xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/ia64-linux-nat.c (revision d16b7486a53dcb8072b60ec6fcb4373a2d0c27b7)
1 /* Functions specific to running gdb native on IA-64 running
2    GNU/Linux.
3 
4    Copyright (C) 1999-2020 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdbarch.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "ia64-tdep.h"
28 #include "linux-nat.h"
29 
30 #include <signal.h>
31 #include "nat/gdb_ptrace.h"
32 #include "gdbsupport/gdb_wait.h"
33 #ifdef HAVE_SYS_REG_H
34 #include <sys/reg.h>
35 #endif
36 #include <sys/syscall.h>
37 #include <sys/user.h>
38 
39 #include <asm/ptrace_offsets.h>
40 #include <sys/procfs.h>
41 
42 /* Prototypes for supply_gregset etc.  */
43 #include "gregset.h"
44 
45 #include "inf-ptrace.h"
46 
47 class ia64_linux_nat_target final : public linux_nat_target
48 {
49 public:
50   /* Add our register access methods.  */
51   void fetch_registers (struct regcache *, int) override;
52   void store_registers (struct regcache *, int) override;
53 
54   enum target_xfer_status xfer_partial (enum target_object object,
55 					const char *annex,
56 					gdb_byte *readbuf,
57 					const gdb_byte *writebuf,
58 					ULONGEST offset, ULONGEST len,
59 					ULONGEST *xfered_len) override;
60 
61   /* Override watchpoint routines.  */
62 
63   /* The IA-64 architecture can step over a watch point (without
64      triggering it again) if the "dd" (data debug fault disable) bit
65      in the processor status word is set.
66 
67      This PSR bit is set in
68      ia64_linux_nat_target::stopped_by_watchpoint when the code there
69      has determined that a hardware watchpoint has indeed been hit.
70      The CPU will then be able to execute one instruction without
71      triggering a watchpoint.  */
72   bool have_steppable_watchpoint () override { return true; }
73 
74   int can_use_hw_breakpoint (enum bptype, int, int) override;
75   bool stopped_by_watchpoint () override;
76   bool stopped_data_address (CORE_ADDR *) override;
77   int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
78 			 struct expression *) override;
79   int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
80 			 struct expression *) override;
81   /* Override linux_nat_target low methods.  */
82   void low_new_thread (struct lwp_info *lp) override;
83   bool low_status_is_event (int status) override;
84 
85   void enable_watchpoints_in_psr (ptid_t ptid);
86 };
87 
88 static ia64_linux_nat_target the_ia64_linux_nat_target;
89 
90 /* These must match the order of the register names.
91 
92    Some sort of lookup table is needed because the offsets associated
93    with the registers are all over the board.  */
94 
95 static int u_offsets[] =
96   {
97     /* general registers */
98     -1,		/* gr0 not available; i.e, it's always zero.  */
99     PT_R1,
100     PT_R2,
101     PT_R3,
102     PT_R4,
103     PT_R5,
104     PT_R6,
105     PT_R7,
106     PT_R8,
107     PT_R9,
108     PT_R10,
109     PT_R11,
110     PT_R12,
111     PT_R13,
112     PT_R14,
113     PT_R15,
114     PT_R16,
115     PT_R17,
116     PT_R18,
117     PT_R19,
118     PT_R20,
119     PT_R21,
120     PT_R22,
121     PT_R23,
122     PT_R24,
123     PT_R25,
124     PT_R26,
125     PT_R27,
126     PT_R28,
127     PT_R29,
128     PT_R30,
129     PT_R31,
130     /* gr32 through gr127 not directly available via the ptrace interface.  */
131     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
