xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/eval.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /* Evaluate expressions for GDB.
2 
3    Copyright (C) 1986-2015 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h"		/* For CAST_IS_CONVERSION.  */
29 #include "f-lang.h"		/* For array bound stuff.  */
30 #include "cp-abi.h"
31 #include "infcall.h"
32 #include "objc-lang.h"
33 #include "block.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
36 #include "ui-out.h"
37 #include "regcache.h"
38 #include "user-regs.h"
39 #include "valprint.h"
40 #include "gdb_obstack.h"
41 #include "objfiles.h"
42 #include <ctype.h>
43 
44 /* This is defined in valops.c */
45 extern int overload_resolution;
46 
47 /* Prototypes for local functions.  */
48 
49 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
50 						 enum noside);
51 
52 static struct value *evaluate_subexp_for_address (struct expression *,
53 						  int *, enum noside);
54 
55 static struct value *evaluate_struct_tuple (struct value *,
56 					    struct expression *, int *,
57 					    enum noside, int);
58 
59 static LONGEST init_array_element (struct value *, struct value *,
60 				   struct expression *, int *, enum noside,
61 				   LONGEST, LONGEST);
62 
63 struct value *
64 evaluate_subexp (struct type *expect_type, struct expression *exp,
65 		 int *pos, enum noside noside)
66 {
67   struct cleanup *cleanups;
68   struct value *retval;
69   int cleanup_temps = 0;
70 
71   if (*pos == 0 && target_has_execution
72       && exp->language_defn->la_language == language_cplus
73       && !thread_stack_temporaries_enabled_p (inferior_ptid))
74     {
75       cleanups = enable_thread_stack_temporaries (inferior_ptid);
76       cleanup_temps = 1;
77     }
78 
79   retval = (*exp->language_defn->la_exp_desc->evaluate_exp)
80     (expect_type, exp, pos, noside);
81 
82   if (cleanup_temps)
83     {
84       if (value_in_thread_stack_temporaries (retval, inferior_ptid))
85 	retval = value_non_lval (retval);
86       do_cleanups (cleanups);
87     }
88 
89   return retval;
90 }
91 
92 /* Parse the string EXP as a C expression, evaluate it,
93    and return the result as a number.  */
94 
95 CORE_ADDR
96 parse_and_eval_address (const char *exp)
97 {
98   struct expression *expr = parse_expression (exp);
99   CORE_ADDR addr;
100   struct cleanup *old_chain =
101     make_cleanup (free_current_contents, &expr);
102 
103   addr = value_as_address (evaluate_expression (expr));
104   do_cleanups (old_chain);
105   return addr;
106 }
107 
108 /* Like parse_and_eval_address, but treats the value of the expression
109    as an integer, not an address, returns a LONGEST, not a CORE_ADDR.  */
110 LONGEST
111 parse_and_eval_long (const char *exp)
112 {
113   struct expression *expr = parse_expression (exp);
114   LONGEST retval;
115   struct cleanup *old_chain =
116     make_cleanup (free_current_contents, &expr);
117 
118   retval = value_as_long (evaluate_expression (expr));
119   do_cleanups (old_chain);
120   return (retval);
121 }
122 
123 struct value *
124 parse_and_eval (const char *exp)
125 {
126   struct expression *expr = parse_expression (exp);
127   struct value *val;
128   struct cleanup *old_chain =
129     make_cleanup (free_current_contents, &expr);
130 
131   val = evaluate_expression (expr);
132   do_cleanups (old_chain);
133   return val;
134 }
135 
136 /* Parse up to a comma (or to a closeparen)
137    in the string EXPP as an expression, evaluate it, and return the value.
138    EXPP is advanced to point to the comma.  */
139 
140 struct value *
141 parse_to_comma_and_eval (const char **expp)
142 {
143   struct expression *expr = parse_exp_1 (expp, 0, (struct block *) 0, 1);
144   struct value *val;
145   struct cleanup *old_chain =
146     make_cleanup (free_current_contents, &expr);
147 
148   val = evaluate_expression (expr);
149   do_cleanups (old_chain);
150   return val;
151 }
152 
153 /* Evaluate an expression in internal prefix form
154    such as is constructed by parse.y.
155 
156    See expression.h for info on the format of an expression.  */
157 
158 struct value *
159 evaluate_expression (struct expression *exp)
160 {
161   int pc = 0;
162 
163   return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
164 }
165 
166 /* Evaluate an expression, avoiding all memory references
167    and getting a value whose type alone is correct.  */
168 
169 struct value *
170 evaluate_type (struct expression *exp)
171 {
172   int pc = 0;
173 
174   return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
175 }
176 
177 /* Evaluate a subexpression, avoiding all memory references and
178    getting a value whose type alone is correct.  */
179 
180 struct value *
181 evaluate_subexpression_type (struct expression *exp, int subexp)
182 {
183   return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
184 }
185 
186 /* Find the current value of a watchpoint on EXP.  Return the value in
187    *VALP and *RESULTP and the chain of intermediate and final values
188    in *VAL_CHAIN.  RESULTP and VAL_CHAIN may be NULL if the caller does
189    not need them.
190 
191    If PRESERVE_ERRORS is true, then exceptions are passed through.
192    Otherwise, if PRESERVE_ERRORS is false, then if a memory error
193    occurs while evaluating the expression, *RESULTP will be set to
194    NULL.  *RESULTP may be a lazy value, if the result could not be
195    read from memory.  It is used to determine whether a value is
196    user-specified (we should watch the whole value) or intermediate
197    (we should watch only the bit used to locate the final value).
198 
199    If the final value, or any intermediate value, could not be read
200    from memory, *VALP will be set to NULL.  *VAL_CHAIN will still be
201    set to any referenced values.  *VALP will never be a lazy value.
202    This is the value which we store in struct breakpoint.
203 
204    If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
205    value chain.  The caller must free the values individually.  If
206    VAL_CHAIN is NULL, all generated values will be left on the value
207    chain.  */
208 
209 void
210 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
211 		    struct value **resultp, struct value **val_chain,
212 		    int preserve_errors)
213 {
214   struct value *mark, *new_mark, *result;
215 
216   *valp = NULL;
217   if (resultp)
218     *resultp = NULL;
219   if (val_chain)
220     *val_chain = NULL;
221 
222   /* Evaluate the expression.  */
223   mark = value_mark ();
224   result = NULL;
225 
226   TRY
227     {
228       result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
229     }
230   CATCH (ex, RETURN_MASK_ALL)
231     {
232       /* Ignore memory errors if we want watchpoints pointing at
233 	 inaccessible memory to still be created; otherwise, throw the
234 	 error to some higher catcher.  */
235       switch (ex.error)
236 	{
237 	case MEMORY_ERROR:
238 	  if (!preserve_errors)
239 	    break;
240 	default:
241 	  throw_exception (ex);
242 	  break;
243 	}
244     }
245   END_CATCH
246 
247   new_mark = value_mark ();
248   if (mark == new_mark)
249     return;
250   if (resultp)
251     *resultp = result;
252 
253   /* Make sure it's not lazy, so that after the target stops again we
254      have a non-lazy previous value to compare with.  */
255   if (result != NULL)
256     {
257       if (!value_lazy (result))
258 	*valp = result;
259       else
260 	{
261 
262 	  TRY
263 	    {
264 	      value_fetch_lazy (result);
265 	      *valp = result;
266 	    }
267 	  CATCH (except, RETURN_MASK_ERROR)
268 	    {
269 	    }
270 	  END_CATCH
271 	}
272     }
273 
274   if (val_chain)
275     {
276       /* Return the chain of intermediate values.  We use this to
277 	 decide which addresses to watch.  */
278       *val_chain = new_mark;
279       value_release_to_mark (mark);
280     }
281 }
282 
283 /* Extract a field operation from an expression.  If the subexpression
284    of EXP starting at *SUBEXP is not a structure dereference
285    operation, return NULL.  Otherwise, return the name of the
286    dereferenced field, and advance *SUBEXP to point to the
287    subexpression of the left-hand-side of the dereference.  This is
288    used when completing field names.  */
289 
290 char *
291 extract_field_op (struct expression *exp, int *subexp)
292 {
293   int tem;
294   char *result;
295 
296   if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
297       && exp->elts[*subexp].opcode != STRUCTOP_PTR)
298     return NULL;
299   tem = longest_to_int (exp->elts[*subexp + 1].longconst);
300   result = &exp->elts[*subexp + 2].string;
301   (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
302   return result;
303 }
304 
305 /* This function evaluates brace-initializers (in C/C++) for
306    structure types.  */
307 
308 static struct value *
309 evaluate_struct_tuple (struct value *struct_val,
310 		       struct expression *exp,
311 		       int *pos, enum noside noside, int nargs)
312 {
313   struct type *struct_type = check_typedef (value_type (struct_val));
314   struct type *field_type;
315   int fieldno = -1;
316 
317   while (--nargs >= 0)
318     {
319       struct value *val = NULL;
320       int bitpos, bitsize;
321       bfd_byte *addr;
322 
323       fieldno++;
324       /* Skip static fields.  */
325       while (fieldno < TYPE_NFIELDS (struct_type)
326 	     && field_is_static (&TYPE_FIELD (struct_type,
327 					      fieldno)))
328 	fieldno++;
329       if (fieldno >= TYPE_NFIELDS (struct_type))
330 	error (_("too many initializers"));
331       field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
332       if (TYPE_CODE (field_type) == TYPE_CODE_UNION
333 	  && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
334 	error (_("don't know which variant you want to set"));
335 
336       /* Here, struct_type is the type of the inner struct,
337 	 while substruct_type is the type of the inner struct.
338 	 These are the same for normal structures, but a variant struct
339 	 contains anonymous union fields that contain substruct fields.
