xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/frame.c (revision 0ab5b340411a90c5db2463a3bd38d565fa784c5c)
1 /* Cache and manage frames for GDB, the GNU debugger.
2 
3    Copyright (C) 1986-2014 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h"	/* for inferior_ptid */
25 #include "regcache.h"
26 #include "gdb_assert.h"
27 #include <string.h>
28 #include "user-regs.h"
29 #include "gdb_obstack.h"
30 #include "dummy-frame.h"
31 #include "sentinel-frame.h"
32 #include "gdbcore.h"
33 #include "annotate.h"
34 #include "language.h"
35 #include "frame-unwind.h"
36 #include "frame-base.h"
37 #include "command.h"
38 #include "gdbcmd.h"
39 #include "observer.h"
40 #include "objfiles.h"
41 #include "exceptions.h"
42 #include "gdbthread.h"
43 #include "block.h"
44 #include "inline-frame.h"
45 #include "tracepoint.h"
46 #include "hashtab.h"
47 #include "valprint.h"
48 
49 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
50 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
51 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
52 
53 /* Status of some values cached in the frame_info object.  */
54 
55 enum cached_copy_status
56 {
57   /* Value is unknown.  */
58   CC_UNKNOWN,
59 
60   /* We have a value.  */
61   CC_VALUE,
62 
63   /* Value was not saved.  */
64   CC_NOT_SAVED,
65 
66   /* Value is unavailable.  */
67   CC_UNAVAILABLE
68 };
69 
70 /* We keep a cache of stack frames, each of which is a "struct
71    frame_info".  The innermost one gets allocated (in
72    wait_for_inferior) each time the inferior stops; current_frame
73    points to it.  Additional frames get allocated (in get_prev_frame)
74    as needed, and are chained through the next and prev fields.  Any
75    time that the frame cache becomes invalid (most notably when we
76    execute something, but also if we change how we interpret the
77    frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
78    which reads new symbols)), we should call reinit_frame_cache.  */
79 
80 struct frame_info
81 {
82   /* Level of this frame.  The inner-most (youngest) frame is at level
83      0.  As you move towards the outer-most (oldest) frame, the level
84      increases.  This is a cached value.  It could just as easily be
85      computed by counting back from the selected frame to the inner
86      most frame.  */
87   /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
88      reserved to indicate a bogus frame - one that has been created
89      just to keep GDB happy (GDB always needs a frame).  For the
90      moment leave this as speculation.  */
91   int level;
92 
93   /* The frame's program space.  */
94   struct program_space *pspace;
95 
96   /* The frame's address space.  */
97   struct address_space *aspace;
98 
99   /* The frame's low-level unwinder and corresponding cache.  The
100      low-level unwinder is responsible for unwinding register values
101      for the previous frame.  The low-level unwind methods are
102      selected based on the presence, or otherwise, of register unwind
103      information such as CFI.  */
104   void *prologue_cache;
105   const struct frame_unwind *unwind;
106 
107   /* Cached copy of the previous frame's architecture.  */
108   struct
109   {
110     int p;
111     struct gdbarch *arch;
112   } prev_arch;
113 
114   /* Cached copy of the previous frame's resume address.  */
115   struct {
116     enum cached_copy_status status;
117     CORE_ADDR value;
118   } prev_pc;
119 
120   /* Cached copy of the previous frame's function address.  */
121   struct
122   {
123     CORE_ADDR addr;
124     int p;
125   } prev_func;
126 
127   /* This frame's ID.  */
128   struct
129   {
130     int p;
131     struct frame_id value;
132   } this_id;
133 
134   /* The frame's high-level base methods, and corresponding cache.
135      The high level base methods are selected based on the frame's
136      debug info.  */
137   const struct frame_base *base;
138   void *base_cache;
139 
140   /* Pointers to the next (down, inner, younger) and previous (up,
141      outer, older) frame_info's in the frame cache.  */
142   struct frame_info *next; /* down, inner, younger */
143   int prev_p;
144   struct frame_info *prev; /* up, outer, older */
145 
146   /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
147      could.  Only valid when PREV_P is set.  */
148   enum unwind_stop_reason stop_reason;
149 };
150 
151 /* A frame stash used to speed up frame lookups.  Create a hash table
152    to stash frames previously accessed from the frame cache for
153    quicker subsequent retrieval.  The hash table is emptied whenever
154    the frame cache is invalidated.  */
155 
156 static htab_t frame_stash;
157 
158 /* Internal function to calculate a hash from the frame_id addresses,
159    using as many valid addresses as possible.  Frames below level 0
160    are not stored in the hash table.  */
161 
162 static hashval_t
163 frame_addr_hash (const void *ap)
164 {
165   const struct frame_info *frame = ap;
166   const struct frame_id f_id = frame->this_id.value;
167   hashval_t hash = 0;
168 
169   gdb_assert (f_id.stack_status != FID_STACK_INVALID
170 	      || f_id.code_addr_p
171 	      || f_id.special_addr_p);
172 
173   if (f_id.stack_status == FID_STACK_VALID)
174     hash = iterative_hash (&f_id.stack_addr,
175 			   sizeof (f_id.stack_addr), hash);
176   if (f_id.code_addr_p)
177     hash = iterative_hash (&f_id.code_addr,
178 			   sizeof (f_id.code_addr), hash);
179   if (f_id.special_addr_p)
180     hash = iterative_hash (&f_id.special_addr,
181 			   sizeof (f_id.special_addr), hash);
182 
183   return hash;
184 }
185 
186 /* Internal equality function for the hash table.  This function
187    defers equality operations to frame_id_eq.  */
188 
189 static int
190 frame_addr_hash_eq (const void *a, const void *b)
191 {
192   const struct frame_info *f_entry = a;
193   const struct frame_info *f_element = b;
194 
195   return frame_id_eq (f_entry->this_id.value,
196 		      f_element->this_id.value);
197 }
198 
199 /* Internal function to create the frame_stash hash table.  100 seems
200    to be a good compromise to start the hash table at.  */
201 
202 static void
203 frame_stash_create (void)
204 {
205   frame_stash = htab_create (100,
206 			     frame_addr_hash,
207 			     frame_addr_hash_eq,
208 			     NULL);
209 }
210 
211 /* Internal function to add a frame to the frame_stash hash table.
212    Returns false if a frame with the same ID was already stashed, true
213    otherwise.  */
214 
215 static int
216 frame_stash_add (struct frame_info *frame)
217 {
218   struct frame_info **slot;
219 
220   /* Do not try to stash the sentinel frame.  */
221   gdb_assert (frame->level >= 0);
222 
223   slot = (struct frame_info **) htab_find_slot (frame_stash,
224 						frame,
225 						INSERT);
226 
227   /* If we already have a frame in the stack with the same id, we
228      either have a stack cycle (corrupted stack?), or some bug
229      elsewhere in GDB.  In any case, ignore the duplicate and return
230      an indication to the caller.  */
231   if (*slot != NULL)
232     return 0;
233 
234   *slot = frame;
235   return 1;
236 }
237 
238 /* Internal function to search the frame stash for an entry with the
239    given frame ID.  If found, return that frame.  Otherwise return
240    NULL.  */
241 
242 static struct frame_info *
243 frame_stash_find (struct frame_id id)
244 {
245   struct frame_info dummy;
246   struct frame_info *frame;
247 
248   dummy.this_id.value = id;
249   frame = htab_find (frame_stash, &dummy);
250   return frame;
251 }
252 
253 /* Internal function to invalidate the frame stash by removing all
254    entries in it.  This only occurs when the frame cache is
255    invalidated.  */
256 
257 static void
258 frame_stash_invalidate (void)
259 {
260   htab_empty (frame_stash);
261 }
262 
263 /* Flag to control debugging.  */
264 
265 unsigned int frame_debug;
266 static void
267 show_frame_debug (struct ui_file *file, int from_tty,
268 		  struct cmd_list_element *c, const char *value)
269 {
270   fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
271 }
272 
273 /* Flag to indicate whether backtraces should stop at main et.al.  */
274 
275 static int backtrace_past_main;
276 static void
277 show_backtrace_past_main (struct ui_file *file, int from_tty,
278 			  struct cmd_list_element *c, const char *value)
279 {
280   fprintf_filtered (file,
281 		    _("Whether backtraces should "
282 		      "continue past \"main\" is %s.\n"),
283 		    value);
284 }
285 
286 static int backtrace_past_entry;
287 static void
288 show_backtrace_past_entry (struct ui_file *file, int from_tty,
289 			   struct cmd_list_element *c, const char *value)
290 {
291   fprintf_filtered (file, _("Whether backtraces should continue past the "
292 			    "entry point of a program is %s.\n"),
293 		    value);
294 }
295 
296 static unsigned int backtrace_limit = UINT_MAX;
297 static void
298 show_backtrace_limit (struct ui_file *file, int from_tty,
299 		      struct cmd_list_element *c, const char *value)
300 {
301   fprintf_filtered (file,
302 		    _("An upper bound on the number "
303 		      "of backtrace levels is %s.\n"),
304 		    value);
305 }
306 
307 
308 static void
309 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
310 {
311   if (p)
312     fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
313   else
314     fprintf_unfiltered (file, "!%s", name);
315 }
316 
317 void
318 fprint_frame_id (struct ui_file *file, struct frame_id id)
319 {
320   fprintf_unfiltered (file, "{");
321 
322   if (id.stack_status == FID_STACK_INVALID)
323     fprintf_unfiltered (file, "!stack");
324   else if (id.stack_status == FID_STACK_UNAVAILABLE)
325     fprintf_unfiltered (file, "stack=<unavailable>");
326   else
327     fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
328   fprintf_unfiltered (file, ",");
329 
330   fprint_field (file, "code", id.code_addr_p, id.code_addr);
331   fprintf_unfiltered (file, ",");
332 
333   fprint_field (file, "special", id.special_addr_p, id.special_addr);
334 
335   if (id.artificial_depth)
336     fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
337 
338   fprintf_unfiltered (file, "}");
339 }
340 
341 static void
342 fprint_frame_type (struct ui_file *file, enum frame_type type)
343 {
344   switch (type)
345     {
346     case NORMAL_FRAME:
347       fprintf_unfiltered (file, "NORMAL_FRAME");
348       return;
349     case DUMMY_FRAME:
350       fprintf_unfiltered (file, "DUMMY_FRAME");
351       return;
352     case INLINE_FRAME:
353       fprintf_unfiltered (file, "INLINE_FRAME");
354       return;
355     case TAILCALL_FRAME:
356       fprintf_unfiltered (file, "TAILCALL_FRAME");
357       return;
358     case SIGTRAMP_FRAME:
359       fprintf_unfiltered (file, "SIGTRAMP_FRAME");
360       return;
361     case ARCH_FRAME:
362       fprintf_unfiltered (file, "ARCH_FRAME");
363       return;
364     case SENTINEL_FRAME:
365       fprintf_unfiltered (file, "SENTINEL_FRAME");
366       return;
367     default:
368       fprintf_unfiltered (file, "<unknown type>");
369       return;
370     };
371 }
372 
373 static void
374 fprint_frame (struct ui_file *file, struct frame_info *fi)
375 {
376   if (fi == NULL)
377     {
378       fprintf_unfiltered (file, "<NULL frame>");
379       return;
380     }
381   fprintf_unfiltered (file, "{");
382   fprintf_unfiltered (file, "level=%d", fi->level);
383   fprintf_unfiltered (file, ",");
384   fprintf_unfiltered (file, "type=");
385   if (fi->unwind != NULL)
386     fprint_frame_type (file, fi->unwind->type);
387   else
388     fprintf_unfiltered (file, "<unknown>");
389   fprintf_unfiltered (file, ",");
390   fprintf_unfiltered (file, "unwind=");
391   if (fi->unwind != NULL)
392     gdb_print_host_address (fi->unwind, file);
393   else
394     fprintf_unfiltered (file, "<unknown>");
395   fprintf_unfiltered (file, ",");
396   fprintf_unfiltered (file, "pc=");
397   if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
398     fprintf_unfiltered (file, "<unknown>");
399   else if (fi->next->prev_pc.status == CC_VALUE)
400     fprintf_unfiltered (file, "%s",
401 			hex_string (fi->next->prev_pc.value));
402   else if (fi->next->prev_pc.status == CC_NOT_SAVED)
403     val_print_not_saved (file);
404   else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
405     val_print_unavailable (file);
406   fprintf_unfiltered (file, ",");
407   fprintf_unfiltered (file, "id=");
408   if (fi->this_id.p)
409     fprint_frame_id (file, fi->this_id.value);
410   else
411     fprintf_unfiltered (file, "<unknown>");
412   fprintf_unfiltered (file, ",");
413   fprintf_unfiltered (file, "func=");
414   if (fi->next != NULL && fi->next->prev_func.p)
415     fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
416   else
417     fprintf_unfiltered (file, "<unknown>");
418   fprintf_unfiltered (file, "}");
419 }
420 
421 /* Given FRAME, return the enclosing frame as found in real frames read-in from
422    inferior memory.  Skip any previous frames which were made up by GDB.
