xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/infcall.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2 
3    Copyright (C) 1986-2016 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "infcall.h"
22 #include "breakpoint.h"
23 #include "tracepoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "gdbthread.h"
37 #include "event-top.h"
38 #include "observer.h"
39 #include "top.h"
40 #include "interps.h"
41 #include "thread-fsm.h"
42 
43 /* If we can't find a function's name from its address,
44    we print this instead.  */
45 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
46 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
47                                    + 2 * sizeof (CORE_ADDR))
48 
49 /* NOTE: cagney/2003-04-16: What's the future of this code?
50 
51    GDB needs an asynchronous expression evaluator, that means an
52    asynchronous inferior function call implementation, and that in
53    turn means restructuring the code so that it is event driven.  */
54 
55 /* How you should pass arguments to a function depends on whether it
56    was defined in K&R style or prototype style.  If you define a
57    function using the K&R syntax that takes a `float' argument, then
58    callers must pass that argument as a `double'.  If you define the
59    function using the prototype syntax, then you must pass the
60    argument as a `float', with no promotion.
61 
62    Unfortunately, on certain older platforms, the debug info doesn't
63    indicate reliably how each function was defined.  A function type's
64    TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
65    defined in prototype style.  When calling a function whose
66    TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
67    decide what to do.
68 
69    For modern targets, it is proper to assume that, if the prototype
70    flag is clear, that can be trusted: `float' arguments should be
71    promoted to `double'.  For some older targets, if the prototype
72    flag is clear, that doesn't tell us anything.  The default is to
73    trust the debug information; the user can override this behavior
74    with "set coerce-float-to-double 0".  */
75 
76 static int coerce_float_to_double_p = 1;
77 static void
78 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
79 			       struct cmd_list_element *c, const char *value)
80 {
81   fprintf_filtered (file,
82 		    _("Coercion of floats to doubles "
83 		      "when calling functions is %s.\n"),
84 		    value);
85 }
86 
87 /* This boolean tells what gdb should do if a signal is received while
88    in a function called from gdb (call dummy).  If set, gdb unwinds
89    the stack and restore the context to what as it was before the
90    call.
91 
92    The default is to stop in the frame where the signal was received.  */
93 
94 static int unwind_on_signal_p = 0;
95 static void
96 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
97 			 struct cmd_list_element *c, const char *value)
98 {
99   fprintf_filtered (file,
100 		    _("Unwinding of stack if a signal is "
101 		      "received while in a call dummy is %s.\n"),
102 		    value);
103 }
104 
105 /* This boolean tells what gdb should do if a std::terminate call is
106    made while in a function called from gdb (call dummy).
107    As the confines of a single dummy stack prohibit out-of-frame
108    handlers from handling a raised exception, and as out-of-frame
109    handlers are common in C++, this can lead to no handler being found
110    by the unwinder, and a std::terminate call.  This is a false positive.
111    If set, gdb unwinds the stack and restores the context to what it
112    was before the call.
113 
114    The default is to unwind the frame if a std::terminate call is
115    made.  */
116 
117 static int unwind_on_terminating_exception_p = 1;
118 
119 static void
120 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
121 					struct cmd_list_element *c,
122 					const char *value)
123 
124 {
125   fprintf_filtered (file,
126 		    _("Unwind stack if a C++ exception is "
127 		      "unhandled while in a call dummy is %s.\n"),
128 		    value);
129 }
130 
131 /* Perform the standard coercions that are specified
132    for arguments to be passed to C or Ada functions.
133 
134    If PARAM_TYPE is non-NULL, it is the expected parameter type.
135    IS_PROTOTYPED is non-zero if the function declaration is prototyped.
136    SP is the stack pointer were additional data can be pushed (updating
137    its value as needed).  */
138 
139 static struct value *
140 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
141 		  struct type *param_type, int is_prototyped, CORE_ADDR *sp)
142 {
143   const struct builtin_type *builtin = builtin_type (gdbarch);
144   struct type *arg_type = check_typedef (value_type (arg));
145   struct type *type
146     = param_type ? check_typedef (param_type) : arg_type;
147 
148   /* Perform any Ada-specific coercion first.  */
149   if (current_language->la_language == language_ada)
150     arg = ada_convert_actual (arg, type);
151 
152   /* Force the value to the target if we will need its address.  At
153      this point, we could allocate arguments on the stack instead of
154      calling malloc if we knew that their addresses would not be
155      saved by the called function.  */
156   arg = value_coerce_to_target (arg);
157 
158   switch (TYPE_CODE (type))
159     {
160     case TYPE_CODE_REF:
161       {
162 	struct value *new_value;
163 
164 	if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
165 	  return value_cast_pointers (type, arg, 0);
166 
167 	/* Cast the value to the reference's target type, and then
168 	   convert it back to a reference.  This will issue an error
169 	   if the value was not previously in memory - in some cases
170 	   we should clearly be allowing this, but how?  */
171 	new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
172 	new_value = value_ref (new_value);
173 	return new_value;
174       }
175     case TYPE_CODE_INT:
176     case TYPE_CODE_CHAR:
177     case TYPE_CODE_BOOL:
178     case TYPE_CODE_ENUM:
179       /* If we don't have a prototype, coerce to integer type if necessary.  */
180       if (!is_prototyped)
181 	{
182 	  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
183 	    type = builtin->builtin_int;
184 	}
185       /* Currently all target ABIs require at least the width of an integer
186          type for an argument.  We may have to conditionalize the following
187          type coercion for future targets.  */
188       if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
189 	type = builtin->builtin_int;
190       break;
191     case TYPE_CODE_FLT:
192       if (!is_prototyped && coerce_float_to_double_p)
193 	{
194 	  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
195 	    type = builtin->builtin_double;
196 	  else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
197 	    type = builtin->builtin_long_double;
198 	}
199       break;
200     case TYPE_CODE_FUNC:
201       type = lookup_pointer_type (type);
202       break;
203     case TYPE_CODE_ARRAY:
204       /* Arrays are coerced to pointers to their first element, unless
205          they are vectors, in which case we want to leave them alone,
206          because they are passed by value.  */
207       if (current_language->c_style_arrays)
208 	if (!TYPE_VECTOR (type))
209 	  type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
210       break;
211     case TYPE_CODE_UNDEF:
212     case TYPE_CODE_PTR:
213     case TYPE_CODE_STRUCT:
214     case TYPE_CODE_UNION:
215     case TYPE_CODE_VOID:
216     case TYPE_CODE_SET:
217     case TYPE_CODE_RANGE:
218     case TYPE_CODE_STRING:
219     case TYPE_CODE_ERROR:
220     case TYPE_CODE_MEMBERPTR:
221     case TYPE_CODE_METHODPTR:
222     case TYPE_CODE_METHOD:
223     case TYPE_CODE_COMPLEX:
224     default:
225       break;
226     }
227 
228   return value_cast (type, arg);
229 }
230 
231 /* Return the return type of a function with its first instruction exactly at
232    the PC address.  Return NULL otherwise.  */
233 
234 static struct type *
235 find_function_return_type (CORE_ADDR pc)
236 {
237   struct symbol *sym = find_pc_function (pc);
238 
239   if (sym != NULL && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == pc
240       && SYMBOL_TYPE (sym) != NULL)
241     return TYPE_TARGET_TYPE (SYMBOL_TYPE (sym));
242 
243   return NULL;
244 }
245 
246 /* Determine a function's address and its return type from its value.
