1 /* Cache and manage frames for GDB, the GNU debugger. 2 3 Copyright (C) 1986-2017 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "frame.h" 22 #include "target.h" 23 #include "value.h" 24 #include "inferior.h" /* for inferior_ptid */ 25 #include "regcache.h" 26 #include "user-regs.h" 27 #include "gdb_obstack.h" 28 #include "dummy-frame.h" 29 #include "sentinel-frame.h" 30 #include "gdbcore.h" 31 #include "annotate.h" 32 #include "language.h" 33 #include "frame-unwind.h" 34 #include "frame-base.h" 35 #include "command.h" 36 #include "gdbcmd.h" 37 #include "observer.h" 38 #include "objfiles.h" 39 #include "gdbthread.h" 40 #include "block.h" 41 #include "inline-frame.h" 42 #include "tracepoint.h" 43 #include "hashtab.h" 44 #include "valprint.h" 45 46 /* The sentinel frame terminates the innermost end of the frame chain. 47 If unwound, it returns the information needed to construct an 48 innermost frame. 49 50 The current frame, which is the innermost frame, can be found at 51 sentinel_frame->prev. */ 52 53 static struct frame_info *sentinel_frame; 54 55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame); 56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason); 57 58 /* Status of some values cached in the frame_info object. */ 59 60 enum cached_copy_status 61 { 62 /* Value is unknown. */ 63 CC_UNKNOWN, 64 65 /* We have a value. */ 66 CC_VALUE, 67 68 /* Value was not saved. */ 69 CC_NOT_SAVED, 70 71 /* Value is unavailable. */ 72 CC_UNAVAILABLE 73 }; 74 75 /* We keep a cache of stack frames, each of which is a "struct 76 frame_info". The innermost one gets allocated (in 77 wait_for_inferior) each time the inferior stops; sentinel_frame 78 points to it. Additional frames get allocated (in get_prev_frame) 79 as needed, and are chained through the next and prev fields. Any 80 time that the frame cache becomes invalid (most notably when we 81 execute something, but also if we change how we interpret the 82 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything 83 which reads new symbols)), we should call reinit_frame_cache. */ 84 85 struct frame_info 86 { 87 /* Level of this frame. The inner-most (youngest) frame is at level 88 0. As you move towards the outer-most (oldest) frame, the level 89 increases. This is a cached value. It could just as easily be 90 computed by counting back from the selected frame to the inner 91 most frame. */ 92 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be 93 reserved to indicate a bogus frame - one that has been created 94 just to keep GDB happy (GDB always needs a frame). For the 95 moment leave this as speculation. */ 96 int level; 97 98 /* The frame's program space. */ 99 struct program_space *pspace; 100 101 /* The frame's address space. */ 102 struct address_space *aspace; 103 104 /* The frame's low-level unwinder and corresponding cache. The 105 low-level unwinder is responsible for unwinding register values 106 for the previous frame. The low-level unwind methods are 107 selected based on the presence, or otherwise, of register unwind 108 information such as CFI. */ 109 void *prologue_cache; 110 const struct frame_unwind *unwind; 111 112 /* Cached copy of the previous frame's architecture. */ 113 struct 114 { 115 int p; 116 struct gdbarch *arch; 117 } prev_arch; 118 119 /* Cached copy of the previous frame's resume address. */ 120 struct { 121 enum cached_copy_status status; 122 CORE_ADDR value; 123 } prev_pc; 124 125 /* Cached copy of the previous frame's function address. */ 126 struct 127 { 128 CORE_ADDR addr; 129 int p; 130 } prev_func; 131 132 /* This frame's ID. */ 133 struct 134 { 135 int p; 136 struct frame_id value; 137 } this_id; 138 139 /* The frame's high-level base methods, and corresponding cache. 140 The high level base methods are selected based on the frame's 141 debug info. */ 142 const struct frame_base *base; 143 void *base_cache; 144 145 /* Pointers to the next (down, inner, younger) and previous (up, 146 outer, older) frame_info's in the frame cache. */ 147 struct frame_info *next; /* down, inner, younger */ 148 int prev_p; 149 struct frame_info *prev; /* up, outer, older */ 150 151 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we 152 could. Only valid when PREV_P is set. */ 153 enum unwind_stop_reason stop_reason; 154 155 /* A frame specific string describing the STOP_REASON in more detail. 156 Only valid when PREV_P is set, but even then may still be NULL. */ 157 const char *stop_string; 158 }; 159 160 /* A frame stash used to speed up frame lookups. Create a hash table 161 to stash frames previously accessed from the frame cache for 162 quicker subsequent retrieval. The hash table is emptied whenever 163 the frame cache is invalidated. */ 164 165 static htab_t frame_stash; 166 167 /* Internal function to calculate a hash from the frame_id addresses, 168 using as many valid addresses as possible. Frames below level 0 169 are not stored in the hash table. */ 170 171 static hashval_t 172 frame_addr_hash (const void *ap) 173 { 174 const struct frame_info *frame = (const struct frame_info *) ap; 175 const struct frame_id f_id = frame->this_id.value; 176 hashval_t hash = 0; 177 178 gdb_assert (f_id.stack_status != FID_STACK_INVALID 179 || f_id.code_addr_p 180 || f_id.special_addr_p); 181 182 if (f_id.stack_status == FID_STACK_VALID) 183 hash = iterative_hash (&f_id.stack_addr, 184 sizeof (f_id.stack_addr), hash); 185 if (f_id.code_addr_p) 186 hash = iterative_hash (&f_id.code_addr, 187 sizeof (f_id.code_addr), hash); 188 if (f_id.special_addr_p) 189 hash = iterative_hash (&f_id.special_addr, 190 sizeof (f_id.special_addr), hash); 191 192 return hash; 193 } 194 195 /* Internal equality function for the hash table. This function 196 defers equality operations to frame_id_eq. */ 197 198 static int 199 frame_addr_hash_eq (const void *a, const void *b) 200 { 201 const struct frame_info *f_entry = (const struct frame_info *) a; 202 const struct frame_info *f_element = (const struct frame_info *) b; 203 204 return frame_id_eq (f_entry->this_id.value, 205 f_element->this_id.value); 206 } 207 208 /* Internal function to create the frame_stash hash table. 100 seems 209 to be a good compromise to start the hash table at. */ 210 211 static void 212 frame_stash_create (void) 213 { 214 frame_stash = htab_create (100, 215 frame_addr_hash, 216 frame_addr_hash_eq, 217 NULL); 218 } 219 220 /* Internal function to add a frame to the frame_stash hash table. 221 Returns false if a frame with the same ID was already stashed, true 222 otherwise. */ 223 224 static int 225 frame_stash_add (struct frame_info *frame) 226 { 227 struct frame_info **slot; 228 229 /* Do not try to stash the sentinel frame. */ 230 gdb_assert (frame->level >= 0); 231 232 slot = (struct frame_info **) htab_find_slot (frame_stash, 233 frame, 234 INSERT); 235 236 /* If we already have a frame in the stack with the same id, we 237 either have a stack cycle (corrupted stack?), or some bug 238 elsewhere in GDB. In any case, ignore the duplicate and return 239 an indication to the caller. */ 240 if (*slot != NULL) 241 return 0; 242 243 *slot = frame; 244 return 1; 245 } 246 247 /* Internal function to search the frame stash for an entry with the 248 given frame ID. If found, return that frame. Otherwise return 249 NULL. */ 250 251 static struct frame_info * 252 frame_stash_find (struct frame_id id) 253 { 254 struct frame_info dummy; 255 struct frame_info *frame; 256 257 dummy.this_id.value = id; 258 frame = (struct frame_info *) htab_find (frame_stash, &dummy); 259 return frame; 260 } 261 262 /* Internal function to invalidate the frame stash by removing all 263 entries in it. This only occurs when the frame cache is 264 invalidated. */ 265 266 static void 267 frame_stash_invalidate (void) 268 { 269 htab_empty (frame_stash); 270 } 271 272 /* Flag to control debugging. */ 273 274 unsigned int frame_debug; 275 static void 276 show_frame_debug (struct ui_file *file, int from_tty, 277 struct cmd_list_element *c, const char *value) 278 { 279 fprintf_filtered (file, _("Frame debugging is %s.\n"), value); 280 } 281 282 /* Flag to indicate whether backtraces should stop at main et.al. */ 283 284 static int backtrace_past_main; 285 static void 286 show_backtrace_past_main (struct ui_file *file, int from_tty, 287 struct cmd_list_element *c, const char *value) 288 { 289 fprintf_filtered (file, 290 _("Whether backtraces should " 291 "continue past \"main\" is %s.\n"), 292 value); 293 } 294 295 static int backtrace_past_entry; 296 static void 297 show_backtrace_past_entry (struct ui_file *file, int from_tty, 298 struct cmd_list_element *c, const char *value) 299 { 300 fprintf_filtered (file, _("Whether backtraces should continue past the " 301 "entry point of a program is %s.\n"), 302 value); 303 } 304 305 static unsigned int backtrace_limit = UINT_MAX; 306 static void 307 show_backtrace_limit (struct ui_file *file, int from_tty, 308 struct cmd_list_element *c, const char *value) 309 { 310 fprintf_filtered (file, 311 _("An upper bound on the number " 312 "of backtrace levels is %s.\n"), 313 value); 314 } 315 316 317 static void 318 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr) 319 { 320 if (p) 321 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr)); 322 else 323 fprintf_unfiltered (file, "!%s", name); 324 } 325 326 void 327 fprint_frame_id (struct ui_file *file, struct frame_id id) 328 { 329 fprintf_unfiltered (file, "{"); 330 331 if (id.stack_status == FID_STACK_INVALID) 332 fprintf_unfiltered (file, "!stack"); 333 else if (id.stack_status == FID_STACK_UNAVAILABLE) 334 fprintf_unfiltered (file, "stack=<unavailable>"); 335 else if (id.stack_status == FID_STACK_SENTINEL) 336 fprintf_unfiltered (file, "stack=<sentinel>"); 337 else 338 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr)); 339 fprintf_unfiltered (file, ","); 340 341 fprint_field (file, "code", id.code_addr_p, id.code_addr); 342 fprintf_unfiltered (file, ","); 343 344 fprint_field (file, "special", id.special_addr_p, id.special_addr); 345 346 if (id.artificial_depth) 347 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth); 348 349 fprintf_unfiltered (file, "}"); 350 } 351 352 static void 353 fprint_frame_type (struct ui_file *file, enum frame_type type) 354 { 355 switch (type) 356 { 357 case NORMAL_FRAME: 358 fprintf_unfiltered (file, "NORMAL_FRAME"); 359 return; 360 case DUMMY_FRAME: 361 fprintf_unfiltered (file, "DUMMY_FRAME"); 362 return; 363 case INLINE_FRAME: 364 fprintf_unfiltered (file, "INLINE_FRAME"); 365 return; 366 case TAILCALL_FRAME: 367 fprintf_unfiltered (file, "TAILCALL_FRAME"); 368 return; 369 case SIGTRAMP_FRAME: 370 fprintf_unfiltered (file, "SIGTRAMP_FRAME"); 371 return; 372 case ARCH_FRAME: 373 fprintf_unfiltered (file, "ARCH_FRAME"); 374 return; 375 case SENTINEL_FRAME: 376 fprintf_unfiltered (file, "SENTINEL_FRAME"); 377 return; 378 default: 379 fprintf_unfiltered (file, "<unknown type>"); 380 return; 381 }; 382 } 383 384 static void 385 fprint_frame (struct ui_file *file, struct frame_info *fi) 386 { 387 if (fi == NULL) 388 { 389 fprintf_unfiltered (file, "<NULL frame>"); 390 return; 391 } 392 fprintf_unfiltered (file, "{"); 393 fprintf_unfiltered (file, "level=%d", fi->level); 394 fprintf_unfiltered (file, ","); 395 fprintf_unfiltered (file, "type="); 396 if (fi->unwind != NULL) 397 fprint_frame_type (file, fi->unwind->type); 398 else 399 fprintf_unfiltered (file, "<unknown>"); 400 fprintf_unfiltered (file, ","); 401 fprintf_unfiltered (file, "unwind="); 402 if (fi->unwind != NULL) 403 gdb_print_host_address (fi->unwind, file); 404 else 405 fprintf_unfiltered (file, "<unknown>"); 406 fprintf_unfiltered (file, ","); 407 fprintf_unfiltered (file, "pc="); 408 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN) 409 fprintf_unfiltered (file, "<unknown>"); 410 else if (fi->next->prev_pc.status == CC_VALUE) 411 fprintf_unfiltered (file, "%s", 412 hex_string (fi->next->prev_pc.value)); 413 else if (fi->next->prev_pc.status == CC_NOT_SAVED) 414 val_print_not_saved (file); 415 else if (fi->next->prev_pc.status == CC_UNAVAILABLE) 416 val_print_unavailable (file); 417 fprintf_unfiltered (file, ","); 418 fprintf_unfiltered (file, "id="); 419 if (fi->this_id.p) 420 fprint_frame_id (file, fi->this_id.value); 421 else 422 fprintf_unfiltered (file, "<unknown>"); 423 fprintf_unfiltered (file, ","); 424 fprintf_unfiltered (file, "func="); 425 if (fi->next != NULL && fi->next->prev_func.p) 426 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr)); 427 else 428 fprintf_unfiltered (file, "<unknown>"); 429 fprintf_unfiltered (file, "}"); 430 } 431 432 /* Given FRAME, return the enclosing frame as found in real frames read-in from 433 inferior memory. Skip any previous frames which were made up by GDB. 434 Return FRAME if FRAME is a non-artificial frame. 