1 /* Target-machine dependent code for Renesas H8/300, for GDB. 2 3 Copyright (C) 1988-2020 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 /* 21 Contributed by Steve Chamberlain 22 sac@cygnus.com 23 */ 24 25 #include "defs.h" 26 #include "value.h" 27 #include "arch-utils.h" 28 #include "regcache.h" 29 #include "gdbcore.h" 30 #include "objfiles.h" 31 #include "dis-asm.h" 32 #include "dwarf2/frame.h" 33 #include "frame-base.h" 34 #include "frame-unwind.h" 35 36 enum gdb_regnum 37 { 38 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM, 39 E_RET0_REGNUM = E_R0_REGNUM, 40 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM, 41 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM, 42 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM, 43 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM, 44 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM, 45 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM, 46 E_SP_REGNUM, 47 E_CCR_REGNUM, 48 E_PC_REGNUM, 49 E_CYCLES_REGNUM, 50 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM, 51 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM, 52 E_INSTS_REGNUM, 53 E_MACH_REGNUM, 54 E_MACL_REGNUM, 55 E_SBR_REGNUM, 56 E_VBR_REGNUM 57 }; 58 59 #define H8300_MAX_NUM_REGS 18 60 61 #define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)) 62 #define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1) 63 64 struct h8300_frame_cache 65 { 66 /* Base address. */ 67 CORE_ADDR base; 68 CORE_ADDR sp_offset; 69 CORE_ADDR pc; 70 71 /* Flag showing that a frame has been created in the prologue code. */ 72 int uses_fp; 73 74 /* Saved registers. */ 75 CORE_ADDR saved_regs[H8300_MAX_NUM_REGS]; 76 CORE_ADDR saved_sp; 77 }; 78 79 enum 80 { 81 h8300_reg_size = 2, 82 h8300h_reg_size = 4, 83 h8300_max_reg_size = 4, 84 }; 85 86 static int is_h8300hmode (struct gdbarch *gdbarch); 87 static int is_h8300smode (struct gdbarch *gdbarch); 88 static int is_h8300sxmode (struct gdbarch *gdbarch); 89 static int is_h8300_normal_mode (struct gdbarch *gdbarch); 90 91 #define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \ 92 && !is_h8300_normal_mode (gdbarch)) \ 93 ? h8300h_reg_size : h8300_reg_size) 94 95 /* Normal frames. */ 96 97 /* Allocate and initialize a frame cache. */ 98 99 static void 100 h8300_init_frame_cache (struct gdbarch *gdbarch, 101 struct h8300_frame_cache *cache) 102 { 103 int i; 104 105 /* Base address. */ 106 cache->base = 0; 107 cache->sp_offset = 0; 108 cache->pc = 0; 109 110 /* Frameless until proven otherwise. */ 111 cache->uses_fp = 0; 112 113 /* Saved registers. We initialize these to -1 since zero is a valid 114 offset (that's where %fp is supposed to be stored). */ 115 for (i = 0; i < gdbarch_num_regs (gdbarch); i++) 116 cache->saved_regs[i] = -1; 117 } 118 119 #define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88) 120 #define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00) 121 #define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80) 122 #define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0) 123 #define IS_MOVB_EXT(x) ((x) == 0x7860) 124 #define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0) 125 #define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0) 126 #define IS_MOVW_EXT(x) ((x) == 0x78e0) 127 #define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0) 128 /* Same instructions as mov.w, just prefixed with 0x0100. */ 129 #define IS_MOVL_PRE(x) ((x) == 0x0100) 130 #define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0) 131 #define IS_MOVL_EXT(x) ((x) == 0x78e0) 132 #define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0) 133 134 #define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76) 135 #define IS_PUSH_FP(x) ((x) == 0x01006df6) 136 #define IS_MOV_SP_FP(x) ((x) == 0x0ff6) 137 #define IS_SUB2_SP(x) ((x) == 0x1b87) 138 #define IS_SUB4_SP(x) ((x) == 0x1b97) 139 #define IS_ADD_IMM_SP(x) ((x) == 0x7a1f) 140 #define IS_SUB_IMM_SP(x) ((x) == 0x7a3f) 141 #define IS_SUBL4_SP(x) ((x) == 0x1acf) 142 #define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905) 143 #define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907) 144 #define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907) 145 #define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0) 146 147 /* If the instruction at PC is an argument register spill, return its 148 length. Otherwise, return zero. 149 150 An argument register spill is an instruction that moves an argument 151 from the register in which it was passed to the stack slot in which 152 it really lives. It is a byte, word, or longword move from an 153 argument register to a negative offset from the frame pointer. 154 155 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier 156 is used, it could be a byte, word or long move to registers r3-r5. */ 157 158 static int 159 h8300_is_argument_spill (struct gdbarch *gdbarch, CORE_ADDR pc) 160 { 161 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 162 int w = read_memory_unsigned_integer (pc, 2, byte_order); 163 164 if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w)) 165 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */ 166 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */ 167 return 2; 168 169 if (IS_MOVB_Rn16_SP (w) 170 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */ 171 { 172 /* ... and d:16 is negative. */ 173 if (read_memory_integer (pc + 2, 2, byte_order) < 0) 174 return 4; 175 } 176 else if (IS_MOVB_EXT (w)) 177 { 178 if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2, 179 2, byte_order))) 180 { 181 ULONGEST disp = read_memory_unsigned_integer (pc + 4, 4, byte_order); 182 183 /* ... and d:24 is negative. */ 184 if ((disp & 0x00800000) != 0) 185 return 8; 186 } 187 } 188 else if (IS_MOVW_Rn16_SP (w) 189 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */ 190 { 191 /* ... and d:16 is negative. */ 192 if (read_memory_integer (pc + 2, 2, byte_order) < 0) 193 return 4; 194 } 195 else if (IS_MOVW_EXT (w)) 196 { 197 if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2, 198 2, byte_order))) 199 { 200 ULONGEST disp = read_memory_unsigned_integer (pc + 4, 4, byte_order); 201 202 /* ... and d:24 is negative. */ 203 if ((disp & 0x00800000) != 0) 204 return 8; 205 } 206 } 207 else if (IS_MOVL_PRE (w)) 208 { 209 int w2 = read_memory_integer (pc + 2, 2, byte_order); 210 211 if (IS_MOVL_Rn16_SP (w2) 212 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */ 213 { 214 /* ... and d:16 is negative. */ 215 if (read_memory_integer (pc + 4, 2, byte_order) < 0) 216 return 6; 217 } 218 else if (IS_MOVL_EXT (w2)) 219 { 220 if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2, byte_order))) 221 { 222 ULONGEST disp = read_memory_unsigned_integer (pc + 6, 4, 223 byte_order); 224 225 /* ... and d:24 is negative. */ 226 if ((disp & 0x00800000) != 0) 227 return 10; 228 } 229 } 230 } 231 232 return 0; 233 } 234 235 /* Do a full analysis of the prologue at PC and update CACHE 236 accordingly. Bail out early if CURRENT_PC is reached. Return the 237 address where the analysis stopped. 238 239 We handle all cases that can be generated by gcc. 240 241 For allocating a stack frame: 242 243 mov.w r6,@-sp 244 mov.w sp,r6 245 mov.w #-n,rN 246 add.w rN,sp 247 248 mov.w r6,@-sp 249 mov.w sp,r6 250 subs #2,sp 251 (repeat) 252 253 mov.l er6,@-sp 254 mov.l sp,er6 255 add.l #-n,sp 256 257 mov.w r6,@-sp 258 mov.w sp,r6 259 subs #4,sp 260 (repeat) 261 262 For saving registers: 263 264 mov.w rN,@-sp 265 mov.l erN,@-sp 266 stm.l reglist,@-sp 267 268 */ 269 270 static CORE_ADDR 271 h8300_analyze_prologue (struct gdbarch *gdbarch, 272 CORE_ADDR pc, CORE_ADDR current_pc, 273 struct h8300_frame_cache *cache) 274 { 275 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 276 unsigned int op; 277 int regno, i, spill_size; 278 279 cache->sp_offset = 0; 280 281 if (pc >= current_pc) 282 return current_pc; 283 284 op = read_memory_unsigned_integer (pc, 4, byte_order); 285 286 if (IS_PUSHFP_MOVESPFP (op)) 287 { 288 cache->saved_regs[E_FP_REGNUM] = 0; 289 cache->uses_fp = 1; 290 pc += 4; 291 } 292 else if (IS_PUSH_FP (op)) 293 { 294 cache->saved_regs[E_FP_REGNUM] = 0; 295 pc += 4; 296 if (pc >= current_pc) 297 return current_pc; 298 op = read_memory_unsigned_integer (pc, 2, byte_order); 299 if (IS_MOV_SP_FP (op)) 300 { 301 cache->uses_fp = 1; 302 pc += 2; 303 } 304 } 305 306 while (pc < current_pc) 307 { 308 op = read_memory_unsigned_integer (pc, 2, byte_order); 309 if (IS_SUB2_SP (op)) 310 { 311 cache->sp_offset += 2; 312 pc += 2; 313 } 314 else if (IS_SUB4_SP (op)) 315 { 316 cache->sp_offset += 4; 317 pc += 2; 318 } 319 else if (IS_ADD_IMM_SP (op)) 320 { 321 cache->sp_offset += -read_memory_integer (pc + 2, 2, byte_order); 322 pc += 4; 323 } 324 else if (IS_SUB_IMM_SP (op)) 325 { 326 cache->sp_offset += read_memory_integer (pc + 2, 2, byte_order); 327 pc += 4; 328 } 329 else if (IS_SUBL4_SP (op)) 330 { 331 cache->sp_offset += 4; 332 pc += 2; 333 } 334 else if (IS_MOV_IMM_Rn (op)) 335 { 336 int offset = read_memory_integer (pc + 2, 2, byte_order); 337 regno = op & 0x000f; 338 op = read_memory_unsigned_integer (pc + 4, 2, byte_order); 339 if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno) 340 { 341 cache->sp_offset -= offset; 342 pc += 6; 343 } 344 else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno) 345 { 346 cache->sp_offset += offset; 347 pc += 6; 348 } 349 else 350 break; 351 } 352 else if (IS_PUSH (op)) 353 { 354 regno = op & 0x000f; 355 cache->sp_offset += 2; 356 cache->saved_regs[regno] = cache->sp_offset; 357 pc += 2; 358 } 359 else if (op == 0x0100) 360 { 361 op = read_memory_unsigned_integer (pc + 2, 2, byte_order); 362 if (IS_PUSH (op)) 363 { 364 regno = op & 0x000f; 365 cache->sp_offset += 4; 366 cache->saved_regs[regno] = cache->sp_offset; 367 pc += 4; 368 } 369 else 370 break; 371 } 372 else if ((op & 0xffcf) == 0x0100) 373 { 374 int op1; 375 op1 = read_memory_unsigned_integer (pc + 2, 2, byte_order); 376 if (IS_PUSH (op1)) 377 { 378 /* Since the prefix is 0x01x0, this is not a simple pushm but a 379 stm.l reglist,@-sp */ 380 i = ((op & 0x0030) >> 4) + 1; 381 regno = op1 & 0x000f; 382 for (; i > 0; regno++, --i) 383 { 384 cache->sp_offset += 4; 385 cache->saved_regs[regno] = cache->sp_offset; 386 } 387 pc += 4; 388 } 389 else 390 break; 391 } 392 else 393 break; 394 } 395 396 /* Check for spilling an argument register to the stack frame. 397 This could also be an initializing store from non-prologue code, 398 but I don't think there's any harm in skipping that. */ 399 while ((spill_size = h8300_is_argument_spill (gdbarch, pc)) > 0 400 && pc + spill_size <= current_pc) 401 pc += spill_size; 402 403 return pc; 404 } 405 406 static struct h8300_frame_cache * 407 h8300_frame_cache (struct frame_info *this_frame, void **this_cache) 408 { 409 struct gdbarch *gdbarch = get_frame_arch (this_frame); 410 struct h8300_frame_cache *cache; 411 int i; 412 CORE_ADDR current_pc; 413 414 if (*this_cache) 415 return (struct h8300_frame_cache *) *this_cache; 416 417 cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache); 418 h8300_init_frame_cache (gdbarch, cache); 419 *this_cache = cache; 420 421 /* In principle, for normal frames, %fp holds the frame pointer, 422 which holds the base address for the current stack frame. 