247    Calls error() if the function is not valid for calling.  */
248 
249 CORE_ADDR
250 find_function_addr (struct value *function, struct type **retval_type)
251 {
252   struct type *ftype = check_typedef (value_type (function));
253   struct gdbarch *gdbarch = get_type_arch (ftype);
254   struct type *value_type = NULL;
255   /* Initialize it just to avoid a GCC false warning.  */
256   CORE_ADDR funaddr = 0;
257 
258   /* If it's a member function, just look at the function
259      part of it.  */
260 
261   /* Determine address to call.  */
262   if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
263       || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
264     funaddr = value_address (function);
265   else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
266     {
267       funaddr = value_as_address (function);
268       ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
269       if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
270 	  || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
271 	funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
272 						      &current_target);
273     }
274   if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
275       || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
276     {
277       value_type = TYPE_TARGET_TYPE (ftype);
278 
279       if (TYPE_GNU_IFUNC (ftype))
280 	{
281 	  funaddr = gnu_ifunc_resolve_addr (gdbarch, funaddr);
282 
283 	  /* Skip querying the function symbol if no RETVAL_TYPE has been
284 	     asked for.  */
285 	  if (retval_type)
286 	    value_type = find_function_return_type (funaddr);
287 	}
288     }
289   else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
290     {
291       /* Handle the case of functions lacking debugging info.
292          Their values are characters since their addresses are char.  */
293       if (TYPE_LENGTH (ftype) == 1)
294 	funaddr = value_as_address (value_addr (function));
295       else
296 	{
297 	  /* Handle function descriptors lacking debug info.  */
298 	  int found_descriptor = 0;
299 
300 	  funaddr = 0;	/* pacify "gcc -Werror" */
301 	  if (VALUE_LVAL (function) == lval_memory)
302 	    {
303 	      CORE_ADDR nfunaddr;
304 
305 	      funaddr = value_as_address (value_addr (function));
306 	      nfunaddr = funaddr;
307 	      funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
308 							    &current_target);
309 	      if (funaddr != nfunaddr)
310 		found_descriptor = 1;
311 	    }
312 	  if (!found_descriptor)
313 	    /* Handle integer used as address of a function.  */
314 	    funaddr = (CORE_ADDR) value_as_long (function);
315 	}
316     }
317   else
318     error (_("Invalid data type for function to be called."));
319 
320   if (retval_type != NULL)
321     *retval_type = value_type;
322   return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
323 }
324 
325 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
326    function returns to.  */
327 
328 static CORE_ADDR
329 push_dummy_code (struct gdbarch *gdbarch,
330 		 CORE_ADDR sp, CORE_ADDR funaddr,
331 		 struct value **args, int nargs,
332 		 struct type *value_type,
333 		 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
334 		 struct regcache *regcache)
335 {
336   gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
337 
338   return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
339 				  args, nargs, value_type, real_pc, bp_addr,
340 				  regcache);
341 }
342 
343 /* Fetch the name of the function at FUNADDR.
344    This is used in printing an error message for call_function_by_hand.
345    BUF is used to print FUNADDR in hex if the function name cannot be
346    determined.  It must be large enough to hold formatted result of
347    RAW_FUNCTION_ADDRESS_FORMAT.  */
348 
349 static const char *
350 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
351 {
352   {
353     struct symbol *symbol = find_pc_function (funaddr);
354 
355     if (symbol)
356       return SYMBOL_PRINT_NAME (symbol);
357   }
358 
359   {
360     /* Try the minimal symbols.  */
361     struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
362 
363     if (msymbol.minsym)
364       return MSYMBOL_PRINT_NAME (msymbol.minsym);
365   }
366 
367   {
368     char *tmp = xstrprintf (_(RAW_FUNCTION_ADDRESS_FORMAT),
369                             hex_string (funaddr));
370 
371     gdb_assert (strlen (tmp) + 1 <= buf_size);
372     strcpy (buf, tmp);
373     xfree (tmp);
374     return buf;
375   }
376 }
377 
378 /* All the meta data necessary to extract the call's return value.  */
379 
380 struct call_return_meta_info
381 {
382   /* The caller frame's architecture.  */
383   struct gdbarch *gdbarch;
384 
385   /* The called function.  */
386   struct value *function;
387 
388   /* The return value's type.  */
389   struct type *value_type;
390 
391   /* Are we returning a value using a structure return or a normal
392      value return?  */
393   int struct_return_p;
394 
395   /* If using a structure return, this is the structure's address.  */
396   CORE_ADDR struct_addr;
397 
398   /* Whether stack temporaries are enabled.  */
399   int stack_temporaries_enabled;
400 };
401 
402 /* Extract the called function's return value.  */
403 
404 static struct value *
405 get_call_return_value (struct call_return_meta_info *ri)
406 {
407   struct value *retval = NULL;
408   int stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
409 
410   if (TYPE_CODE (ri->value_type) == TYPE_CODE_VOID)
411     retval = allocate_value (ri->value_type);
412   else if (ri->struct_return_p)
413     {
414       if (stack_temporaries)
415 	{
416 	  retval = value_from_contents_and_address (ri->value_type, NULL,
417 						    ri->struct_addr);
418 	  push_thread_stack_temporary (inferior_ptid, retval);
419 	}
420       else
421 	{
422 	  retval = allocate_value (ri->value_type);
423 	  read_value_memory (retval, 0, 1, ri->struct_addr,
424 			     value_contents_raw (retval),
425 			     TYPE_LENGTH (ri->value_type));
426 	}
427     }
428   else
429     {
430       retval = allocate_value (ri->value_type);
431       gdbarch_return_value (ri->gdbarch, ri->function, ri->value_type,
432 			    get_current_regcache (),
433 			    value_contents_raw (retval), NULL);
434       if (stack_temporaries && class_or_union_p (ri->value_type))
435 	{
436 	  /* Values of class type returned in registers are copied onto
437 	     the stack and their lval_type set to lval_memory.  This is
438 	     required because further evaluation of the expression
439 	     could potentially invoke methods on the return value
440 	     requiring GDB to evaluate the "this" pointer.  To evaluate
441 	     the this pointer, GDB needs the memory address of the
442 	     value.  */
443 	  value_force_lval (retval, ri->struct_addr);
444 	  push_thread_stack_temporary (inferior_ptid, retval);
445 	}
446     }
447 
448   gdb_assert (retval != NULL);
