1 /* Perform an inferior function call, for GDB, the GNU debugger. 2 3 Copyright (C) 1986-2020 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "infcall.h" 22 #include "breakpoint.h" 23 #include "tracepoint.h" 24 #include "target.h" 25 #include "regcache.h" 26 #include "inferior.h" 27 #include "infrun.h" 28 #include "block.h" 29 #include "gdbcore.h" 30 #include "language.h" 31 #include "objfiles.h" 32 #include "gdbcmd.h" 33 #include "command.h" 34 #include "dummy-frame.h" 35 #include "ada-lang.h" 36 #include "f-lang.h" 37 #include "gdbthread.h" 38 #include "event-top.h" 39 #include "observable.h" 40 #include "top.h" 41 #include "interps.h" 42 #include "thread-fsm.h" 43 #include <algorithm> 44 #include "gdbsupport/scope-exit.h" 45 #include <list> 46 47 /* If we can't find a function's name from its address, 48 we print this instead. */ 49 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s" 50 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \ 51 + 2 * sizeof (CORE_ADDR)) 52 53 /* NOTE: cagney/2003-04-16: What's the future of this code? 54 55 GDB needs an asynchronous expression evaluator, that means an 56 asynchronous inferior function call implementation, and that in 57 turn means restructuring the code so that it is event driven. */ 58 59 static bool may_call_functions_p = true; 60 static void 61 show_may_call_functions_p (struct ui_file *file, int from_tty, 62 struct cmd_list_element *c, 63 const char *value) 64 { 65 fprintf_filtered (file, 66 _("Permission to call functions in the program is %s.\n"), 67 value); 68 } 69 70 /* How you should pass arguments to a function depends on whether it 71 was defined in K&R style or prototype style. If you define a 72 function using the K&R syntax that takes a `float' argument, then 73 callers must pass that argument as a `double'. If you define the 74 function using the prototype syntax, then you must pass the 75 argument as a `float', with no promotion. 76 77 Unfortunately, on certain older platforms, the debug info doesn't 78 indicate reliably how each function was defined. A function type's 79 TYPE_PROTOTYPED flag may be clear, even if the function was defined 80 in prototype style. When calling a function whose TYPE_PROTOTYPED 81 flag is clear, GDB consults this flag to decide what to do. 82 83 For modern targets, it is proper to assume that, if the prototype 84 flag is clear, that can be trusted: `float' arguments should be 85 promoted to `double'. For some older targets, if the prototype 86 flag is clear, that doesn't tell us anything. The default is to 87 trust the debug information; the user can override this behavior 88 with "set coerce-float-to-double 0". */ 89 90 static bool coerce_float_to_double_p = true; 91 static void 92 show_coerce_float_to_double_p (struct ui_file *file, int from_tty, 93 struct cmd_list_element *c, const char *value) 94 { 95 fprintf_filtered (file, 96 _("Coercion of floats to doubles " 97 "when calling functions is %s.\n"), 98 value); 99 } 100 101 /* This boolean tells what gdb should do if a signal is received while 102 in a function called from gdb (call dummy). If set, gdb unwinds 103 the stack and restore the context to what as it was before the 104 call. 105 106 The default is to stop in the frame where the signal was received. */ 107 108 static bool unwind_on_signal_p = false; 109 static void 110 show_unwind_on_signal_p (struct ui_file *file, int from_tty, 111 struct cmd_list_element *c, const char *value) 112 { 113 fprintf_filtered (file, 114 _("Unwinding of stack if a signal is " 115 "received while in a call dummy is %s.\n"), 116 value); 117 } 118 119 /* This boolean tells what gdb should do if a std::terminate call is 120 made while in a function called from gdb (call dummy). 121 As the confines of a single dummy stack prohibit out-of-frame 122 handlers from handling a raised exception, and as out-of-frame 123 handlers are common in C++, this can lead to no handler being found 124 by the unwinder, and a std::terminate call. This is a false positive. 125 If set, gdb unwinds the stack and restores the context to what it 126 was before the call. 127 128 The default is to unwind the frame if a std::terminate call is 129 made. */ 130 131 static bool unwind_on_terminating_exception_p = true; 132 133 static void 134 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty, 135 struct cmd_list_element *c, 136 const char *value) 137 138 { 139 fprintf_filtered (file, 140 _("Unwind stack if a C++ exception is " 141 "unhandled while in a call dummy is %s.\n"), 142 value); 143 } 144 145 /* Perform the standard coercions that are specified 146 for arguments to be passed to C, Ada or Fortran functions. 147 148 If PARAM_TYPE is non-NULL, it is the expected parameter type. 149 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */ 150 151 static struct value * 152 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg, 153 struct type *param_type, int is_prototyped) 154 { 155 const struct builtin_type *builtin = builtin_type (gdbarch); 156 struct type *arg_type = check_typedef (value_type (arg)); 157 struct type *type 158 = param_type ? check_typedef (param_type) : arg_type; 159 160 /* Perform any Ada- and Fortran-specific coercion first. */ 161 if (current_language->la_language == language_ada) 162 arg = ada_convert_actual (arg, type); 163 else if (current_language->la_language == language_fortran) 164 type = fortran_preserve_arg_pointer (arg, type); 165 166 /* Force the value to the target if we will need its address. At 167 this point, we could allocate arguments on the stack instead of 168 calling malloc if we knew that their addresses would not be 169 saved by the called function. */ 170 arg = value_coerce_to_target (arg); 171 172 switch (type->code ()) 173 { 174 case TYPE_CODE_REF: 175 case TYPE_CODE_RVALUE_REF: 176 { 177 struct value *new_value; 178 179 if (TYPE_IS_REFERENCE (arg_type)) 180 return value_cast_pointers (type, arg, 0); 181 182 /* Cast the value to the reference's target type, and then 183 convert it back to a reference. This will issue an error 184 if the value was not previously in memory - in some cases 185 we should clearly be allowing this, but how? */ 186 new_value = value_cast (TYPE_TARGET_TYPE (type), arg); 187 new_value = value_ref (new_value, type->code ()); 188 return new_value; 189 } 190 case TYPE_CODE_INT: 191 case TYPE_CODE_CHAR: 192 case TYPE_CODE_BOOL: 193 case TYPE_CODE_ENUM: 194 /* If we don't have a prototype, coerce to integer type if necessary. */ 195 if (!is_prototyped) 196 { 197 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int)) 198 type = builtin->builtin_int; 199 } 200 /* Currently all target ABIs require at least the width of an integer 201 type for an argument. We may have to conditionalize the following 202 type coercion for future targets. */ 203 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int)) 