_fault (gdbarch, uiout); 7734 } 7735 7736 void 7737 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal) 7738 { 7739 struct thread_info *thr = inferior_thread (); 7740 7741 annotate_signal (); 7742 7743 if (uiout->is_mi_like_p ()) 7744 ; 7745 else if (show_thread_that_caused_stop ()) 7746 { 7747 const char *name; 7748 7749 uiout->text ("\nThread "); 7750 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr)); 7751 7752 name = thr->name != NULL ? thr->name : target_thread_name (thr); 7753 if (name != NULL) 7754 { 7755 uiout->text (" \""); 7756 uiout->field_fmt ("name", "%s", name); 7757 uiout->text ("\""); 7758 } 7759 } 7760 else 7761 uiout->text ("\nProgram"); 7762 7763 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ()) 7764 uiout->text (" stopped"); 7765 else 7766 { 7767 uiout->text (" received signal "); 7768 annotate_signal_name (); 7769 if (uiout->is_mi_like_p ()) 7770 uiout->field_string 7771 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); 7772 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal)); 7773 annotate_signal_name_end (); 7774 uiout->text (", "); 7775 annotate_signal_string (); 7776 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal)); 7777 7778 if (siggnal == GDB_SIGNAL_SEGV) 7779 handle_segmentation_fault (uiout); 7780 7781 annotate_signal_string_end (); 7782 } 7783 uiout->text (".\n"); 7784 } 7785 7786 void 7787 print_no_history_reason (struct ui_out *uiout) 7788 { 7789 uiout->text ("\nNo more reverse-execution history.\n"); 7790 } 7791 7792 /* Print current location without a level number, if we have changed 7793 functions or hit a breakpoint. Print source line if we have one. 7794 bpstat_print contains the logic deciding in detail what to print, 7795 based on the event(s) that just occurred. */ 7796 7797 static void 7798 print_stop_location (struct target_waitstatus *ws) 7799 { 7800 int bpstat_ret; 7801 enum print_what source_flag; 7802 int do_frame_printing = 1; 7803 struct thread_info *tp = inferior_thread (); 7804 7805 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind); 7806 switch (bpstat_ret) 7807 { 7808 case PRINT_UNKNOWN: 7809 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or 7810 should) carry around the function and does (or should) use 7811 that when doing a frame comparison. */ 7812 if (tp->control.stop_step 7813 && frame_id_eq (tp->control.step_frame_id, 7814 get_frame_id (get_current_frame ())) 7815 && (tp->control.step_start_function 7816 == find_pc_function (tp->suspend.stop_pc))) 7817 { 7818 /* Finished step, just print source line. */ 7819 source_flag = SRC_LINE; 7820 } 7821 else 7822 { 7823 /* Print location and source line. */ 7824 source_flag = SRC_AND_LOC; 7825 } 7826 break; 7827 case PRINT_SRC_AND_LOC: 7828 /* Print location and source line. */ 7829 source_flag = SRC_AND_LOC; 7830 break; 7831 case PRINT_SRC_ONLY: 7832 source_flag = SRC_LINE; 7833 break; 7834 case PRINT_NOTHING: 7835 /* Something bogus. */ 7836 source_flag = SRC_LINE; 7837 do_frame_printing = 0; 7838 break; 7839 default: 7840 internal_error (__FILE__, __LINE__, _("Unknown value.")); 7841 } 7842 7843 /* The behavior of this routine with respect to the source 7844 flag is: 7845 SRC_LINE: Print only source line 7846 LOCATION: Print only location 7847 SRC_AND_LOC: Print location and source line. */ 7848 if (do_frame_printing) 7849 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1); 7850 } 7851 7852 /* See infrun.h. */ 7853 7854 void 7855 print_stop_event (struct ui_out *uiout) 7856 { 7857 struct target_waitstatus last; 7858 ptid_t last_ptid; 7859 struct thread_info *tp; 7860 7861 get_last_target_status (&last_ptid, &last); 7862 7863 { 7864 scoped_restore save_uiout = make_scoped_restore (¤t_uiout, uiout); 7865 7866 print_stop_location (&last); 7867 7868 /* Display the auto-display expressions. */ 7869 do_displays (); 7870 } 7871 7872 tp = inferior_thread (); 7873 if (tp->thread_fsm != NULL 7874 && tp->thread_fsm->finished_p ()) 7875 { 7876 struct return_value_info *rv; 7877 7878 rv = tp->thread_fsm->return_value (); 7879 if (rv != NULL) 7880 print_return_value (uiout, rv); 7881 } 7882 } 7883 7884 /* See infrun.h. */ 7885 7886 void 7887 maybe_remove_breakpoints (void) 7888 { 7889 if (!breakpoints_should_be_inserted_now () && target_has_execution) 7890 { 7891 if (remove_breakpoints ()) 7892 { 7893 target_terminal::ours_for_output (); 7894 printf_filtered (_("Cannot remove breakpoints because " 7895 "program is no longer writable.\nFurther " 7896 "execution is probably impossible.\n")); 7897 } 7898 } 7899 } 7900 7901 /* The execution context that just caused a normal stop. */ 7902 7903 struct stop_context 7904 { 7905 stop_context (); 7906 ~stop_context (); 7907 7908 DISABLE_COPY_AND_ASSIGN (stop_context); 7909 7910 bool changed () const; 7911 7912 /* The stop ID. */ 7913 ULONGEST stop_id; 7914 7915 /* The event PTID. */ 7916 7917 ptid_t ptid; 7918 7919 /* If stopp for a thread event, this is the thread that caused the 7920 stop. */ 7921 struct thread_info *thread; 7922 7923 /* The inferior that caused the stop. */ 7924 int inf_num; 7925 }; 7926 7927 /* Initializes a new stop context. If stopped for a thread event, this 7928 takes a strong reference to the thread. */ 7929 7930 stop_context::stop_context () 7931 { 7932 stop_id = get_stop_id (); 7933 ptid = inferior_ptid; 7934 inf_num = current_inferior ()->num; 7935 7936 if (inferior_ptid != null_ptid) 7937 { 7938 /* Take a strong reference so that the thread can't be deleted 7939 yet. */ 7940 thread = inferior_thread (); 7941 thread->incref (); 7942 } 7943 else 7944 thread = NULL; 7945 } 7946 7947 /* Release a stop context previously created with save_stop_context. 