423 However, for functions that don't need it, the frame pointer is 424 optional. For these "frameless" functions the frame pointer is 425 actually the frame pointer of the calling frame. */ 426 427 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM); 428 if (cache->base == 0) 429 return cache; 430 431 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch); 432 433 cache->pc = get_frame_func (this_frame); 434 current_pc = get_frame_pc (this_frame); 435 if (cache->pc != 0) 436 h8300_analyze_prologue (gdbarch, cache->pc, current_pc, cache); 437 438 if (!cache->uses_fp) 439 { 440 /* We didn't find a valid frame, which means that CACHE->base 441 currently holds the frame pointer for our calling frame. If 442 we're at the start of a function, or somewhere half-way its 443 prologue, the function's frame probably hasn't been fully 444 setup yet. Try to reconstruct the base address for the stack 445 frame by looking at the stack pointer. For truly "frameless" 446 functions this might work too. */ 447 448 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM) 449 + cache->sp_offset; 450 cache->saved_sp = cache->base + BINWORD (gdbarch); 451 cache->saved_regs[E_PC_REGNUM] = 0; 452 } 453 else 454 { 455 cache->saved_sp = cache->base + 2 * BINWORD (gdbarch); 456 cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch); 457 } 458 459 /* Adjust all the saved registers such that they contain addresses 460 instead of offsets. */ 461 for (i = 0; i < gdbarch_num_regs (gdbarch); i++) 462 if (cache->saved_regs[i] != -1) 463 cache->saved_regs[i] = cache->base - cache->saved_regs[i]; 464 465 return cache; 466 } 467 468 static void 469 h8300_frame_this_id (struct frame_info *this_frame, void **this_cache, 470 struct frame_id *this_id) 471 { 472 struct h8300_frame_cache *cache = 473 h8300_frame_cache (this_frame, this_cache); 474 475 /* This marks the outermost frame. */ 476 if (cache->base == 0) 477 return; 478 479 *this_id = frame_id_build (cache->saved_sp, cache->pc); 480 } 481 482 static struct value * 483 h8300_frame_prev_register (struct frame_info *this_frame, void **this_cache, 484 int regnum) 485 { 486 struct gdbarch *gdbarch = get_frame_arch (this_frame); 487 struct h8300_frame_cache *cache = 488 h8300_frame_cache (this_frame, this_cache); 489 490 gdb_assert (regnum >= 0); 491 492 if (regnum == E_SP_REGNUM && cache->saved_sp) 493 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp); 494 495 if (regnum < gdbarch_num_regs (gdbarch) 496 && cache->saved_regs[regnum] != -1) 497 return frame_unwind_got_memory (this_frame, regnum, 498 cache->saved_regs[regnum]); 499 500 return frame_unwind_got_register (this_frame, regnum, regnum); 501 } 502 503 static const struct frame_unwind h8300_frame_unwind = { 504 NORMAL_FRAME, 505 default_frame_unwind_stop_reason, 506 h8300_frame_this_id, 507 h8300_frame_prev_register, 508 NULL, 509 default_frame_sniffer 510 }; 511 512 static CORE_ADDR 513 h8300_frame_base_address (struct frame_info *this_frame, void **this_cache) 514 { 515 struct h8300_frame_cache *cache = h8300_frame_cache (this_frame, this_cache); 516 return cache->base; 517 } 518 519 static const struct frame_base h8300_frame_base = { 520 &h8300_frame_unwind, 521 h8300_frame_base_address, 522 h8300_frame_base_address, 523 h8300_frame_base_address 524 }; 525 526 static CORE_ADDR 527 h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 528 { 529 CORE_ADDR func_addr = 0 , func_end = 0; 530 531 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 532 { 533 struct symtab_and_line sal; 534 struct h8300_frame_cache cache; 535 536 /* Found a function. */ 537 sal = find_pc_line (func_addr, 0); 538 if (sal.end && sal.end < func_end) 539 /* Found a line number, use it as end of prologue. */ 540 return sal.end; 541 542 /* No useable line symbol. Use prologue parsing method. */ 543 h8300_init_frame_cache (gdbarch, &cache); 544 return h8300_analyze_prologue (gdbarch, func_addr, func_end, &cache); 545 } 546 547 /* No function symbol -- just return the PC. */ 548 return (CORE_ADDR) pc; 549 } 550 551 /* Function: push_dummy_call 552 Setup the function arguments for calling a function in the inferior. 553 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits 554 on the H8/300H. 555 556 There are actually two ABI's here: -mquickcall (the default) and 557 -mno-quickcall. With -mno-quickcall, all arguments are passed on 558 the stack after the return address, word-aligned. With 559 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since 560 GCC doesn't indicate in the object file which ABI was used to 561 compile it, GDB only supports the default --- -mquickcall. 562 563 Here are the rules for -mquickcall, in detail: 564 565 Each argument, whether scalar or aggregate, is padded to occupy a 566 whole number of words. Arguments smaller than a word are padded at 567 the most significant end; those larger than a word are padded at 568 the least significant end. 569 570 The initial arguments are passed in r0 -- r2. Earlier arguments go in 571 lower-numbered registers. Multi-word arguments are passed in 572 consecutive registers, with the most significant end in the 573 lower-numbered register. 574 575 If an argument doesn't fit entirely in the remaining registers, it 576 is passed entirely on the stack. Stack arguments begin just after 577 the return address. Once an argument has overflowed onto the stack 578 this way, all subsequent arguments are passed on the stack. 579 580 The above rule has odd consequences. For example, on the h8/300s, 581 if a function takes two longs and an int as arguments: 582 - the first long will be passed in r0/r1, 583 - the second long will be passed entirely on the stack, since it 584 doesn't fit in r2, 585 - and the int will be passed on the stack, even though it could fit 586 in r2. 