204 type = builtin->builtin_int; 205 break; 206 case TYPE_CODE_FLT: 207 if (!is_prototyped && coerce_float_to_double_p) 208 { 209 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double)) 210 type = builtin->builtin_double; 211 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double)) 212 type = builtin->builtin_long_double; 213 } 214 break; 215 case TYPE_CODE_FUNC: 216 type = lookup_pointer_type (type); 217 break; 218 case TYPE_CODE_ARRAY: 219 /* Arrays are coerced to pointers to their first element, unless 220 they are vectors, in which case we want to leave them alone, 221 because they are passed by value. */ 222 if (current_language->c_style_arrays) 223 if (!TYPE_VECTOR (type)) 224 type = lookup_pointer_type (TYPE_TARGET_TYPE (type)); 225 break; 226 case TYPE_CODE_UNDEF: 227 case TYPE_CODE_PTR: 228 case TYPE_CODE_STRUCT: 229 case TYPE_CODE_UNION: 230 case TYPE_CODE_VOID: 231 case TYPE_CODE_SET: 232 case TYPE_CODE_RANGE: 233 case TYPE_CODE_STRING: 234 case TYPE_CODE_ERROR: 235 case TYPE_CODE_MEMBERPTR: 236 case TYPE_CODE_METHODPTR: 237 case TYPE_CODE_METHOD: 238 case TYPE_CODE_COMPLEX: 239 default: 240 break; 241 } 242 243 return value_cast (type, arg); 244 } 245 246 /* See infcall.h. */ 247 248 CORE_ADDR 249 find_function_addr (struct value *function, 250 struct type **retval_type, 251 struct type **function_type) 252 { 253 struct type *ftype = check_typedef (value_type (function)); 254 struct gdbarch *gdbarch = get_type_arch (ftype); 255 struct type *value_type = NULL; 256 /* Initialize it just to avoid a GCC false warning. */ 257 CORE_ADDR funaddr = 0; 258 259 /* If it's a member function, just look at the function 260 part of it. */ 261 262 /* Determine address to call. */ 263 if (ftype->code () == TYPE_CODE_FUNC 264 || ftype->code () == TYPE_CODE_METHOD) 265 funaddr = value_address (function); 266 else if (ftype->code () == TYPE_CODE_PTR) 267 { 268 funaddr = value_as_address (function); 269 ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); 270 if (ftype->code () == TYPE_CODE_FUNC 271 || ftype->code () == TYPE_CODE_METHOD) 272 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr, 273 current_top_target ()); 274 } 275 if (ftype->code () == TYPE_CODE_FUNC 276 || ftype->code () == TYPE_CODE_METHOD) 277 { 278 if (TYPE_GNU_IFUNC (ftype)) 279 { 280 CORE_ADDR resolver_addr = funaddr; 281 282 /* Resolve the ifunc. Note this may call the resolver 283 function in the inferior. */ 284 funaddr = gnu_ifunc_resolve_addr (gdbarch, resolver_addr); 285 286 /* Skip querying the function symbol if no RETVAL_TYPE or 287 FUNCTION_TYPE have been asked for. */ 288 if (retval_type != NULL || function_type != NULL) 289 { 290 type *target_ftype = find_function_type (funaddr); 291 /* If we don't have debug info for the target function, 292 see if we can instead extract the target function's 293 type from the type that the resolver returns. */ 294 if (target_ftype == NULL) 295 target_ftype = find_gnu_ifunc_target_type (resolver_addr); 296 if (target_ftype != NULL) 297 { 298 value_type = TYPE_TARGET_TYPE (check_typedef (target_ftype)); 299 ftype = target_ftype; 300 } 301 } 302 } 303 else 304 value_type = TYPE_TARGET_TYPE (ftype); 305 } 306 else if (ftype->code () == TYPE_CODE_INT) 307 { 308 /* Handle the case of functions lacking debugging info. 309 Their values are characters since their addresses are char. */ 310 if (TYPE_LENGTH (ftype) == 1) 311 funaddr = value_as_address (value_addr (function)); 312 else 313 { 314 /* Handle function descriptors lacking debug info. */ 315 int found_descriptor = 0; 316 317 funaddr = 0; /* pacify "gcc -Werror" */ 318 if (VALUE_LVAL (function) == lval_memory) 319 { 320 CORE_ADDR nfunaddr; 321 322 funaddr = value_as_address (value_addr (function)); 323 nfunaddr = funaddr; 324 funaddr 325 = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr, 326 current_top_target ()); 327 if (funaddr != nfunaddr) 328 found_descriptor = 1; 329 } 330 if (!found_descriptor) 331 /* Handle integer used as address of a function. */ 332 funaddr = (CORE_ADDR) value_as_long (function); 333 } 334 } 335 else 336 error (_("Invalid data type for function to be called.")); 337 338 if (retval_type != NULL) 339 *retval_type = value_type; 340 if (function_type != NULL) 341 *function_type = ftype; 342 return funaddr + gdbarch_deprecated_function_start_offset (gdbarch); 343 } 344 345 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called 346 function returns to. */ 347 348 static CORE_ADDR 349 push_dummy_code (struct gdbarch *gdbarch, 350 CORE_ADDR sp, CORE_ADDR funaddr, 351 gdb::array_view<value *> args, 352 struct type *value_type, 353 CORE_ADDR *real_pc, CORE_ADDR *bp_addr, 354 struct regcache *regcache) 355 { 356 gdb_assert (gdbarch_push_dummy_code_p (gdbarch)); 357 358 return gdbarch_push_dummy_code (gdbarch, sp, funaddr, 359 args.data (), args.size (), 360 value_type, real_pc, bp_addr, 361 regcache); 362 } 363 364 /* See infcall.h. */ 365 366 void 367 error_call_unknown_return_type (const char *func_name) 368 { 369 if (func_name != NULL) 370 error (_("'%s' has unknown return type; " 371 "cast the call to its declared return type"), 372 func_name); 373 else 374 error (_("function has unknown return type; " 375 "cast the call to its declared return type")); 376 } 377 378 /* Fetch the name of the function at FUNADDR. 379 This is used in printing an error message for call_function_by_hand. 380 BUF is used to print FUNADDR in hex if the function name cannot be 381 determined. It must be large enough to hold formatted result of 382 RAW_FUNCTION_ADDRESS_FORMAT. */ 383 384 static const char * 385 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size) 386 { 387 { 388 struct symbol *symbol = find_pc_function (funaddr); 389 390 if (symbol) 391 return symbol->print_name (); 392 } 393 394 { 395 /* Try the minimal symbols. */ 396 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr); 397 398 if (msymbol.minsym) 399 return msymbol.minsym->print_name (); 400 } 401 402 { 403 std::string tmp = string_printf (_(RAW_FUNCTION_ADDRESS_FORMAT), 404 hex_string (funaddr)); 405 406 gdb_assert (tmp.length () + 1 <= buf_size); 407 return strcpy (buf, tmp.c_str ()); 408 } 409 } 410 411 /* All the meta data necessary to extract the call's return value. */ 412 413 struct call_return_meta_info 414 { 415 /* The caller frame's architecture. */ 416 struct gdbarch *gdbarch; 417 418 /* The called function. */ 419 struct value *function; 420 421 /* The return value's type. */ 422 struct type *value_type; 423 424 /* Are we returning a value using a structure return or a normal 425 value return? */ 426 int struct_return_p; 427 428 /* If using a structure return, this is the structure's address. */ 429 CORE_ADDR struct_addr; 430 }; 431 432 /* Extract the called function's return value. */ 433 434 static struct value * 435 