1 /* Top level stuff for GDB, the GNU debugger. 2 3 Copyright (C) 1999-2019 Free Software Foundation, Inc. 4 5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "top.h" 24 #include "inferior.h" 25 #include "infrun.h" 26 #include "target.h" 27 #include "terminal.h" 28 #include "event-loop.h" 29 #include "event-top.h" 30 #include "interps.h" 31 #include <signal.h> 32 #include "cli/cli-script.h" /* for reset_command_nest_depth */ 33 #include "main.h" 34 #include "gdbthread.h" 35 #include "observable.h" 36 #include "continuations.h" 37 #include "gdbcmd.h" /* for dont_repeat() */ 38 #include "annotate.h" 39 #include "maint.h" 40 #include "common/buffer.h" 41 #include "ser-event.h" 42 #include "gdb_select.h" 43 44 /* readline include files. */ 45 #include "readline/readline.h" 46 #include "readline/history.h" 47 48 /* readline defines this. */ 49 #undef savestring 50 51 static std::string top_level_prompt (); 52 53 /* Signal handlers. */ 54 #ifdef SIGQUIT 55 static void handle_sigquit (int sig); 56 #endif 57 #ifdef SIGHUP 58 static void handle_sighup (int sig); 59 #endif 60 static void handle_sigfpe (int sig); 61 62 /* Functions to be invoked by the event loop in response to 63 signals. */ 64 #if defined (SIGQUIT) || defined (SIGHUP) 65 static void async_do_nothing (gdb_client_data); 66 #endif 67 #ifdef SIGHUP 68 static void async_disconnect (gdb_client_data); 69 #endif 70 static void async_float_handler (gdb_client_data); 71 #ifdef SIGTSTP 72 static void async_sigtstp_handler (gdb_client_data); 73 #endif 74 static void async_sigterm_handler (gdb_client_data arg); 75 76 /* Instead of invoking (and waiting for) readline to read the command 77 line and pass it back for processing, we use readline's alternate 78 interface, via callback functions, so that the event loop can react 79 to other event sources while we wait for input. */ 80 81 /* Important variables for the event loop. */ 82 83 /* This is used to determine if GDB is using the readline library or 84 its own simplified form of readline. It is used by the asynchronous 85 form of the set editing command. 86 ezannoni: as of 1999-04-29 I expect that this 87 variable will not be used after gdb is changed to use the event 88 loop as default engine, and event-top.c is merged into top.c. */ 89 int set_editing_cmd_var; 90 91 /* This is used to display the notification of the completion of an 92 asynchronous execution command. */ 93 int exec_done_display_p = 0; 94 95 /* Used by the stdin event handler to compensate for missed stdin events. 96 Setting this to a non-zero value inside an stdin callback makes the callback 97 run again. */ 98 int call_stdin_event_handler_again_p; 99 100 /* Signal handling variables. */ 101 /* Each of these is a pointer to a function that the event loop will 102 invoke if the corresponding signal has received. The real signal 103 handlers mark these functions as ready to be executed and the event 104 loop, in a later iteration, calls them. See the function 105 invoke_async_signal_handler. */ 106 static struct async_signal_handler *sigint_token; 107 #ifdef SIGHUP 108 static struct async_signal_handler *sighup_token; 109 #endif 110 #ifdef SIGQUIT 111 static struct async_signal_handler *sigquit_token; 112 #endif 113 static struct async_signal_handler *sigfpe_token; 114 #ifdef SIGTSTP 115 static struct async_signal_handler *sigtstp_token; 116 #endif 117 static struct async_signal_handler *async_sigterm_token; 118 119 /* This hook is called by gdb_rl_callback_read_char_wrapper after each 120 character is processed. */ 121 void (*after_char_processing_hook) (void); 122 123 124 /* Wrapper function for calling into the readline library. This takes 125 care of a couple things: 126 127 - The event loop expects the callback function to have a parameter, 128 while readline expects none. 129 130 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER 131 across readline requires special handling. 132 133 On the exceptions issue: 134 135 DWARF-based unwinding cannot cross code built without -fexceptions. 136 Any exception that tries to propagate through such code will fail 137 and the result is a call to std::terminate. While some ABIs, such 138 as x86-64, require all code to be built with exception tables, 139 others don't. 140 141 This is a problem when GDB calls some non-EH-aware C library code, 142 that calls into GDB again through a callback, and that GDB callback 143 code throws a C++ exception. Turns out this is exactly what 144 happens with GDB's readline callback. 145 146 In such cases, we must catch and save any C++ exception that might 147 be thrown from the GDB callback before returning to the 148 non-EH-aware code. When the non-EH-aware function itself returns 149 back to GDB, we then rethrow the original C++ exception. 