435 Return NULL if FRAME is the start of an artificial-only chain. */ 436 437 static struct frame_info * 438 skip_artificial_frames (struct frame_info *frame) 439 { 440 /* Note we use get_prev_frame_always, and not get_prev_frame. The 441 latter will truncate the frame chain, leading to this function 442 unintentionally returning a null_frame_id (e.g., when the user 443 sets a backtrace limit). 444 445 Note that for record targets we may get a frame chain that consists 446 of artificial frames only. */ 447 while (get_frame_type (frame) == INLINE_FRAME 448 || get_frame_type (frame) == TAILCALL_FRAME) 449 { 450 frame = get_prev_frame_always (frame); 451 if (frame == NULL) 452 break; 453 } 454 455 return frame; 456 } 457 458 struct frame_info * 459 skip_unwritable_frames (struct frame_info *frame) 460 { 461 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0) 462 { 463 frame = get_prev_frame (frame); 464 if (frame == NULL) 465 break; 466 } 467 468 return frame; 469 } 470 471 /* See frame.h. */ 472 473 struct frame_info * 474 skip_tailcall_frames (struct frame_info *frame) 475 { 476 while (get_frame_type (frame) == TAILCALL_FRAME) 477 { 478 /* Note that for record targets we may get a frame chain that consists of 479 tailcall frames only. */ 480 frame = get_prev_frame (frame); 481 if (frame == NULL) 482 break; 483 } 484 485 return frame; 486 } 487 488 /* Compute the frame's uniq ID that can be used to, later, re-find the 489 frame. */ 490 491 static void 492 compute_frame_id (struct frame_info *fi) 493 { 494 gdb_assert (!fi->this_id.p); 495 496 if (frame_debug) 497 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ", 498 fi->level); 499 /* Find the unwinder. */ 500 if (fi->unwind == NULL) 501 frame_unwind_find_by_frame (fi, &fi->prologue_cache); 502 /* Find THIS frame's ID. */ 503 /* Default to outermost if no ID is found. */ 504 fi->this_id.value = outer_frame_id; 505 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value); 506 gdb_assert (frame_id_p (fi->this_id.value)); 507 fi->this_id.p = 1; 508 if (frame_debug) 509 { 510 fprintf_unfiltered (gdb_stdlog, "-> "); 511 fprint_frame_id (gdb_stdlog, fi->this_id.value); 512 fprintf_unfiltered (gdb_stdlog, " }\n"); 513 } 514 } 515 516 /* Return a frame uniq ID that can be used to, later, re-find the 517 frame. */ 518 519 struct frame_id 520 get_frame_id (struct frame_info *fi) 521 { 522 if (fi == NULL) 523 return null_frame_id; 524 525 if (!fi->this_id.p) 526 { 527 int stashed; 528 529 /* If we haven't computed the frame id yet, then it must be that 530 this is the current frame. Compute it now, and stash the 531 result. The IDs of other frames are computed as soon as 532 they're created, in order to detect cycles. See 533 get_prev_frame_if_no_cycle. */ 534 gdb_assert (fi->level == 0); 535 536 /* Compute. */ 537 compute_frame_id (fi); 538 539 /* Since this is the first frame in the chain, this should 540 always succeed. */ 541 stashed = frame_stash_add (fi); 542 gdb_assert (stashed); 543 } 544 545 return fi->this_id.value; 546 } 547 548 struct frame_id 549 get_stack_frame_id (struct frame_info *next_frame) 550 { 551 return get_frame_id (skip_artificial_frames (next_frame)); 552 } 553 554 struct frame_id 555 frame_unwind_caller_id (struct frame_info *next_frame) 556 { 557 struct frame_info *this_frame; 558 559 /* Use get_prev_frame_always, and not get_prev_frame. The latter 560 will truncate the frame chain, leading to this function 561 unintentionally returning a null_frame_id (e.g., when a caller 562 requests the frame ID of "main()"s caller. */ 563 564 next_frame = skip_artificial_frames (next_frame); 565 if (next_frame == NULL) 566 return null_frame_id; 567 568 this_frame = get_prev_frame_always (next_frame); 569 if (this_frame) 570 return get_frame_id (skip_artificial_frames (this_frame)); 571 else 572 return null_frame_id; 573 } 574 575 const struct frame_id null_frame_id = { 0 }; /* All zeros. */ 576 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 }; 577 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 }; 578 579 struct frame_id 580 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr, 581 CORE_ADDR special_addr) 582 { 583 struct frame_id id = null_frame_id; 584 585 id.stack_addr = stack_addr; 586 id.stack_status = FID_STACK_VALID; 587 id.code_addr = code_addr; 588 id.code_addr_p = 1; 589 id.special_addr = special_addr; 590 id.special_addr_p = 1; 591 return id; 592 } 593 594 /* See frame.h. */ 595 596 struct frame_id 597 frame_id_build_unavailable_stack (CORE_ADDR code_addr) 598 { 599 struct frame_id id = null_frame_id; 600 601 id.stack_status = FID_STACK_UNAVAILABLE; 602 id.code_addr = code_addr; 603 id.code_addr_p = 1; 604 return id; 605 } 606 607 /* See frame.h. */ 608 609 struct frame_id 610 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr, 611 CORE_ADDR special_addr) 612 { 613 struct frame_id id = null_frame_id; 614 615 id.stack_status = FID_STACK_UNAVAILABLE; 616 id.code_addr = code_addr; 617 id.code_addr_p = 1; 618 id.special_addr = special_addr; 619 id.special_addr_p = 1; 620 return id; 621 } 622 623 struct frame_id 624 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr) 625 { 626 struct frame_id id = null_frame_id; 627 628 id.stack_addr = stack_addr; 629 id.stack_status = FID_STACK_VALID; 630 id.code_addr = code_addr; 631 id.code_addr_p = 1; 632 return id; 633 } 634 635 struct frame_id 636 frame_id_build_wild (CORE_ADDR stack_addr) 637 { 638 struct frame_id id = null_frame_id; 639 640 id.stack_addr = stack_addr; 641 id.stack_status = FID_STACK_VALID; 642 return id; 643 } 644 645 int 646 frame_id_p (struct frame_id l) 647 { 648 int p; 649 650 /* The frame is valid iff it has a valid stack address. */ 651 p = l.stack_status != FID_STACK_INVALID; 652 /* outer_frame_id is also valid. */ 653 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0) 654 p = 1; 655 if (frame_debug) 656 { 657 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l="); 658 fprint_frame_id (gdb_stdlog, l); 659 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p); 660 } 661 return p; 662 } 663 664 int 665 frame_id_artificial_p (struct frame_id l) 666 { 667 if (!frame_id_p (l)) 668 return 0; 669 670 return (l.artificial_depth != 0); 671 } 672 673 int 674 frame_id_eq (struct frame_id l, struct frame_id r) 675 { 676 int eq; 677 678 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p 679 && r.stack_status == FID_STACK_INVALID && r.special_addr_p) 680 /* The outermost frame marker is equal to itself. This is the 681 dodgy thing about outer_frame_id, since between execution steps 682 we might step into another function - from which we can't 683 unwind either. More thought required to get rid of 684 outer_frame_id. */ 685 eq = 1; 686 else if (l.stack_status == FID_STACK_INVALID 687 || r.stack_status == FID_STACK_INVALID) 688 /* Like a NaN, if either ID is invalid, the result is false. 689 Note that a frame ID is invalid iff it is the null frame ID. */ 690 eq = 0; 691 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr) 692 /* If .stack addresses are different, the frames are different. */ 693 eq = 0; 694 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr) 695 /* An invalid code addr is a wild card. If .code addresses are 696 different, the frames are different. */ 697 eq = 0; 698 else if (l.special_addr_p && r.special_addr_p 699 && l.special_addr != r.special_addr) 700 /* An invalid special addr is a wild card (or unused). Otherwise 701 if special addresses are different, the frames are different. */ 702 eq = 0; 703 else if (l.artificial_depth != r.artificial_depth) 704 /* If artifical depths are different, the frames must be different. */ 705 eq = 0; 706 else 707 /* Frames are equal. */ 708 eq = 1; 709 710 if (frame_debug) 711 { 712 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l="); 713 fprint_frame_id (gdb_stdlog, l); 714 fprintf_unfiltered (gdb_stdlog, ",r="); 715 fprint_frame_id (gdb_stdlog, r); 716 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq); 717 } 718 return eq; 719 } 720 721 /* Safety net to check whether frame ID L should be inner to 722 frame ID R, according to their stack addresses. 723 724 This method cannot be used to compare arbitrary frames, as the 725 ranges of valid stack addresses may be discontiguous (e.g. due 726 to sigaltstack). 727 728 However, it can be used as safety net to discover invalid frame 729 IDs in certain circumstances. Assuming that NEXT is the immediate 730 inner frame to THIS and that NEXT and THIS are both NORMAL frames: 731 732 * The stack address of NEXT must be inner-than-or-equal to the stack 733 address of THIS. 734 735 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind 736 error has occurred. 737 738 * If NEXT and THIS have different stack addresses, no other frame 739 in the frame chain may have a stack address in between. 740 741 Therefore, if frame_id_inner (TEST, THIS) holds, but 742 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer 743 to a valid frame in the frame chain. 744 745 The sanity checks above cannot be performed when a SIGTRAMP frame 746 is involved, because signal handlers might be executed on a different 747 stack than the stack used by the routine that caused the signal 748 to be raised. This can happen for instance when a thread exceeds 749 its maximum stack size. In this case, certain compilers implement 750 a stack overflow strategy that cause the handler to be run on a 751 different stack. */ 752 753 static int 754 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r) 755 { 756 int inner; 757 758 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID) 759 /* Like NaN, any operation involving an invalid ID always fails. 