get_call_return_value (struct call_return_meta_info *ri) 436 { 437 struct value *retval = NULL; 438 thread_info *thr = inferior_thread (); 439 bool stack_temporaries = thread_stack_temporaries_enabled_p (thr); 440 441 if (ri->value_type->code () == TYPE_CODE_VOID) 442 retval = allocate_value (ri->value_type); 443 else if (ri->struct_return_p) 444 { 445 if (stack_temporaries) 446 { 447 retval = value_from_contents_and_address (ri->value_type, NULL, 448 ri->struct_addr); 449 push_thread_stack_temporary (thr, retval); 450 } 451 else 452 { 453 retval = allocate_value (ri->value_type); 454 read_value_memory (retval, 0, 1, ri->struct_addr, 455 value_contents_raw (retval), 456 TYPE_LENGTH (ri->value_type)); 457 } 458 } 459 else 460 { 461 retval = allocate_value (ri->value_type); 462 gdbarch_return_value (ri->gdbarch, ri->function, ri->value_type, 463 get_current_regcache (), 464 value_contents_raw (retval), NULL); 465 if (stack_temporaries && class_or_union_p (ri->value_type)) 466 { 467 /* Values of class type returned in registers are copied onto 468 the stack and their lval_type set to lval_memory. This is 469 required because further evaluation of the expression 470 could potentially invoke methods on the return value 471 requiring GDB to evaluate the "this" pointer. To evaluate 472 the this pointer, GDB needs the memory address of the 473 value. */ 474 value_force_lval (retval, ri->struct_addr); 475 push_thread_stack_temporary (thr, retval); 476 } 477 } 478 479 gdb_assert (retval != NULL); 480 return retval; 481 } 482 483 /* Data for the FSM that manages an infcall. It's main job is to 484 record the called function's return value. */ 485 486 struct call_thread_fsm : public thread_fsm 487 { 488 /* All the info necessary to be able to extract the return 489 value. */ 490 struct call_return_meta_info return_meta_info; 491 492 /* The called function's return value. This is extracted from the 493 target before the dummy frame is popped. */ 494 struct value *return_value = nullptr; 495 496 /* The top level that started the infcall (and is synchronously 497 waiting for it to end). */ 498 struct ui *waiting_ui; 499 500 call_thread_fsm (struct ui *waiting_ui, struct interp *cmd_interp, 501 struct gdbarch *gdbarch, struct value *function, 502 struct type *value_type, 503 int struct_return_p, CORE_ADDR struct_addr); 504 505 bool should_stop (struct thread_info *thread) override; 506 507 bool should_notify_stop () override; 508 }; 509 510 /* Allocate a new call_thread_fsm object. */ 511 512 call_thread_fsm::call_thread_fsm (struct ui *waiting_ui, 513 struct interp *cmd_interp, 514 struct gdbarch *gdbarch, 515 struct value *function, 516 struct type *value_type, 517 int struct_return_p, CORE_ADDR struct_addr) 518 : thread_fsm (cmd_interp), 519 waiting_ui (waiting_ui) 520 { 521 return_meta_info.gdbarch = gdbarch; 522 return_meta_info.function = function; 523 return_meta_info.value_type = value_type; 524 return_meta_info.struct_return_p = struct_return_p; 525 return_meta_info.struct_addr = struct_addr; 526 } 527 528 /* Implementation of should_stop method for infcalls. */ 529 530 bool 531 call_thread_fsm::should_stop (struct thread_info *thread) 532 { 533 if (stop_stack_dummy == STOP_STACK_DUMMY) 534 { 535 /* Done. */ 536 set_finished (); 537 538 /* Stash the return value before the dummy frame is popped and 539 registers are restored to what they were before the 540 call.. */ 541 return_value = get_call_return_value (&return_meta_info); 542 543 /* Break out of wait_sync_command_done. */ 544 scoped_restore save_ui = make_scoped_restore (¤t_ui, waiting_ui); 545 target_terminal::ours (); 546 waiting_ui->prompt_state = PROMPT_NEEDED; 547 } 548 549 return true; 550 } 551 552 /* Implementation of should_notify_stop method for infcalls. */ 553 554 bool 555 call_thread_fsm::should_notify_stop () 556 { 557 if (finished_p ()) 558 { 559 /* Infcall succeeded. Be silent and proceed with evaluating the 560 expression. */ 561 return false; 562 } 563 564 /* Something wrong happened. E.g., an unexpected breakpoint 565 triggered, or a signal was intercepted. Notify the stop. */ 566 return true; 567 } 568 569 /* Subroutine of call_function_by_hand to simplify it. 570 Start up the inferior and wait for it to stop. 571 Return the exception if there's an error, or an exception with 572 reason >= 0 if there's no error. 573 574 This is done inside a TRY_CATCH so the caller needn't worry about 575 thrown errors. The caller should rethrow if there's an error. */ 576 577 static struct gdb_exception 578 run_inferior_call (struct call_thread_fsm *sm, 579 struct thread_info *call_thread, CORE_ADDR real_pc) 580 { 581 struct gdb_exception caught_error; 582 int saved_in_infcall = call_thread->control.in_infcall; 583 ptid_t call_thread_ptid = call_thread->ptid; 584 enum prompt_state saved_prompt_state = current_ui->prompt_state; 585 int was_running = call_thread->state == THREAD_RUNNING; 586 int saved_ui_async = current_ui->async; 587 588 /* Infcalls run synchronously, in the foreground. */ 589 current_ui->prompt_state = PROMPT_BLOCKED; 590 /* So that we don't print the prompt prematurely in 591 fetch_inferior_event. */ 592 current_ui->async = 0; 593 594 delete_file_handler (current_ui->input_fd); 595 596 call_thread->control.in_infcall = 1; 597 598 clear_proceed_status (0); 599 600 /* Associate the FSM with the thread after clear_proceed_status 601 (otherwise it'd clear this FSM), and before anything throws, so 602 we don't leak it (and any resources it manages). */ 603 call_thread->thread_fsm = sm; 604 605 disable_watchpoints_before_interactive_call_start (); 606 607 /* We want to print return value, please... */ 608 call_thread->control.proceed_to_finish = 1; 609 610 try 611 { 612 proceed (real_pc, GDB_SIGNAL_0); 613 614 /* Inferior function calls are always synchronous, even if the 615 target supports asynchronous execution. */ 616 wait_sync_command_done (); 617 } 618 catch (gdb_exception &e) 619 { 620 caught_error = std::move (e); 621 } 622 623 /* If GDB has the prompt blocked before, then ensure that it remains 624 so. normal_stop calls async_enable_stdin, so reset the prompt 625 state again here. In other cases, stdin will be re-enabled by 626 inferior_event_handler, when an exception is thrown. */ 627 current_ui->prompt_state = saved_prompt_state; 628 if (current_ui->prompt_state == PROMPT_BLOCKED) 629 delete_file_handler (current_ui->input_fd); 630 else 631 ui_register_input_event_handler (current_ui); 632 current_ui->async = saved_ui_async; 633 634 /* If the infcall does NOT succeed, normal_stop will have already 635 finished the thread states. However, on success, normal_stop 636 defers here, so that we can set back the thread states to what 637 they were before the call. Note that we must also finish the 638 state of new threads that might have spawned while the call was 639 running. The main cases to handle are: 640 641 - "(gdb) print foo ()", or any other command that evaluates an 642 expression at the prompt. (The thread was marked stopped before.) 