150 151 In the readline case however, the right thing to do is to longjmp 152 out of the callback, rather than do a normal return -- there's no 153 way for the callback to return to readline an indication that an 154 error happened, so a normal return would have rl_callback_read_char 155 potentially continue processing further input, redisplay the 156 prompt, etc. Instead of raw setjmp/longjmp however, we use our 157 sjlj-based TRY/CATCH mechanism, which knows to handle multiple 158 levels of active setjmp/longjmp frames, needed in order to handle 159 the readline callback recursing, as happens with e.g., secondary 160 prompts / queries, through gdb_readline_wrapper. This must be 161 noexcept in order to avoid problems with mixing sjlj and 162 (sjlj-based) C++ exceptions. */ 163 164 static struct gdb_exception 165 gdb_rl_callback_read_char_wrapper_noexcept () noexcept 166 { 167 struct gdb_exception gdb_expt = exception_none; 168 169 /* C++ exceptions can't normally be thrown across readline (unless 170 it is built with -fexceptions, but it won't by default on many 171 ABIs). So we instead wrap the readline call with a sjlj-based 172 TRY/CATCH, and rethrow the GDB exception once back in GDB. */ 173 TRY_SJLJ 174 { 175 rl_callback_read_char (); 176 if (after_char_processing_hook) 177 (*after_char_processing_hook) (); 178 } 179 CATCH_SJLJ (ex, RETURN_MASK_ALL) 180 { 181 gdb_expt = ex; 182 } 183 END_CATCH_SJLJ 184 185 return gdb_expt; 186 } 187 188 static void 189 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data) 190 { 191 struct gdb_exception gdb_expt 192 = gdb_rl_callback_read_char_wrapper_noexcept (); 193 194 /* Rethrow using the normal EH mechanism. */ 195 if (gdb_expt.reason < 0) 196 throw_exception (gdb_expt); 197 } 198 199 /* GDB's readline callback handler. Calls the current INPUT_HANDLER, 200 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back 201 across readline. See gdb_rl_callback_read_char_wrapper. This must 202 be noexcept in order to avoid problems with mixing sjlj and 203 (sjlj-based) C++ exceptions. */ 204 205 static void 206 gdb_rl_callback_handler (char *rl) noexcept 207 { 208 struct gdb_exception gdb_rl_expt = exception_none; 209 struct ui *ui = current_ui; 210 211 TRY 212 { 213 ui->input_handler (gdb::unique_xmalloc_ptr<char> (rl)); 214 } 215 CATCH (ex, RETURN_MASK_ALL) 216 { 217 gdb_rl_expt = ex; 218 } 219 END_CATCH 220 221 /* If we caught a GDB exception, longjmp out of the readline 222 callback. There's no other way for the callback to signal to 223 readline that an error happened. A normal return would have 224 readline potentially continue processing further input, redisplay 225 the prompt, etc. (This is what GDB historically did when it was 226 a C program.) Note that since we're long jumping, local variable 227 dtors are NOT run automatically. */ 228 if (gdb_rl_expt.reason < 0) 229 throw_exception_sjlj (gdb_rl_expt); 230 } 231 232 /* Change the function to be invoked every time there is a character 233 ready on stdin. This is used when the user sets the editing off, 234 therefore bypassing readline, and letting gdb handle the input 235 itself, via gdb_readline_no_editing_callback. Also it is used in 236 the opposite case in which the user sets editing on again, by 237 restoring readline handling of the input. 238 239 NOTE: this operates on input_fd, not instream. If we are reading 240 commands from a file, instream will point to the file. However, we 241 always read commands from a file with editing off. This means that 242 the 'set editing on/off' will have effect only on the interactive 243 session. */ 244 245 void 246 change_line_handler (int editing) 247 { 248 struct ui *ui = current_ui; 249 250 /* We can only have one instance of readline, so we only allow 251 editing on the main UI. */ 252 if (ui != main_ui) 253 return; 254 255 /* Don't try enabling editing if the interpreter doesn't support it 256 (e.g., MI). */ 257 if (!interp_supports_command_editing (top_level_interpreter ()) 258 || !interp_supports_command_editing (command_interp ())) 259 return; 260 261 if (editing) 262 { 263 gdb_assert (ui == main_ui); 264 265 /* Turn on editing by using readline. */ 266 ui->call_readline = gdb_rl_callback_read_char_wrapper; 267 } 268 else 269 { 270 /* Turn off editing by using gdb_readline_no_editing_callback. */ 271 if (ui->command_editing) 272 gdb_rl_callback_handler_remove (); 273 ui->call_readline = gdb_readline_no_editing_callback; 274 } 275 ui->command_editing = editing; 276 } 277 278 /* The functions below are wrappers for rl_callback_handler_remove and 279 rl_callback_handler_install that keep track of whether the callback 280 handler is installed in readline. This is necessary