587 588 A weird exception: if an argument is larger than a word, but not a 589 whole number of words in length (before padding), it is passed on 590 the stack following the rules for stack arguments above, even if 591 there are sufficient registers available to hold it. Stranger 592 still, the argument registers are still `used up' --- even though 593 there's nothing in them. 594 595 So, for example, on the h8/300s, if a function expects a three-byte 596 structure and an int, the structure will go on the stack, and the 597 int will go in r2, not r0. 598 599 If the function returns an aggregate type (struct, union, or class) 600 by value, the caller must allocate space to hold the return value, 601 and pass the callee a pointer to this space as an invisible first 602 argument, in R0. 603 604 For varargs functions, the last fixed argument and all the variable 605 arguments are always passed on the stack. This means that calls to 606 varargs functions don't work properly unless there is a prototype 607 in scope. 608 609 Basically, this ABI is not good, for the following reasons: 610 - You can't call vararg functions properly unless a prototype is in scope. 611 - Structure passing is inconsistent, to no purpose I can see. 612 - It often wastes argument registers, of which there are only three 613 to begin with. */ 614 615 static CORE_ADDR 616 h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 617 struct regcache *regcache, CORE_ADDR bp_addr, 618 int nargs, struct value **args, CORE_ADDR sp, 619 function_call_return_method return_method, 620 CORE_ADDR struct_addr) 621 { 622 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 623 int stack_alloc = 0, stack_offset = 0; 624 int wordsize = BINWORD (gdbarch); 625 int reg = E_ARG0_REGNUM; 626 int argument; 627 628 /* First, make sure the stack is properly aligned. */ 629 sp = align_down (sp, wordsize); 630 631 /* Now make sure there's space on the stack for the arguments. We 632 may over-allocate a little here, but that won't hurt anything. */ 633 for (argument = 0; argument < nargs; argument++) 634 stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])), 635 wordsize); 636 sp -= stack_alloc; 637 638 /* Now load as many arguments as possible into registers, and push 639 the rest onto the stack. 640 If we're returning a structure by value, then we must pass a 641 pointer to the buffer for the return value as an invisible first 642 argument. */ 643 if (return_method == return_method_struct) 644 regcache_cooked_write_unsigned (regcache, reg++, struct_addr); 645 646 for (argument = 0; argument < nargs; argument++) 647 { 648 struct type *type = value_type (args[argument]); 649 int len = TYPE_LENGTH (type); 650 char *contents = (char *) value_contents (args[argument]); 651 652 /* Pad the argument appropriately. */ 653 int padded_len = align_up (len, wordsize); 654 /* Use std::vector here to get zero initialization. */ 655 std::vector<gdb_byte> padded (padded_len); 656 657 memcpy ((len < wordsize ? padded.data () + padded_len - len 658 : padded.data ()), 659 contents, len); 660 661 /* Could the argument fit in the remaining registers? */ 662 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize) 663 { 664 /* Are we going to pass it on the stack anyway, for no good 665 reason? */ 666 if (len > wordsize && len % wordsize) 667 { 668 /* I feel so unclean. */ 669 write_memory (sp + stack_offset, padded.data (), padded_len); 670 stack_offset += padded_len; 671 672 /* That's right --- even though we passed the argument 673 on the stack, we consume the registers anyway! Love 674 me, love my dog. */ 675 reg += padded_len / wordsize; 676 } 677 else 678 { 679 /* Heavens to Betsy --- it's really going in registers! 680 Note that on the h8/300s, there are gaps between the 681 registers in the register file. */ 682 int offset; 683 684 for (offset = 0; offset < padded_len; offset += wordsize) 685 { 686 ULONGEST word 687 = extract_unsigned_integer (&padded[offset], 688 wordsize, byte_order); 689 regcache_cooked_write_unsigned (regcache, reg++, word); 690 } 691 } 692 } 693 else 694 { 695 /* It doesn't fit in registers! Onto the stack it goes. */ 696 write_memory (sp + stack_offset, padded.data (), padded_len); 697 stack_offset += padded_len; 698 699 /* Once one argument has spilled onto the stack, all 700 subsequent arguments go on the stack. */ 701 reg = E_ARGLAST_REGNUM + 1; 702 } 703 } 704 705 /* Store return address. */ 706 sp -= wordsize; 707 write_memory_unsigned_integer (sp, wordsize, byte_order, bp_addr); 708 709 /* Update stack pointer. */ 710 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp); 711 712 /* Return the new stack pointer minus the return address slot since 713 that's what DWARF2/GCC uses as the frame's CFA. */ 714 return sp + wordsize; 715 } 716 717 /* Function: extract_return_value 718 Figure out where in REGBUF the called function has left its return value. 