7948 Releases the strong reference to the thread as well. */ 7949 7950 stop_context::~stop_context () 7951 { 7952 if (thread != NULL) 7953 thread->decref (); 7954 } 7955 7956 /* Return true if the current context no longer matches the saved stop 7957 context. */ 7958 7959 bool 7960 stop_context::changed () const 7961 { 7962 if (ptid != inferior_ptid) 7963 return true; 7964 if (inf_num != current_inferior ()->num) 7965 return true; 7966 if (thread != NULL && thread->state != THREAD_STOPPED) 7967 return true; 7968 if (get_stop_id () != stop_id) 7969 return true; 7970 return false; 7971 } 7972 7973 /* See infrun.h. */ 7974 7975 int 7976 normal_stop (void) 7977 { 7978 struct target_waitstatus last; 7979 ptid_t last_ptid; 7980 7981 get_last_target_status (&last_ptid, &last); 7982 7983 new_stop_id (); 7984 7985 /* If an exception is thrown from this point on, make sure to 7986 propagate GDB's knowledge of the executing state to the 7987 frontend/user running state. A QUIT is an easy exception to see 7988 here, so do this before any filtered output. */ 7989 7990 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state; 7991 7992 if (!non_stop) 7993 maybe_finish_thread_state.emplace (minus_one_ptid); 7994 else if (last.kind == TARGET_WAITKIND_SIGNALLED 7995 || last.kind == TARGET_WAITKIND_EXITED) 7996 { 7997 /* On some targets, we may still have live threads in the 7998 inferior when we get a process exit event. E.g., for 7999 "checkpoint", when the current checkpoint/fork exits, 8000 linux-fork.c automatically switches to another fork from 8001 within target_mourn_inferior. */ 8002 if (inferior_ptid != null_ptid) 8003 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ())); 8004 } 8005 else if (last.kind != TARGET_WAITKIND_NO_RESUMED) 8006 maybe_finish_thread_state.emplace (inferior_ptid); 8007 8008 /* As we're presenting a stop, and potentially removing breakpoints, 8009 update the thread list so we can tell whether there are threads 8010 running on the target. With target remote, for example, we can 8011 only learn about new threads when we explicitly update the thread 8012 list. Do this before notifying the interpreters about signal 8013 stops, end of stepping ranges, etc., so that the "new thread" 8014 output is emitted before e.g., "Program received signal FOO", 8015 instead of after. */ 8016 update_thread_list (); 8017 8018 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal) 8019 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal); 8020 8021 /* As with the notification of thread events, we want to delay 8022 notifying the user that we've switched thread context until 8023 the inferior actually stops. 8024 8025 There's no point in saying anything if the inferior has exited. 8026 Note that SIGNALLED here means "exited with a signal", not 8027 "received a signal". 8028 8029 Also skip saying anything in non-stop mode. In that mode, as we 8030 don't want GDB to switch threads behind the user's back, to avoid 8031 races where the user is typing a command to apply to thread x, 8032 but GDB switches to thread y before the user finishes entering 8033 the command, fetch_inferior_event installs a cleanup to restore 8034 the current thread back to the thread the user had selected right 8035 after this event is handled, so we're not really switching, only 8036 informing of a stop. */ 8037 if (!non_stop 8038 && previous_inferior_ptid != inferior_ptid 8039 && target_has_execution 8040 && last.kind != TARGET_WAITKIND_SIGNALLED 8041 && last.kind != TARGET_WAITKIND_EXITED 8042 && last.kind != TARGET_WAITKIND_NO_RESUMED) 8043 { 8044 SWITCH_THRU_ALL_UIS () 8045 { 8046 target_terminal::ours_for_output (); 8047 printf_filtered (_("[Switching to %s]\n"), 8048 target_pid_to_str (inferior_ptid)); 8049 annotate_thread_changed (); 8050 } 8051 previous_inferior_ptid = inferior_ptid; 8052 } 8053 8054 if (last.kind == TARGET_WAITKIND_NO_RESUMED) 8055 { 8056 SWITCH_THRU_ALL_UIS () 8057 if (current_ui->prompt_state == PROMPT_BLOCKED) 8058 { 8059 target_terminal::ours_for_output (); 8060 printf_filtered (_("No unwaited-for children left.\n")); 8061 } 8062 } 8063 8064 /* Note: this depends on the update_thread_list call above. */ 8065 maybe_remove_breakpoints (); 8066 8067 /* If an auto-display called a function and that got a signal, 8068 delete that auto-display to avoid an infinite recursion. */ 8069 8070 if (stopped_by_random_signal) 8071 disable_current_display (); 8072 8073 SWITCH_THRU_ALL_UIS () 8074 { 8075 async_enable_stdin (); 8076 } 8077 8078 /* Let the user/frontend see the threads as stopped. */ 8079 maybe_finish_thread_state.reset (); 8080 8081 /* Select innermost stack frame - i.e., current frame is frame 0, 8082 and current location is based on that. Handle the case where the 8083 dummy call is returning after being stopped. E.g. the dummy call 8084 previously hit a breakpoint. (If the dummy call returns 8085 normally, we won't reach here.) Do this before the stop hook is 8086 run, so that it doesn't get to see the temporary dummy frame, 8087 which is not where we'll present the stop. */ 8088 if (has_stack_frames ()) 8089 { 8090 if (stop_stack_dummy == STOP_STACK_DUMMY) 8091 { 8092 /* Pop the empty frame that contains the stack dummy. This 8093 also restores inferior state prior to the call (struct 8094 infcall_suspend_state). */ 8095 struct frame_info *frame = get_current_frame (); 8096 8097 gdb_assert (get_frame_type (frame) == DUMMY_FRAME); 8098 frame_pop (frame); 8099 /* frame_pop calls reinit_frame_cache as the last thing it 8100 does which means there's now no selected frame. */ 8101 } 8102 8103 select_frame (get_current_frame ()); 8104 8105 /* Set the current source location. */ 8106 set_current_sal_from_frame (get_current_frame ()); 8107 } 8108 8109 /* Look up the hook_stop and run it (CLI internally handles problem 8110 of stop_command's pre-hook not existing). */ 8111 if (stop_command != NULL) 8112 { 8113 stop_context saved_context; 8114 8115 TRY 8116 { 8117 execute_cmd_pre_hook (stop_command); 8118 } 8119 CATCH (ex, RETURN_MASK_ALL) 8120 { 8121 exception_fprintf (gdb_stderr, ex, 8122 "Error while running hook_stop:\n"); 8123 } 8124 END_CATCH 8125 8126 /* If the stop hook resumes the target, then there's no point in 8127 trying to notify about the previous stop; its context is 8128 gone. Likewise if the command switches thread or inferior -- 8129 the observers would print a stop for the wrong 8130 thread/inferior. */ 8131 if (saved_context.changed ()) 8132 return 1; 8133 } 8134 8135 /* Notify observers about the stop. This is where the interpreters 8136 print the stop event. */ 8137 if (inferior_ptid != null_ptid) 8138 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat, 8139 stop_print_frame); 8140 else 8141 gdb::observers::normal_stop.notify (NULL, stop_print_frame); 8142 8143 annotate_stopped (); 8144 8145 if (target_has_execution) 8146 { 8147 if (last.kind != TARGET_WAITKIND_SIGNALLED 8148 && last.kind != TARGET_WAITKIND_EXITED) 8149 /* Delete the breakpoint we stopped at, if it wants to be deleted. 