423    Return the original frame if no immediate previous frames exist.  */
424 
425 static struct frame_info *
426 skip_artificial_frames (struct frame_info *frame)
427 {
428   while (get_frame_type (frame) == INLINE_FRAME
429 	 || get_frame_type (frame) == TAILCALL_FRAME)
430     frame = get_prev_frame (frame);
431 
432   return frame;
433 }
434 
435 /* Compute the frame's uniq ID that can be used to, later, re-find the
436    frame.  */
437 
438 static void
439 compute_frame_id (struct frame_info *fi)
440 {
441   gdb_assert (!fi->this_id.p);
442 
443   if (frame_debug)
444     fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
445 			fi->level);
446   /* Find the unwinder.  */
447   if (fi->unwind == NULL)
448     frame_unwind_find_by_frame (fi, &fi->prologue_cache);
449   /* Find THIS frame's ID.  */
450   /* Default to outermost if no ID is found.  */
451   fi->this_id.value = outer_frame_id;
452   fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
453   gdb_assert (frame_id_p (fi->this_id.value));
454   fi->this_id.p = 1;
455   if (frame_debug)
456     {
457       fprintf_unfiltered (gdb_stdlog, "-> ");
458       fprint_frame_id (gdb_stdlog, fi->this_id.value);
459       fprintf_unfiltered (gdb_stdlog, " }\n");
460     }
461 }
462 
463 /* Return a frame uniq ID that can be used to, later, re-find the
464    frame.  */
465 
466 struct frame_id
467 get_frame_id (struct frame_info *fi)
468 {
469   if (fi == NULL)
470     return null_frame_id;
471 
472   gdb_assert (fi->this_id.p);
473   return fi->this_id.value;
474 }
475 
476 struct frame_id
477 get_stack_frame_id (struct frame_info *next_frame)
478 {
479   return get_frame_id (skip_artificial_frames (next_frame));
480 }
481 
482 struct frame_id
483 frame_unwind_caller_id (struct frame_info *next_frame)
484 {
485   struct frame_info *this_frame;
486 
487   /* Use get_prev_frame_1, and not get_prev_frame.  The latter will truncate
488      the frame chain, leading to this function unintentionally
489      returning a null_frame_id (e.g., when a caller requests the frame
490      ID of "main()"s caller.  */
491 
492   next_frame = skip_artificial_frames (next_frame);
493   this_frame = get_prev_frame_1 (next_frame);
494   if (this_frame)
495     return get_frame_id (skip_artificial_frames (this_frame));
496   else
497     return null_frame_id;
498 }
499 
500 const struct frame_id null_frame_id; /* All zeros.  */
501 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
502 
503 struct frame_id
504 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
505                         CORE_ADDR special_addr)
506 {
507   struct frame_id id = null_frame_id;
508 
509   id.stack_addr = stack_addr;
510   id.stack_status = FID_STACK_VALID;
511   id.code_addr = code_addr;
512   id.code_addr_p = 1;
513   id.special_addr = special_addr;
514   id.special_addr_p = 1;
515   return id;
516 }
517 
518 /* See frame.h.  */
519 
520 struct frame_id
521 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
522 {
523   struct frame_id id = null_frame_id;
524 
525   id.stack_status = FID_STACK_UNAVAILABLE;
526   id.code_addr = code_addr;
527   id.code_addr_p = 1;
528   return id;
529 }
530 
531 struct frame_id
532 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
533 {
534   struct frame_id id = null_frame_id;
535 
536   id.stack_addr = stack_addr;
537   id.stack_status = FID_STACK_VALID;
538   id.code_addr = code_addr;
539   id.code_addr_p = 1;
540   return id;
541 }
542 
543 struct frame_id
544 frame_id_build_wild (CORE_ADDR stack_addr)
545 {
546   struct frame_id id = null_frame_id;
547 
548   id.stack_addr = stack_addr;
549   id.stack_status = FID_STACK_VALID;
550   return id;
551 }
552 
553 int
554 frame_id_p (struct frame_id l)
555 {
556   int p;
557 
558   /* The frame is valid iff it has a valid stack address.  */
559   p = l.stack_status != FID_STACK_INVALID;
560   /* outer_frame_id is also valid.  */
561   if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
562     p = 1;
563   if (frame_debug)
564     {
565       fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
566       fprint_frame_id (gdb_stdlog, l);
567       fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
568     }
569   return p;
570 }
571 
572 int
573 frame_id_artificial_p (struct frame_id l)
574 {
575   if (!frame_id_p (l))
576     return 0;
577 
578   return (l.artificial_depth != 0);
579 }
580 
581 int
582 frame_id_eq (struct frame_id l, struct frame_id r)
583 {
584   int eq;
585 
586   if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
587       && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
588     /* The outermost frame marker is equal to itself.  This is the
589        dodgy thing about outer_frame_id, since between execution steps
590        we might step into another function - from which we can't
591        unwind either.  More thought required to get rid of
592        outer_frame_id.  */
593     eq = 1;
594   else if (l.stack_status == FID_STACK_INVALID
595 	   || l.stack_status == FID_STACK_INVALID)
596     /* Like a NaN, if either ID is invalid, the result is false.
597        Note that a frame ID is invalid iff it is the null frame ID.  */
598     eq = 0;
599   else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
600     /* If .stack addresses are different, the frames are different.  */
601     eq = 0;
602   else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
603     /* An invalid code addr is a wild card.  If .code addresses are
604        different, the frames are different.  */
605     eq = 0;
606   else if (l.special_addr_p && r.special_addr_p
607 	   && l.special_addr != r.special_addr)
608     /* An invalid special addr is a wild card (or unused).  Otherwise
609        if special addresses are different, the frames are different.  */
610     eq = 0;
611   else if (l.artificial_depth != r.artificial_depth)
612     /* If artifical depths are different, the frames must be different.  */
613     eq = 0;
614   else
615     /* Frames are equal.  */
616     eq = 1;
617 
618   if (frame_debug)
619     {
620       fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
621       fprint_frame_id (gdb_stdlog, l);
622       fprintf_unfiltered (gdb_stdlog, ",r=");
623       fprint_frame_id (gdb_stdlog, r);
624       fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
625     }
626   return eq;
627 }
628 
629 /* Safety net to check whether frame ID L should be inner to
630    frame ID R, according to their stack addresses.
631 
632    This method cannot be used to compare arbitrary frames, as the
633    ranges of valid stack addresses may be discontiguous (e.g. due
634    to sigaltstack).
635 
636    However, it can be used as safety net to discover invalid frame
637    IDs in certain circumstances.  Assuming that NEXT is the immediate
638    inner frame to THIS and that NEXT and THIS are both NORMAL frames:
639 
640    * The stack address of NEXT must be inner-than-or-equal to the stack
641      address of THIS.
642 
643      Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
644      error has occurred.
645 
646    * If NEXT and THIS have different stack addresses, no other frame
647      in the frame chain may have a stack address in between.
648 
649      Therefore, if frame_id_inner (TEST, THIS) holds, but
650      frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
651      to a valid frame in the frame chain.
652 
653    The sanity checks above cannot be performed when a SIGTRAMP frame
654    is involved, because signal handlers might be executed on a different
655    stack than the stack used by the routine that caused the signal
656    to be raised.  This can happen for instance when a thread exceeds
657    its maximum stack size.  In this case, certain compilers implement
658    a stack overflow strategy that cause the handler to be run on a
659    different stack.  */
660 
661 static int
662 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
663 {
664   int inner;
665 
666   if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
667     /* Like NaN, any operation involving an invalid ID always fails.