because after 281 handling a target event of a background execution command, we may 282 need to reinstall the callback handler if it was removed due to a 283 secondary prompt. See gdb_readline_wrapper_line. We don't 284 unconditionally install the handler for every target event because 285 that also clears the line buffer, thus installing it while the user 286 is typing would lose input. */ 287 288 /* Whether we've registered a callback handler with readline. */ 289 static int callback_handler_installed; 290 291 /* See event-top.h, and above. */ 292 293 void 294 gdb_rl_callback_handler_remove (void) 295 { 296 gdb_assert (current_ui == main_ui); 297 298 rl_callback_handler_remove (); 299 callback_handler_installed = 0; 300 } 301 302 /* See event-top.h, and above. Note this wrapper doesn't have an 303 actual callback parameter because we always install 304 INPUT_HANDLER. */ 305 306 void 307 gdb_rl_callback_handler_install (const char *prompt) 308 { 309 gdb_assert (current_ui == main_ui); 310 311 /* Calling rl_callback_handler_install resets readline's input 312 buffer. Calling this when we were already processing input 313 therefore loses input. */ 314 gdb_assert (!callback_handler_installed); 315 316 rl_callback_handler_install (prompt, gdb_rl_callback_handler); 317 callback_handler_installed = 1; 318 } 319 320 /* See event-top.h, and above. */ 321 322 void 323 gdb_rl_callback_handler_reinstall (void) 324 { 325 gdb_assert (current_ui == main_ui); 326 327 if (!callback_handler_installed) 328 { 329 /* Passing NULL as prompt argument tells readline to not display 330 a prompt. */ 331 gdb_rl_callback_handler_install (NULL); 332 } 333 } 334 335 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the 336 prompt that is displayed is the current top level prompt. 337 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary 338 prompt. 339 340 This is used after each gdb command has completed, and in the 341 following cases: 342 343 1. When the user enters a command line which is ended by '\' 344 indicating that the command will continue on the next line. In 345 that case the prompt that is displayed is the empty string. 346 347 2. When the user is entering 'commands' for a breakpoint, or 348 actions for a tracepoint. In this case the prompt will be '>' 349 350 3. On prompting for pagination. */ 351 352 void 353 display_gdb_prompt (const char *new_prompt) 354 { 355 std::string actual_gdb_prompt; 356 357 annotate_display_prompt (); 358 359 /* Reset the nesting depth used when trace-commands is set. */ 360 reset_command_nest_depth (); 361 362 /* Do not call the python hook on an explicit prompt change as 363 passed to this function, as this forms a secondary/local prompt, 364 IE, displayed but not set. */ 365 if (! new_prompt) 366 { 367 struct ui *ui = current_ui; 368 369 if (ui->prompt_state == PROMPTED) 370 internal_error (__FILE__, __LINE__, _("double prompt")); 371 else if (ui->prompt_state == PROMPT_BLOCKED) 372 { 373 /* This is to trick readline into not trying to display the 374 prompt. Even though we display the prompt using this 375 function, readline still tries to do its own display if 376 we don't call rl_callback_handler_install and 377 rl_callback_handler_remove (which readline detects 378 because a global variable is not set). If readline did 379 that, it could mess up gdb signal handlers for SIGINT. 380 Readline assumes that between calls to rl_set_signals and 381 rl_clear_signals gdb doesn't do anything with the signal 382 handlers. Well, that's not the case, because when the 383 target executes we change the SIGINT signal handler. If 384 we allowed readline to display the prompt, the signal 385 handler change would happen exactly between the calls to 386 the above two functions. Calling 387 rl_callback_handler_remove(), does the job. */ 388 389 if (current_ui->command_editing) 390 gdb_rl_callback_handler_remove (); 391 return; 392 } 393 else if (ui->prompt_state == PROMPT_NEEDED) 394 { 395 /* Display the top level prompt. */ 396 actual_gdb_prompt = top_level_prompt (); 397 ui->prompt_state = PROMPTED; 398 } 399 } 400 else 401 actual_gdb_prompt = new_prompt; 402 403 if (current_ui->command_editing) 404 { 405 gdb_rl_callback_handler_remove (); 406 gdb_rl_callback_handler_install (actual_gdb_prompt.c_str ()); 407 } 408 /* new_prompt at this point can be the top of the stack or the one 409 passed in. It can't be NULL. */ 410 else 411 { 412 /* Don't use a _filtered function here. It causes the assumed 413 character position to be off, since the newline we read from 414 the user is not accounted for. */ 415 fputs_unfiltered (actual_gdb_prompt.c_str (), gdb_stdout); 416 gdb_flush (gdb_stdout); 417 } 418 } 419 420 /* Return the top level prompt, as specified