1 /* Find a variable's value in memory, for GDB, the GNU debugger. 2 3 Copyright (C) 1986-2017 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "symtab.h" 22 #include "gdbtypes.h" 23 #include "frame.h" 24 #include "value.h" 25 #include "gdbcore.h" 26 #include "inferior.h" 27 #include "target.h" 28 #include "floatformat.h" 29 #include "symfile.h" /* for overlay functions */ 30 #include "regcache.h" 31 #include "user-regs.h" 32 #include "block.h" 33 #include "objfiles.h" 34 #include "language.h" 35 #include "dwarf2loc.h" 36 37 /* Basic byte-swapping routines. All 'extract' functions return a 38 host-format integer from a target-format integer at ADDR which is 39 LEN bytes long. */ 40 41 #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8 42 /* 8 bit characters are a pretty safe assumption these days, so we 43 assume it throughout all these swapping routines. If we had to deal with 44 9 bit characters, we would need to make len be in bits and would have 45 to re-write these routines... */ 46 you lose 47 #endif 48 49 LONGEST 50 extract_signed_integer (const gdb_byte *addr, int len, 51 enum bfd_endian byte_order) 52 { 53 LONGEST retval; 54 const unsigned char *p; 55 const unsigned char *startaddr = addr; 56 const unsigned char *endaddr = startaddr + len; 57 58 if (len > (int) sizeof (LONGEST)) 59 error (_("\ 60 That operation is not available on integers of more than %d bytes."), 61 (int) sizeof (LONGEST)); 62 63 /* Start at the most significant end of the integer, and work towards 64 the least significant. */ 65 if (byte_order == BFD_ENDIAN_BIG) 66 { 67 p = startaddr; 68 /* Do the sign extension once at the start. */ 69 retval = ((LONGEST) * p ^ 0x80) - 0x80; 70 for (++p; p < endaddr; ++p) 71 retval = (retval << 8) | *p; 72 } 73 else 74 { 75 p = endaddr - 1; 76 /* Do the sign extension once at the start. */ 77 retval = ((LONGEST) * p ^ 0x80) - 0x80; 78 for (--p; p >= startaddr; --p) 79 retval = (retval << 8) | *p; 80 } 81 return retval; 82 } 83 84 ULONGEST 85 extract_unsigned_integer (const gdb_byte *addr, int len, 86 enum bfd_endian byte_order) 87 { 88 ULONGEST retval; 89 const unsigned char *p; 90 const unsigned char *startaddr = addr; 91 const unsigned char *endaddr = startaddr + len; 92 93 if (len > (int) sizeof (ULONGEST)) 94 error (_("\ 95 That operation is not available on integers of more than %d bytes."), 96 (int) sizeof (ULONGEST)); 97 98 /* Start at the most significant end of the integer, and work towards 99 the least significant. */ 100 retval = 0; 101 if (byte_order == BFD_ENDIAN_BIG) 102 { 103 for (p = startaddr; p < endaddr; ++p) 104 retval = (retval << 8) | *p; 105 } 106 else 107 { 108 for (p = endaddr - 1; p >= startaddr; --p) 109 retval = (retval << 8) | *p; 110 } 111 return retval; 112 } 113 114 /* Sometimes a long long unsigned integer can be extracted as a 115 LONGEST value. This is done so that we can print these values 116 better. If this integer can be converted to a LONGEST, this 117 function returns 1 and sets *PVAL. Otherwise it returns 0. */ 118 119 int 120 extract_long_unsigned_integer (const gdb_byte *addr, int orig_len, 121 enum bfd_endian byte_order, LONGEST *pval) 122 { 123 const gdb_byte *p; 124 const gdb_byte *first_addr; 125 int len; 126 127 len = orig_len; 128 if (byte_order == BFD_ENDIAN_BIG) 129 { 130 for (p = addr; 131 len > (int) sizeof (LONGEST) && p < addr + orig_len; 132 p++) 133 { 134 if (*p == 0) 135 len--; 136 else 137 break; 138 } 139 first_addr = p; 140 } 141 else 142 { 143 first_addr = addr; 144 for (p = addr + orig_len - 1; 145 len > (int) sizeof (LONGEST) && p >= addr; 146 p--) 147 { 148 if (*p == 0) 149 len--; 150 else 151 break; 152 } 153 } 154 155 if (len <= (int) sizeof (LONGEST)) 156 { 157 *pval = (LONGEST) extract_unsigned_integer (first_addr, 158 sizeof (LONGEST), 159 