xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/i386-linux-tdep.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /* Target-dependent code for GNU/Linux i386.
2 
3    Copyright (C) 2000-2017 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "frame.h"
23 #include "value.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "inferior.h"
27 #include "osabi.h"
28 #include "reggroups.h"
29 #include "dwarf2-frame.h"
30 #include "i386-tdep.h"
31 #include "i386-linux-tdep.h"
32 #include "linux-tdep.h"
33 #include "utils.h"
34 #include "glibc-tdep.h"
35 #include "solib-svr4.h"
36 #include "symtab.h"
37 #include "arch-utils.h"
38 #include "xml-syscall.h"
39 
40 #include "i387-tdep.h"
41 #include "x86-xstate.h"
42 
43 /* The syscall's XML filename for i386.  */
44 #define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
45 
46 #include "record-full.h"
47 #include "linux-record.h"
48 #include "features/i386/i386-linux.c"
49 #include "features/i386/i386-mmx-linux.c"
50 #include "features/i386/i386-mpx-linux.c"
51 #include "features/i386/i386-avx-mpx-linux.c"
52 #include "features/i386/i386-avx-linux.c"
53 #include "features/i386/i386-avx-avx512-linux.c"
54 #include "features/i386/i386-avx-mpx-avx512-pku-linux.c"
55 
56 /* Return non-zero, when the register is in the corresponding register
57    group.  Put the LINUX_ORIG_EAX register in the system group.  */
58 static int
59 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
60 				struct reggroup *group)
61 {
62   if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
63     return (group == system_reggroup
64 	    || group == save_reggroup
65 	    || group == restore_reggroup);
66   return i386_register_reggroup_p (gdbarch, regnum, group);
67 }
68 
69 
70 /* Recognizing signal handler frames.  */
71 
72 /* GNU/Linux has two flavors of signals.  Normal signal handlers, and
73    "realtime" (RT) signals.  The RT signals can provide additional
74    information to the signal handler if the SA_SIGINFO flag is set
75    when establishing a signal handler using `sigaction'.  It is not
76    unlikely that future versions of GNU/Linux will support SA_SIGINFO
77    for normal signals too.  */
78 
79 /* When the i386 Linux kernel calls a signal handler and the
80    SA_RESTORER flag isn't set, the return address points to a bit of
81    code on the stack.  This function returns whether the PC appears to
82    be within this bit of code.
83 
84    The instruction sequence for normal signals is
85        pop    %eax
86        mov    $0x77, %eax
87        int    $0x80
88    or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
89 
90    Checking for the code sequence should be somewhat reliable, because
91    the effect is to call the system call sigreturn.  This is unlikely
92    to occur anywhere other than in a signal trampoline.
93 
94    It kind of sucks that we have to read memory from the process in
95    order to identify a signal trampoline, but there doesn't seem to be
96    any other way.  Therefore we only do the memory reads if no
97    function name could be identified, which should be the case since
98    the code is on the stack.
99 
100    Detection of signal trampolines for handlers that set the
101    SA_RESTORER flag is in general not possible.  Unfortunately this is
102    what the GNU C Library has been doing for quite some time now.
103    However, as of version 2.1.2, the GNU C Library uses signal
104    trampolines (named __restore and __restore_rt) that are identical
105    to the ones used by the kernel.  Therefore, these trampolines are
106    supported too.  */
107 
108 #define LINUX_SIGTRAMP_INSN0	0x58	/* pop %eax */
109 #define LINUX_SIGTRAMP_OFFSET0	0
110 #define LINUX_SIGTRAMP_INSN1	0xb8	/* mov $NNNN, %eax */
111 #define LINUX_SIGTRAMP_OFFSET1	1
112 #define LINUX_SIGTRAMP_INSN2	0xcd	/* int */
113 #define LINUX_SIGTRAMP_OFFSET2	6
114 
115 static const gdb_byte linux_sigtramp_code[] =
116 {
117   LINUX_SIGTRAMP_INSN0,					/* pop %eax */
118   LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00,		/* mov $0x77, %eax */
119   LINUX_SIGTRAMP_INSN2, 0x80				/* int $0x80 */
120 };
121 
122 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
123 
124 /* If THIS_FRAME is a sigtramp routine, return the address of the
125    start of the routine.  Otherwise, return 0.  */
126 
127 static CORE_ADDR
128 i386_linux_sigtramp_start (struct frame_info *this_frame)
129 {
130   CORE_ADDR pc = get_frame_pc (this_frame);
131   gdb_byte buf[LINUX_SIGTRAMP_LEN];
132 
133   /* We only recognize a signal trampoline if PC is at the start of
134      one of the three instructions.  We optimize for finding the PC at
135      the start, as will be the case when the trampoline is not the
136      first frame on the stack.  We assume that in the case where the
137      PC is not at the start of the instruction sequence, there will be
138      a few trailing readable bytes on the stack.  */
139 
140   if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
141     return 0;
142 
143   if (buf[0] != LINUX_SIGTRAMP_INSN0)
144     {
145       int adjust;
146 
147       switch (buf[0])
148 	{
149 	case LINUX_SIGTRAMP_INSN1:
150 	  adjust = LINUX_SIGTRAMP_OFFSET1;