by "set prompt", possibly 421 overriden by the python gdb.prompt_hook hook, and then composed 422 with the prompt prefix and suffix (annotations). */ 423 424 static std::string 425 top_level_prompt (void) 426 { 427 char *prompt; 428 429 /* Give observers a chance of changing the prompt. E.g., the python 430 `gdb.prompt_hook' is installed as an observer. */ 431 gdb::observers::before_prompt.notify (get_prompt ()); 432 433 prompt = get_prompt (); 434 435 if (annotation_level >= 2) 436 { 437 /* Prefix needs to have new line at end. */ 438 const char prefix[] = "\n\032\032pre-prompt\n"; 439 440 /* Suffix needs to have a new line at end and \032 \032 at 441 beginning. */ 442 const char suffix[] = "\n\032\032prompt\n"; 443 444 return std::string (prefix) + prompt + suffix; 445 } 446 447 return prompt; 448 } 449 450 /* See top.h. */ 451 452 struct ui *main_ui; 453 struct ui *current_ui; 454 struct ui *ui_list; 455 456 /* Get a pointer to the current UI's line buffer. This is used to 457 construct a whole line of input from partial input. */ 458 459 static struct buffer * 460 get_command_line_buffer (void) 461 { 462 return ¤t_ui->line_buffer; 463 } 464 465 /* When there is an event ready on the stdin file descriptor, instead 466 of calling readline directly throught the callback function, or 467 instead of calling gdb_readline_no_editing_callback, give gdb a 468 chance to detect errors and do something. */ 469 470 void 471 stdin_event_handler (int error, gdb_client_data client_data) 472 { 473 struct ui *ui = (struct ui *) client_data; 474 475 if (error) 476 { 477 /* Switch to the main UI, so diagnostics always go there. */ 478 current_ui = main_ui; 479 480 delete_file_handler (ui->input_fd); 481 if (main_ui == ui) 482 { 483 /* If stdin died, we may as well kill gdb. */ 484 printf_unfiltered (_("error detected on stdin\n")); 485 quit_command ((char *) 0, 0); 486 } 487 else 488 { 489 /* Simply delete the UI. */ 490 delete ui; 491 } 492 } 493 else 494 { 495 /* Switch to the UI whose input descriptor woke up the event 496 loop. */ 497 current_ui = ui; 498 499 /* This makes sure a ^C immediately followed by further input is 500 always processed in that order. E.g,. with input like 501 "^Cprint 1\n", the SIGINT handler runs, marks the async 502 signal handler, and then select/poll may return with stdin 503 ready, instead of -1/EINTR. The 504 gdb.base/double-prompt-target-event-error.exp test exercises 505 this. */ 506 QUIT; 507 508 do 509 { 510 call_stdin_event_handler_again_p = 0; 511 ui->call_readline (client_data); 512 } 513 while (call_stdin_event_handler_again_p != 0); 514 } 515 } 516 517 /* See top.h. */ 518 519 void 520 ui_register_input_event_handler (struct ui *ui) 521 { 522 add_file_handler (ui->input_fd, stdin_event_handler, ui); 523 } 524 525 /* See top.h. */ 526 527 void 528 ui_unregister_input_event_handler (struct ui *ui) 529 { 530 delete_file_handler (ui->input_fd); 531 } 532 533 /* Re-enable stdin after the end of an execution command in 534 synchronous mode, or after an error from the target, and we aborted 535 the exec operation. */ 536 537 void 538 async_enable_stdin (void) 539 { 540 struct ui *ui = current_ui; 541 542 if (ui->prompt_state == PROMPT_BLOCKED) 543 { 544 target_terminal::ours (); 545 ui_register_input_event_handler (ui); 546 ui->prompt_state = PROMPT_NEEDED; 547 } 548 } 549 550 /* Disable reads from stdin (the console) marking the command as 551 synchronous. */ 552 553 void 554 async_disable_stdin (void) 555 { 556 struct ui *ui = current_ui; 557 558 ui->prompt_state = PROMPT_BLOCKED; 559 delete_file_handler (ui->input_fd); 560 } 561 562 563 /* Handle a gdb command line. This function is called when 564 handle_line_of_input has concatenated one or more input lines into 565 a whole command. */ 566 567 void 568 command_handler (const char *command) 569 { 570 struct ui *ui = current_ui; 571 const char *c; 572 573 if (ui->instream == ui->stdin_stream) 574 reinitialize_more_filter (); 575 576 scoped_command_stats stat_reporter (true); 577 578 /* Do not execute commented lines. */ 579 for (c = command; *c == ' ' || *c == '\t'; c++) 580 ; 581 if (c[0] != '#') 582 { 583 execute_command (command, ui->instream == ui->stdin_stream); 584 585 /* Do any commands attached to breakpoint we stopped at. */ 586 bpstat_do_actions (); 587 } 588 } 589 590 /* Append RL, an input line returned by readline or one of its 591 emulations, to CMD_LINE_BUFFER. Returns the command line if we 592 have a whole command line ready to be processed by the command 593 interpreter or NULL if the command line isn't complete yet (input 594 line ends in a backslash). */ 595 596 static char * 597 command_line_append_input_line (struct buffer *cmd_line_buffer, const char *rl) 598 { 599 char *cmd; 600 size_t len; 601 602 len = strlen (rl); 603 604 if (len > 0 && rl[len - 1] == '\\') 605 { 606 /* Don't copy the backslash and wait for more. */ 607 buffer_grow (cmd_line_buffer, rl, len - 1); 608 cmd = NULL; 609 } 610 else 611 { 612 /* Copy whole line including terminating null, and we're 613 done. */ 614 buffer_grow (cmd_line_buffer, rl, len + 1); 615 cmd = cmd_line_buffer->buffer; 616 } 617 618 return cmd; 619 } 620 621 /* Handle a line of input coming from readline. 