xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/h8300-tdep.c (revision 1580a27b92f58fcdcb23fdfbc04a7c2b54a0b7c8)
1 /* Target-machine dependent code for Renesas H8/300, for GDB.
2 
3    Copyright (C) 1988-2015 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 /*
21    Contributed by Steve Chamberlain
22    sac@cygnus.com
23  */
24 
25 #include "defs.h"
26 #include "value.h"
27 #include "arch-utils.h"
28 #include "regcache.h"
29 #include "gdbcore.h"
30 #include "objfiles.h"
31 #include "dis-asm.h"
32 #include "dwarf2-frame.h"
33 #include "frame-base.h"
34 #include "frame-unwind.h"
35 
36 enum gdb_regnum
37 {
38   E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
39   E_RET0_REGNUM = E_R0_REGNUM,
40   E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
41   E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
42   E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
43   E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
44   E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
45   E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
46   E_SP_REGNUM,
47   E_CCR_REGNUM,
48   E_PC_REGNUM,
49   E_CYCLES_REGNUM,
50   E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
51   E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
52   E_INSTS_REGNUM,
53   E_MACH_REGNUM,
54   E_MACL_REGNUM,
55   E_SBR_REGNUM,
56   E_VBR_REGNUM
57 };
58 
59 #define H8300_MAX_NUM_REGS 18
60 
61 #define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
62 #define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)
63 
64 struct h8300_frame_cache
65 {
66   /* Base address.  */
67   CORE_ADDR base;
68   CORE_ADDR sp_offset;
69   CORE_ADDR pc;
70 
71   /* Flag showing that a frame has been created in the prologue code.  */
72   int uses_fp;
73 
74   /* Saved registers.  */
75   CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
76   CORE_ADDR saved_sp;
77 };
78 
79 enum
80 {
81   h8300_reg_size = 2,
82   h8300h_reg_size = 4,
83   h8300_max_reg_size = 4,
84 };
85 
86 static int is_h8300hmode (struct gdbarch *gdbarch);
87 static int is_h8300smode (struct gdbarch *gdbarch);
88 static int is_h8300sxmode (struct gdbarch *gdbarch);
89 static int is_h8300_normal_mode (struct gdbarch *gdbarch);
90 
91 #define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
92 		  && !is_h8300_normal_mode (gdbarch)) \
93 		 ? h8300h_reg_size : h8300_reg_size)
94 
95 static CORE_ADDR
96 h8300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
97 {
98   return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
99 }
100 
101 static CORE_ADDR
102 h8300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
103 {
104   return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
105 }
106 
107 static struct frame_id
108 h8300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
109 {
110   CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
111   return frame_id_build (sp, get_frame_pc (this_frame));
112 }
113 
114 /* Normal frames.  */
115 
116 /* Allocate and initialize a frame cache.  */
117 
118 static void
119 h8300_init_frame_cache (struct gdbarch *gdbarch,
120 			struct h8300_frame_cache *cache)
121 {
122   int i;
123 
124   /* Base address.  */
125   cache->base = 0;
126   cache->sp_offset = 0;
127   cache->pc = 0;
128 
129   /* Frameless until proven otherwise.  */
130   cache->uses_fp = 0;
131 
132   /* Saved registers.  We initialize these to -1 since zero is a valid
133      offset (that's where %fp is supposed to be stored).  */
134   for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
135     cache->saved_regs[i] = -1;
136 }
137 
138 #define IS_MOVB_RnRm(x)		(((x) & 0xff88) == 0x0c88)
139 #define IS_MOVW_RnRm(x)		(((x) & 0xff88) == 0x0d00)
140 #define IS_MOVL_RnRm(x)		(((x) & 0xff88) == 0x0f80)
141 #define IS_MOVB_Rn16_SP(x)	(((x) & 0xfff0) == 0x6ee0)
142 #define IS_MOVB_EXT(x)		((x) == 0x7860)
143 #define IS_MOVB_Rn24_SP(x)	(((x) & 0xfff0) == 0x6aa0)
144 #define IS_MOVW_Rn16_SP(x)	(((x) & 0xfff0) == 0x6fe0)
145 #define IS_MOVW_EXT(x)		((x) == 0x78e0)
146 #define IS_MOVW_Rn24_SP(x)	(((x) & 0xfff0) == 0x6ba0)
147 /* Same instructions as mov.w, just prefixed with 0x0100.  */
148 #define IS_MOVL_PRE(x)		((x) == 0x0100)
149 #define IS_MOVL_Rn16_SP(x)	(((x) & 0xfff0) == 0x6fe0)
150 #define IS_MOVL_EXT(x)		((x) == 0x78e0)
151 #define IS_MOVL_Rn24_SP(x)	(((x) & 0xfff0) == 0x6ba0)
152 
153 #define IS_PUSHFP_MOVESPFP(x)	((x) == 0x6df60d76)
154 #define IS_PUSH_FP(x)		((x) == 0x01006df6)
155 #define IS_MOV_SP_FP(x)		((x) == 0x0ff6)
156 #define IS_SUB2_SP(x)		((x) == 0x1b87)
157 #define IS_SUB4_SP(x)		((x) == 0x1b97)
158 #define IS_ADD_IMM_SP(x)	((x) == 0x7a1f)
159 #define IS_SUB_IMM_SP(x)	((x) == 0x7a3f)
160 #define IS_SUBL4_SP(x)		((x) == 0x1acf)
161 #define IS_MOV_IMM_Rn(x)	(((x) & 0xfff0) == 0x7905)
162 #define IS_SUB_RnSP(x)		(((x) & 0xff0f) == 0x1907)
163 #define IS_ADD_RnSP(x)		(((x) & 0xff0f) == 0x0907)
164 #define IS_PUSH(x)		(((x) & 0xfff0) == 0x6df0)
165 
166 /* If the instruction at PC is an argument register spill, return its
167    length.  Otherwise, return zero.
168 
169    An argument register spill is an instruction that moves an argument
170    from the register in which it was passed to the stack slot in which
171    it really lives.  It is a byte, word, or longword move from an
172    argument register to a negative offset from the frame pointer.
