xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/gdbthread.h (revision 99e23f81b2b10aef1a10b03588663e472627bb76)
1 /* Multi-process/thread control defs for GDB, the GNU debugger.
2    Copyright (C) 1987-2017 Free Software Foundation, Inc.
3    Contributed by Lynx Real-Time Systems, Inc.  Los Gatos, CA.
4 
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #ifndef GDBTHREAD_H
22 #define GDBTHREAD_H
23 
24 struct symtab;
25 
26 #include "breakpoint.h"
27 #include "frame.h"
28 #include "ui-out.h"
29 #include "inferior.h"
30 #include "btrace.h"
31 #include "common/vec.h"
32 #include "target/waitstatus.h"
33 #include "cli/cli-utils.h"
34 
35 /* Frontend view of the thread state.  Possible extensions: stepping,
36    finishing, until(ling),...  */
37 enum thread_state
38 {
39   THREAD_STOPPED,
40   THREAD_RUNNING,
41   THREAD_EXITED,
42 };
43 
44 /* Inferior thread specific part of `struct infcall_control_state'.
45 
46    Inferior process counterpart is `struct inferior_control_state'.  */
47 
48 struct thread_control_state
49 {
50   /* User/external stepping state.  */
51 
52   /* Step-resume or longjmp-resume breakpoint.  */
53   struct breakpoint *step_resume_breakpoint;
54 
55   /* Exception-resume breakpoint.  */
56   struct breakpoint *exception_resume_breakpoint;
57 
58   /* Breakpoints used for software single stepping.  Plural, because
59      it may have multiple locations.  E.g., if stepping over a
60      conditional branch instruction we can't decode the condition for,
61      we'll need to put a breakpoint at the branch destination, and
62      another at the instruction after the branch.  */
63   struct breakpoint *single_step_breakpoints;
64 
65   /* Range to single step within.
66 
67      If this is nonzero, respond to a single-step signal by continuing
68      to step if the pc is in this range.
69 
70      If step_range_start and step_range_end are both 1, it means to
71      step for a single instruction (FIXME: it might clean up
72      wait_for_inferior in a minor way if this were changed to the
73      address of the instruction and that address plus one.  But maybe
74      not).  */
75   CORE_ADDR step_range_start;	/* Inclusive */
76   CORE_ADDR step_range_end;	/* Exclusive */
77 
78   /* Function the thread was in as of last it started stepping.  */
79   struct symbol *step_start_function;
80 
81   /* If GDB issues a target step request, and this is nonzero, the
82      target should single-step this thread once, and then continue
83      single-stepping it without GDB core involvement as long as the
84      thread stops in the step range above.  If this is zero, the
85      target should ignore the step range, and only issue one single
86      step.  */
87   int may_range_step;
88 
89   /* Stack frame address as of when stepping command was issued.
90      This is how we know when we step into a subroutine call, and how
91      to set the frame for the breakpoint used to step out.  */
92   struct frame_id step_frame_id;
93 
94   /* Similarly, the frame ID of the underlying stack frame (skipping
95      any inlined frames).  */
96   struct frame_id step_stack_frame_id;
97 
98   /* Nonzero if we are presently stepping over a breakpoint.
99 
100      If we hit a breakpoint or watchpoint, and then continue, we need
101      to single step the current thread with breakpoints disabled, to
102      avoid hitting the same breakpoint or watchpoint again.  And we
103      should step just a single thread and keep other threads stopped,
104      so that other threads don't miss breakpoints while they are
105      removed.
106 
107      So, this variable simultaneously means that we need to single
108      step the current thread, keep other threads stopped, and that
109      breakpoints should be removed while we step.
110 
111      This variable is set either:
112      - in proceed, when we resume inferior on user's explicit request
113      - in keep_going, if handle_inferior_event decides we need to
114      step over breakpoint.