340 	 The value fieldno is the index of the top-level (normal or
341 	 anonymous union) field in struct_field, while the value
342 	 subfieldno is the index of the actual real (named inner) field
343 	 in substruct_type.  */
344 
345       field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
346       if (val == 0)
347 	val = evaluate_subexp (field_type, exp, pos, noside);
348 
349       /* Now actually set the field in struct_val.  */
350 
351       /* Assign val to field fieldno.  */
352       if (value_type (val) != field_type)
353 	val = value_cast (field_type, val);
354 
355       bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
356       bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
357       addr = value_contents_writeable (struct_val) + bitpos / 8;
358       if (bitsize)
359 	modify_field (struct_type, addr,
360 		      value_as_long (val), bitpos % 8, bitsize);
361       else
362 	memcpy (addr, value_contents (val),
363 		TYPE_LENGTH (value_type (val)));
364 
365     }
366   return struct_val;
367 }
368 
369 /* Recursive helper function for setting elements of array tuples.
370    The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND); the
371    element value is ELEMENT; EXP, POS and NOSIDE are as usual.
372    Evaluates index expresions and sets the specified element(s) of
373    ARRAY to ELEMENT.  Returns last index value.  */
374 
375 static LONGEST
376 init_array_element (struct value *array, struct value *element,
377 		    struct expression *exp, int *pos,
378 		    enum noside noside, LONGEST low_bound, LONGEST high_bound)
379 {
380   LONGEST index;
381   int element_size = TYPE_LENGTH (value_type (element));
382 
383   if (exp->elts[*pos].opcode == BINOP_COMMA)
384     {
385       (*pos)++;
386       init_array_element (array, element, exp, pos, noside,
387 			  low_bound, high_bound);
388       return init_array_element (array, element,
389 				 exp, pos, noside, low_bound, high_bound);
390     }
391   else
392     {
393       index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
394       if (index < low_bound || index > high_bound)
395 	error (_("tuple index out of range"));
396       memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
397 	      value_contents (element), element_size);
398     }
399   return index;
400 }
401 
402 static struct value *
403 value_f90_subarray (struct value *array,
404 		    struct expression *exp, int *pos, enum noside noside)
405 {
406   int pc = (*pos) + 1;
407   LONGEST low_bound, high_bound;
408   struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
409   enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
410 
411   *pos += 3;
412 
413   if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
414     low_bound = TYPE_LOW_BOUND (range);
415   else
416     low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
417 
418   if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
419     high_bound = TYPE_HIGH_BOUND (range);
420   else
421     high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
422 
423   return value_slice (array, low_bound, high_bound - low_bound + 1);
424 }
425 
426 
427 /* Promote value ARG1 as appropriate before performing a unary operation
428    on this argument.
429    If the result is not appropriate for any particular language then it
430    needs to patch this function.  */
431 
432 void
433 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
434 	      struct value **arg1)
435 {
436   struct type *type1;
437 
438   *arg1 = coerce_ref (*arg1);
439   type1 = check_typedef (value_type (*arg1));
440 
441   if (is_integral_type (type1))
442     {
443       switch (language->la_language)
444 	{
445 	default:
446 	  /* Perform integral promotion for ANSI C/C++.
447 	     If not appropropriate for any particular language
448 	     it needs to modify this function.  */
449 	  {
450 	    struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
451 
452 	    if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
453 	      *arg1 = value_cast (builtin_int, *arg1);
454 	  }
455 	  break;
456 	}
457     }
458 }
459 
460 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
461    operation on those two operands.
462    If the result is not appropriate for any particular language then it
463    needs to patch this function.  */
464 
465 void
466 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
467 	       struct value **arg1, struct value **arg2)
468 {
469   struct type *promoted_type = NULL;
470   struct type *type1;
471   struct type *type2;
472 
473   *arg1 = coerce_ref (*arg1);
474   *arg2 = coerce_ref (*arg2);
475 
476   type1 = check_typedef (value_type (*arg1));
477   type2 = check_typedef (value_type (*arg2));
478 
479   if ((TYPE_CODE (type1) != TYPE_CODE_FLT
480        && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
481        && !is_integral_type (type1))
482       || (TYPE_CODE (type2) != TYPE_CODE_FLT
483 	  && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
484 	  && !is_integral_type (type2)))
485     return;
486 
487   if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
488       || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
489     {
490       /* No promotion required.  */
491     }
492   else if (TYPE_CODE (type1) == TYPE_CODE_FLT
493 	   || TYPE_CODE (type2) == TYPE_CODE_FLT)
494     {
495       switch (language->la_language)
496 	{
497 	case language_c:
498 	case language_cplus:
499 	case language_asm:
500 	case language_objc:
501 	case language_opencl:
502 	  /* No promotion required.  */
503 	  break;
504 
505 	default:
506 	  /* For other languages the result type is unchanged from gdb
507 	     version 6.7 for backward compatibility.
508 	     If either arg was long double, make sure that value is also long
509 	     double.  Otherwise use double.  */
510 	  if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
511 	      || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
512 	    promoted_type = builtin_type (gdbarch)->builtin_long_double;
513 	  else
514 	    promoted_type = builtin_type (gdbarch)->builtin_double;
515 	  break;
516 	}
517     }
518   else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
519 	   && TYPE_CODE (type2) == TYPE_CODE_BOOL)
520     {
521       /* No promotion required.  */
522     }
523   else
524     /* Integral operations here.  */
525     /* FIXME: Also mixed integral/booleans, with result an integer.  */
526     {
527       const struct builtin_type *builtin = builtin_type (gdbarch);
528       unsigned int promoted_len1 = TYPE_LENGTH (type1);
529       unsigned int promoted_len2 = TYPE_LENGTH (type2);
530       int is_unsigned1 = TYPE_UNSIGNED (type1);
531       int is_unsigned2 = TYPE_UNSIGNED (type2);
532       unsigned int result_len;
533       int unsigned_operation;
534 
535       /* Determine type length and signedness after promotion for
536          both operands.  */
537       if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
538 	{
539 	  is_unsigned1 = 0;
540 	  promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
541 	}
542       if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
543 	{
544 	  is_unsigned2 = 0;
545 	  promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
546 	}
547 
548       if (promoted_len1 > promoted_len2)
549 	{
550 	  unsigned_operation = is_unsigned1;
551 	  result_len = promoted_len1;
552 	}
553       else if (promoted_len2 > promoted_len1)
554 	{
555 	  unsigned_operation = is_unsigned2;
556 	  result_len = promoted_len2;
557 	}
558       else
559 	{
560 	  unsigned_operation = is_unsigned1 || is_unsigned2;
561 	  result_len = promoted_len1;
562 	}
563 
564       switch (language->la_language)
565 	{
566 	case language_c:
567 	case language_cplus:
568 	case language_asm:
569 	case language_objc:
570 	  if (result_len <= TYPE_LENGTH (builtin->builtin_int))
571 	    {
572 	      promoted_type = (unsigned_operation
573 			       ? builtin->builtin_unsigned_int
574 			       : builtin->builtin_int);
575 	    }
576 	  else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
577 	    {
578 	      promoted_type = (unsigned_operation
579 			       ? builtin->builtin_unsigned_long
580 			       : builtin->builtin_long);
581 	    }
582 	  else
583 	    {
584 	      promoted_type = (unsigned_operation
585 			       ? builtin->builtin_unsigned_long_long
586 			       : builtin->builtin_long_long);
587 	    }
588 	  break;
589 	case language_opencl:
590 	  if (result_len <= TYPE_LENGTH (lookup_signed_typename
591 					 (language, gdbarch, "int")))
592 	    {
593 	      promoted_type =
594 		(unsigned_operation
595 		 ? lookup_unsigned_typename (language, gdbarch, "int")
596 		 : lookup_signed_typename (language, gdbarch, "int"));
597 	    }
598 	  else if (result_len <= TYPE_LENGTH (lookup_signed_typename
599 					      (language, gdbarch, "long")))
600 	    {
601 	      promoted_type =
602 		(unsigned_operation
603 		 ? lookup_unsigned_typename (language, gdbarch, "long")
604 		 : lookup_signed_typename (language, gdbarch,"long"));
605 	    }
606 	  break;
607 	default:
608 	  /* For other languages the result type is unchanged from gdb
609 	     version 6.7 for backward compatibility.
610 	     If either arg was long long, make sure that value is also long
611 	     long.  Otherwise use long.  */
612 	  if (unsigned_operation)
613 	    {
614 	      if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
615 		promoted_type = builtin->builtin_unsigned_long_long;
616 	      else
617 		promoted_type = builtin->builtin_unsigned_long;
618 	    }
619 	  else
620 	    {
621 	      if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
622 		promoted_type = builtin->builtin_long_long;
623 	      else
624 		promoted_type = builtin->builtin_long;
625 	    }
626 	  break;
627 	}
628     }
629 
630   if (promoted_type)
631     {
632       /* Promote both operands to common type.  */
633       *arg1 = value_cast (promoted_type, *arg1);
634       *arg2 = value_cast (promoted_type, *arg2);
635     }
636 }
637 
638 static int
639 ptrmath_type_p (const struct language_defn *lang, struct type *type)
640 {
641   type = check_typedef (type);
642   if (TYPE_CODE (type) == TYPE_CODE_REF)
643     type = TYPE_TARGET_TYPE (type);
644 
645   switch (TYPE_CODE (type))
646     {
647     case TYPE_CODE_PTR:
648     case TYPE_CODE_FUNC:
649       return 1;
650 
651     case TYPE_CODE_ARRAY:
652       return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
653 
654     default:
655       return 0;
656     }
657 }
658 
659 /* Constructs a fake method with the given parameter types.