173 
174    CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
175    is used, it could be a byte, word or long move to registers r3-r5.  */
176 
177 static int
178 h8300_is_argument_spill (struct gdbarch *gdbarch, CORE_ADDR pc)
179 {
180   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
181   int w = read_memory_unsigned_integer (pc, 2, byte_order);
182 
183   if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
184       && (w & 0x70) <= 0x20	/* Rs is R0, R1 or R2 */
185       && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5)	/* Rd is R3, R4 or R5 */
186     return 2;
187 
188   if (IS_MOVB_Rn16_SP (w)
189       && 8 <= (w & 0xf) && (w & 0xf) <= 10)	/* Rs is R0L, R1L, or R2L  */
190     {
191       /* ... and d:16 is negative.  */
192       if (read_memory_integer (pc + 2, 2, byte_order) < 0)
193 	return 4;
194     }
195   else if (IS_MOVB_EXT (w))
196     {
197       if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2,
198 							 2, byte_order)))
199 	{
200 	  LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
201 
202 	  /* ... and d:24 is negative.  */
203 	  if (disp < 0 && disp > 0xffffff)
204 	    return 8;
205 	}
206     }
207   else if (IS_MOVW_Rn16_SP (w)
208 	   && (w & 0xf) <= 2)	/* Rs is R0, R1, or R2 */
209     {
210       /* ... and d:16 is negative.  */
211       if (read_memory_integer (pc + 2, 2, byte_order) < 0)
212 	return 4;
213     }
214   else if (IS_MOVW_EXT (w))
215     {
216       if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2,
217 							 2, byte_order)))
218 	{
219 	  LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
220 
221 	  /* ... and d:24 is negative.  */
222 	  if (disp < 0 && disp > 0xffffff)
223 	    return 8;
224 	}
225     }
226   else if (IS_MOVL_PRE (w))
227     {
228       int w2 = read_memory_integer (pc + 2, 2, byte_order);
229 
230       if (IS_MOVL_Rn16_SP (w2)
231 	  && (w2 & 0xf) <= 2)	/* Rs is ER0, ER1, or ER2 */
232 	{
233 	  /* ... and d:16 is negative.  */
234 	  if (read_memory_integer (pc + 4, 2, byte_order) < 0)
235 	    return 6;
236 	}
237       else if (IS_MOVL_EXT (w2))
238 	{
239 	  int w3 = read_memory_integer (pc + 4, 2, byte_order);
240 
241 	  if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2, byte_order)))
242 	    {
243 	      LONGEST disp = read_memory_integer (pc + 6, 4, byte_order);
244 
245 	      /* ... and d:24 is negative.  */
246 	      if (disp < 0 && disp > 0xffffff)
247 		return 10;
248 	    }
249 	}
250     }
251 
252   return 0;
253 }
254 
255 /* Do a full analysis of the prologue at PC and update CACHE
256    accordingly.  Bail out early if CURRENT_PC is reached.  Return the
257    address where the analysis stopped.
258 
259    We handle all cases that can be generated by gcc.
260 
261    For allocating a stack frame:
262 
263    mov.w r6,@-sp
264    mov.w sp,r6
265    mov.w #-n,rN
266    add.w rN,sp
267 
268    mov.w r6,@-sp
269    mov.w sp,r6
270    subs  #2,sp
271    (repeat)
272 
273    mov.l er6,@-sp
274    mov.l sp,er6
275    add.l #-n,sp
276 
277    mov.w r6,@-sp
278    mov.w sp,r6
279    subs  #4,sp
280    (repeat)
281 
282    For saving registers:
283 
284    mov.w rN,@-sp
285    mov.l erN,@-sp
286    stm.l reglist,@-sp
287 
288    */
289 
290 static CORE_ADDR
291 h8300_analyze_prologue (struct gdbarch *gdbarch,
292 			CORE_ADDR pc, CORE_ADDR current_pc,
293 			struct h8300_frame_cache *cache)
294 {
295   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
296   unsigned int op;
297   int regno, i, spill_size;
298 
299   cache->sp_offset = 0;
300 
301   if (pc >= current_pc)
302     return current_pc;
303 
304   op = read_memory_unsigned_integer (pc, 4, byte_order);
305 
306   if (IS_PUSHFP_MOVESPFP (op))
307     {
308       cache->saved_regs[E_FP_REGNUM] = 0;
309       cache->uses_fp = 1;
310       pc += 4;
311     }
312   else if (IS_PUSH_FP (op))
313     {
314       cache->saved_regs[E_FP_REGNUM] = 0;
315       pc += 4;
316       if (pc >= current_pc)
317         return current_pc;
318       op = read_memory_unsigned_integer (pc, 2, byte_order);
319       if (IS_MOV_SP_FP (op))
320 	{
321 	  cache->uses_fp = 1;
322 	  pc += 2;
323 	}
324     }
325 
326   while (pc < current_pc)
327     {
328       op = read_memory_unsigned_integer (pc, 2, byte_order);
329       if (IS_SUB2_SP (op))
330 	{
331 	  cache->sp_offset += 2;
332 	  pc += 2;
333 	}
334       else if (IS_SUB4_SP (op))
335 	{
336 	  cache->sp_offset += 4;
337 	  pc += 2;
338 	}
339       else if (IS_ADD_IMM_SP (op))
340 	{
341 	  cache->sp_offset += -read_memory_integer (pc + 2, 2, byte_order);
342 	  pc += 4;
343 	}
344       else if (IS_SUB_IMM_SP (op))
345 	{
346 	  cache->sp_offset += read_memory_integer (pc + 2, 2, byte_order);
347 	  pc += 4;
348 	}
349       else if (IS_SUBL4_SP (op))
350 	{
351 	  cache->sp_offset += 4;
352 	  pc += 2;
353 	}
354       else if (IS_MOV_IMM_Rn (op))
355         {
356 	  int offset = read_memory_integer (pc + 2, 2, byte_order);
357 	  regno = op & 0x000f;
358 	  op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
359 	  if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
360 	    {
361 	      cache->sp_offset -= offset;
362 	      pc += 6;
363 	    }
364 	  else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
365 	    {
366 	      cache->sp_offset += offset;
367 	      pc += 6;
368 	    }
369 	  else
370 	    break;
371 	}
372       else if (IS_PUSH (op))
373 	{
374 	  regno = op & 0x000f;
375 	  cache->sp_offset += 2;
376 	  cache->saved_regs[regno] = cache->sp_offset;
377 	  pc += 2;
378 	}
379       else if (op == 0x0100)
380 	{
381 	  op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
382 	  if (IS_PUSH (op))
383 	    {
384 	      regno = op & 0x000f;
385 	      cache->sp_offset += 4;
386 	      cache->saved_regs[regno] = cache->sp_offset;
387 	      pc += 4;
388 	    }
389 	  else
390 	    break;
391 	}
392       else if ((op & 0xffcf) == 0x0100)
393 	{
394 	  int op1;
395 	  op1 = read_memory_unsigned_integer (pc + 2, 2, byte_order);
396 	  if (IS_PUSH (op1))
397 	    {
398 	      /* Since the prefix is 0x01x0, this is not a simple pushm but a
399 	         stm.l reglist,@-sp */
400 	      i = ((op & 0x0030) >> 4) + 1;
401 	      regno = op1 & 0x000f;
402 	      for (; i > 0; regno++, --i)
403 		{
404 		  cache->sp_offset += 4;
405 		  cache->saved_regs[regno] = cache->sp_offset;
406 		}
407 	      pc += 4;
408 	    }
409 	  else
410 	    break;
411 	}
412       else
413 	break;
414     }
415 
416   /* Check for spilling an argument register to the stack frame.