151 	  break;
152 	case LINUX_SIGTRAMP_INSN2:
153 	  adjust = LINUX_SIGTRAMP_OFFSET2;
154 	  break;
155 	default:
156 	  return 0;
157 	}
158 
159       pc -= adjust;
160 
161       if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
162 	return 0;
163     }
164 
165   if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
166     return 0;
167 
168   return pc;
169 }
170 
171 /* This function does the same for RT signals.  Here the instruction
172    sequence is
173        mov    $0xad, %eax
174        int    $0x80
175    or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
176 
177    The effect is to call the system call rt_sigreturn.  */
178 
179 #define LINUX_RT_SIGTRAMP_INSN0		0xb8 /* mov $NNNN, %eax */
180 #define LINUX_RT_SIGTRAMP_OFFSET0	0
181 #define LINUX_RT_SIGTRAMP_INSN1		0xcd /* int */
182 #define LINUX_RT_SIGTRAMP_OFFSET1	5
183 
184 static const gdb_byte linux_rt_sigtramp_code[] =
185 {
186   LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00,	/* mov $0xad, %eax */
187   LINUX_RT_SIGTRAMP_INSN1, 0x80				/* int $0x80 */
188 };
189 
190 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
191 
192 /* If THIS_FRAME is an RT sigtramp routine, return the address of the
193    start of the routine.  Otherwise, return 0.  */
194 
195 static CORE_ADDR
196 i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
197 {
198   CORE_ADDR pc = get_frame_pc (this_frame);
199   gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
200 
201   /* We only recognize a signal trampoline if PC is at the start of
202      one of the two instructions.  We optimize for finding the PC at
203      the start, as will be the case when the trampoline is not the
204      first frame on the stack.  We assume that in the case where the
205      PC is not at the start of the instruction sequence, there will be
206      a few trailing readable bytes on the stack.  */
207 
208   if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
209     return 0;
210 
211   if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
212     {
213       if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
214 	return 0;
215 
216       pc -= LINUX_RT_SIGTRAMP_OFFSET1;
217 
218       if (!safe_frame_unwind_memory (this_frame, pc, buf,
219 				     LINUX_RT_SIGTRAMP_LEN))
220 	return 0;
221     }
222 
223   if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
224     return 0;
225 
226   return pc;
227 }
228 
229 /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
230    routine.  */
231 
232 static int
233 i386_linux_sigtramp_p (struct frame_info *this_frame)
234 {
235   CORE_ADDR pc = get_frame_pc (this_frame);
236   const char *name;
237 
238   find_pc_partial_function (pc, &name, NULL, NULL);
239 
240   /* If we have NAME, we can optimize the search.  The trampolines are
241      named __restore and __restore_rt.  However, they aren't dynamically
242      exported from the shared C library, so the trampoline may appear to
243      be part of the preceding function.  This should always be sigaction,
244      __sigaction, or __libc_sigaction (all aliases to the same function).  */
245   if (name == NULL || strstr (name, "sigaction") != NULL)
246     return (i386_linux_sigtramp_start (this_frame) != 0
247 	    || i386_linux_rt_sigtramp_start (this_frame) != 0);
248 
249   return (strcmp ("__restore", name) == 0
250 	  || strcmp ("__restore_rt", name) == 0);
251 }
252 
253 /* Return one if the PC of THIS_FRAME is in a signal trampoline which
254    may have DWARF-2 CFI.  */
255 
256 static int
257 i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
258 				 struct frame_info *this_frame)
259 {
260   CORE_ADDR pc = get_frame_pc (this_frame);
261   const char *name;
262 
263   find_pc_partial_function (pc, &name, NULL, NULL);
264 
265   /* If a vsyscall DSO is in use, the signal trampolines may have these
266      names.  */
267   if (name && (strcmp (name, "__kernel_sigreturn") == 0
268 	       || strcmp (name, "__kernel_rt_sigreturn") == 0))
269     return 1;
270 
271   return 0;
272 }
273 
274 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>.  */
275 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
276 
277 /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
278    address of the associated sigcontext structure.  */
279 
280 static CORE_ADDR
281 i386_linux_sigcontext_addr (struct frame_info *this_frame)
282 {
283   struct gdbarch *gdbarch = get_frame_arch (this_frame);
284   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
285   CORE_ADDR pc;
286   CORE_ADDR sp;
287   gdb_byte buf[4];
288 
289   get_frame_register (this_frame, I386_ESP_REGNUM, buf);
290   sp = extract_unsigned_integer (buf, 4, byte_order);
291 
292   pc = i386_linux_sigtramp_start (this_frame);
293   if (pc)
294     {
295       /* The sigcontext structure lives on the stack, right after
296 	 the signum argument.  We determine the address of the
297 	 sigcontext structure by looking at the frame's stack
298 	 pointer.  Keep in mind that the first instruction of the
299 	 sigtramp code is "pop %eax".  If the PC is after this
300 	 instruction, adjust the returned value accordingly.  */
301       if (pc == get_frame_pc (this_frame))