660    This function is used by the parser to construct an "expected"
661    type for method overload resolution.  */
662 
663 static struct type *
664 make_params (int num_types, struct type **param_types)
665 {
666   struct type *type = XCNEW (struct type);
667   TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
668   TYPE_LENGTH (type) = 1;
669   TYPE_CODE (type) = TYPE_CODE_METHOD;
670   TYPE_CHAIN (type) = type;
671   if (num_types > 0)
672     {
673       if (param_types[num_types - 1] == NULL)
674 	{
675 	  --num_types;
676 	  TYPE_VARARGS (type) = 1;
677 	}
678       else if (TYPE_CODE (check_typedef (param_types[num_types - 1]))
679 	       == TYPE_CODE_VOID)
680 	{
681 	  --num_types;
682 	  /* Caller should have ensured this.  */
683 	  gdb_assert (num_types == 0);
684 	  TYPE_PROTOTYPED (type) = 1;
685 	}
686     }
687 
688   TYPE_NFIELDS (type) = num_types;
689   TYPE_FIELDS (type) = (struct field *)
690     TYPE_ZALLOC (type, sizeof (struct field) * num_types);
691 
692   while (num_types-- > 0)
693     TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
694 
695   return type;
696 }
697 
698 struct value *
699 evaluate_subexp_standard (struct type *expect_type,
700 			  struct expression *exp, int *pos,
701 			  enum noside noside)
702 {
703   enum exp_opcode op;
704   int tem, tem2, tem3;
705   int pc, pc2 = 0, oldpos;
706   struct value *arg1 = NULL;
707   struct value *arg2 = NULL;
708   struct value *arg3;
709   struct type *type;
710   int nargs;
711   struct value **argvec;
712   int code;
713   int ix;
714   long mem_offset;
715   struct type **arg_types;
716   int save_pos1;
717   struct symbol *function = NULL;
718   char *function_name = NULL;
719 
720   pc = (*pos)++;
721   op = exp->elts[pc].opcode;
722 
723   switch (op)
724     {
725     case OP_SCOPE:
726       tem = longest_to_int (exp->elts[pc + 2].longconst);
727       (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
728       if (noside == EVAL_SKIP)
729 	goto nosideret;
730       arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
731 				  &exp->elts[pc + 3].string,
732 				  expect_type, 0, noside);
733       if (arg1 == NULL)
734 	error (_("There is no field named %s"), &exp->elts[pc + 3].string);
735       return arg1;
736 
737     case OP_LONG:
738       (*pos) += 3;
739       return value_from_longest (exp->elts[pc + 1].type,
740 				 exp->elts[pc + 2].longconst);
741 
742     case OP_DOUBLE:
743       (*pos) += 3;
744       return value_from_double (exp->elts[pc + 1].type,
745 				exp->elts[pc + 2].doubleconst);
746 
747     case OP_DECFLOAT:
748       (*pos) += 3;
749       return value_from_decfloat (exp->elts[pc + 1].type,
750 				  exp->elts[pc + 2].decfloatconst);
751 
752     case OP_ADL_FUNC:
753     case OP_VAR_VALUE:
754       (*pos) += 3;
755       if (noside == EVAL_SKIP)
756 	goto nosideret;
757 
758       /* JYG: We used to just return value_zero of the symbol type
759 	 if we're asked to avoid side effects.  Otherwise we return
760 	 value_of_variable (...).  However I'm not sure if
761 	 value_of_variable () has any side effect.
762 	 We need a full value object returned here for whatis_exp ()
763 	 to call evaluate_type () and then pass the full value to
764 	 value_rtti_target_type () if we are dealing with a pointer
765 	 or reference to a base class and print object is on.  */
766 
767       {
768 	struct value *ret = NULL;
769 
770 	TRY
771 	  {
772 	    ret = value_of_variable (exp->elts[pc + 2].symbol,
773 				     exp->elts[pc + 1].block);
774 	  }
775 
776 	CATCH (except, RETURN_MASK_ERROR)
777 	  {
778 	    if (noside == EVAL_AVOID_SIDE_EFFECTS)
779 	      ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
780 				not_lval);
781 	    else
782 	      throw_exception (except);
783 	  }
784 	END_CATCH
785 
786 	return ret;
787       }
788 
789     case OP_VAR_ENTRY_VALUE:
790       (*pos) += 2;
791       if (noside == EVAL_SKIP)
792 	goto nosideret;
793 
794       {
795 	struct symbol *sym = exp->elts[pc + 1].symbol;
796 	struct frame_info *frame;
797 
798 	if (noside == EVAL_AVOID_SIDE_EFFECTS)
799 	  return value_zero (SYMBOL_TYPE (sym), not_lval);
800 
801 	if (SYMBOL_COMPUTED_OPS (sym) == NULL
802 	    || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
803 	  error (_("Symbol \"%s\" does not have any specific entry value"),
804 		 SYMBOL_PRINT_NAME (sym));
805 
806 	frame = get_selected_frame (NULL);
807 	return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
808       }
809 
810     case OP_LAST:
811       (*pos) += 2;
812       return
813 	access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
814 
815     case OP_REGISTER:
816       {
817 	const char *name = &exp->elts[pc + 2].string;
818 	int regno;
819 	struct value *val;
820 
821 	(*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
822 	regno = user_reg_map_name_to_regnum (exp->gdbarch,
823 					     name, strlen (name));
824 	if (regno == -1)
825 	  error (_("Register $%s not available."), name);
826 
827         /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
828            a value with the appropriate register type.  Unfortunately,
829            we don't have easy access to the type of user registers.
830            So for these registers, we fetch the register value regardless
831            of the evaluation mode.  */
832 	if (noside == EVAL_AVOID_SIDE_EFFECTS
833 	    && regno < gdbarch_num_regs (exp->gdbarch)
834 			+ gdbarch_num_pseudo_regs (exp->gdbarch))
835 	  val = value_zero (register_type (exp->gdbarch, regno), not_lval);
836 	else
837 	  val = value_of_register (regno, get_selected_frame (NULL));
838 	if (val == NULL)
839 	  error (_("Value of register %s not available."), name);
840 	else
841 	  return val;
842       }
843     case OP_BOOL:
844       (*pos) += 2;
845       type = language_bool_type (exp->language_defn, exp->gdbarch);
846       return value_from_longest (type, exp->elts[pc + 1].longconst);
847 
848     case OP_INTERNALVAR:
849       (*pos) += 2;
850       return value_of_internalvar (exp->gdbarch,
851 				   exp->elts[pc + 1].internalvar);
852 
853     case OP_STRING:
854       tem = longest_to_int (exp->elts[pc + 1].longconst);
855       (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
856       if (noside == EVAL_SKIP)
857 	goto nosideret;
858       type = language_string_char_type (exp->language_defn, exp->gdbarch);
859       return value_string (&exp->elts[pc + 2].string, tem, type);
860 
861     case OP_OBJC_NSSTRING:		/* Objective C Foundation Class
862 					   NSString constant.  */
863       tem = longest_to_int (exp->elts[pc + 1].longconst);
864       (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
865       if (noside == EVAL_SKIP)
866 	{
867 	  goto nosideret;
868 	}
869       return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
870 
871     case OP_ARRAY:
872       (*pos) += 3;
873       tem2 = longest_to_int (exp->elts[pc + 1].longconst);
874       tem3 = longest_to_int (exp->elts[pc + 2].longconst);
875       nargs = tem3 - tem2 + 1;
876       type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
877 
878       if (expect_type != NULL_TYPE && noside != EVAL_SKIP
879 	  && TYPE_CODE (type) == TYPE_CODE_STRUCT)
880 	{
881 	  struct value *rec = allocate_value (expect_type);
882 
883 	  memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
884 	  return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
885 	}
886 
887       if (expect_type != NULL_TYPE && noside != EVAL_SKIP
888 	  && TYPE_CODE (type) == TYPE_CODE_ARRAY)
889 	{
890 	  struct type *range_type = TYPE_INDEX_TYPE (type);
891 	  struct type *element_type = TYPE_TARGET_TYPE (type);
892 	  struct value *array = allocate_value (expect_type);
893 	  int element_size = TYPE_LENGTH (check_typedef (element_type));
894 	  LONGEST low_bound, high_bound, index;
895 
896 	  if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
897 	    {
898 	      low_bound = 0;
899 	      high_bound = (TYPE_LENGTH (type) / element_size) - 1;
900 	    }
901 	  index = low_bound;
902 	  memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
903 	  for (tem = nargs; --nargs >= 0;)
904 	    {
905 	      struct value *element;
906 	      int index_pc = 0;
907 
908 	      element = evaluate_subexp (element_type, exp, pos, noside);
909 	      if (value_type (element) != element_type)
910 		element = value_cast (element_type, element);
911 	      if (index_pc)
912 		{
913 		  int continue_pc = *pos;
914 
915 		  *pos = index_pc;
916 		  index = init_array_element (array, element, exp, pos, noside,
917 					      low_bound, high_bound);
918 		  *pos = continue_pc;
919 		}
920 	      else
921 		{
922 		  if (index > high_bound)
923 		    /* To avoid memory corruption.  */
924 		    error (_("Too many array elements"));
925 		  memcpy (value_contents_raw (array)
926 			  + (index - low_bound) * element_size,
927 			  value_contents (element),
928 			  element_size);
929 		}
930 	      index++;
931 	    }
932 	  return array;
933 	}
934 
935       if (expect_type != NULL_TYPE && noside != EVAL_SKIP
936 	  && TYPE_CODE (type) == TYPE_CODE_SET)
937 	{
938 	  struct value *set = allocate_value (expect_type);
939 	  gdb_byte *valaddr = value_contents_raw (set);
940 	  struct type *element_type = TYPE_INDEX_TYPE (type);
941 	  struct type *check_type = element_type;
942 	  LONGEST low_bound, high_bound;
943 
944 	  /* Get targettype of elementtype.  */
945 	  while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
946 		 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
947 	    check_type = TYPE_TARGET_TYPE (check_type);
948 
949 	  if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
950 	    error (_("(power)set type with unknown size"));
951 	  memset (valaddr, '\0', TYPE_LENGTH (type));
952 	  for (tem = 0; tem < nargs; tem++)
953 	    {
954 	      LONGEST range_low, range_high;
955 	      struct type *range_low_type, *range_high_type;
956 	      struct value *elem_val;
957 
958 	      elem_val = evaluate_subexp (element_type, exp, pos, noside);
959 	      range_low_type = range_high_type = value_type (elem_val);
960 	      range_low = range_high = value_as_long (elem_val);
961 
962 	      /* Check types of elements to avoid mixture of elements from
963 	         different types. Also check if type of element is "compatible"
964 	         with element type of powerset.  */