719 Copy that into VALBUF. Be sure to account for CPU type. */ 720 721 static void 722 h8300_extract_return_value (struct type *type, struct regcache *regcache, 723 gdb_byte *valbuf) 724 { 725 struct gdbarch *gdbarch = regcache->arch (); 726 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 727 int len = TYPE_LENGTH (type); 728 ULONGEST c, addr; 729 730 switch (len) 731 { 732 case 1: 733 case 2: 734 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c); 735 store_unsigned_integer (valbuf, len, byte_order, c); 736 break; 737 case 4: /* Needs two registers on plain H8/300 */ 738 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c); 739 store_unsigned_integer (valbuf, 2, byte_order, c); 740 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c); 741 store_unsigned_integer (valbuf + 2, 2, byte_order, c); 742 break; 743 case 8: /* long long is now 8 bytes. */ 744 if (type->code () == TYPE_CODE_INT) 745 { 746 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr); 747 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len, byte_order); 748 store_unsigned_integer (valbuf, len, byte_order, c); 749 } 750 else 751 { 752 error (_("I don't know how this 8 byte value is returned.")); 753 } 754 break; 755 } 756 } 757 758 static void 759 h8300h_extract_return_value (struct type *type, struct regcache *regcache, 760 gdb_byte *valbuf) 761 { 762 struct gdbarch *gdbarch = regcache->arch (); 763 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 764 ULONGEST c; 765 766 switch (TYPE_LENGTH (type)) 767 { 768 case 1: 769 case 2: 770 case 4: 771 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c); 772 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, c); 773 break; 774 case 8: /* long long is now 8 bytes. */ 775 if (type->code () == TYPE_CODE_INT) 776 { 777 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c); 778 store_unsigned_integer (valbuf, 4, byte_order, c); 779 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c); 780 store_unsigned_integer (valbuf + 4, 4, byte_order, c); 781 } 782 else 783 { 784 error (_("I don't know how this 8 byte value is returned.")); 785 } 786 break; 787 } 788 } 789 790 static int 791 h8300_use_struct_convention (struct type *value_type) 792 { 793 /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the 794 stack. */ 795 796 if (value_type->code () == TYPE_CODE_STRUCT 797 || value_type->code () == TYPE_CODE_UNION) 798 return 1; 799 return !(TYPE_LENGTH (value_type) == 1 800 || TYPE_LENGTH (value_type) == 2 801 || TYPE_LENGTH (value_type) == 4); 802 } 803 804 static int 805 h8300h_use_struct_convention (struct type *value_type) 806 { 807 /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are 808 returned in R0/R1, everything else on the stack. */ 809 if (value_type->code () == TYPE_CODE_STRUCT 810 || value_type->code () == TYPE_CODE_UNION) 811 return 1; 812 return !(TYPE_LENGTH (value_type) == 1 813 || TYPE_LENGTH (value_type) == 2 814 || TYPE_LENGTH (value_type) == 4 815 || (TYPE_LENGTH (value_type) == 8 816 && value_type->code () == TYPE_CODE_INT)); 817 } 818 819 /* Function: store_return_value 820 Place the appropriate value in the appropriate registers. 821 Primarily used by the RETURN command. */ 822 823 static void 824 h8300_store_return_value (struct type *type, struct regcache *regcache, 825 const gdb_byte *valbuf) 826 { 827 struct gdbarch *gdbarch = regcache->arch (); 828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 829 ULONGEST val; 830 831 switch (TYPE_LENGTH (type)) 832 { 833 case 1: 834 case 2: /* short... */ 835 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order); 836 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val); 837 break; 838 case 4: /* long, float */ 839 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order); 840 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, 841 (val >> 16) & 0xffff); 842 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff); 843 break; 844 case 8: /* long long, double and long double 845 are all defined as 4 byte types so 846 far so this shouldn't happen. */ 847 error (_("I don't know how to return an 8 byte value.")); 848 break; 849 } 850 } 851 852 static void 853 h8300h_store_return_value (struct type *type, struct regcache *regcache, 854 const gdb_byte *valbuf) 855 { 856 struct gdbarch *gdbarch = regcache->arch (); 857 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 858 ULONGEST val; 859 860 switch (TYPE_LENGTH (type)) 861 { 862 case 1: 863 case 2: 864 case 4: /* long, float */ 865 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order); 866 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val); 867 break; 868 case 8: 869 val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order); 870 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, 871 (val >> 32) & 0xffffffff); 872 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, 873 val & 0xffffffff); 874 break; 875 } 876 } 877 878 static enum return_value_convention 879 h8300_return_value (struct gdbarch *gdbarch, struct value *function, 880 struct type *type, struct regcache *regcache, 881 gdb_byte *readbuf, const gdb_byte *writebuf) 882 { 883 if (h8300_use_struct_convention (type)) 884 return RETURN_VALUE_STRUCT_CONVENTION; 885 if (writebuf) 886 h8300_store_return_value (type, regcache, writebuf); 887 else if (readbuf) 888 h8300_extract_return_value (type, regcache, readbuf); 889 return RETURN_VALUE_REGISTER_CONVENTION; 890 } 891 892 static enum return_value_convention 893 h8300h_return_value (struct gdbarch *gdbarch, struct value *function, 894 struct type *type, struct regcache *regcache, 895 gdb_byte *readbuf, const gdb_byte *writebuf) 896 { 897 if (h8300h_use_struct_convention (type)) 898 { 899 if (readbuf) 900 { 901 ULONGEST addr; 902 903 regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr); 904 read_memory (addr, readbuf, TYPE_LENGTH (type)); 905 } 906 907 return RETURN_VALUE_ABI_RETURNS_ADDRESS; 908 } 909 if (writebuf) 910 h8300h_store_return_value (type, regcache, writebuf); 911 else if (readbuf) 912 h8300h_extract_return_value (type, regcache, readbuf); 913 return RETURN_VALUE_REGISTER_CONVENTION; 914 } 915 916 /* Implementation of 'register_sim_regno' gdbarch method. */ 917 918 static int 919 h8300_register_sim_regno (struct gdbarch *gdbarch, int regnum) 920 { 921 /* Only makes sense to supply raw registers. */ 922 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)); 923 924 /* We hide the raw ccr from the user by making it nameless. Because 925 the default register_sim_regno hook returns 926 LEGACY_SIM_REGNO_IGNORE for unnamed registers, we need to 927 override it. The sim register numbering is compatible with 928 gdb's. */ 929 return regnum; 930 } 931 932 static const char * 933 h8300_register_name_common (const char *regnames[], int numregs, 934 struct gdbarch *gdbarch, int regno) 935 { 936 if (regno < 0 937 || regno >= numregs) 938 internal_error (__FILE__, __LINE__, 939 _("h8300_register_name_common: illegal register number %d"), 940 regno); 941 else 942 return regnames[regno]; 943 } 944 945 static const char * 946 h8300_register_name (struct gdbarch *gdbarch, int regno) 947 { 948 /* The register names change depending on which h8300 processor 949 type is selected. */ 950 static const char *register_names[] = { 951 "r0", "r1", "r2", "r3", "r4", "r5", "r6", 952 "sp", "", "pc", "cycles", "tick", "inst", 953 "ccr", /* pseudo register */ 954 }; 955 return h8300_register_name_common(register_names, ARRAY_SIZE(register_names), 956 gdbarch, regno); 957 } 958 959 static const char * 960 h8300h_register_name (struct gdbarch *gdbarch, int regno) 961 { 962 static const char *register_names[] = { 963 "er0", "er1", "er2", "er3", "er4", "er5", "er6", 964 "sp", "", "pc", "cycles", "tick", "inst", 965 "ccr", /* pseudo register */ 966 }; 967 return h8300_register_name_common(register_names, ARRAY_SIZE(register_names), 968 gdbarch, regno); 969 } 970 971 static const char * 972 h8300s_register_name (struct gdbarch *gdbarch, int regno) 973 { 974 static const char *register_names[] = { 975 "er0", "er1", "er2", "er3", "er4", "er5", "er6", 976 "sp", "", "pc", "cycles", "", "tick", "inst", 977 "mach", "macl", 978 "ccr", "exr" /* pseudo registers */ 979 }; 980 return h8300_register_name_common(register_names, ARRAY_SIZE(register_names), 981 gdbarch, regno); 982 } 983 984 static const char * 985 h8300sx_register_name (struct gdbarch *gdbarch, int regno) 986 { 987 static const char *register_names[] = { 988 "er0", "er1", "er2", "er3", "er4", "er5", "er6", 989 "sp", "", "pc", "cycles", "", "tick", "inst", 990 "mach", "macl", "sbr", "vbr", 991 "ccr", "exr" /* pseudo registers */ 992 }; 993 return h8300_register_name_common(register_names, ARRAY_SIZE(register_names), 994 gdbarch, regno); 995 } 996 997 static void 998 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file, 999 struct frame_info *frame, int regno) 1000 { 1001 LONGEST rval; 1002 const char *name = gdbarch_register_name (gdbarch, regno); 1003 1004 if (!name || !*name) 1005 return; 1006 1007 rval = get_frame_register_signed (frame, regno); 1008 1009 fprintf_filtered (file, "%-14s ", name); 1010 if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \ 1011 (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))) 1012 { 1013 fprintf_filtered (file, "0x%02x ", (unsigned char) rval); 1014 print_longest (file, 'u', 1, rval); 1015 } 1016 else 1017 { 1018 fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval, 1019 BINWORD (gdbarch))); 1020 print_longest (file, 'd', 1, rval); 1021 } 1022 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch)) 1023 { 1024 /* CCR register */ 1025 int C, Z, N, V; 1026 unsigned char l = rval & 0xff; 1027 fprintf_filtered (file, "\t"); 1028 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0); 1029 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0); 1030 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0); 1031 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0); 1032 N = (l & 0x8) != 0; 1033 Z = (l & 0x4) != 0; 1034 V = (l & 0x2) != 0; 1035 C = (l & 0x1) != 0; 1036 fprintf_filtered (file, "N-%d ", N); 1037 fprintf_filtered (file, "Z-%d ", Z); 1038 fprintf_filtered (file, "V-%d ", V); 1039 fprintf_filtered (file, "C-%d ", C); 1040 if ((C | Z) == 0) 1041 fprintf_filtered (file, "u> "); 1042 if ((C | Z) == 1) 1043 fprintf_filtered (file, "u<= "); 1044 if (C == 0) 1045 fprintf_filtered (file, "u>= "); 1046 if (C == 1) 1047 fprintf_filtered (file, "u< "); 1048 if (Z == 0) 1049 fprintf_filtered (file, "!= "); 1050 if (Z == 1) 1051 fprintf_filtered (file, "== "); 1052 if ((N ^ V) == 0) 1053 fprintf_filtered (file, ">= "); 1054 if ((N ^ V) == 1) 1055 fprintf_filtered (file, "< "); 1056 if ((Z | (N ^ V)) == 0) 1057 fprintf_filtered (file, "> "); 1058 if ((Z | (N ^ V)) == 1) 1059 fprintf_filtered (file, "<= "); 1060 } 1061 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)) 1062 { 1063 /* EXR register */ 1064 unsigned char l = rval & 0xff; 1065 fprintf_filtered (file, "\t"); 1066 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0); 1067 fprintf_filtered (file, "I2-%d ", (l & 4) != 0); 1068 fprintf_filtered (file, "I1-%d ", (l & 2) != 0); 1069 fprintf_filtered (file, "I0-%d", (l & 1) != 0); 1070 } 1071 fprintf_filtered (file, "\n"); 1072 } 1073 1074 static void 1075 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, 1076 struct frame_info *frame, int regno, int cpregs) 1077 { 1078 if (regno < 0) 1079 { 1080 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno) 1081 h8300_print_register (gdbarch, file, frame, regno); 1082 h8300_print_register (gdbarch, file, frame, 1083 E_PSEUDO_CCR_REGNUM (gdbarch)); 1084 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM); 1085 if (is_h8300smode (gdbarch)) 1086 { 1087 h8300_print_register (gdbarch, file, frame, 1088 E_PSEUDO_EXR_REGNUM (gdbarch)); 1089 if (is_h8300sxmode (gdbarch)) 1090 { 1091 