302 	return sp + 4;
303       return sp;
304     }
305 
306   pc = i386_linux_rt_sigtramp_start (this_frame);
307   if (pc)
308     {
309       CORE_ADDR ucontext_addr;
310 
311       /* The sigcontext structure is part of the user context.  A
312 	 pointer to the user context is passed as the third argument
313 	 to the signal handler.  */
314       read_memory (sp + 8, buf, 4);
315       ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
316       return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
317     }
318 
319   error (_("Couldn't recognize signal trampoline."));
320   return 0;
321 }
322 
323 /* Set the program counter for process PTID to PC.  */
324 
325 static void
326 i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
327 {
328   regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
329 
330   /* We must be careful with modifying the program counter.  If we
331      just interrupted a system call, the kernel might try to restart
332      it when we resume the inferior.  On restarting the system call,
333      the kernel will try backing up the program counter even though it
334      no longer points at the system call.  This typically results in a
335      SIGSEGV or SIGILL.  We can prevent this by writing `-1' in the
336      "orig_eax" pseudo-register.
337 
338      Note that "orig_eax" is saved when setting up a dummy call frame.
339      This means that it is properly restored when that frame is
340      popped, and that the interrupted system call will be restarted
341      when we resume the inferior on return from a function call from
342      within GDB.  In all other cases the system call will not be
343      restarted.  */
344   regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
345 }
346 
347 /* Record all registers but IP register for process-record.  */
348 
349 static int
350 i386_all_but_ip_registers_record (struct regcache *regcache)
351 {
352   if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
353     return -1;
354   if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
355     return -1;
356   if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
357     return -1;
358   if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
359     return -1;
360   if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
361     return -1;
362   if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
363     return -1;
364   if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
365     return -1;
366   if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
367     return -1;
368   if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
369     return -1;
370 
371   return 0;
372 }
373 
374 /* i386_canonicalize_syscall maps from the native i386 Linux set
375    of syscall ids into a canonical set of syscall ids used by
376    process record (a mostly trivial mapping, since the canonical
377    set was originally taken from the i386 set).  */
378 
379 static enum gdb_syscall
380 i386_canonicalize_syscall (int syscall)
381 {
382   enum { i386_syscall_max = 499 };
383 
384   if (syscall <= i386_syscall_max)
385     return (enum gdb_syscall) syscall;
386   else
387     return gdb_sys_no_syscall;
388 }
389 
390 /* Value of the sigcode in case of a boundary fault.  */
391 
392 #define SIG_CODE_BONDARY_FAULT 3
393 
394 /* i386 GNU/Linux implementation of the handle_segmentation_fault
395    gdbarch hook.  Displays information related to MPX bound
396    violations.  */
397 void
398 i386_linux_handle_segmentation_fault (struct gdbarch *gdbarch,
399 				      struct ui_out *uiout)
400 {
401   /* -Wmaybe-uninitialized  */
402   CORE_ADDR lower_bound = 0, upper_bound = 0, access = 0;
403   int is_upper;
404   long sig_code = 0;
405 
406   if (!i386_mpx_enabled ())
407     return;
408 
409   TRY
410     {
411       /* Sigcode evaluates if the actual segfault is a boundary violation.  */
412       sig_code = parse_and_eval_long ("$_siginfo.si_code\n");
413 
414       lower_bound
415         = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._lower");
416       upper_bound
417         = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._upper");
418       access
419         = parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr");
420     }
421   CATCH (exception, RETURN_MASK_ALL)
422     {
423       return;
424     }
425   END_CATCH
426 
427   /* If this is not a boundary violation just return.  */
428   if (sig_code != SIG_CODE_BONDARY_FAULT)
429     return;
430 
431   is_upper = (access > upper_bound ? 1 : 0);
432 
433   uiout->text ("\n");
434   if (is_upper)
435     uiout->field_string ("sigcode-meaning", _("Upper bound violation"));
436   else
437     uiout->field_string ("sigcode-meaning", _("Lower bound violation"));
438 
439   uiout->text (_(" while accessing address "));
440   uiout->field_fmt ("bound-access", "%s", paddress (gdbarch, access));
441 
442   uiout->text (_("\nBounds: [lower = "));
443   uiout->field_fmt ("lower-bound", "%s", paddress (gdbarch, lower_bound));
444 
445   uiout->text (_(", upper = "));
446   uiout->field_fmt ("upper-bound", "%s", paddress (gdbarch, upper_bound));
447 
448   uiout->text (_("]"));