760 Likewise if either ID has an unavailable stack address. */ 761 inner = 0; 762 else if (l.artificial_depth > r.artificial_depth 763 && l.stack_addr == r.stack_addr 764 && l.code_addr_p == r.code_addr_p 765 && l.special_addr_p == r.special_addr_p 766 && l.special_addr == r.special_addr) 767 { 768 /* Same function, different inlined functions. */ 769 const struct block *lb, *rb; 770 771 gdb_assert (l.code_addr_p && r.code_addr_p); 772 773 lb = block_for_pc (l.code_addr); 774 rb = block_for_pc (r.code_addr); 775 776 if (lb == NULL || rb == NULL) 777 /* Something's gone wrong. */ 778 inner = 0; 779 else 780 /* This will return true if LB and RB are the same block, or 781 if the block with the smaller depth lexically encloses the 782 block with the greater depth. */ 783 inner = contained_in (lb, rb); 784 } 785 else 786 /* Only return non-zero when strictly inner than. Note that, per 787 comment in "frame.h", there is some fuzz here. Frameless 788 functions are not strictly inner than (same .stack but 789 different .code and/or .special address). */ 790 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr); 791 if (frame_debug) 792 { 793 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l="); 794 fprint_frame_id (gdb_stdlog, l); 795 fprintf_unfiltered (gdb_stdlog, ",r="); 796 fprint_frame_id (gdb_stdlog, r); 797 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner); 798 } 799 return inner; 800 } 801 802 struct frame_info * 803 frame_find_by_id (struct frame_id id) 804 { 805 struct frame_info *frame, *prev_frame; 806 807 /* ZERO denotes the null frame, let the caller decide what to do 808 about it. Should it instead return get_current_frame()? */ 809 if (!frame_id_p (id)) 810 return NULL; 811 812 /* Check for the sentinel frame. */ 813 if (frame_id_eq (id, sentinel_frame_id)) 814 return sentinel_frame; 815 816 /* Try using the frame stash first. Finding it there removes the need 817 to perform the search by looping over all frames, which can be very 818 CPU-intensive if the number of frames is very high (the loop is O(n) 819 and get_prev_frame performs a series of checks that are relatively 820 expensive). This optimization is particularly useful when this function 821 is called from another function (such as value_fetch_lazy, case 822 VALUE_LVAL (val) == lval_register) which already loops over all frames, 823 making the overall behavior O(n^2). */ 824 frame = frame_stash_find (id); 825 if (frame) 826 return frame; 827 828 for (frame = get_current_frame (); ; frame = prev_frame) 829 { 830 struct frame_id self = get_frame_id (frame); 831 832 if (frame_id_eq (id, self)) 833 /* An exact match. */ 834 return frame; 835 836 prev_frame = get_prev_frame (frame); 837 if (!prev_frame) 838 return NULL; 839 840 /* As a safety net to avoid unnecessary backtracing while trying 841 to find an invalid ID, we check for a common situation where 842 we can detect from comparing stack addresses that no other 843 frame in the current frame chain can have this ID. See the 844 comment at frame_id_inner for details. */ 845 if (get_frame_type (frame) == NORMAL_FRAME 846 && !frame_id_inner (get_frame_arch (frame), id, self) 847 && frame_id_inner (get_frame_arch (prev_frame), id, 848 get_frame_id (prev_frame))) 849 return NULL; 850 } 851 return NULL; 852 } 853 854 static CORE_ADDR 855 frame_unwind_pc (struct frame_info *this_frame) 856 { 857 if (this_frame->prev_pc.status == CC_UNKNOWN) 858 { 859 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame))) 860 { 861 struct gdbarch *prev_gdbarch; 862 CORE_ADDR pc = 0; 863 int pc_p = 0; 864 865 /* The right way. The `pure' way. The one true way. This 866 method depends solely on the register-unwind code to 867 determine the value of registers in THIS frame, and hence 868 the value of this frame's PC (resume address). A typical 869 implementation is no more than: 870 871 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf); 872 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM); 873 874 Note: this method is very heavily dependent on a correct 875 register-unwind implementation, it pays to fix that 876 method first; this method is frame type agnostic, since 877 it only deals with register values, it works with any 878 frame. This is all in stark contrast to the old 879 FRAME_SAVED_PC which would try to directly handle all the 880 different ways that a PC could be unwound. */ 881 prev_gdbarch = frame_unwind_arch (this_frame); 882 883 TRY 884 { 885 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame); 886 pc_p = 1; 887 } 888 CATCH (ex, RETURN_MASK_ERROR) 889 { 890 if (ex.error == NOT_AVAILABLE_ERROR) 891 { 892 this_frame->prev_pc.status = CC_UNAVAILABLE; 893 894 if (frame_debug) 895 fprintf_unfiltered (gdb_stdlog, 896 "{ frame_unwind_pc (this_frame=%d)" 897 " -> <unavailable> }\n", 898 this_frame->level); 899 } 900 else if (ex.error == OPTIMIZED_OUT_ERROR) 901 { 902 this_frame->prev_pc.status = CC_NOT_SAVED; 903 904 if (frame_debug) 905 fprintf_unfiltered (gdb_stdlog, 906 "{ frame_unwind_pc (this_frame=%d)" 907 " -> <not saved> }\n", 908 this_frame->level); 909 } 910 else 911 throw_exception (ex); 912 } 913 END_CATCH 914 915 if (pc_p) 916 { 917 this_frame->prev_pc.value = pc; 918 this_frame->prev_pc.status = CC_VALUE; 919 if (frame_debug) 920 fprintf_unfiltered (gdb_stdlog, 921 "{ frame_unwind_pc (this_frame=%d) " 922 "-> %s }\n", 923 this_frame->level, 924 hex_string (this_frame->prev_pc.value)); 925 } 926 } 927 else 928 internal_error (__FILE__, __LINE__, _("No unwind_pc method")); 929 } 930 931 if (this_frame->prev_pc.status == CC_VALUE) 932 return this_frame->prev_pc.value; 933 else if (this_frame->prev_pc.status == CC_UNAVAILABLE) 934 throw_error (NOT_AVAILABLE_ERROR, _("PC not available")); 935 else if (this_frame->prev_pc.status == CC_NOT_SAVED) 936 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved")); 937 else 938 internal_error (__FILE__, __LINE__, 939 "unexpected prev_pc status: %d", 940 (int) this_frame->prev_pc.status); 941 } 942 943 CORE_ADDR 944 frame_unwind_caller_pc (struct frame_info *this_frame) 945 { 946 this_frame = skip_artificial_frames (this_frame); 947 948 /* We must have a non-artificial frame. The caller is supposed to check 949 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID 950 in this case. */ 951 gdb_assert (this_frame != NULL); 952 953 return frame_unwind_pc (this_frame); 954 } 955 956 int 957 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc) 958 { 959 struct frame_info *next_frame = this_frame->next; 960 961 if (!next_frame->prev_func.p) 962 { 963 CORE_ADDR addr_in_block; 964 965 /* Make certain that this, and not the adjacent, function is 966 found. */ 967 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block)) 968 { 969 next_frame->prev_func.p = -1; 970 if (frame_debug) 971 fprintf_unfiltered (gdb_stdlog, 972 "{ get_frame_func (this_frame=%d)" 973 " -> unavailable }\n", 974 this_frame->level); 975 } 976 else 977 { 978 next_frame->prev_func.p = 1; 979 next_frame->prev_func.addr = get_pc_function_start (addr_in_block); 980 if (frame_debug) 981 fprintf_unfiltered (gdb_stdlog, 982 "{ get_frame_func (this_frame=%d) -> %s }\n", 983 this_frame->level, 984 hex_string (next_frame->prev_func.addr)); 985 } 986 } 987 988 if (next_frame->prev_func.p < 0) 989 { 990 *pc = -1; 991 return 0; 992 } 993 else 994 { 995 *pc = next_frame->prev_func.addr; 996 return 1; 997 } 998 } 999 1000 CORE_ADDR 1001 get_frame_func (struct frame_info *this_frame) 1002 { 1003 CORE_ADDR pc; 1004 1005 if (!get_frame_func_if_available (this_frame, &pc)) 1006 throw_error (NOT_AVAILABLE_ERROR, _("PC not available")); 1007 1008 return pc; 1009 } 1010 1011 static enum register_status 1012 do_frame_register_read (void *src, int regnum, gdb_byte *buf) 1013 { 1014 if (!deprecated_frame_register_read ((struct frame_info *) src, regnum, buf)) 1015 return REG_UNAVAILABLE; 1016 else 1017 return REG_VALID; 1018 } 1019 1020 struct regcache * 1021 frame_save_as_regcache (struct frame_info *this_frame) 1022 { 1023 struct address_space *aspace = get_frame_address_space (this_frame); 1024 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame), 1025 aspace); 1026 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache); 1027 1028 regcache_save (regcache, do_frame_register_read, this_frame); 1029 discard_cleanups (cleanups); 1030 return regcache; 1031 } 1032 1033 void 1034 frame_pop (struct frame_info *this_frame) 1035 { 1036 struct frame_info *prev_frame; 1037 struct regcache *scratch; 1038 struct cleanup *cleanups; 1039 1040 if (get_frame_type (this_frame) == DUMMY_FRAME) 1041 { 1042 /* Popping a dummy frame involves restoring more than just registers. 1043 dummy_frame_pop does all the work. */ 1044 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid); 1045 return; 1046 } 1047 1048 /* Ensure that we have a frame to pop to. */ 1049 prev_frame = get_prev_frame_always (this_frame); 1050 1051 if (!prev_frame) 1052 error (_("Cannot pop the initial frame.")); 1053 1054 /* Ignore TAILCALL_FRAME type frames, they were executed already before 1055 entering THISFRAME. */ 1056 prev_frame = skip_tailcall_frames (prev_frame); 1057 1058 if (prev_frame == NULL) 1059 error (_("Cannot find the caller frame.")); 1060 1061 /* Make a copy of all the register values unwound from this frame. 1062 Save them in a scratch buffer so that there isn't a race between 1063 trying to extract the old values from the current regcache while 1064 at the same time writing new values into that same cache. */ 1065 scratch = frame_save_as_regcache (prev_frame); 1066 cleanups = make_cleanup_regcache_xfree (scratch); 1067 1068 /* FIXME: cagney/2003-03-16: It should be possible to tell the 1069 target's register cache that it is about to be hit with a burst 1070 register transfer and that the sequence of register writes should 1071 be batched. The pair target_prepare_to_store() and 1072 target_store_registers() kind of suggest this functionality. 1073 Unfortunately, they don't implement it. Their lack of a formal 1074 definition can lead to targets writing back bogus values 1075 (arguably a bug in the target code mind). */ 1076 /* Now copy those saved registers into the current regcache. 1077 Here, regcache_cpy() calls regcache_restore(). */ 1078 regcache_cpy (get_current_regcache (), scratch); 1079 do_cleanups (cleanups); 1080 1081 /* We've made right mess of GDB's local state, just discard 1082 everything. */ 1083 reinit_frame_cache (); 1084 } 1085 1086 void 1087 frame_register_unwind (struct frame_info *frame, int regnum, 1088 int *optimizedp, int *unavailablep, 1089 enum lval_type *lvalp, CORE_ADDR *addrp, 1090 int *realnump, gdb_byte *bufferp) 1091 { 1092 struct value *value; 1093 1094 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates 1095 that the value proper does not need to be fetched. */ 1096 gdb_assert (optimizedp != NULL); 1097 gdb_assert (lvalp != NULL); 1098 gdb_assert (addrp != NULL); 1099 gdb_assert (realnump != NULL); 1100 /* gdb_assert (bufferp != NULL); */ 1101 1102 value = frame_unwind_register_value (frame, regnum); 1103 1104 gdb_assert (value != NULL); 1105 1106 *optimizedp = value_optimized_out (value); 1107 *unavailablep = !value_entirely_available (value); 1108 *lvalp = VALUE_LVAL (value); 1109 *addrp = value_address (value); 1110 if (*lvalp == lval_register) 1111 *realnump = VALUE_REGNUM (value); 1112 else 1113 *realnump = -1; 1114 1115 if (bufferp) 1116 { 1117 if (!*optimizedp && !