449   return retval;
450 }
451 
452 /* Data for the FSM that manages an infcall.  It's main job is to
453    record the called function's return value.  */
454 
455 struct call_thread_fsm
456 {
457   /* The base class.  */
458   struct thread_fsm thread_fsm;
459 
460   /* All the info necessary to be able to extract the return
461      value.  */
462   struct call_return_meta_info return_meta_info;
463 
464   /* The called function's return value.  This is extracted from the
465      target before the dummy frame is popped.  */
466   struct value *return_value;
467 
468   /* The top level that started the infcall (and is synchronously
469      waiting for it to end).  */
470   struct ui *waiting_ui;
471 };
472 
473 static int call_thread_fsm_should_stop (struct thread_fsm *self,
474 					struct thread_info *thread);
475 static int call_thread_fsm_should_notify_stop (struct thread_fsm *self);
476 
477 /* call_thread_fsm's vtable.  */
478 
479 static struct thread_fsm_ops call_thread_fsm_ops =
480 {
481   NULL, /*dtor */
482   NULL, /* clean_up */
483   call_thread_fsm_should_stop,
484   NULL, /* return_value */
485   NULL, /* async_reply_reason*/
486   call_thread_fsm_should_notify_stop,
487 };
488 
489 /* Allocate a new call_thread_fsm object.  */
490 
491 static struct call_thread_fsm *
492 new_call_thread_fsm (struct ui *waiting_ui, struct interp *cmd_interp,
493 		     struct gdbarch *gdbarch, struct value *function,
494 		     struct type *value_type,
495 		     int struct_return_p, CORE_ADDR struct_addr)
496 {
497   struct call_thread_fsm *sm;
498 
499   sm = XCNEW (struct call_thread_fsm);
500   thread_fsm_ctor (&sm->thread_fsm, &call_thread_fsm_ops, cmd_interp);
501 
502   sm->return_meta_info.gdbarch = gdbarch;
503   sm->return_meta_info.function = function;
504   sm->return_meta_info.value_type = value_type;
505   sm->return_meta_info.struct_return_p = struct_return_p;
506   sm->return_meta_info.struct_addr = struct_addr;
507 
508   sm->waiting_ui = waiting_ui;
509 
510   return sm;
511 }
512 
513 /* Implementation of should_stop method for infcalls.  */
514 
515 static int
516 call_thread_fsm_should_stop (struct thread_fsm *self,
517 			     struct thread_info *thread)
518 {
519   struct call_thread_fsm *f = (struct call_thread_fsm *) self;
520 
521   if (stop_stack_dummy == STOP_STACK_DUMMY)
522     {
523       struct cleanup *old_chain;
524 
525       /* Done.  */
526       thread_fsm_set_finished (self);
527 
528       /* Stash the return value before the dummy frame is popped and
529 	 registers are restored to what they were before the
530 	 call..  */
531       f->return_value = get_call_return_value (&f->return_meta_info);
532 
533       /* Break out of wait_sync_command_done.  */
534       old_chain = make_cleanup_restore_current_ui ();
535       current_ui = f->waiting_ui;
536       target_terminal_ours ();
537       f->waiting_ui->prompt_state = PROMPT_NEEDED;
538 
539       /* This restores the previous UI.  */
540       do_cleanups (old_chain);
541     }
542 
543   return 1;
544 }
545 
546 /* Implementation of should_notify_stop method for infcalls.  */
547 
548 static int
549 call_thread_fsm_should_notify_stop (struct thread_fsm *self)
550 {
551   if (thread_fsm_finished_p (self))
552     {
553       /* Infcall succeeded.  Be silent and proceed with evaluating the
554 	 expression.  */
555       return 0;
556     }
557 
558   /* Something wrong happened.  E.g., an unexpected breakpoint
559      triggered, or a signal was intercepted.  Notify the stop.  */
560   return 1;
561 }
562 
563 /* Subroutine of call_function_by_hand to simplify it.
564    Start up the inferior and wait for it to stop.
565    Return the exception if there's an error, or an exception with
566    reason >= 0 if there's no error.
567 
568    This is done inside a TRY_CATCH so the caller needn't worry about
569    thrown errors.  The caller should rethrow if there's an error.  */
570 
571 static struct gdb_exception
572 run_inferior_call (struct call_thread_fsm *sm,
573 		   struct thread_info *call_thread, CORE_ADDR real_pc)
574 {
575   struct gdb_exception caught_error = exception_none;
576   int saved_in_infcall = call_thread->control.in_infcall;
577   ptid_t call_thread_ptid = call_thread->ptid;
578   enum prompt_state saved_prompt_state = current_ui->prompt_state;
579   int was_running = call_thread->state == THREAD_RUNNING;
580   int saved_ui_async = current_ui->async;
581 
582   /* Infcalls run synchronously, in the foreground.  */
583   current_ui->prompt_state = PROMPT_BLOCKED;
584   /* So that we don't print the prompt prematurely in
585      fetch_inferior_event.  */
586   current_ui->async = 0;
587 
588   delete_file_handler (current_ui->input_fd);
589 
590   call_thread->control.in_infcall = 1;
591 
592   clear_proceed_status (0);
593 
594   /* Associate the FSM with the thread after clear_proceed_status
595      (otherwise it'd clear this FSM), and before anything throws, so
596      we don't leak it (and any resources it manages).  */
597   call_thread->thread_fsm = &sm->thread_fsm;
598 
599   disable_watchpoints_before_interactive_call_start ();
600 
601   /* We want to print return value, please...  */
602   call_thread->control.proceed_to_finish = 1;
603 
604   TRY
605     {
606       proceed (real_pc, GDB_SIGNAL_0);
607 
608       /* Inferior function calls are always synchronous, even if the
609 	 target supports asynchronous execution.  */
610       wait_sync_command_done ();
611     }
612   CATCH (e, RETURN_MASK_ALL)
613     {
614       caught_error = e;
615     }
616   END_CATCH
617 
618   /* If GDB has the prompt blocked before, then ensure that it remains
619      so.  normal_stop calls async_enable_stdin, so reset the prompt
620      state again here.  In other cases, stdin will be re-enabled by
621      inferior_event_handler, when an exception is thrown.  */
622   current_ui->prompt_state = saved_prompt_state;
623   if (current_ui->prompt_state == PROMPT_BLOCKED)
624     delete_file_handler (current_ui->input_fd);
625   else
626     ui_register_input_event_handler (current_ui);
627   current_ui->async = saved_ui_async;
628 
629   /* At this point the current thread may have changed.  Refresh
630      CALL_THREAD as it could be invalid if its thread has exited.  */
631   call_thread = find_thread_ptid (call_thread_ptid);
632 
633   /* If the infcall does NOT succeed, normal_stop will have already
634      finished the thread states.  However, on success, normal_stop
635      defers here, so that we can set back the thread states to what
636      they were before the call.  Note that we must also finish the
637      state of new threads that might have spawned while the call was
638      running.  The main cases to handle are:
639 
640      - "(gdb) print foo ()", or any other command that evaluates an
641      expression at the prompt.  (The thread was marked stopped before.)