643 644 - "(gdb) break foo if return_false()" or similar cases where we 645 do an infcall while handling an event (while the thread is still 646 marked running). In this example, whether the condition 647 evaluates true and thus we'll present a user-visible stop is 648 decided elsewhere. */ 649 if (!was_running 650 && call_thread_ptid == inferior_ptid 651 && stop_stack_dummy == STOP_STACK_DUMMY) 652 finish_thread_state (call_thread->inf->process_target (), 653 user_visible_resume_ptid (0)); 654 655 enable_watchpoints_after_interactive_call_stop (); 656 657 /* Call breakpoint_auto_delete on the current contents of the bpstat 658 of inferior call thread. 659 If all error()s out of proceed ended up calling normal_stop 660 (and perhaps they should; it already does in the special case 661 of error out of resume()), then we wouldn't need this. */ 662 if (caught_error.reason < 0) 663 { 664 if (call_thread->state != THREAD_EXITED) 665 breakpoint_auto_delete (call_thread->control.stop_bpstat); 666 } 667 668 call_thread->control.in_infcall = saved_in_infcall; 669 670 return caught_error; 671 } 672 673 /* Reserve space on the stack for a value of the given type. 674 Return the address of the allocated space. 675 Make certain that the value is correctly aligned. 676 The SP argument is modified. */ 677 678 static CORE_ADDR 679 reserve_stack_space (const type *values_type, CORE_ADDR &sp) 680 { 681 struct frame_info *frame = get_current_frame (); 682 struct gdbarch *gdbarch = get_frame_arch (frame); 683 CORE_ADDR addr = 0; 684 685 if (gdbarch_inner_than (gdbarch, 1, 2)) 686 { 687 /* Stack grows downward. Align STRUCT_ADDR and SP after 688 making space. */ 689 sp -= TYPE_LENGTH (values_type); 690 if (gdbarch_frame_align_p (gdbarch)) 691 sp = gdbarch_frame_align (gdbarch, sp); 692 addr = sp; 693 } 694 else 695 { 696 /* Stack grows upward. Align the frame, allocate space, and 697 then again, re-align the frame??? */ 698 if (gdbarch_frame_align_p (gdbarch)) 699 sp = gdbarch_frame_align (gdbarch, sp); 700 addr = sp; 701 sp += TYPE_LENGTH (values_type); 702 if (gdbarch_frame_align_p (gdbarch)) 703 sp = gdbarch_frame_align (gdbarch, sp); 704 } 705 706 return addr; 707 } 708 709 /* The data structure which keeps a destructor function and 710 its implicit 'this' parameter. */ 711 712 struct destructor_info 713 { 714 destructor_info (struct value *function, struct value *self) 715 : function (function), self (self) { } 716 717 struct value *function; 718 struct value *self; 719 }; 720 721 722 /* Auxiliary function that takes a list of destructor functions 723 with their 'this' parameters, and invokes the functions. */ 724 725 static void 726 call_destructors (const std::list<destructor_info> &dtors_to_invoke, 727 struct type *default_return_type) 728 { 729 for (auto vals : dtors_to_invoke) 730 { 731 call_function_by_hand (vals.function, default_return_type, 732 gdb::make_array_view (&(vals.self), 1)); 733 } 734 } 735 736 /* See infcall.h. */ 737 738 struct value * 739 call_function_by_hand (struct value *function, 740 type *default_return_type, 741 gdb::array_view<value *> args) 742 { 743 return call_function_by_hand_dummy (function, default_return_type, 744 args, NULL, NULL); 745 } 746 747 /* All this stuff with a dummy frame may seem unnecessarily complicated 748 (why not just save registers in GDB?). The purpose of pushing a dummy 749 frame which looks just like a real frame is so that if you call a 750 function and then hit a breakpoint (get a signal, etc), "backtrace" 751 will look right. Whether the backtrace needs to actually show the 752 stack at the time the inferior function was called is debatable, but 753 it certainly needs to not display garbage. So if you are contemplating 754 making dummy frames be different from normal frames, consider that. */ 755 756 /* Perform a function call in the inferior. 757 ARGS is a vector of values of arguments. 758 FUNCTION is a value, the function to be called. 759 Returns a value representing what the function returned. 760 May fail to return, if a breakpoint or signal is hit 761 during the execution of the function. 762 763 ARGS is modified to contain coerced values. */ 764 765 struct value * 766 call_function_by_hand_dummy (struct value *function, 767 type *default_return_type, 768 gdb::array_view<value *> args, 769 dummy_frame_dtor_ftype *dummy_dtor, 770 void *dummy_dtor_data) 771 { 772 CORE_ADDR sp; 773 struct type *target_values_type; 774 function_call_return_method return_method = return_method_normal; 775 CORE_ADDR struct_addr = 0; 776 CORE_ADDR real_pc; 777 CORE_ADDR bp_addr; 778 struct frame_id dummy_id; 779 struct frame_info *frame; 780 struct gdbarch *gdbarch; 781 ptid_t call_thread_ptid; 782 struct gdb_exception e; 783 char name_buf[RAW_FUNCTION_ADDRESS_SIZE]; 784 785 if (!may_call_functions_p) 786 error (_("Cannot call functions in the program: " 787 "may-call-functions is off.")); 788 789 if (!target_has_execution) 790 noprocess (); 791 792 if (get_traceframe_number () >= 0) 793 error (_("May not call functions while looking at trace frames.")); 794 795 if (execution_direction == EXEC_REVERSE) 796 error (_("Cannot call functions in reverse mode.")); 797 798 /* We're going to run the target, and inspect the thread's state 799 afterwards. Hold a strong reference so that the pointer remains 800 valid even if the thread exits. */ 801 thread_info_ref call_thread 802 = thread_info_ref::new_reference (inferior_thread ()); 803 804 bool stack_temporaries = thread_stack_temporaries_enabled_p (call_thread.get ()); 805 806 frame = get_current_frame (); 807 gdbarch = get_frame_arch (frame); 808 809 if (!gdbarch_push_dummy_call_p (gdbarch)) 810 error (_("This target does not support function calls.")); 811 812 /* Find the function type and do a sanity check. */ 813 type *ftype; 814 type *values_type; 815 CORE_ADDR funaddr = find_function_addr (function, &values_type, &ftype); 816 817 if (values_type == NULL) 818 values_type = default_return_type; 819 if (values_type == NULL) 820 { 821 const char *name = get_function_name (funaddr, 822 name_buf, sizeof (name_buf)); 823 error (_("'%s' has unknown return type; " 824 "cast the call to its declared return type"), 825 name); 826 } 827 828 values_type = check_typedef (values_type); 829 830 if (args.size () < ftype->num_fields ()) 831 error (_("Too few arguments in function call.")); 832 833 /* A holder for the inferior status. 