*unavailablep) 1118 memcpy (bufferp, value_contents_all (value), 1119 TYPE_LENGTH (value_type (value))); 1120 else 1121 memset (bufferp, 0, TYPE_LENGTH (value_type (value))); 1122 } 1123 1124 /* Dispose of the new value. This prevents watchpoints from 1125 trying to watch the saved frame pointer. */ 1126 release_value (value); 1127 value_free (value); 1128 } 1129 1130 void 1131 frame_register (struct frame_info *frame, int regnum, 1132 int *optimizedp, int *unavailablep, enum lval_type *lvalp, 1133 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp) 1134 { 1135 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates 1136 that the value proper does not need to be fetched. */ 1137 gdb_assert (optimizedp != NULL); 1138 gdb_assert (lvalp != NULL); 1139 gdb_assert (addrp != NULL); 1140 gdb_assert (realnump != NULL); 1141 /* gdb_assert (bufferp != NULL); */ 1142 1143 /* Obtain the register value by unwinding the register from the next 1144 (more inner frame). */ 1145 gdb_assert (frame != NULL && frame->next != NULL); 1146 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep, 1147 lvalp, addrp, realnump, bufferp); 1148 } 1149 1150 void 1151 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf) 1152 { 1153 int optimized; 1154 int unavailable; 1155 CORE_ADDR addr; 1156 int realnum; 1157 enum lval_type lval; 1158 1159 frame_register_unwind (frame, regnum, &optimized, &unavailable, 1160 &lval, &addr, &realnum, buf); 1161 1162 if (optimized) 1163 throw_error (OPTIMIZED_OUT_ERROR, 1164 _("Register %d was not saved"), regnum); 1165 if (unavailable) 1166 throw_error (NOT_AVAILABLE_ERROR, 1167 _("Register %d is not available"), regnum); 1168 } 1169 1170 void 1171 get_frame_register (struct frame_info *frame, 1172 int regnum, gdb_byte *buf) 1173 { 1174 frame_unwind_register (frame->next, regnum, buf); 1175 } 1176 1177 struct value * 1178 frame_unwind_register_value (struct frame_info *frame, int regnum) 1179 { 1180 struct gdbarch *gdbarch; 1181 struct value *value; 1182 1183 gdb_assert (frame != NULL); 1184 gdbarch = frame_unwind_arch (frame); 1185 1186 if (frame_debug) 1187 { 1188 fprintf_unfiltered (gdb_stdlog, 1189 "{ frame_unwind_register_value " 1190 "(frame=%d,regnum=%d(%s),...) ", 1191 frame->level, regnum, 1192 user_reg_map_regnum_to_name (gdbarch, regnum)); 1193 } 1194 1195 /* Find the unwinder. */ 1196 if (frame->unwind == NULL) 1197 frame_unwind_find_by_frame (frame, &frame->prologue_cache); 1198 1199 /* Ask this frame to unwind its register. */ 1200 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum); 1201 1202 if (frame_debug) 1203 { 1204 fprintf_unfiltered (gdb_stdlog, "->"); 1205 if (value_optimized_out (value)) 1206 { 1207 fprintf_unfiltered (gdb_stdlog, " "); 1208 val_print_optimized_out (value, gdb_stdlog); 1209 } 1210 else 1211 { 1212 if (VALUE_LVAL (value) == lval_register) 1213 fprintf_unfiltered (gdb_stdlog, " register=%d", 1214 VALUE_REGNUM (value)); 1215 else if (VALUE_LVAL (value) == lval_memory) 1216 fprintf_unfiltered (gdb_stdlog, " address=%s", 1217 paddress (gdbarch, 1218 value_address (value))); 1219 else 1220 fprintf_unfiltered (gdb_stdlog, " computed"); 1221 1222 if (value_lazy (value)) 1223 fprintf_unfiltered (gdb_stdlog, " lazy"); 1224 else 1225 { 1226 int i; 1227 const gdb_byte *buf = value_contents (value); 1228 1229 fprintf_unfiltered (gdb_stdlog, " bytes="); 1230 fprintf_unfiltered (gdb_stdlog, "["); 1231 for (i = 0; i < register_size (gdbarch, regnum); i++) 1232 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); 1233 fprintf_unfiltered (gdb_stdlog, "]"); 1234 } 1235 } 1236 1237 fprintf_unfiltered (gdb_stdlog, " }\n"); 1238 } 1239 1240 return value; 1241 } 1242 1243 struct value * 1244 get_frame_register_value (struct frame_info *frame, int regnum) 1245 { 1246 return frame_unwind_register_value (frame->next, regnum); 1247 } 1248 1249 LONGEST 1250 frame_unwind_register_signed (struct frame_info *frame, int regnum) 1251 { 1252 struct gdbarch *gdbarch = frame_unwind_arch (frame); 1253 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1254 int size = register_size (gdbarch, regnum); 1255 gdb_byte buf[MAX_REGISTER_SIZE]; 1256 1257 frame_unwind_register (frame, regnum, buf); 1258 return extract_signed_integer (buf, size, byte_order); 1259 } 1260 1261 LONGEST 1262 get_frame_register_signed (struct frame_info *frame, int regnum) 1263 { 1264 return frame_unwind_register_signed (frame->next, regnum); 1265 } 1266 1267 ULONGEST 1268 frame_unwind_register_unsigned (struct frame_info *frame, int regnum) 1269 { 1270 struct gdbarch *gdbarch = frame_unwind_arch (frame); 1271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1272 int size = register_size (gdbarch, regnum); 1273 struct value *value = frame_unwind_register_value (frame, regnum); 1274 1275 gdb_assert (value != NULL); 1276 1277 if (value_optimized_out (value)) 1278 { 1279 throw_error (OPTIMIZED_OUT_ERROR, 1280 _("Register %d was not saved"), regnum); 1281 } 1282 if (!value_entirely_available (value)) 1283 { 1284 throw_error (NOT_AVAILABLE_ERROR, 1285 _("Register %d is not available"), regnum); 1286 } 1287 1288 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size, 1289 byte_order); 1290 1291 release_value (value); 1292 value_free (value); 1293 return r; 1294 } 1295 1296 ULONGEST 1297 get_frame_register_unsigned (struct frame_info *frame, int regnum) 1298 { 1299 return frame_unwind_register_unsigned (frame->next, regnum); 1300 } 1301 1302 int 1303 read_frame_register_unsigned (struct frame_info *frame, int regnum, 1304 ULONGEST *val) 1305 { 1306 struct value *regval = get_frame_register_value (frame, regnum); 1307 1308 if (!value_optimized_out (regval) 1309 && value_entirely_available (regval)) 1310 { 1311 struct gdbarch *gdbarch = get_frame_arch (frame); 1312 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1313 int size = register_size (gdbarch, VALUE_REGNUM (regval)); 1314 1315 *val = extract_unsigned_integer (value_contents (regval), size, byte_order); 1316 return 1; 1317 } 1318 1319 return 0; 1320 } 1321 1322 void 1323 put_frame_register (struct frame_info *frame, int regnum, 1324 const gdb_byte *buf) 1325 { 1326 struct gdbarch *gdbarch = get_frame_arch (frame); 1327 int realnum; 1328 int optim; 1329 int unavail; 1330 enum lval_type lval; 1331 CORE_ADDR addr; 1332 1333 frame_register (frame, regnum, &optim, &unavail, 1334 &lval, &addr, &realnum, NULL); 1335 if (optim) 1336 error (_("Attempt to assign to a register that was not saved.")); 1337 switch (lval) 1338 { 1339 case lval_memory: 1340 { 1341 write_memory (addr, buf, register_size (gdbarch, regnum)); 1342 break; 1343 } 1344 case lval_register: 1345 regcache_cooked_write (get_current_regcache (), realnum, buf); 1346 break; 1347 default: 1348 error (_("Attempt to assign to an unmodifiable value.")); 1349 } 1350 } 1351 1352 /* This function is deprecated. Use get_frame_register_value instead, 1353 which provides more accurate information. 1354 1355 Find and return the value of REGNUM for the specified stack frame. 1356 The number of bytes copied is REGISTER_SIZE (REGNUM). 1357 1358 Returns 0 if the register value could not be found. */ 1359 1360 int 1361 deprecated_frame_register_read (struct frame_info *frame, int regnum, 1362 gdb_byte *myaddr) 1363 { 1364 int optimized; 1365 int unavailable; 1366 enum lval_type lval; 1367 CORE_ADDR addr; 1368 int realnum; 1369 1370 frame_register (frame, regnum, &optimized, &unavailable, 1371 &lval, &addr, &realnum, myaddr); 1372 1373 return !optimized && !unavailable; 1374 } 1375 1376 int 1377 get_frame_register_bytes (struct frame_info *frame, int regnum, 1378 CORE_ADDR offset, int len, gdb_byte *myaddr, 1379 int *optimizedp, int *unavailablep) 1380 { 1381 struct gdbarch *gdbarch = get_frame_arch (frame); 1382 int i; 1383 int maxsize; 1384 int numregs; 1385 1386 /* Skip registers wholly inside of OFFSET. */ 1387 while (offset >= register_size (gdbarch, regnum)) 1388 { 1389 offset -= register_size (gdbarch, regnum); 1390 regnum++; 1391 } 1392 1393 /* Ensure that we will not read beyond the end of the register file. 1394 This can only ever happen if the debug information is bad. */ 1395 maxsize = -offset; 1396 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); 1397 for (i = regnum; i < numregs; i++) 1398 { 1399 int thissize = register_size (gdbarch, i); 1400 1401 if (thissize == 0) 1402 break; /* This register is not available on this architecture. */ 1403 maxsize += thissize; 1404 } 1405 if (len > maxsize) 1406 error (_("Bad debug information detected: " 1407 "Attempt to read %d bytes from registers."), len); 1408 1409 /* Copy the data. */ 1410 while (len > 0) 1411 { 1412 int curr_len = register_size (gdbarch, regnum) - offset; 1413 1414 if (curr_len > len) 1415 curr_len = len; 1416 1417 if (curr_len == register_size (gdbarch, regnum)) 1418 { 1419 enum lval_type lval; 1420 CORE_ADDR addr; 1421 int realnum; 1422 1423 frame_register (frame, regnum, optimizedp, unavailablep, 1424 &lval, &addr, &realnum, myaddr); 1425 if (*optimizedp || *unavailablep) 1426 return 0; 1427 } 1428 else 1429 { 1430 struct value *value = frame_unwind_register_value (frame->next, 1431 regnum); 1432 gdb_assert (value != NULL); 1433 *optimizedp = value_optimized_out (value); 1434 *unavailablep = !value_entirely_available (value); 1435 1436 if (*optimizedp || *unavailablep) 1437 { 1438 release_value (value); 1439 value_free (value); 1440 return 0; 1441 } 1442 memcpy (myaddr, value_contents_all (value) + offset, curr_len); 1443 release_value (value); 1444 value_free (value); 1445 } 1446 1447 myaddr += curr_len; 1448 len -= curr_len; 1449 offset = 0; 1450 regnum++; 1451 } 1452 1453 *optimizedp = 0; 1454 *unavailablep = 0; 1455 return 1; 1456 } 1457 1458 void 1459 put_frame_register_bytes (struct frame_info *frame, int regnum, 1460 CORE_ADDR offset, int len, const gdb_byte *myaddr) 1461 { 1462 struct gdbarch *gdbarch = get_frame_arch (frame); 1463 1464 /* Skip registers wholly inside of OFFSET. */ 1465 while (offset >= register_size (gdbarch, regnum)) 1466 { 1467 offset -= register_size (gdbarch, regnum); 1468 regnum++; 1469 } 1470 1471 /* Copy the data. */ 1472 while (len > 0) 1473 { 1474 int curr_len = register_size (gdbarch, regnum) - offset; 1475 1476 if (curr_len > len) 1477 curr_len = len; 1478 1479 if (curr_len == register_size (gdbarch, regnum)) 1480 { 1481 put_frame_register (frame, regnum, myaddr); 1482 } 1483 else 1484 { 1485 struct value *value = frame_unwind_register_value (frame->next, 1486 regnum); 1487 gdb_assert (value != NULL); 1488 1489 memcpy ((char *) value_contents_writeable (value) + offset, myaddr, 1490 curr_len); 1491 put_frame_register (frame, regnum, value_contents_raw (value)); 1492 release_value (value); 1493 value_free (value); 1494 } 1495 1496 myaddr += curr_len; 1497 len -= curr_len; 1498 offset = 0; 1499 regnum++; 1500 } 1501 } 1502 1503 /* Create a sentinel frame. */ 1504 1505 static struct frame_info * 1506 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache) 1507 { 1508 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info); 1509 1510 frame->level = -1; 1511 frame->pspace = pspace; 1512 frame->aspace = get_regcache_aspace (regcache); 1513 /* Explicitly initialize the sentinel frame's cache. Provide it 1514 with the underlying regcache. In the future additional 1515 information, such as the frame's thread will be added. */ 1516 frame->prologue_cache = sentinel_frame_cache (regcache); 1517 /* For the moment there is only one sentinel frame implementation. */ 1518 frame->unwind = &sentinel_frame_unwind; 1519 /* Link this frame back to itself. The frame is self referential 1520 (the unwound PC is the same as the pc), so make it so. */ 1521 frame->next = frame; 1522 /* The sentinel frame has a special ID. */ 1523 frame->this_id.p = 1; 1524 frame->this_id.value = sentinel_frame_id; 1525 if (frame_debug) 1526 { 1527 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> "); 1528 fprint_frame (gdb_stdlog, frame); 1529 fprintf_unfiltered (gdb_stdlog, " }\n"); 1530 } 1531 return frame; 1532 } 1533 1534 /* Cache for frame addresses already read by gdb. Valid only while 1535 inferior is stopped. Control variables for the frame cache should 1536 be local to this module. */ 1537 1538 static struct obstack frame_cache_obstack; 1539 1540 void * 1541 frame_obstack_zalloc (unsigned long size) 1542 { 1543 void *data = obstack_alloc (&frame_cache_obstack, size); 1544 1545 memset (data, 0, size); 1546 return data; 1547 } 1548 1549 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame); 1550 1551 struct frame_info * 1552 get_current_frame (void) 1553 { 1554 struct frame_info *current_frame; 1555 1556 /* First check, and report, the lack of registers. Having GDB 1557 report "No stack!" or "No memory" when the target doesn't even 1558 have registers is very confusing. Besides, "printcmd.exp" 1559 explicitly checks that ``print $pc'' with no registers prints "No 1560 registers". */ 1561 if (!target_has_registers) 1562 error (_("No registers.")); 1563 if (!target_has_stack) 1564 error (_("No stack.")); 1565 if (!target_has_memory) 1566 error (_("No memory.")); 1567 /* Traceframes are effectively a substitute for the live inferior. */ 1568 if (get_traceframe_number () < 0) 1569 validate_registers_access (); 1570 1571 if (sentinel_frame == NULL) 1572 sentinel_frame = 1573 create_sentinel_frame (current_program_space, get_current_regcache ()); 1574 1575 /* Set the current frame before computing the frame id, to avoid 1576 recursion inside compute_frame_id, in case the frame's 1577 unwinder decides to do a symbol lookup (which depends on the 1578 selected frame's block). 