8150 Delete any breakpoint that is to be deleted at the next stop. */ 8151 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat); 8152 } 8153 8154 /* Try to get rid of automatically added inferiors that are no 8155 longer needed. Keeping those around slows down things linearly. 8156 Note that this never removes the current inferior. */ 8157 prune_inferiors (); 8158 8159 return 0; 8160 } 8161 8162 int 8163 signal_stop_state (int signo) 8164 { 8165 return signal_stop[signo]; 8166 } 8167 8168 int 8169 signal_print_state (int signo) 8170 { 8171 return signal_print[signo]; 8172 } 8173 8174 int 8175 signal_pass_state (int signo) 8176 { 8177 return signal_program[signo]; 8178 } 8179 8180 static void 8181 signal_cache_update (int signo) 8182 { 8183 if (signo == -1) 8184 { 8185 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++) 8186 signal_cache_update (signo); 8187 8188 return; 8189 } 8190 8191 signal_pass[signo] = (signal_stop[signo] == 0 8192 && signal_print[signo] == 0 8193 && signal_program[signo] == 1 8194 && signal_catch[signo] == 0); 8195 } 8196 8197 int 8198 signal_stop_update (int signo, int state) 8199 { 8200 int ret = signal_stop[signo]; 8201 8202 signal_stop[signo] = state; 8203 signal_cache_update (signo); 8204 return ret; 8205 } 8206 8207 int 8208 signal_print_update (int signo, int state) 8209 { 8210 int ret = signal_print[signo]; 8211 8212 signal_print[signo] = state; 8213 signal_cache_update (signo); 8214 return ret; 8215 } 8216 8217 int 8218 signal_pass_update (int signo, int state) 8219 { 8220 int ret = signal_program[signo]; 8221 8222 signal_program[signo] = state; 8223 signal_cache_update (signo); 8224 return ret; 8225 } 8226 8227 /* Update the global 'signal_catch' from INFO and notify the 8228 target. */ 8229 8230 void 8231 signal_catch_update (const unsigned int *info) 8232 { 8233 int i; 8234 8235 for (i = 0; i < GDB_SIGNAL_LAST; ++i) 8236 signal_catch[i] = info[i] > 0; 8237 signal_cache_update (-1); 8238 target_pass_signals (signal_pass); 8239 } 8240 8241 static void 8242 sig_print_header (void) 8243 { 8244 printf_filtered (_("Signal Stop\tPrint\tPass " 8245 "to program\tDescription\n")); 8246 } 8247 8248 static void 8249 sig_print_info (enum gdb_signal oursig) 8250 { 8251 const char *name = gdb_signal_to_name (oursig); 8252 int name_padding = 13 - strlen (name); 8253 8254 if (name_padding <= 0) 8255 name_padding = 0; 8256 8257 printf_filtered ("%s", name); 8258 printf_filtered ("%*.*s ", name_padding, name_padding, " "); 8259 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); 8260 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); 8261 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); 8262 printf_filtered ("%s\n", gdb_signal_to_string (oursig)); 8263 } 8264 8265 /* Specify how various signals in the inferior should be handled. */ 8266 8267 static void 8268 handle_command (const char *args, int from_tty) 8269 { 8270 int digits, wordlen; 8271 int sigfirst, siglast; 8272 enum gdb_signal oursig; 8273 int allsigs; 8274 8275 if (args == NULL) 8276 { 8277 error_no_arg (_("signal to handle")); 8278 } 8279 8280 /* Allocate and zero an array of flags for which signals to handle. */ 8281 8282 const size_t nsigs = GDB_SIGNAL_LAST; 8283 unsigned char sigs[nsigs] {}; 8284 8285 /* Break the command line up into args. */ 8286 8287 gdb_argv built_argv (args); 8288 8289 /* Walk through the args, looking for signal oursigs, signal names, and 8290 actions. Signal numbers and signal names may be interspersed with 8291 actions, with the actions being performed for all signals cumulatively 8292 specified. Signal ranges can be specified as <LOW>-<HIGH>. */ 8293 8294 for (char *arg : built_argv) 8295 { 8296 wordlen = strlen (arg); 8297 for (digits = 0; isdigit (arg[digits]); digits++) 8298 {; 8299 } 8300 allsigs = 0; 8301 sigfirst = siglast = -1; 8302 8303 if (wordlen >= 1 && !strncmp (arg, "all", wordlen)) 8304 { 8305 /* Apply action to all signals except those used by the 8306 debugger. Silently skip those. */ 8307 allsigs = 1; 8308 sigfirst = 0; 8309 siglast = nsigs - 1; 8310 } 8311 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen)) 8312 { 8313 SET_SIGS (nsigs, sigs, signal_stop); 8314 SET_SIGS (nsigs, sigs, signal_print); 8315 } 8316 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen)) 8317 { 8318 UNSET_SIGS (nsigs, sigs, signal_program); 8319 } 8320 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen)) 8321 { 8322 SET_SIGS (nsigs, sigs, signal_print); 8323 } 8324 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen)) 8325 { 8326 SET_SIGS (nsigs, sigs, signal_program); 8327 } 8328 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen)) 8329 { 8330 UNSET_SIGS (nsigs, sigs, signal_stop); 8331 } 8332 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen)) 8333 { 8334 SET_SIGS (nsigs, sigs, signal_program); 8335 } 8336 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen)) 8337 { 8338 UNSET_SIGS (nsigs, sigs, signal_print); 8339 UNSET_SIGS (nsigs, sigs, signal_stop); 8340 } 8341 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen)) 8342 { 8343 UNSET_SIGS (nsigs, sigs, signal_program); 8344 } 8345 else if (digits > 0) 8346 { 8347 /* It is numeric. The numeric signal refers to our own 8348 internal signal numbering from target.h, not to host/target 8349 signal number. This is a feature; users really should be 8350 using symbolic names anyway, and the common ones like 8351 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ 8352 8353 sigfirst = siglast = (int) 8354 gdb_signal_from_command (atoi (arg)); 8355 if (arg[digits] == '-') 8356 { 8357 siglast = (int) 8358 gdb_signal_from_command (atoi (arg + digits + 1)); 8359 } 8360 if (sigfirst > siglast) 8361 { 8362 /* Bet he didn't figure we'd think of this case... */ 8363 std::swap (sigfirst, siglast); 8364 } 8365 } 8366 else 8367 { 8368 oursig = gdb_signal_from_name (arg); 8369 if (oursig != GDB_SIGNAL_UNKNOWN) 8370 { 8371 sigfirst = siglast = (int) oursig; 8372 } 8373 else 8374 { 8375 /* Not a number and not a recognized flag word => complain. */ 8376 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg); 8377 } 8378 } 8379 8380 /* If any signal numbers or symbol names were found, set flags for 8381 which signals to apply actions to. */ 8382 8383 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++) 8384 { 8385 switch ((enum gdb_signal) signum) 8386 { 8387 case GDB_SIGNAL_TRAP: 8388 case GDB_SIGNAL_INT: 8389 if (!allsigs && !sigs[signum]) 8390 { 8391 if (query (_("%s is used by the debugger.