115 
116      The variable is cleared in normal_stop.  The proceed calls
117      wait_for_inferior, which calls handle_inferior_event in a loop,
118      and until wait_for_inferior exits, this variable is changed only
119      by keep_going.  */
120   int trap_expected;
121 
122   /* Nonzero if the thread is being proceeded for a "finish" command
123      or a similar situation when return value should be printed.  */
124   int proceed_to_finish;
125 
126   /* Nonzero if the thread is being proceeded for an inferior function
127      call.  */
128   int in_infcall;
129 
130   enum step_over_calls_kind step_over_calls;
131 
132   /* Nonzero if stopped due to a step command.  */
133   int stop_step;
134 
135   /* Chain containing status of breakpoint(s) the thread stopped
136      at.  */
137   bpstat stop_bpstat;
138 
139   /* Whether the command that started the thread was a stepping
140      command.  This is used to decide whether "set scheduler-locking
141      step" behaves like "on" or "off".  */
142   int stepping_command;
143 };
144 
145 /* Inferior thread specific part of `struct infcall_suspend_state'.  */
146 
147 struct thread_suspend_state
148 {
149   /* Last signal that the inferior received (why it stopped).  When
150      the thread is resumed, this signal is delivered.  Note: the
151      target should not check whether the signal is in pass state,
152      because the signal may have been explicitly passed with the
153      "signal" command, which overrides "handle nopass".  If the signal
154      should be suppressed, the core will take care of clearing this
155      before the target is resumed.  */
156   enum gdb_signal stop_signal;
157 
158   /* The reason the thread last stopped, if we need to track it
159      (breakpoint, watchpoint, etc.)  */
160   enum target_stop_reason stop_reason;
161 
162   /* The waitstatus for this thread's last event.  */
163   struct target_waitstatus waitstatus;
164   /* If true WAITSTATUS hasn't been handled yet.  */
165   int waitstatus_pending_p;
166 
167   /* Record the pc of the thread the last time it stopped.  (This is
168      not the current thread's PC as that may have changed since the
169      last stop, e.g., "return" command, or "p $pc = 0xf000").  This is
170      used in coordination with stop_reason and waitstatus_pending_p:
171      if the thread's PC is changed since it last stopped, a pending
172      breakpoint waitstatus is discarded.  */
173   CORE_ADDR stop_pc;
174 };
175 
176 typedef struct value *value_ptr;
177 DEF_VEC_P (value_ptr);
178 typedef VEC (value_ptr) value_vec;
179 
180 struct thread_info
181 {
182 public:
183   explicit thread_info (inferior *inf, ptid_t ptid);
184   ~thread_info ();
185 
186   bool deletable () const
187   {
188     /* If this is the current thread, or there's code out there that
189        relies on it existing (m_refcount > 0) we can't delete yet.  */
190     return (m_refcount == 0 && !ptid_equal (ptid, inferior_ptid));
191   }
192 
193   /* Increase the refcount.  */
194   void incref ()
195   {
196     gdb_assert (m_refcount >= 0);
197     m_refcount++;
198   }
199 
200   /* Decrease the refcount.  */
201   void decref ()
202   {
203     m_refcount--;
204     gdb_assert (m_refcount >= 0);
205   }
206 
207   struct thread_info *next = NULL;
208   ptid_t ptid;			/* "Actual process id";
209 				    In fact, this may be overloaded with
210 				    kernel thread id, etc.  */
211 
212   /* Each thread has two GDB IDs.
213 
214      a) The thread ID (Id).  This consists of the pair of:
215 
216         - the number of the thread's inferior and,
217 
218         - the thread's thread number in its inferior, aka, the
219           per-inferior thread number.  This number is unique in the
220           inferior but not unique between inferiors.
221 
222      b) The global ID (GId).  This is a a single integer unique
223         between all inferiors.
224 
225      E.g.:
226 
227       (gdb) info threads -gid
228 	Id    GId   Target Id   Frame
229       * 1.1   1     Thread A    0x16a09237 in foo () at foo.c:10
230 	1.2   3     Thread B    0x15ebc6ed in bar () at foo.c:20
231 	1.3   5     Thread C    0x15ebc6ed in bar () at foo.c:20
232 	2.1   2     Thread A    0x16a09237 in foo () at foo.c:10
233 	2.2   4     Thread B    0x15ebc6ed in bar () at foo.c:20
234 	2.3   6     Thread C    0x15ebc6ed in bar () at foo.c:20
235 
236      Above, both inferiors 1 and 2 have threads numbered 1-3, but each
237      thread has its own unique global ID.  */
238 
239   /* The thread's global GDB thread number.  This is exposed to MI,
240      Python/Scheme, visible with "info threads -gid", and is also what
241      the $_gthread convenience variable is bound to.  */
242   int global_num;
243 
244   /* The per-inferior thread number.  This is unique in the inferior
245      the thread belongs to, but not unique between inferiors.  This is
246      what the $_thread convenience variable is bound to.  */
247   int per_inf_num;
248 
249   /* The inferior this thread belongs to.  */
250   struct inferior *inf;
251 
252   /* The name of the thread, as specified by the user.  This is NULL
253      if the thread does not have a user-given name.  */
254   char *name = NULL;
255 
256   /* Non-zero means the thread is executing.  Note: this is different
257      from saying that there is an active target and we are stopped at
258      a breakpoint, for instance.  This is a real indicator whether the
259      thread is off and running.  */
260   int executing = 0;
261 
262   /* Non-zero if this thread is resumed from infrun's perspective.