642 
643      - "(gdb) break foo if return_false()" or similar cases where we
644      do an infcall while handling an event (while the thread is still
645      marked running).  In this example, whether the condition
646      evaluates true and thus we'll present a user-visible stop is
647      decided elsewhere.  */
648   if (!was_running
649       && ptid_equal (call_thread_ptid, inferior_ptid)
650       && stop_stack_dummy == STOP_STACK_DUMMY)
651     finish_thread_state (user_visible_resume_ptid (0));
652 
653   enable_watchpoints_after_interactive_call_stop ();
654 
655   /* Call breakpoint_auto_delete on the current contents of the bpstat
656      of inferior call thread.
657      If all error()s out of proceed ended up calling normal_stop
658      (and perhaps they should; it already does in the special case
659      of error out of resume()), then we wouldn't need this.  */
660   if (caught_error.reason < 0)
661     {
662       if (call_thread != NULL)
663 	breakpoint_auto_delete (call_thread->control.stop_bpstat);
664     }
665 
666   if (call_thread != NULL)
667     call_thread->control.in_infcall = saved_in_infcall;
668 
669   return caught_error;
670 }
671 
672 /* A cleanup function that calls delete_std_terminate_breakpoint.  */
673 static void
674 cleanup_delete_std_terminate_breakpoint (void *ignore)
675 {
676   delete_std_terminate_breakpoint ();
677 }
678 
679 /* See infcall.h.  */
680 
681 struct value *
682 call_function_by_hand (struct value *function, int nargs, struct value **args)
683 {
684   return call_function_by_hand_dummy (function, nargs, args, NULL, NULL);
685 }
686 
687 /* All this stuff with a dummy frame may seem unnecessarily complicated
688    (why not just save registers in GDB?).  The purpose of pushing a dummy
689    frame which looks just like a real frame is so that if you call a
690    function and then hit a breakpoint (get a signal, etc), "backtrace"
691    will look right.  Whether the backtrace needs to actually show the
692    stack at the time the inferior function was called is debatable, but
693    it certainly needs to not display garbage.  So if you are contemplating
694    making dummy frames be different from normal frames, consider that.  */
695 
696 /* Perform a function call in the inferior.
697    ARGS is a vector of values of arguments (NARGS of them).
698    FUNCTION is a value, the function to be called.
699    Returns a value representing what the function returned.
700    May fail to return, if a breakpoint or signal is hit
701    during the execution of the function.
702 
703    ARGS is modified to contain coerced values.  */
704 
705 struct value *
706 call_function_by_hand_dummy (struct value *function,
707 			     int nargs, struct value **args,
708 			     dummy_frame_dtor_ftype *dummy_dtor,
709 			     void *dummy_dtor_data)
710 {
711   CORE_ADDR sp;
712   struct type *values_type, *target_values_type;
713   unsigned char struct_return = 0, hidden_first_param_p = 0;
714   CORE_ADDR struct_addr = 0;
715   struct infcall_control_state *inf_status;
716   struct cleanup *inf_status_cleanup;
717   struct infcall_suspend_state *caller_state;
718   CORE_ADDR funaddr;
719   CORE_ADDR real_pc;
720   struct type *ftype = check_typedef (value_type (function));
721   CORE_ADDR bp_addr;
722   struct frame_id dummy_id;
723   struct cleanup *args_cleanup;
724   struct frame_info *frame;
725   struct gdbarch *gdbarch;
726   struct cleanup *terminate_bp_cleanup;
727   ptid_t call_thread_ptid;
728   struct gdb_exception e;
729   char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
730   int stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
731 
732   if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
733     ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
734 
735   if (!target_has_execution)
736     noprocess ();
737 
738   if (get_traceframe_number () >= 0)
739     error (_("May not call functions while looking at trace frames."));
740 
741   if (execution_direction == EXEC_REVERSE)
742     error (_("Cannot call functions in reverse mode."));
743 
744   frame = get_current_frame ();
745   gdbarch = get_frame_arch (frame);
746 
747   if (!gdbarch_push_dummy_call_p (gdbarch))
748     error (_("This target does not support function calls."));
749 
750   /* A cleanup for the inferior status.
751      This is only needed while we're preparing the inferior function call.  */
752   inf_status = save_infcall_control_state ();
753   inf_status_cleanup
754     = make_cleanup_restore_infcall_control_state (inf_status);
755 
756   /* Save the caller's registers and other state associated with the
757      inferior itself so that they can be restored once the
758      callee returns.  To allow nested calls the registers are (further
759      down) pushed onto a dummy frame stack.  Include a cleanup (which
760      is tossed once the regcache has been pushed).  */
761   caller_state = save_infcall_suspend_state ();
762   make_cleanup_restore_infcall_suspend_state (caller_state);
763 
764   /* Ensure that the initial SP is correctly aligned.  */
765   {
766     CORE_ADDR old_sp = get_frame_sp (frame);
767 
768     if (gdbarch_frame_align_p (gdbarch))
769       {
770 	sp = gdbarch_frame_align (gdbarch, old_sp);
771 	/* NOTE: cagney/2003-08-13: Skip the "red zone".  For some
772 	   ABIs, a function can use memory beyond the inner most stack
773 	   address.  AMD64 called that region the "red zone".  Skip at
774 	   least the "red zone" size before allocating any space on
775 	   the stack.  */
776 	if (gdbarch_inner_than (gdbarch, 1, 2))
777 	  sp -= gdbarch_frame_red_zone_size (gdbarch);
778 	else
779 	  sp += gdbarch_frame_red_zone_size (gdbarch);
780 	/* Still aligned?  */
781 	gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
782 	/* NOTE: cagney/2002-09-18:
783 
784 	   On a RISC architecture, a void parameterless generic dummy
785 	   frame (i.e., no parameters, no result) typically does not
786 	   need to push anything the stack and hence can leave SP and
787 	   FP.  Similarly, a frameless (possibly leaf) function does
788 	   not push anything on the stack and, hence, that too can
789 	   leave FP and SP unchanged.  As a consequence, a sequence of
790 	   void parameterless generic dummy frame calls to frameless
791 	   functions will create a sequence of effectively identical
792 	   frames (SP, FP and TOS and PC the same).  This, not
793 	   suprisingly, results in what appears to be a stack in an
794 	   infinite loop --- when GDB tries to find a generic dummy
795 	   frame on the internal dummy frame stack, it will always
796 	   find the first one.