668        Likewise if either ID has an unavailable stack address.  */
669     inner = 0;
670   else if (l.artificial_depth > r.artificial_depth
671 	   && l.stack_addr == r.stack_addr
672 	   && l.code_addr_p == r.code_addr_p
673 	   && l.special_addr_p == r.special_addr_p
674 	   && l.special_addr == r.special_addr)
675     {
676       /* Same function, different inlined functions.  */
677       struct block *lb, *rb;
678 
679       gdb_assert (l.code_addr_p && r.code_addr_p);
680 
681       lb = block_for_pc (l.code_addr);
682       rb = block_for_pc (r.code_addr);
683 
684       if (lb == NULL || rb == NULL)
685 	/* Something's gone wrong.  */
686 	inner = 0;
687       else
688 	/* This will return true if LB and RB are the same block, or
689 	   if the block with the smaller depth lexically encloses the
690 	   block with the greater depth.  */
691 	inner = contained_in (lb, rb);
692     }
693   else
694     /* Only return non-zero when strictly inner than.  Note that, per
695        comment in "frame.h", there is some fuzz here.  Frameless
696        functions are not strictly inner than (same .stack but
697        different .code and/or .special address).  */
698     inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
699   if (frame_debug)
700     {
701       fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
702       fprint_frame_id (gdb_stdlog, l);
703       fprintf_unfiltered (gdb_stdlog, ",r=");
704       fprint_frame_id (gdb_stdlog, r);
705       fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
706     }
707   return inner;
708 }
709 
710 struct frame_info *
711 frame_find_by_id (struct frame_id id)
712 {
713   struct frame_info *frame, *prev_frame;
714 
715   /* ZERO denotes the null frame, let the caller decide what to do
716      about it.  Should it instead return get_current_frame()?  */
717   if (!frame_id_p (id))
718     return NULL;
719 
720   /* Try using the frame stash first.  Finding it there removes the need
721      to perform the search by looping over all frames, which can be very
722      CPU-intensive if the number of frames is very high (the loop is O(n)
723      and get_prev_frame performs a series of checks that are relatively
724      expensive).  This optimization is particularly useful when this function
725      is called from another function (such as value_fetch_lazy, case
726      VALUE_LVAL (val) == lval_register) which already loops over all frames,
727      making the overall behavior O(n^2).  */
728   frame = frame_stash_find (id);
729   if (frame)
730     return frame;
731 
732   for (frame = get_current_frame (); ; frame = prev_frame)
733     {
734       struct frame_id this = get_frame_id (frame);
735 
736       if (frame_id_eq (id, this))
737 	/* An exact match.  */
738 	return frame;
739 
740       prev_frame = get_prev_frame (frame);
741       if (!prev_frame)
742 	return NULL;
743 
744       /* As a safety net to avoid unnecessary backtracing while trying
745 	 to find an invalid ID, we check for a common situation where
746 	 we can detect from comparing stack addresses that no other
747 	 frame in the current frame chain can have this ID.  See the
748 	 comment at frame_id_inner for details.   */
749       if (get_frame_type (frame) == NORMAL_FRAME
750 	  && !frame_id_inner (get_frame_arch (frame), id, this)
751 	  && frame_id_inner (get_frame_arch (prev_frame), id,
752 			     get_frame_id (prev_frame)))
753 	return NULL;
754     }
755   return NULL;
756 }
757 
758 static CORE_ADDR
759 frame_unwind_pc (struct frame_info *this_frame)
760 {
761   if (this_frame->prev_pc.status == CC_UNKNOWN)
762     {
763       if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
764 	{
765 	  volatile struct gdb_exception ex;
766 	  struct gdbarch *prev_gdbarch;
767 	  CORE_ADDR pc = 0;
768 
769 	  /* The right way.  The `pure' way.  The one true way.  This
770 	     method depends solely on the register-unwind code to
771 	     determine the value of registers in THIS frame, and hence
772 	     the value of this frame's PC (resume address).  A typical
773 	     implementation is no more than:
774 
775 	     frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
776 	     return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
777 
778 	     Note: this method is very heavily dependent on a correct
779 	     register-unwind implementation, it pays to fix that
780 	     method first; this method is frame type agnostic, since
781 	     it only deals with register values, it works with any
782 	     frame.  This is all in stark contrast to the old
783 	     FRAME_SAVED_PC which would try to directly handle all the
784 	     different ways that a PC could be unwound.  */
785 	  prev_gdbarch = frame_unwind_arch (this_frame);
786 
787 	  TRY_CATCH (ex, RETURN_MASK_ERROR)
788 	    {
789 	      pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
790 	    }
791 	  if (ex.reason < 0)
792 	    {
793 	      if (ex.error == NOT_AVAILABLE_ERROR)
794 		{
795 		  this_frame->prev_pc.status = CC_UNAVAILABLE;
796 
797 		  if (frame_debug)
798 		    fprintf_unfiltered (gdb_stdlog,
799 					"{ frame_unwind_pc (this_frame=%d)"
800 					" -> <unavailable> }\n",
801 					this_frame->level);
802 		}
803 	      else if (ex.error == OPTIMIZED_OUT_ERROR)
804 		{
805 		  this_frame->prev_pc.status = CC_NOT_SAVED;
806 
807 		  if (frame_debug)
808 		    fprintf_unfiltered (gdb_stdlog,
809 					"{ frame_unwind_pc (this_frame=%d)"
810 					" -> <not saved> }\n",
811 					this_frame->level);
812 		}
813 	      else
814 		throw_exception (ex);
815 	    }
816 	  else
817 	    {
818 	      this_frame->prev_pc.value = pc;
819 	      this_frame->prev_pc.status = CC_VALUE;
820 	      if (frame_debug)
821 		fprintf_unfiltered (gdb_stdlog,
822 				    "{ frame_unwind_pc (this_frame=%d) "
823 				    "-> %s }\n",
824 				    this_frame->level,
825 				    hex_string (this_frame->prev_pc.value));
826 	    }
827 	}
828       else
829 	internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
830     }
831 
832   if (this_frame->prev_pc.status == CC_VALUE)
833     return this_frame->prev_pc.value;
834   else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
835     throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
836   else if (this_frame->prev_pc.status == CC_NOT_SAVED)
837     throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
838   else
839     internal_error (__FILE__, __LINE__,
840 		    "unexpected prev_pc status: %d",
841 		    (int) this_frame->prev_pc.status);
842 }
843 
844 CORE_ADDR
845 frame_unwind_caller_pc (struct frame_info *this_frame)
846 {
847   return frame_unwind_pc (skip_artificial_frames (this_frame));
848 }
849 
850 int
851 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
852 {
853   struct frame_info *next_frame = this_frame->next;
854 
855   if (!next_frame->prev_func.p)
856     {
857       CORE_ADDR addr_in_block;
858 
859       /* Make certain that this, and not the adjacent, function is
860          found.  */
861       if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
862 	{
863 	  next_frame->prev_func.p = -1;
864 	  if (frame_debug)
865 	    fprintf_unfiltered (gdb_stdlog,
866 				"{ get_frame_func (this_frame=%d)"
867 				" -> unavailable }\n",
868 				this_frame->level);
869 	}
870       else
871 	{
872 	  next_frame->prev_func.p = 1;
873 	  next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
874 	  if (frame_debug)
875 	    fprintf_unfiltered (gdb_stdlog,
876 				"{ get_frame_func (this_frame=%d) -> %s }\n",
877 				this_frame->level,
878 				hex_string (next_frame->prev_func.addr));
879 	}
880     }
881 
882   if (next_frame->prev_func.p < 0)
883     {
884       *pc = -1;
885       return 0;
886     }
887   else
888     {
889       *pc = next_frame->prev_func.addr;
890       return 1;
891     }
892 }
893 
894 CORE_ADDR
895 get_frame_func (struct frame_info *this_frame)
896 {
897   CORE_ADDR pc;
898 
899   if (!get_frame_func_if_available (this_frame, &pc))
900     throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
901 
902   return pc;
903 }
904 
905 static enum register_status
906 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
907 {
908   if (!deprecated_frame_register_read (src, regnum, buf))
909     return REG_UNAVAILABLE;
910   else
911     return REG_VALID;
912 }
913 
914 struct regcache *
915 frame_save_as_regcache (struct frame_info *this_frame)
916 {
917   struct address_space *aspace = get_frame_address_space (this_frame);
918   struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
919 						aspace);
920   struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
921 
922   regcache_save (regcache, do_frame_register_read, this_frame);
923   discard_cleanups (cleanups);
924   return regcache;
925 }
926 
927 void
928 frame_pop (struct frame_info *this_frame)
929 {
930   struct frame_info *prev_frame;
931   struct regcache *scratch;
932   struct cleanup *cleanups;
933 
934   if (get_frame_type (this_frame) == DUMMY_FRAME)
935     {
936       /* Popping a dummy frame involves restoring more than just registers.
937 	 dummy_frame_pop does all the work.  */
938       dummy_frame_pop (get_frame_id (this_frame));
939       return;
940     }
941 
942   /* Ensure that we have a frame to pop to.  */
943   prev_frame = get_prev_frame_1 (this_frame);
944 
945   if (!prev_frame)
946     error (_("Cannot pop the initial frame."));
947 
948   /* Ignore TAILCALL_FRAME type frames, they were executed already before
949      entering THISFRAME.  */
950   while (get_frame_type (prev_frame) == TAILCALL_FRAME)
951     prev_frame = get_prev_frame (prev_frame);
952 
953   /* Make a copy of all the register values unwound from this frame.
954      Save them in a scratch buffer so that there isn't a race between
955      trying to extract the old values from the current regcache while
956      at the same time writing new values into that same cache.  */
957   scratch = frame_save_as_regcache (prev_frame);
958   cleanups = make_cleanup_regcache_xfree (scratch);
959 
960   /* FIXME: cagney/2003-03-16: It should be possible to tell the
961      target's register cache that it is about to be hit with a burst
962      register transfer and that the sequence of register writes should
963      be batched.  The pair target_prepare_to_store() and
964      target_store_registers() kind of suggest this functionality.
965      Unfortunately, they don't implement it.  Their lack of a formal
966      definition can lead to targets writing back bogus values
967      (arguably a bug in the target code mind).  */
968   /* Now copy those saved registers into the current regcache.