263      Note that a thread can be marked both as not-executing and
264      resumed at the same time.  This happens if we try to resume a
265      thread that has a wait status pending.  We shouldn't let the
266      thread really run until that wait status has been processed, but
267      we should not process that wait status if we didn't try to let
268      the thread run.  */
269   int resumed = 0;
270 
271   /* Frontend view of the thread state.  Note that the THREAD_RUNNING/
272      THREAD_STOPPED states are different from EXECUTING.  When the
273      thread is stopped internally while handling an internal event,
274      like a software single-step breakpoint, EXECUTING will be false,
275      but STATE will still be THREAD_RUNNING.  */
276   enum thread_state state = THREAD_STOPPED;
277 
278   /* State of GDB control of inferior thread execution.
279      See `struct thread_control_state'.  */
280   thread_control_state control {};
281 
282   /* State of inferior thread to restore after GDB is done with an inferior
283      call.  See `struct thread_suspend_state'.  */
284   thread_suspend_state suspend {};
285 
286   int current_line = 0;
287   struct symtab *current_symtab = NULL;
288 
289   /* Internal stepping state.  */
290 
291   /* Record the pc of the thread the last time it was resumed.  (It
292      can't be done on stop as the PC may change since the last stop,
293      e.g., "return" command, or "p $pc = 0xf000").  This is maintained
294      by proceed and keep_going, and among other things, it's used in
295      adjust_pc_after_break to distinguish a hardware single-step
296      SIGTRAP from a breakpoint SIGTRAP.  */
297   CORE_ADDR prev_pc = 0;
298 
299   /* Did we set the thread stepping a breakpoint instruction?  This is
300      used in conjunction with PREV_PC to decide whether to adjust the
301      PC.  */
302   int stepped_breakpoint = 0;
303 
304   /* Should we step over breakpoint next time keep_going is called?  */
305   int stepping_over_breakpoint = 0;
306 
307   /* Should we step over a watchpoint next time keep_going is called?
308      This is needed on targets with non-continuable, non-steppable
309      watchpoints.  */
310   int stepping_over_watchpoint = 0;
311 
312   /* Set to TRUE if we should finish single-stepping over a breakpoint
313      after hitting the current step-resume breakpoint.  The context here
314      is that GDB is to do `next' or `step' while signal arrives.
315      When stepping over a breakpoint and signal arrives, GDB will attempt
316      to skip signal handler, so it inserts a step_resume_breakpoint at the
317      signal return address, and resume inferior.
318      step_after_step_resume_breakpoint is set to TRUE at this moment in
319      order to keep GDB in mind that there is still a breakpoint to step over
320      when GDB gets back SIGTRAP from step_resume_breakpoint.  */
321   int step_after_step_resume_breakpoint = 0;
322 
323   /* Pointer to the state machine manager object that handles what is
324      left to do for the thread's execution command after the target
325      stops.  Several execution commands use it.  */
326   struct thread_fsm *thread_fsm = NULL;
327 
328   /* This is used to remember when a fork or vfork event was caught by
329      a catchpoint, and thus the event is to be followed at the next
330      resume of the thread, and not immediately.  */
331   struct target_waitstatus pending_follow;
332 
333   /* True if this thread has been explicitly requested to stop.  */
334   int stop_requested = 0;
335 
336   /* The initiating frame of a nexting operation, used for deciding
337      which exceptions to intercept.  If it is null_frame_id no
338      bp_longjmp or bp_exception but longjmp has been caught just for
339      bp_longjmp_call_dummy.  */
340   struct frame_id initiating_frame = null_frame_id;
341 
342   /* Private data used by the target vector implementation.  */
343   struct private_thread_info *priv = NULL;
344 
345   /* Function that is called to free PRIVATE.  If this is NULL, then
346      xfree will be called on PRIVATE.  */
347   void (*private_dtor) (struct private_thread_info *) = NULL;
348 
349   /* Branch trace information for this thread.  */
350   struct btrace_thread_info btrace {};
351 
352   /* Flag which indicates that the stack temporaries should be stored while