797 
798 	   To avoid this problem, the code below always grows the
799 	   stack.  That way, two dummy frames can never be identical.
800 	   It does burn a few bytes of stack but that is a small price
801 	   to pay :-).  */
802 	if (sp == old_sp)
803 	  {
804 	    if (gdbarch_inner_than (gdbarch, 1, 2))
805 	      /* Stack grows down.  */
806 	      sp = gdbarch_frame_align (gdbarch, old_sp - 1);
807 	    else
808 	      /* Stack grows up.  */
809 	      sp = gdbarch_frame_align (gdbarch, old_sp + 1);
810 	  }
811 	/* SP may have underflown address zero here from OLD_SP.  Memory access
812 	   functions will probably fail in such case but that is a target's
813 	   problem.  */
814       }
815     else
816       /* FIXME: cagney/2002-09-18: Hey, you loose!
817 
818 	 Who knows how badly aligned the SP is!
819 
820 	 If the generic dummy frame ends up empty (because nothing is
821 	 pushed) GDB won't be able to correctly perform back traces.
822 	 If a target is having trouble with backtraces, first thing to
823 	 do is add FRAME_ALIGN() to the architecture vector.  If that
824 	 fails, try dummy_id().
825 
826          If the ABI specifies a "Red Zone" (see the doco) the code
827          below will quietly trash it.  */
828       sp = old_sp;
829 
830     /* Skip over the stack temporaries that might have been generated during
831        the evaluation of an expression.  */
832     if (stack_temporaries)
833       {
834 	struct value *lastval;
835 
836 	lastval = get_last_thread_stack_temporary (inferior_ptid);
837         if (lastval != NULL)
838 	  {
839 	    CORE_ADDR lastval_addr = value_address (lastval);
840 
841 	    if (gdbarch_inner_than (gdbarch, 1, 2))
842 	      {
843 		gdb_assert (sp >= lastval_addr);
844 		sp = lastval_addr;
845 	      }
846 	    else
847 	      {
848 		gdb_assert (sp <= lastval_addr);
849 		sp = lastval_addr + TYPE_LENGTH (value_type (lastval));
850 	      }
851 
852 	    if (gdbarch_frame_align_p (gdbarch))
853 	      sp = gdbarch_frame_align (gdbarch, sp);
854 	  }
855       }
856   }
857 
858   funaddr = find_function_addr (function, &values_type);
859   if (!values_type)
860     values_type = builtin_type (gdbarch)->builtin_int;
861 
862   values_type = check_typedef (values_type);
863 
864   /* Are we returning a value using a structure return (passing a
865      hidden argument pointing to storage) or a normal value return?
866      There are two cases: language-mandated structure return and
867      target ABI structure return.  The variable STRUCT_RETURN only
868      describes the latter.  The language version is handled by passing
869      the return location as the first parameter to the function,
870      even preceding "this".  This is different from the target
871      ABI version, which is target-specific; for instance, on ia64
872      the first argument is passed in out0 but the hidden structure
873      return pointer would normally be passed in r8.  */
874 
875   if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
876     {
877       hidden_first_param_p = 1;
878 
879       /* Tell the target specific argument pushing routine not to
880 	 expect a value.  */
881       target_values_type = builtin_type (gdbarch)->builtin_void;
882     }
883   else
884     {
885       struct_return = using_struct_return (gdbarch, function, values_type);
886       target_values_type = values_type;
887     }
888 
889   observer_notify_inferior_call_pre (inferior_ptid, funaddr);
890 
891   /* Determine the location of the breakpoint (and possibly other
892      stuff) that the called function will return to.  The SPARC, for a
893      function returning a structure or union, needs to make space for
894      not just the breakpoint but also an extra word containing the
895      size (?) of the structure being passed.  */
896 
897   switch (gdbarch_call_dummy_location (gdbarch))
898     {
899     case ON_STACK:
900       {
901 	const gdb_byte *bp_bytes;
902 	CORE_ADDR bp_addr_as_address;
903 	int bp_size;
904 
905 	/* Be careful BP_ADDR is in inferior PC encoding while
906 	   BP_ADDR_AS_ADDRESS is a plain memory address.  */
907 
908 	sp = push_dummy_code (gdbarch, sp, funaddr, args, nargs,
909 			      target_values_type, &real_pc, &bp_addr,
910 			      get_current_regcache ());
911 
912 	/* Write a legitimate instruction at the point where the infcall
913 	   breakpoint is going to be inserted.  While this instruction
914 	   is never going to be executed, a user investigating the
915 	   memory from GDB would see this instruction instead of random
916 	   uninitialized bytes.  We chose the breakpoint instruction
917 	   as it may look as the most logical one to the user and also
918 	   valgrind 3.7.0 needs it for proper vgdb inferior calls.
919 
920 	   If software breakpoints are unsupported for this target we
921 	   leave the user visible memory content uninitialized.  */
922 
923 	bp_addr_as_address = bp_addr;
924 	bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
925 					       &bp_size);
926 	if (bp_bytes != NULL)
927 	  write_memory (bp_addr_as_address, bp_bytes, bp_size);
928       }
929       break;
930     case AT_ENTRY_POINT:
931       {
932 	CORE_ADDR dummy_addr;
933 
934 	real_pc = funaddr;
935 	dummy_addr = entry_point_address ();
936 
937 	/* A call dummy always consists of just a single breakpoint, so
938 	   its address is the same as the address of the dummy.