965 	      if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
966 		range_low_type = TYPE_TARGET_TYPE (range_low_type);
967 	      if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
968 		range_high_type = TYPE_TARGET_TYPE (range_high_type);
969 	      if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
970 		  || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
971 		      && (range_low_type != range_high_type)))
972 		/* different element modes.  */
973 		error (_("POWERSET tuple elements of different mode"));
974 	      if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
975 		  || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
976 		      && range_low_type != check_type))
977 		error (_("incompatible POWERSET tuple elements"));
978 	      if (range_low > range_high)
979 		{
980 		  warning (_("empty POWERSET tuple range"));
981 		  continue;
982 		}
983 	      if (range_low < low_bound || range_high > high_bound)
984 		error (_("POWERSET tuple element out of range"));
985 	      range_low -= low_bound;
986 	      range_high -= low_bound;
987 	      for (; range_low <= range_high; range_low++)
988 		{
989 		  int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
990 
991 		  if (gdbarch_bits_big_endian (exp->gdbarch))
992 		    bit_index = TARGET_CHAR_BIT - 1 - bit_index;
993 		  valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
994 		    |= 1 << bit_index;
995 		}
996 	    }
997 	  return set;
998 	}
999 
1000       argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1001       for (tem = 0; tem < nargs; tem++)
1002 	{
1003 	  /* Ensure that array expressions are coerced into pointer
1004 	     objects.  */
1005 	  argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1006 	}
1007       if (noside == EVAL_SKIP)
1008 	goto nosideret;
1009       return value_array (tem2, tem3, argvec);
1010 
1011     case TERNOP_SLICE:
1012       {
1013 	struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1014 	int lowbound
1015 	  = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1016 	int upper
1017 	  = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1018 
1019 	if (noside == EVAL_SKIP)
1020 	  goto nosideret;
1021 	return value_slice (array, lowbound, upper - lowbound + 1);
1022       }
1023 
1024     case TERNOP_COND:
1025       /* Skip third and second args to evaluate the first one.  */
1026       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1027       if (value_logical_not (arg1))
1028 	{
1029 	  evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1030 	  return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1031 	}
1032       else
1033 	{
1034 	  arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1035 	  evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1036 	  return arg2;
1037 	}
1038 
1039     case OP_OBJC_SELECTOR:
1040       {				/* Objective C @selector operator.  */
1041 	char *sel = &exp->elts[pc + 2].string;
1042 	int len = longest_to_int (exp->elts[pc + 1].longconst);
1043 	struct type *selector_type;
1044 
1045 	(*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1046 	if (noside == EVAL_SKIP)
1047 	  goto nosideret;
1048 
1049 	if (sel[len] != 0)
1050 	  sel[len] = 0;		/* Make sure it's terminated.  */
1051 
1052 	selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1053 	return value_from_longest (selector_type,
1054 				   lookup_child_selector (exp->gdbarch, sel));
1055       }
1056 
1057     case OP_OBJC_MSGCALL:
1058       {				/* Objective C message (method) call.  */
1059 
1060 	CORE_ADDR responds_selector = 0;
1061 	CORE_ADDR method_selector = 0;
1062 
1063 	CORE_ADDR selector = 0;
1064 
1065 	int struct_return = 0;
1066 	int sub_no_side = 0;
1067 
1068 	struct value *msg_send = NULL;
1069 	struct value *msg_send_stret = NULL;
1070 	int gnu_runtime = 0;
1071 
1072 	struct value *target = NULL;
1073 	struct value *method = NULL;
1074 	struct value *called_method = NULL;
1075 
1076 	struct type *selector_type = NULL;
1077 	struct type *long_type;
1078 
1079 	struct value *ret = NULL;
1080 	CORE_ADDR addr = 0;
1081 
1082 	selector = exp->elts[pc + 1].longconst;
1083 	nargs = exp->elts[pc + 2].longconst;
1084 	argvec = (struct value **) alloca (sizeof (struct value *)
1085 					   * (nargs + 5));
1086 
1087 	(*pos) += 3;
1088 
1089 	long_type = builtin_type (exp->gdbarch)->builtin_long;
1090 	selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1091 
1092 	if (noside == EVAL_AVOID_SIDE_EFFECTS)
1093 	  sub_no_side = EVAL_NORMAL;
1094 	else
1095 	  sub_no_side = noside;
1096 
1097 	target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1098 
1099 	if (value_as_long (target) == 0)
1100  	  return value_from_longest (long_type, 0);
1101 
1102 	if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
1103 	  gnu_runtime = 1;
1104 
1105 	/* Find the method dispatch (Apple runtime) or method lookup
1106 	   (GNU runtime) function for Objective-C.  These will be used
1107 	   to lookup the symbol information for the method.  If we
1108 	   can't find any symbol information, then we'll use these to
1109 	   call the method, otherwise we can call the method
1110 	   directly.  The msg_send_stret function is used in the special
1111 	   case of a method that returns a structure (Apple runtime
1112 	   only).  */
1113 	if (gnu_runtime)
1114 	  {
1115 	    struct type *type = selector_type;
1116 
1117 	    type = lookup_function_type (type);
1118 	    type = lookup_pointer_type (type);
1119 	    type = lookup_function_type (type);
1120 	    type = lookup_pointer_type (type);
1121 
1122 	    msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1123 	    msg_send_stret
1124 	      = find_function_in_inferior ("objc_msg_lookup", NULL);
1125 
1126 	    msg_send = value_from_pointer (type, value_as_address (msg_send));
1127 	    msg_send_stret = value_from_pointer (type,
1128 					value_as_address (msg_send_stret));
1129 	  }
1130 	else
1131 	  {
1132 	    msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1133 	    /* Special dispatcher for methods returning structs.  */
1134 	    msg_send_stret
1135 	      = find_function_in_inferior ("objc_msgSend_stret", NULL);
1136 	  }
1137 
1138 	/* Verify the target object responds to this method.  The
1139 	   standard top-level 'Object' class uses a different name for
1140 	   the verification method than the non-standard, but more
1141 	   often used, 'NSObject' class.  Make sure we check for both.  */
1142 
1143 	responds_selector
1144 	  = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1145 	if (responds_selector == 0)
1146 	  responds_selector
1147 	    = lookup_child_selector (exp->gdbarch, "respondsTo:");
1148 
1149 	if (responds_selector == 0)
1150 	  error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1151 
1152 	method_selector
1153 	  = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1154 	if (method_selector == 0)
1155 	  method_selector
1156 	    = lookup_child_selector (exp->gdbarch, "methodFor:");
1157 
1158 	if (method_selector == 0)
1159 	  error (_("no 'methodFor:' or 'methodForSelector:' method"));
1160 
1161 	/* Call the verification method, to make sure that the target
1162 	 class implements the desired method.  */
1163 
1164 	argvec[0] = msg_send;
1165 	argvec[1] = target;
1166 	argvec[2] = value_from_longest (long_type, responds_selector);
1167 	argvec[3] = value_from_longest (long_type, selector);
1168 	argvec[4] = 0;
1169 
1170 	ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1171 	if (gnu_runtime)
1172 	  {
1173 	    /* Function objc_msg_lookup returns a pointer.  */
1174 	    argvec[0] = ret;
1175 	    ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1176 	  }
1177 	if (value_as_long (ret) == 0)
1178 	  error (_("Target does not respond to this message selector."));
1179 
1180 	/* Call "methodForSelector:" method, to get the address of a
1181 	   function method that implements this selector for this
1182 	   class.  If we can find a symbol at that address, then we
1183 	   know the return type, parameter types etc.  (that's a good
1184 	   thing).  */
1185 
1186 	argvec[0] = msg_send;
1187 	argvec[1] = target;
1188 	argvec[2] = value_from_longest (long_type, method_selector);
1189 	argvec[3] = value_from_longest (long_type, selector);
1190 	argvec[4] = 0;
1191 
1192 	ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1193 	if (gnu_runtime)
1194 	  {
1195 	    argvec[0] = ret;
1196 	    ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1197 	  }
1198 
1199 	/* ret should now be the selector.  */
1200 
1201 	addr = value_as_long (ret);
1202 	if (addr)
1203 	  {
1204 	    struct symbol *sym = NULL;
1205 
1206 	    /* The address might point to a function descriptor;
1207 	       resolve it to the actual code address instead.  */
1208 	    addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1209 						       &current_target);
1210 
1211 	    /* Is it a high_level symbol?  */
1212 	    sym = find_pc_function (addr);
1213 	    if (sym != NULL)
1214 	      method = value_of_variable (sym, 0);
1215 	  }
1216 
1217 	/* If we found a method with symbol information, check to see
1218            if it returns a struct.  Otherwise assume it doesn't.  */
1219 
1220 	if (method)
1221 	  {
1222 	    CORE_ADDR funaddr;
1223 	    struct type *val_type;
1224 
1225 	    funaddr = find_function_addr (method, &val_type);
1226 
1227 	    block_for_pc (funaddr);
1228 
1229 	    CHECK_TYPEDEF (val_type);
1230 
1231 	    if ((val_type == NULL)
1232 		|| (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1233 	      {
1234 		if (expect_type != NULL)
1235 		  val_type = expect_type;
1236 	      }
1237 
1238 	    struct_return = using_struct_return (exp->gdbarch, method,
1239 						 val_type);
1240 	  }
1241 	else if (expect_type != NULL)
1242 	  {
1243 	    struct_return = using_struct_return (exp->gdbarch, NULL,
1244 						 check_typedef (expect_type));
1245 	  }
1246 
1247 	/* Found a function symbol.  Now we will substitute its
1248 	   value in place of the message dispatcher (obj_msgSend),
1249 	   so that we call the method directly instead of thru
1250 	   the dispatcher.  The main reason for doing this is that
1251 	   we can now evaluate the return value and parameter values
1252 	   according to their known data types, in case we need to
1253 	   do things like promotion, dereferencing, special handling
1254 	   of structs and doubles, etc.