834 This is only needed while we're preparing the inferior function call. */ 835 infcall_control_state_up inf_status (save_infcall_control_state ()); 836 837 /* Save the caller's registers and other state associated with the 838 inferior itself so that they can be restored once the 839 callee returns. To allow nested calls the registers are (further 840 down) pushed onto a dummy frame stack. This unique pointer 841 is released once the regcache has been pushed). */ 842 infcall_suspend_state_up caller_state (save_infcall_suspend_state ()); 843 844 /* Ensure that the initial SP is correctly aligned. */ 845 { 846 CORE_ADDR old_sp = get_frame_sp (frame); 847 848 if (gdbarch_frame_align_p (gdbarch)) 849 { 850 sp = gdbarch_frame_align (gdbarch, old_sp); 851 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some 852 ABIs, a function can use memory beyond the inner most stack 853 address. AMD64 called that region the "red zone". Skip at 854 least the "red zone" size before allocating any space on 855 the stack. */ 856 if (gdbarch_inner_than (gdbarch, 1, 2)) 857 sp -= gdbarch_frame_red_zone_size (gdbarch); 858 else 859 sp += gdbarch_frame_red_zone_size (gdbarch); 860 /* Still aligned? */ 861 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp)); 862 /* NOTE: cagney/2002-09-18: 863 864 On a RISC architecture, a void parameterless generic dummy 865 frame (i.e., no parameters, no result) typically does not 866 need to push anything the stack and hence can leave SP and 867 FP. Similarly, a frameless (possibly leaf) function does 868 not push anything on the stack and, hence, that too can 869 leave FP and SP unchanged. As a consequence, a sequence of 870 void parameterless generic dummy frame calls to frameless 871 functions will create a sequence of effectively identical 872 frames (SP, FP and TOS and PC the same). This, not 873 surprisingly, results in what appears to be a stack in an 874 infinite loop --- when GDB tries to find a generic dummy 875 frame on the internal dummy frame stack, it will always 876 find the first one. 877 878 To avoid this problem, the code below always grows the 879 stack. That way, two dummy frames can never be identical. 880 It does burn a few bytes of stack but that is a small price 881 to pay :-). */ 882 if (sp == old_sp) 883 { 884 if (gdbarch_inner_than (gdbarch, 1, 2)) 885 /* Stack grows down. */ 886 sp = gdbarch_frame_align (gdbarch, old_sp - 1); 887 else 888 /* Stack grows up. */ 889 sp = gdbarch_frame_align (gdbarch, old_sp + 1); 890 } 891 /* SP may have underflown address zero here from OLD_SP. Memory access 892 functions will probably fail in such case but that is a target's 893 problem. */ 894 } 895 else 896 /* FIXME: cagney/2002-09-18: Hey, you loose! 897 898 Who knows how badly aligned the SP is! 899 900 If the generic dummy frame ends up empty (because nothing is 901 pushed) GDB won't be able to correctly perform back traces. 902 If a target is having trouble with backtraces, first thing to 903 do is add FRAME_ALIGN() to the architecture vector. If that 904 fails, try dummy_id(). 905 906 If the ABI specifies a "Red Zone" (see the doco) the code 907 below will quietly trash it. */ 908 sp = old_sp; 909 910 /* Skip over the stack temporaries that might have been generated during 911 the evaluation of an expression. */ 912 if (stack_temporaries) 913 { 914 struct value *lastval; 915 916 lastval = get_last_thread_stack_temporary (call_thread.get ()); 917 if (lastval != NULL) 918 { 919 CORE_ADDR lastval_addr = value_address (lastval); 920 921 if (gdbarch_inner_than (gdbarch, 1, 2)) 922 { 923 gdb_assert (sp >= lastval_addr); 924 sp = lastval_addr; 925 } 926 else 927 { 928 gdb_assert (sp <= lastval_addr); 929 sp = lastval_addr + TYPE_LENGTH (value_type (lastval)); 930 } 931 932 if (gdbarch_frame_align_p (gdbarch)) 933 sp = gdbarch_frame_align (gdbarch, sp); 934 } 935 } 936 } 937 938 /* Are we returning a value using a structure return? */ 939 940 if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type)) 941 { 942 return_method = return_method_hidden_param; 943 944 /* Tell the target specific argument pushing routine not to 945 expect a value. */ 946 target_values_type = builtin_type (gdbarch)->builtin_void; 947 } 948 else 949 { 950 if (using_struct_return (gdbarch, function, values_type)) 951 return_method = return_method_struct; 952 target_values_type = values_type; 953 } 954 955 gdb::observers::inferior_call_pre.notify (inferior_ptid, funaddr); 956 957 /* Determine the location of the breakpoint (and possibly other 958 stuff) that the called function will return to. The SPARC, for a 959 function returning a structure or union, needs to make space for 960 not just the breakpoint but also an extra word containing the 961 size (?) of the structure being passed. */ 962 963 switch (gdbarch_call_dummy_location (gdbarch)) 964 { 965 case ON_STACK: 966 { 967 const gdb_byte *bp_bytes; 968 CORE_ADDR bp_addr_as_address; 969 int bp_size; 970 971 /* Be careful BP_ADDR is in inferior PC encoding while 972 BP_ADDR_AS_ADDRESS is a plain memory address. */ 973 974 sp = push_dummy_code (gdbarch, sp, funaddr, args, 975 target_values_type, &real_pc, &bp_addr, 976 get_current_regcache ()); 977 978 /* Write a legitimate instruction at the point where the infcall 979 breakpoint is going to be inserted. While this instruction 980 is never going to be executed, a user investigating the 981 memory from GDB would see this instruction instead of random 982 uninitialized bytes. We chose the breakpoint instruction 983 as it may look as the most logical one to the user and also 984 valgrind 3.7.0 needs it for proper vgdb inferior calls. 985 986 If software breakpoints are unsupported for this target we 987 leave the user visible memory content uninitialized. */ 988 989 bp_addr_as_address = bp_addr; 990 bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address, 991 &bp_size); 992 if (bp_bytes != NULL) 993 write_memory (bp_addr_as_address, bp_bytes, bp_size); 994 } 995 break; 996 case AT_ENTRY_POINT: 997 { 998 CORE_ADDR dummy_addr; 999 1000 real_pc = funaddr; 1001 dummy_addr = entry_point_address (); 1002 1003 /* A call dummy always consists of just a single breakpoint, so 1004 its address is the same as the address of the dummy. 1005 1006 The actual breakpoint is inserted separatly so there is no need to 1007 write that out. */ 1008 bp_addr = dummy_addr; 1009 break; 1010 } 1011 default: 1012 internal_error (__FILE__, __LINE__, _("bad switch")); 1013 } 1014 1015 /* Coerce the arguments and handle pass-by-reference. 1016 We want to remember the destruction required for pass-by-ref values. 1017 For these, store the dtor function and the 'this' argument 1018 in DTORS_TO_INVOKE. */ 1019 std::list<destructor_info> dtors_to_invoke; 1020 1021 for (int i = args.size () - 1; i >= 0; i--) 1022 { 1023 int prototyped; 1024 struct type *param_type; 1025 1026 /* FIXME drow/2002-05-31: Should just always mark methods as 1027 prototyped. Can we respect TYPE_VARARGS? Probably not. */ 1028 if (ftype->code () == TYPE_CODE_METHOD) 1029 prototyped = 1; 1030 if (TYPE_TARGET_TYPE (ftype) == NULL && ftype->num_fields () == 0 1031 && default_return_type != NULL) 1032 { 1033 /* Calling a no-debug function with the return type 1034 explicitly cast. Assume the function is prototyped, 1035 with a prototype matching the types of the arguments. 