449 }
450 
451 /* Parse the arguments of current system call instruction and record
452    the values of the registers and memory that will be changed into
453    "record_arch_list".  This instruction is "int 0x80" (Linux
454    Kernel2.4) or "sysenter" (Linux Kernel 2.6).
455 
456    Return -1 if something wrong.  */
457 
458 static struct linux_record_tdep i386_linux_record_tdep;
459 
460 static int
461 i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
462 {
463   int ret;
464   LONGEST syscall_native;
465   enum gdb_syscall syscall_gdb;
466 
467   regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
468 
469   syscall_gdb = i386_canonicalize_syscall (syscall_native);
470 
471   if (syscall_gdb < 0)
472     {
473       printf_unfiltered (_("Process record and replay target doesn't "
474                            "support syscall number %s\n"),
475 			 plongest (syscall_native));
476       return -1;
477     }
478 
479   if (syscall_gdb == gdb_sys_sigreturn
480       || syscall_gdb == gdb_sys_rt_sigreturn)
481    {
482      if (i386_all_but_ip_registers_record (regcache))
483        return -1;
484      return 0;
485    }
486 
487   ret = record_linux_system_call (syscall_gdb, regcache,
488 				  &i386_linux_record_tdep);
489   if (ret)
490     return ret;
491 
492   /* Record the return value of the system call.  */
493   if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
494     return -1;
495 
496   return 0;
497 }
498 
499 #define I386_LINUX_xstate	270
500 #define I386_LINUX_frame_size	732
501 
502 static int
503 i386_linux_record_signal (struct gdbarch *gdbarch,
504                           struct regcache *regcache,
505                           enum gdb_signal signal)
506 {
507   ULONGEST esp;
508 
509   if (i386_all_but_ip_registers_record (regcache))
510     return -1;
511 
512   if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
513     return -1;
514 
515   /* Record the change in the stack.  */
516   regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
517   /* This is for xstate.
518      sp -= sizeof (struct _fpstate);  */
519   esp -= I386_LINUX_xstate;
520   /* This is for frame_size.
521      sp -= sizeof (struct rt_sigframe);  */
522   esp -= I386_LINUX_frame_size;
523   if (record_full_arch_list_add_mem (esp,
524 				     I386_LINUX_xstate + I386_LINUX_frame_size))
525     return -1;
526 
527   if (record_full_arch_list_add_end ())
528     return -1;
529 
530   return 0;
531 }
532 
533 
534 /* Core of the implementation for gdbarch get_syscall_number.  Get pending
535    syscall number from REGCACHE.  If there is no pending syscall -1 will be
536    returned.  Pending syscall means ptrace has stepped into the syscall but
537    another ptrace call will step out.  PC is right after the int $0x80
538    / syscall / sysenter instruction in both cases, PC does not change during
539    the second ptrace step.  */
540 
541 static LONGEST
542 i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
543 {
544   struct gdbarch *gdbarch = get_regcache_arch (regcache);
545   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
546   /* The content of a register.  */
547   gdb_byte buf[4];
548   /* The result.  */
549   LONGEST ret;
550 
551   /* Getting the system call number from the register.
552      When dealing with x86 architecture, this information
553      is stored at %eax register.  */
554   regcache_cooked_read (regcache, I386_LINUX_ORIG_EAX_REGNUM, buf);
555 
556   ret = extract_signed_integer (buf, 4, byte_order);
557 
558   return ret;
559 }
560 
561 /* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
562    compatible with gdbarch get_syscall_number method prototype.  */
563 
564 static LONGEST
565 i386_linux_get_syscall_number (struct gdbarch *gdbarch,
566                                ptid_t ptid)
567 {
568   struct regcache *regcache = get_thread_regcache (ptid);
569 
570   return i386_linux_get_syscall_number_from_regcache (regcache);
571 }
572 
573 /* The register sets used in GNU/Linux ELF core-dumps are identical to
574    the register sets in `struct user' that are used for a.out
575    core-dumps.  These are also used by ptrace(2).  The corresponding
576    types are `elf_gregset_t' for the general-purpose registers (with
577    `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
578    for the floating-point registers.