939 
940 	   The actual breakpoint is inserted separatly so there is no need to
941 	   write that out.  */
942 	bp_addr = dummy_addr;
943 	break;
944       }
945     default:
946       internal_error (__FILE__, __LINE__, _("bad switch"));
947     }
948 
949   if (nargs < TYPE_NFIELDS (ftype))
950     error (_("Too few arguments in function call."));
951 
952   {
953     int i;
954 
955     for (i = nargs - 1; i >= 0; i--)
956       {
957 	int prototyped;
958 	struct type *param_type;
959 
960 	/* FIXME drow/2002-05-31: Should just always mark methods as
961 	   prototyped.  Can we respect TYPE_VARARGS?  Probably not.  */
962 	if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
963 	  prototyped = 1;
964 	else if (i < TYPE_NFIELDS (ftype))
965 	  prototyped = TYPE_PROTOTYPED (ftype);
966 	else
967 	  prototyped = 0;
968 
969 	if (i < TYPE_NFIELDS (ftype))
970 	  param_type = TYPE_FIELD_TYPE (ftype, i);
971 	else
972 	  param_type = NULL;
973 
974 	args[i] = value_arg_coerce (gdbarch, args[i],
975 				    param_type, prototyped, &sp);
976 
977 	if (param_type != NULL && language_pass_by_reference (param_type))
978 	  args[i] = value_addr (args[i]);
979       }
980   }
981 
982   /* Reserve space for the return structure to be written on the
983      stack, if necessary.  Make certain that the value is correctly
984      aligned.
985 
986      While evaluating expressions, we reserve space on the stack for
987      return values of class type even if the language ABI and the target
988      ABI do not require that the return value be passed as a hidden first
989      argument.  This is because we want to store the return value as an
990      on-stack temporary while the expression is being evaluated.  This
991      enables us to have chained function calls in expressions.
992 
993      Keeping the return values as on-stack temporaries while the expression
994      is being evaluated is OK because the thread is stopped until the
995      expression is completely evaluated.  */
996 
997   if (struct_return || hidden_first_param_p
998       || (stack_temporaries && class_or_union_p (values_type)))
999     {
1000       if (gdbarch_inner_than (gdbarch, 1, 2))
1001 	{
1002 	  /* Stack grows downward.  Align STRUCT_ADDR and SP after
1003              making space for the return value.  */
1004 	  sp -= TYPE_LENGTH (values_type);
1005 	  if (gdbarch_frame_align_p (gdbarch))
1006 	    sp = gdbarch_frame_align (gdbarch, sp);
1007 	  struct_addr = sp;
1008 	}
1009       else
1010 	{
1011 	  /* Stack grows upward.  Align the frame, allocate space, and
1012              then again, re-align the frame???  */
1013 	  if (gdbarch_frame_align_p (gdbarch))
1014 	    sp = gdbarch_frame_align (gdbarch, sp);
1015 	  struct_addr = sp;
1016 	  sp += TYPE_LENGTH (values_type);
1017 	  if (gdbarch_frame_align_p (gdbarch))
1018 	    sp = gdbarch_frame_align (gdbarch, sp);
1019 	}
1020     }
1021 
1022   if (hidden_first_param_p)
1023     {
1024       struct value **new_args;
1025 
1026       /* Add the new argument to the front of the argument list.  */
1027       new_args = XNEWVEC (struct value *, nargs + 1);
1028       new_args[0] = value_from_pointer (lookup_pointer_type (values_type),
1029 					struct_addr);
1030       memcpy (&new_args[1], &args[0], sizeof (struct value *) * nargs);
1031       args = new_args;
1032       nargs++;
1033       args_cleanup = make_cleanup (xfree, args);
1034     }
1035   else
1036     args_cleanup = make_cleanup (null_cleanup, NULL);
1037 
1038   /* Create the dummy stack frame.  Pass in the call dummy address as,
1039      presumably, the ABI code knows where, in the call dummy, the
1040      return address should be pointed.  */
1041   sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
1042 				bp_addr, nargs, args,
1043 				sp, struct_return, struct_addr);
1044 
1045   do_cleanups (args_cleanup);
1046 
1047   /* Set up a frame ID for the dummy frame so we can pass it to
1048      set_momentary_breakpoint.  We need to give the breakpoint a frame
1049      ID so that the breakpoint code can correctly re-identify the
1050      dummy breakpoint.  */
1051   /* Sanity.  The exact same SP value is returned by PUSH_DUMMY_CALL,
1052      saved as the dummy-frame TOS, and used by dummy_id to form
1053      the frame ID's stack address.  */
1054   dummy_id = frame_id_build (sp, bp_addr);
1055 
1056   /* Create a momentary breakpoint at the return address of the
1057      inferior.  That way it breaks when it returns.  */
1058 
1059   {
1060     struct breakpoint *bpt, *longjmp_b;
1061     struct symtab_and_line sal;
1062 
1063     init_sal (&sal);		/* initialize to zeroes */
1064     sal.pspace = current_program_space;
1065     sal.pc = bp_addr;
1066     sal.section = find_pc_overlay (sal.pc);
1067     /* Sanity.  The exact same SP value is returned by
1068        PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
1069        dummy_id to form the frame ID's stack address.  */
1070     bpt = set_momentary_breakpoint (gdbarch, sal, dummy_id, bp_call_dummy);
1071 
1072     /* set_momentary_breakpoint invalidates FRAME.  */
1073     frame = NULL;
1074 
1075     bpt->disposition = disp_del;
1076     gdb_assert (bpt->related_breakpoint == bpt);
1077 
1078     longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
1079     if (longjmp_b)
1080       {
1081 	/* Link BPT into the chain of LONGJMP_B.  */
1082 	bpt->related_breakpoint = longjmp_b;
1083 	while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
1084 	  longjmp_b = longjmp_b->related_breakpoint;
1085 	longjmp_b->related_breakpoint = bpt;
1086       }
1087   }
1088 
1089   /* Create a breakpoint in std::terminate.
1090      If a C++ exception is raised in the dummy-frame, and the
1091      exception handler is (normally, and expected to be) out-of-frame,
1092      the default C++ handler will (wrongly) be called in an inferior
1093      function call.  This is wrong, as an exception can be  normally
1094      and legally handled out-of-frame.  The confines of the dummy frame
1095      prevent the unwinder from finding the correct handler (or any
1096      handler, unless it is in-frame).  The default handler calls
1097      std::terminate.  This will kill the inferior.  Assert that
1098      terminate should never be called in an inferior function
1099      call.  Place a momentary breakpoint in the std::terminate function
1100      and if triggered in the call, rewind.  */
1101   if (unwind_on_terminating_exception_p)
1102     set_std_terminate_breakpoint ();
1103 
1104   /* Discard both inf_status and caller_state cleanups.