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM); 1092 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM); 1093 } 1094 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM); 1095 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM); 1096 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM); 1097 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM); 1098 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM); 1099 } 1100 else 1101 { 1102 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM); 1103 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM); 1104 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM); 1105 } 1106 } 1107 else 1108 { 1109 if (regno == E_CCR_REGNUM) 1110 h8300_print_register (gdbarch, file, frame, 1111 E_PSEUDO_CCR_REGNUM (gdbarch)); 1112 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) 1113 && is_h8300smode (gdbarch)) 1114 h8300_print_register (gdbarch, file, frame, 1115 E_PSEUDO_EXR_REGNUM (gdbarch)); 1116 else 1117 h8300_print_register (gdbarch, file, frame, regno); 1118 } 1119 } 1120 1121 static struct type * 1122 h8300_register_type (struct gdbarch *gdbarch, int regno) 1123 { 1124 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch)) 1125 internal_error (__FILE__, __LINE__, 1126 _("h8300_register_type: illegal register number %d"), 1127 regno); 1128 else 1129 { 1130 switch (regno) 1131 { 1132 case E_PC_REGNUM: 1133 return builtin_type (gdbarch)->builtin_func_ptr; 1134 case E_SP_REGNUM: 1135 case E_FP_REGNUM: 1136 return builtin_type (gdbarch)->builtin_data_ptr; 1137 default: 1138 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch)) 1139 return builtin_type (gdbarch)->builtin_uint8; 1140 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)) 1141 return builtin_type (gdbarch)->builtin_uint8; 1142 else if (is_h8300hmode (gdbarch)) 1143 return builtin_type (gdbarch)->builtin_int32; 1144 else 1145 return builtin_type (gdbarch)->builtin_int16; 1146 } 1147 } 1148 } 1149 1150 /* Helpers for h8300_pseudo_register_read. We expose ccr/exr as 1151 pseudo-registers to users with smaller sizes than the corresponding 1152 raw registers. These helpers extend/narrow the values. */ 1153 1154 static enum register_status 1155 pseudo_from_raw_register (struct gdbarch *gdbarch, readable_regcache *regcache, 1156 gdb_byte *buf, int pseudo_regno, int raw_regno) 1157 { 1158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1159 enum register_status status; 1160 ULONGEST val; 1161 1162 status = regcache->raw_read (raw_regno, &val); 1163 if (status == REG_VALID) 1164 store_unsigned_integer (buf, 1165 register_size (gdbarch, pseudo_regno), 1166 byte_order, val); 1167 return status; 1168 } 1169 1170 /* See pseudo_from_raw_register. */ 1171 1172 static void 1173 raw_from_pseudo_register (struct gdbarch *gdbarch, struct regcache *regcache, 1174 const gdb_byte *buf, int raw_regno, int pseudo_regno) 1175 { 1176 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1177 ULONGEST val; 1178 1179 val = extract_unsigned_integer (buf, register_size (gdbarch, pseudo_regno), 1180 byte_order); 1181 regcache_raw_write_unsigned (regcache, raw_regno, val); 1182 } 1183 1184 static enum register_status 1185 h8300_pseudo_register_read (struct gdbarch *gdbarch, 1186 readable_regcache *regcache, int regno, 1187 gdb_byte *buf) 1188 { 1189 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch)) 1190 { 1191 return pseudo_from_raw_register (gdbarch, regcache, buf, 1192 regno, E_CCR_REGNUM); 1193 } 1194 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)) 1195 { 1196 return pseudo_from_raw_register (gdbarch, regcache, buf, 1197 regno, E_EXR_REGNUM); 1198 } 1199 else 1200 return regcache->raw_read (regno, buf); 1201 } 1202 1203 static void 1204 h8300_pseudo_register_write (struct gdbarch *gdbarch, 1205 struct regcache *regcache, int regno, 1206 const gdb_byte *buf) 1207 { 1208 if (regno == E_PSEUDO_CCR_REGNUM (gdbarch)) 1209 raw_from_pseudo_register (gdbarch, regcache, buf, E_CCR_REGNUM, regno); 1210 else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)) 1211 raw_from_pseudo_register (gdbarch, regcache, buf, E_EXR_REGNUM, regno); 1212 else 1213 regcache->raw_write (regno, buf); 1214 } 1215 1216 static int 1217 h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno) 1218 { 1219 if (regno == E_CCR_REGNUM) 1220 return E_PSEUDO_CCR_REGNUM (gdbarch); 1221 return regno; 1222 } 1223 1224 static int 1225 h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno) 1226 { 1227 if (regno == E_CCR_REGNUM) 1228 return E_PSEUDO_CCR_REGNUM (gdbarch); 1229 if (regno == E_EXR_REGNUM) 1230 return E_PSEUDO_EXR_REGNUM (gdbarch); 1231 return regno; 1232 } 1233 1234 /*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */ 1235 constexpr gdb_byte h8300_break_insn[] = { 0x01, 0x80 }; /* Sleep */ 1236 1237 typedef BP_MANIPULATION (h8300_break_insn) h8300_breakpoint; 1238 1239 static struct gdbarch * 1240 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 1241 { 1242 struct gdbarch *gdbarch; 1243 1244 arches = gdbarch_list_lookup_by_info (arches, &info); 1245 if (arches != NULL) 1246 return arches->gdbarch; 1247 1248 if (info.bfd_arch_info->arch != bfd_arch_h8300) 1249 return NULL; 1250 1251 gdbarch = gdbarch_alloc (&info, 0); 1252 1253 set_gdbarch_register_sim_regno (gdbarch, h8300_register_sim_regno); 1254 1255 switch (info.bfd_arch_info->mach) 1256 { 1257 case bfd_mach_h8300: 1258 set_gdbarch_num_regs (gdbarch, 13); 1259 set_gdbarch_num_pseudo_regs (gdbarch, 1); 1260 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); 1261 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); 1262 set_gdbarch_register_name (gdbarch, h8300_register_name); 1263 