byte_order); 160 return 1; 161 } 162 163 return 0; 164 } 165 166 167 /* Treat the bytes at BUF as a pointer of type TYPE, and return the 168 address it represents. */ 169 CORE_ADDR 170 extract_typed_address (const gdb_byte *buf, struct type *type) 171 { 172 if (TYPE_CODE (type) != TYPE_CODE_PTR && !TYPE_IS_REFERENCE (type)) 173 internal_error (__FILE__, __LINE__, 174 _("extract_typed_address: " 175 "type is not a pointer or reference")); 176 177 return gdbarch_pointer_to_address (get_type_arch (type), type, buf); 178 } 179 180 /* All 'store' functions accept a host-format integer and store a 181 target-format integer at ADDR which is LEN bytes long. */ 182 183 void 184 store_signed_integer (gdb_byte *addr, int len, 185 enum bfd_endian byte_order, LONGEST val) 186 { 187 gdb_byte *p; 188 gdb_byte *startaddr = addr; 189 gdb_byte *endaddr = startaddr + len; 190 191 /* Start at the least significant end of the integer, and work towards 192 the most significant. */ 193 if (byte_order == BFD_ENDIAN_BIG) 194 { 195 for (p = endaddr - 1; p >= startaddr; --p) 196 { 197 *p = val & 0xff; 198 val >>= 8; 199 } 200 } 201 else 202 { 203 for (p = startaddr; p < endaddr; ++p) 204 { 205 *p = val & 0xff; 206 val >>= 8; 207 } 208 } 209 } 210 211 void 212 store_unsigned_integer (gdb_byte *addr, int len, 213 enum bfd_endian byte_order, ULONGEST val) 214 { 215 unsigned char *p; 216 unsigned char *startaddr = (unsigned char *) addr; 217 unsigned char *endaddr = startaddr + len; 218 219 /* Start at the least significant end of the integer, and work towards 220 the most significant. */ 221 if (byte_order == BFD_ENDIAN_BIG) 222 { 223 for (p = endaddr - 1; p >= startaddr; --p) 224 { 225 *p = val & 0xff; 226 val >>= 8; 227 } 228 } 229 else 230 { 231 for (p = startaddr; p < endaddr; ++p) 232 { 233 *p = val & 0xff; 234 val >>= 8; 235 } 236 } 237 } 238 239 /* Store the address ADDR as a pointer of type TYPE at BUF, in target 240 form. */ 241 void 242 store_typed_address (gdb_byte *buf, struct type *type, CORE_ADDR addr) 243 { 244 if (TYPE_CODE (type) != TYPE_CODE_PTR && !TYPE_IS_REFERENCE (type)) 245 internal_error (__FILE__, __LINE__, 246 _("store_typed_address: " 247 "type is not a pointer or reference")); 248 249 gdbarch_address_to_pointer (get_type_arch (type), type, buf, addr); 250 } 251 252 253 254 /* Return a `value' with the contents of (virtual or cooked) register 255 REGNUM as found in the specified FRAME. The register's type is 256 determined by register_type(). */ 257 258 struct value * 259 value_of_register (int regnum, struct frame_info *frame) 260 { 261 struct gdbarch *gdbarch = get_frame_arch (frame); 262 struct value *reg_val; 263 264 /* User registers lie completely outside of the range of normal 265 registers. Catch them early so that the target never sees them. */ 266 if (regnum >= gdbarch_num_regs (gdbarch) 267 + gdbarch_num_pseudo_regs (gdbarch)) 268 return value_of_user_reg (regnum, frame); 269 270 reg_val = value_of_register_lazy (frame, regnum); 271 value_fetch_lazy (reg_val); 272 return reg_val; 273 } 274 275 /* Return a `value' with the contents of (virtual or cooked) register 276 REGNUM as found in the specified FRAME. The register's type is 277 determined by register_type(). The value is not fetched. */ 278 279 struct value * 280 value_of_register_lazy (struct frame_info *frame, int regnum) 281 { 282 struct gdbarch *gdbarch = get_frame_arch (frame); 283 struct value *reg_val; 284 struct frame_info *next_frame; 285 286 gdb_assert (regnum < (gdbarch_num_regs (gdbarch) 287 + gdbarch_num_pseudo_regs (gdbarch))); 288 289 gdb_assert (frame != NULL); 290 291 next_frame = get_next_frame_sentinel_okay (frame); 292 293 /* We should have a valid next frame. */ 294 gdb_assert (frame_id_p (get_frame_id (next_frame))); 295 296 reg_val = allocate_value_lazy (register_type (gdbarch, regnum)); 297 VALUE_LVAL (reg_val) = lval_register; 298 VALUE_REGNUM (reg_val) = regnum; 299 VALUE_NEXT_FRAME_ID (reg_val) = get_frame_id (next_frame); 300 301 return reg_val; 302 } 303 304 /* Given a pointer of type TYPE in target form in BUF, return the 305 address it represents. */ 306 CORE_ADDR 307 unsigned_pointer_to_address (struct gdbarch *gdbarch, 308 struct type *type, const gdb_byte *buf) 309 { 310 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 311 312 return extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order); 313 } 314 315 CORE_ADDR 316 signed_pointer_to_address (struct gdbarch *gdbarch, 317 struct type *type, const gdb_byte *buf) 318 { 319 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 320 321 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order); 322 } 323 324 /* Given an address, store it as a pointer of type TYPE in target 325 format in BUF. */ 326 void 327 unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type, 328 gdb_byte *buf, CORE_ADDR addr) 329 { 330 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 331 332 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr); 333 } 334 335 void 336 address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type, 337 gdb_byte *buf, CORE_ADDR addr) 338 { 339 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 340 341 store_signed_integer (buf, TYPE_LENGTH (type), byte_order, addr); 342 } 343 344 /* See value.h. */ 345 346 enum symbol_needs_kind 347 symbol_read_needs (struct symbol *sym) 348 { 349 if (SYMBOL_COMPUTED_OPS (sym) != NULL) 350 return SYMBOL_COMPUTED_OPS (sym)->get_symbol_read_needs (sym); 351 352 switch (SYMBOL_CLASS (sym)) 353 { 354 /* All cases listed explicitly so that gcc -Wall will detect it if 355 we failed to consider one. */ 356 case LOC_COMPUTED: 357 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method")); 358 359 case LOC_REGISTER: 360 case LOC_ARG: 361 case LOC_REF_ARG: 362 case LOC_REGPARM_ADDR: 363 case LOC_LOCAL: 364 return SYMBOL_NEEDS_FRAME; 365 366 case LOC_UNDEF: 367 case LOC_CONST: 368 case LOC_STATIC: 369 case LOC_TYPEDEF: 370 371 case LOC_LABEL: 372 /* Getting the address of a label can be done independently of the block, 373 even if some *uses* of that address wouldn't work so well without 374 the right frame. */ 375 376 case LOC_BLOCK: 377 case LOC_CONST_BYTES: 378 case LOC_UNRESOLVED: 379 case LOC_OPTIMIZED_OUT: 380 return SYMBOL_NEEDS_NONE; 381 } 382 return SYMBOL_NEEDS_FRAME; 383 } 384 385 /* See value.h. */ 386 387 int 388 symbol_read_needs_frame (struct symbol *sym) 389 { 390 return symbol_read_needs (sym) == SYMBOL_NEEDS_FRAME; 391 } 392 393 /* Private data to be used with minsym_lookup_iterator_cb. */ 394 395 struct minsym_lookup_data 396 { 397 /* The name of the minimal symbol we are searching for. */ 398 const char *name; 399 400 /* The field where the callback should store the minimal symbol 401 if found. It should be initialized to NULL before the search 402 is started. */ 403 struct bound_minimal_symbol result; 404 }; 405 406 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order. 407 It searches by name for a minimal symbol within the given OBJFILE. 408 The arguments are passed via CB_DATA, which in reality is a pointer 409 to struct minsym_lookup_data. */ 410 411 static int 412 minsym_lookup_iterator_cb (struct objfile *objfile, void *cb_data) 413 { 414 struct minsym_lookup_data *data = (struct minsym_lookup_data *) cb_data; 415 416 gdb_assert (data->result.minsym == NULL); 417 418 data->result = lookup_minimal_symbol (data->name, NULL, objfile); 419 420 /* The iterator should stop iff a match was found. */ 421 return (data->result.minsym != NULL); 422 } 423 424 /* Given static link expression and the frame it lives in, look for the frame 425 the static links