1036 E.g., with: 1037 float mult (float v1, float v2) { return v1 * v2; } 1038 This: 1039 (gdb) p (float) mult (2.0f, 3.0f) 1040 Is a simpler alternative to: 1041 (gdb) p ((float (*) (float, float)) mult) (2.0f, 3.0f) 1042 */ 1043 prototyped = 1; 1044 } 1045 else if (i < ftype->num_fields ()) 1046 prototyped = TYPE_PROTOTYPED (ftype); 1047 else 1048 prototyped = 0; 1049 1050 if (i < ftype->num_fields ()) 1051 param_type = ftype->field (i).type (); 1052 else 1053 param_type = NULL; 1054 1055 value *original_arg = args[i]; 1056 args[i] = value_arg_coerce (gdbarch, args[i], 1057 param_type, prototyped); 1058 1059 if (param_type == NULL) 1060 continue; 1061 1062 auto info = language_pass_by_reference (param_type); 1063 if (!info.copy_constructible) 1064 error (_("expression cannot be evaluated because the type '%s' " 1065 "is not copy constructible"), param_type->name ()); 1066 1067 if (!info.destructible) 1068 error (_("expression cannot be evaluated because the type '%s' " 1069 "is not destructible"), param_type->name ()); 1070 1071 if (info.trivially_copyable) 1072 continue; 1073 1074 /* Make a copy of the argument on the stack. If the argument is 1075 trivially copy ctor'able, copy bit by bit. Otherwise, call 1076 the copy ctor to initialize the clone. */ 1077 CORE_ADDR addr = reserve_stack_space (param_type, sp); 1078 value *clone 1079 = value_from_contents_and_address (param_type, nullptr, addr); 1080 push_thread_stack_temporary (call_thread.get (), clone); 1081 value *clone_ptr 1082 = value_from_pointer (lookup_pointer_type (param_type), addr); 1083 1084 if (info.trivially_copy_constructible) 1085 { 1086 int length = TYPE_LENGTH (param_type); 1087 write_memory (addr, value_contents (args[i]), length); 1088 } 1089 else 1090 { 1091 value *copy_ctor; 1092 value *cctor_args[2] = { clone_ptr, original_arg }; 1093 find_overload_match (gdb::make_array_view (cctor_args, 2), 1094 param_type->name (), METHOD, 1095 &clone_ptr, nullptr, ©_ctor, nullptr, 1096 nullptr, 0, EVAL_NORMAL); 1097 1098 if (copy_ctor == nullptr) 1099 error (_("expression cannot be evaluated because a copy " 1100 "constructor for the type '%s' could not be found " 1101 "(maybe inlined?)"), param_type->name ()); 1102 1103 call_function_by_hand (copy_ctor, default_return_type, 1104 gdb::make_array_view (cctor_args, 2)); 1105 } 1106 1107 /* If the argument has a destructor, remember it so that we 1108 invoke it after the infcall is complete. */ 1109 if (!info.trivially_destructible) 1110 { 1111 /* Looking up the function via overload resolution does not 1112 work because the compiler (in particular, gcc) adds an 1113 artificial int parameter in some cases. So we look up 1114 the function by using the "~" name. This should be OK 1115 because there can be only one dtor definition. */ 1116 const char *dtor_name = nullptr; 1117 for (int fieldnum = 0; 1118 fieldnum < TYPE_NFN_FIELDS (param_type); 1119 fieldnum++) 1120 { 1121 fn_field *fn 1122 = TYPE_FN_FIELDLIST1 (param_type, fieldnum); 1123 const char *field_name 1124 = TYPE_FN_FIELDLIST_NAME (param_type, fieldnum); 1125 1126 if (field_name[0] == '~') 1127 dtor_name = TYPE_FN_FIELD_PHYSNAME (fn, 0); 1128 } 1129 1130 if (dtor_name == nullptr) 1131 error (_("expression cannot be evaluated because a destructor " 1132 "for the type '%s' could not be found " 1133 "(maybe inlined?)"), param_type->name ()); 1134 1135 value *dtor 1136 = find_function_in_inferior (dtor_name, 0); 1137 1138 /* Insert the dtor to the front of the list to call them 1139 in reverse order later. */ 1140 dtors_to_invoke.emplace_front (dtor, clone_ptr); 1141 } 1142 1143 args[i] = clone_ptr; 1144 } 1145 1146 /* Reserve space for the return structure to be written on the 1147 stack, if necessary. 1148 1149 While evaluating expressions, we reserve space on the stack for 1150 return values of class type even if the language ABI and the target 1151 ABI do not require that the return value be passed as a hidden first 1152 argument. This is because we want to store the return value as an 1153 on-stack temporary while the expression is being evaluated. This 1154 enables us to have chained function calls in expressions. 1155 1156 Keeping the return values as on-stack temporaries while the expression 1157 is being evaluated is OK because the thread is stopped until the 1158 expression is completely evaluated. */ 1159 1160 if (return_method != return_method_normal 1161 || (stack_temporaries && class_or_union_p (values_type))) 1162 struct_addr = reserve_stack_space (values_type, sp); 1163 1164 std::vector<struct value *> new_args; 1165 if (return_method == return_method_hidden_param) 1166 { 1167 /* Add the new argument to the front of the argument list. */ 1168 new_args.reserve (args.size ()); 1169 new_args.push_back 1170 (value_from_pointer (lookup_pointer_type (values_type), struct_addr)); 1171 new_args.insert (new_args.end (), args.begin (), args.end ()); 1172 args = new_args; 1173 } 1174 1175 /* Create the dummy stack frame. Pass in the call dummy address as, 1176 presumably, the ABI code knows where, in the call dummy, the 1177 return address should be pointed. */ 1178 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (), 1179 bp_addr, args.size (), args.data (), 1180 sp, return_method, struct_addr); 1181 1182 /* Set up a frame ID for the dummy frame so we can pass it to 1183 set_momentary_breakpoint. We need to give the breakpoint a frame 1184 ID so that the breakpoint code can correctly re-identify the 1185 dummy breakpoint. */ 1186 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL, 1187 saved as the dummy-frame TOS, and used by dummy_id to form 1188 the frame ID's stack address. */ 1189 dummy_id = frame_id_build (sp, bp_addr); 1190 1191 /* Create a momentary breakpoint at the return address of the 1192 inferior. That way it breaks when it returns. */ 1193 1194 { 1195 symtab_and_line sal; 1196 sal.pspace = current_program_space; 1197 sal.pc = bp_addr; 1198 sal.section = find_pc_overlay (sal.pc); 1199 1200 /* Sanity. The exact same SP value is returned by 1201 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by 1202 dummy_id to form the frame ID's stack address. */ 1203 breakpoint *bpt 1204 = set_momentary_breakpoint (gdbarch, sal, 1205 dummy_id, bp_call_dummy).release (); 1206 1207 /* set_momentary_breakpoint invalidates FRAME. */ 1208 frame = NULL; 1209 1210 bpt->disposition = disp_del; 1211 gdb_assert (bpt->related_breakpoint == bpt); 1212 1213 breakpoint *longjmp_b = set_longjmp_breakpoint_for_call_dummy (); 1214 if (longjmp_b) 1215 { 1216 /* Link BPT into the chain of LONGJMP_B. */ 1217 bpt->related_breakpoint = longjmp_b; 1218 while (longjmp_b->related_breakpoint != bpt->related_breakpoint) 1219 longjmp_b = longjmp_b->related_breakpoint; 1220 longjmp_b->related_breakpoint = bpt; 1221 } 1222 } 1223 1224 /* Create a breakpoint in std::terminate. 