1255 
1256 	   We want to use the type signature of 'method', but still
1257 	   jump to objc_msgSend() or objc_msgSend_stret() to better
1258 	   mimic the behavior of the runtime.  */
1259 
1260 	if (method)
1261 	  {
1262 	    if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1263 	      error (_("method address has symbol information "
1264 		       "with non-function type; skipping"));
1265 
1266 	    /* Create a function pointer of the appropriate type, and
1267 	       replace its value with the value of msg_send or
1268 	       msg_send_stret.  We must use a pointer here, as
1269 	       msg_send and msg_send_stret are of pointer type, and
1270 	       the representation may be different on systems that use
1271 	       function descriptors.  */
1272 	    if (struct_return)
1273 	      called_method
1274 		= value_from_pointer (lookup_pointer_type (value_type (method)),
1275 				      value_as_address (msg_send_stret));
1276 	    else
1277 	      called_method
1278 		= value_from_pointer (lookup_pointer_type (value_type (method)),
1279 				      value_as_address (msg_send));
1280 	  }
1281 	else
1282 	  {
1283 	    if (struct_return)
1284 	      called_method = msg_send_stret;
1285 	    else
1286 	      called_method = msg_send;
1287 	  }
1288 
1289 	if (noside == EVAL_SKIP)
1290 	  goto nosideret;
1291 
1292 	if (noside == EVAL_AVOID_SIDE_EFFECTS)
1293 	  {
1294 	    /* If the return type doesn't look like a function type,
1295 	       call an error.  This can happen if somebody tries to
1296 	       turn a variable into a function call.  This is here
1297 	       because people often want to call, eg, strcmp, which
1298 	       gdb doesn't know is a function.  If gdb isn't asked for
1299 	       it's opinion (ie. through "whatis"), it won't offer
1300 	       it.  */
1301 
1302 	    struct type *type = value_type (called_method);
1303 
1304 	    if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1305 	      type = TYPE_TARGET_TYPE (type);
1306 	    type = TYPE_TARGET_TYPE (type);
1307 
1308 	    if (type)
1309 	    {
1310 	      if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1311 		return allocate_value (expect_type);
1312 	      else
1313 		return allocate_value (type);
1314 	    }
1315 	    else
1316 	      error (_("Expression of type other than "
1317 		       "\"method returning ...\" used as a method"));
1318 	  }
1319 
1320 	/* Now depending on whether we found a symbol for the method,
1321 	   we will either call the runtime dispatcher or the method
1322 	   directly.  */
1323 
1324 	argvec[0] = called_method;
1325 	argvec[1] = target;
1326 	argvec[2] = value_from_longest (long_type, selector);
1327 	/* User-supplied arguments.  */
1328 	for (tem = 0; tem < nargs; tem++)
1329 	  argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1330 	argvec[tem + 3] = 0;
1331 
1332 	if (gnu_runtime && (method != NULL))
1333 	  {
1334 	    /* Function objc_msg_lookup returns a pointer.  */
1335 	    deprecated_set_value_type (argvec[0],
1336 				       lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1337 	    argvec[0]
1338 	      = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1339 	  }
1340 
1341 	ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1342 	return ret;
1343       }
1344       break;
1345 
1346     case OP_FUNCALL:
1347       (*pos) += 2;
1348       op = exp->elts[*pos].opcode;
1349       nargs = longest_to_int (exp->elts[pc + 1].longconst);
1350       /* Allocate arg vector, including space for the function to be
1351          called in argvec[0], a potential `this', and a terminating NULL.  */
1352       argvec = (struct value **)
1353 	alloca (sizeof (struct value *) * (nargs + 3));
1354       if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1355 	{
1356 	  /* First, evaluate the structure into arg2.  */
1357 	  pc2 = (*pos)++;
1358 
1359 	  if (op == STRUCTOP_MEMBER)
1360 	    {
1361 	      arg2 = evaluate_subexp_for_address (exp, pos, noside);
1362 	    }
1363 	  else
1364 	    {
1365 	      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1366 	    }
1367 
1368 	  /* If the function is a virtual function, then the
1369 	     aggregate value (providing the structure) plays
1370 	     its part by providing the vtable.  Otherwise,
1371 	     it is just along for the ride: call the function
1372 	     directly.  */
1373 
1374 	  arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1375 
1376 	  type = check_typedef (value_type (arg1));
1377 	  if (noside == EVAL_SKIP)
1378 	    tem = 1;  /* Set it to the right arg index so that all arguments
1379 			 can also be skipped.  */
1380 	  else if (TYPE_CODE (type) == TYPE_CODE_METHODPTR)
1381 	    {
1382 	      if (noside == EVAL_AVOID_SIDE_EFFECTS)
1383 		arg1 = value_zero (TYPE_TARGET_TYPE (type), not_lval);
1384 	      else
1385 		arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1386 
1387 	      /* Now, say which argument to start evaluating from.  */
1388 	      nargs++;
1389 	      tem = 2;
1390 	      argvec[1] = arg2;
1391 	    }
1392 	  else if (TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
1393 	    {
1394 	      struct type *type_ptr
1395 		= lookup_pointer_type (TYPE_SELF_TYPE (type));
1396 	      struct type *target_type_ptr
1397 		= lookup_pointer_type (TYPE_TARGET_TYPE (type));
1398 
1399 	      /* Now, convert these values to an address.  */
1400 	      arg2 = value_cast (type_ptr, arg2);
1401 
1402 	      mem_offset = value_as_long (arg1);
1403 
1404 	      arg1 = value_from_pointer (target_type_ptr,
1405 					 value_as_long (arg2) + mem_offset);
1406 	      arg1 = value_ind (arg1);
1407 	      tem = 1;
1408 	    }
1409 	  else
1410 	    error (_("Non-pointer-to-member value used in pointer-to-member "
1411 		     "construct"));
1412 	}
1413       else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1414 	{
1415 	  /* Hair for method invocations.  */
1416 	  int tem2;
1417 
1418 	  nargs++;
1419 	  /* First, evaluate the structure into arg2.  */
1420 	  pc2 = (*pos)++;
1421 	  tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1422 	  *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1423 
1424 	  if (op == STRUCTOP_STRUCT)
1425 	    {
1426 	      /* If v is a variable in a register, and the user types
1427 	         v.method (), this will produce an error, because v has
1428 	         no address.
1429 
1430 	         A possible way around this would be to allocate a
1431 	         copy of the variable on the stack, copy in the
1432 	         contents, call the function, and copy out the
1433 	         contents.  I.e. convert this from call by reference
1434 	         to call by copy-return (or whatever it's called).
1435 	         However, this does not work because it is not the
1436 	         same: the method being called could stash a copy of
1437 	         the address, and then future uses through that address
1438 	         (after the method returns) would be expected to
1439 	         use the variable itself, not some copy of it.  */
1440 	      arg2 = evaluate_subexp_for_address (exp, pos, noside);
1441 	    }
1442 	  else
1443 	    {
1444 	      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1445 
1446 	      /* Check to see if the operator '->' has been
1447 	         overloaded.  If the operator has been overloaded
1448 	         replace arg2 with the value returned by the custom
1449 	         operator and continue evaluation.  */
1450 	      while (unop_user_defined_p (op, arg2))
1451 		{
1452 		  struct value *value = NULL;
1453 		  TRY
1454 		    {
1455 		      value = value_x_unop (arg2, op, noside);
1456 		    }
1457 
1458 		  CATCH (except, RETURN_MASK_ERROR)
1459 		    {
1460 		      if (except.error == NOT_FOUND_ERROR)
1461 			break;
1462 		      else
1463 			throw_exception (except);
1464 		    }
1465 		  END_CATCH
1466 
1467 		  arg2 = value;
1468 		}
1469 	    }
1470 	  /* Now, say which argument to start evaluating from.  */
1471 	  tem = 2;
1472 	}
1473       else if (op == OP_SCOPE
1474 	       && overload_resolution
1475 	       && (exp->language_defn->la_language == language_cplus))
1476 	{
1477 	  /* Unpack it locally so we can properly handle overload
1478 	     resolution.  */
1479 	  char *name;
1480 	  int local_tem;
1481 
1482 	  pc2 = (*pos)++;
1483 	  local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1484 	  (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1485 	  type = exp->elts[pc2 + 1].type;
1486 	  name = &exp->elts[pc2 + 3].string;
1487 
1488 	  function = NULL;
1489 	  function_name = NULL;
1490 	  if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1491 	    {
1492 	      function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1493 						     name,
1494 						     get_selected_block (0),
1495 						     VAR_DOMAIN);
1496 	      if (function == NULL)
1497 		error (_("No symbol \"%s\" in namespace \"%s\"."),
1498 		       name, TYPE_TAG_NAME (type));
1499 
1500 	      tem = 1;
1501 	      /* arg2 is left as NULL on purpose.  */
1502 	    }
1503 	  else
1504 	    {
1505 	      gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1506 			  || TYPE_CODE (type) == TYPE_CODE_UNION);
1507 	      function_name = name;
1508 
1509 	      /* We need a properly typed value for method lookup.  For
1510 		 static methods arg2 is otherwise unused.  */
1511 	      arg2 = value_zero (type, lval_memory);
1512 	      ++nargs;
1513 	      tem = 2;
1514 	    }
1515 	}
1516       else if (op == OP_ADL_FUNC)
1517         {
1518           /* Save the function position and move pos so that the arguments
1519              can be evaluated.  */
1520           int func_name_len;
1521 
1522           save_pos1 = *pos;
1523           tem = 1;
1524 
1525           func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1526           (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1527         }
1528       else
1529 	{
1530 	  /* Non-method function call.  */
1531 	  save_pos1 = *pos;
1532 	  tem = 1;
1533 
1534 	  /* If this is a C++ function wait until overload resolution.  */
1535 	  if (op == OP_VAR_VALUE
1536 	      && overload_resolution
1537 	      && (exp->language_defn->la_language == language_cplus))
1538 	    {
1539 	      (*pos) += 4; /* Skip the evaluation of the symbol.  */
1540 	      argvec[0] = NULL;
1541 	    }
1542 	  else
1543 	    {
1544 	      argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1545 	      type = value_type (argvec[0]);
1546 	      if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1547 		type = TYPE_TARGET_TYPE (type);
1548 	      if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1549 		{
1550 		  for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1551 		    {
1552 		      argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1553 								      tem - 1),
1554 						     exp, pos, noside);
1555 		    }
1556 		}
1557 	    }
1558 	}
1559 
1560       /* Evaluate arguments (if not already done, e.g., namespace::func()
1561 	 and overload-resolution is off).  */
1562       for (; tem <= nargs; tem++)
1563 	{
1564 	  /* Ensure that array expressions are coerced into pointer
1565 	     objects.  */
1566 	  argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1567 	}
1568 
1569       /* Signal end of arglist.  */
1570       argvec[tem] = 0;
1571 
1572       if (noside == EVAL_SKIP)
1573 	goto nosideret;
1574 
1575       if (op == OP_ADL_FUNC)
1576         {
1577           struct symbol *symp;
1578           char *func_name;
1579           int  name_len;
1580           int string_pc = save_pos1 + 3;
1581 
1582           /* Extract the function name.  */
1583           name_len = longest_to_int (exp->elts[string_pc].longconst);
1584           func_name = (char *) alloca (name_len + 1);
1585           strcpy (func_name, &exp->elts[string_pc + 1].string);
1586 
1587           find_overload_match (&argvec[1], nargs, func_name,
1588                                NON_METHOD, /* not method */
1589                                NULL, NULL, /* pass NULL symbol since
1590 					      symbol is unknown */
1591                                NULL, &symp, NULL, 0, noside);
1592 
1593           /* Now fix the expression being evaluated.  */
1594           exp->elts[save_pos1 + 2].symbol = symp;
1595           argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1596         }
1597 
1598       if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1599 	  || (op == OP_SCOPE && function_name != NULL))
1600 	{
1601 	  int static_memfuncp;
1602 	  char *tstr;
1603 
1604 	  /* Method invocation: stuff "this" as first parameter.