points to and return it. Return NULL if we could not find 426 such a frame. */ 427 428 static struct frame_info * 429 follow_static_link (struct frame_info *frame, 430 const struct dynamic_prop *static_link) 431 { 432 CORE_ADDR upper_frame_base; 433 434 if (!dwarf2_evaluate_property (static_link, frame, NULL, &upper_frame_base)) 435 return NULL; 436 437 /* Now climb up the stack frame until we reach the frame we are interested 438 in. */ 439 for (; frame != NULL; frame = get_prev_frame (frame)) 440 { 441 struct symbol *framefunc = get_frame_function (frame); 442 443 /* Stacks can be quite deep: give the user a chance to stop this. */ 444 QUIT; 445 446 /* If we don't know how to compute FRAME's base address, don't give up: 447 maybe the frame we are looking for is upper in the stace frame. */ 448 if (framefunc != NULL 449 && SYMBOL_BLOCK_OPS (framefunc) != NULL 450 && SYMBOL_BLOCK_OPS (framefunc)->get_frame_base != NULL 451 && (SYMBOL_BLOCK_OPS (framefunc)->get_frame_base (framefunc, frame) 452 == upper_frame_base)) 453 break; 454 } 455 456 return frame; 457 } 458 459 /* Assuming VAR is a symbol that can be reached from FRAME thanks to lexical 460 rules, look for the frame that is actually hosting VAR and return it. If, 461 for some reason, we found no such frame, return NULL. 462 463 This kind of computation is necessary to correctly handle lexically nested 464 functions. 465 466 Note that in some cases, we know what scope VAR comes from but we cannot 467 reach the specific frame that hosts the instance of VAR we are looking for. 468 For backward compatibility purposes (with old compilers), we then look for 469 the first frame that can host it. */ 470 471 static struct frame_info * 472 get_hosting_frame (struct symbol *var, const struct block *var_block, 473 struct frame_info *frame) 474 { 475 const struct block *frame_block = NULL; 476 477 if (!symbol_read_needs_frame (var)) 478 return NULL; 479 480 /* Some symbols for local variables have no block: this happens when they are 481 not produced by a debug information reader, for instance when GDB creates 482 synthetic symbols. Without block information, we must assume they are 483 local to FRAME. In this case, there is nothing to do. */ 484 else if (var_block == NULL) 485 return frame; 486 487 /* We currently assume that all symbols with a location list need a frame. 488 This is true in practice because selecting the location description 489 requires to compute the CFA, hence requires a frame. However we have 490 tests that embed global/static symbols with null location lists. 491 We want to get <optimized out> instead of <frame required> when evaluating 492 them so return a frame instead of raising an error. */ 493 else if (var_block == block_global_block (var_block) 494 || var_block == block_static_block (var_block)) 495 return frame; 496 497 /* We have to handle the "my_func::my_local_var" notation. This requires us 498 to look for upper frames when we find no block for the current frame: here 499 and below, handle when frame_block == NULL. */ 500 if (frame != NULL) 501 frame_block = get_frame_block (frame, NULL); 502 503 /* Climb up the call stack until reaching the frame we are looking for. */ 504 while (frame != NULL && frame_block != var_block) 505 { 506 /* Stacks can be quite deep: give the user a chance to stop this. */ 507 QUIT; 508 509 if (frame_block == NULL) 510 { 511 frame = get_prev_frame (frame); 512 if (frame == NULL) 513 break; 514 frame_block = get_frame_block (frame, NULL); 515 } 516 517 /* If we failed to find the proper frame, fallback to the heuristic 518 method below. */ 519 else if (frame_block == block_global_block (frame_block)) 520 { 521 frame = NULL; 522 break; 523 } 524 525 /* Assuming we have a block for this frame: if we are at the function 526 level, the