353      evaluating expressions.  */
354   int stack_temporaries_enabled = 0;
355 
356   /* Values that are stored as temporaries on stack while evaluating
357      expressions.  */
358   value_vec *stack_temporaries = NULL;
359 
360   /* Step-over chain.  A thread is in the step-over queue if these are
361      non-NULL.  If only a single thread is in the chain, then these
362      fields point to self.  */
363   struct thread_info *step_over_prev = NULL;
364   struct thread_info *step_over_next = NULL;
365 
366 private:
367 
368   /* If this is > 0, then it means there's code out there that relies
369      on this thread being listed.  Don't delete it from the lists even
370      if we detect it exiting.  */
371   int m_refcount = 0;
372 };
373 
374 /* Create an empty thread list, or empty the existing one.  */
375 extern void init_thread_list (void);
376 
377 /* Add a thread to the thread list, print a message
378    that a new thread is found, and return the pointer to
379    the new thread.  Caller my use this pointer to
380    initialize the private thread data.  */
381 extern struct thread_info *add_thread (ptid_t ptid);
382 
383 /* Same as add_thread, but does not print a message
384    about new thread.  */
385 extern struct thread_info *add_thread_silent (ptid_t ptid);
386 
387 /* Same as add_thread, and sets the private info.  */
388 extern struct thread_info *add_thread_with_info (ptid_t ptid,
389 						 struct private_thread_info *);
390 
391 /* Delete an existing thread list entry.  */
392 extern void delete_thread (ptid_t);
393 
394 /* Delete an existing thread list entry, and be quiet about it.  Used
395    after the process this thread having belonged to having already
396    exited, for example.  */
397 extern void delete_thread_silent (ptid_t);
398 
399 /* Delete a step_resume_breakpoint from the thread database.  */
400 extern void delete_step_resume_breakpoint (struct thread_info *);
401 
402 /* Delete an exception_resume_breakpoint from the thread database.  */
403 extern void delete_exception_resume_breakpoint (struct thread_info *);
404 
405 /* Delete the single-step breakpoints of thread TP, if any.  */
406 extern void delete_single_step_breakpoints (struct thread_info *tp);
407 
408 /* Check if the thread has software single stepping breakpoints
409    set.  */
410 extern int thread_has_single_step_breakpoints_set (struct thread_info *tp);
411 
412 /* Check whether the thread has software single stepping breakpoints
413    set at PC.  */
414 extern int thread_has_single_step_breakpoint_here (struct thread_info *tp,
415 						   struct address_space *aspace,
416 						   CORE_ADDR addr);
417 
418 /* Translate the global integer thread id (GDB's homegrown id, not the
419    system's) into a "pid" (which may be overloaded with extra thread
420    information).  */
421 extern ptid_t global_thread_id_to_ptid (int num);
422 
423 /* Translate a 'pid' (which may be overloaded with extra thread
424    information) into the global integer thread id (GDB's homegrown id,
425    not the system's).  */
426 extern int ptid_to_global_thread_id (ptid_t ptid);
427 
428 /* Returns whether to show inferior-qualified thread IDs, or plain
429    thread numbers.  Inferior-qualified IDs are shown whenever we have
430    multiple inferiors, or the only inferior left has number > 1.  */
431 extern int show_inferior_qualified_tids (void);
432 
433 /* Return a string version of THR's thread ID.  If there are multiple
434    inferiors, then this prints the inferior-qualifier form, otherwise
435    it only prints the thread number.  The result is stored in a
436    circular static buffer, NUMCELLS deep.  */
437 const char *print_thread_id (struct thread_info *thr);
438 
439 /* Boolean test for an already-known pid (which may be overloaded with
440    extra thread information).  */
441 extern int in_thread_list (ptid_t ptid);
442 
443 /* Boolean test for an already-known global thread id (GDB's homegrown
444    global id, not the system's).  */
445 extern int valid_global_thread_id (int global_id);
446 
447 /* Search function to lookup a thread by 'pid'.  */
448 extern struct thread_info *find_thread_ptid (ptid_t ptid);
449 
450 /* Find thread by GDB global thread ID.  */
451 struct thread_info *find_thread_global_id (int global_id);
452 
453 /* Finds the first thread of the inferior given by PID.  If PID is -1,