417      This could also be an initializing store from non-prologue code,
418      but I don't think there's any harm in skipping that.  */
419   while ((spill_size = h8300_is_argument_spill (gdbarch, pc)) > 0
420          && pc + spill_size <= current_pc)
421     pc += spill_size;
422 
423   return pc;
424 }
425 
426 static struct h8300_frame_cache *
427 h8300_frame_cache (struct frame_info *this_frame, void **this_cache)
428 {
429   struct gdbarch *gdbarch = get_frame_arch (this_frame);
430   struct h8300_frame_cache *cache;
431   int i;
432   CORE_ADDR current_pc;
433 
434   if (*this_cache)
435     return *this_cache;
436 
437   cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
438   h8300_init_frame_cache (gdbarch, cache);
439   *this_cache = cache;
440 
441   /* In principle, for normal frames, %fp holds the frame pointer,
442      which holds the base address for the current stack frame.
443      However, for functions that don't need it, the frame pointer is
444      optional.  For these "frameless" functions the frame pointer is
445      actually the frame pointer of the calling frame.  */
446 
447   cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
448   if (cache->base == 0)
449     return cache;
450 
451   cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
452 
453   cache->pc = get_frame_func (this_frame);
454   current_pc = get_frame_pc (this_frame);
455   if (cache->pc != 0)
456     h8300_analyze_prologue (gdbarch, cache->pc, current_pc, cache);
457 
458   if (!cache->uses_fp)
459     {
460       /* We didn't find a valid frame, which means that CACHE->base
461          currently holds the frame pointer for our calling frame.  If
462          we're at the start of a function, or somewhere half-way its
463          prologue, the function's frame probably hasn't been fully
464          setup yet.  Try to reconstruct the base address for the stack
465          frame by looking at the stack pointer.  For truly "frameless"
466          functions this might work too.  */
467 
468       cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM)
469 		    + cache->sp_offset;
470       cache->saved_sp = cache->base + BINWORD (gdbarch);
471       cache->saved_regs[E_PC_REGNUM] = 0;
472     }
473   else
474     {
475       cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
476       cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
477     }
478 
479   /* Adjust all the saved registers such that they contain addresses
480      instead of offsets.  */
481   for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
482     if (cache->saved_regs[i] != -1)
483       cache->saved_regs[i] = cache->base - cache->saved_regs[i];
484 
485   return cache;
486 }
487 
488 static void
489 h8300_frame_this_id (struct frame_info *this_frame, void **this_cache,
490 		     struct frame_id *this_id)
491 {
492   struct h8300_frame_cache *cache =
493     h8300_frame_cache (this_frame, this_cache);
494 
495   /* This marks the outermost frame.  */
496   if (cache->base == 0)
497     return;
498 
499   *this_id = frame_id_build (cache->saved_sp, cache->pc);
500 }
501 
502 static struct value *
503 h8300_frame_prev_register (struct frame_info *this_frame, void **this_cache,
504 			   int regnum)
505 {
506   struct gdbarch *gdbarch = get_frame_arch (this_frame);
507   struct h8300_frame_cache *cache =
508     h8300_frame_cache (this_frame, this_cache);
509 
510   gdb_assert (regnum >= 0);
511 
512   if (regnum == E_SP_REGNUM && cache->saved_sp)
513     return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
514 
515   if (regnum < gdbarch_num_regs (gdbarch)
516       && cache->saved_regs[regnum] != -1)
517     return frame_unwind_got_memory (this_frame, regnum,
518                                     cache->saved_regs[regnum]);
519 
520   return frame_unwind_got_register (this_frame, regnum, regnum);
521 }
522 
523 static const struct frame_unwind h8300_frame_unwind = {
524   NORMAL_FRAME,
525   default_frame_unwind_stop_reason,
526   h8300_frame_this_id,
527   h8300_frame_prev_register,
528   NULL,
529   default_frame_sniffer
530 };
531 
532 static CORE_ADDR
533 h8300_frame_base_address (struct frame_info *this_frame, void **this_cache)
534 {
535   struct h8300_frame_cache *cache = h8300_frame_cache (this_frame, this_cache);
536   return cache->base;
537 }
538 
539 static const struct frame_base h8300_frame_base = {
540   &h8300_frame_unwind,
541   h8300_frame_base_address,
542   h8300_frame_base_address,
543   h8300_frame_base_address
544 };
545 
546 static CORE_ADDR
547 h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
548 {
549   CORE_ADDR func_addr = 0 , func_end = 0;
550 
551   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
552     {
553       struct symtab_and_line sal;
554       struct h8300_frame_cache cache;
555 
556       /* Found a function.  */
557       sal = find_pc_line (func_addr, 0);
558       if (sal.end && sal.end < func_end)
559         /* Found a line number, use it as end of prologue.  */
560         return sal.end;
561 
562       /* No useable line symbol.  Use prologue parsing method.  */
563       h8300_init_frame_cache (gdbarch, &cache);
564       return h8300_analyze_prologue (gdbarch, func_addr, func_end, &cache);
565     }
566 
567   /* No function symbol -- just return the PC.  */
568   return (CORE_ADDR) pc;