immediate upper lexical block is in an outer function: 527 follow the static link. */ 528 else if (BLOCK_FUNCTION (frame_block)) 529 { 530 const struct dynamic_prop *static_link 531 = block_static_link (frame_block); 532 int could_climb_up = 0; 533 534 if (static_link != NULL) 535 { 536 frame = follow_static_link (frame, static_link); 537 if (frame != NULL) 538 { 539 frame_block = get_frame_block (frame, NULL); 540 could_climb_up = frame_block != NULL; 541 } 542 } 543 if (!could_climb_up) 544 { 545 frame = NULL; 546 break; 547 } 548 } 549 550 else 551 /* We must be in some function nested lexical block. Just get the 552 outer block: both must share the same frame. */ 553 frame_block = BLOCK_SUPERBLOCK (frame_block); 554 } 555 556 /* Old compilers may not provide a static link, or they may provide an 557 invalid one. For such cases, fallback on the old way to evaluate 558 non-local references: just climb up the call stack and pick the first 559 frame that contains the variable we are looking for. */ 560 if (frame == NULL) 561 { 562 frame = block_innermost_frame (var_block); 563 if (frame == NULL) 564 { 565 if (BLOCK_FUNCTION (var_block) 566 && !block_inlined_p (var_block) 567 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (var_block))) 568 error (_("No frame is currently executing in block %s."), 569 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (var_block))); 570 else 571 error (_("No frame is currently executing in specified" 572 " block")); 573 } 574 } 575 576 return frame; 577 } 578 579 /* A default implementation for the "la_read_var_value" hook in 580 the language vector which should work in most situations. */ 581 582 struct value * 583 default_read_var_value (struct symbol *var, const struct block *var_block, 584 struct frame_info *frame) 585 { 586 struct value *v; 587 struct type *type = SYMBOL_TYPE (var); 588 CORE_ADDR addr; 589 enum symbol_needs_kind sym_need; 590 591 /* Call check_typedef on our type to make sure that, if TYPE is 592 a TYPE_CODE_TYPEDEF, its length is set to the length of the target type 593 instead of zero. However, we do not replace the typedef type by the 594 target type, because we want to keep the typedef in order to be able to 595 set the returned value type description correctly. */ 596 check_typedef (type); 597 598 sym_need = symbol_read_needs (var); 599 if (sym_need == SYMBOL_NEEDS_FRAME) 600 gdb_assert (frame != NULL); 601 else if (sym_need == SYMBOL_NEEDS_REGISTERS && !target_has_registers) 602 error (_("Cannot read `%s' without registers"), SYMBOL_PRINT_NAME (var)); 603 604 if (frame != NULL) 605 frame = get_hosting_frame (var, var_block, frame); 606 607 if (SYMBOL_COMPUTED_OPS (var) != NULL) 608 return SYMBOL_COMPUTED_OPS (var)->read_variable (var, frame); 609 610 switch (SYMBOL_CLASS (var)) 611 { 612 case LOC_CONST: 613 if (is_dynamic_type (type)) 614 { 615 /* Value is a constant byte-sequence and needs no memory access. */ 616 type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0); 617 } 618 /* Put the constant back in target format. */ 619 v = allocate_value (type); 620 store_signed_integer (value_contents_raw (v), TYPE_LENGTH (type), 621 gdbarch_byte_order (get_type_arch (type)), 622 (LONGEST) SYMBOL_VALUE (var)); 623 VALUE_LVAL (v) = not_lval; 624 return v; 625 626 case LOC_LABEL: 627 /* Put the constant back in target format. */ 628 v = allocate_value (type); 629 if (overlay_debugging) 630 { 631 CORE_ADDR addr 632 = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var), 633 SYMBOL_OBJ_SECTION (symbol_objfile (var), 634 var)); 635 636 store_typed_address (value_contents_raw (v), type, addr); 637 } 638 else 639 store_typed_address (value_contents_raw (v), type, 640 SYMBOL_VALUE_ADDRESS (var)); 641 VALUE_LVAL (v) = not_lval; 642 return v; 643 644 case LOC_CONST_BYTES: 645 if (is_dynamic_type (type)) 646 { 647 /* Value is a constant byte-sequence and needs no memory access. */ 648 type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0); 649 } 650 v = allocate_value (type); 651 memcpy (value_contents_raw (v), SYMBOL_VALUE_BYTES (var), 652 TYPE_LENGTH (type)); 653 VALUE_LVAL (v) = not_lval; 654 return v; 655 656 case LOC_STATIC: 657 if (overlay_debugging) 658 addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var), 659 SYMBOL_OBJ_SECTION (symbol_objfile (var), 660 var)); 661 else 662 addr = SYMBOL_VALUE_ADDRESS (var); 663 break; 664 665 case LOC_ARG: 666 addr = get_frame_args_address (frame); 667 if (!addr) 668 error (_("Unknown argument list address for `%s'."), 669 SYMBOL_PRINT_NAME (var)); 670 addr += SYMBOL_VALUE (var); 671 break; 672 673 case LOC_REF_ARG: 674 { 675 struct value *ref; 676 CORE_ADDR argref; 677 678 argref = get_frame_args_address (frame); 679 if (!argref) 680 error (_("Unknown argument list address for `%s'."), 681 SYMBOL_PRINT_NAME (var)); 682 argref += SYMBOL_VALUE (var); 683 ref = value_at (lookup_pointer_type (type), argref); 684 addr = value_as_address (ref); 685 break; 686 } 687 688 case LOC_LOCAL: 689 addr = get_frame_locals_address (frame); 690 addr += SYMBOL_VALUE (var); 691 break; 692 693 case LOC_TYPEDEF: 694 error (_("Cannot look up value of a typedef `%s'."), 695 SYMBOL_PRINT_NAME (var)); 696 break; 697 698 case LOC_BLOCK: 699 if (overlay_debugging) 700 addr = symbol_overlayed_address 701 (BLOCK_START (SYMBOL_BLOCK_VALUE (var)), 702 SYMBOL_OBJ_SECTION (symbol_objfile (var), var)); 703 else 704 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (var)); 705 break; 706 707 case LOC_REGISTER: 708 case LOC_REGPARM_ADDR: 709 { 710 int regno = SYMBOL_REGISTER_OPS (var) 711 ->register_number (var, get_frame_arch (frame)); 712 struct value *regval; 713 714 if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR) 715 { 716 regval = value_from_register (lookup_pointer_type (type), 717 regno, 718 frame); 719 720 if (regval == NULL) 721 error (_("Value of register variable not available for `%s'."), 722 SYMBOL_PRINT_NAME (var)); 723 724 addr = value_as_address (regval); 725 } 726 else 727 { 728 regval = value_from_register (type, regno, frame); 729 730 if (regval == NULL) 731 error (_("Value of register variable not available for `%s'."), 732 SYMBOL_PRINT_NAME (var)); 733 return regval; 734 } 735 } 736 break; 737 738 case LOC_COMPUTED: 739 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method")); 740 741 case LOC_UNRESOLVED: 742 { 743 struct minsym_lookup_data lookup_data; 744 struct minimal_symbol *msym; 745 struct obj_section *obj_section; 746 747 memset (&lookup_data, 0, sizeof (lookup_data)); 748 lookup_data.name = SYMBOL_LINKAGE_NAME (var); 749 750 gdbarch_iterate_over_objfiles_in_search_order 751 (symbol_arch (var), 752 minsym_lookup_iterator_cb, &lookup_data, 753 symbol_objfile (var)); 754 msym = lookup_data.result.minsym; 755 756 /* If we can't find the minsym there's a problem in the symbol info. 757 The symbol exists in the debug info, but it's missing in the minsym 758 table. */ 759 if (msym == NULL) 760 { 761 const char *flavour_name 762 = objfile_flavour_name (symbol_objfile (var)); 763 764 /* We can't get here unless we've opened the file, so flavour_name 765 can't be NULL. */ 766 gdb_assert (flavour_name != NULL); 767 error (_("Missing %s symbol \"%s\"."), 768 flavour_name, SYMBOL_LINKAGE_NAME (var)); 769 } 770 obj_section = MSYMBOL_OBJ_SECTION (lookup_data.result.objfile, msym); 771 /* Relocate address, unless there is no section or the variable is 772 a TLS variable. */ 773 if (obj_section == NULL 774 || (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0) 775 addr = MSYMBOL_VALUE_RAW_ADDRESS (msym); 776 else 777 addr = BMSYMBOL_VALUE_ADDRESS (lookup_data.result); 