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1264 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1265 set_gdbarch_return_value (gdbarch, h8300_return_value); 1266 break; 1267 case bfd_mach_h8300h: 1268 case bfd_mach_h8300hn: 1269 set_gdbarch_num_regs (gdbarch, 13); 1270 set_gdbarch_num_pseudo_regs (gdbarch, 1); 1271 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); 1272 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum); 1273 set_gdbarch_register_name (gdbarch, h8300h_register_name); 1274 if (info.bfd_arch_info->mach != bfd_mach_h8300hn) 1275 { 1276 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1277 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1278 } 1279 else 1280 { 1281 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1282 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1283 } 1284 set_gdbarch_return_value (gdbarch, h8300h_return_value); 1285 break; 1286 case bfd_mach_h8300s: 1287 case bfd_mach_h8300sn: 1288 set_gdbarch_num_regs (gdbarch, 16); 1289 set_gdbarch_num_pseudo_regs (gdbarch, 2); 1290 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); 1291 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); 1292 set_gdbarch_register_name (gdbarch, h8300s_register_name); 1293 if (info.bfd_arch_info->mach != bfd_mach_h8300sn) 1294 { 1295 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1296 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1297 } 1298 else 1299 { 1300 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1301 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1302 } 1303 set_gdbarch_return_value (gdbarch, h8300h_return_value); 1304 break; 1305 case bfd_mach_h8300sx: 1306 case bfd_mach_h8300sxn: 1307 set_gdbarch_num_regs (gdbarch, 18); 1308 set_gdbarch_num_pseudo_regs (gdbarch, 2); 1309 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); 1310 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum); 1311 set_gdbarch_register_name (gdbarch, h8300sx_register_name); 1312 if (info.bfd_arch_info->mach != bfd_mach_h8300sxn) 1313 { 1314 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1315 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1316 } 1317 else 1318 { 1319 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1320 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1321 } 1322 set_gdbarch_return_value (gdbarch, h8300h_return_value); 1323 break; 1324 } 1325 1326 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read); 1327 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write); 1328 1329 /* 1330 * Basic register fields and methods. 1331 */ 1332 1333 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); 1334 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); 1335 set_gdbarch_register_type (gdbarch, h8300_register_type); 1336 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info); 1337 1338 /* 1339 * Frame Info 1340 */ 1341 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue); 1342 1343 /* Frame unwinder. */ 1344 frame_base_set_default (gdbarch, &h8300_frame_base); 1345 1346 /* 1347 * Miscellany 1348 */ 1349 /* Stack grows up. */ 1350 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 1351 1352 set_gdbarch_breakpoint_kind_from_pc (gdbarch, 1353 h8300_breakpoint::kind_from_pc); 1354 set_gdbarch_sw_breakpoint_from_kind (gdbarch, 1355 h8300_breakpoint::bp_from_kind); 1356 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call); 1357 1358 set_gdbarch_char_signed (gdbarch, 0); 1359 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1360 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1361 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); 1362 1363 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1364 set_gdbarch_wchar_signed (gdbarch, 0); 1365 1366 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1367 set_gdbarch_double_format (gdbarch, floatformats_ieee_single); 1368 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1369 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); 1370 1371 set_gdbarch_believe_pcc_promotion (gdbarch, 1); 1372 1373 /* Hook in the DWARF CFI frame unwinder. */ 1374 dwarf2_append_unwinders (gdbarch); 1375 frame_unwind_append_unwinder (gdbarch, &h8300_frame_unwind); 1376 1377 return gdbarch; 1378 1379 } 1380 1381 void _initialize_h8300_tdep (); 1382 void 1383 _initialize_h8300_tdep () 1384 { 1385 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init); 1386 } 1387 1388 static int 1389 is_h8300hmode (struct gdbarch *gdbarch) 1390 { 1391 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx 1392 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn 1393 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s 1394 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn 1395 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h 1396 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn; 1397 } 1398 1399 static int 1400 is_h8300smode (struct gdbarch *gdbarch) 1401 { 1402 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx 1403 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn 1404 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s 1405 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn; 1406 } 1407 1408 static int 1409 is_h8300sxmode (struct gdbarch *gdbarch) 1410 { 1411 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx 1412 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn; 1413 } 1414 1415 static int 1416 is_h8300_normal_mode (struct gdbarch *gdbarch) 1417 { 1418 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn 1419 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn 1420 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn; 1421 } 1422