1105      From this point on we explicitly restore the associated state
1106      or discard it.  */
1107   discard_cleanups (inf_status_cleanup);
1108 
1109   /* Everything's ready, push all the info needed to restore the
1110      caller (and identify the dummy-frame) onto the dummy-frame
1111      stack.  */
1112   dummy_frame_push (caller_state, &dummy_id, inferior_ptid);
1113   if (dummy_dtor != NULL)
1114     register_dummy_frame_dtor (dummy_id, inferior_ptid,
1115 			       dummy_dtor, dummy_dtor_data);
1116 
1117   /* Register a clean-up for unwind_on_terminating_exception_breakpoint.  */
1118   terminate_bp_cleanup = make_cleanup (cleanup_delete_std_terminate_breakpoint,
1119 				       NULL);
1120 
1121   /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1122      If you're looking to implement asynchronous dummy-frames, then
1123      just below is the place to chop this function in two..  */
1124 
1125   /* TP is invalid after run_inferior_call returns, so enclose this
1126      in a block so that it's only in scope during the time it's valid.  */
1127   {
1128     struct thread_info *tp = inferior_thread ();
1129     struct thread_fsm *saved_sm;
1130     struct call_thread_fsm *sm;
1131 
1132     /* Save the current FSM.  We'll override it.  */
1133     saved_sm = tp->thread_fsm;
1134     tp->thread_fsm = NULL;
1135 
1136     /* Save this thread's ptid, we need it later but the thread
1137        may have exited.  */
1138     call_thread_ptid = tp->ptid;
1139 
1140     /* Run the inferior until it stops.  */
1141 
1142     /* Create the FSM used to manage the infcall.  It tells infrun to
1143        not report the stop to the user, and captures the return value
1144        before the dummy frame is popped.  run_inferior_call registers
1145        it with the thread ASAP.  */
1146     sm = new_call_thread_fsm (current_ui, command_interp (),
1147 			      gdbarch, function,
1148 			      values_type,
1149 			      struct_return || hidden_first_param_p,
1150 			      struct_addr);
1151 
1152     e = run_inferior_call (sm, tp, real_pc);
1153 
1154     observer_notify_inferior_call_post (call_thread_ptid, funaddr);
1155 
1156     tp = find_thread_ptid (call_thread_ptid);
1157     if (tp != NULL)
1158       {
1159 	/* The FSM should still be the same.  */
1160 	gdb_assert (tp->thread_fsm == &sm->thread_fsm);
1161 
1162 	if (thread_fsm_finished_p (tp->thread_fsm))
1163 	  {
1164 	    struct value *retval;
1165 
1166 	    /* The inferior call is successful.  Pop the dummy frame,
1167 	       which runs its destructors and restores the inferior's
1168 	       suspend state, and restore the inferior control
1169 	       state.  */
1170 	    dummy_frame_pop (dummy_id, call_thread_ptid);
1171 	    restore_infcall_control_state (inf_status);
1172 
1173 	    /* Get the return value.  */
1174 	    retval = sm->return_value;
1175 
1176 	    /* Clean up / destroy the call FSM, and restore the
1177 	       original one.  */
1178 	    thread_fsm_clean_up (tp->thread_fsm, tp);
1179 	    thread_fsm_delete (tp->thread_fsm);
1180 	    tp->thread_fsm = saved_sm;
1181 
1182 	    maybe_remove_breakpoints ();
1183 
1184 	    do_cleanups (terminate_bp_cleanup);
1185 	    gdb_assert (retval != NULL);
1186 	    return retval;
1187 	  }
1188 
1189 	/* Didn't complete.  Restore previous state machine, and
1190 	   handle the error.  */
1191 	tp->thread_fsm = saved_sm;
1192       }
1193   }
1194 
1195   /* Rethrow an error if we got one trying to run the inferior.  */
1196 
1197   if (e.reason < 0)
1198     {
1199       const char *name = get_function_name (funaddr,
1200                                             name_buf, sizeof (name_buf));
1201 
1202       discard_infcall_control_state (inf_status);
1203 
1204       /* We could discard the dummy frame here if the program exited,
1205          but it will get garbage collected the next time the program is
1206          run anyway.  */
1207 
1208       switch (e.reason)
1209 	{
1210 	case RETURN_ERROR:
1211 	  throw_error (e.error, _("%s\n\
1212 An error occurred while in a function called from GDB.\n\
1213 Evaluation of the expression containing the function\n\
1214 (%s) will be abandoned.\n\
1215 When the function is done executing, GDB will silently stop."),
1216 		       e.message, name);
1217 	case RETURN_QUIT:
1218 	default:
1219 	  throw_exception (e);
1220 	}
1221     }
1222 
1223   /* If the program has exited, or we stopped at a different thread,
1224      exit and inform the user.  */
1225 
1226   if (! target_has_execution)
1227     {
1228       const char *name = get_function_name (funaddr,
1229 					    name_buf, sizeof (name_buf));
1230 
1231       /* If we try to restore the inferior status,
1232 	 we'll crash as the inferior is no longer running.  */
1233       discard_infcall_control_state (inf_status);
1234 
1235       /* We could discard the dummy frame here given that the program exited,
1236          but it will get garbage collected the next time the program is
1237          run anyway.  */
1238 
1239       error (_("The program being debugged exited while in a function "
1240 	       "called from GDB.\n"
1241 	       "Evaluation of the expression containing the function\n"
1242 	       "(%s) will be abandoned."),
1243 	     name);
1244     }
1245 
1246   if (! ptid_equal (call_thread_ptid, inferior_ptid))
1247     {
1248       const char *name = get_function_name (funaddr,
1249 					    name_buf, sizeof (name_buf));
1250 
1251       /* We've switched threads.  This can happen if another thread gets a
1252 	 signal or breakpoint while our thread was running.