778 if (overlay_debugging) 779 addr = symbol_overlayed_address (addr, obj_section); 780 /* Determine address of TLS variable. */ 781 if (obj_section 782 && (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0) 783 addr = target_translate_tls_address (obj_section->objfile, addr); 784 } 785 break; 786 787 case LOC_OPTIMIZED_OUT: 788 return allocate_optimized_out_value (type); 789 790 default: 791 error (_("Cannot look up value of a botched symbol `%s'."), 792 SYMBOL_PRINT_NAME (var)); 793 break; 794 } 795 796 v = value_at_lazy (type, addr); 797 return v; 798 } 799 800 /* Calls VAR's language la_read_var_value hook with the given arguments. */ 801 802 struct value * 803 read_var_value (struct symbol *var, const struct block *var_block, 804 struct frame_info *frame) 805 { 806 const struct language_defn *lang = language_def (SYMBOL_LANGUAGE (var)); 807 808 gdb_assert (lang != NULL); 809 gdb_assert (lang->la_read_var_value != NULL); 810 811 return lang->la_read_var_value (var, var_block, frame); 812 } 813 814 /* Install default attributes for register values. */ 815 816 struct value * 817 default_value_from_register (struct gdbarch *gdbarch, struct type *type, 818 int regnum, struct frame_id frame_id) 819 { 820 int len = TYPE_LENGTH (type); 821 struct value *value = allocate_value (type); 822 struct frame_info *frame; 823 824 VALUE_LVAL (value) = lval_register; 825 frame = frame_find_by_id (frame_id); 826 827 if (frame == NULL) 828 frame_id = null_frame_id; 829 else 830 frame_id = get_frame_id (get_next_frame_sentinel_okay (frame)); 831 832 VALUE_NEXT_FRAME_ID (value) = frame_id; 833 VALUE_REGNUM (value) = regnum; 834 835 /* Any structure stored in more than one register will always be 836 an integral number of registers. Otherwise, you need to do 837 some fiddling with the last register copied here for little 838 endian machines. */ 839 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG 840 && len < register_size (gdbarch, regnum)) 841 /* Big-endian, and we want less than full size. */ 842 set_value_offset (value, register_size (gdbarch, regnum) - len); 843 else 844 set_value_offset (value, 0); 845 846 return value; 847 } 848 849 /* VALUE must be an lval_register value. If regnum is the value's 850 associated register number, and len the length of the values type, 851 read one or more registers in FRAME, starting with register REGNUM, 852 until we've read LEN bytes. 853 854 If any of the registers we try to read are optimized out, then mark the 855 complete resulting value as optimized out. */ 856 857 void 858 read_frame_register_value (struct value *value, struct frame_info *frame) 859 { 860 struct gdbarch *gdbarch = get_frame_arch (frame); 861 LONGEST offset = 0; 862 LONGEST reg_offset = value_offset (value); 863 int regnum = VALUE_REGNUM (value); 864 int len = type_length_units (check_typedef (value_type (value))); 865 866 gdb_assert (VALUE_LVAL (value) == lval_register); 867 868 /* Skip registers wholly inside of REG_OFFSET. */ 869 while (reg_offset >= register_size (gdbarch, regnum)) 870 { 871 reg_offset -= register_size (gdbarch, regnum); 872 regnum++; 873 } 874 875 /* Copy the data. */ 876 while (len > 0) 877 { 878 struct value *regval = get_frame_register_value (frame, regnum); 879 int reg_len = type_length_units (value_type (regval)) - reg_offset; 880 881 /* If the register length is larger than the number of bytes 882 remaining to copy, then only copy the appropriate bytes. */ 883 if (reg_len > len) 884 reg_len = len; 885 886 value_contents_copy (value, offset, regval, reg_offset, reg_len); 887 888 offset += reg_len; 889 len -= reg_len; 890 reg_offset = 0; 891 regnum++; 892 } 893 } 894 895 /* Return a value of type TYPE, stored in register REGNUM, in frame FRAME. */ 896 897 struct value * 898 value_from_register (struct type *type, int regnum, struct frame_info *frame) 899 { 900 struct gdbarch *gdbarch = get_frame_arch (frame); 901 struct type *type1 = check_typedef (type); 902 struct value *v; 903 904 if (gdbarch_convert_register_p (gdbarch, regnum, type1)) 905 { 906 int optim, unavail, ok; 907 908 /* The ISA/ABI need to something weird when obtaining the 909 specified value from this register. It might need to 910 re-order non-adjacent, starting with REGNUM (see MIPS and 911 i386). It might need to convert the [float] register into 912 the corresponding [integer] type (see Alpha). The assumption 913 is that gdbarch_register_to_value populates the entire value 914 including the location. */ 915 v = allocate_value (type); 916 VALUE_LVAL (v) = lval_register; 917 VALUE_NEXT_FRAME_ID (v) = get_frame_id (get_next_frame_sentinel_okay (frame)); 918 VALUE_REGNUM (v) = regnum; 919 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1, 920 value_contents_raw (v), &optim, 921 &unavail); 922 923 if (!ok) 924 { 925 if (optim) 926 mark_value_bytes_optimized_out (v, 0, TYPE_LENGTH (type)); 927 if (unavail) 928 mark_value_bytes_unavailable (v, 0, TYPE_LENGTH (type)); 929 } 930 } 931 else 932 { 933 /* Construct the value. */ 934 v = gdbarch_value_from_register (gdbarch, type, 935 regnum, get_frame_id (frame)); 936 937 /* Get the data. */ 938 read_frame_register_value (v, frame); 939 } 940 941 return v; 942 } 943 944 /* Return contents of register REGNUM in frame FRAME as address. 945 Will abort if register value is not available. */ 946 947 CORE_ADDR 948 address_from_register (int regnum, struct frame_info *frame) 949 { 950 struct gdbarch *gdbarch = get_frame_arch (frame); 951 struct type *type = builtin_type (gdbarch)->builtin_data_ptr; 952 struct value *value; 953 CORE_ADDR result; 954 int regnum_max_excl = (gdbarch_num_regs (gdbarch) 955 + gdbarch_num_pseudo_regs (gdbarch)); 956 957 if (regnum < 0 || regnum >= regnum_max_excl) 958 error (_("Invalid register #%d, expecting 0 <= # < %d"), regnum, 959 regnum_max_excl); 960 961 /* This routine may be called during early unwinding, at a time 962 where the ID of FRAME is not yet known. Calling value_from_register 963 would therefore abort in get_frame_id. However, since we only need 964 a temporary value that is never used as lvalue, we actually do not 965 really need to set its VALUE_NEXT_FRAME_ID. Therefore, we re-implement 966 the core of value_from_register, but use the null_frame_id. */ 967 968 /* Some targets require a special conversion routine even for plain 969 pointer types. Avoid constructing a value object in those cases. */ 970 if (gdbarch_convert_register_p (gdbarch, regnum, type)) 971 { 972 gdb_byte *buf = (gdb_byte *) alloca (TYPE_LENGTH (type)); 973 int optim, unavail, ok; 974 975 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type, 976 buf, &optim, &unavail); 977 if (!ok) 978 { 979 /* This function is used while computing a location expression. 980 Complain about the value being optimized out, rather than 981 letting value_as_address complain about some random register 982 the expression depends on not being saved. */ 983 error_value_optimized_out (); 984 } 985 986 return unpack_long (type, buf); 987 } 988 989 value = gdbarch_value_from_register (gdbarch, type, regnum, null_frame_id); 990 read_frame_register_value (value, frame); 991 992 if (value_optimized_out (value)) 993 { 994 /* This function is used while computing a location expression. 995 Complain about the value being optimized out, rather than 996 letting value_as_address complain about some random register 997 the expression depends on not being saved. */ 998 error_value_optimized_out (); 999 } 1000 1001 result = value_as_address (value); 1002 release_value (value); 1003 value_free (value); 1004 1005 return result; 1006 } 1007 1008