132     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
133     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
134     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
135     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
136     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
137     /* Floating point registers */
138     -1, -1,	/* f0 and f1 not available (f0 is +0.0 and f1 is +1.0).  */
139     PT_F2,
140     PT_F3,
141     PT_F4,
142     PT_F5,
143     PT_F6,
144     PT_F7,
145     PT_F8,
146     PT_F9,
147     PT_F10,
148     PT_F11,
149     PT_F12,
150     PT_F13,
151     PT_F14,
152     PT_F15,
153     PT_F16,
154     PT_F17,
155     PT_F18,
156     PT_F19,
157     PT_F20,
158     PT_F21,
159     PT_F22,
160     PT_F23,
161     PT_F24,
162     PT_F25,
163     PT_F26,
164     PT_F27,
165     PT_F28,
166     PT_F29,
167     PT_F30,
168     PT_F31,
169     PT_F32,
170     PT_F33,
171     PT_F34,
172     PT_F35,
173     PT_F36,
174     PT_F37,
175     PT_F38,
176     PT_F39,
177     PT_F40,
178     PT_F41,
179     PT_F42,
180     PT_F43,
181     PT_F44,
182     PT_F45,
183     PT_F46,
184     PT_F47,
185     PT_F48,
186     PT_F49,
187     PT_F50,
188     PT_F51,
189     PT_F52,
190     PT_F53,
191     PT_F54,
192     PT_F55,
193     PT_F56,
194     PT_F57,
195     PT_F58,
196     PT_F59,
197     PT_F60,
198     PT_F61,
199     PT_F62,
200     PT_F63,
201     PT_F64,
202     PT_F65,
203     PT_F66,
204     PT_F67,
205     PT_F68,
206     PT_F69,
207     PT_F70,
208     PT_F71,
209     PT_F72,
210     PT_F73,
211     PT_F74,
212     PT_F75,
213     PT_F76,
214     PT_F77,
215     PT_F78,
216     PT_F79,
217     PT_F80,
218     PT_F81,
219     PT_F82,
220     PT_F83,
221     PT_F84,
222     PT_F85,
223     PT_F86,
224     PT_F87,
225     PT_F88,
226     PT_F89,
227     PT_F90,
228     PT_F91,
229     PT_F92,
230     PT_F93,
231     PT_F94,
232     PT_F95,
233     PT_F96,
234     PT_F97,
235     PT_F98,
236     PT_F99,
237     PT_F100,
238     PT_F101,
239     PT_F102,
240     PT_F103,
241     PT_F104,
242     PT_F105,
243     PT_F106,
244     PT_F107,
245     PT_F108,
246     PT_F109,
247     PT_F110,
248     PT_F111,
249     PT_F112,
250     PT_F113,
251     PT_F114,
252     PT_F115,
253     PT_F116,
254     PT_F117,
255     PT_F118,
256     PT_F119,
257     PT_F120,
258     PT_F121,
259     PT_F122,
260     PT_F123,
261     PT_F124,
262     PT_F125,
263     PT_F126,
264     PT_F127,
265     /* Predicate registers - we don't fetch these individually.  */
266     -1, -1, -1, -1, -1, -1, -1, -1,
267     -1, -1, -1, -1, -1, -1, -1, -1,
268     -1, -1, -1, -1, -1, -1, -1, -1,
269     -1, -1, -1, -1, -1, -1, -1, -1,
270     -1, -1, -1, -1, -1, -1, -1, -1,
271     -1, -1, -1, -1, -1, -1, -1, -1,
272     -1, -1, -1, -1, -1, -1, -1, -1,
273     -1, -1, -1, -1, -1, -1, -1, -1,
274     /* branch registers */
275     PT_B0,
276     PT_B1,
277     PT_B2,
278     PT_B3,
279     PT_B4,
280     PT_B5,
281     PT_B6,
282     PT_B7,
283     /* Virtual frame pointer and virtual return address pointer.  */
284     -1, -1,
285     /* other registers */
286     PT_PR,
287     PT_CR_IIP,	/* ip */
288     PT_CR_IPSR, /* psr */
289     PT_CFM,	/* cfm */
290     /* kernel registers not visible via ptrace interface (?)  */
291     -1, -1, -1, -1, -1, -1, -1, -1,
292     /* hole */
293     -1, -1, -1, -1, -1, -1, -1, -1,
294     PT_AR_RSC,
295     PT_AR_BSP,
296     PT_AR_BSPSTORE,
297     PT_AR_RNAT,
298     -1,