969      Here, regcache_cpy() calls regcache_restore().  */
970   regcache_cpy (get_current_regcache (), scratch);
971   do_cleanups (cleanups);
972 
973   /* We've made right mess of GDB's local state, just discard
974      everything.  */
975   reinit_frame_cache ();
976 }
977 
978 void
979 frame_register_unwind (struct frame_info *frame, int regnum,
980 		       int *optimizedp, int *unavailablep,
981 		       enum lval_type *lvalp, CORE_ADDR *addrp,
982 		       int *realnump, gdb_byte *bufferp)
983 {
984   struct value *value;
985 
986   /* Require all but BUFFERP to be valid.  A NULL BUFFERP indicates
987      that the value proper does not need to be fetched.  */
988   gdb_assert (optimizedp != NULL);
989   gdb_assert (lvalp != NULL);
990   gdb_assert (addrp != NULL);
991   gdb_assert (realnump != NULL);
992   /* gdb_assert (bufferp != NULL); */
993 
994   value = frame_unwind_register_value (frame, regnum);
995 
996   gdb_assert (value != NULL);
997 
998   *optimizedp = value_optimized_out (value);
999   *unavailablep = !value_entirely_available (value);
1000   *lvalp = VALUE_LVAL (value);
1001   *addrp = value_address (value);
1002   *realnump = VALUE_REGNUM (value);
1003 
1004   if (bufferp)
1005     {
1006       if (!*optimizedp && !*unavailablep)
1007 	memcpy (bufferp, value_contents_all (value),
1008 		TYPE_LENGTH (value_type (value)));
1009       else
1010 	memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1011     }
1012 
1013   /* Dispose of the new value.  This prevents watchpoints from
1014      trying to watch the saved frame pointer.  */
1015   release_value (value);
1016   value_free (value);
1017 }
1018 
1019 void
1020 frame_register (struct frame_info *frame, int regnum,
1021 		int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1022 		CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1023 {
1024   /* Require all but BUFFERP to be valid.  A NULL BUFFERP indicates
1025      that the value proper does not need to be fetched.  */
1026   gdb_assert (optimizedp != NULL);
1027   gdb_assert (lvalp != NULL);
1028   gdb_assert (addrp != NULL);
1029   gdb_assert (realnump != NULL);
1030   /* gdb_assert (bufferp != NULL); */
1031 
1032   /* Obtain the register value by unwinding the register from the next
1033      (more inner frame).  */
1034   gdb_assert (frame != NULL && frame->next != NULL);
1035   frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1036 			 lvalp, addrp, realnump, bufferp);
1037 }
1038 
1039 void
1040 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1041 {
1042   int optimized;
1043   int unavailable;
1044   CORE_ADDR addr;
1045   int realnum;
1046   enum lval_type lval;
1047 
1048   frame_register_unwind (frame, regnum, &optimized, &unavailable,
1049 			 &lval, &addr, &realnum, buf);
1050 
1051   if (optimized)
1052     throw_error (OPTIMIZED_OUT_ERROR,
1053 		 _("Register %d was not saved"), regnum);
1054   if (unavailable)
1055     throw_error (NOT_AVAILABLE_ERROR,
1056 		 _("Register %d is not available"), regnum);
1057 }
1058 
1059 void
1060 get_frame_register (struct frame_info *frame,
1061 		    int regnum, gdb_byte *buf)
1062 {
1063   frame_unwind_register (frame->next, regnum, buf);
1064 }
1065 
1066 struct value *
1067 frame_unwind_register_value (struct frame_info *frame, int regnum)
1068 {
1069   struct gdbarch *gdbarch;
1070   struct value *value;
1071 
1072   gdb_assert (frame != NULL);
1073   gdbarch = frame_unwind_arch (frame);
1074 
1075   if (frame_debug)
1076     {
1077       fprintf_unfiltered (gdb_stdlog,
1078 			  "{ frame_unwind_register_value "
1079 			  "(frame=%d,regnum=%d(%s),...) ",
1080 			  frame->level, regnum,
1081 			  user_reg_map_regnum_to_name (gdbarch, regnum));
1082     }
1083 
1084   /* Find the unwinder.  */
1085   if (frame->unwind == NULL)
1086     frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1087 
1088   /* Ask this frame to unwind its register.  */
1089   value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1090 
1091   if (frame_debug)
1092     {
1093       fprintf_unfiltered (gdb_stdlog, "->");
1094       if (value_optimized_out (value))
1095 	{
1096 	  fprintf_unfiltered (gdb_stdlog, " ");
1097 	  val_print_optimized_out (value, gdb_stdlog);
1098 	}
1099       else
1100 	{
1101 	  if (VALUE_LVAL (value) == lval_register)
1102 	    fprintf_unfiltered (gdb_stdlog, " register=%d",
1103 				VALUE_REGNUM (value));
1104 	  else if (VALUE_LVAL (value) == lval_memory)
1105 	    fprintf_unfiltered (gdb_stdlog, " address=%s",
1106 				paddress (gdbarch,
1107 					  value_address (value)));
1108 	  else
1109 	    fprintf_unfiltered (gdb_stdlog, " computed");
1110 
1111 	  if (value_lazy (value))
1112 	    fprintf_unfiltered (gdb_stdlog, " lazy");
1113 	  else
1114 	    {
1115 	      int i;
1116 	      const gdb_byte *buf = value_contents (value);
1117 
1118 	      fprintf_unfiltered (gdb_stdlog, " bytes=");
1119 	      fprintf_unfiltered (gdb_stdlog, "[");
1120 	      for (i = 0; i < register_size (gdbarch, regnum); i++)
1121 		fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1122 	      fprintf_unfiltered (gdb_stdlog, "]");
1123 	    }
1124 	}
1125 
1126       fprintf_unfiltered (gdb_stdlog, " }\n");
1127     }
1128 
1129   return value;
1130 }
1131 
1132 struct value *
1133 get_frame_register_value (struct frame_info *frame, int regnum)
1134 {
1135   return frame_unwind_register_value (frame->next, regnum);
1136 }
1137 
1138 LONGEST
1139 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1140 {
1141   struct gdbarch *gdbarch = frame_unwind_arch (frame);
1142   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1143   int size = register_size (gdbarch, regnum);
1144   gdb_byte buf[MAX_REGISTER_SIZE];
1145 
1146   frame_unwind_register (frame, regnum, buf);
1147   return extract_signed_integer (buf, size, byte_order);
1148 }
1149 
1150 LONGEST
1151 get_frame_register_signed (struct frame_info *frame, int regnum)
1152 {
1153   return frame_unwind_register_signed (frame->next, regnum);
1154 }
1155 
1156 ULONGEST
1157 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1158 {
1159   struct gdbarch *gdbarch = frame_unwind_arch (frame);
1160   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1161   int size = register_size (gdbarch, regnum);
1162   gdb_byte buf[MAX_REGISTER_SIZE];
1163 
1164   frame_unwind_register (frame, regnum, buf);
1165   return extract_unsigned_integer (buf, size, byte_order);
1166 }
1167 
1168 ULONGEST
1169 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1170 {
1171   return frame_unwind_register_unsigned (frame->next, regnum);
1172 }
1173 
1174 int
1175 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1176 			      ULONGEST *val)
1177 {
1178   struct value *regval = get_frame_register_value (frame, regnum);
1179 
1180   if (!value_optimized_out (regval)
1181       && value_entirely_available (regval))
1182     {
1183       struct gdbarch *gdbarch = get_frame_arch (frame);
1184       enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1185       int size = register_size (gdbarch, VALUE_REGNUM (regval));
1186 
1187       *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1188       return 1;
1189     }
1190 
1191   return 0;
1192 }
1193 
1194 void
1195 put_frame_register (struct frame_info *frame, int regnum,
1196 		    const gdb_byte *buf)
1197 {
1198   struct gdbarch *gdbarch = get_frame_arch (frame);
1199   int realnum;
1200   int optim;
1201   int unavail;
1202   enum lval_type lval;
1203   CORE_ADDR addr;
1204 
1205   frame_register (frame, regnum, &optim, &unavail,
1206 		  &lval, &addr, &realnum, NULL);
1207   if (optim)
1208     error (_("Attempt to assign to a register that was not saved."));
1209   switch (lval)
1210     {
1211     case lval_memory:
1212       {
1213 	write_memory (addr, buf, register_size (gdbarch, regnum));
1214 	break;
1215       }
1216     case lval_register:
1217       regcache_cooked_write (get_current_regcache (), realnum, buf);
1218       break;
1219     default:
1220       error (_("Attempt to assign to an unmodifiable value."));
1221     }
1222 }
1223 
1224 /* This function is deprecated.  Use get_frame_register_value instead,
1225    which provides more accurate information.
1226 
1227    Find and return the value of REGNUM for the specified stack frame.
1228    The number of bytes copied is REGISTER_SIZE (REGNUM).
1229 
1230    Returns 0 if the register value could not be found.  */
1231 
1232 int
1233 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1234 		     gdb_byte *myaddr)
1235 {
1236   int optimized;
1237   int unavailable;
1238   enum lval_type lval;
1239   CORE_ADDR addr;
1240   int realnum;
1241 
1242   frame_register (frame, regnum, &optimized, &unavailable,
1243 		  &lval, &addr, &realnum, myaddr);
1244 
1245   return !optimized && !unavailable;
1246 }
1247 
1248 int
1249 get_frame_register_bytes (struct frame_info *frame, int regnum,
1250 			  CORE_ADDR offset, int len, gdb_byte *myaddr,
1251 			  int *optimizedp, int *unavailablep)
1252 {
1253   struct gdbarch *gdbarch = get_frame_arch (frame);
1254   int i;
1255   int maxsize;
1256   int numregs;
1257 
1258   /* Skip registers wholly inside of OFFSET.  */
1259   while (offset >= register_size (gdbarch, regnum))
1260     {
1261       offset -= register_size (gdbarch, regnum);
1262       regnum++;
1263     }
1264 
1265   /* Ensure that we will not read beyond the end of the register file.
1266      This can only ever happen if the debug information is bad.  */
1267   maxsize = -offset;
1268   numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1269   for (i = regnum; i < numregs; i++)
1270     {
1271       int thissize = register_size (gdbarch, i);
1272 
1273       if (thissize == 0)
1274 	break;	/* This register is not available on this architecture.  */
1275       maxsize += thissize;
1276     }
1277   if (len > maxsize)
1278     error (_("Bad debug information detected: "
1279 	     "Attempt to read %d bytes from registers."), len);
1280 
1281   /* Copy the data.  */
1282   while (len > 0)
1283     {
1284       int curr_len = register_size (gdbarch, regnum) - offset;
1285 
1286       if (curr_len > len)
1287 	curr_len = len;
1288 
1289       if (curr_len == register_size (gdbarch, regnum))
1290 	{
1291 	  enum lval_type lval;
1292 	  CORE_ADDR addr;
1293 	  int realnum;
1294 
1295 	  frame_register (frame, regnum, optimizedp, unavailablep,
1296 			  &lval, &addr, &realnum, myaddr);
1297 	  if (*optimizedp || *unavailablep)
1298 	    return 0;
1299 	}
1300       else
1301 	{
1302 	  gdb_byte buf[MAX_REGISTER_SIZE];
1303 	  enum lval_type lval;
1304 	  CORE_ADDR addr;
1305 	  int realnum;
1306 
1307 	  frame_register (frame, regnum, optimizedp, unavailablep,
1308 			  &lval, &addr, &realnum, buf);
1309 	  if (*optimizedp || *unavailablep)
1310 	    return 0;
1311 	  memcpy (myaddr, buf + offset, curr_len);
1312 	}
1313 
1314       myaddr += curr_len;
1315       len -= curr_len;
1316       offset = 0;
1317       regnum++;
1318     }
1319 
1320   *optimizedp = 0;
1321   *unavailablep = 0;
1322   return 1;
1323 }
1324 
1325 void
1326 put_frame_register_bytes (struct frame_info *frame, int regnum,
1327 			  CORE_ADDR offset, int len, const gdb_byte *myaddr)
1328 {
1329   struct gdbarch *gdbarch = get_frame_arch (frame);
1330 
1331   /* Skip registers wholly inside of OFFSET.  */
1332   while (offset >= register_size (gdbarch, regnum))
1333     {
1334       offset -= register_size (gdbarch, regnum);
1335       regnum++;
1336     }
1337 
1338   /* Copy the data.  */
1339   while (len > 0)
1340     {
1341       int curr_len = register_size (gdbarch, regnum) - offset;
1342 
1343       if (curr_len > len)
1344 	curr_len = len;
1345 
1346       if (curr_len == register_size (gdbarch, regnum))
1347 	{
1348 	  put_frame_register (frame, regnum, myaddr);
1349 	}