1253 	 There's no point in restoring the inferior status,
1254 	 we're in a different thread.  */
1255       discard_infcall_control_state (inf_status);
1256       /* Keep the dummy frame record, if the user switches back to the
1257 	 thread with the hand-call, we'll need it.  */
1258       if (stopped_by_random_signal)
1259 	error (_("\
1260 The program received a signal in another thread while\n\
1261 making a function call from GDB.\n\
1262 Evaluation of the expression containing the function\n\
1263 (%s) will be abandoned.\n\
1264 When the function is done executing, GDB will silently stop."),
1265 	       name);
1266       else
1267 	error (_("\
1268 The program stopped in another thread while making a function call from GDB.\n\
1269 Evaluation of the expression containing the function\n\
1270 (%s) will be abandoned.\n\
1271 When the function is done executing, GDB will silently stop."),
1272 	       name);
1273     }
1274 
1275     {
1276       /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop.  */
1277       char *name = xstrdup (get_function_name (funaddr,
1278 					       name_buf, sizeof (name_buf)));
1279       make_cleanup (xfree, name);
1280 
1281 
1282       if (stopped_by_random_signal)
1283 	{
1284 	  /* We stopped inside the FUNCTION because of a random
1285 	     signal.  Further execution of the FUNCTION is not
1286 	     allowed.  */
1287 
1288 	  if (unwind_on_signal_p)
1289 	    {
1290 	      /* The user wants the context restored.  */
1291 
1292 	      /* We must get back to the frame we were before the
1293 		 dummy call.  */
1294 	      dummy_frame_pop (dummy_id, call_thread_ptid);
1295 
1296 	      /* We also need to restore inferior status to that before the
1297 		 dummy call.  */
1298 	      restore_infcall_control_state (inf_status);
1299 
1300 	      /* FIXME: Insert a bunch of wrap_here; name can be very
1301 		 long if it's a C++ name with arguments and stuff.  */
1302 	      error (_("\
1303 The program being debugged was signaled while in a function called from GDB.\n\
1304 GDB has restored the context to what it was before the call.\n\
1305 To change this behavior use \"set unwindonsignal off\".\n\
1306 Evaluation of the expression containing the function\n\
1307 (%s) will be abandoned."),
1308 		     name);
1309 	    }
1310 	  else
1311 	    {
1312 	      /* The user wants to stay in the frame where we stopped
1313 		 (default).
1314 		 Discard inferior status, we're not at the same point
1315 		 we started at.  */
1316 	      discard_infcall_control_state (inf_status);
1317 
1318 	      /* FIXME: Insert a bunch of wrap_here; name can be very
1319 		 long if it's a C++ name with arguments and stuff.  */
1320 	      error (_("\
1321 The program being debugged was signaled while in a function called from GDB.\n\
1322 GDB remains in the frame where the signal was received.\n\
1323 To change this behavior use \"set unwindonsignal on\".\n\
1324 Evaluation of the expression containing the function\n\
1325 (%s) will be abandoned.\n\
1326 When the function is done executing, GDB will silently stop."),
1327 		     name);
1328 	    }
1329 	}
1330 
1331       if (stop_stack_dummy == STOP_STD_TERMINATE)
1332 	{
1333 	  /* We must get back to the frame we were before the dummy
1334 	     call.  */
1335 	  dummy_frame_pop (dummy_id, call_thread_ptid);
1336 
1337 	  /* We also need to restore inferior status to that before
1338 	     the dummy call.  */
1339 	  restore_infcall_control_state (inf_status);
1340 
1341 	  error (_("\
1342 The program being debugged entered a std::terminate call, most likely\n\
1343 caused by an unhandled C++ exception.  GDB blocked this call in order\n\
1344 to prevent the program from being terminated, and has restored the\n\
1345 context to its original state before the call.\n\
1346 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1347 Evaluation of the expression containing the function (%s)\n\
1348 will be abandoned."),
1349 		 name);
1350 	}
1351       else if (stop_stack_dummy == STOP_NONE)
1352 	{
1353 
1354 	  /* We hit a breakpoint inside the FUNCTION.
1355 	     Keep the dummy frame, the user may want to examine its state.
1356 	     Discard inferior status, we're not at the same point
1357 	     we started at.  */
1358 	  discard_infcall_control_state (inf_status);
1359 
1360 	  /* The following error message used to say "The expression
1361 	     which contained the function call has been discarded."
1362 	     It is a hard concept to explain in a few words.  Ideally,
1363 	     GDB would be able to resume evaluation of the expression
1364 	     when the function finally is done executing.  Perhaps
1365 	     someday this will be implemented (it would not be easy).  */
1366 	  /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1367 	     a C++ name with arguments and stuff.  */
1368 	  error (_("\
1369 The program being debugged stopped while in a function called from GDB.\n\
1370 Evaluation of the expression containing the function\n\
1371 (%s) will be abandoned.\n\
1372 When the function is done executing, GDB will silently stop."),
1373 		 name);
1374 	}
1375 
1376     }
1377 
1378   /* The above code errors out, so ...  */
1379   gdb_assert_not_reached ("... should not be here");
1380 }
1381 
1382 
1383 /* Provide a prototype to silence -Wmissing-prototypes.  */
1384 void _initialize_infcall (void);
1385 
1386 void
1387 _initialize_infcall (void)
1388 {
1389   add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1390 			   &coerce_float_to_double_p, _("\
1391 Set coercion of floats to doubles when calling functions."), _("\
1392 Show coercion of floats to doubles when calling functions"), _("\
1393 Variables of type float should generally be converted to doubles before\n\
1394 calling an unprototyped function, and left alone when calling a prototyped\n\
1395 function.  However, some older debug info formats do not provide enough\n\
1396 information to determine that a function is prototyped.  If this flag is\n\
1397 set, GDB will perform the conversion for a function it considers\n\
1398 unprototyped.\n\
1399 The default is to perform the conversion.\n"),
1400 			   NULL,
1401 			   show_coerce_float_to_double_p,
1402 			   &setlist, &showlist);
1403 
1404   add_setshow_boolean_cmd ("unwindonsignal", no_class,
1405 			   &unwind_on_signal_p, _("\
1406 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1407 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1408 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1409 is received while in a function called from gdb (call dummy).  If set, gdb\n\
1410 unwinds the stack and restore the context to what as it was before the call.\n\
1411 The default is to stop in the frame where the signal was received."),
1412 			   NULL,
1413 			   show_unwind_on_signal_p,
1414 			   &setlist, &showlist);
1415 
1416   add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1417 			   &unwind_on_terminating_exception_p, _("\
1418 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1419 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1420 			   _("\
1421 The unwind on terminating exception flag lets the user determine\n\
1422 what gdb should do if a std::terminate() call is made from the\n\
1423 default exception handler.  If set, gdb unwinds the stack and restores\n\
1424 the context to what it was before the call.  If unset, gdb allows the\n\
1425 std::terminate call to proceed.\n\
1426 The default is to unwind the frame."),
1427 			   NULL,
1428 			   show_unwind_on_terminating_exception_p,
1429 			   &setlist, &showlist);
1430 
1431 }
1432