622 623 If the read line ends with a continuation character (backslash), 624 save the partial input in CMD_LINE_BUFFER (except the backslash), 625 and return NULL. Otherwise, save the partial input and return a 626 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a 627 whole command line is ready to be executed. 628 629 Returns EOF on end of file. 630 631 If REPEAT, handle command repetitions: 632 633 - If the input command line is NOT empty, the command returned is 634 copied into the global 'saved_command_line' var so that it can 635 be repeated later. 636 637 - OTOH, if the input command line IS empty, return the previously 638 saved command instead of the empty input line. 639 */ 640 641 char * 642 handle_line_of_input (struct buffer *cmd_line_buffer, 643 const char *rl, int repeat, 644 const char *annotation_suffix) 645 { 646 struct ui *ui = current_ui; 647 int from_tty = ui->instream == ui->stdin_stream; 648 char *p1; 649 char *cmd; 650 651 if (rl == NULL) 652 return (char *) EOF; 653 654 cmd = command_line_append_input_line (cmd_line_buffer, rl); 655 if (cmd == NULL) 656 return NULL; 657 658 /* We have a complete command line now. Prepare for the next 659 command, but leave ownership of memory to the buffer . */ 660 cmd_line_buffer->used_size = 0; 661 662 if (from_tty && annotation_level > 1) 663 { 664 printf_unfiltered (("\n\032\032post-")); 665 puts_unfiltered (annotation_suffix); 666 printf_unfiltered (("\n")); 667 } 668 669 #define SERVER_COMMAND_PREFIX "server " 670 server_command = startswith (cmd, SERVER_COMMAND_PREFIX); 671 if (server_command) 672 { 673 /* Note that we don't set `saved_command_line'. Between this 674 and the check in dont_repeat, this insures that repeating 675 will still do the right thing. */ 676 return cmd + strlen (SERVER_COMMAND_PREFIX); 677 } 678 679 /* Do history expansion if that is wished. */ 680 if (history_expansion_p && from_tty && input_interactive_p (current_ui)) 681 { 682 char *cmd_expansion; 683 int expanded; 684 685 expanded = history_expand (cmd, &cmd_expansion); 686 gdb::unique_xmalloc_ptr<char> history_value (cmd_expansion); 687 if (expanded) 688 { 689 size_t len; 690 691 /* Print the changes. */ 692 printf_unfiltered ("%s\n", history_value.get ()); 693 694 /* If there was an error, call this function again. */ 695 if (expanded < 0) 696 return cmd; 697 698 /* history_expand returns an allocated string. Just replace 699 our buffer with it. */ 700 len = strlen (history_value.get ()); 701 xfree (buffer_finish (cmd_line_buffer)); 702 cmd_line_buffer->buffer = history_value.get (); 703 cmd_line_buffer->buffer_size = len + 1; 704 cmd = history_value.release (); 705 } 706 } 707 708 /* If we just got an empty line, and that is supposed to repeat the 709 previous command, return the previously saved command. */ 710 for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++) 711 ; 712 if (repeat && *p1 == '\0') 713 return saved_command_line; 714 715 /* Add command to history if appropriate. Note: lines consisting 716 solely of comments are also added to the command history. This 717 is useful when you type a command, and then realize you don't 718 want to execute it quite yet. You can comment out the command 719 and then later fetch it from the value history and remove the 720 '#'. The kill ring is probably better, but some people are in 721 the habit of commenting things out. */ 722 if (*cmd != '\0' && from_tty && input_interactive_p (current_ui)) 723 gdb_add_history (cmd); 724 725 /* Save into global buffer if appropriate. */ 726 if (repeat) 727 { 728 xfree (saved_command_line); 729 saved_command_line = xstrdup (cmd); 730 return saved_command_line; 731 } 732 else 733 return cmd; 734 } 735 736 /* Handle a complete line of input. This is called by the callback 737 mechanism within the readline library. Deal with incomplete 738 commands as well, by saving the partial input in a global 739 buffer. 