569 }
570 
571 /* Function: push_dummy_call
572    Setup the function arguments for calling a function in the inferior.
573    In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
574    on the H8/300H.
575 
576    There are actually two ABI's here: -mquickcall (the default) and
577    -mno-quickcall.  With -mno-quickcall, all arguments are passed on
578    the stack after the return address, word-aligned.  With
579    -mquickcall, GCC tries to use r0 -- r2 to pass registers.  Since
580    GCC doesn't indicate in the object file which ABI was used to
581    compile it, GDB only supports the default --- -mquickcall.
582 
583    Here are the rules for -mquickcall, in detail:
584 
585    Each argument, whether scalar or aggregate, is padded to occupy a
586    whole number of words.  Arguments smaller than a word are padded at
587    the most significant end; those larger than a word are padded at
588    the least significant end.
589 
590    The initial arguments are passed in r0 -- r2.  Earlier arguments go in
591    lower-numbered registers.  Multi-word arguments are passed in
592    consecutive registers, with the most significant end in the
593    lower-numbered register.
594 
595    If an argument doesn't fit entirely in the remaining registers, it
596    is passed entirely on the stack.  Stack arguments begin just after
597    the return address.  Once an argument has overflowed onto the stack
598    this way, all subsequent arguments are passed on the stack.
599 
600    The above rule has odd consequences.  For example, on the h8/300s,
601    if a function takes two longs and an int as arguments:
602    - the first long will be passed in r0/r1,
603    - the second long will be passed entirely on the stack, since it
604      doesn't fit in r2,
605    - and the int will be passed on the stack, even though it could fit
606      in r2.
607 
608    A weird exception: if an argument is larger than a word, but not a
609    whole number of words in length (before padding), it is passed on
610    the stack following the rules for stack arguments above, even if
611    there are sufficient registers available to hold it.  Stranger
612    still, the argument registers are still `used up' --- even though
613    there's nothing in them.
614 
615    So, for example, on the h8/300s, if a function expects a three-byte
616    structure and an int, the structure will go on the stack, and the
617    int will go in r2, not r0.
618 
619    If the function returns an aggregate type (struct, union, or class)
620    by value, the caller must allocate space to hold the return value,
621    and pass the callee a pointer to this space as an invisible first
622    argument, in R0.
623 
624    For varargs functions, the last fixed argument and all the variable
625    arguments are always passed on the stack.  This means that calls to
626    varargs functions don't work properly unless there is a prototype
627    in scope.
628 
629    Basically, this ABI is not good, for the following reasons:
630    - You can't call vararg functions properly unless a prototype is in scope.
631    - Structure passing is inconsistent, to no purpose I can see.
632    - It often wastes argument registers, of which there are only three
633      to begin with.  */
634 
635 static CORE_ADDR
636 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
637 		       struct regcache *regcache, CORE_ADDR bp_addr,
638 		       int nargs, struct value **args, CORE_ADDR sp,
639 		       int struct_return, CORE_ADDR struct_addr)
640 {
641   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
642   int stack_alloc = 0, stack_offset = 0;
643   int wordsize = BINWORD (gdbarch);
644   int reg = E_ARG0_REGNUM;
645   int argument;
646 
647   /* First, make sure the stack is properly aligned.  */
648   sp = align_down (sp, wordsize);
649 
650   /* Now make sure there's space on the stack for the arguments.  We
651      may over-allocate a little here, but that won't hurt anything.  */
652   for (argument = 0; argument < nargs; argument++)
653     stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
654 			     wordsize);
655   sp -= stack_alloc;
656 
657   /* Now load as many arguments as possible into registers, and push
658      the rest onto the stack.
659      If we're returning a structure by value, then we must pass a
660      pointer to the buffer for the return value as an invisible first
661      argument.  */
662   if (struct_return)
663     regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
664 
665   for (argument = 0; argument < nargs; argument++)
666     {
667       struct cleanup *back_to;
668       struct type *type = value_type (args[argument]);
669       int len = TYPE_LENGTH (type);
670       char *contents = (char *) value_contents (args[argument]);
671 
672       /* Pad the argument appropriately.  */
673       int padded_len = align_up (len, wordsize);
674       gdb_byte *padded = xmalloc (padded_len);
675       back_to = make_cleanup (xfree, padded);
676 
677       memset (padded, 0, padded_len);
678       memcpy (len < wordsize ? padded + padded_len - len : padded,
679 	      contents, len);
680 
681       /* Could the argument fit in the remaining registers?  */
682       if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
683 	{
684 	  /* Are we going to pass it on the stack anyway, for no good
685 	     reason?  */
686 	  if (len > wordsize && len % wordsize)
687 	    {
688 	      /* I feel so unclean.  */
689 	      write_memory (sp + stack_offset, padded, padded_len);
690 	      stack_offset += padded_len;
691 
692 	      /* That's right --- even though we passed the argument
693 	         on the stack, we consume the registers anyway!  Love
694 	         me, love my dog.  */
695 	      reg += padded_len / wordsize;
696 	    }
697 	  else
698 	    {
699 	      /* Heavens to Betsy --- it's really going in registers!