299     -1,		/* Not available: FCR, IA32 floating control register.  */
300     -1, -1,
301     -1,		/* Not available: EFLAG */
302     -1,		/* Not available: CSD */
303     -1,		/* Not available: SSD */
304     -1,		/* Not available: CFLG */
305     -1,		/* Not available: FSR */
306     -1,		/* Not available: FIR */
307     -1,		/* Not available: FDR */
308     -1,
309     PT_AR_CCV,
310     -1, -1, -1,
311     PT_AR_UNAT,
312     -1, -1, -1,
313     PT_AR_FPSR,
314     -1, -1, -1,
315     -1,		/* Not available: ITC */
316     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
317     -1, -1, -1, -1, -1, -1, -1, -1, -1,
318     PT_AR_PFS,
319     PT_AR_LC,
320     PT_AR_EC,
321     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
322     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
323     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
324     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
325     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
326     -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
327     -1,
328     /* nat bits - not fetched directly; instead we obtain these bits from
329        either rnat or unat or from memory.  */
330     -1, -1, -1, -1, -1, -1, -1, -1,
331     -1, -1, -1, -1, -1, -1, -1, -1,
332     -1, -1, -1, -1, -1, -1, -1, -1,
333     -1, -1, -1, -1, -1, -1, -1, -1,
334     -1, -1, -1, -1, -1, -1, -1, -1,
335     -1, -1, -1, -1, -1, -1, -1, -1,
336     -1, -1, -1, -1, -1, -1, -1, -1,
337     -1, -1, -1, -1, -1, -1, -1, -1,
338     -1, -1, -1, -1, -1, -1, -1, -1,
339     -1, -1, -1, -1, -1, -1, -1, -1,
340     -1, -1, -1, -1, -1, -1, -1, -1,
341     -1, -1, -1, -1, -1, -1, -1, -1,
342     -1, -1, -1, -1, -1, -1, -1, -1,
343     -1, -1, -1, -1, -1, -1, -1, -1,
344     -1, -1, -1, -1, -1, -1, -1, -1,
345     -1, -1, -1, -1, -1, -1, -1, -1,
346   };
347 
348 static CORE_ADDR
349 ia64_register_addr (struct gdbarch *gdbarch, int regno)
350 {
351   CORE_ADDR addr;
352 
353   if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
354     error (_("Invalid register number %d."), regno);
355 
356   if (u_offsets[regno] == -1)
357     addr = 0;
358   else
359     addr = (CORE_ADDR) u_offsets[regno];
360 
361   return addr;
362 }
363 
364 static int
365 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
366 {
367   return regno < 0
368 	 || regno >= gdbarch_num_regs (gdbarch)
369 	 || u_offsets[regno] == -1;
370 }
371 
372 static int
373 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
374 {
375   /* Rationale behind not permitting stores to bspstore...
376 
377      The IA-64 architecture provides bspstore and bsp which refer
378      memory locations in the RSE's backing store.  bspstore is the
379      next location which will be written when the RSE needs to write
380      to memory.  bsp is the address at which r32 in the current frame
381      would be found if it were written to the backing store.
382 
383      The IA-64 architecture provides read-only access to bsp and
384      read/write access to bspstore (but only when the RSE is in
385      the enforced lazy mode).  It should be noted that stores
386      to bspstore also affect the value of bsp.  Changing bspstore
387      does not affect the number of dirty entries between bspstore
388      and bsp, so changing bspstore by N words will also cause bsp
389      to be changed by (roughly) N as well.  (It could be N-1 or N+1
390      depending upon where the NaT collection bits fall.)