740 741 NOTE: This is the asynchronous version of the command_line_input 742 function. */ 743 744 void 745 command_line_handler (gdb::unique_xmalloc_ptr<char> &&rl) 746 { 747 struct buffer *line_buffer = get_command_line_buffer (); 748 struct ui *ui = current_ui; 749 char *cmd; 750 751 cmd = handle_line_of_input (line_buffer, rl.get (), 1, "prompt"); 752 if (cmd == (char *) EOF) 753 { 754 /* stdin closed. The connection with the terminal is gone. 755 This happens at the end of a testsuite run, after Expect has 756 hung up but GDB is still alive. In such a case, we just quit 757 gdb killing the inferior program too. */ 758 printf_unfiltered ("quit\n"); 759 execute_command ("quit", 1); 760 } 761 else if (cmd == NULL) 762 { 763 /* We don't have a full line yet. Print an empty prompt. */ 764 display_gdb_prompt (""); 765 } 766 else 767 { 768 ui->prompt_state = PROMPT_NEEDED; 769 770 command_handler (cmd); 771 772 if (ui->prompt_state != PROMPTED) 773 display_gdb_prompt (0); 774 } 775 } 776 777 /* Does reading of input from terminal w/o the editing features 778 provided by the readline library. Calls the line input handler 779 once we have a whole input line. */ 780 781 void 782 gdb_readline_no_editing_callback (gdb_client_data client_data) 783 { 784 int c; 785 char *result; 786 struct buffer line_buffer; 787 static int done_once = 0; 788 struct ui *ui = current_ui; 789 790 buffer_init (&line_buffer); 791 792 /* Unbuffer the input stream, so that, later on, the calls to fgetc 793 fetch only one char at the time from the stream. The fgetc's will 794 get up to the first newline, but there may be more chars in the 795 stream after '\n'. If we buffer the input and fgetc drains the 796 stream, getting stuff beyond the newline as well, a select, done 797 afterwards will not trigger. */ 798 if (!done_once && !ISATTY (ui->instream)) 799 { 800 setbuf (ui->instream, NULL); 801 done_once = 1; 802 } 803 804 /* We still need the while loop here, even though it would seem 805 obvious to invoke gdb_readline_no_editing_callback at every 806 character entered. If not using the readline library, the 807 terminal is in cooked mode, which sends the characters all at 808 once. Poll will notice that the input fd has changed state only 809 after enter is pressed. At this point we still need to fetch all 810 the chars entered. */ 811 812 while (1) 813 { 814 /* Read from stdin if we are executing a user defined command. 815 This is the right thing for prompt_for_continue, at least. */ 816 c = fgetc (ui->instream != NULL ? ui->instream : ui->stdin_stream); 817 818 if (c == EOF) 819 { 820 if (line_buffer.used_size > 0) 821 { 822 /* The last line does not end with a newline. Return it, and 823 if we are called again fgetc will still return EOF and 824 we'll return NULL then. */ 825 break; 826 } 827 xfree (buffer_finish (&line_buffer)); 828 ui->input_handler (NULL); 829 return; 830 } 831 832 if (c == '\n') 833 { 834 if (line_buffer.used_size > 0 835 && line_buffer.buffer[line_buffer.used_size - 1] == '\r') 836 line_buffer.used_size--; 837 break; 838 } 839 840 buffer_grow_char (&line_buffer, c); 841 } 842 843 buffer_grow_char (&line_buffer, '\0'); 844 result = buffer_finish (&line_buffer); 845 ui->input_handler (gdb::unique_xmalloc_ptr<char> (result)); 846 } 847 848 849 /* The serial event associated with the QUIT flag. set_quit_flag sets 850 this, and check_quit_flag clears it. Used by interruptible_select 851 to be able to do interruptible I/O with no race with the SIGINT 852 handler. */ 853 static struct serial_event *quit_serial_event; 854 855 /* Initialization of signal handlers and tokens. There is a function 856 handle_sig* for each of the signals GDB cares about. Specifically: 857 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These 858 functions are the actual signal handlers associated to the signals 859 via calls to signal(). The only job for these functions is to 860 enqueue the appropriate event/procedure with the event loop. Such 861 procedures are the old signal handlers. The event loop will take 862 care of invoking the queued procedures to perform the usual tasks 863 associated with the reception of the signal. */ 864 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals. 865 init_signals will become obsolete as we move to have to event loop 866 as the default for gdb. */ 867 void 868 async_init_signals (void) 869 { 870 initialize_async_signal_handlers (); 871 872 quit_serial_event = make_serial_event (); 873 874 signal (SIGINT, handle_sigint); 875 sigint_token = 876 create_async_signal_handler (async_request_quit, NULL); 877 signal (SIGTERM, handle_sigterm); 878 async_sigterm_token 879 = create_async_signal_handler (async_sigterm_handler, NULL); 880 881 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed 882 to the inferior and breakpoints will be ignored. */ 883 #ifdef SIGTRAP 884 signal (SIGTRAP, SIG_DFL); 885 #endif 886 887 #ifdef SIGQUIT 888 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get 889 passed to the inferior, which we don't want. It would be 890 