1579 1580 This call must always succeed. In particular, nothing inside 1581 get_prev_frame_always_1 should try to unwind from the 1582 sentinel frame, because that could fail/throw, and we always 1583 want to leave with the current frame created and linked in -- 1584 we should never end up with the sentinel frame as outermost 1585 frame. */ 1586 current_frame = get_prev_frame_always_1 (sentinel_frame); 1587 gdb_assert (current_frame != NULL); 1588 1589 return current_frame; 1590 } 1591 1592 /* The "selected" stack frame is used by default for local and arg 1593 access. May be zero, for no selected frame. */ 1594 1595 static struct frame_info *selected_frame; 1596 1597 int 1598 has_stack_frames (void) 1599 { 1600 if (!target_has_registers || !target_has_stack || !target_has_memory) 1601 return 0; 1602 1603 /* Traceframes are effectively a substitute for the live inferior. */ 1604 if (get_traceframe_number () < 0) 1605 { 1606 /* No current inferior, no frame. */ 1607 if (ptid_equal (inferior_ptid, null_ptid)) 1608 return 0; 1609 1610 /* Don't try to read from a dead thread. */ 1611 if (is_exited (inferior_ptid)) 1612 return 0; 1613 1614 /* ... or from a spinning thread. */ 1615 if (is_executing (inferior_ptid)) 1616 return 0; 1617 } 1618 1619 return 1; 1620 } 1621 1622 /* Return the selected frame. Always non-NULL (unless there isn't an 1623 inferior sufficient for creating a frame) in which case an error is 1624 thrown. */ 1625 1626 struct frame_info * 1627 get_selected_frame (const char *message) 1628 { 1629 if (selected_frame == NULL) 1630 { 1631 if (message != NULL && !has_stack_frames ()) 1632 error (("%s"), message); 1633 /* Hey! Don't trust this. It should really be re-finding the 1634 last selected frame of the currently selected thread. This, 1635 though, is better than nothing. */ 1636 select_frame (get_current_frame ()); 1637 } 1638 /* There is always a frame. */ 1639 gdb_assert (selected_frame != NULL); 1640 return selected_frame; 1641 } 1642 1643 /* If there is a selected frame, return it. Otherwise, return NULL. */ 1644 1645 struct frame_info * 1646 get_selected_frame_if_set (void) 1647 { 1648 return selected_frame; 1649 } 1650 1651 /* This is a variant of get_selected_frame() which can be called when 1652 the inferior does not have a frame; in that case it will return 1653 NULL instead of calling error(). */ 1654 1655 struct frame_info * 1656 deprecated_safe_get_selected_frame (void) 1657 { 1658 if (!has_stack_frames ()) 1659 return NULL; 1660 return get_selected_frame (NULL); 1661 } 1662 1663 /* Select frame FI (or NULL - to invalidate the current frame). */ 1664 1665 void 1666 select_frame (struct frame_info *fi) 1667 { 1668 selected_frame = fi; 1669 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the 1670 frame is being invalidated. */ 1671 1672 /* FIXME: kseitz/2002-08-28: It would be nice to call 1673 selected_frame_level_changed_event() right here, but due to limitations 1674 in the current interfaces, we would end up flooding UIs with events 1675 because select_frame() is used extensively internally. 1676 1677 Once we have frame-parameterized frame (and frame-related) commands, 1678 the event notification can be moved here, since this function will only 1679 be called when the user's selected frame is being changed. */ 1680 1681 /* Ensure that symbols for this frame are read in. Also, determine the 1682 source language of this frame, and switch to it if desired. */ 1683 if (fi) 1684 { 1685 CORE_ADDR pc; 1686 1687 /* We retrieve the frame's symtab by using the frame PC. 1688 However we cannot use the frame PC as-is, because it usually 1689 points to the instruction following the "call", which is 1690 sometimes the first instruction of another function. So we 1691 rely on get_frame_address_in_block() which provides us with a 1692 PC which is guaranteed to be inside the frame's code 1693 block. */ 1694 if (get_frame_address_in_block_if_available (fi, &pc)) 1695 { 1696 struct compunit_symtab *cust = find_pc_compunit_symtab (pc); 1697 1698 if (cust != NULL 1699 && compunit_language (cust) != current_language->la_language 1700 && compunit_language (cust) != language_unknown 1701 && language_mode == language_mode_auto) 1702 set_language (compunit_language (cust)); 1703 } 1704 } 1705 } 1706 1707 /* Create an arbitrary (i.e. address specified by user) or innermost frame. 1708 Always returns a non-NULL value. */ 1709 1710 struct frame_info * 1711 create_new_frame (CORE_ADDR addr, CORE_ADDR pc) 1712 { 1713 struct frame_info *fi; 1714 1715 if (frame_debug) 1716 { 1717 fprintf_unfiltered (gdb_stdlog, 1718 "{ create_new_frame (addr=%s, pc=%s) ", 1719 hex_string (addr), hex_string (pc)); 1720 } 1721 1722 fi = FRAME_OBSTACK_ZALLOC (struct frame_info); 1723 1724 fi->next = create_sentinel_frame (current_program_space, 1725 get_current_regcache ()); 1726 1727 /* Set/update this frame's cached PC value, found in the next frame. 1728 Do this before looking for this frame's unwinder. A sniffer is 1729 very likely to read this, and the corresponding unwinder is 1730 entitled to rely that the PC doesn't magically change. */ 1731 fi->next->prev_pc.value = pc; 1732 fi->next->prev_pc.status = CC_VALUE; 1733 1734 /* We currently assume that frame chain's can't cross spaces. */ 1735 fi->pspace = fi->next->pspace; 1736 fi->aspace = fi->next->aspace; 1737 1738 /* Select/initialize both the unwind function and the frame's type 1739 based on the PC. */ 1740 frame_unwind_find_by_frame (fi, &fi->prologue_cache); 1741 1742 fi->this_id.p = 1; 1743 fi->this_id.value = frame_id_build (addr, pc); 1744 1745 if (frame_debug) 1746 { 1747 fprintf_unfiltered (gdb_stdlog, "-> "); 1748 fprint_frame (gdb_stdlog, fi); 1749 fprintf_unfiltered (gdb_stdlog, " }\n"); 1750 } 1751 1752 return fi; 1753 } 1754 1755 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the 1756 innermost frame). Be careful to not fall off the bottom of the 1757 frame chain and onto the sentinel frame. */ 1758 1759 struct frame_info * 1760 get_next_frame (struct frame_info *this_frame) 1761 { 1762 if (this_frame->level > 0) 1763 return this_frame->next; 1764 else 1765 return NULL; 1766 } 1767 1768 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the 1769 innermost (i.e. current) frame, return the sentinel frame. Thus, 1770 unlike get_next_frame(), NULL will never be returned. */ 1771 1772 struct frame_info * 1773 get_next_frame_sentinel_okay (struct frame_info *this_frame) 1774 { 1775 gdb_assert (this_frame != NULL); 1776 1777 /* Note that, due to the manner in which the sentinel frame is 1778 constructed, this_frame->next still works even when this_frame 1779 is the sentinel frame. But we disallow it here anyway because 1780 calling get_next_frame_sentinel_okay() on the sentinel frame 1781 is likely a coding error. */ 1782 gdb_assert (this_frame != sentinel_frame); 1783 1784 return this_frame->next; 1785 } 1786 1787 /* Observer for the target_changed event. */ 1788 1789 static void 1790 frame_observer_target_changed (struct target_ops *target) 1791 { 1792 reinit_frame_cache (); 1793 } 1794 1795 /* Flush the entire frame cache. */ 1796 1797 void 1798 reinit_frame_cache (void) 1799 { 1800 struct frame_info *fi; 1801 1802 /* Tear down all frame caches. */ 1803 for (fi = sentinel_frame; fi != NULL; fi = fi->prev) 1804 { 1805 if (fi->prologue_cache && fi->unwind->dealloc_cache) 1806 fi->unwind->dealloc_cache (fi, fi->prologue_cache); 1807 if (fi->base_cache && fi->base->unwind->dealloc_cache) 1808 fi->base->unwind->dealloc_cache (fi, fi->base_cache); 1809 } 1810 1811 /* Since we can't really be sure what the first object allocated was. */ 1812 obstack_free (&frame_cache_obstack, 0); 1813 obstack_init (&frame_cache_obstack); 1814 1815 if (sentinel_frame != NULL) 1816 annotate_frames_invalid (); 1817 1818 sentinel_frame = NULL; /* Invalidate cache */ 1819 select_frame (NULL); 1820 frame_stash_invalidate (); 1821 if (frame_debug) 1822 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n"); 1823 } 1824 1825 /* Find where a register is saved (in memory or another register). 1826 The result of frame_register_unwind is just where it is saved 1827 relative to this particular frame. */ 1828 1829 static void 1830 frame_register_unwind_location (struct frame_info *this_frame, int regnum, 1831 int *optimizedp, enum lval_type *lvalp, 1832 CORE_ADDR *addrp, int *realnump) 1833 { 1834 gdb_assert (this_frame == NULL || this_frame->level >= 0); 1835 1836 while (this_frame != NULL) 1837 { 1838 int unavailable; 1839 1840 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable, 1841 lvalp, addrp, realnump, NULL); 1842 1843 if (*optimizedp) 1844 break; 1845 1846 if (*lvalp != lval_register) 1847 break; 1848 1849 regnum = *realnump; 1850 this_frame = get_next_frame (this_frame); 1851 } 1852 } 1853 1854 /* Called during frame unwinding to remove a previous frame pointer from a 1855 frame passed in ARG. */ 1856 1857 static void 1858 remove_prev_frame (void *arg) 1859 { 1860 struct frame_info *this_frame, *prev_frame; 1861 1862 this_frame = (struct frame_info *) arg; 1863 prev_frame = this_frame->prev; 1864 gdb_assert (prev_frame != NULL); 1865 1866 prev_frame->next = NULL; 1867 this_frame->prev = NULL; 1868 } 1869 1870 /* Get the previous raw frame, and check that it is not identical to 1871 same other frame frame already in the chain. If it is, there is 1872 most likely a stack cycle, so we discard it, and mark THIS_FRAME as 1873 outermost, with UNWIND_SAME_ID stop reason. Unlike the other 1874 validity tests, that compare THIS_FRAME and the next frame, we do 1875 this right after creating the previous frame, to avoid ever ending 1876 up with two frames with the same id in the frame chain. */ 1877 1878 static struct frame_info * 1879 get_prev_frame_if_no_cycle (struct frame_info *this_frame) 1880 { 1881 struct frame_info *prev_frame; 1882 struct cleanup *prev_frame_cleanup; 1883 1884 prev_frame = get_prev_frame_raw (this_frame); 1885 1886 /* Don't compute the frame id of the current frame yet. Unwinding 1887 the sentinel frame can fail (e.g., if the thread is gone and we 1888 can't thus read its registers). If we let the cycle detection 1889 code below try to compute a frame ID, then an error thrown from 1890 within the frame ID computation would result in the sentinel 1891 frame as outermost frame, which is bogus. Instead, we'll compute 1892 the current frame's ID lazily in get_frame_id. Note that there's 1893 no point in doing cycle detection when there's only one frame, so 1894 nothing is lost here. */ 1895 if (prev_frame->level == 0) 1896 return prev_frame; 1897 1898 /* The cleanup will remove the previous frame that get_prev_frame_raw 1899 linked onto THIS_FRAME. */ 1900 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame); 1901 1902 compute_frame_id (prev_frame); 1903 if (!frame_stash_add (prev_frame)) 1904 { 1905 /* Another frame with the same id was already in the stash. We just 1906 detected a cycle. */ 1907 if (frame_debug) 1908 { 1909 fprintf_unfiltered (gdb_stdlog, "-> "); 1910 fprint_frame (gdb_stdlog, NULL); 1911 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n"); 1912 } 1913 this_frame->stop_reason = UNWIND_SAME_ID; 1914 /* Unlink. */ 1915 prev_frame->next = NULL; 1916 this_frame->prev = NULL; 1917 prev_frame = NULL; 1918 } 1919 1920 discard_cleanups (prev_frame_cleanup); 1921 return prev_frame; 1922 } 1923 1924 /* Helper function for get_prev_frame_always, this is called inside a 1925 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if 1926 there is no such frame. This may throw an exception. */ 1927 1928 static struct frame_info * 1929 get_prev_frame_always_1 (struct frame_info *this_frame) 1930 { 1931 struct gdbarch *gdbarch; 1932 1933 gdb_assert (this_frame != NULL); 1934 gdbarch = get_frame_arch (this_frame); 1935 1936 if (frame_debug) 1937 { 1938 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame="); 1939 if (this_frame != NULL) 1940 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level); 1941 else 1942 fprintf_unfiltered (gdb_stdlog, "<NULL>"); 1943 fprintf_unfiltered (gdb_stdlog, ") "); 1944 } 1945 1946 /* Only try to do the unwind once. */ 1947 if (this_frame->prev_p) 1948 { 1949 if (frame_debug) 1950 { 1951 fprintf_unfiltered (gdb_stdlog, "-> "); 1952 fprint_frame (gdb_stdlog, this_frame->prev); 1953 fprintf_unfiltered (gdb_stdlog, " // cached \n"); 1954 } 1955 return this_frame->prev; 1956 } 1957 1958 /* If the frame unwinder hasn't been selected yet, we must do so 1959 before setting prev_p; otherwise the check for misbehaved 1960 sniffers will think that this frame's sniffer tried to unwind 1961 further (see frame_cleanup_after_sniffer). */ 1962 if (this_frame->unwind == NULL) 1963 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache); 1964 1965 this_frame->prev_p = 1; 1966 this_frame->stop_reason = UNWIND_NO_REASON; 1967 1968 /* If we are unwinding from an inline frame, all of the below tests 1969 were already performed when we unwound from the next non-inline 1970 frame. We must skip them, since we can not get THIS_FRAME's ID 1971 until we have unwound all the way down to the previous non-inline 1972 frame. */ 1973 if (get_frame_type (this_frame) == INLINE_FRAME) 1974 return get_prev_frame_if_no_cycle (this_frame); 1975 1976 /* Check that this frame is unwindable. If it isn't, don't try to 1977 unwind to the prev frame. */ 1978 this_frame->stop_reason 1979 = this_frame->unwind->stop_reason (this_frame, 1980 &this_frame->prologue_cache); 1981 1982 if (this_frame->stop_reason != UNWIND_NO_REASON) 1983 { 1984 if (frame_debug) 1985 { 1986 enum unwind_stop_reason reason = this_frame->stop_reason; 1987 1988 fprintf_unfiltered (gdb_stdlog, "-> "); 1989 fprint_frame (gdb_stdlog, NULL); 1990 fprintf_unfiltered (gdb_stdlog, " // %s }\n", 1991 frame_stop_reason_symbol_string (reason)); 1992 } 1993 return NULL; 1994 } 1995 1996 /* Check that this frame's ID isn't inner to (younger, below, next) 1997 the next frame. This happens when a frame unwind goes backwards. 1998 This check is valid only if this frame and the next frame are NORMAL. 1999 See the comment at frame_id_inner for details. */ 2000 if (get_frame_type (this_frame) == NORMAL_FRAME 2001 && this_frame->next->unwind->type == NORMAL_FRAME 2002 && frame_id_inner (get_frame_arch (this_frame->next), 2003 get_frame_id (this_frame), 2004 get_frame_id (this_frame->next))) 2005 { 2006 CORE_ADDR this_pc_in_block; 2007 struct minimal_symbol *morestack_msym; 2008 const char *morestack_name = NULL; 2009 2010 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */ 2011 this_pc_in_block = get_frame_address_in_block (this_frame); 2012 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym; 2013 if (morestack_msym) 2014 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym); 2015 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0) 2016 { 2017 if (frame_debug) 2018 { 2019 fprintf_unfiltered (gdb_stdlog, "-> "); 2020 fprint_frame (gdb_stdlog, NULL); 2021 fprintf_unfiltered (gdb_stdlog, 2022 " // this frame ID is inner }\n"); 2023 } 2024 this_frame->stop_reason = UNWIND_INNER_ID; 2025 return NULL; 2026 } 2027 } 2028 2029 /* Check that this and the next frame do not unwind the PC register 2030 to the same memory location. If they do, then even though they 2031 have different frame IDs, the new frame will be bogus; two 2032 functions can't share a register save slot for the PC. This can 2033 happen when the prologue analyzer finds a stack adjustment, but 2034 no PC save. 2035 2036 This check does assume that the "PC register" is roughly a 2037 traditional PC, even if the gdbarch_unwind_pc method adjusts 2038 it (we do not rely on the value, only on the unwound PC being 2039 dependent on this value). A potential improvement would be 2040 to have the frame prev_pc method and the gdbarch unwind_pc 2041 method set the same lval and location information as 2042 frame_register_unwind. */ 2043 if (this_frame->level > 0 2044 && gdbarch_pc_regnum (gdbarch) >= 0 2045 && get_frame_type (this_frame) == NORMAL_FRAME 2046 && (get_frame_type (this_frame->next) == NORMAL_FRAME 2047 || get_frame_type (this_frame->next) == INLINE_FRAME)) 2048 { 2049 int optimized, realnum, nrealnum; 2050 enum lval_type lval, nlval; 2051 CORE_ADDR addr, naddr; 2052 2053 frame_register_unwind_location (this_frame, 2054 gdbarch_pc_regnum (gdbarch), 2055 &optimized, &lval, &addr, &realnum); 2056 frame_register_unwind_location (get_next_frame (this_frame), 2057 gdbarch_pc_regnum (gdbarch), 2058 &optimized, &nlval, &naddr, &nrealnum); 2059 2060 if ((lval == lval_memory && lval == nlval && addr == naddr) 2061 || (lval == lval_register && lval == nlval && realnum == nrealnum)) 2062 { 2063 if (frame_debug) 2064 { 2065 fprintf_unfiltered (gdb_stdlog, "-> "); 2066 fprint_frame (gdb_stdlog, NULL); 2067 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n"); 2068 } 2069 2070 this_frame->stop_reason = UNWIND_NO_SAVED_PC; 2071 this_frame->prev = NULL; 2072 return NULL; 2073 } 2074 } 2075 2076 return get_prev_frame_if_no_cycle (this_frame); 2077 } 2078 2079 /* Return a "struct frame_info" corresponding to the frame that called 2080 THIS_FRAME. Returns NULL if there is no such frame. 2081 2082 Unlike get_prev_frame, this function always tries to unwind the 2083 frame. */ 2084 2085 struct frame_info * 2086 get_prev_frame_always (struct frame_info *this_frame) 2087 { 2088 struct frame_info *prev_frame = NULL; 2089 2090 TRY 2091 { 2092 prev_frame = get_prev_frame_always_1 (this_frame); 2093 } 2094 CATCH (ex, RETURN_MASK_ERROR) 2095 { 2096 if (ex.error == MEMORY_ERROR) 2097 { 2098 this_frame->stop_reason = UNWIND_MEMORY_ERROR; 2099 if (ex.message != NULL) 2100 { 2101 char *stop_string; 2102 size_t size; 2103 2104 /* The error needs to live as long as the frame does. 2105 Allocate using stack local STOP_STRING then assign the 2106 pointer to the frame, this allows the STOP_STRING on the 2107 frame to be of type 'const char *'. */ 2108 size = strlen (ex.message) + 1; 2109 stop_string = (char *) frame_obstack_zalloc (size); 2110 memcpy (stop_string, ex.message, size); 2111 this_frame->stop_string = stop_string; 2112 } 2113 prev_frame = NULL; 2114 } 2115 else 2116 throw_exception (ex); 2117 } 2118 END_CATCH 2119 2120 return prev_frame; 2121 } 2122 2123 /* Construct a new "struct frame_info" and link it previous to 2124 this_frame. */ 2125 2126 static struct frame_info * 2127 get_prev_frame_raw (struct frame_info *this_frame) 2128 { 2129 struct frame_info *prev_frame; 2130 2131 /* Allocate the new frame but do not wire it in to the frame chain. 2132 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along 2133 frame->next to pull some fancy tricks (of course such code is, by 2134 definition, recursive). Try to prevent it. 2135 2136 There is no reason to worry about memory leaks, should the 2137 remainder of the function fail. The allocated memory will be 2138 quickly reclaimed when the frame cache is flushed, and the `we've 2139 been here before' check above will stop repeated memory 2140 allocation calls. */ 2141 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info); 2142 prev_frame->level = this_frame->level + 1; 2143 2144 /* For now, assume we don't have frame chains crossing address 2145 spaces. */ 2146 prev_frame->pspace = this_frame->pspace; 2147 prev_frame->aspace = this_frame->aspace; 2148 2149 /* Don't yet compute ->unwind (and hence ->type). It is computed 2150 on-demand in get_frame_type, frame_register_unwind, and 2151 get_frame_id. */ 2152 2153 /* Don't yet compute the frame's ID. It is computed on-demand by 2154 get_frame_id(). */ 2155 2156 /* The unwound frame ID is validate at the start of this function, 2157 as part of the logic to decide if that frame should be further 2158 unwound, and not here while the prev frame is being created. 2159 Doing this makes it possible for the user to examine a frame that 2160 has an invalid frame ID. 2161 2162 Some very old VAX code noted: [...] For the sake of argument, 2163 suppose that the stack is somewhat trashed (which is one reason 2164 that "info frame" exists). So, return 0 (indicating we don't 2165 know the address of the arglist) if we don't know what frame this 2166 frame calls. */ 2167 2168 /* Link it in. */ 2169 this_frame->prev = prev_frame; 2170 prev_frame->next = this_frame; 2171 2172 if (frame_debug) 2173 { 2174 fprintf_unfiltered (gdb_stdlog, "-> "); 2175 fprint_frame (gdb_stdlog, prev_frame); 2176 fprintf_unfiltered (gdb_stdlog, " }\n"); 2177 } 2178 2179 return prev_frame; 2180 } 2181 2182 /* Debug routine to print a NULL frame being returned. */ 2183 2184 static void 2185 frame_debug_got_null_frame (struct frame_info *this_frame, 2186 const char *reason) 2187 { 2188 if (frame_debug) 2189 { 2190 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame="); 2191 if (this_frame != NULL) 2192 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level); 2193 else 2194 fprintf_unfiltered (gdb_stdlog, "<NULL>"); 2195 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason); 2196 } 2197 } 2198 2199 /* Is this (non-sentinel) frame in the "main"() function? */ 2200 2201 static int 2202 inside_main_func (struct frame_info *this_frame) 2203 { 2204 struct bound_minimal_symbol msymbol; 2205 CORE_ADDR maddr; 2206 2207 if (symfile_objfile == 0) 2208 return 0; 2209 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile); 2210 if (msymbol.minsym == NULL) 2211 return 0; 2212 /* Make certain that the code, and not descriptor, address is 2213 returned. */ 2214 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame), 2215 BMSYMBOL_VALUE_ADDRESS (msymbol), 2216 ¤t_target); 2217 return maddr == get_frame_func (this_frame); 2218 } 2219 2220 /* Test whether THIS_FRAME is inside the process entry point function. */ 2221 2222 static int 2223 inside_entry_func (struct frame_info *this_frame) 2224 { 2225 CORE_ADDR entry_point; 2226 2227 if (!entry_point_address_query (&entry_point)) 2228 return 0; 2229 2230 return get_frame_func (this_frame) == entry_point; 2231 } 2232 2233 /* Return a structure containing various interesting information about 2234 the frame that called THIS_FRAME. Returns NULL if there is entier 2235 no such frame or the frame fails any of a set of target-independent 2236 condition that should terminate the frame chain (e.g., as unwinding 2237 past main()). 