1605 	     If the method turns out to be static we undo this below.  */
1606 	  argvec[1] = arg2;
1607 
1608 	  if (op != OP_SCOPE)
1609 	    {
1610 	      /* Name of method from expression.  */
1611 	      tstr = &exp->elts[pc2 + 2].string;
1612 	    }
1613 	  else
1614 	    tstr = function_name;
1615 
1616 	  if (overload_resolution && (exp->language_defn->la_language
1617 				      == language_cplus))
1618 	    {
1619 	      /* Language is C++, do some overload resolution before
1620 		 evaluation.  */
1621 	      struct value *valp = NULL;
1622 
1623 	      (void) find_overload_match (&argvec[1], nargs, tstr,
1624 	                                  METHOD, /* method */
1625 					  &arg2,  /* the object */
1626 					  NULL, &valp, NULL,
1627 					  &static_memfuncp, 0, noside);
1628 
1629 	      if (op == OP_SCOPE && !static_memfuncp)
1630 		{
1631 		  /* For the time being, we don't handle this.  */
1632 		  error (_("Call to overloaded function %s requires "
1633 			   "`this' pointer"),
1634 			 function_name);
1635 		}
1636 	      argvec[1] = arg2;	/* the ``this'' pointer */
1637 	      argvec[0] = valp;	/* Use the method found after overload
1638 				   resolution.  */
1639 	    }
1640 	  else
1641 	    /* Non-C++ case -- or no overload resolution.  */
1642 	    {
1643 	      struct value *temp = arg2;
1644 
1645 	      argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1646 					    &static_memfuncp,
1647 					    op == STRUCTOP_STRUCT
1648 				       ? "structure" : "structure pointer");
1649 	      /* value_struct_elt updates temp with the correct value
1650 	 	 of the ``this'' pointer if necessary, so modify argvec[1] to
1651 		 reflect any ``this'' changes.  */
1652 	      arg2
1653 		= value_from_longest (lookup_pointer_type(value_type (temp)),
1654 				      value_address (temp)
1655 				      + value_embedded_offset (temp));
1656 	      argvec[1] = arg2;	/* the ``this'' pointer */
1657 	    }
1658 
1659 	  /* Take out `this' if needed.  */
1660 	  if (static_memfuncp)
1661 	    {
1662 	      argvec[1] = argvec[0];
1663 	      nargs--;
1664 	      argvec++;
1665 	    }
1666 	}
1667       else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1668 	{
1669 	  /* Pointer to member.  argvec[1] is already set up.  */
1670 	  argvec[0] = arg1;
1671 	}
1672       else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1673 	{
1674 	  /* Non-member function being called.  */
1675           /* fn: This can only be done for C++ functions.  A C-style function
1676              in a C++ program, for instance, does not have the fields that
1677              are expected here.  */
1678 
1679 	  if (overload_resolution && (exp->language_defn->la_language
1680 				      == language_cplus))
1681 	    {
1682 	      /* Language is C++, do some overload resolution before
1683 		 evaluation.  */
1684 	      struct symbol *symp;
1685 	      int no_adl = 0;
1686 
1687 	      /* If a scope has been specified disable ADL.  */
1688 	      if (op == OP_SCOPE)
1689 		no_adl = 1;
1690 
1691 	      if (op == OP_VAR_VALUE)
1692 		function = exp->elts[save_pos1+2].symbol;
1693 
1694 	      (void) find_overload_match (&argvec[1], nargs,
1695 					  NULL,        /* no need for name */
1696 	                                  NON_METHOD,  /* not method */
1697 	                                  NULL, function, /* the function */
1698 					  NULL, &symp, NULL, no_adl, noside);
1699 
1700 	      if (op == OP_VAR_VALUE)
1701 		{
1702 		  /* Now fix the expression being evaluated.  */
1703 		  exp->elts[save_pos1+2].symbol = symp;
1704 		  argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1705 							     noside);
1706 		}
1707 	      else
1708 		argvec[0] = value_of_variable (symp, get_selected_block (0));
1709 	    }
1710 	  else
1711 	    {
1712 	      /* Not C++, or no overload resolution allowed.  */
1713 	      /* Nothing to be done; argvec already correctly set up.  */
1714 	    }
1715 	}
1716       else
1717 	{
1718 	  /* It is probably a C-style function.  */
1719 	  /* Nothing to be done; argvec already correctly set up.  */
1720 	}
1721 
1722     do_call_it:
1723 
1724       if (argvec[0] == NULL)
1725 	error (_("Cannot evaluate function -- may be inlined"));
1726       if (noside == EVAL_AVOID_SIDE_EFFECTS)
1727 	{
1728 	  /* If the return type doesn't look like a function type, call an
1729 	     error.  This can happen if somebody tries to turn a variable into
1730 	     a function call.  This is here because people often want to
1731 	     call, eg, strcmp, which gdb doesn't know is a function.  If
1732 	     gdb isn't asked for it's opinion (ie. through "whatis"),
1733 	     it won't offer it.  */
1734 
1735 	  struct type *ftype = value_type (argvec[0]);
1736 
1737 	  if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1738 	    {
1739 	      /* We don't know anything about what the internal
1740 		 function might return, but we have to return
1741 		 something.  */
1742 	      return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1743 				 not_lval);
1744 	    }
1745 	  else if (TYPE_CODE (ftype) == TYPE_CODE_XMETHOD)
1746 	    {
1747 	      struct type *return_type
1748 		= result_type_of_xmethod (argvec[0], nargs, argvec + 1);
1749 
1750 	      if (return_type == NULL)
1751 		error (_("Xmethod is missing return type."));
1752 	      return value_zero (return_type, not_lval);
1753 	    }
1754 	  else if (TYPE_GNU_IFUNC (ftype))
1755 	    return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1756 	  else if (TYPE_TARGET_TYPE (ftype))
1757 	    return allocate_value (TYPE_TARGET_TYPE (ftype));
1758 	  else
1759 	    error (_("Expression of type other than "
1760 		     "\"Function returning ...\" used as function"));
1761 	}
1762       switch (TYPE_CODE (value_type (argvec[0])))
1763 	{
1764 	case TYPE_CODE_INTERNAL_FUNCTION:
1765 	  return call_internal_function (exp->gdbarch, exp->language_defn,
1766 					 argvec[0], nargs, argvec + 1);
1767 	case TYPE_CODE_XMETHOD:
1768 	  return call_xmethod (argvec[0], nargs, argvec + 1);
1769 	default:
1770 	  return call_function_by_hand (argvec[0], nargs, argvec + 1);
1771 	}
1772       /* pai: FIXME save value from call_function_by_hand, then adjust
1773 	 pc by adjust_fn_pc if +ve.  */
1774 
1775     case OP_F77_UNDETERMINED_ARGLIST:
1776 
1777       /* Remember that in F77, functions, substring ops and
1778          array subscript operations cannot be disambiguated
1779          at parse time.  We have made all array subscript operations,
1780          substring operations as well as function calls  come here
1781          and we now have to discover what the heck this thing actually was.