1225 If a C++ exception is raised in the dummy-frame, and the 1226 exception handler is (normally, and expected to be) out-of-frame, 1227 the default C++ handler will (wrongly) be called in an inferior 1228 function call. This is wrong, as an exception can be normally 1229 and legally handled out-of-frame. The confines of the dummy frame 1230 prevent the unwinder from finding the correct handler (or any 1231 handler, unless it is in-frame). The default handler calls 1232 std::terminate. This will kill the inferior. Assert that 1233 terminate should never be called in an inferior function 1234 call. Place a momentary breakpoint in the std::terminate function 1235 and if triggered in the call, rewind. */ 1236 if (unwind_on_terminating_exception_p) 1237 set_std_terminate_breakpoint (); 1238 1239 /* Everything's ready, push all the info needed to restore the 1240 caller (and identify the dummy-frame) onto the dummy-frame 1241 stack. */ 1242 dummy_frame_push (caller_state.release (), &dummy_id, call_thread.get ()); 1243 if (dummy_dtor != NULL) 1244 register_dummy_frame_dtor (dummy_id, call_thread.get (), 1245 dummy_dtor, dummy_dtor_data); 1246 1247 /* Register a clean-up for unwind_on_terminating_exception_breakpoint. */ 1248 SCOPE_EXIT { delete_std_terminate_breakpoint (); }; 1249 1250 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - 1251 If you're looking to implement asynchronous dummy-frames, then 1252 just below is the place to chop this function in two.. */ 1253 1254 { 1255 struct thread_fsm *saved_sm; 1256 struct call_thread_fsm *sm; 1257 1258 /* Save the current FSM. We'll override it. */ 1259 saved_sm = call_thread->thread_fsm; 1260 call_thread->thread_fsm = NULL; 1261 1262 /* Save this thread's ptid, we need it later but the thread 1263 may have exited. */ 1264 call_thread_ptid = call_thread->ptid; 1265 1266 /* Run the inferior until it stops. */ 1267 1268 /* Create the FSM used to manage the infcall. It tells infrun to 1269 not report the stop to the user, and captures the return value 1270 before the dummy frame is popped. run_inferior_call registers 1271 it with the thread ASAP. */ 1272 sm = new call_thread_fsm (current_ui, command_interp (), 1273 gdbarch, function, 1274 values_type, 1275 return_method != return_method_normal, 1276 struct_addr); 1277 1278 e = run_inferior_call (sm, call_thread.get (), real_pc); 1279 1280 gdb::observers::inferior_call_post.notify (call_thread_ptid, funaddr); 1281 1282 if (call_thread->state != THREAD_EXITED) 1283 { 1284 /* The FSM should still be the same. */ 1285 gdb_assert (call_thread->thread_fsm == sm); 1286 1287 if (call_thread->thread_fsm->finished_p ()) 1288 { 1289 struct value *retval; 1290 1291 /* The inferior call is successful. Pop the dummy frame, 1292 which runs its destructors and restores the inferior's 1293 suspend state, and restore the inferior control 1294 state. */ 1295 dummy_frame_pop (dummy_id, call_thread.get ()); 1296 restore_infcall_control_state (inf_status.release ()); 1297 1298 /* Get the return value. */ 1299 retval = sm->return_value; 1300 1301 /* Clean up / destroy the call FSM, and restore the 1302 original one. */ 1303 call_thread->thread_fsm->clean_up (call_thread.get ()); 1304 delete call_thread->thread_fsm; 1305 call_thread->thread_fsm = saved_sm; 1306 1307 maybe_remove_breakpoints (); 1308 1309 gdb_assert (retval != NULL); 1310 1311 /* Destruct the pass-by-ref argument clones. */ 1312 call_destructors (dtors_to_invoke, default_return_type); 1313 1314 return retval; 1315 } 1316 1317 /* Didn't complete. Clean up / destroy the call FSM, and restore the 1318 previous state machine, and handle the error. */ 1319 call_thread->thread_fsm->clean_up (call_thread.get ()); 1320 delete call_thread->thread_fsm; 1321 call_thread->thread_fsm = saved_sm; 1322 } 1323 } 1324 1325 /* Rethrow an error if we got one trying to run the inferior. */ 1326 1327 if (e.reason < 0) 1328 { 1329 const char *name = get_function_name (funaddr, 1330 name_buf, sizeof (name_buf)); 1331 1332 discard_infcall_control_state (inf_status.release ()); 1333 1334 /* We could discard the dummy frame here if the program exited, 1335 but it will get garbage collected the next time the program is 1336 run anyway. */ 1337 1338 switch (e.reason) 1339 { 1340 case RETURN_ERROR: 1341 throw_error (e.error, _("%s\n\ 1342 An error occurred while in a function called from GDB.\n\ 1343 Evaluation of the expression containing the function\n\ 1344 (%s) will be abandoned.\n\ 1345 When the function is done executing, GDB will silently stop."), 1346 e.what (), name); 1347 case RETURN_QUIT: 1348 default: 1349 throw_exception (std::move (e)); 1350 } 1351 } 1352 1353 /* If the program has exited, or we stopped at a different thread, 1354 exit and inform the user. */ 1355 1356 if (! target_has_execution) 1357 { 1358 const char *name = get_function_name (funaddr, 1359 name_buf, sizeof (name_buf)); 1360 1361 /* If we try to restore the inferior status, 1362 we'll crash as the inferior is no longer running. */ 1363 discard_infcall_control_state (inf_status.release ()); 1364 1365 /* We could discard the dummy frame here given that the program exited, 1366 but it will get garbage collected the next time the program is 1367 run anyway. */ 1368 1369 error (_("The program being debugged exited while in a function " 1370 "called from GDB.\n" 1371 "Evaluation of the expression containing the function\n" 1372 "(%s) will be abandoned."), 1373 name); 1374 } 1375 1376 if (call_thread_ptid != inferior_ptid) 1377 { 1378 const char *name = get_function_name (funaddr, 1379 name_buf, sizeof (name_buf)); 1380 1381 /* We've switched threads. This can happen if another thread gets a 1382 signal or breakpoint while our thread was running. 1383 There's no point in restoring the inferior status, 1384 we're in a different thread. */ 1385 discard_infcall_control_state (inf_status.release ()); 1386 /* Keep the dummy frame record, if the user switches back to the 1387 thread with the hand-call, we'll need it. */ 1388 if (stopped_by_random_signal) 1389 error (_("\ 1390 The program received a signal in another thread while\n\ 1391 making a function call from GDB.\n\ 1392 Evaluation of the expression containing the function\n\ 1393 (%s) will be abandoned.\n\ 1394 When the function is done executing, GDB will silently stop."), 1395 name); 1396 else 1397 error (_("\ 1398 The program stopped in another thread while making a function call from GDB.\n\ 1399 Evaluation of the expression containing the function\n\ 1400 (%s) will be abandoned.