\n\ 8392 Are you sure you want to change it? "), 8393 gdb_signal_to_name ((enum gdb_signal) signum))) 8394 { 8395 sigs[signum] = 1; 8396 } 8397 else 8398 { 8399 printf_unfiltered (_("Not confirmed, unchanged.\n")); 8400 gdb_flush (gdb_stdout); 8401 } 8402 } 8403 break; 8404 case GDB_SIGNAL_0: 8405 case GDB_SIGNAL_DEFAULT: 8406 case GDB_SIGNAL_UNKNOWN: 8407 /* Make sure that "all" doesn't print these. */ 8408 break; 8409 default: 8410 sigs[signum] = 1; 8411 break; 8412 } 8413 } 8414 } 8415 8416 for (int signum = 0; signum < nsigs; signum++) 8417 if (sigs[signum]) 8418 { 8419 signal_cache_update (-1); 8420 target_pass_signals (signal_pass); 8421 target_program_signals (signal_program); 8422 8423 if (from_tty) 8424 { 8425 /* Show the results. */ 8426 sig_print_header (); 8427 for (; signum < nsigs; signum++) 8428 if (sigs[signum]) 8429 sig_print_info ((enum gdb_signal) signum); 8430 } 8431 8432 break; 8433 } 8434 } 8435 8436 /* Complete the "handle" command. */ 8437 8438 static void 8439 handle_completer (struct cmd_list_element *ignore, 8440 completion_tracker &tracker, 8441 const char *text, const char *word) 8442 { 8443 static const char * const keywords[] = 8444 { 8445 "all", 8446 "stop", 8447 "ignore", 8448 "print", 8449 "pass", 8450 "nostop", 8451 "noignore", 8452 "noprint", 8453 "nopass", 8454 NULL, 8455 }; 8456 8457 signal_completer (ignore, tracker, text, word); 8458 complete_on_enum (tracker, keywords, word, word); 8459 } 8460 8461 enum gdb_signal 8462 gdb_signal_from_command (int num) 8463 { 8464 if (num >= 1 && num <= 15) 8465 return (enum gdb_signal) num; 8466 error (_("Only signals 1-15 are valid as numeric signals.\n\ 8467 Use \"info signals\" for a list of symbolic signals.")); 8468 } 8469 8470 /* Print current contents of the tables set by the handle command. 8471 It is possible we should just be printing signals actually used 8472 by the current target (but for things to work right when switching 8473 targets, all signals should be in the signal tables). */ 8474 8475 static void 8476 info_signals_command (const char *signum_exp, int from_tty) 8477 { 8478 enum gdb_signal oursig; 8479 8480 sig_print_header (); 8481 8482 if (signum_exp) 8483 { 8484 /* First see if this is a symbol name. */ 8485 oursig = gdb_signal_from_name (signum_exp); 8486 if (oursig == GDB_SIGNAL_UNKNOWN) 8487 { 8488 /* No, try numeric. */ 8489 oursig = 8490 gdb_signal_from_command (parse_and_eval_long (signum_exp)); 8491 } 8492 sig_print_info (oursig); 8493 return; 8494 } 8495 8496 printf_filtered ("\n"); 8497 /* These ugly casts brought to you by the native VAX compiler. */ 8498 for (oursig = GDB_SIGNAL_FIRST; 8499 (int) oursig < (int) GDB_SIGNAL_LAST; 8500 oursig = (enum gdb_signal) ((int) oursig + 1)) 8501 { 8502 QUIT; 8503 8504 if (oursig != GDB_SIGNAL_UNKNOWN 8505 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0) 8506 sig_print_info (oursig); 8507 } 8508 8509 printf_filtered (_("\nUse the \"handle\" command " 8510 "to change these tables.\n")); 8511 } 8512 8513 /* The $_siginfo convenience variable is a bit special. We don't know 8514 for sure the type of the value until we actually have a chance to 8515 fetch the data. The type can change depending on gdbarch, so it is 8516 also dependent on which thread you have selected. 8517 8518 1. making $_siginfo be an internalvar that creates a new value on 8519 access. 8520 8521 2. making the value of $_siginfo be an lval_computed value. */ 8522 8523 /* This function implements the lval_computed support for reading a 8524 $_siginfo value. */ 8525 8526 static void 8527 siginfo_value_read (struct value *v) 8528 { 8529 LONGEST transferred; 8530 8531 /* If we can access registers, so can we access $_siginfo. Likewise 8532 vice versa. */ 8533 validate_registers_access (); 8534 8535 transferred = 8536 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, 8537 NULL, 8538 value_contents_all_raw (v), 8539 value_offset (v), 8540 TYPE_LENGTH (value_type (v))); 8541 8542 if (transferred != TYPE_LENGTH (value_type (v))) 8543 error (_("Unable to read siginfo")); 8544 } 8545 8546 /* This function implements the lval_computed support for writing a 8547 $_siginfo value. */ 8548 8549 static void 8550 siginfo_value_write (struct value *v, struct value *fromval) 8551 { 8552 LONGEST transferred; 8553 8554 /* If we can access registers, so can we access $_siginfo. Likewise 8555 vice versa. */ 8556 validate_registers_access (); 8557 8558 transferred = target_write (current_top_target (), 8559 TARGET_OBJECT_SIGNAL_INFO, 8560 NULL, 8561 value_contents_all_raw (fromval), 8562 value_offset (v), 8563 TYPE_LENGTH (value_type (fromval))); 8564 8565 if (transferred != TYPE_LENGTH (value_type (fromval))) 8566 error (_("Unable to write siginfo")); 8567 } 8568 8569 static const struct lval_funcs siginfo_value_funcs = 8570 { 8571 siginfo_value_read, 8572 siginfo_value_write 8573 }; 8574 8575 /* Return a new value with the correct type for the siginfo object of 8576 the current thread using architecture GDBARCH. Return a void value 8577 if there's no object available. */ 8578 8579 static struct value * 8580 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var, 8581 void *ignore) 8582 { 8583 if (target_has_stack 8584 && inferior_ptid != null_ptid 8585 && gdbarch_get_siginfo_type_p (gdbarch)) 8586 { 8587 struct type *type = gdbarch_get_siginfo_type (gdbarch); 8588 8589 return allocate_computed_value (type, &siginfo_value_funcs, NULL); 8590 } 8591 8592 return allocate_value (builtin_type (gdbarch)->builtin_void); 8593 } 8594 8595 8596 /* infcall_suspend_state contains state about the program itself like its 8597 registers and any signal it received when it last stopped. 