700 	         Note that on the h8/300s, there are gaps between the
701 	         registers in the register file.  */
702 	      int offset;
703 
704 	      for (offset = 0; offset < padded_len; offset += wordsize)
705 		{
706 		  ULONGEST word
707 		    = extract_unsigned_integer (padded + offset,
708 						wordsize, byte_order);
709 		  regcache_cooked_write_unsigned (regcache, reg++, word);
710 		}
711 	    }
712 	}
713       else
714 	{
715 	  /* It doesn't fit in registers!  Onto the stack it goes.  */
716 	  write_memory (sp + stack_offset, padded, padded_len);
717 	  stack_offset += padded_len;
718 
719 	  /* Once one argument has spilled onto the stack, all
720 	     subsequent arguments go on the stack.  */
721 	  reg = E_ARGLAST_REGNUM + 1;
722 	}
723 
724       do_cleanups (back_to);
725     }
726 
727   /* Store return address.  */
728   sp -= wordsize;
729   write_memory_unsigned_integer (sp, wordsize, byte_order, bp_addr);
730 
731   /* Update stack pointer.  */
732   regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
733 
734   /* Return the new stack pointer minus the return address slot since
735      that's what DWARF2/GCC uses as the frame's CFA.  */
736   return sp + wordsize;
737 }
738 
739 /* Function: extract_return_value
740    Figure out where in REGBUF the called function has left its return value.
741    Copy that into VALBUF.  Be sure to account for CPU type.   */
742 
743 static void
744 h8300_extract_return_value (struct type *type, struct regcache *regcache,
745 			    void *valbuf)
746 {
747   struct gdbarch *gdbarch = get_regcache_arch (regcache);
748   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
749   int len = TYPE_LENGTH (type);
750   ULONGEST c, addr;
751 
752   switch (len)
753     {
754     case 1:
755     case 2:
756       regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
757       store_unsigned_integer (valbuf, len, byte_order, c);
758       break;
759     case 4:			/* Needs two registers on plain H8/300 */
760       regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
761       store_unsigned_integer (valbuf, 2, byte_order, c);
762       regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
763       store_unsigned_integer ((void *)((char *) valbuf + 2), 2, byte_order, c);
764       break;
765     case 8:			/* long long is now 8 bytes.  */
766       if (TYPE_CODE (type) == TYPE_CODE_INT)
767 	{
768 	  regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
769 	  c = read_memory_unsigned_integer ((CORE_ADDR) addr, len, byte_order);
770 	  store_unsigned_integer (valbuf, len, byte_order, c);
771 	}
772       else
773 	{
774 	  error (_("I don't know how this 8 byte value is returned."));
775 	}
776       break;
777     }
778 }
779 
780 static void
781 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
782 			     void *valbuf)
783 {
784   struct gdbarch *gdbarch = get_regcache_arch (regcache);
785   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
786   ULONGEST c;
787 
788   switch (TYPE_LENGTH (type))
789     {
790     case 1:
791     case 2:
792     case 4:
793       regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
794       store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, c);
795       break;
796     case 8:			/* long long is now 8 bytes.  */
797       if (TYPE_CODE (type) == TYPE_CODE_INT)
798 	{
799 	  regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
800 	  store_unsigned_integer (valbuf, 4, byte_order, c);
801 	  regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
802 	  store_unsigned_integer ((void *) ((char *) valbuf + 4), 4,
803 				  byte_order, c);
804 	}
805       else
806 	{
807 	  error (_("I don't know how this 8 byte value is returned."));
808 	}
809       break;
810     }
811 }
812 
813 static int
814 h8300_use_struct_convention (struct type *value_type)
815 {
816   /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
817      stack.  */
818 
819   if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
820       || TYPE_CODE (value_type) == TYPE_CODE_UNION)
821     return 1;
822   return !(TYPE_LENGTH (value_type) == 1
823 	   || TYPE_LENGTH (value_type) == 2
824 	   || TYPE_LENGTH (value_type) == 4);
825 }
826 
827 static int
828 h8300h_use_struct_convention (struct type *value_type)
829 {
830   /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
831      returned in R0/R1, everything else on the stack.  */
832   if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
833       || TYPE_CODE (value_type) == TYPE_CODE_UNION)
834     return 1;
835   return !(TYPE_LENGTH (value_type) == 1
836 	   || TYPE_LENGTH (value_type) == 2
837 	   || TYPE_LENGTH (value_type) == 4
838 	   || (TYPE_LENGTH (value_type) == 8
839 	       && TYPE_CODE (value_type) == TYPE_CODE_INT));