391 
392      OTOH, the Linux kernel provides read/write access to bsp (and
393      currently read/write access to bspstore as well).  But it
394      is definitely the case that if you change one, the other
395      will change at the same time.  It is more useful to gdb to
396      be able to change bsp.  So in order to prevent strange and
397      undesirable things from happening when a dummy stack frame
398      is popped (after calling an inferior function), we allow
399      bspstore to be read, but not written.  (Note that popping
400      a (generic) dummy stack frame causes all registers that
401      were previously read from the inferior process to be written
402      back.)  */
403 
404   return regno < 0
405 	 || regno >= gdbarch_num_regs (gdbarch)
406 	 || u_offsets[regno] == -1
407          || regno == IA64_BSPSTORE_REGNUM;
408 }
409 
410 void
411 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
412 {
413   int regi;
414   const greg_t *regp = (const greg_t *) gregsetp;
415 
416   for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
417     {
418       regcache->raw_supply (regi, regp + (regi - IA64_GR0_REGNUM));
419     }
420 
421   /* FIXME: NAT collection bits are at index 32; gotta deal with these
422      somehow...  */
423 
424   regcache->raw_supply (IA64_PR_REGNUM, regp + 33);
425 
426   for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
427     {
428       regcache->raw_supply (regi, regp + 34 + (regi - IA64_BR0_REGNUM));
429     }
430 
431   regcache->raw_supply (IA64_IP_REGNUM, regp + 42);
432   regcache->raw_supply (IA64_CFM_REGNUM, regp + 43);
433   regcache->raw_supply (IA64_PSR_REGNUM, regp + 44);
434   regcache->raw_supply (IA64_RSC_REGNUM, regp + 45);
435   regcache->raw_supply (IA64_BSP_REGNUM, regp + 46);
436   regcache->raw_supply (IA64_BSPSTORE_REGNUM, regp + 47);
437   regcache->raw_supply (IA64_RNAT_REGNUM, regp + 48);
438   regcache->raw_supply (IA64_CCV_REGNUM, regp + 49);
439   regcache->raw_supply (IA64_UNAT_REGNUM, regp + 50);
440   regcache->raw_supply (IA64_FPSR_REGNUM, regp + 51);
441   regcache->raw_supply (IA64_PFS_REGNUM, regp + 52);
442   regcache->raw_supply (IA64_LC_REGNUM, regp + 53);
443   regcache->raw_supply (IA64_EC_REGNUM, regp + 54);
444 }
445 
446 void
447 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
448 {
449   int regi;
450   greg_t *regp = (greg_t *) gregsetp;
451 
452 #define COPY_REG(_idx_,_regi_) \
453   if ((regno == -1) || regno == _regi_) \
454     regcache->raw_collect (_regi_, regp + _idx_)
455 
456   for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
457     {
458       COPY_REG (regi - IA64_GR0_REGNUM, regi);
459     }
460 
461   /* FIXME: NAT collection bits at index 32?  */
462 
463   COPY_REG (33, IA64_PR_REGNUM);
464 
465   for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
466     {
467       COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
468     }
469 
470   COPY_REG (42, IA64_IP_REGNUM);
471   COPY_REG (43, IA64_CFM_REGNUM);
472   COPY_REG (44, IA64_PSR_REGNUM);
473   COPY_REG (45, IA64_RSC_REGNUM);
474   COPY_REG (46, IA64_BSP_REGNUM);
475   COPY_REG (47, IA64_BSPSTORE_REGNUM);
476   COPY_REG (48, IA64_RNAT_REGNUM);
477   COPY_REG (49, IA64_CCV_REGNUM);
478   COPY_REG (50, IA64_UNAT_REGNUM);
479   COPY_REG (51, IA64_FPSR_REGNUM);
480   COPY_REG (52, IA64_PFS_REGNUM);
481   COPY_REG (53, IA64_LC_REGNUM);
482   COPY_REG (54, IA64_EC_REGNUM);
483 }
484 
485 /*  Given a pointer to a floating point register set in /proc format
486    (fpregset_t *), unpack the register contents and supply them as gdb's
487    idea of the current floating point register values.  */
488 
489 void
490 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
491 {
492   int regi;
493   const char *from;
494   const gdb_byte f_zero[16] = { 0 };
495   const gdb_byte f_one[16] =
496     { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
497 
498   /* Kernel generated cores have fr1==0 instead of 1.0.  Older GDBs
499      did the same.  So ignore whatever might be recorded in fpregset_t
500      for fr0/fr1 and always supply their expected values.  */
501 
502   /* fr0 is always read as zero.  */