8598 This state must be restored regardless of how the inferior function call 8599 ends (either successfully, or after it hits a breakpoint or signal) 8600 if the program is to properly continue where it left off. */ 8601 8602 class infcall_suspend_state 8603 { 8604 public: 8605 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored 8606 once the inferior function call has finished. */ 8607 infcall_suspend_state (struct gdbarch *gdbarch, 8608 const struct thread_info *tp, 8609 struct regcache *regcache) 8610 : m_thread_suspend (tp->suspend), 8611 m_registers (new readonly_detached_regcache (*regcache)) 8612 { 8613 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data; 8614 8615 if (gdbarch_get_siginfo_type_p (gdbarch)) 8616 { 8617 struct type *type = gdbarch_get_siginfo_type (gdbarch); 8618 size_t len = TYPE_LENGTH (type); 8619 8620 siginfo_data.reset ((gdb_byte *) xmalloc (len)); 8621 8622 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL, 8623 siginfo_data.get (), 0, len) != len) 8624 { 8625 /* Errors ignored. */ 8626 siginfo_data.reset (nullptr); 8627 } 8628 } 8629 8630 if (siginfo_data) 8631 { 8632 m_siginfo_gdbarch = gdbarch; 8633 m_siginfo_data = std::move (siginfo_data); 8634 } 8635 } 8636 8637 /* Return a pointer to the stored register state. */ 8638 8639 readonly_detached_regcache *registers () const 8640 { 8641 return m_registers.get (); 8642 } 8643 8644 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */ 8645 8646 void restore (struct gdbarch *gdbarch, 8647 struct thread_info *tp, 8648 struct regcache *regcache) const 8649 { 8650 tp->suspend = m_thread_suspend; 8651 8652 if (m_siginfo_gdbarch == gdbarch) 8653 { 8654 struct type *type = gdbarch_get_siginfo_type (gdbarch); 8655 8656 /* Errors ignored. */ 8657 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL, 8658 m_siginfo_data.get (), 0, TYPE_LENGTH (type)); 8659 } 8660 8661 /* The inferior can be gone if the user types "print exit(0)" 8662 (and perhaps other times). */ 8663 if (target_has_execution) 8664 /* NB: The register write goes through to the target. */ 8665 regcache->restore (registers ()); 8666 } 8667 8668 private: 8669 /* How the current thread stopped before the inferior function call was 8670 executed. */ 8671 struct thread_suspend_state m_thread_suspend; 8672 8673 /* The registers before the inferior function call was executed. */ 8674 std::unique_ptr<readonly_detached_regcache> m_registers; 8675 8676 /* Format of SIGINFO_DATA or NULL if it is not present. */ 8677 struct gdbarch *m_siginfo_gdbarch = nullptr; 8678 8679 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of 8680 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the 8681 content would be invalid. */ 8682 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data; 8683 }; 8684 8685 infcall_suspend_state_up 8686 save_infcall_suspend_state () 8687 { 8688 struct thread_info *tp = inferior_thread (); 8689 struct regcache *regcache = get_current_regcache (); 8690 struct gdbarch *gdbarch = regcache->arch (); 8691 8692 infcall_suspend_state_up inf_state 8693 (new struct infcall_suspend_state (gdbarch, tp, regcache)); 8694 8695 /* Having saved the current state, adjust the thread state, discarding 8696 any stop signal information. The stop signal is not useful when 8697 starting an inferior function call, and run_inferior_call will not use 8698 the signal due to its `proceed' call with GDB_SIGNAL_0. */ 8699 tp->suspend.stop_signal = GDB_SIGNAL_0; 8700 8701 return inf_state; 8702 } 8703 8704 /* Restore inferior session state to INF_STATE. */ 8705 8706 void 8707 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state) 8708 { 8709 struct thread_info *tp = inferior_thread (); 8710 struct regcache *regcache = get_current_regcache (); 8711 struct gdbarch *gdbarch = regcache->arch (); 8712 8713 inf_state->restore (gdbarch, tp, regcache); 8714 discard_infcall_suspend_state (inf_state); 8715 } 8716 8717 void 8718 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state) 8719 { 8720 delete inf_state; 8721 } 8722 8723 readonly_detached_regcache * 8724 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state) 8725 { 8726 return inf_state->registers (); 8727 } 8728 8729 /* infcall_control_state contains state regarding gdb's control of the 8730 inferior itself like stepping control. It also contains session state like 8731 the user's currently selected frame. */ 8732 8733 struct infcall_control_state 8734 { 8735 struct thread_control_state thread_control; 8736 struct inferior_control_state inferior_control; 8737 8738 /* Other fields: */ 8739 enum stop_stack_kind stop_stack_dummy = STOP_NONE; 8740 int stopped_by_random_signal = 0; 8741 8742 /* ID if the selected frame when the inferior function call was made. */ 8743 struct frame_id selected_frame_id {}; 8744 }; 8745 8746 /* Save all of the information associated with the inferior<==>gdb 8747 connection. */ 8748 8749 infcall_control_state_up 8750 save_infcall_control_state () 8751 { 8752 infcall_control_state_up inf_status (new struct infcall_control_state); 8753 struct thread_info *tp = inferior_thread (); 8754 struct inferior *inf = current_inferior (); 8755 8756 inf_status->thread_control = tp->control; 8757 inf_status->inferior_control = inf->control; 8758 8759 tp->control.step_resume_breakpoint = NULL; 8760 tp->control.exception_resume_breakpoint = NULL; 8761 8762 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of 8763 chain. If caller's caller is walking the chain, they'll be happier if we 8764 hand them back the original chain when restore_infcall_control_state is 8765 called. */ 8766 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat); 8767 8768 /* Other fields: */ 8769 inf_status->stop_stack_dummy = stop_stack_dummy; 8770 inf_status->stopped_by_random_signal = stopped_by_random_signal; 8771 8772 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL)); 8773 8774 return inf_status; 8775 } 8776 8777 static void 8778 restore_selected_frame (const frame_id &fid) 8779 { 8780 frame_info *frame = frame_find_by_id (fid); 8781 8782 /* If inf_status->selected_frame_id is NULL, there was no previously 8783 selected frame. */ 8784 if (frame == NULL) 8785 { 8786 warning (_("Unable to restore previously selected frame.")); 8787 return; 8788 } 8789 8790 select_frame (frame); 8791 } 8792 8793 /* Restore inferior session state to INF_STATUS. */ 8794 8795 void 8796 restore_infcall_control_state (struct infcall_control_state *inf_status) 8797 { 8798 struct thread_info *tp = inferior_thread (); 8799 struct inferior *inf = current_inferior (); 8800 8801 if (tp->control.step_resume_breakpoint) 8802 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop; 8803 8804 if (tp->control.exception_resume_breakpoint) 8805 tp->control.exception_resume_breakpoint->disposition 8806 = disp_del_at_next_stop; 8807 8808 /* Handle the bpstat_copy of the chain. */ 8809 bpstat_clear (&tp->control.stop_bpstat); 8810 8811 tp->control = inf_status->thread_control; 8812 inf->control = inf_status->inferior_control; 8813 8814 /* Other fields: */ 8815 stop_stack_dummy = inf_status->stop_stack_dummy; 8816 stopped_by_random_signal = inf_status->stopped_by_random_signal; 8817 8818 if (target_has_stack) 8819 { 8820 /* The point of the try/catch is that if the stack is clobbered, 8821 walking the stack might encounter a garbage pointer and 8822 error() trying to dereference it. */ 8823 TRY 8824 { 8825 restore_selected_frame (inf_status->selected_frame_id); 8826 } 8827 CATCH (ex, RETURN_MASK_ERROR) 8828 { 8829 exception_fprintf (gdb_stderr, ex, 8830 "Unable to restore previously selected frame:\n"); 8831 /* Error in restoring the selected frame. Select the 8832 innermost frame. */ 8833 select_frame (get_current_frame ()); 8834 } 8835 END_CATCH 8836 } 8837 8838 delete inf_status; 8839 } 8840 8841 void 8842 discard_infcall_control_state (struct infcall_control_state *inf_status) 8843 { 8844 if (inf_status->thread_control.step_resume_breakpoint) 8845 inf_status->thread_control.step_resume_breakpoint->disposition 8846 = disp_del_at_next_stop; 8847 8848 if (inf_status->thread_control.exception_resume_breakpoint) 8849 inf_status->thread_control.exception_resume_breakpoint->disposition 8850 = disp_del_at_next_stop; 8851 8852 /* See save_infcall_control_state for info on stop_bpstat. */ 8853 bpstat_clear (&inf_status->thread_control.stop_bpstat); 8854 8855 delete inf_status; 8856 } 8857 8858 /* See infrun.h. */ 8859 8860 void 8861 clear_exit_convenience_vars (void) 8862 { 8863 clear_internalvar (lookup_internalvar ("_exitsignal")); 8864 clear_internalvar (lookup_internalvar ("_exitcode")); 8865 } 8866 8867 8868 /* User interface for reverse debugging: 8869 Set exec-direction / show exec-direction commands 8870 (returns error unless target implements to_set_exec_direction method). */ 8871 8872 enum exec_direction_kind execution_direction = EXEC_FORWARD; 8873 static const char exec_forward[] = "forward"; 8874 static const char exec_reverse[] = "reverse"; 8875 static const char *exec_direction = exec_forward; 8876 static const char *const exec_direction_names[] = { 8877 exec_forward, 8878 exec_reverse, 8879 NULL 8880 }; 8881 8882 static void 8883 set_exec_direction_func (const char *args, int from_tty, 8884 struct cmd_list_element *cmd) 8885 { 8886 if (target_can_execute_reverse) 8887 { 8888 if (!strcmp (exec_direction, exec_forward)) 8889 execution_direction = EXEC_FORWARD; 8890 else if (!strcmp (exec_direction, exec_reverse)) 8891 execution_direction = EXEC_REVERSE; 8892 } 8893 else 8894 { 8895 exec_direction = exec_forward; 8896 error (_("Target does not support this operation.")); 8897 } 8898 } 8899 8900 static void 8901 show_exec_direction_func (struct ui_file *out, int from_tty, 8902 struct cmd_list_element *cmd, const char *value) 8903 { 8904 switch (execution_direction) { 8905 case EXEC_FORWARD: 8906 fprintf_filtered (out, _("Forward.\n")); 8907 break; 8908 case EXEC_REVERSE: 8909 fprintf_filtered (out, _("Reverse.\n")); 8910 break; 8911 default: 8912 internal_error (__FILE__, __LINE__, 8913 _("bogus execution_direction value: %d"), 8914 (int) execution_direction); 8915 } 8916 } 8917 8918 static void 8919 show_schedule_multiple (struct ui_file *file, int from_tty, 8920 struct cmd_list_element *c, const char *value) 8921 { 8922 fprintf_filtered (file, _("Resuming the execution of threads " 8923 "of all processes is %s.\n"), value); 8924 } 8925 8926 /* Implementation of `siginfo' variable. */ 8927 8928 static const struct internalvar_funcs siginfo_funcs = 8929 { 8930 siginfo_make_value, 8931 NULL, 8932 NULL 8933 }; 8934 8935 /* Callback for infrun's target events source. This is marked when a 8936 thread has a pending status to process. */ 8937 8938 static void 8939 infrun_async_inferior_event_handler (gdb_client_data data) 8940 { 8941 inferior_event_handler (INF_REG_EVENT, NULL); 8942 } 8943 8944 void 8945 _initialize_infrun (void) 8946 { 8947 struct cmd_list_element *c; 8948 8949 /* Register extra event sources in the event loop. */ 8950 infrun_async_inferior_event_token 8951 = create_async_event_handler (infrun_async_inferior_event_handler, NULL); 8952 8953 add_info ("signals", info_signals_command, _("\ 8954 What debugger does when program gets various signals.\n\ 8955 Specify a signal as argument to print info on that signal only.")); 8956 add_info_alias ("handle", "signals", 0); 8957 8958 c = add_com ("handle", class_run, handle_command, _("\ 8959 Specify how to handle signals.\n\ 8960 Usage: handle SIGNAL [ACTIONS]\n\ 8961 Args are signals and actions to apply to those signals.\n\ 8962 If no actions are specified, the current settings for the specified signals\n\ 8963 will be displayed instead.\n\ 8964 \n\ 8965 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ 8966 from 1-15 are allowed for compatibility with old versions of GDB.\n\ 8967 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ 8968 The special arg \"all\" is recognized to mean all signals except those\n\ 8969 used by the debugger, typically SIGTRAP and SIGINT.\n\ 8970 \n\ 8971 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ 8972 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ 8973 Stop means reenter debugger if this signal happens (implies print).