454    returns the first thread in the list.  */
455 struct thread_info *first_thread_of_process (int pid);
456 
457 /* Returns any thread of process PID, giving preference to the current
458    thread.  */
459 extern struct thread_info *any_thread_of_process (int pid);
460 
461 /* Returns any non-exited thread of process PID, giving preference to
462    the current thread, and to not executing threads.  */
463 extern struct thread_info *any_live_thread_of_process (int pid);
464 
465 /* Change the ptid of thread OLD_PTID to NEW_PTID.  */
466 void thread_change_ptid (ptid_t old_ptid, ptid_t new_ptid);
467 
468 /* Iterator function to call a user-provided callback function
469    once for each known thread.  */
470 typedef int (*thread_callback_func) (struct thread_info *, void *);
471 extern struct thread_info *iterate_over_threads (thread_callback_func, void *);
472 
473 /* Traverse all threads.  */
474 #define ALL_THREADS(T)				\
475   for (T = thread_list; T; T = T->next)		\
476 
477 /* Traverse over all threads, sorted by inferior.  */
478 #define ALL_THREADS_BY_INFERIOR(inf, tp) \
479   ALL_INFERIORS (inf) \
480     ALL_THREADS (tp) \
481       if (inf == tp->inf)
482 
483 /* Traverse all threads, except those that have THREAD_EXITED
484    state.  */
485 
486 #define ALL_NON_EXITED_THREADS(T)				\
487   for (T = thread_list; T; T = T->next) \
488     if ((T)->state != THREAD_EXITED)
489 
490 /* Traverse all threads, including those that have THREAD_EXITED
491    state.  Allows deleting the currently iterated thread.  */
492 #define ALL_THREADS_SAFE(T, TMP)	\
493   for ((T) = thread_list;			\
494        (T) != NULL ? ((TMP) = (T)->next, 1): 0;	\
495        (T) = (TMP))
496 
497 extern int thread_count (void);
498 
499 /* Switch from one thread to another.  Also sets the STOP_PC
500    global.  */
501 extern void switch_to_thread (ptid_t ptid);
502 
503 /* Switch from one thread to another.  Does not read registers and
504    sets STOP_PC to -1.  */
505 extern void switch_to_thread_no_regs (struct thread_info *thread);
506 
507 /* Marks or clears thread(s) PTID as resumed.  If PTID is
508    MINUS_ONE_PTID, applies to all threads.  If ptid_is_pid(PTID) is
509    true, applies to all threads of the process pointed at by PTID.  */
510 extern void set_resumed (ptid_t ptid, int resumed);
511 
512 /* Marks thread PTID is running, or stopped.
513    If PTID is minus_one_ptid, marks all threads.  */
514 extern void set_running (ptid_t ptid, int running);
515 
516 /* Marks or clears thread(s) PTID as having been requested to stop.
517    If PTID is MINUS_ONE_PTID, applies to all threads.  If
518    ptid_is_pid(PTID) is true, applies to all threads of the process
519    pointed at by PTID.  If STOP, then the THREAD_STOP_REQUESTED
520    observer is called with PTID as argument.  */
521 extern void set_stop_requested (ptid_t ptid, int stop);
522 
523 /* NOTE: Since the thread state is not a boolean, most times, you do
524    not want to check it with negation.  If you really want to check if
525    the thread is stopped,
526 
527     use (good):
528 
529      if (is_stopped (ptid))
530 
531     instead of (bad):
532 
533      if (!is_running (ptid))
534 
535    The latter also returns true on exited threads, most likelly not
536    what you want.  */
537 
538 /* Reports if in the frontend's perpective, thread PTID is running.  */
539 extern int is_running (ptid_t ptid);
540 
541 /* Is this thread listed, but known to have exited?  We keep it listed
542    (but not visible) until it's safe to delete.  */
543 extern int is_exited (ptid_t ptid);
544 
545 /* In the frontend's perpective, is this thread stopped?  */
546 extern int is_stopped (ptid_t ptid);
547 
548 /* Marks thread PTID as executing, or not.  If PTID is minus_one_ptid,
549    marks all threads.
550 
551    Note that this is different from the running state.  See the
552    description of state and executing fields of struct
553    thread_info.  */
554 extern void set_executing (ptid_t ptid, int executing);
555 
556 /* Reports if thread PTID is executing.  */
557 extern int is_executing (ptid_t ptid);
558 
559 /* True if any (known or unknown) thread is or may be executing.  */
560 extern int threads_are_executing (void);
561 
562 /* Merge the executing property of thread PTID over to its thread
563    state property (frontend running/stopped view).