1350       else
1351 	{
1352 	  gdb_byte buf[MAX_REGISTER_SIZE];
1353 
1354 	  deprecated_frame_register_read (frame, regnum, buf);
1355 	  memcpy (buf + offset, myaddr, curr_len);
1356 	  put_frame_register (frame, regnum, buf);
1357 	}
1358 
1359       myaddr += curr_len;
1360       len -= curr_len;
1361       offset = 0;
1362       regnum++;
1363     }
1364 }
1365 
1366 /* Create a sentinel frame.  */
1367 
1368 static struct frame_info *
1369 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1370 {
1371   struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1372 
1373   frame->level = -1;
1374   frame->pspace = pspace;
1375   frame->aspace = get_regcache_aspace (regcache);
1376   /* Explicitly initialize the sentinel frame's cache.  Provide it
1377      with the underlying regcache.  In the future additional
1378      information, such as the frame's thread will be added.  */
1379   frame->prologue_cache = sentinel_frame_cache (regcache);
1380   /* For the moment there is only one sentinel frame implementation.  */
1381   frame->unwind = &sentinel_frame_unwind;
1382   /* Link this frame back to itself.  The frame is self referential
1383      (the unwound PC is the same as the pc), so make it so.  */
1384   frame->next = frame;
1385   /* Make the sentinel frame's ID valid, but invalid.  That way all
1386      comparisons with it should fail.  */
1387   frame->this_id.p = 1;
1388   frame->this_id.value = null_frame_id;
1389   if (frame_debug)
1390     {
1391       fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1392       fprint_frame (gdb_stdlog, frame);
1393       fprintf_unfiltered (gdb_stdlog, " }\n");
1394     }
1395   return frame;
1396 }
1397 
1398 /* Info about the innermost stack frame (contents of FP register).  */
1399 
1400 static struct frame_info *current_frame;
1401 
1402 /* Cache for frame addresses already read by gdb.  Valid only while
1403    inferior is stopped.  Control variables for the frame cache should
1404    be local to this module.  */
1405 
1406 static struct obstack frame_cache_obstack;
1407 
1408 void *
1409 frame_obstack_zalloc (unsigned long size)
1410 {
1411   void *data = obstack_alloc (&frame_cache_obstack, size);
1412 
1413   memset (data, 0, size);
1414   return data;
1415 }
1416 
1417 /* Return the innermost (currently executing) stack frame.  This is
1418    split into two functions.  The function unwind_to_current_frame()
1419    is wrapped in catch exceptions so that, even when the unwind of the
1420    sentinel frame fails, the function still returns a stack frame.  */
1421 
1422 static int
1423 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1424 {
1425   struct frame_info *frame = get_prev_frame (args);
1426 
1427   /* A sentinel frame can fail to unwind, e.g., because its PC value
1428      lands in somewhere like start.  */
1429   if (frame == NULL)
1430     return 1;
1431   current_frame = frame;
1432   return 0;
1433 }
1434 
1435 struct frame_info *
1436 get_current_frame (void)
1437 {
1438   /* First check, and report, the lack of registers.  Having GDB
1439      report "No stack!" or "No memory" when the target doesn't even
1440      have registers is very confusing.  Besides, "printcmd.exp"
1441      explicitly checks that ``print $pc'' with no registers prints "No
1442      registers".  */
1443   if (!target_has_registers)
1444     error (_("No registers."));
1445   if (!target_has_stack)
1446     error (_("No stack."));
1447   if (!target_has_memory)
1448     error (_("No memory."));
1449   /* Traceframes are effectively a substitute for the live inferior.  */
1450   if (get_traceframe_number () < 0)
1451     {
1452       if (ptid_equal (inferior_ptid, null_ptid))
1453 	error (_("No selected thread."));
1454       if (is_exited (inferior_ptid))
1455 	error (_("Invalid selected thread."));
1456       if (is_executing (inferior_ptid))
1457 	error (_("Target is executing."));
1458     }
1459 
1460   if (current_frame == NULL)
1461     {
1462       struct frame_info *sentinel_frame =
1463 	create_sentinel_frame (current_program_space, get_current_regcache ());
1464       if (catch_exceptions (current_uiout, unwind_to_current_frame,
1465 			    sentinel_frame, RETURN_MASK_ERROR) != 0)
1466 	{
1467 	  /* Oops! Fake a current frame?  Is this useful?  It has a PC
1468              of zero, for instance.  */
1469 	  current_frame = sentinel_frame;
1470 	}
1471     }
1472   return current_frame;
1473 }
1474 
1475 /* The "selected" stack frame is used by default for local and arg
1476    access.  May be zero, for no selected frame.  */
1477 
1478 static struct frame_info *selected_frame;
1479 
1480 int
1481 has_stack_frames (void)
1482 {
1483   if (!target_has_registers || !target_has_stack || !target_has_memory)
1484     return 0;
1485 
1486   /* Traceframes are effectively a substitute for the live inferior.  */
1487   if (get_traceframe_number () < 0)
1488     {
1489       /* No current inferior, no frame.  */
1490       if (ptid_equal (inferior_ptid, null_ptid))
1491 	return 0;
1492 
1493       /* Don't try to read from a dead thread.  */
1494       if (is_exited (inferior_ptid))
1495 	return 0;
1496 
1497       /* ... or from a spinning thread.  */
1498       if (is_executing (inferior_ptid))
1499 	return 0;
1500     }
1501 
1502   return 1;
1503 }
1504 
1505 /* Return the selected frame.  Always non-NULL (unless there isn't an
1506    inferior sufficient for creating a frame) in which case an error is
1507    thrown.  */
1508 
1509 struct frame_info *
1510 get_selected_frame (const char *message)
1511 {
1512   if (selected_frame == NULL)
1513     {
1514       if (message != NULL && !has_stack_frames ())
1515 	error (("%s"), message);
1516       /* Hey!  Don't trust this.  It should really be re-finding the
1517 	 last selected frame of the currently selected thread.  This,
1518 	 though, is better than nothing.  */
1519       select_frame (get_current_frame ());
1520     }
1521   /* There is always a frame.  */
1522   gdb_assert (selected_frame != NULL);
1523   return selected_frame;
1524 }
1525 
1526 /* If there is a selected frame, return it.  Otherwise, return NULL.  */
1527 
1528 struct frame_info *
1529 get_selected_frame_if_set (void)
1530 {
1531   return selected_frame;
1532 }
1533 
1534 /* This is a variant of get_selected_frame() which can be called when
1535    the inferior does not have a frame; in that case it will return
1536    NULL instead of calling error().  */
1537 
1538 struct frame_info *
1539 deprecated_safe_get_selected_frame (void)
1540 {
1541   if (!has_stack_frames ())
1542     return NULL;
1543   return get_selected_frame (NULL);
1544 }
1545 
1546 /* Select frame FI (or NULL - to invalidate the current frame).  */
1547 
1548 void
1549 select_frame (struct frame_info *fi)
1550 {
1551   selected_frame = fi;
1552   /* NOTE: cagney/2002-05-04: FI can be NULL.  This occurs when the
1553      frame is being invalidated.  */
1554   if (deprecated_selected_frame_level_changed_hook)
1555     deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1556 
1557   /* FIXME: kseitz/2002-08-28: It would be nice to call
1558      selected_frame_level_changed_event() right here, but due to limitations
1559      in the current interfaces, we would end up flooding UIs with events
1560      because select_frame() is used extensively internally.
1561 
1562      Once we have frame-parameterized frame (and frame-related) commands,
1563      the event notification can be moved here, since this function will only
1564      be called when the user's selected frame is being changed.  */
1565 
1566   /* Ensure that symbols for this frame are read in.  Also, determine the
1567      source language of this frame, and switch to it if desired.  */
1568   if (fi)
1569     {
1570       CORE_ADDR pc;
1571 
1572       /* We retrieve the frame's symtab by using the frame PC.
1573 	 However we cannot use the frame PC as-is, because it usually
1574 	 points to the instruction following the "call", which is
1575 	 sometimes the first instruction of another function.  So we
1576 	 rely on get_frame_address_in_block() which provides us with a
1577 	 PC which is guaranteed to be inside the frame's code
1578 	 block.  */
1579       if (get_frame_address_in_block_if_available (fi, &pc))
1580 	{
1581 	  struct symtab *s = find_pc_symtab (pc);
1582 
1583 	  if (s
1584 	      && s->language != current_language->la_language
1585 	      && s->language != language_unknown
1586 	      && language_mode == language_mode_auto)
1587 	    set_language (s->language);
1588 	}
1589     }
1590 }
1591 
1592 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1593    Always returns a non-NULL value.  */
1594 
1595 struct frame_info *
1596 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1597 {
1598   struct frame_info *fi;
1599 
1600   if (frame_debug)
1601     {
1602       fprintf_unfiltered (gdb_stdlog,
1603 			  "{ create_new_frame (addr=%s, pc=%s) ",
1604 			  hex_string (addr), hex_string (pc));
1605     }
1606 
1607   fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1608 
1609   fi->next = create_sentinel_frame (current_program_space,
1610 				    get_current_regcache ());
1611 
1612   /* Set/update this frame's cached PC value, found in the next frame.
1613      Do this before looking for this frame's unwinder.  A sniffer is
1614      very likely to read this, and the corresponding unwinder is
1615      entitled to rely that the PC doesn't magically change.  */
1616   fi->next->prev_pc.value = pc;
1617   fi->next->prev_pc.status = CC_VALUE;
1618 
1619   /* We currently assume that frame chain's can't cross spaces.  */
1620   fi->pspace = fi->next->pspace;
1621   fi->aspace = fi->next->aspace;
1622 
1623   /* Select/initialize both the unwind function and the frame's type
1624      based on the PC.  */
1625   frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1626 
1627   fi->this_id.p = 1;
1628   fi->this_id.value = frame_id_build (addr, pc);
1629 
1630   if (frame_debug)
1631     {
1632       fprintf_unfiltered (gdb_stdlog, "-> ");
1633       fprint_frame (gdb_stdlog, fi);
1634       fprintf_unfiltered (gdb_stdlog, " }\n");
1635     }
1636 
1637   return fi;
1638 }
1639 
1640 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1641    innermost frame).  Be careful to not fall off the bottom of the
1642    frame chain and onto the sentinel frame.  */
1643 
1644 struct frame_info *
1645 get_next_frame (struct frame_info *this_frame)
1646 {
1647   if (this_frame->level > 0)
1648     return this_frame->next;
1649   else
1650     return NULL;
1651 }
1652 
1653 /* Observer for the target_changed event.  */
1654 
1655 static void
1656 frame_observer_target_changed (struct target_ops *target)
1657 {
1658   reinit_frame_cache ();
1659 }
1660 
1661 /* Flush the entire frame cache.  */
1662 
1663 void
1664 reinit_frame_cache (void)
1665 {
1666   struct frame_info *fi;
1667 
1668   /* Tear down all frame caches.  */
1669   for (fi = current_frame; fi != NULL; fi = fi->prev)
1670     {
1671       if (fi->prologue_cache && fi->unwind->dealloc_cache)
1672 	fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1673       if (fi->base_cache && fi->base->unwind->dealloc_cache)
1674 	fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1675     }
1676 
1677   /* Since we can't really be sure what the first object allocated was.  */
1678   obstack_free (&frame_cache_obstack, 0);
1679   obstack_init (&frame_cache_obstack);
1680 
1681   if (current_frame != NULL)
1682     annotate_frames_invalid ();
1683 
1684   current_frame = NULL;		/* Invalidate cache */
1685   select_frame (NULL);
1686   frame_stash_invalidate ();
1687   if (frame_debug)
1688     fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1689 }
1690 
1691 /* Find where a register is saved (in memory or another register).