\n\ 8974 Print means print a message if this signal happens.\n\ 8975 Pass means let program see this signal; otherwise program doesn't know.\n\ 8976 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ 8977 Pass and Stop may be combined.\n\ 8978 \n\ 8979 Multiple signals may be specified. Signal numbers and signal names\n\ 8980 may be interspersed with actions, with the actions being performed for\n\ 8981 all signals cumulatively specified.")); 8982 set_cmd_completer (c, handle_completer); 8983 8984 if (!dbx_commands) 8985 stop_command = add_cmd ("stop", class_obscure, 8986 not_just_help_class_command, _("\ 8987 There is no `stop' command, but you can set a hook on `stop'.\n\ 8988 This allows you to set a list of commands to be run each time execution\n\ 8989 of the program stops."), &cmdlist); 8990 8991 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ 8992 Set inferior debugging."), _("\ 8993 Show inferior debugging."), _("\ 8994 When non-zero, inferior specific debugging is enabled."), 8995 NULL, 8996 show_debug_infrun, 8997 &setdebuglist, &showdebuglist); 8998 8999 add_setshow_boolean_cmd ("displaced", class_maintenance, 9000 &debug_displaced, _("\ 9001 Set displaced stepping debugging."), _("\ 9002 Show displaced stepping debugging."), _("\ 9003 When non-zero, displaced stepping specific debugging is enabled."), 9004 NULL, 9005 show_debug_displaced, 9006 &setdebuglist, &showdebuglist); 9007 9008 add_setshow_boolean_cmd ("non-stop", no_class, 9009 &non_stop_1, _("\ 9010 Set whether gdb controls the inferior in non-stop mode."), _("\ 9011 Show whether gdb controls the inferior in non-stop mode."), _("\ 9012 When debugging a multi-threaded program and this setting is\n\ 9013 off (the default, also called all-stop mode), when one thread stops\n\ 9014 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\ 9015 all other threads in the program while you interact with the thread of\n\ 9016 interest. When you continue or step a thread, you can allow the other\n\ 9017 threads to run, or have them remain stopped, but while you inspect any\n\ 9018 thread's state, all threads stop.\n\ 9019 \n\ 9020 In non-stop mode, when one thread stops, other threads can continue\n\ 9021 to run freely. You'll be able to step each thread independently,\n\ 9022 leave it stopped or free to run as needed."), 9023 set_non_stop, 9024 show_non_stop, 9025 &setlist, 9026 &showlist); 9027 9028 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++) 9029 { 9030 signal_stop[i] = 1; 9031 signal_print[i] = 1; 9032 signal_program[i] = 1; 9033 signal_catch[i] = 0; 9034 } 9035 9036 /* Signals caused by debugger's own actions should not be given to 9037 the program afterwards. 9038 9039 Do not deliver GDB_SIGNAL_TRAP by default, except when the user 9040 explicitly specifies that it should be delivered to the target 9041 program. Typically, that would occur when a user is debugging a 9042 target monitor on a simulator: the target monitor sets a 9043 breakpoint; the simulator encounters this breakpoint and halts 9044 the simulation handing control to GDB; GDB, noting that the stop 9045 address doesn't map to any known breakpoint, returns control back 9046 to the simulator; the simulator then delivers the hardware 9047 equivalent of a GDB_SIGNAL_TRAP to the program being 9048 debugged. */ 9049 signal_program[GDB_SIGNAL_TRAP] = 0; 9050 signal_program[GDB_SIGNAL_INT] = 0; 9051 9052 /* Signals that are not errors should not normally enter the debugger. */ 9053 signal_stop[GDB_SIGNAL_ALRM] = 0; 9054 signal_print[GDB_SIGNAL_ALRM] = 0; 9055 signal_stop[GDB_SIGNAL_VTALRM] = 0; 9056 signal_print[GDB_SIGNAL_VTALRM] = 0; 9057 signal_stop[GDB_SIGNAL_PROF] = 0; 9058 signal_print[GDB_SIGNAL_PROF] = 0; 9059 signal_stop[GDB_SIGNAL_CHLD] = 0; 9060 signal_print[GDB_SIGNAL_CHLD] = 0; 9061 signal_stop[GDB_SIGNAL_IO] = 0; 9062 signal_print[GDB_SIGNAL_IO] = 0; 9063 signal_stop[GDB_SIGNAL_POLL] = 0; 9064 signal_print[GDB_SIGNAL_POLL] = 0; 9065 signal_stop[GDB_SIGNAL_URG] = 0; 9066 signal_print[GDB_SIGNAL_URG] = 0; 9067 signal_stop[GDB_SIGNAL_WINCH] = 0; 9068 signal_print[GDB_SIGNAL_WINCH] = 0; 9069 signal_stop[GDB_SIGNAL_PRIO] = 0; 9070 signal_print[GDB_SIGNAL_PRIO] = 0; 9071 9072 /* These signals are used internally by user-level thread 9073 implementations. (See signal(5) on Solaris.) Like the above 9074 signals, a healthy program receives and handles them as part of 9075 its normal operation. */ 9076 signal_stop[GDB_SIGNAL_LWP] = 0; 9077 signal_print[GDB_SIGNAL_LWP] = 0; 9078 signal_stop[GDB_SIGNAL_WAITING] = 0; 9079 signal_print[GDB_SIGNAL_WAITING] = 0; 9080 signal_stop[GDB_SIGNAL_CANCEL] = 0; 9081 signal_print[GDB_SIGNAL_CANCEL] = 0; 9082 signal_stop[GDB_SIGNAL_LIBRT] = 0; 9083 signal_print[GDB_SIGNAL_LIBRT] = 0; 9084 9085 /* Update cached state. */ 9086 signal_cache_update (-1); 9087 9088 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, 9089 &stop_on_solib_events, _("\ 9090 Set stopping for shared library events."), _("\ 9091 Show stopping for shared library events."), _("\ 9092 If nonzero, gdb will give control to the user when the dynamic linker\n\ 9093 notifies gdb of shared library events. The most common event of interest\n\ 9094 to the user would be loading/unloading of a new library."), 9095 set_stop_on_solib_events, 9096 show_stop_on_solib_events, 9097 &setlist, &showlist); 9098 9099 add_setshow_enum_cmd ("follow-fork-mode", class_run, 9100 follow_fork_mode_kind_names, 9101 &follow_fork_mode_string, _("\ 9102 Set debugger response to a program call of fork or vfork."), _("\ 9103 Show debugger response to a program call of fork or vfork."), _("\ 9104 A fork or vfork creates a new process. follow-fork-mode can be:\n\ 9105 parent - the original process is debugged after a fork\n\ 9106 child - the new process is debugged after a fork\n\ 9107 The unfollowed process will continue to run.\n\ 9108 By default, the debugger will follow the parent process."), 9109 NULL, 9110 show_follow_fork_mode_string, 9111 &setlist, &showlist); 9112 9113 add_setshow_enum_cmd ("follow-exec-mode", class_run, 9114 follow_exec_mode_names, 9115 &follow_exec_mode_string, _("\ 9116 Set debugger response to a program call of exec."), _("\ 9117 Show debugger response to a program call of exec."), _("\ 9118 An exec call replaces the program image of a process.