503   regcache->raw_supply (IA64_FR0_REGNUM, f_zero);
504   /* fr1 is always read as one (1.0).  */
505   regcache->raw_supply (IA64_FR1_REGNUM, f_one);
506 
507   for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
508     {
509       from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
510       regcache->raw_supply (regi, from);
511     }
512 }
513 
514 /*  Given a pointer to a floating point register set in /proc format
515    (fpregset_t *), update the register specified by REGNO from gdb's idea
516    of the current floating point register set.  If REGNO is -1, update
517    them all.  */
518 
519 void
520 fill_fpregset (const struct regcache *regcache,
521 	       fpregset_t *fpregsetp, int regno)
522 {
523   int regi;
524 
525   for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
526     {
527       if ((regno == -1) || (regno == regi))
528 	regcache->raw_collect (regi, &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
529     }
530 }
531 
532 #define IA64_PSR_DB (1UL << 24)
533 #define IA64_PSR_DD (1UL << 39)
534 
535 void
536 ia64_linux_nat_target::enable_watchpoints_in_psr (ptid_t ptid)
537 {
538   struct regcache *regcache = get_thread_regcache (this, ptid);
539   ULONGEST psr;
540 
541   regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
542   if (!(psr & IA64_PSR_DB))
543     {
544       psr |= IA64_PSR_DB;	/* Set the db bit - this enables hardware
545 			           watchpoints and breakpoints.  */
546       regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
547     }
548 }
549 
550 static long debug_registers[8];
551 
552 static void
553 store_debug_register (ptid_t ptid, int idx, long val)
554 {
555   int tid;
556 
557   tid = ptid.lwp ();
558   if (tid == 0)
559     tid = ptid.pid ();
560 
561   (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
562 }
563 
564 static void
565 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
566 			   long *dbr_mask)
567 {
568   if (dbr_addr)
569     store_debug_register (ptid, 2 * idx, *dbr_addr);
570   if (dbr_mask)
571     store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
572 }
573 
574 static int
575 is_power_of_2 (int val)
576 {
577   int i, onecount;
578 
579   onecount = 0;
580   for (i = 0; i < 8 * sizeof (val); i++)
581     if (val & (1 << i))
582       onecount++;
583 
584   return onecount <= 1;
585 }
586 
587 int
588 ia64_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
589 					  enum target_hw_bp_type type,
590 					  struct expression *cond)
591 {
592   struct lwp_info *lp;
593   int idx;
594   long dbr_addr, dbr_mask;
595   int max_watchpoints = 4;
596 
597   if (len <= 0 || !is_power_of_2 (len))
598     return -1;
599 
600   for (idx = 0; idx < max_watchpoints; idx++)
601     {
602       dbr_mask = debug_registers[idx * 2 + 1];
603       if ((dbr_mask & (0x3UL << 62)) == 0)
604 	{
605 	  /* Exit loop if both r and w bits clear.  */
606 	  break;
607 	}
608     }
609 
610   if (idx == max_watchpoints)
611     return -1;
612 
613   dbr_addr = (long) addr;
614   dbr_mask = (~(len - 1) & 0x00ffffffffffffffL);  /* construct mask to match */
615   dbr_mask |= 0x0800000000000000L;           /* Only match privilege level 3 */
616   switch (type)
617     {
618     case hw_write:
619       dbr_mask |= (1L << 62);			/* Set w bit */
620       break;
621     case hw_read:
622       dbr_mask |= (1L << 63);			/* Set r bit */
623       break;
624     case hw_access:
625       dbr_mask |= (3L << 62);			/* Set both r and w bits */
626       break;
627     default:
628       return -1;
629     }
630 
631   debug_registers[2 * idx] = dbr_addr;
632   debug_registers[2 * idx + 1] = dbr_mask;
633   ALL_LWPS (lp)
634     {
635       store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
636       enable_watchpoints_in_psr (lp->ptid);
637     }
638 
639   return 0;
640 }
641 
642 int
643 ia64_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
644 					  enum target_hw_bp_type type,
645 					  struct expression *cond)
646 {
647   int idx;
648   long dbr_addr, dbr_mask;
649   int max_watchpoints = 4;
650 
651   if (len <= 0 || !is_power_of_2 (len))
652     return -1;
653 
654   for (idx = 0; idx < max_watchpoints; idx++)
655     {