564 
565    "not executing" -> "stopped"
566    "executing"     -> "running"
567    "exited"        -> "exited"
568 
569    If PTID is minus_one_ptid, go over all threads.
570 
571    Notifications are only emitted if the thread state did change.  */
572 extern void finish_thread_state (ptid_t ptid);
573 
574 /* Same as FINISH_THREAD_STATE, but with an interface suitable to be
575    registered as a cleanup.  PTID_P points to the ptid_t that is
576    passed to FINISH_THREAD_STATE.  */
577 extern void finish_thread_state_cleanup (void *ptid_p);
578 
579 /* Commands with a prefix of `thread'.  */
580 extern struct cmd_list_element *thread_cmd_list;
581 
582 extern void thread_command (char *tidstr, int from_tty);
583 
584 /* Print notices on thread events (attach, detach, etc.), set with
585    `set print thread-events'.  */
586 extern int print_thread_events;
587 
588 /* Prints the list of threads and their details on UIOUT.  If
589    REQUESTED_THREADS, a list of GDB ids/ranges, is not NULL, only
590    print threads whose ID is included in the list.  If PID is not -1,
591    only print threads from the process PID.  Otherwise, threads from
592    all attached PIDs are printed.  If both REQUESTED_THREADS is not
593    NULL and PID is not -1, then the thread is printed if it belongs to
594    the specified process.  Otherwise, an error is raised.  */
595 extern void print_thread_info (struct ui_out *uiout, char *requested_threads,
596 			       int pid);
597 
598 extern struct cleanup *make_cleanup_restore_current_thread (void);
599 
600 /* Returns a pointer into the thread_info corresponding to
601    INFERIOR_PTID.  INFERIOR_PTID *must* be in the thread list.  */
602 extern struct thread_info* inferior_thread (void);
603 
604 extern void update_thread_list (void);
605 
606 /* Delete any thread the target says is no longer alive.  */
607 
608 extern void prune_threads (void);
609 
610 /* Delete threads marked THREAD_EXITED.  Unlike prune_threads, this
611    does not consult the target about whether the thread is alive right
612    now.  */
613 extern void delete_exited_threads (void);
614 
615 /* Return true if PC is in the stepping range of THREAD.  */
616 
617 int pc_in_thread_step_range (CORE_ADDR pc, struct thread_info *thread);
618 
619 extern struct cleanup *enable_thread_stack_temporaries (ptid_t ptid);
620 
621 extern int thread_stack_temporaries_enabled_p (ptid_t ptid);
622 
623 extern void push_thread_stack_temporary (ptid_t ptid, struct value *v);
624 
625 extern struct value *get_last_thread_stack_temporary (ptid_t);
626 
627 extern int value_in_thread_stack_temporaries (struct value *, ptid_t);
628 
629 /* Add TP to the end of its inferior's pending step-over chain.  */
630 
631 extern void thread_step_over_chain_enqueue (struct thread_info *tp);
632 
633 /* Remove TP from its inferior's pending step-over chain.  */
634 
635 extern void thread_step_over_chain_remove (struct thread_info *tp);
636 
637 /* Return the next thread in the step-over chain starting at TP.  NULL
638    if TP is the last entry in the chain.  */
639 
640 extern struct thread_info *thread_step_over_chain_next (struct thread_info *tp);
641 
642 /* Return true if TP is in the step-over chain.  */
643 
644 extern int thread_is_in_step_over_chain (struct thread_info *tp);
645 
646 /* Cancel any ongoing execution command.  */
647 
648 extern void thread_cancel_execution_command (struct thread_info *thr);
649 
650 /* Check whether it makes sense to access a register of the current
651    thread at this point.  If not, throw an error (e.g., the thread is
652    executing).  */
653 extern void validate_registers_access (void);
654 
655 /* Check whether it makes sense to access a register of PTID at this point.
656    Returns true if registers may be accessed; false otherwise.  */
657 extern bool can_access_registers_ptid (ptid_t ptid);
658 
659 /* Returns whether to show which thread hit the breakpoint, received a
660    signal, etc. and ended up causing a user-visible stop.  This is
661    true iff we ever detected multiple threads.  */
662 extern int show_thread_that_caused_stop (void);
663 
664 /* Print the message for a thread or/and frame selected.  */
665 extern void print_selected_thread_frame (struct ui_out *uiout,
666 					 user_selected_what selection);
667 
668 extern struct thread_info *thread_list;
669 
670 #endif /* GDBTHREAD_H */
671