579 
580    Those types used to be available under the names `gregset_t' and
581    `fpregset_t' too, and GDB used those names in the past.  But those
582    names are now used for the register sets used in the `mcontext_t'
583    type, which have a different size and layout.  */
584 
585 /* Mapping between the general-purpose registers in `struct user'
586    format and GDB's register cache layout.  */
587 
588 /* From <sys/reg.h>.  */
589 int i386_linux_gregset_reg_offset[] =
590 {
591   6 * 4,			/* %eax */
592   1 * 4,			/* %ecx */
593   2 * 4,			/* %edx */
594   0 * 4,			/* %ebx */
595   15 * 4,			/* %esp */
596   5 * 4,			/* %ebp */
597   3 * 4,			/* %esi */
598   4 * 4,			/* %edi */
599   12 * 4,			/* %eip */
600   14 * 4,			/* %eflags */
601   13 * 4,			/* %cs */
602   16 * 4,			/* %ss */
603   7 * 4,			/* %ds */
604   8 * 4,			/* %es */
605   9 * 4,			/* %fs */
606   10 * 4,			/* %gs */
607   -1, -1, -1, -1, -1, -1, -1, -1,
608   -1, -1, -1, -1, -1, -1, -1, -1,
609   -1, -1, -1, -1, -1, -1, -1, -1,
610   -1,
611   -1, -1, -1, -1, -1, -1, -1, -1,
612   -1, -1, -1, -1,		  /* MPX registers BND0 ... BND3.  */
613   -1, -1,			  /* MPX registers BNDCFGU, BNDSTATUS.  */
614   -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512)  */
615   -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512)  */
616   -1,				  /* PKRU register  */
617   11 * 4,			  /* "orig_eax"  */
618 };
619 
620 /* Mapping between the general-purpose registers in `struct
621    sigcontext' format and GDB's register cache layout.  */
622 
623 /* From <asm/sigcontext.h>.  */
624 static int i386_linux_sc_reg_offset[] =
625 {
626   11 * 4,			/* %eax */
627   10 * 4,			/* %ecx */
628   9 * 4,			/* %edx */
629   8 * 4,			/* %ebx */
630   7 * 4,			/* %esp */
631   6 * 4,			/* %ebp */
632   5 * 4,			/* %esi */
633   4 * 4,			/* %edi */
634   14 * 4,			/* %eip */
635   16 * 4,			/* %eflags */
636   15 * 4,			/* %cs */
637   18 * 4,			/* %ss */
638   3 * 4,			/* %ds */
639   2 * 4,			/* %es */
640   1 * 4,			/* %fs */
641   0 * 4				/* %gs */
642 };
643 
644 /* Get XSAVE extended state xcr0 from core dump.  */
645 
646 uint64_t
647 i386_linux_core_read_xcr0 (bfd *abfd)
648 {
649   asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
650   uint64_t xcr0;
651 
652   if (xstate)
653     {
654       size_t size = bfd_section_size (abfd, xstate);
655 
656       /* Check extended state size.  */
657       if (size < X86_XSTATE_AVX_SIZE)
658 	xcr0 = X86_XSTATE_SSE_MASK;
659       else
660 	{
661 	  char contents[8];
662 
663 	  if (! bfd_get_section_contents (abfd, xstate, contents,
664 					  I386_LINUX_XSAVE_XCR0_OFFSET,
665 					  8))
666 	    {
667 	      warning (_("Couldn't read `xcr0' bytes from "
668 			 "`.reg-xstate' section in core file."));
669 	      return 0;
670 	    }
671 
672 	  xcr0 = bfd_get_64 (abfd, contents);
673 	}
674     }
675   else
676     xcr0 = 0;
677 
678   return xcr0;
679 }
680 
681 /* Get Linux/x86 target description from core dump.  */
682 
683 static const struct target_desc *
684 i386_linux_core_read_description (struct gdbarch *gdbarch,
685 				  struct target_ops *target,
686 				  bfd *abfd)
687 {
688   /* Linux/i386.  */
689   uint64_t xcr0 = i386_linux_core_read_xcr0 (abfd);
690 
691   switch ((xcr0 & X86_XSTATE_ALL_MASK))
692     {
693     case X86_XSTATE_AVX_MPX_AVX512_PKU_MASK:
694       return tdesc_i386_avx_mpx_avx512_pku_linux;
695     case X86_XSTATE_AVX_AVX512_MASK:
696       return tdesc_i386_avx_avx512_linux;
697     case X86_XSTATE_MPX_MASK:
698       return tdesc_i386_mpx_linux;
699     case X86_XSTATE_AVX_MPX_MASK:
700       return tdesc_i386_avx_mpx_linux;
701     case X86_XSTATE_AVX_MASK:
702       return tdesc_i386_avx_linux;
703     case X86_XSTATE_SSE_MASK:
704       return tdesc_i386_linux;
705     case X86_XSTATE_X87_MASK:
706       return tdesc_i386_mmx_linux;
707     default:
708       break;
709     }
710 
711   if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
712     return tdesc_i386_linux;
713   else
714     return tdesc_i386_mmx_linux;
715 }
716 
717 /* Similar to i386_supply_fpregset, but use XSAVE extended state.  */
718 
719 static void
720 i386_linux_supply_xstateregset (const struct regset *regset,
721 				struct regcache *regcache, int regnum,
722 				const void *xstateregs, size_t len)
723 {
724   i387_supply_xsave (regcache, regnum, xstateregs);
725 }
726 
727 struct type *
728 x86_linux_get_siginfo_type (struct gdbarch *gdbarch)
729 {
730   return linux_get_siginfo_type_with_fields (gdbarch, LINUX_SIGINFO_FIELD_ADDR_BND);