840 }
841 
842 /* Function: store_return_value
843    Place the appropriate value in the appropriate registers.
844    Primarily used by the RETURN command.  */
845 
846 static void
847 h8300_store_return_value (struct type *type, struct regcache *regcache,
848 			  const void *valbuf)
849 {
850   struct gdbarch *gdbarch = get_regcache_arch (regcache);
851   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
852   ULONGEST val;
853 
854   switch (TYPE_LENGTH (type))
855     {
856     case 1:
857     case 2:			/* short...  */
858       val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
859       regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
860       break;
861     case 4:			/* long, float */
862       val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
863       regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
864 				      (val >> 16) & 0xffff);
865       regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
866       break;
867     case 8:			/* long long, double and long double
868 				   are all defined as 4 byte types so
869 				   far so this shouldn't happen.  */
870       error (_("I don't know how to return an 8 byte value."));
871       break;
872     }
873 }
874 
875 static void
876 h8300h_store_return_value (struct type *type, struct regcache *regcache,
877 			   const void *valbuf)
878 {
879   struct gdbarch *gdbarch = get_regcache_arch (regcache);
880   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
881   ULONGEST val;
882 
883   switch (TYPE_LENGTH (type))
884     {
885     case 1:
886     case 2:
887     case 4:			/* long, float */
888       val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
889       regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
890       break;
891     case 8:
892       val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
893       regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
894 				      (val >> 32) & 0xffffffff);
895       regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
896 				      val & 0xffffffff);
897       break;
898     }
899 }
900 
901 static enum return_value_convention
902 h8300_return_value (struct gdbarch *gdbarch, struct value *function,
903 		    struct type *type, struct regcache *regcache,
904 		    gdb_byte *readbuf, const gdb_byte *writebuf)
905 {
906   if (h8300_use_struct_convention (type))
907     return RETURN_VALUE_STRUCT_CONVENTION;
908   if (writebuf)
909     h8300_store_return_value (type, regcache, writebuf);
910   else if (readbuf)
911     h8300_extract_return_value (type, regcache, readbuf);
912   return RETURN_VALUE_REGISTER_CONVENTION;
913 }
914 
915 static enum return_value_convention
916 h8300h_return_value (struct gdbarch *gdbarch, struct value *function,
917 		     struct type *type, struct regcache *regcache,
918 		     gdb_byte *readbuf, const gdb_byte *writebuf)
919 {
920   if (h8300h_use_struct_convention (type))
921     {
922       if (readbuf)
923 	{
924 	  ULONGEST addr;
925 
926 	  regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
927 	  read_memory (addr, readbuf, TYPE_LENGTH (type));
928 	}
929 
930       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
931     }
932   if (writebuf)
933     h8300h_store_return_value (type, regcache, writebuf);
934   else if (readbuf)
935     h8300h_extract_return_value (type, regcache, readbuf);
936   return RETURN_VALUE_REGISTER_CONVENTION;
937 }
938 
939 /* Implementation of 'register_sim_regno' gdbarch method.  */
940 
941 static int
942 h8300_register_sim_regno (struct gdbarch *gdbarch, int regnum)
943 {
944   /* Only makes sense to supply raw registers.  */
945   gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
946 
947   /* We hide the raw ccr from the user by making it nameless.  Because
948      the default register_sim_regno hook returns
949      LEGACY_SIM_REGNO_IGNORE for unnamed registers, we need to
950      override it.  The sim register numbering is compatible with
951      gdb's.  */
952   return regnum;
953 }
954 
955 static const char *
956 h8300_register_name (struct gdbarch *gdbarch, int regno)
957 {
958   /* The register names change depending on which h8300 processor
959      type is selected.  */
960   static char *register_names[] = {
961     "r0", "r1", "r2", "r3", "r4", "r5", "r6",
962     "sp", "", "pc", "cycles", "tick", "inst",
963     "ccr",			/* pseudo register */
964   };
965   if (regno < 0
966       || regno >= (sizeof (register_names) / sizeof (*register_names)))
967     internal_error (__FILE__, __LINE__,
968 		    _("h8300_register_name: illegal register number %d"),
969 		    regno);
970   else
971     return register_names[regno];
972 }
973 
974 static const char *
975 h8300s_register_name (struct gdbarch *gdbarch, int regno)
976 {
977   static char *register_names[] = {
978     "er0", "er1", "er2", "er3", "er4", "er5", "er6",
979     "sp", "", "pc", "cycles", "", "tick", "inst",
980     "mach", "macl",
981     "ccr", "exr"		/* pseudo registers */
982   };
983   if (regno < 0
984       || regno >= (sizeof (register_names) / sizeof (*register_names)))
985     internal_error (__FILE__, __LINE__,
986 		    _("h8300s_register_name: illegal register number %d"),
987 		    regno);
988   else
989     return register_names[regno];
990 }
991 
992 static const char *
993 h8300sx_register_name (struct gdbarch *gdbarch, int regno)
994 {
995   static char *register_names[] = {
996     "er0", "er1", "er2", "er3", "er4", "er5", "er6",
997     "sp", "", "pc", "cycles", "", "tick", "inst",
998     "mach", "macl", "sbr", "vbr",
999     "ccr", "exr"		/* pseudo registers */
1000   };
1001   if (regno < 0
1002       || regno >= (sizeof (register_names) / sizeof (*register_names)))
1003     internal_error (__FILE__, __LINE__,
1004 		    _("h8300sx_register_name: illegal register number %d"),
1005 		    regno);
1006   else
1007     return register_names[regno];
1008 }
1009 
1010 static void
1011 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1012 		      struct frame_info *frame, int regno)
1013 {
1014   LONGEST rval;
1015   const char *name = gdbarch_register_name (gdbarch, regno);
1016 
1017   if (!name || !*name)
1018     return;
1019 
1020   rval = get_frame_register_signed (frame, regno);
1021 
1022   fprintf_filtered (file, "%-14s ", name);
1023   if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
1024       (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
1025     {
1026       fprintf_filtered (file, "0x%02x        ", (unsigned char) rval);
1027       print_longest (file, 'u', 1, rval);
1028     }
1029   else
1030     {
1031       fprintf_filtered (file, "0x%s  ", phex ((ULONGEST) rval,
1032 			BINWORD (gdbarch)));
1033       print_longest (file, 'd', 1, rval);
1034     }
1035   if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1036     {
1037       /* CCR register */
1038       int C, Z, N, V;
1039       unsigned char l = rval & 0xff;
1040       fprintf_filtered (file, "\t");
1041       fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
1042       fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
1043       fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
1044       fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
1045       N = (l & 0x8) != 0;
1046       Z = (l & 0x4) != 0;
1047       V = (l & 0x2) != 0;
1048       C = (l & 0x1) != 0;
1049       fprintf_filtered (file, "N-%d ", N);
1050       fprintf_filtered (file, "Z-%d ", Z);
1051       fprintf_filtered (file, "V-%d ", V);