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but 891 on BSD4.3 systems using vfork, that can affect the 892 GDB process as well as the inferior (the signal handling tables 893 might be in memory, shared between the two). Since we establish 894 a handler for SIGQUIT, when we call exec it will set the signal 895 to SIG_DFL for us. */ 896 signal (SIGQUIT, handle_sigquit); 897 sigquit_token = 898 create_async_signal_handler (async_do_nothing, NULL); 899 #endif 900 #ifdef SIGHUP 901 if (signal (SIGHUP, handle_sighup) != SIG_IGN) 902 sighup_token = 903 create_async_signal_handler (async_disconnect, NULL); 904 else 905 sighup_token = 906 create_async_signal_handler (async_do_nothing, NULL); 907 #endif 908 signal (SIGFPE, handle_sigfpe); 909 sigfpe_token = 910 create_async_signal_handler (async_float_handler, NULL); 911 912 #ifdef SIGTSTP 913 sigtstp_token = 914 create_async_signal_handler (async_sigtstp_handler, NULL); 915 #endif 916 } 917 918 /* See defs.h. */ 919 920 void 921 quit_serial_event_set (void) 922 { 923 serial_event_set (quit_serial_event); 924 } 925 926 /* See defs.h. */ 927 928 void 929 quit_serial_event_clear (void) 930 { 931 serial_event_clear (quit_serial_event); 932 } 933 934 /* Return the selectable file descriptor of the serial event 935 associated with the quit flag. */ 936 937 static int 938 quit_serial_event_fd (void) 939 { 940 return serial_event_fd (quit_serial_event); 941 } 942 943 /* See defs.h. */ 944 945 void 946 default_quit_handler (void) 947 { 948 if (check_quit_flag ()) 949 { 950 if (target_terminal::is_ours ()) 951 quit (); 952 else 953 target_pass_ctrlc (); 954 } 955 } 956 957 /* See defs.h. */ 958 quit_handler_ftype *quit_handler = default_quit_handler; 959 960 /* Handle a SIGINT. */ 961 962 void 963 handle_sigint (int sig) 964 { 965 signal (sig, handle_sigint); 966 967 /* We could be running in a loop reading in symfiles or something so 968 it may be quite a while before we get back to the event loop. So 969 set quit_flag to 1 here. Then if QUIT is called before we get to 970 the event loop, we will unwind as expected. */ 971 set_quit_flag (); 972 973 /* In case nothing calls QUIT before the event loop is reached, the 974 event loop handles it. */ 975 mark_async_signal_handler (sigint_token); 976 } 977 978 /* See gdb_select.h. */ 979 980 int 981 interruptible_select (int n, 982 fd_set *readfds, fd_set *writefds, fd_set *exceptfds, 983 struct timeval *timeout) 984 { 985 fd_set my_readfds; 986 int fd; 987 int res; 988 989 if (readfds == NULL) 990 { 991 readfds = &my_readfds; 992 FD_ZERO (&my_readfds); 993 } 994 995 fd = quit_serial_event_fd (); 996 FD_SET (fd, readfds); 997 if (n <= fd) 998 n = fd + 1; 999 1000 do 1001 { 1002 res = gdb_select (n, readfds, writefds, exceptfds, timeout); 1003 } 1004 while (res == -1 && errno == EINTR); 1005 1006 if (res == 1 && FD_ISSET (fd, readfds)) 1007 { 1008 errno = EINTR; 1009 return -1; 1010 } 1011 return res; 1012 } 1013 1014 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */ 1015 1016 static void 1017 async_sigterm_handler (gdb_client_data arg) 1018 { 1019 quit_force (NULL, 0); 1020 } 1021 1022 /* See defs.h. */ 1023 volatile int sync_quit_force_run; 1024 1025 /* Quit GDB if SIGTERM is received. 1026 GDB would quit anyway, but this way it will clean up properly. */ 1027 void 1028 handle_sigterm (int sig) 1029 { 1030 signal (sig, handle_sigterm); 1031 1032 sync_quit_force_run = 1; 1033 set_quit_flag (); 1034 1035 mark_async_signal_handler (async_sigterm_token); 1036 } 1037 1038 /* Do the quit. All the checks have been done by the caller. */ 1039 void 1040 async_request_quit (gdb_client_data arg) 1041 { 1042 /* If the quit_flag has gotten reset back to 0 by the time we get 1043 back here, that means that an exception was thrown to unwind the 1044 current command before we got back to the event loop. So there 1045 is no reason to call quit again here. */ 1046 QUIT; 1047 } 1048 1049 #ifdef SIGQUIT 1050 /* Tell the event loop what to do if SIGQUIT is received. 1051 See event-signal.c. */ 1052 static void 1053 handle_sigquit (int sig) 1054 { 1055 mark_async_signal_handler (sigquit_token); 1056 signal (sig, handle_sigquit); 1057 } 1058 #endif 1059 1060 #if defined (SIGQUIT) || defined (SIGHUP) 1061 /* Called by the event loop in response to a SIGQUIT or an 1062 ignored SIGHUP. */ 1063 static void 1064 async_do_nothing (gdb_client_data arg) 1065 { 1066 /* Empty function body. */ 1067 } 1068 #endif 1069 1070 #ifdef SIGHUP 1071 /* Tell the event loop what to do if SIGHUP is received. 