1782          If it is a function, we process just as if we got an OP_FUNCALL.  */
1783 
1784       nargs = longest_to_int (exp->elts[pc + 1].longconst);
1785       (*pos) += 2;
1786 
1787       /* First determine the type code we are dealing with.  */
1788       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1789       type = check_typedef (value_type (arg1));
1790       code = TYPE_CODE (type);
1791 
1792       if (code == TYPE_CODE_PTR)
1793 	{
1794 	  /* Fortran always passes variable to subroutines as pointer.
1795 	     So we need to look into its target type to see if it is
1796 	     array, string or function.  If it is, we need to switch
1797 	     to the target value the original one points to.  */
1798 	  struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1799 
1800 	  if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1801 	      || TYPE_CODE (target_type) == TYPE_CODE_STRING
1802 	      || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1803 	    {
1804 	      arg1 = value_ind (arg1);
1805 	      type = check_typedef (value_type (arg1));
1806 	      code = TYPE_CODE (type);
1807 	    }
1808 	}
1809 
1810       switch (code)
1811 	{
1812 	case TYPE_CODE_ARRAY:
1813 	  if (exp->elts[*pos].opcode == OP_F90_RANGE)
1814 	    return value_f90_subarray (arg1, exp, pos, noside);
1815 	  else
1816 	    goto multi_f77_subscript;
1817 
1818 	case TYPE_CODE_STRING:
1819 	  if (exp->elts[*pos].opcode == OP_F90_RANGE)
1820 	    return value_f90_subarray (arg1, exp, pos, noside);
1821 	  else
1822 	    {
1823 	      arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1824 	      return value_subscript (arg1, value_as_long (arg2));
1825 	    }
1826 
1827 	case TYPE_CODE_PTR:
1828 	case TYPE_CODE_FUNC:
1829 	  /* It's a function call.  */
1830 	  /* Allocate arg vector, including space for the function to be
1831 	     called in argvec[0] and a terminating NULL.  */
1832 	  argvec = (struct value **)
1833 	    alloca (sizeof (struct value *) * (nargs + 2));
1834 	  argvec[0] = arg1;
1835 	  tem = 1;
1836 	  for (; tem <= nargs; tem++)
1837 	    argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1838 	  argvec[tem] = 0;	/* signal end of arglist */
1839 	  if (noside == EVAL_SKIP)
1840 	    goto nosideret;
1841 	  goto do_call_it;
1842 
1843 	default:
1844 	  error (_("Cannot perform substring on this type"));
1845 	}
1846 
1847     case OP_COMPLEX:
1848       /* We have a complex number, There should be 2 floating
1849          point numbers that compose it.  */
1850       (*pos) += 2;
1851       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1852       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1853 
1854       return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1855 
1856     case STRUCTOP_STRUCT:
1857       tem = longest_to_int (exp->elts[pc + 1].longconst);
1858       (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1859       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1860       if (noside == EVAL_SKIP)
1861 	goto nosideret;
1862       arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
1863 			       NULL, "structure");
1864       if (noside == EVAL_AVOID_SIDE_EFFECTS)
1865 	arg3 = value_zero (value_type (arg3), not_lval);
1866       return arg3;
1867 
1868     case STRUCTOP_PTR:
1869       tem = longest_to_int (exp->elts[pc + 1].longconst);
1870       (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1871       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1872       if (noside == EVAL_SKIP)
1873 	goto nosideret;
1874 
1875       /* Check to see if operator '->' has been overloaded.  If so replace
1876          arg1 with the value returned by evaluating operator->().  */
1877       while (unop_user_defined_p (op, arg1))
1878 	{
1879 	  struct value *value = NULL;
1880 	  TRY
1881 	    {
1882 	      value = value_x_unop (arg1, op, noside);
1883 	    }
1884 
1885 	  CATCH (except, RETURN_MASK_ERROR)
1886 	    {
1887 	      if (except.error == NOT_FOUND_ERROR)
1888 		break;
1889 	      else
1890 		throw_exception (except);
1891 	    }
1892 	  END_CATCH
1893 
1894 	  arg1 = value;
1895 	}
1896 
1897       /* JYG: if print object is on we need to replace the base type
1898 	 with rtti type in order to continue on with successful
1899 	 lookup of member / method only available in the rtti type.  */
1900       {
1901         struct type *type = value_type (arg1);
1902         struct type *real_type;
1903         int full, top, using_enc;
1904 	struct value_print_options opts;
1905 
1906 	get_user_print_options (&opts);
1907         if (opts.objectprint && TYPE_TARGET_TYPE(type)
1908             && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT))
1909           {
1910             real_type = value_rtti_indirect_type (arg1, &full, &top,
1911 						  &using_enc);
1912             if (real_type)
1913                 arg1 = value_cast (real_type, arg1);
1914           }
1915       }
1916 
1917       arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
1918 			       NULL, "structure pointer");
1919       if (noside == EVAL_AVOID_SIDE_EFFECTS)
1920 	arg3 = value_zero (value_type (arg3), not_lval);
1921       return arg3;
1922 
1923     case STRUCTOP_MEMBER:
1924     case STRUCTOP_MPTR:
1925       if (op == STRUCTOP_MEMBER)
1926 	arg1 = evaluate_subexp_for_address (exp, pos, noside);
1927       else
1928 	arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1929 
1930       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1931 
1932       if (noside == EVAL_SKIP)
1933 	goto nosideret;
1934 
1935       type = check_typedef (value_type (arg2));
1936       switch (TYPE_CODE (type))
1937 	{
1938 	case TYPE_CODE_METHODPTR:
1939 	  if (noside == EVAL_AVOID_SIDE_EFFECTS)
1940 	    return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1941 	  else
1942 	    {
1943 	      arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1944 	      gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1945 	      return value_ind (arg2);
1946 	    }
1947 
1948 	case TYPE_CODE_MEMBERPTR:
1949 	  /* Now, convert these values to an address.  */
1950 	  arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
1951 				      arg1, 1);
1952 
1953 	  mem_offset = value_as_long (arg2);
1954 
1955 	  arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1956 				     value_as_long (arg1) + mem_offset);
1957 	  return value_ind (arg3);
1958 
1959 	default:
1960 	  error (_("non-pointer-to-member value used "
1961 		   "in pointer-to-member construct"));
1962 	}
1963 
1964     case TYPE_INSTANCE:
1965       nargs = longest_to_int (exp->elts[pc + 1].longconst);
1966       arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
1967       for (ix = 0; ix < nargs; ++ix)
1968 	arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
1969 
1970       expect_type = make_params (nargs, arg_types);
1971       *(pos) += 3 + nargs;
1972       arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
1973       xfree (TYPE_FIELDS (expect_type));
1974       xfree (TYPE_MAIN_TYPE (expect_type));
1975       xfree (expect_type);
1976       return arg1;
1977 
1978     case BINOP_CONCAT:
1979       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1980       arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1981       if (noside == EVAL_SKIP)
1982 	goto nosideret;
1983       if (binop_user_defined_p (op, arg1, arg2))
1984 	return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1985       else
1986 	return value_concat (arg1, arg2);
1987 
1988     case BINOP_ASSIGN:
1989       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1990       arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1991 
1992       if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1993 	return arg1;
1994       if (binop_user_defined_p (op, arg1, arg2))
1995 	return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1996       else
1997 	return value_assign (arg1, arg2);
1998 
1999     case BINOP_ASSIGN_MODIFY:
2000       (*pos) += 2;
2001       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2002       arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2003       if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2004 	return arg1;
2005       op = exp->elts[pc + 1].opcode;
2006       if (binop_user_defined_p (op, arg1, arg2))
2007 	return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2008       else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2009 						  value_type (arg1))
2010 	       && is_integral_type (value_type (arg2)))
2011 	arg2 = value_ptradd (arg1, value_as_long (arg2));
2012       else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2013 						  value_type (arg1))
2014 	       && is_integral_type (value_type (arg2)))
2015 	arg2 = value_ptradd (arg1, - value_as_long (arg2));
2016       else
2017 	{
2018 	  struct value *tmp = arg1;
2019 
2020 	  /* For shift and integer exponentiation operations,
2021 	     only promote the first argument.  */
2022 	  if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2023 	      && is_integral_type (value_type (arg2)))
2024 	    unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2025 	  else
2026 	    binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2027 
2028 	  arg2 = value_binop (tmp, arg2, op);
2029 	}
2030       return value_assign (arg1, arg2);
2031 
2032     case BINOP_ADD:
2033       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2034       arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2035       if (noside == EVAL_SKIP)
2036 	goto nosideret;
2037       if (binop_user_defined_p (op, arg1, arg2))
2038 	return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2039       else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2040 	       && is_integral_type (value_type (arg2)))
2041 	return value_ptradd (arg1, value_as_long (arg2));
2042       else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2043 	       && is_integral_type (value_type (arg1)))
2044 	return value_ptradd (arg2, value_as_long (arg1));
2045       else
2046 	{
2047 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2048 	  return value_binop (arg1, arg2, BINOP_ADD);
2049 	}
2050 
2051     case BINOP_SUB:
2052       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2053       arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2054       if (noside == EVAL_SKIP)
2055 	goto nosideret;
2056       if (binop_user_defined_p (op, arg1, arg2))
2057 	return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2058       else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2059 	       && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2060 	{
2061 	  /* FIXME -- should be ptrdiff_t */
2062 	  type = builtin_type (exp->gdbarch)->builtin_long;
2063 	  return value_from_longest (type, value_ptrdiff (arg1, arg2));
2064 	}
2065       else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2066 	       && is_integral_type (value_type (arg2)))
2067 	return value_ptradd (arg1, - value_as_long (arg2));
2068       else
2069 	{
2070 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2071 	  return value_binop (arg1, arg2, BINOP_SUB);
2072 	}
2073 
2074     case BINOP_EXP:
2075     case BINOP_MUL:
2076     case BINOP_DIV:
2077     case BINOP_INTDIV:
2078     case BINOP_REM:
2079     case BINOP_MOD:
2080     case BINOP_LSH:
2081     case BINOP_RSH:
2082     case BINOP_BITWISE_AND:
2083     case BINOP_BITWISE_IOR:
2084     case BINOP_BITWISE_XOR:
2085       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2086       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2087       if (noside == EVAL_SKIP)
2088 	goto nosideret;
2089       if (binop_user_defined_p (op, arg1, arg2))
2090 	return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2091       else
2092 	{
2093 	  /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2094 	     fudge arg2 to avoid division-by-zero, the caller is
2095 	     (theoretically) only looking for the type of the result.  */
2096 	  if (noside == EVAL_AVOID_SIDE_EFFECTS
2097 	      /* ??? Do we really want to test for BINOP_MOD here?