1692    The result of frame_register_unwind is just where it is saved
1693    relative to this particular frame.  */
1694 
1695 static void
1696 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1697 				int *optimizedp, enum lval_type *lvalp,
1698 				CORE_ADDR *addrp, int *realnump)
1699 {
1700   gdb_assert (this_frame == NULL || this_frame->level >= 0);
1701 
1702   while (this_frame != NULL)
1703     {
1704       int unavailable;
1705 
1706       frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1707 			     lvalp, addrp, realnump, NULL);
1708 
1709       if (*optimizedp)
1710 	break;
1711 
1712       if (*lvalp != lval_register)
1713 	break;
1714 
1715       regnum = *realnump;
1716       this_frame = get_next_frame (this_frame);
1717     }
1718 }
1719 
1720 /* Get the previous raw frame, and check that it is not identical to
1721    same other frame frame already in the chain.  If it is, there is
1722    most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1723    outermost, with UNWIND_SAME_ID stop reason.  Unlike the other
1724    validity tests, that compare THIS_FRAME and the next frame, we do
1725    this right after creating the previous frame, to avoid ever ending
1726    up with two frames with the same id in the frame chain.  */
1727 
1728 static struct frame_info *
1729 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1730 {
1731   struct frame_info *prev_frame;
1732 
1733   prev_frame = get_prev_frame_raw (this_frame);
1734   if (prev_frame == NULL)
1735     return NULL;
1736 
1737   compute_frame_id (prev_frame);
1738   if (frame_stash_add (prev_frame))
1739     return prev_frame;
1740 
1741   /* Another frame with the same id was already in the stash.  We just
1742      detected a cycle.  */
1743   if (frame_debug)
1744     {
1745       fprintf_unfiltered (gdb_stdlog, "-> ");
1746       fprint_frame (gdb_stdlog, NULL);
1747       fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1748     }
1749   this_frame->stop_reason = UNWIND_SAME_ID;
1750   /* Unlink.  */
1751   prev_frame->next = NULL;
1752   this_frame->prev = NULL;
1753   return NULL;
1754 }
1755 
1756 /* Return a "struct frame_info" corresponding to the frame that called
1757    THIS_FRAME.  Returns NULL if there is no such frame.
1758 
1759    Unlike get_prev_frame, this function always tries to unwind the
1760    frame.  */
1761 
1762 static struct frame_info *
1763 get_prev_frame_1 (struct frame_info *this_frame)
1764 {
1765   struct gdbarch *gdbarch;
1766 
1767   gdb_assert (this_frame != NULL);
1768   gdbarch = get_frame_arch (this_frame);
1769 
1770   if (frame_debug)
1771     {
1772       fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1773       if (this_frame != NULL)
1774 	fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1775       else
1776 	fprintf_unfiltered (gdb_stdlog, "<NULL>");
1777       fprintf_unfiltered (gdb_stdlog, ") ");
1778     }
1779 
1780   /* Only try to do the unwind once.  */
1781   if (this_frame->prev_p)
1782     {
1783       if (frame_debug)
1784 	{
1785 	  fprintf_unfiltered (gdb_stdlog, "-> ");
1786 	  fprint_frame (gdb_stdlog, this_frame->prev);
1787 	  fprintf_unfiltered (gdb_stdlog, " // cached \n");
1788 	}
1789       return this_frame->prev;
1790     }
1791 
1792   /* If the frame unwinder hasn't been selected yet, we must do so
1793      before setting prev_p; otherwise the check for misbehaved
1794      sniffers will think that this frame's sniffer tried to unwind
1795      further (see frame_cleanup_after_sniffer).  */
1796   if (this_frame->unwind == NULL)
1797     frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1798 
1799   this_frame->prev_p = 1;
1800   this_frame->stop_reason = UNWIND_NO_REASON;
1801 
1802   /* If we are unwinding from an inline frame, all of the below tests
1803      were already performed when we unwound from the next non-inline
1804      frame.  We must skip them, since we can not get THIS_FRAME's ID
1805      until we have unwound all the way down to the previous non-inline
1806      frame.  */
1807   if (get_frame_type (this_frame) == INLINE_FRAME)
1808     return get_prev_frame_if_no_cycle (this_frame);
1809 
1810   /* Check that this frame is unwindable.  If it isn't, don't try to
1811      unwind to the prev frame.  */
1812   this_frame->stop_reason
1813     = this_frame->unwind->stop_reason (this_frame,
1814 				       &this_frame->prologue_cache);
1815 
1816   if (this_frame->stop_reason != UNWIND_NO_REASON)
1817     {
1818       if (frame_debug)
1819 	{
1820 	  enum unwind_stop_reason reason = this_frame->stop_reason;
1821 
1822 	  fprintf_unfiltered (gdb_stdlog, "-> ");
1823 	  fprint_frame (gdb_stdlog, NULL);
1824 	  fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1825 			      frame_stop_reason_symbol_string (reason));
1826 	}
1827       return NULL;
1828     }
1829 
1830   /* Check that this frame's ID isn't inner to (younger, below, next)
1831      the next frame.  This happens when a frame unwind goes backwards.
1832      This check is valid only if this frame and the next frame are NORMAL.
1833      See the comment at frame_id_inner for details.  */
1834   if (get_frame_type (this_frame) == NORMAL_FRAME
1835       && this_frame->next->unwind->type == NORMAL_FRAME
1836       && frame_id_inner (get_frame_arch (this_frame->next),
1837 			 get_frame_id (this_frame),
1838 			 get_frame_id (this_frame->next)))
1839     {
1840       CORE_ADDR this_pc_in_block;
1841       struct minimal_symbol *morestack_msym;
1842       const char *morestack_name = NULL;
1843 
1844       /* gcc -fsplit-stack __morestack can continue the stack anywhere.  */
1845       this_pc_in_block = get_frame_address_in_block (this_frame);
1846       morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1847       if (morestack_msym)
1848 	morestack_name = SYMBOL_LINKAGE_NAME (morestack_msym);
1849       if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1850 	{
1851 	  if (frame_debug)
1852 	    {
1853 	      fprintf_unfiltered (gdb_stdlog, "-> ");
1854 	      fprint_frame (gdb_stdlog, NULL);
1855 	      fprintf_unfiltered (gdb_stdlog,
1856 				  " // this frame ID is inner }\n");
1857 	    }
1858 	  this_frame->stop_reason = UNWIND_INNER_ID;
1859 	  return NULL;
1860 	}
1861     }
1862 
1863   /* Check that this and the next frame do not unwind the PC register
1864      to the same memory location.  If they do, then even though they
1865      have different frame IDs, the new frame will be bogus; two
1866      functions can't share a register save slot for the PC.  This can
1867      happen when the prologue analyzer finds a stack adjustment, but
1868      no PC save.
1869 
1870      This check does assume that the "PC register" is roughly a
1871      traditional PC, even if the gdbarch_unwind_pc method adjusts
1872      it (we do not rely on the value, only on the unwound PC being
1873      dependent on this value).  A potential improvement would be
1874      to have the frame prev_pc method and the gdbarch unwind_pc
1875      method set the same lval and location information as
1876      frame_register_unwind.  */
1877   if (this_frame->level > 0
1878       && gdbarch_pc_regnum (gdbarch) >= 0
1879       && get_frame_type (this_frame) == NORMAL_FRAME
1880       && (get_frame_type (this_frame->next) == NORMAL_FRAME
1881 	  || get_frame_type (this_frame->next) == INLINE_FRAME))
1882     {
1883       int optimized, realnum, nrealnum;
1884       enum lval_type lval, nlval;
1885       CORE_ADDR addr, naddr;
1886 
1887       frame_register_unwind_location (this_frame,
1888 				      gdbarch_pc_regnum (gdbarch),
1889 				      &optimized, &lval, &addr, &realnum);
1890       frame_register_unwind_location (get_next_frame (this_frame),
1891 				      gdbarch_pc_regnum (gdbarch),
1892 				      &optimized, &nlval, &naddr, &nrealnum);
1893 
1894       if ((lval == lval_memory && lval == nlval && addr == naddr)
1895 	  || (lval == lval_register && lval == nlval && realnum == nrealnum))
1896 	{
1897 	  if (frame_debug)
1898 	    {
1899 	      fprintf_unfiltered (gdb_stdlog, "-> ");
1900 	      fprint_frame (gdb_stdlog, NULL);
1901 	      fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1902 	    }
1903 
1904 	  this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1905 	  this_frame->prev = NULL;
1906 	  return NULL;
1907 	}
1908     }
1909 
1910   return get_prev_frame_if_no_cycle (this_frame);
1911 }
1912 
1913 /* Construct a new "struct frame_info" and link it previous to
1914    this_frame.  */
1915 
1916 static struct frame_info *
1917 get_prev_frame_raw (struct frame_info *this_frame)
1918 {
1919   struct frame_info *prev_frame;
1920 
1921   /* Allocate the new frame but do not wire it in to the frame chain.
1922      Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1923      frame->next to pull some fancy tricks (of course such code is, by
1924      definition, recursive).  Try to prevent it.
1925 
1926      There is no reason to worry about memory leaks, should the
1927      remainder of the function fail.  The allocated memory will be
1928      quickly reclaimed when the frame cache is flushed, and the `we've
1929      been here before' check above will stop repeated memory
1930      allocation calls.  */
1931   prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1932   prev_frame->level = this_frame->level + 1;
1933 
1934   /* For now, assume we don't have frame chains crossing address
1935      spaces.  */
1936   prev_frame->pspace = this_frame->pspace;
1937   prev_frame->aspace = this_frame->aspace;
1938 
1939   /* Don't yet compute ->unwind (and hence ->type).  It is computed
1940      on-demand in get_frame_type, frame_register_unwind, and
1941      get_frame_id.  */
1942 
1943   /* Don't yet compute the frame's ID.  It is computed on-demand by
1944      get_frame_id().  */
1945 
1946   /* The unwound frame ID is validate at the start of this function,
1947      as part of the logic to decide if that frame should be further
1948      unwound, and not here while the prev frame is being created.
1949      Doing this makes it possible for the user to examine a frame that
1950      has an invalid frame ID.
1951 
1952      Some very old VAX code noted: [...]  For the sake of argument,
1953      suppose that the stack is somewhat trashed (which is one reason
1954      that "info frame" exists).  So, return 0 (indicating we don't
1955      know the address of the arglist) if we don't know what frame this
1956      frame calls.  */
1957 
1958   /* Link it in.  */
1959   this_frame->prev = prev_frame;
1960   prev_frame->next = this_frame;
1961 
1962   if (frame_debug)
1963     {
1964       fprintf_unfiltered (gdb_stdlog, "-> ");
1965       fprint_frame (gdb_stdlog, prev_frame);
1966       fprintf_unfiltered (gdb_stdlog, " }\n");
1967     }
1968 
1969   return prev_frame;
1970 }
1971 
1972 /* Debug routine to print a NULL frame being returned.  */
1973 
1974 static void
1975 frame_debug_got_null_frame (struct frame_info *this_frame,
1976 			    const char *reason)
1977 {
1978   if (frame_debug)
1979     {
1980       fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1981       if (this_frame != NULL)
1982 	fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1983       else
1984 	fprintf_unfiltered (gdb_stdlog, "<NULL>");
1985       fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1986     }
1987 }
1988 
1989 /* Is this (non-sentinel) frame in the "main"() function?  */
1990 
1991 static int
1992 inside_main_func (struct frame_info *this_frame)
1993 {
1994   struct minimal_symbol *msymbol;
1995   CORE_ADDR maddr;
1996 
1997   if (symfile_objfile == 0)
1998     return 0;
1999   msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2000   if (msymbol == NULL)
2001     return 0;
2002   /* Make certain that the code, and not descriptor, address is
2003      returned.  */
2004   maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2005 					      SYMBOL_VALUE_ADDRESS (msymbol),
2006 					      &current_target);
2007   return maddr == get_frame_func (this_frame);
2008 }
2009 
2010 /* Test whether THIS_FRAME is inside the process entry point function.  */
2011 
2012 static int
2013 inside_entry_func (struct frame_info *this_frame)
2014 {
2015   CORE_ADDR entry_point;
2016 
2017   if (!entry_point_address_query (&entry_point))
2018     return 0;
2019 
2020   return get_frame_func (this_frame) == entry_point;
2021 }
2022 
2023 /* Return a structure containing various interesting information about
2024    the frame that called THIS_FRAME.  Returns NULL if there is entier
2025    no such frame or the frame fails any of a set of target-independent
2026    condition that should terminate the frame chain (e.g., as unwinding
2027    past main()).