731 }
732 
733 /* Similar to i386_collect_fpregset, but use XSAVE extended state.  */
734 
735 static void
736 i386_linux_collect_xstateregset (const struct regset *regset,
737 				 const struct regcache *regcache,
738 				 int regnum, void *xstateregs, size_t len)
739 {
740   i387_collect_xsave (regcache, regnum, xstateregs, 1);
741 }
742 
743 /* Register set definitions.  */
744 
745 static const struct regset i386_linux_xstateregset =
746   {
747     NULL,
748     i386_linux_supply_xstateregset,
749     i386_linux_collect_xstateregset
750   };
751 
752 /* Iterate over core file register note sections.  */
753 
754 static void
755 i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
756 					 iterate_over_regset_sections_cb *cb,
757 					 void *cb_data,
758 					 const struct regcache *regcache)
759 {
760   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
761 
762   cb (".reg", 68, &i386_gregset, NULL, cb_data);
763 
764   if (tdep->xcr0 & X86_XSTATE_AVX)
765     cb (".reg-xstate", X86_XSTATE_SIZE (tdep->xcr0),
766 	&i386_linux_xstateregset, "XSAVE extended state", cb_data);
767   else if (tdep->xcr0 & X86_XSTATE_SSE)
768     cb (".reg-xfp", 512, &i386_fpregset, "extended floating-point",
769 	cb_data);
770   else
771     cb (".reg2", 108, &i386_fpregset, NULL, cb_data);
772 }
773 
774 /* Linux kernel shows PC value after the 'int $0x80' instruction even if
775    inferior is still inside the syscall.  On next PTRACE_SINGLESTEP it will
776    finish the syscall but PC will not change.
777 
778    Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
779    i386_displaced_step_fixup would keep PC at the displaced pad location.
780    As PC is pointing to the 'ret' instruction before the step
781    i386_displaced_step_fixup would expect inferior has just executed that 'ret'
782    and PC should not be adjusted.  In reality it finished syscall instead and
783    PC should get relocated back to its vDSO address.  Hide the 'ret'
784    instruction by 'nop' so that i386_displaced_step_fixup is not confused.
785 
786    It is not fully correct as the bytes in struct displaced_step_closure will
787    not match the inferior code.  But we would need some new flag in
788    displaced_step_closure otherwise to keep the state that syscall is finishing
789    for the later i386_displaced_step_fixup execution as the syscall execution
790    is already no longer detectable there.  The new flag field would mean
791    i386-linux-tdep.c needs to wrap all the displacement methods of i386-tdep.c
792    which does not seem worth it.  The same effect is achieved by patching that
793    'nop' instruction there instead.  */
794 
795 static struct displaced_step_closure *
796 i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
797 				     CORE_ADDR from, CORE_ADDR to,
798 				     struct regcache *regs)
799 {
800   struct displaced_step_closure *closure;
801 
802   closure = i386_displaced_step_copy_insn (gdbarch, from, to, regs);
803 
804   if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
805     {
806       /* Since we use simple_displaced_step_copy_insn, our closure is a
807 	 copy of the instruction.  */
808       gdb_byte *insn = (gdb_byte *) closure;
809 
810       /* Fake nop.  */
811       insn[0] = 0x90;
812     }
813 
814   return closure;
815 }
816 
817 static void
818 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
819 {
820   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
821   const struct target_desc *tdesc = info.target_desc;
822   struct tdesc_arch_data *tdesc_data
823     = (struct tdesc_arch_data *) info.tdep_info;
824   const struct tdesc_feature *feature;
825   int valid_p;
826 
827   gdb_assert (tdesc_data);
828 
829   linux_init_abi (info, gdbarch);
830 
831   /* GNU/Linux uses ELF.  */
832   i386_elf_init_abi (info, gdbarch);
833 
834   /* Reserve a number for orig_eax.  */
835   set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
836 
837   if (! tdesc_has_registers (tdesc))
838     tdesc = tdesc_i386_linux;
839   tdep->tdesc = tdesc;
840 
841   feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
842   if (feature == NULL)
843     return;
844 
845   valid_p = tdesc_numbered_register (feature, tdesc_data,
846 				     I386_LINUX_ORIG_EAX_REGNUM,
847 				     "orig_eax");
848   if (!valid_p)
849     return;
850 
851   /* Add the %orig_eax register used for syscall restarting.  */
852   set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
853 
854   tdep->register_reggroup_p = i386_linux_register_reggroup_p;