\n\ 9119 \n\ 9120 follow-exec-mode can be:\n\ 9121 \n\ 9122 new - the debugger creates a new inferior and rebinds the process\n\ 9123 to this new inferior. The program the process was running before\n\ 9124 the exec call can be restarted afterwards by restarting the original\n\ 9125 inferior.\n\ 9126 \n\ 9127 same - the debugger keeps the process bound to the same inferior.\n\ 9128 The new executable image replaces the previous executable loaded in\n\ 9129 the inferior. Restarting the inferior after the exec call restarts\n\ 9130 the executable the process was running after the exec call.\n\ 9131 \n\ 9132 By default, the debugger will use the same inferior."), 9133 NULL, 9134 show_follow_exec_mode_string, 9135 &setlist, &showlist); 9136 9137 add_setshow_enum_cmd ("scheduler-locking", class_run, 9138 scheduler_enums, &scheduler_mode, _("\ 9139 Set mode for locking scheduler during execution."), _("\ 9140 Show mode for locking scheduler during execution."), _("\ 9141 off == no locking (threads may preempt at any time)\n\ 9142 on == full locking (no thread except the current thread may run)\n\ 9143 This applies to both normal execution and replay mode.\n\ 9144 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\ 9145 In this mode, other threads may run during other commands.\n\ 9146 This applies to both normal execution and replay mode.\n\ 9147 replay == scheduler locked in replay mode and unlocked during normal execution."), 9148 set_schedlock_func, /* traps on target vector */ 9149 show_scheduler_mode, 9150 &setlist, &showlist); 9151 9152 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\ 9153 Set mode for resuming threads of all processes."), _("\ 9154 Show mode for resuming threads of all processes."), _("\ 9155 When on, execution commands (such as 'continue' or 'next') resume all\n\ 9156 threads of all processes. When off (which is the default), execution\n\ 9157 commands only resume the threads of the current process. The set of\n\ 9158 threads that are resumed is further refined by the scheduler-locking\n\ 9159 mode (see help set scheduler-locking)."), 9160 NULL, 9161 show_schedule_multiple, 9162 &setlist, &showlist); 9163 9164 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ 9165 Set mode of the step operation."), _("\ 9166 Show mode of the step operation."), _("\ 9167 When set, doing a step over a function without debug line information\n\ 9168 will stop at the first instruction of that function. Otherwise, the\n\ 9169 function is skipped and the step command stops at a different source line."), 9170 NULL, 9171 show_step_stop_if_no_debug, 9172 &setlist, &showlist); 9173 9174 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run, 9175 &can_use_displaced_stepping, _("\ 9176 Set debugger's willingness to use displaced stepping."), _("\ 9177 Show debugger's willingness to use displaced stepping."), _("\ 9178 If on, gdb will use displaced stepping to step over breakpoints if it is\n\ 9179 supported by the target architecture. If off, gdb will not use displaced\n\ 9180 stepping to step over breakpoints, even if such is supported by the target\n\ 9181 architecture. If auto (which is the default), gdb will use displaced stepping\n\ 9182 if the target architecture supports it and non-stop mode is active, but will not\n\ 9183 use it in all-stop mode (see help set non-stop)."), 9184 NULL, 9185 show_can_use_displaced_stepping, 9186 &setlist, &showlist); 9187 9188 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names, 9189 &exec_direction, _("Set direction of execution.\n\ 9190 Options are 'forward' or 'reverse'."), 9191 _("Show direction of execution (forward/reverse)."), 9192 _("Tells gdb whether to execute forward or backward."), 9193 set_exec_direction_func, show_exec_direction_func, 9194 &setlist, &showlist); 9195 9196 /* Set/show detach-on-fork: user-settable mode. */ 9197 9198 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\ 9199 Set whether gdb will detach the child of a fork."), _("\ 9200 Show whether gdb will detach the child of a fork."), _("\ 9201 Tells gdb whether to detach the child of a fork."), 9202 NULL, NULL, &setlist, &showlist); 9203 9204 /* Set/show disable address space randomization mode. */ 9205 9206 add_setshow_boolean_cmd ("disable-randomization", class_support, 9207 &disable_randomization, _("\ 9208 Set disabling of debuggee's virtual address space randomization."), _("\ 9209 Show disabling of debuggee's virtual address space randomization."), _("\ 9210 When this mode is on (which is the default), randomization of the virtual\n\ 9211 address space is disabled. Standalone programs run with the randomization\n\ 9212 enabled by default on some platforms."), 9213 &set_disable_randomization, 9214 &show_disable_randomization, 9215 &setlist, &showlist); 9216 9217 /* ptid initializations */ 9218 inferior_ptid = null_ptid; 9219 target_last_wait_ptid = minus_one_ptid; 9220 9221 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed); 9222 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested); 9223 gdb::observers::thread_exit.attach (infrun_thread_thread_exit); 9224 gdb::observers::inferior_exit.attach (infrun_inferior_exit); 9225 9226 /* Explicitly create without lookup, since that tries to create a 9227 value with a void typed value, and when we get here, gdbarch 9228 isn't initialized yet. At this point, we're quite sure there 9229 isn't another convenience variable of the same name. */ 9230 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL); 9231 9232 add_setshow_boolean_cmd ("observer", no_class, 9233 &observer_mode_1, _("\ 9234 Set whether gdb controls the inferior in observer mode."), _("\ 9235 Show whether gdb controls the inferior in observer mode."), _("\ 9236 In observer mode, GDB can get data from the inferior, but not\n\ 9237 affect its execution. Registers and memory may not be changed,\n\ 9238 breakpoints may not be set, and the program cannot be interrupted\n\ 9239 or signalled."), 9240 set_observer_mode, 9241 show_observer_mode, 9242 &setlist, 9243 &showlist); 9244 } 9245