2028 
2029    This function should not contain target-dependent tests, such as
2030    checking whether the program-counter is zero.  */
2031 
2032 struct frame_info *
2033 get_prev_frame (struct frame_info *this_frame)
2034 {
2035   CORE_ADDR frame_pc;
2036   int frame_pc_p;
2037 
2038   /* There is always a frame.  If this assertion fails, suspect that
2039      something should be calling get_selected_frame() or
2040      get_current_frame().  */
2041   gdb_assert (this_frame != NULL);
2042   frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2043 
2044   /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2045      sense to stop unwinding at a dummy frame.  One place where a dummy
2046      frame may have an address "inside_main_func" is on HPUX.  On HPUX, the
2047      pcsqh register (space register for the instruction at the head of the
2048      instruction queue) cannot be written directly; the only way to set it
2049      is to branch to code that is in the target space.  In order to implement
2050      frame dummies on HPUX, the called function is made to jump back to where
2051      the inferior was when the user function was called.  If gdb was inside
2052      the main function when we created the dummy frame, the dummy frame will
2053      point inside the main function.  */
2054   if (this_frame->level >= 0
2055       && get_frame_type (this_frame) == NORMAL_FRAME
2056       && !backtrace_past_main
2057       && frame_pc_p
2058       && inside_main_func (this_frame))
2059     /* Don't unwind past main().  Note, this is done _before_ the
2060        frame has been marked as previously unwound.  That way if the
2061        user later decides to enable unwinds past main(), that will
2062        automatically happen.  */
2063     {
2064       frame_debug_got_null_frame (this_frame, "inside main func");
2065       return NULL;
2066     }
2067 
2068   /* If the user's backtrace limit has been exceeded, stop.  We must
2069      add two to the current level; one of those accounts for backtrace_limit
2070      being 1-based and the level being 0-based, and the other accounts for
2071      the level of the new frame instead of the level of the current
2072      frame.  */
2073   if (this_frame->level + 2 > backtrace_limit)
2074     {
2075       frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2076       return NULL;
2077     }
2078 
2079   /* If we're already inside the entry function for the main objfile,
2080      then it isn't valid.  Don't apply this test to a dummy frame -
2081      dummy frame PCs typically land in the entry func.  Don't apply
2082      this test to the sentinel frame.  Sentinel frames should always
2083      be allowed to unwind.  */
2084   /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2085      wasn't checking for "main" in the minimal symbols.  With that
2086      fixed asm-source tests now stop in "main" instead of halting the
2087      backtrace in weird and wonderful ways somewhere inside the entry
2088      file.  Suspect that tests for inside the entry file/func were
2089      added to work around that (now fixed) case.  */
2090   /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2091      suggested having the inside_entry_func test use the
2092      inside_main_func() msymbol trick (along with entry_point_address()
2093      I guess) to determine the address range of the start function.
2094      That should provide a far better stopper than the current
2095      heuristics.  */
2096   /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2097      applied tail-call optimizations to main so that a function called
2098      from main returns directly to the caller of main.  Since we don't
2099      stop at main, we should at least stop at the entry point of the
2100      application.  */
2101   if (this_frame->level >= 0
2102       && get_frame_type (this_frame) == NORMAL_FRAME
2103       && !backtrace_past_entry
2104       && frame_pc_p
2105       && inside_entry_func (this_frame))
2106     {
2107       frame_debug_got_null_frame (this_frame, "inside entry func");
2108       return NULL;
2109     }
2110 
2111   /* Assume that the only way to get a zero PC is through something
2112      like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2113      will never unwind a zero PC.  */
2114   if (this_frame->level > 0
2115       && (get_frame_type (this_frame) == NORMAL_FRAME
2116 	  || get_frame_type (this_frame) == INLINE_FRAME)
2117       && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2118       && frame_pc_p && frame_pc == 0)
2119     {
2120       frame_debug_got_null_frame (this_frame, "zero PC");
2121       return NULL;
2122     }
2123 
2124   return get_prev_frame_1 (this_frame);
2125 }
2126 
2127 CORE_ADDR
2128 get_frame_pc (struct frame_info *frame)
2129 {
2130   gdb_assert (frame->next != NULL);
2131   return frame_unwind_pc (frame->next);
2132 }
2133 
2134 int
2135 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2136 {
2137   volatile struct gdb_exception ex;
2138 
2139   gdb_assert (frame->next != NULL);
2140 
2141   TRY_CATCH (ex, RETURN_MASK_ERROR)
2142     {
2143       *pc = frame_unwind_pc (frame->next);
2144     }
2145   if (ex.reason < 0)
2146     {
2147       if (ex.error == NOT_AVAILABLE_ERROR)
2148 	return 0;
2149       else
2150 	throw_exception (ex);
2151     }
2152 
2153   return 1;
2154 }
2155 
2156 /* Return an address that falls within THIS_FRAME's code block.  */
2157 
2158 CORE_ADDR
2159 get_frame_address_in_block (struct frame_info *this_frame)
2160 {
2161   /* A draft address.  */
2162   CORE_ADDR pc = get_frame_pc (this_frame);
2163 
2164   struct frame_info *next_frame = this_frame->next;
2165 
2166   /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2167      Normally the resume address is inside the body of the function
2168      associated with THIS_FRAME, but there is a special case: when
2169      calling a function which the compiler knows will never return
2170      (for instance abort), the call may be the very last instruction
2171      in the calling function.  The resume address will point after the
2172      call and may be at the beginning of a different function
2173      entirely.
2174 
2175      If THIS_FRAME is a signal frame or dummy frame, then we should
2176      not adjust the unwound PC.  For a dummy frame, GDB pushed the
2177      resume address manually onto the stack.  For a signal frame, the
2178      OS may have pushed the resume address manually and invoked the
2179      handler (e.g. GNU/Linux), or invoked the trampoline which called
2180      the signal handler - but in either case the signal handler is
2181      expected to return to the trampoline.  So in both of these
2182      cases we know that the resume address is executable and
2183      related.  So we only need to adjust the PC if THIS_FRAME
2184      is a normal function.
2185 
2186      If the program has been interrupted while THIS_FRAME is current,
2187      then clearly the resume address is inside the associated
2188      function.  There are three kinds of interruption: debugger stop
2189      (next frame will be SENTINEL_FRAME), operating system
2190      signal or exception (next frame will be SIGTRAMP_FRAME),
2191      or debugger-induced function call (next frame will be
2192      DUMMY_FRAME).  So we only need to adjust the PC if
2193      NEXT_FRAME is a normal function.
2194 
2195      We check the type of NEXT_FRAME first, since it is already
2196      known; frame type is determined by the unwinder, and since
2197      we have THIS_FRAME we've already selected an unwinder for
2198      NEXT_FRAME.
2199 
2200      If the next frame is inlined, we need to keep going until we find
2201      the real function - for instance, if a signal handler is invoked
2202      while in an inlined function, then the code address of the
2203      "calling" normal function should not be adjusted either.  */
2204 
2205   while (get_frame_type (next_frame) == INLINE_FRAME)
2206     next_frame = next_frame->next;
2207 
2208   if ((get_frame_type (next_frame) == NORMAL_FRAME
2209        || get_frame_type (next_frame) == TAILCALL_FRAME)
2210       && (get_frame_type (this_frame) == NORMAL_FRAME
2211 	  || get_frame_type (this_frame) == TAILCALL_FRAME
2212 	  || get_frame_type (this_frame) == INLINE_FRAME))
2213     return pc - 1;
2214 
2215   return pc;
2216 }
2217 
2218 int
2219 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2220 					 CORE_ADDR *pc)
2221 {
2222   volatile struct gdb_exception ex;
2223 
2224   TRY_CATCH (ex, RETURN_MASK_ERROR)
2225     {
2226       *pc = get_frame_address_in_block (this_frame);
2227     }
2228   if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
2229     return 0;
2230   else if (ex.reason < 0)
2231     throw_exception (ex);
2232   else
2233     return 1;
2234 }
2235 
2236 void
2237 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2238 {
2239   struct frame_info *next_frame;
2240   int notcurrent;
2241   CORE_ADDR pc;
2242 
2243   /* If the next frame represents an inlined function call, this frame's
2244      sal is the "call site" of that inlined function, which can not
2245      be inferred from get_frame_pc.  */
2246   next_frame = get_next_frame (frame);
2247   if (frame_inlined_callees (frame) > 0)
2248     {
2249       struct symbol *sym;
2250 
2251       if (next_frame)
2252 	sym = get_frame_function (next_frame);
2253       else
2254 	sym = inline_skipped_symbol (inferior_ptid);
2255 
2256       /* If frame is inline, it certainly has symbols.  */
2257       gdb_assert (sym);
2258       init_sal (sal);
2259       if (SYMBOL_LINE (sym) != 0)
2260 	{
2261 	  sal->symtab = SYMBOL_SYMTAB (sym);
2262 	  sal->line = SYMBOL_LINE (sym);
2263 	}
2264       else
2265 	/* If the symbol does not have a location, we don't know where
2266 	   the call site is.  Do not pretend to.  This is jarring, but
2267 	   we can't do much better.  */
2268 	sal->pc = get_frame_pc (frame);
2269 
2270       sal->pspace = get_frame_program_space (frame);
2271 
2272       return;
2273     }
2274 
2275   /* If FRAME is not the innermost frame, that normally means that
2276      FRAME->pc points at the return instruction (which is *after* the
2277      call instruction), and we want to get the line containing the
2278      call (because the call is where the user thinks the program is).