855 
856   tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
857   tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
858   tdep->sizeof_gregset = 17 * 4;
859 
860   tdep->jb_pc_offset = 20;	/* From <bits/setjmp.h>.  */
861 
862   tdep->sigtramp_p = i386_linux_sigtramp_p;
863   tdep->sigcontext_addr = i386_linux_sigcontext_addr;
864   tdep->sc_reg_offset = i386_linux_sc_reg_offset;
865   tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
866 
867   tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
868 
869   set_gdbarch_process_record (gdbarch, i386_process_record);
870   set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
871 
872   /* Initialize the i386_linux_record_tdep.  */
873   /* These values are the size of the type that will be used in a system
874      call.  They are obtained from Linux Kernel source.  */
875   i386_linux_record_tdep.size_pointer
876     = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
877   i386_linux_record_tdep.size__old_kernel_stat = 32;
878   i386_linux_record_tdep.size_tms = 16;
879   i386_linux_record_tdep.size_loff_t = 8;
880   i386_linux_record_tdep.size_flock = 16;
881   i386_linux_record_tdep.size_oldold_utsname = 45;
882   i386_linux_record_tdep.size_ustat = 20;
883   i386_linux_record_tdep.size_old_sigaction = 16;
884   i386_linux_record_tdep.size_old_sigset_t = 4;
885   i386_linux_record_tdep.size_rlimit = 8;
886   i386_linux_record_tdep.size_rusage = 72;
887   i386_linux_record_tdep.size_timeval = 8;
888   i386_linux_record_tdep.size_timezone = 8;
889   i386_linux_record_tdep.size_old_gid_t = 2;
890   i386_linux_record_tdep.size_old_uid_t = 2;
891   i386_linux_record_tdep.size_fd_set = 128;
892   i386_linux_record_tdep.size_old_dirent = 268;
893   i386_linux_record_tdep.size_statfs = 64;
894   i386_linux_record_tdep.size_statfs64 = 84;
895   i386_linux_record_tdep.size_sockaddr = 16;
896   i386_linux_record_tdep.size_int
897     = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
898   i386_linux_record_tdep.size_long
899     = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
900   i386_linux_record_tdep.size_ulong
901     = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
902   i386_linux_record_tdep.size_msghdr = 28;
903   i386_linux_record_tdep.size_itimerval = 16;
904   i386_linux_record_tdep.size_stat = 88;
905   i386_linux_record_tdep.size_old_utsname = 325;
906   i386_linux_record_tdep.size_sysinfo = 64;
907   i386_linux_record_tdep.size_msqid_ds = 88;
908   i386_linux_record_tdep.size_shmid_ds = 84;
909   i386_linux_record_tdep.size_new_utsname = 390;
910   i386_linux_record_tdep.size_timex = 128;
911   i386_linux_record_tdep.size_mem_dqinfo = 24;
912   i386_linux_record_tdep.size_if_dqblk = 68;
913   i386_linux_record_tdep.size_fs_quota_stat = 68;
914   i386_linux_record_tdep.size_timespec = 8;
915   i386_linux_record_tdep.size_pollfd = 8;
916   i386_linux_record_tdep.size_NFS_FHSIZE = 32;
917   i386_linux_record_tdep.size_knfsd_fh = 132;
918   i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
919   i386_linux_record_tdep.size_sigaction = 20;
920   i386_linux_record_tdep.size_sigset_t = 8;
921   i386_linux_record_tdep.size_siginfo_t = 128;
922   i386_linux_record_tdep.size_cap_user_data_t = 12;
923   i386_linux_record_tdep.size_stack_t = 12;
924   i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
925   i386_linux_record_tdep.size_stat64 = 96;
926   i386_linux_record_tdep.size_gid_t = 4;
927   i386_linux_record_tdep.size_uid_t = 4;
928   i386_linux_record_tdep.size_PAGE_SIZE = 4096;
929   i386_linux_record_tdep.size_flock64 = 24;
930   i386_linux_record_tdep.size_user_desc = 16;
931   i386_linux_record_tdep.size_io_event = 32;
932   i386_linux_record_tdep.size_iocb = 64;
933   i386_linux_record_tdep.size_epoll_event = 12;
934   i386_linux_record_tdep.size_itimerspec
935     = i386_linux_record_tdep.size_timespec * 2;
936   i386_linux_record_tdep.size_mq_attr = 32;
937   i386_linux_record_tdep.size_termios = 36;
938   i386_linux_record_tdep.size_termios2 = 44;
939   i386_linux_record_tdep.size_pid_t = 4;
940   i386_linux_record_tdep.size_winsize = 8;
941   i386_linux_record_tdep.size_serial_struct = 60;
942   i386_linux_record_tdep.size_serial_icounter_struct = 80;
943   i386_linux_record_tdep.size_hayes_esp_config = 12;
944   i386_linux_record_tdep.size_size_t = 4;
945   i386_linux_record_tdep.size_iovec = 8;
946   i386_linux_record_tdep.size_time_t = 4;
947 
948   /* These values are the second argument of system call "sys_ioctl".