1052       fprintf_filtered (file, "C-%d ", C);
1053       if ((C | Z) == 0)
1054 	fprintf_filtered (file, "u> ");
1055       if ((C | Z) == 1)
1056 	fprintf_filtered (file, "u<= ");
1057       if ((C == 0))
1058 	fprintf_filtered (file, "u>= ");
1059       if (C == 1)
1060 	fprintf_filtered (file, "u< ");
1061       if (Z == 0)
1062 	fprintf_filtered (file, "!= ");
1063       if (Z == 1)
1064 	fprintf_filtered (file, "== ");
1065       if ((N ^ V) == 0)
1066 	fprintf_filtered (file, ">= ");
1067       if ((N ^ V) == 1)
1068 	fprintf_filtered (file, "< ");
1069       if ((Z | (N ^ V)) == 0)
1070 	fprintf_filtered (file, "> ");
1071       if ((Z | (N ^ V)) == 1)
1072 	fprintf_filtered (file, "<= ");
1073     }
1074   else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
1075     {
1076       /* EXR register */
1077       unsigned char l = rval & 0xff;
1078       fprintf_filtered (file, "\t");
1079       fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1080       fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1081       fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1082       fprintf_filtered (file, "I0-%d", (l & 1) != 0);
1083     }
1084   fprintf_filtered (file, "\n");
1085 }
1086 
1087 static void
1088 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1089 			    struct frame_info *frame, int regno, int cpregs)
1090 {
1091   if (regno < 0)
1092     {
1093       for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1094 	h8300_print_register (gdbarch, file, frame, regno);
1095       h8300_print_register (gdbarch, file, frame,
1096 			    E_PSEUDO_CCR_REGNUM (gdbarch));
1097       h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1098       if (is_h8300smode (gdbarch))
1099 	{
1100 	  h8300_print_register (gdbarch, file, frame,
1101 				E_PSEUDO_EXR_REGNUM (gdbarch));
1102 	  if (is_h8300sxmode (gdbarch))
1103 	    {
1104 	      h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1105 	      h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1106 	    }
1107 	  h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1108 	  h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1109 	  h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1110 	  h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1111 	  h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1112 	}
1113       else
1114 	{
1115 	  h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1116 	  h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1117 	  h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1118 	}
1119     }
1120   else
1121     {
1122       if (regno == E_CCR_REGNUM)
1123 	h8300_print_register (gdbarch, file, frame,
1124 			      E_PSEUDO_CCR_REGNUM (gdbarch));
1125       else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
1126 	       && is_h8300smode (gdbarch))
1127 	h8300_print_register (gdbarch, file, frame,
1128 			      E_PSEUDO_EXR_REGNUM (gdbarch));
1129       else
1130 	h8300_print_register (gdbarch, file, frame, regno);
1131     }
1132 }
1133 
1134 static struct type *
1135 h8300_register_type (struct gdbarch *gdbarch, int regno)
1136 {
1137   if (regno < 0 || regno >= gdbarch_num_regs (gdbarch)
1138 			    + gdbarch_num_pseudo_regs (gdbarch))
1139     internal_error (__FILE__, __LINE__,
1140 		    _("h8300_register_type: illegal register number %d"),
1141 		    regno);
1142   else
1143     {
1144       switch (regno)
1145 	{
1146 	case E_PC_REGNUM:
1147 	  return builtin_type (gdbarch)->builtin_func_ptr;
1148 	case E_SP_REGNUM:
1149 	case E_FP_REGNUM:
1150 	  return builtin_type (gdbarch)->builtin_data_ptr;
1151 	default:
1152 	  if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1153 	    return builtin_type (gdbarch)->builtin_uint8;
1154 	  else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1155 	    return builtin_type (gdbarch)->builtin_uint8;
1156 	  else if (is_h8300hmode (gdbarch))
1157 	    return builtin_type (gdbarch)->builtin_int32;
1158 	  else
1159 	    return builtin_type (gdbarch)->builtin_int16;
1160 	}
1161     }
1162 }
1163 
1164 /* Helpers for h8300_pseudo_register_read.  We expose ccr/exr as
1165    pseudo-registers to users with smaller sizes than the corresponding
1166    raw registers.  These helpers extend/narrow the values.  */
1167 
1168 static enum register_status
1169 pseudo_from_raw_register (struct gdbarch *gdbarch, struct regcache *regcache,
1170 			  gdb_byte *buf, int pseudo_regno, int raw_regno)
1171 {
1172   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1173   enum register_status status;
1174   ULONGEST val;
1175 
1176   status = regcache_raw_read_unsigned (regcache, raw_regno, &val);
1177   if (status == REG_VALID)
1178     store_unsigned_integer (buf,
1179 			    register_size (gdbarch, pseudo_regno),
1180 			    byte_order, val);
1181   return status;
1182 }
1183 
1184 /* See pseudo_from_raw_register.  */
1185 
1186 static void
1187 raw_from_pseudo_register (struct gdbarch *gdbarch, struct regcache *regcache,
1188 			  const gdb_byte *buf, int raw_regno, int pseudo_regno)
1189 {
1190   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1191   ULONGEST val;
1192 
1193   val = extract_unsigned_integer (buf, register_size (gdbarch, pseudo_regno),
1194 				  byte_order);
1195   regcache_raw_write_unsigned (regcache, raw_regno, val);
1196 }
1197 
1198 static enum register_status
1199 h8300_pseudo_register_read (struct gdbarch *gdbarch,
1200 			    struct regcache *regcache, int regno,
1201 			    gdb_byte *buf)
1202 {
1203   if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1204     {
1205       return pseudo_from_raw_register (gdbarch, regcache, buf,
1206 				       regno, E_CCR_REGNUM);
1207     }
1208   else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1209     {
1210       return pseudo_from_raw_register (gdbarch, regcache, buf,
1211 				       regno, E_EXR_REGNUM);
1212     }
1213   else
1214     return regcache_raw_read (regcache, regno, buf);
1215 }
1216 
1217 static void
1218 h8300_pseudo_register_write (struct gdbarch *gdbarch,
1219 			     struct regcache *regcache, int regno,
1220 			     const gdb_byte *buf)
1221 {
1222   if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
1223     raw_from_pseudo_register (gdbarch, regcache, buf, E_CCR_REGNUM, regno);
1224   else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
1225     raw_from_pseudo_register (gdbarch, regcache, buf, E_EXR_REGNUM, regno);
1226   else
1227     regcache_raw_write (regcache, regno, buf);
1228 }
1229 
1230 static int
1231 h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1232 {
1233   if (regno == E_CCR_REGNUM)
1234     return E_PSEUDO_CCR_REGNUM (gdbarch);
1235   return regno;
1236 }
1237 
1238 static int
1239 h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
1240 {
1241   if (regno == E_CCR_REGNUM)
1242     return E_PSEUDO_CCR_REGNUM (gdbarch);
1243   if (regno == E_EXR_REGNUM)
1244     return E_PSEUDO_EXR_REGNUM (gdbarch);
1245   return regno;
1246 }
1247 
1248 static const unsigned char *
1249 h8300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1250 			  int *lenptr)
1251 {
1252   /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
1253   static unsigned char breakpoint[] = { 0x01, 0x80 };	/* Sleep */
1254 
1255   *lenptr = sizeof (breakpoint);
1256   return breakpoint;
1257 }
1258 
1259 static struct gdbarch *
1260 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1261 {
1262   struct gdbarch_tdep *tdep = NULL;