656       dbr_addr = debug_registers[2 * idx];
657       dbr_mask = debug_registers[2 * idx + 1];
658       if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
659 	{
660 	  struct lwp_info *lp;
661 
662 	  debug_registers[2 * idx] = 0;
663 	  debug_registers[2 * idx + 1] = 0;
664 	  dbr_addr = 0;
665 	  dbr_mask = 0;
666 
667 	  ALL_LWPS (lp)
668 	    store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
669 
670 	  return 0;
671 	}
672     }
673   return -1;
674 }
675 
676 void
677 ia64_linux_nat_target::low_new_thread (struct lwp_info *lp)
678 {
679   int i, any;
680 
681   any = 0;
682   for (i = 0; i < 8; i++)
683     {
684       if (debug_registers[i] != 0)
685 	any = 1;
686       store_debug_register (lp->ptid, i, debug_registers[i]);
687     }
688 
689   if (any)
690     enable_watchpoints_in_psr (lp->ptid);
691 }
692 
693 bool
694 ia64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
695 {
696   CORE_ADDR psr;
697   siginfo_t siginfo;
698   struct regcache *regcache = get_current_regcache ();
699 
700   if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
701     return false;
702 
703   if (siginfo.si_signo != SIGTRAP
704       || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
705     return false;
706 
707   regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
708   psr |= IA64_PSR_DD;	/* Set the dd bit - this will disable the watchpoint
709                            for the next instruction.  */
710   regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
711 
712   *addr_p = (CORE_ADDR) siginfo.si_addr;
713   return true;
714 }
715 
716 bool
717 ia64_linux_nat_target::stopped_by_watchpoint ()
718 {
719   CORE_ADDR addr;
720   return stopped_data_address (&addr);
721 }
722 
723 int
724 ia64_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
725 					      int cnt, int othertype)
726 {
727   return 1;
728 }
729 
730 
731 /* Fetch register REGNUM from the inferior.  */
732 
733 static void
734 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
735 {
736   struct gdbarch *gdbarch = regcache->arch ();
737   CORE_ADDR addr;
738   size_t size;
739   PTRACE_TYPE_RET *buf;
740   pid_t pid;
741   int i;
742 
743   /* r0 cannot be fetched but is always zero.  */
744   if (regnum == IA64_GR0_REGNUM)
745     {
746       const gdb_byte zero[8] = { 0 };
747 
748       gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
749       regcache->raw_supply (regnum, zero);
750       return;
751     }
752 
753   /* fr0 cannot be fetched but is always zero.  */
754   if (regnum == IA64_FR0_REGNUM)
755     {
756       const gdb_byte f_zero[16] = { 0 };
757 
758       gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
759       regcache->raw_supply (regnum, f_zero);
760       return;
761     }
762 
763   /* fr1 cannot be fetched but is always one (1.0).  */
764   if (regnum == IA64_FR1_REGNUM)
765     {
766       const gdb_byte f_one[16] =
767 	{ 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
768 
769       gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
770       regcache->raw_supply (regnum, f_one);
771       return;
772     }
773 
774   if (ia64_cannot_fetch_register (gdbarch, regnum))
775     {
776       regcache->raw_supply (regnum, NULL);
777       return;
778     }
779 
780   pid = get_ptrace_pid (regcache->ptid ());
781 
782   /* This isn't really an address, but ptrace thinks of it as one.  */
783   addr = ia64_register_addr (gdbarch, regnum);
784   size = register_size (gdbarch, regnum);
785 
786   gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
787   buf = (PTRACE_TYPE_RET *) alloca (size);
788 
789   /* Read the register contents from the inferior a chunk at a time.  */
790   for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
791     {
792       errno = 0;
793       buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
794       if (errno != 0)
795 	error (_("Couldn't read register %s (#%d): %s."),
796 	       gdbarch_register_name (gdbarch, regnum),
797 	       regnum, safe_strerror (errno));
798 
799       addr += sizeof (PTRACE_TYPE_RET);
800     }
801   regcache->raw_supply (regnum, buf);
802 }
803 
804 /* Fetch register REGNUM from the inferior.  If REGNUM is -1, do this