2279      However, if the next frame is either a SIGTRAMP_FRAME or a
2280      DUMMY_FRAME, then the next frame will contain a saved interrupt
2281      PC and such a PC indicates the current (rather than next)
2282      instruction/line, consequently, for such cases, want to get the
2283      line containing fi->pc.  */
2284   if (!get_frame_pc_if_available (frame, &pc))
2285     {
2286       init_sal (sal);
2287       return;
2288     }
2289 
2290   notcurrent = (pc != get_frame_address_in_block (frame));
2291   (*sal) = find_pc_line (pc, notcurrent);
2292 }
2293 
2294 /* Per "frame.h", return the ``address'' of the frame.  Code should
2295    really be using get_frame_id().  */
2296 CORE_ADDR
2297 get_frame_base (struct frame_info *fi)
2298 {
2299   return get_frame_id (fi).stack_addr;
2300 }
2301 
2302 /* High-level offsets into the frame.  Used by the debug info.  */
2303 
2304 CORE_ADDR
2305 get_frame_base_address (struct frame_info *fi)
2306 {
2307   if (get_frame_type (fi) != NORMAL_FRAME)
2308     return 0;
2309   if (fi->base == NULL)
2310     fi->base = frame_base_find_by_frame (fi);
2311   /* Sneaky: If the low-level unwind and high-level base code share a
2312      common unwinder, let them share the prologue cache.  */
2313   if (fi->base->unwind == fi->unwind)
2314     return fi->base->this_base (fi, &fi->prologue_cache);
2315   return fi->base->this_base (fi, &fi->base_cache);
2316 }
2317 
2318 CORE_ADDR
2319 get_frame_locals_address (struct frame_info *fi)
2320 {
2321   if (get_frame_type (fi) != NORMAL_FRAME)
2322     return 0;
2323   /* If there isn't a frame address method, find it.  */
2324   if (fi->base == NULL)
2325     fi->base = frame_base_find_by_frame (fi);
2326   /* Sneaky: If the low-level unwind and high-level base code share a
2327      common unwinder, let them share the prologue cache.  */
2328   if (fi->base->unwind == fi->unwind)
2329     return fi->base->this_locals (fi, &fi->prologue_cache);
2330   return fi->base->this_locals (fi, &fi->base_cache);
2331 }
2332 
2333 CORE_ADDR
2334 get_frame_args_address (struct frame_info *fi)
2335 {
2336   if (get_frame_type (fi) != NORMAL_FRAME)
2337     return 0;
2338   /* If there isn't a frame address method, find it.  */
2339   if (fi->base == NULL)
2340     fi->base = frame_base_find_by_frame (fi);
2341   /* Sneaky: If the low-level unwind and high-level base code share a
2342      common unwinder, let them share the prologue cache.  */
2343   if (fi->base->unwind == fi->unwind)
2344     return fi->base->this_args (fi, &fi->prologue_cache);
2345   return fi->base->this_args (fi, &fi->base_cache);
2346 }
2347 
2348 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2349    otherwise.  */
2350 
2351 int
2352 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2353 {
2354   if (fi->unwind == NULL)
2355     frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2356   return fi->unwind == unwinder;
2357 }
2358 
2359 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2360    or -1 for a NULL frame.  */
2361 
2362 int
2363 frame_relative_level (struct frame_info *fi)
2364 {
2365   if (fi == NULL)
2366     return -1;
2367   else
2368     return fi->level;
2369 }
2370 
2371 enum frame_type
2372 get_frame_type (struct frame_info *frame)
2373 {
2374   if (frame->unwind == NULL)
2375     /* Initialize the frame's unwinder because that's what
2376        provides the frame's type.  */
2377     frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2378   return frame->unwind->type;
2379 }
2380 
2381 struct program_space *
2382 get_frame_program_space (struct frame_info *frame)
2383 {
2384   return frame->pspace;
2385 }
2386 
2387 struct program_space *
2388 frame_unwind_program_space (struct frame_info *this_frame)
2389 {
2390   gdb_assert (this_frame);
2391 
2392   /* This is really a placeholder to keep the API consistent --- we
2393      assume for now that we don't have frame chains crossing
2394      spaces.  */
2395   return this_frame->pspace;
2396 }
2397 
2398 struct address_space *
2399 get_frame_address_space (struct frame_info *frame)
2400 {
2401   return frame->aspace;
2402 }
2403 
2404 /* Memory access methods.  */
2405 
2406 void
2407 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2408 		  gdb_byte *buf, int len)
2409 {
2410   read_memory (addr, buf, len);
2411 }
2412 
2413 LONGEST
2414 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2415 			 int len)
2416 {
2417   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2418   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2419 
2420   return read_memory_integer (addr, len, byte_order);
2421 }
2422 
2423 ULONGEST
2424 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2425 			   int len)
2426 {
2427   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2428   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2429 
2430   return read_memory_unsigned_integer (addr, len, byte_order);
2431 }
2432 
2433 int
2434 safe_frame_unwind_memory (struct frame_info *this_frame,
2435 			  CORE_ADDR addr, gdb_byte *buf, int len)
2436 {
2437   /* NOTE: target_read_memory returns zero on success!  */
2438   return !target_read_memory (addr, buf, len);
2439 }
2440 
2441 /* Architecture methods.  */
2442 
2443 struct gdbarch *
2444 get_frame_arch (struct frame_info *this_frame)
2445 {
2446   return frame_unwind_arch (this_frame->next);
2447 }
2448 
2449 struct gdbarch *
2450 frame_unwind_arch (struct frame_info *next_frame)
2451 {
2452   if (!next_frame->prev_arch.p)
2453     {
2454       struct gdbarch *arch;
2455 
2456       if (next_frame->unwind == NULL)
2457 	frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2458 
2459       if (next_frame->unwind->prev_arch != NULL)
2460 	arch = next_frame->unwind->prev_arch (next_frame,
2461 					      &next_frame->prologue_cache);
2462       else
2463 	arch = get_frame_arch (next_frame);
2464 
2465       next_frame->prev_arch.arch = arch;
2466       next_frame->prev_arch.p = 1;
2467       if (frame_debug)
2468 	fprintf_unfiltered (gdb_stdlog,
2469 			    "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2470 			    next_frame->level,
2471 			    gdbarch_bfd_arch_info (arch)->printable_name);
2472     }
2473 
2474   return next_frame->prev_arch.arch;
2475 }
2476 
2477 struct gdbarch *
2478 frame_unwind_caller_arch (struct frame_info *next_frame)
2479 {
2480   return frame_unwind_arch (skip_artificial_frames (next_frame));
2481 }
2482 
2483 /* Stack pointer methods.  */
2484 
2485 CORE_ADDR
2486 get_frame_sp (struct frame_info *this_frame)
2487 {
2488   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2489 
2490   /* Normality - an architecture that provides a way of obtaining any
2491      frame inner-most address.  */
2492   if (gdbarch_unwind_sp_p (gdbarch))
2493     /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2494        operate on THIS_FRAME now.  */
2495     return gdbarch_unwind_sp (gdbarch, this_frame->next);
2496   /* Now things are really are grim.  Hope that the value returned by
2497      the gdbarch_sp_regnum register is meaningful.  */
2498   if (gdbarch_sp_regnum (gdbarch) >= 0)
2499     return get_frame_register_unsigned (this_frame,
2500 					gdbarch_sp_regnum (gdbarch));
2501   internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2502 }
2503 
2504 /* Return the reason why we can't unwind past FRAME.  */
2505 
2506 enum unwind_stop_reason
2507 get_frame_unwind_stop_reason (struct frame_info *frame)
2508 {
2509   /* If we haven't tried to unwind past this point yet, then assume
2510      that unwinding would succeed.  */
2511   if (frame->prev_p == 0)
2512     return UNWIND_NO_REASON;
2513 
2514   /* Otherwise, we set a reason when we succeeded (or failed) to
2515      unwind.  */
2516   return frame->stop_reason;
2517 }
2518 
2519 /* Return a string explaining REASON.  */
2520 
2521 const char *
2522 frame_stop_reason_string (enum unwind_stop_reason reason)
2523 {
2524   switch (reason)
2525     {
2526 #define SET(name, description) \
2527     case name: return _(description);
2528 #include "unwind_stop_reasons.def"
2529 #undef SET
2530 
2531     default:
2532       internal_error (__FILE__, __LINE__,
2533 		      "Invalid frame stop reason");
2534     }
2535 }
2536 
2537 /* Return the enum symbol name of REASON as a string, to use in debug
2538    output.  */
2539 
2540 static const char *
2541 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2542 {
2543   switch (reason)
2544     {
2545 #define SET(name, description) \
2546     case name: return #name;
2547 #include "unwind_stop_reasons.def"
2548 #undef SET
2549 
2550     default:
2551       internal_error (__FILE__, __LINE__,
2552 		      "Invalid frame stop reason");
2553     }
2554 }
2555 
2556 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2557    FRAME.  */
2558 
2559 static void
2560 frame_cleanup_after_sniffer (void *arg)
2561 {
2562   struct frame_info *frame = arg;
2563 
2564   /* The sniffer should not allocate a prologue cache if it did not
2565      match this frame.  */
2566   gdb_assert (frame->prologue_cache == NULL);
2567 
2568   /* No sniffer should extend the frame chain; sniff based on what is
2569      already certain.  */
2570   gdb_assert (!frame->prev_p);
2571 
2572   /* The sniffer should not check the frame's ID; that's circular.  */
2573   gdb_assert (!frame->this_id.p);
2574 
2575   /* Clear cached fields dependent on the unwinder.
2576 
2577      The previous PC is independent of the unwinder, but the previous
2578      function is not (see get_frame_address_in_block).  */
2579   frame->prev_func.p = 0;
2580   frame->prev_func.addr = 0;
2581 
2582   /* Discard the unwinder last, so that we can easily find it if an assertion
2583      in this function triggers.  */
2584   frame->unwind = NULL;
2585 }
2586 
2587 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2588    Return a cleanup which should be called if unwinding fails, and
2589    discarded if it succeeds.  */
2590 
2591 struct cleanup *
2592 frame_prepare_for_sniffer (struct frame_info *frame,
2593 			   const struct frame_unwind *unwind)
2594 {
2595   gdb_assert (frame->unwind == NULL);
2596   frame->unwind = unwind;
2597   return make_cleanup (frame_cleanup_after_sniffer, frame);
2598 }
2599 
2600 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2601 
2602 static struct cmd_list_element *set_backtrace_cmdlist;
2603 static struct cmd_list_element *show_backtrace_cmdlist;
2604 
2605 static void
2606 set_backtrace_cmd (char *args, int from_tty)
2607 {
2608   help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2609 }
2610 
2611 static void
2612 show_backtrace_cmd (char *args, int from_tty)
2613 {
2614   cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2615 }
2616 
2617 void
2618 _initialize_frame (void)
2619 {
2620   obstack_init (&frame_cache_obstack);
2621 
2622   frame_stash_create ();
2623 
2624   observer_attach_target_changed (frame_observer_target_changed);
2625 
2626   add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2627 Set backtrace specific variables.\n\
2628 Configure backtrace variables such as the backtrace limit"),
2629 		  &set_backtrace_cmdlist, "set backtrace ",
2630 		  0/*allow-unknown*/, &setlist);
2631   add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2632 Show backtrace specific variables\n\
2633 Show backtrace variables such as the backtrace limit"),
2634 		  &show_backtrace_cmdlist, "show backtrace ",
2635 		  0/*allow-unknown*/, &showlist);
2636 
2637   add_setshow_boolean_cmd ("past-main", class_obscure,
2638 			   &backtrace_past_main, _("\
2639 Set whether backtraces should continue past \"main\"."), _("\
2640 Show whether backtraces should continue past \"main\"."), _("\
2641 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2642 the backtrace at \"main\".  Set this variable if you need to see the rest\n\
2643 of the stack trace."),
2644 			   NULL,
2645 			   show_backtrace_past_main,
2646 			   &set_backtrace_cmdlist,
2647 			   &show_backtrace_cmdlist);
2648 
2649   add_setshow_boolean_cmd ("past-entry", class_obscure,
2650 			   &backtrace_past_entry, _("\
2651 Set whether backtraces should continue past the entry point of a program."),
2652 			   _("\
2653 Show whether backtraces should continue past the entry point of a program."),
2654 			   _("\
2655 Normally there are no callers beyond the entry point of a program, so GDB\n\
2656 will terminate the backtrace there.  Set this variable if you need to see\n\
2657 the rest of the stack trace."),
2658 			   NULL,
2659 			   show_backtrace_past_entry,
2660 			   &set_backtrace_cmdlist,
2661 			   &show_backtrace_cmdlist);
2662 
2663   add_setshow_uinteger_cmd ("limit", class_obscure,
2664 			    &backtrace_limit, _("\
2665 Set an upper bound on the number of backtrace levels."), _("\
2666 Show the upper bound on the number of backtrace levels."), _("\
2667 No more than the specified number of frames can be displayed or examined.\n\
2668 Literal \"unlimited\" or zero means no limit."),
2669 			    NULL,
2670 			    show_backtrace_limit,
2671 			    &set_backtrace_cmdlist,
2672 			    &show_backtrace_cmdlist);
2673 
2674   /* Debug this files internals.  */
2675   add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug,  _("\
2676 Set frame debugging."), _("\
2677 Show frame debugging."), _("\
2678 When non-zero, frame specific internal debugging is enabled."),
2679 			     NULL,
2680 			     show_frame_debug,
2681 			     &setdebuglist, &showdebuglist);
2682 }
2683