949      They are obtained from Linux Kernel source.  */
950   i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
951   i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
952   i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
953   i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
954   i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
955   i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
956   i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
957   i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
958   i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
959   i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
960   i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
961   i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
962   i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
963   i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
964   i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
965   i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
966   i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
967   i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
968   i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
969   i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
970   i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
971   i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
972   i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
973   i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
974   i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
975   i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
976   i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
977   i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
978   i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
979   i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
980   i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
981   i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
982   i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
983   i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
984   i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
985   i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
986   i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
987   i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
988   i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
989   i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
990   i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
991   i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
992   i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
993   i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
994   i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
995   i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
996   i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
997   i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
998   i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
999   i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1000   i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1001   i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1002   i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1003   i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1004   i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1005   i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1006   i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1007   i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1008   i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
1009   i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
1010   i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
1011   i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
1012   i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
1013   i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
1014   i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1015 
1016   /* These values are the second argument of system call "sys_fcntl"
1017      and "sys_fcntl64".  They are obtained from Linux Kernel source.  */
1018   i386_linux_record_tdep.fcntl_F_GETLK = 5;
1019   i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
1020   i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
1021   i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1022 
1023   i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
1024   i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
1025   i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
1026   i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
1027   i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
1028   i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
1029 
1030   tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
1031   tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
1032   tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
1033 
1034   /* N_FUN symbols in shared libaries have 0 for their values and need
1035      to be relocated.  */
1036   set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
1037 
1038   /* GNU/Linux uses SVR4-style shared libraries.  */
1039   set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1040   set_solib_svr4_fetch_link_map_offsets
1041     (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1042 
1043   /* GNU/Linux uses the dynamic linker included in the GNU C Library.  */
1044   set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1045 
1046   dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
1047 
1048   /* Enable TLS support.  */
1049   set_gdbarch_fetch_tls_load_module_address (gdbarch,
1050                                              svr4_fetch_objfile_link_map);
1051 
1052   /* Core file support.  */
1053   set_gdbarch_iterate_over_regset_sections
1054     (gdbarch, i386_linux_iterate_over_regset_sections);
1055   set_gdbarch_core_read_description (gdbarch,
1056 				     i386_linux_core_read_description);
1057 
1058   /* Displaced stepping.  */
1059   set_gdbarch_displaced_step_copy_insn (gdbarch,
1060                                         i386_linux_displaced_step_copy_insn);
1061   set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
1062   set_gdbarch_displaced_step_free_closure (gdbarch,
1063                                            simple_displaced_step_free_closure);
1064   set_gdbarch_displaced_step_location (gdbarch,
1065                                        linux_displaced_step_location);
1066 
1067   /* Functions for 'catch syscall'.  */
1068   set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386);
1069   set_gdbarch_get_syscall_number (gdbarch,
1070                                   i386_linux_get_syscall_number);
1071 
1072   set_gdbarch_get_siginfo_type (gdbarch, x86_linux_get_siginfo_type);
1073   set_gdbarch_handle_segmentation_fault (gdbarch,
1074 					 i386_linux_handle_segmentation_fault);
1075 }
1076 
1077 /* Provide a prototype to silence -Wmissing-prototypes.  */
1078 extern void _initialize_i386_linux_tdep (void);
1079 
1080 void
1081 _initialize_i386_linux_tdep (void)
1082 {
1083   gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
1084 			  i386_linux_init_abi);
1085 
1086   /* Initialize the Linux target description.  */
1087   initialize_tdesc_i386_linux ();
1088   initialize_tdesc_i386_mmx_linux ();
1089   initialize_tdesc_i386_avx_linux ();
1090   initialize_tdesc_i386_mpx_linux ();
1091   initialize_tdesc_i386_avx_mpx_linux ();
1092   initialize_tdesc_i386_avx_avx512_linux ();
1093   initialize_tdesc_i386_avx_mpx_avx512_pku_linux ();
1094 }
1095