2238 2239 This function should not contain target-dependent tests, such as 2240 checking whether the program-counter is zero. */ 2241 2242 struct frame_info * 2243 get_prev_frame (struct frame_info *this_frame) 2244 { 2245 CORE_ADDR frame_pc; 2246 int frame_pc_p; 2247 2248 /* There is always a frame. If this assertion fails, suspect that 2249 something should be calling get_selected_frame() or 2250 get_current_frame(). */ 2251 gdb_assert (this_frame != NULL); 2252 2253 /* If this_frame is the current frame, then compute and stash 2254 its frame id prior to fetching and computing the frame id of the 2255 previous frame. Otherwise, the cycle detection code in 2256 get_prev_frame_if_no_cycle() will not work correctly. When 2257 get_frame_id() is called later on, an assertion error will 2258 be triggered in the event of a cycle between the current 2259 frame and its previous frame. */ 2260 if (this_frame->level == 0) 2261 get_frame_id (this_frame); 2262 2263 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc); 2264 2265 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much 2266 sense to stop unwinding at a dummy frame. One place where a dummy 2267 frame may have an address "inside_main_func" is on HPUX. On HPUX, the 2268 pcsqh register (space register for the instruction at the head of the 2269 instruction queue) cannot be written directly; the only way to set it 2270 is to branch to code that is in the target space. In order to implement 2271 frame dummies on HPUX, the called function is made to jump back to where 2272 the inferior was when the user function was called. If gdb was inside 2273 the main function when we created the dummy frame, the dummy frame will 2274 point inside the main function. */ 2275 if (this_frame->level >= 0 2276 && get_frame_type (this_frame) == NORMAL_FRAME 2277 && !backtrace_past_main 2278 && frame_pc_p 2279 && inside_main_func (this_frame)) 2280 /* Don't unwind past main(). Note, this is done _before_ the 2281 frame has been marked as previously unwound. That way if the 2282 user later decides to enable unwinds past main(), that will 2283 automatically happen. */ 2284 { 2285 frame_debug_got_null_frame (this_frame, "inside main func"); 2286 return NULL; 2287 } 2288 2289 /* If the user's backtrace limit has been exceeded, stop. We must 2290 add two to the current level; one of those accounts for backtrace_limit 2291 being 1-based and the level being 0-based, and the other accounts for 2292 the level of the new frame instead of the level of the current 2293 frame. */ 2294 if (this_frame->level + 2 > backtrace_limit) 2295 { 2296 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded"); 2297 return NULL; 2298 } 2299 2300 /* If we're already inside the entry function for the main objfile, 2301 then it isn't valid. Don't apply this test to a dummy frame - 2302 dummy frame PCs typically land in the entry func. Don't apply 2303 this test to the sentinel frame. Sentinel frames should always 2304 be allowed to unwind. */ 2305 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() - 2306 wasn't checking for "main" in the minimal symbols. With that 2307 fixed asm-source tests now stop in "main" instead of halting the 2308 backtrace in weird and wonderful ways somewhere inside the entry 2309 file. Suspect that tests for inside the entry file/func were 2310 added to work around that (now fixed) case. */ 2311 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right) 2312 suggested having the inside_entry_func test use the 2313 inside_main_func() msymbol trick (along with entry_point_address() 2314 I guess) to determine the address range of the start function. 2315 That should provide a far better stopper than the current 2316 heuristics. */ 2317 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler 2318 applied tail-call optimizations to main so that a function called 2319 from main returns directly to the caller of main. Since we don't 2320 stop at main, we should at least stop at the entry point of the 2321 application. */ 2322 if (this_frame->level >= 0 2323 && get_frame_type (this_frame) == NORMAL_FRAME 2324 && !backtrace_past_entry 2325 && frame_pc_p 2326 && inside_entry_func (this_frame)) 2327 { 2328 frame_debug_got_null_frame (this_frame, "inside entry func"); 2329 return NULL; 2330 } 2331 2332 /* Assume that the only way to get a zero PC is through something 2333 like a SIGSEGV or a dummy frame, and hence that NORMAL frames 2334 will never unwind a zero PC. */ 2335 if (this_frame->level > 0 2336 && (get_frame_type (this_frame) == NORMAL_FRAME 2337 || get_frame_type (this_frame) == INLINE_FRAME) 2338 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME 2339 && frame_pc_p && frame_pc == 0) 2340 { 2341 frame_debug_got_null_frame (this_frame, "zero PC"); 2342 return NULL; 2343 } 2344 2345 return get_prev_frame_always (this_frame); 2346 } 2347 2348 struct frame_id 2349 get_prev_frame_id_by_id (struct frame_id id) 2350 { 2351 struct frame_id prev_id; 2352 struct frame_info *frame; 2353 2354 frame = frame_find_by_id (id); 2355 2356 if (frame != NULL) 2357 prev_id = get_frame_id (get_prev_frame (frame)); 2358 else 2359 prev_id = null_frame_id; 2360 2361 return prev_id; 2362 } 2363 2364 CORE_ADDR 2365 get_frame_pc (struct frame_info *frame) 2366 { 2367 gdb_assert (frame->next != NULL); 2368 return frame_unwind_pc (frame->next); 2369 } 2370 2371 int 2372 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc) 2373 { 2374 2375 gdb_assert (frame->next != NULL); 2376 2377 TRY 2378 { 2379 *pc = frame_unwind_pc (frame->next); 2380 } 2381 CATCH (ex, RETURN_MASK_ERROR) 2382 { 2383 if (ex.error == NOT_AVAILABLE_ERROR) 2384 return 0; 2385 else 2386 throw_exception (ex); 2387 } 2388 END_CATCH 2389 2390 return 1; 2391 } 2392 2393 /* Return an address that falls within THIS_FRAME's code block. */ 2394 2395 CORE_ADDR 2396 get_frame_address_in_block (struct frame_info *this_frame) 2397 { 2398 /* A draft address. */ 2399 CORE_ADDR pc = get_frame_pc (this_frame); 2400 2401 struct frame_info *next_frame = this_frame->next; 2402 2403 /* Calling get_frame_pc returns the resume address for THIS_FRAME. 2404 Normally the resume address is inside the body of the function 2405 associated with THIS_FRAME, but there is a special case: when 2406 calling a function which the compiler knows will never return 2407 (for instance abort), the call may be the very last instruction 2408 in the calling function. The resume address will point after the 2409 call and may be at the beginning of a different function 2410 entirely. 2411 2412 If THIS_FRAME is a signal frame or dummy frame, then we should 2413 not adjust the unwound PC. For a dummy frame, GDB pushed the 2414 resume address manually onto the stack. For a signal frame, the 2415 OS may have pushed the resume address manually and invoked the 2416 handler (e.g. GNU/Linux), or invoked the trampoline which called 2417 the signal handler - but in either case the signal handler is 2418 expected to return to the trampoline. So in both of these 2419 cases we know that the resume address is executable and 2420 related. So we only need to adjust the PC if THIS_FRAME 2421 is a normal function. 2422 2423 If the program has been interrupted while THIS_FRAME is current, 2424 then clearly the resume address is inside the associated 2425 function. There are three kinds of interruption: debugger stop 2426 (next frame will be SENTINEL_FRAME), operating system 2427 signal or exception (next frame will be SIGTRAMP_FRAME), 2428 or debugger-induced function call (next frame will be 2429 DUMMY_FRAME). So we only need to adjust the PC if 2430 NEXT_FRAME is a normal function. 2431 2432 We check the type of NEXT_FRAME first, since it is already 2433 known; frame type is determined by the unwinder, and since 2434 we have THIS_FRAME we've already selected an unwinder for 2435 NEXT_FRAME. 2436 2437 If the next frame is inlined, we need to keep going until we find 2438 the real function - for instance, if a signal handler is invoked 2439 while in an inlined function, then the code address of the 2440 "calling" normal function should not be adjusted either. */ 2441 2442 while (get_frame_type (next_frame) == INLINE_FRAME) 2443 next_frame = next_frame->next; 2444 2445 if ((get_frame_type (next_frame) == NORMAL_FRAME 2446 || get_frame_type (next_frame) == TAILCALL_FRAME) 2447 && (get_frame_type (this_frame) == NORMAL_FRAME 2448 || get_frame_type (this_frame) == TAILCALL_FRAME 2449 || get_frame_type (this_frame) == INLINE_FRAME)) 2450 return pc - 1; 2451 2452 return pc; 2453 } 2454 2455 int 2456 get_frame_address_in_block_if_available (struct frame_info *this_frame, 2457 CORE_ADDR *pc) 2458 { 2459 2460 TRY 2461 { 2462 *pc = get_frame_address_in_block (this_frame); 2463 } 2464 CATCH (ex, RETURN_MASK_ERROR) 2465 { 2466 if (ex.error == NOT_AVAILABLE_ERROR) 2467 return 0; 2468 throw_exception (ex); 2469 } 2470 END_CATCH 2471 2472 return 1; 2473 } 2474 2475 void 2476 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal) 2477 { 2478 struct frame_info *next_frame; 2479 int notcurrent; 2480 CORE_ADDR pc; 2481 2482 /* If the next frame represents an inlined function call, this frame's 2483 sal is the "call site" of that inlined function, which can not 2484 be inferred from get_frame_pc. */ 2485 next_frame = get_next_frame (frame); 2486 if (frame_inlined_callees (frame) > 0) 2487 { 2488 struct symbol *sym; 2489 2490 if (next_frame) 2491 sym = get_frame_function (next_frame); 2492 else 2493 sym = inline_skipped_symbol (inferior_ptid); 2494 2495 /* If frame is inline, it certainly has symbols. */ 2496 gdb_assert (sym); 2497 init_sal (sal); 2498 if (SYMBOL_LINE (sym) != 0) 2499 { 2500 sal->symtab = symbol_symtab (sym); 2501 sal->line = SYMBOL_LINE (sym); 2502 } 2503 else 2504 /* If the symbol does not have a location, we don't know where 2505 the call site is. Do not pretend to. This is jarring, but 2506 we can't do much better. */ 2507 sal->pc = get_frame_pc (frame); 2508 2509 sal->pspace = get_frame_program_space (frame); 2510 2511 return; 2512 } 2513 2514 /* If FRAME is not the innermost frame, that normally means that 2515 FRAME->pc points at the return instruction (which is *after* the 2516 call instruction), and we want to get the line containing the 2517 call (because the call is where the user thinks the program is). 2518 However, if the next frame is either a SIGTRAMP_FRAME or a 2519 DUMMY_FRAME, then the next frame will contain a saved interrupt 2520 PC and such a PC indicates the current (rather than next) 2521 instruction/line, consequently, for such cases, want to get the 2522 line containing fi->pc. */ 2523 if (!get_frame_pc_if_available (frame, &pc)) 2524 { 2525 init_sal (sal); 2526 return; 2527 } 2528 2529 notcurrent = (pc != get_frame_address_in_block (frame)); 2530 (*sal) = find_pc_line (pc, notcurrent); 2531 } 2532 2533 /* Per "frame.h", return the ``address'' of the frame. Code should 2534 really be using get_frame_id(). */ 2535 CORE_ADDR 2536 get_frame_base (struct frame_info *fi) 2537 { 2538 return get_frame_id (fi).stack_addr; 2539 } 2540 2541 /* High-level offsets into the frame. Used by the debug info. */ 2542 2543 CORE_ADDR 2544 get_frame_base_address (struct frame_info *fi) 2545 { 2546 if (get_frame_type (fi) != NORMAL_FRAME) 2547 return 0; 2548 if (fi->base == NULL) 2549 fi->base = frame_base_find_by_frame (fi); 2550 /* Sneaky: If the low-level unwind and high-level base code share a 2551 common unwinder, let them share the prologue cache. */ 2552 if (fi->base->unwind == fi->unwind) 2553 return fi->base->this_base (fi, &fi->prologue_cache); 2554 return fi->base->this_base (fi, &fi->base_cache); 2555 } 2556 2557 CORE_ADDR 2558 get_frame_locals_address (struct frame_info *fi) 2559 { 2560 if (get_frame_type (fi) != NORMAL_FRAME) 2561 return 0; 2562 /* If there isn't a frame address method, find it. */ 2563 if (fi->base == NULL) 2564 fi->base = frame_base_find_by_frame (fi); 2565 /* Sneaky: If the low-level unwind and high-level base code share a 2566 common unwinder, let them share the prologue cache. */ 2567 if (fi->base->unwind == fi->unwind) 2568 return fi->base->this_locals (fi, &fi->prologue_cache); 2569 return fi->base->this_locals (fi, &fi->base_cache); 2570 } 2571 2572 CORE_ADDR 2573 get_frame_args_address (struct frame_info *fi) 2574 { 2575 if (get_frame_type (fi) != NORMAL_FRAME) 2576 return 0; 2577 /* If there isn't a frame address method, find it. */ 2578 if (fi->base == NULL) 2579 fi->base = frame_base_find_by_frame (fi); 2580 /* Sneaky: If the low-level unwind and high-level base code share a 2581 common unwinder, let them share the prologue cache. */ 2582 if (fi->base->unwind == fi->unwind) 2583 return fi->base->this_args (fi, &fi->prologue_cache); 2584 return fi->base->this_args (fi, &fi->base_cache); 2585 } 2586 2587 /* Return true if the frame unwinder for frame FI is UNWINDER; false 2588 otherwise. */ 2589 2590 int 2591 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder) 2592 { 2593 if (fi->unwind == NULL) 2594 frame_unwind_find_by_frame (fi, &fi->prologue_cache); 2595 return fi->unwind == unwinder; 2596 } 2597 2598 /* Level of the selected frame: 0 for innermost, 1 for its caller, ... 