805    for all registers.  */
806 
807 void
808 ia64_linux_nat_target::fetch_registers (struct regcache *regcache, int regnum)
809 {
810   if (regnum == -1)
811     for (regnum = 0;
812 	 regnum < gdbarch_num_regs (regcache->arch ());
813 	 regnum++)
814       ia64_linux_fetch_register (regcache, regnum);
815   else
816     ia64_linux_fetch_register (regcache, regnum);
817 }
818 
819 /* Store register REGNUM into the inferior.  */
820 
821 static void
822 ia64_linux_store_register (const struct regcache *regcache, int regnum)
823 {
824   struct gdbarch *gdbarch = regcache->arch ();
825   CORE_ADDR addr;
826   size_t size;
827   PTRACE_TYPE_RET *buf;
828   pid_t pid;
829   int i;
830 
831   if (ia64_cannot_store_register (gdbarch, regnum))
832     return;
833 
834   pid = get_ptrace_pid (regcache->ptid ());
835 
836   /* This isn't really an address, but ptrace thinks of it as one.  */
837   addr = ia64_register_addr (gdbarch, regnum);
838   size = register_size (gdbarch, regnum);
839 
840   gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
841   buf = (PTRACE_TYPE_RET *) alloca (size);
842 
843   /* Write the register contents into the inferior a chunk at a time.  */
844   regcache->raw_collect (regnum, buf);
845   for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
846     {
847       errno = 0;
848       ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
849       if (errno != 0)
850 	error (_("Couldn't write register %s (#%d): %s."),
851 	       gdbarch_register_name (gdbarch, regnum),
852 	       regnum, safe_strerror (errno));
853 
854       addr += sizeof (PTRACE_TYPE_RET);
855     }
856 }
857 
858 /* Store register REGNUM back into the inferior.  If REGNUM is -1, do
859    this for all registers.  */
860 
861 void
862 ia64_linux_nat_target::store_registers (struct regcache *regcache, int regnum)
863 {
864   if (regnum == -1)
865     for (regnum = 0;
866 	 regnum < gdbarch_num_regs (regcache->arch ());
867 	 regnum++)
868       ia64_linux_store_register (regcache, regnum);
869   else
870     ia64_linux_store_register (regcache, regnum);
871 }
872 
873 /* Implement the xfer_partial target_ops method.  */
874 
875 enum target_xfer_status
876 ia64_linux_nat_target::xfer_partial (enum target_object object,
877 				     const char *annex,
878 				     gdb_byte *readbuf, const gdb_byte *writebuf,
879 				     ULONGEST offset, ULONGEST len,
880 				     ULONGEST *xfered_len)
881 {
882   if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
883     {
884       static long gate_table_size;
885       gdb_byte *tmp_buf;
886       long res;
887 
888       /* Probe for the table size once.  */
889       if (gate_table_size == 0)
890         gate_table_size = syscall (__NR_getunwind, NULL, 0);
891       if (gate_table_size < 0)
892 	return TARGET_XFER_E_IO;
893 
894       if (offset >= gate_table_size)
895 	return TARGET_XFER_EOF;
896 
897       tmp_buf = (gdb_byte *) alloca (gate_table_size);
898       res = syscall (__NR_getunwind, tmp_buf, gate_table_size);
899       if (res < 0)
900 	return TARGET_XFER_E_IO;
901       gdb_assert (res == gate_table_size);
902 
903       if (offset + len > gate_table_size)
904 	len = gate_table_size - offset;
905 
906       memcpy (readbuf, tmp_buf + offset, len);
907       *xfered_len = len;
908       return TARGET_XFER_OK;
909     }
910 
911   return linux_nat_target::xfer_partial (object, annex, readbuf, writebuf,
912 					 offset, len, xfered_len);
913 }
914 
915 /* For break.b instruction ia64 CPU forgets the immediate value and generates
916    SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
917    ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
918    difference for the signals here.  */
919 
920 bool
921 ia64_linux_nat_target::low_status_is_event (int status)
922 {
923   return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
924 				 || WSTOPSIG (status) == SIGILL);
925 }
926 
927 void _initialize_ia64_linux_nat ();
928 void
929 _initialize_ia64_linux_nat ()
930 {
931   /* Register the target.  */
932   linux_target = &the_ia64_linux_nat_target;
933   add_inf_child_target (&the_ia64_linux_nat_target);
934 }
935