1263   struct gdbarch *gdbarch;
1264 
1265   arches = gdbarch_list_lookup_by_info (arches, &info);
1266   if (arches != NULL)
1267     return arches->gdbarch;
1268 
1269 #if 0
1270   tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1271 #endif
1272 
1273   if (info.bfd_arch_info->arch != bfd_arch_h8300)
1274     return NULL;
1275 
1276   gdbarch = gdbarch_alloc (&info, 0);
1277 
1278   set_gdbarch_register_sim_regno (gdbarch, h8300_register_sim_regno);
1279 
1280   switch (info.bfd_arch_info->mach)
1281     {
1282     case bfd_mach_h8300:
1283       set_gdbarch_num_regs (gdbarch, 13);
1284       set_gdbarch_num_pseudo_regs (gdbarch, 1);
1285       set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1286       set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1287       set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1288       set_gdbarch_register_name (gdbarch, h8300_register_name);
1289       set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1290       set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1291       set_gdbarch_return_value (gdbarch, h8300_return_value);
1292       set_gdbarch_print_insn (gdbarch, print_insn_h8300);
1293       break;
1294     case bfd_mach_h8300h:
1295     case bfd_mach_h8300hn:
1296       set_gdbarch_num_regs (gdbarch, 13);
1297       set_gdbarch_num_pseudo_regs (gdbarch, 1);
1298       set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1299       set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1300       set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1301       set_gdbarch_register_name (gdbarch, h8300_register_name);
1302       if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
1303 	{
1304 	  set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1305 	  set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1306 	}
1307       else
1308 	{
1309 	  set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1310 	  set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1311 	}
1312       set_gdbarch_return_value (gdbarch, h8300h_return_value);
1313       set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
1314       break;
1315     case bfd_mach_h8300s:
1316     case bfd_mach_h8300sn:
1317       set_gdbarch_num_regs (gdbarch, 16);
1318       set_gdbarch_num_pseudo_regs (gdbarch, 2);
1319       set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1320       set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1321       set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1322       set_gdbarch_register_name (gdbarch, h8300s_register_name);
1323       if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
1324 	{
1325 	  set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1326 	  set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1327 	}
1328       else
1329 	{
1330 	  set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1331 	  set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1332 	}
1333       set_gdbarch_return_value (gdbarch, h8300h_return_value);
1334       set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1335       break;
1336     case bfd_mach_h8300sx:
1337     case bfd_mach_h8300sxn:
1338       set_gdbarch_num_regs (gdbarch, 18);
1339       set_gdbarch_num_pseudo_regs (gdbarch, 2);
1340       set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1341       set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1342       set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1343       set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1344       if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1345 	{
1346 	  set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1347 	  set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1348 	}
1349       else
1350 	{
1351 	  set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1352 	  set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1353 	}
1354       set_gdbarch_return_value (gdbarch, h8300h_return_value);
1355       set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1356       break;
1357     }
1358 
1359   set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1360   set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1361 
1362   /*
1363    * Basic register fields and methods.
1364    */
1365 
1366   set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1367   set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1368   set_gdbarch_register_type (gdbarch, h8300_register_type);
1369   set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1370 
1371   /*
1372    * Frame Info
1373    */
1374   set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1375 
1376   /* Frame unwinder.  */
1377   set_gdbarch_unwind_pc (gdbarch, h8300_unwind_pc);
1378   set_gdbarch_unwind_sp (gdbarch, h8300_unwind_sp);
1379   set_gdbarch_dummy_id (gdbarch, h8300_dummy_id);
1380   frame_base_set_default (gdbarch, &h8300_frame_base);
1381 
1382   /*
1383    * Miscelany
1384    */
1385   /* Stack grows up.  */
1386   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1387 
1388   set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1389   set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1390 
1391   set_gdbarch_char_signed (gdbarch, 0);
1392   set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1393   set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1394   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1395   set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1396   set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1397   set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1398   set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1399 
1400   set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1401 
1402   /* Hook in the DWARF CFI frame unwinder.  */
1403   dwarf2_append_unwinders (gdbarch);
1404   frame_unwind_append_unwinder (gdbarch, &h8300_frame_unwind);
1405 
1406   return gdbarch;
1407 
1408 }
1409 
1410 extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
1411 
1412 void
1413 _initialize_h8300_tdep (void)
1414 {
1415   register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1416 }
1417 
1418 static int
1419 is_h8300hmode (struct gdbarch *gdbarch)
1420 {
1421   return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1422     || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1423     || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1424     || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1425     || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1426     || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1427 }
1428 
1429 static int
1430 is_h8300smode (struct gdbarch *gdbarch)
1431 {
1432   return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1433     || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1434     || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1435     || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1436 }
1437 
1438 static int
1439 is_h8300sxmode (struct gdbarch *gdbarch)
1440 {
1441   return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1442     || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1443 }
1444 
1445 static int
1446 is_h8300_normal_mode (struct gdbarch *gdbarch)
1447 {
1448   return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1449     || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1450     || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1451 }
1452