1072 See event-signal.c. */ 1073 static void 1074 handle_sighup (int sig) 1075 { 1076 mark_async_signal_handler (sighup_token); 1077 signal (sig, handle_sighup); 1078 } 1079 1080 /* Called by the event loop to process a SIGHUP. */ 1081 static void 1082 async_disconnect (gdb_client_data arg) 1083 { 1084 1085 TRY 1086 { 1087 quit_cover (); 1088 } 1089 1090 CATCH (exception, RETURN_MASK_ALL) 1091 { 1092 fputs_filtered ("Could not kill the program being debugged", 1093 gdb_stderr); 1094 exception_print (gdb_stderr, exception); 1095 } 1096 END_CATCH 1097 1098 TRY 1099 { 1100 pop_all_targets (); 1101 } 1102 CATCH (exception, RETURN_MASK_ALL) 1103 { 1104 } 1105 END_CATCH 1106 1107 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */ 1108 raise (SIGHUP); 1109 } 1110 #endif 1111 1112 #ifdef SIGTSTP 1113 void 1114 handle_sigtstp (int sig) 1115 { 1116 mark_async_signal_handler (sigtstp_token); 1117 signal (sig, handle_sigtstp); 1118 } 1119 1120 static void 1121 async_sigtstp_handler (gdb_client_data arg) 1122 { 1123 char *prompt = get_prompt (); 1124 1125 signal (SIGTSTP, SIG_DFL); 1126 #if HAVE_SIGPROCMASK 1127 { 1128 sigset_t zero; 1129 1130 sigemptyset (&zero); 1131 sigprocmask (SIG_SETMASK, &zero, 0); 1132 } 1133 #elif HAVE_SIGSETMASK 1134 sigsetmask (0); 1135 #endif 1136 raise (SIGTSTP); 1137 signal (SIGTSTP, handle_sigtstp); 1138 printf_unfiltered ("%s", prompt); 1139 gdb_flush (gdb_stdout); 1140 1141 /* Forget about any previous command -- null line now will do 1142 nothing. */ 1143 dont_repeat (); 1144 } 1145 #endif /* SIGTSTP */ 1146 1147 /* Tell the event loop what to do if SIGFPE is received. 1148 See event-signal.c. */ 1149 static void 1150 handle_sigfpe (int sig) 1151 { 1152 mark_async_signal_handler (sigfpe_token); 1153 signal (sig, handle_sigfpe); 1154 } 1155 1156 /* Event loop will call this functin to process a SIGFPE. */ 1157 static void 1158 async_float_handler (gdb_client_data arg) 1159 { 1160 /* This message is based on ANSI C, section 4.7. Note that integer 1161 divide by zero causes this, so "float" is a misnomer. */ 1162 error (_("Erroneous arithmetic operation.")); 1163 } 1164 1165 1166 /* Set things up for readline to be invoked via the alternate 1167 interface, i.e. via a callback function 1168 (gdb_rl_callback_read_char), and hook up instream to the event 1169 loop. */ 1170 1171 void 1172 gdb_setup_readline (int editing) 1173 { 1174 struct ui *ui = current_ui; 1175 1176 /* This function is a noop for the sync case. The assumption is 1177 that the sync setup is ALL done in gdb_init, and we would only 1178 mess it up here. The sync stuff should really go away over 1179 time. */ 1180 if (!batch_silent) 1181 gdb_stdout = new stdio_file (ui->outstream); 1182 gdb_stderr = new stderr_file (ui->errstream); 1183 gdb_stdlog = gdb_stderr; /* for moment */ 1184 gdb_stdtarg = gdb_stderr; /* for moment */ 1185 gdb_stdtargerr = gdb_stderr; /* for moment */ 1186 1187 /* If the input stream is connected to a terminal, turn on editing. 1188 However, that is only allowed on the main UI, as we can only have 1189 one instance of readline. */ 1190 if (ISATTY (ui->instream) && editing && ui == main_ui) 1191 { 1192 /* Tell gdb that we will be using the readline library. This 1193 could be overwritten by a command in .gdbinit like 'set 1194 editing on' or 'off'. */ 1195 ui->command_editing = 1; 1196 1197 /* When a character is detected on instream by select or poll, 1198 readline will be invoked via this callback function. */ 1199 ui->call_readline = gdb_rl_callback_read_char_wrapper; 1200 1201 /* Tell readline to use the same input stream that gdb uses. */ 1202 rl_instream = ui->instream; 1203 } 1204 else 1205 { 1206 ui->command_editing = 0; 1207 ui->call_readline = gdb_readline_no_editing_callback; 1208 } 1209 1210 /* Now create the event source for this UI's input file descriptor. 1211 Another source is going to be the target program (inferior), but 1212 that must be registered only when it actually exists (I.e. after 1213 we say 'run' or after we connect to a remote target. */ 1214 ui_register_input_event_handler (ui); 1215 } 1216 1217 /* Disable command input through the standard CLI channels. Used in 1218 the suspend proc for interpreters that use the standard gdb readline 1219 interface, like the cli & the mi. */ 1220 1221 void 1222 gdb_disable_readline (void) 1223 { 1224 struct ui *ui = current_ui; 1225 1226 /* FIXME - It is too heavyweight to delete and remake these every 1227 time you run an interpreter that needs readline. It is probably 1228 better to have the interpreters cache these, which in turn means 1229 that this needs to be moved into interpreter specific code. */ 1230 1231 #if 0 1232 ui_file_delete (gdb_stdout); 1233 ui_file_delete (gdb_stderr); 1234 gdb_stdlog = NULL; 1235 gdb_stdtarg = NULL; 1236 gdb_stdtargerr = NULL; 1237 #endif 1238 1239 if (ui->command_editing) 1240 gdb_rl_callback_handler_remove (); 1241 delete_file_handler (ui->input_fd); 1242 } 1243