2599 or -1 for a NULL frame. */ 2600 2601 int 2602 frame_relative_level (struct frame_info *fi) 2603 { 2604 if (fi == NULL) 2605 return -1; 2606 else 2607 return fi->level; 2608 } 2609 2610 enum frame_type 2611 get_frame_type (struct frame_info *frame) 2612 { 2613 if (frame->unwind == NULL) 2614 /* Initialize the frame's unwinder because that's what 2615 provides the frame's type. */ 2616 frame_unwind_find_by_frame (frame, &frame->prologue_cache); 2617 return frame->unwind->type; 2618 } 2619 2620 struct program_space * 2621 get_frame_program_space (struct frame_info *frame) 2622 { 2623 return frame->pspace; 2624 } 2625 2626 struct program_space * 2627 frame_unwind_program_space (struct frame_info *this_frame) 2628 { 2629 gdb_assert (this_frame); 2630 2631 /* This is really a placeholder to keep the API consistent --- we 2632 assume for now that we don't have frame chains crossing 2633 spaces. */ 2634 return this_frame->pspace; 2635 } 2636 2637 struct address_space * 2638 get_frame_address_space (struct frame_info *frame) 2639 { 2640 return frame->aspace; 2641 } 2642 2643 /* Memory access methods. */ 2644 2645 void 2646 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr, 2647 gdb_byte *buf, int len) 2648 { 2649 read_memory (addr, buf, len); 2650 } 2651 2652 LONGEST 2653 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr, 2654 int len) 2655 { 2656 struct gdbarch *gdbarch = get_frame_arch (this_frame); 2657 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 2658 2659 return read_memory_integer (addr, len, byte_order); 2660 } 2661 2662 ULONGEST 2663 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr, 2664 int len) 2665 { 2666 struct gdbarch *gdbarch = get_frame_arch (this_frame); 2667 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 2668 2669 return read_memory_unsigned_integer (addr, len, byte_order); 2670 } 2671 2672 int 2673 safe_frame_unwind_memory (struct frame_info *this_frame, 2674 CORE_ADDR addr, gdb_byte *buf, int len) 2675 { 2676 /* NOTE: target_read_memory returns zero on success! */ 2677 return !target_read_memory (addr, buf, len); 2678 } 2679 2680 /* Architecture methods. */ 2681 2682 struct gdbarch * 2683 get_frame_arch (struct frame_info *this_frame) 2684 { 2685 return frame_unwind_arch (this_frame->next); 2686 } 2687 2688 struct gdbarch * 2689 frame_unwind_arch (struct frame_info *next_frame) 2690 { 2691 if (!next_frame->prev_arch.p) 2692 { 2693 struct gdbarch *arch; 2694 2695 if (next_frame->unwind == NULL) 2696 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache); 2697 2698 if (next_frame->unwind->prev_arch != NULL) 2699 arch = next_frame->unwind->prev_arch (next_frame, 2700 &next_frame->prologue_cache); 2701 else 2702 arch = get_frame_arch (next_frame); 2703 2704 next_frame->prev_arch.arch = arch; 2705 next_frame->prev_arch.p = 1; 2706 if (frame_debug) 2707 fprintf_unfiltered (gdb_stdlog, 2708 "{ frame_unwind_arch (next_frame=%d) -> %s }\n", 2709 next_frame->level, 2710 gdbarch_bfd_arch_info (arch)->printable_name); 2711 } 2712 2713 return next_frame->prev_arch.arch; 2714 } 2715 2716 struct gdbarch * 2717 frame_unwind_caller_arch (struct frame_info *next_frame) 2718 { 2719 next_frame = skip_artificial_frames (next_frame); 2720 2721 /* We must have a non-artificial frame. The caller is supposed to check 2722 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID 2723 in this case. */ 2724 gdb_assert (next_frame != NULL); 2725 2726 return frame_unwind_arch (next_frame); 2727 } 2728 2729 /* Gets the language of FRAME. */ 2730 2731 enum language 2732 get_frame_language (struct frame_info *frame) 2733 { 2734 CORE_ADDR pc = 0; 2735 int pc_p = 0; 2736 2737 gdb_assert (frame!= NULL); 2738 2739 /* We determine the current frame language by looking up its 2740 associated symtab. To retrieve this symtab, we use the frame 2741 PC. However we cannot use the frame PC as is, because it 2742 usually points to the instruction following the "call", which 2743 is sometimes the first instruction of another function. So 2744 we rely on get_frame_address_in_block(), it provides us with 2745 a PC that is guaranteed to be inside the frame's code 2746 block. */ 2747 2748 TRY 2749 { 2750 pc = get_frame_address_in_block (frame); 2751 pc_p = 1; 2752 } 2753 CATCH (ex, RETURN_MASK_ERROR) 2754 { 2755 if (ex.error != NOT_AVAILABLE_ERROR) 2756 throw_exception (ex); 2757 } 2758 END_CATCH 2759 2760 if (pc_p) 2761 { 2762 struct compunit_symtab *cust = find_pc_compunit_symtab (pc); 2763 2764 if (cust != NULL) 2765 return compunit_language (cust); 2766 } 2767 2768 return language_unknown; 2769 } 2770 2771 /* Stack pointer methods. */ 2772 2773 CORE_ADDR 2774 get_frame_sp (struct frame_info *this_frame) 2775 { 2776 struct gdbarch *gdbarch = get_frame_arch (this_frame); 2777 2778 /* Normality - an architecture that provides a way of obtaining any 2779 frame inner-most address. */ 2780 if (gdbarch_unwind_sp_p (gdbarch)) 2781 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to 2782 operate on THIS_FRAME now. */ 2783 return gdbarch_unwind_sp (gdbarch, this_frame->next); 2784 /* Now things are really are grim. Hope that the value returned by 2785 the gdbarch_sp_regnum register is meaningful. */ 2786 if (gdbarch_sp_regnum (gdbarch) >= 0) 2787 return get_frame_register_unsigned (this_frame, 2788 gdbarch_sp_regnum (gdbarch)); 2789 internal_error (__FILE__, __LINE__, _("Missing unwind SP method")); 2790 } 2791 2792 /* Return the reason why we can't unwind past FRAME. */ 2793 2794 enum unwind_stop_reason 2795 get_frame_unwind_stop_reason (struct frame_info *frame) 2796 { 2797 /* Fill-in STOP_REASON. */ 2798 get_prev_frame_always (frame); 2799 gdb_assert (frame->prev_p); 2800 2801 return frame->stop_reason; 2802 } 2803 2804 /* Return a string explaining REASON. */ 2805 2806 const char * 2807 unwind_stop_reason_to_string (enum unwind_stop_reason reason) 2808 { 2809 switch (reason) 2810 { 2811 #define SET(name, description) \ 2812 case name: return _(description); 2813 #include "unwind_stop_reasons.def" 2814 #undef SET 2815 2816 default: 2817 internal_error (__FILE__, __LINE__, 2818 "Invalid frame stop reason"); 2819 } 2820 } 2821 2822 const char * 2823 frame_stop_reason_string (struct frame_info *fi) 2824 { 2825 gdb_assert (fi->prev_p); 2826 gdb_assert (fi->prev == NULL); 2827 2828 /* Return the specific string if we have one. */ 2829 if (fi->stop_string != NULL) 2830 return fi->stop_string; 2831 2832 /* Return the generic string if we have nothing better. */ 2833 return unwind_stop_reason_to_string (fi->stop_reason); 2834 } 2835 2836 /* Return the enum symbol name of REASON as a string, to use in debug 2837 output. */ 2838 2839 static const char * 2840 frame_stop_reason_symbol_string (enum unwind_stop_reason reason) 2841 { 2842 switch (reason) 2843 { 2844 #define SET(name, description) \ 2845 case name: return #name; 2846 #include "unwind_stop_reasons.def" 2847 #undef SET 2848 2849 default: 2850 internal_error (__FILE__, __LINE__, 2851 "Invalid frame stop reason"); 2852 } 2853 } 2854 2855 /* Clean up after a failed (wrong unwinder) attempt to unwind past 2856 FRAME. */ 2857 2858 static void 2859 frame_cleanup_after_sniffer (void *arg) 2860 { 2861 struct frame_info *frame = (struct frame_info *) arg; 2862 2863 /* The sniffer should not allocate a prologue cache if it did not 2864 match this frame. */ 2865 gdb_assert (frame->prologue_cache == NULL); 2866 2867 /* No sniffer should extend the frame chain; sniff based on what is 2868 already certain. */ 2869 gdb_assert (!frame->prev_p); 2870 2871 /* The sniffer should not check the frame's ID; that's circular. */ 2872 gdb_assert (!frame->this_id.p); 2873 2874 /* Clear cached fields dependent on the unwinder. 2875 2876 The previous PC is independent of the unwinder, but the previous 2877 function is not (see get_frame_address_in_block). */ 2878 frame->prev_func.p = 0; 2879 frame->prev_func.addr = 0; 2880 2881 /* Discard the unwinder last, so that we can easily find it if an assertion 2882 in this function triggers. */ 2883 frame->unwind = NULL; 2884 } 2885 2886 /* Set FRAME's unwinder temporarily, so that we can call a sniffer. 2887 Return a cleanup which should be called if unwinding fails, and 2888 discarded if it succeeds. */ 2889 2890 struct cleanup * 2891 frame_prepare_for_sniffer (struct frame_info *frame, 2892 const struct frame_unwind *unwind) 2893 { 2894 gdb_assert (frame->unwind == NULL); 2895 frame->unwind = unwind; 2896 return make_cleanup (frame_cleanup_after_sniffer, frame); 2897 } 2898 2899 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */ 2900 2901 static struct cmd_list_element *set_backtrace_cmdlist; 2902 static struct cmd_list_element *show_backtrace_cmdlist; 2903 2904 static void 2905 set_backtrace_cmd (char *args, int from_tty) 2906 { 2907 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands, 2908 gdb_stdout); 2909 } 2910 2911 static void 2912 show_backtrace_cmd (char *args, int from_tty) 2913 { 2914 cmd_show_list (show_backtrace_cmdlist, from_tty, ""); 2915 } 2916 2917 void 2918 _initialize_frame (void) 2919 { 2920 obstack_init (&frame_cache_obstack); 2921 2922 frame_stash_create (); 2923 2924 observer_attach_target_changed (frame_observer_target_changed); 2925 2926 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\ 2927 Set backtrace specific variables.\n\ 2928 Configure backtrace variables such as the backtrace limit"), 2929 &set_backtrace_cmdlist, "set backtrace ", 2930 0/*allow-unknown*/, &setlist); 2931 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\ 2932 Show backtrace specific variables\n\ 2933 Show backtrace variables such as the backtrace limit"), 2934 &show_backtrace_cmdlist, "show backtrace ", 2935 0/*allow-unknown*/, &showlist); 2936 2937 add_setshow_boolean_cmd ("past-main", class_obscure, 2938 &backtrace_past_main, _("\ 2939 Set whether backtraces should continue past \"main\"."), _("\ 2940 Show whether backtraces should continue past \"main\"."), _("\ 2941 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\ 2942 the backtrace at \"main\". Set this variable if you need to see the rest\n\ 2943 of the stack trace."), 2944 NULL, 2945 show_backtrace_past_main, 2946 &set_backtrace_cmdlist, 2947 &show_backtrace_cmdlist); 2948 2949 add_setshow_boolean_cmd ("past-entry", class_obscure, 2950 &backtrace_past_entry, _("\ 2951 Set whether backtraces should continue past the entry point of a program."), 2952 _("\ 2953 Show whether backtraces should continue past the entry point of a program."), 2954 _("\ 2955 Normally there are no callers beyond the entry point of a program, so GDB\n\ 2956 will terminate the backtrace there. Set this variable if you need to see\n\ 2957 the rest of the stack trace."), 2958 NULL, 2959 show_backtrace_past_entry, 2960 &set_backtrace_cmdlist, 2961 &show_backtrace_cmdlist); 2962 2963 add_setshow_uinteger_cmd ("limit", class_obscure, 2964 &backtrace_limit, _("\ 2965 Set an upper bound on the number of backtrace levels."), _("\ 2966 Show the upper bound on the number of backtrace levels."), _("\ 2967 No more than the specified number of frames can be displayed or examined.\n\ 2968 Literal \"unlimited\" or zero means no limit."), 2969 NULL, 2970 show_backtrace_limit, 2971 &set_backtrace_cmdlist, 2972 &show_backtrace_cmdlist); 2973 2974 /* Debug this files internals. */ 2975 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\ 2976 Set frame debugging."), _("\ 2977 Show frame debugging."), _("\ 2978 When non-zero, frame specific internal debugging is enabled."), 2979 NULL, 2980 show_frame_debug, 2981 &setdebuglist, &showdebuglist); 2982 } 2983