\n\ 1401 When the function is done executing, GDB will silently stop."), 1402 name); 1403 } 1404 1405 { 1406 /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop. */ 1407 std::string name = get_function_name (funaddr, name_buf, 1408 sizeof (name_buf)); 1409 1410 if (stopped_by_random_signal) 1411 { 1412 /* We stopped inside the FUNCTION because of a random 1413 signal. Further execution of the FUNCTION is not 1414 allowed. */ 1415 1416 if (unwind_on_signal_p) 1417 { 1418 /* The user wants the context restored. */ 1419 1420 /* We must get back to the frame we were before the 1421 dummy call. */ 1422 dummy_frame_pop (dummy_id, call_thread.get ()); 1423 1424 /* We also need to restore inferior status to that before the 1425 dummy call. */ 1426 restore_infcall_control_state (inf_status.release ()); 1427 1428 /* FIXME: Insert a bunch of wrap_here; name can be very 1429 long if it's a C++ name with arguments and stuff. */ 1430 error (_("\ 1431 The program being debugged was signaled while in a function called from GDB.\n\ 1432 GDB has restored the context to what it was before the call.\n\ 1433 To change this behavior use \"set unwindonsignal off\".\n\ 1434 Evaluation of the expression containing the function\n\ 1435 (%s) will be abandoned."), 1436 name.c_str ()); 1437 } 1438 else 1439 { 1440 /* The user wants to stay in the frame where we stopped 1441 (default). 1442 Discard inferior status, we're not at the same point 1443 we started at. */ 1444 discard_infcall_control_state (inf_status.release ()); 1445 1446 /* FIXME: Insert a bunch of wrap_here; name can be very 1447 long if it's a C++ name with arguments and stuff. */ 1448 error (_("\ 1449 The program being debugged was signaled while in a function called from GDB.\n\ 1450 GDB remains in the frame where the signal was received.\n\ 1451 To change this behavior use \"set unwindonsignal on\".\n\ 1452 Evaluation of the expression containing the function\n\ 1453 (%s) will be abandoned.\n\ 1454 When the function is done executing, GDB will silently stop."), 1455 name.c_str ()); 1456 } 1457 } 1458 1459 if (stop_stack_dummy == STOP_STD_TERMINATE) 1460 { 1461 /* We must get back to the frame we were before the dummy 1462 call. */ 1463 dummy_frame_pop (dummy_id, call_thread.get ()); 1464 1465 /* We also need to restore inferior status to that before 1466 the dummy call. */ 1467 restore_infcall_control_state (inf_status.release ()); 1468 1469 error (_("\ 1470 The program being debugged entered a std::terminate call, most likely\n\ 1471 caused by an unhandled C++ exception. GDB blocked this call in order\n\ 1472 to prevent the program from being terminated, and has restored the\n\ 1473 context to its original state before the call.\n\ 1474 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\ 1475 Evaluation of the expression containing the function (%s)\n\ 1476 will be abandoned."), 1477 name.c_str ()); 1478 } 1479 else if (stop_stack_dummy == STOP_NONE) 1480 { 1481 1482 /* We hit a breakpoint inside the FUNCTION. 1483 Keep the dummy frame, the user may want to examine its state. 1484 Discard inferior status, we're not at the same point 1485 we started at. */ 1486 discard_infcall_control_state (inf_status.release ()); 1487 1488 /* The following error message used to say "The expression 1489 which contained the function call has been discarded." 1490 It is a hard concept to explain in a few words. Ideally, 1491 GDB would be able to resume evaluation of the expression 1492 when the function finally is done executing. Perhaps 1493 someday this will be implemented (it would not be easy). */ 1494 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's 1495 a C++ name with arguments and stuff. */ 1496 error (_("\ 1497 The program being debugged stopped while in a function called from GDB.\n\ 1498 Evaluation of the expression containing the function\n\ 1499 (%s) will be abandoned.\n\ 1500 When the function is done executing, GDB will silently stop."), 1501 name.c_str ()); 1502 } 1503 1504 } 1505 1506 /* The above code errors out, so ... */ 1507 gdb_assert_not_reached ("... should not be here"); 1508 } 1509 1510 void _initialize_infcall (); 1511 void 1512 _initialize_infcall () 1513 { 1514 add_setshow_boolean_cmd ("may-call-functions", no_class, 1515 &may_call_functions_p, _("\ 1516 Set permission to call functions in the program."), _("\ 1517 Show permission to call functions in the program."), _("\ 1518 When this permission is on, GDB may call functions in the program.\n\ 1519 Otherwise, any sort of attempt to call a function in the program\n\ 1520 will result in an error."), 1521 NULL, 1522 show_may_call_functions_p, 1523 &setlist, &showlist); 1524 1525 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure, 1526 &coerce_float_to_double_p, _("\ 1527 Set coercion of floats to doubles when calling functions."), _("\ 1528 Show coercion of floats to doubles when calling functions."), _("\ 1529 Variables of type float should generally be converted to doubles before\n\ 1530 calling an unprototyped function, and left alone when calling a prototyped\n\ 1531 function. However, some older debug info formats do not provide enough\n\ 1532 information to determine that a function is prototyped. If this flag is\n\ 1533 set, GDB will perform the conversion for a function it considers\n\ 1534 unprototyped.\n\ 1535 The default is to perform the conversion."), 1536 NULL, 1537 show_coerce_float_to_double_p, 1538 &setlist, &showlist); 1539 1540 add_setshow_boolean_cmd ("unwindonsignal", no_class, 1541 &unwind_on_signal_p, _("\ 1542 Set unwinding of stack if a signal is received while in a call dummy."), _("\ 1543 Show unwinding of stack if a signal is received while in a call dummy."), _("\ 1544 The unwindonsignal lets the user determine what gdb should do if a signal\n\ 1545 is received while in a function called from gdb (call dummy). If set, gdb\n\ 1546 unwinds the stack and restore the context to what as it was before the call.\n\ 1547 The default is to stop in the frame where the signal was received."), 1548 NULL, 1549 show_unwind_on_signal_p, 1550 &setlist, &showlist); 1551 1552 add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class, 1553 &unwind_on_terminating_exception_p, _("\ 1554 Set unwinding of stack if std::terminate is called while in call dummy."), _("\ 1555 Show unwinding of stack if std::terminate() is called while in a call dummy."), 1556 _("\ 1557 The unwind on terminating exception flag lets the user determine\n\ 1558 what gdb should do if a std::terminate() call is made from the\n\ 1559 default exception handler. If set, gdb unwinds the stack and restores\n\ 1560 the context to what it was before the call. If unset, gdb allows the\n\ 1561 std::terminate call to proceed.\n\ 1562 The default is to unwind the frame."), 1563 NULL, 1564 show_unwind_on_terminating_exception_p, 1565 &setlist, &showlist); 1566 1567 } 1568