2098 		 The implementation of value_binop gives it a well-defined
2099 		 value.  */
2100 	      && (op == BINOP_DIV
2101 		  || op == BINOP_INTDIV
2102 		  || op == BINOP_REM
2103 		  || op == BINOP_MOD)
2104 	      && value_logical_not (arg2))
2105 	    {
2106 	      struct value *v_one, *retval;
2107 
2108 	      v_one = value_one (value_type (arg2));
2109 	      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2110 	      retval = value_binop (arg1, v_one, op);
2111 	      return retval;
2112 	    }
2113 	  else
2114 	    {
2115 	      /* For shift and integer exponentiation operations,
2116 		 only promote the first argument.  */
2117 	      if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2118 		  && is_integral_type (value_type (arg2)))
2119 		unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2120 	      else
2121 		binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2122 
2123 	      return value_binop (arg1, arg2, op);
2124 	    }
2125 	}
2126 
2127     case BINOP_SUBSCRIPT:
2128       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2129       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2130       if (noside == EVAL_SKIP)
2131 	goto nosideret;
2132       if (binop_user_defined_p (op, arg1, arg2))
2133 	return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2134       else
2135 	{
2136 	  /* If the user attempts to subscript something that is not an
2137 	     array or pointer type (like a plain int variable for example),
2138 	     then report this as an error.  */
2139 
2140 	  arg1 = coerce_ref (arg1);
2141 	  type = check_typedef (value_type (arg1));
2142 	  if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2143 	      && TYPE_CODE (type) != TYPE_CODE_PTR)
2144 	    {
2145 	      if (TYPE_NAME (type))
2146 		error (_("cannot subscript something of type `%s'"),
2147 		       TYPE_NAME (type));
2148 	      else
2149 		error (_("cannot subscript requested type"));
2150 	    }
2151 
2152 	  if (noside == EVAL_AVOID_SIDE_EFFECTS)
2153 	    return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2154 	  else
2155 	    return value_subscript (arg1, value_as_long (arg2));
2156 	}
2157     case MULTI_SUBSCRIPT:
2158       (*pos) += 2;
2159       nargs = longest_to_int (exp->elts[pc + 1].longconst);
2160       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2161       while (nargs-- > 0)
2162 	{
2163 	  arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2164 	  /* FIXME:  EVAL_SKIP handling may not be correct.  */
2165 	  if (noside == EVAL_SKIP)
2166 	    {
2167 	      if (nargs > 0)
2168 		{
2169 		  continue;
2170 		}
2171 	      else
2172 		{
2173 		  goto nosideret;
2174 		}
2175 	    }
2176 	  /* FIXME:  EVAL_AVOID_SIDE_EFFECTS handling may not be correct.  */
2177 	  if (noside == EVAL_AVOID_SIDE_EFFECTS)
2178 	    {
2179 	      /* If the user attempts to subscript something that has no target
2180 	         type (like a plain int variable for example), then report this
2181 	         as an error.  */
2182 
2183 	      type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2184 	      if (type != NULL)
2185 		{
2186 		  arg1 = value_zero (type, VALUE_LVAL (arg1));
2187 		  noside = EVAL_SKIP;
2188 		  continue;
2189 		}
2190 	      else
2191 		{
2192 		  error (_("cannot subscript something of type `%s'"),
2193 			 TYPE_NAME (value_type (arg1)));
2194 		}
2195 	    }
2196 
2197 	  if (binop_user_defined_p (op, arg1, arg2))
2198 	    {
2199 	      arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2200 	    }
2201 	  else
2202 	    {
2203 	      arg1 = coerce_ref (arg1);
2204 	      type = check_typedef (value_type (arg1));
2205 
2206 	      switch (TYPE_CODE (type))
2207 		{
2208 		case TYPE_CODE_PTR:
2209 		case TYPE_CODE_ARRAY:
2210 		case TYPE_CODE_STRING:
2211 		  arg1 = value_subscript (arg1, value_as_long (arg2));
2212 		  break;
2213 
2214 		default:
2215 		  if (TYPE_NAME (type))
2216 		    error (_("cannot subscript something of type `%s'"),
2217 			   TYPE_NAME (type));
2218 		  else
2219 		    error (_("cannot subscript requested type"));
2220 		}
2221 	    }
2222 	}
2223       return (arg1);
2224 
2225     multi_f77_subscript:
2226       {
2227 	LONGEST subscript_array[MAX_FORTRAN_DIMS];
2228 	int ndimensions = 1, i;
2229 	struct value *array = arg1;
2230 
2231 	if (nargs > MAX_FORTRAN_DIMS)
2232 	  error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2233 
2234 	ndimensions = calc_f77_array_dims (type);
2235 
2236 	if (nargs != ndimensions)
2237 	  error (_("Wrong number of subscripts"));
2238 
2239 	gdb_assert (nargs > 0);
2240 
2241 	/* Now that we know we have a legal array subscript expression
2242 	   let us actually find out where this element exists in the array.  */
2243 
2244 	/* Take array indices left to right.  */
2245 	for (i = 0; i < nargs; i++)
2246 	  {
2247 	    /* Evaluate each subscript; it must be a legal integer in F77.  */
2248 	    arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2249 
2250 	    /* Fill in the subscript array.  */
2251 
2252 	    subscript_array[i] = value_as_long (arg2);
2253 	  }
2254 
2255 	/* Internal type of array is arranged right to left.  */
2256 	for (i = nargs; i > 0; i--)
2257 	  {
2258 	    struct type *array_type = check_typedef (value_type (array));
2259 	    LONGEST index = subscript_array[i - 1];
2260 
2261 	    array = value_subscripted_rvalue (array, index,
2262 					      f77_get_lowerbound (array_type));
2263 	  }
2264 
2265 	return array;
2266       }
2267 
2268     case BINOP_LOGICAL_AND:
2269       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2270       if (noside == EVAL_SKIP)
2271 	{
2272 	  evaluate_subexp (NULL_TYPE, exp, pos, noside);
2273 	  goto nosideret;
2274 	}
2275 
2276       oldpos = *pos;
2277       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2278       *pos = oldpos;
2279 
2280       if (binop_user_defined_p (op, arg1, arg2))
2281 	{
2282 	  arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2283 	  return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2284 	}
2285       else
2286 	{
2287 	  tem = value_logical_not (arg1);
2288 	  arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2289 				  (tem ? EVAL_SKIP : noside));
2290 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
2291 	  return value_from_longest (type,
2292 			     (LONGEST) (!tem && !value_logical_not (arg2)));
2293 	}
2294 
2295     case BINOP_LOGICAL_OR:
2296       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2297       if (noside == EVAL_SKIP)
2298 	{
2299 	  evaluate_subexp (NULL_TYPE, exp, pos, noside);
2300 	  goto nosideret;
2301 	}
2302 
2303       oldpos = *pos;
2304       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2305       *pos = oldpos;
2306 
2307       if (binop_user_defined_p (op, arg1, arg2))
2308 	{
2309 	  arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2310 	  return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2311 	}
2312       else
2313 	{
2314 	  tem = value_logical_not (arg1);
2315 	  arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2316 				  (!tem ? EVAL_SKIP : noside));
2317 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
2318 	  return value_from_longest (type,
2319 			     (LONGEST) (!tem || !value_logical_not (arg2)));
2320 	}
2321 
2322     case BINOP_EQUAL:
2323       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2324       arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2325       if (noside == EVAL_SKIP)
2326 	goto nosideret;
2327       if (binop_user_defined_p (op, arg1, arg2))
2328 	{
2329 	  return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2330 	}
2331       else
2332 	{
2333 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2334 	  tem = value_equal (arg1, arg2);
2335 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
2336 	  return value_from_longest (type, (LONGEST) tem);
2337 	}
2338 
2339     case BINOP_NOTEQUAL:
2340       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2341       arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2342       if (noside == EVAL_SKIP)
2343 	goto nosideret;
2344       if (binop_user_defined_p (op, arg1, arg2))
2345 	{
2346 	  return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2347 	}
2348       else
2349 	{
2350 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2351 	  tem = value_equal (arg1, arg2);
2352 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
2353 	  return value_from_longest (type, (LONGEST) ! tem);
2354 	}
2355 
2356     case BINOP_LESS:
2357       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2358       arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2359       if (noside == EVAL_SKIP)
2360 	goto nosideret;
2361       if (binop_user_defined_p (op, arg1, arg2))
2362 	{
2363 	  return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2364 	}
2365       else
2366 	{
2367 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2368 	  tem = value_less (arg1, arg2);
2369 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
2370 	  return value_from_longest (type, (LONGEST) tem);
2371 	}
2372 
2373     case BINOP_GTR:
2374       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2375       arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2376       if (noside == EVAL_SKIP)
2377 	goto nosideret;
2378       if (binop_user_defined_p (op, arg1, arg2))
2379 	{
2380 	  return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2381 	}
2382       else
2383 	{
2384 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2385 	  tem = value_less (arg2, arg1);
2386 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
2387 	  return value_from_longest (type, (LONGEST) tem);
2388 	}
2389 
2390     case BINOP_GEQ:
2391       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2392       arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2393       if (noside == EVAL_SKIP)
2394 	goto nosideret;
2395       if (binop_user_defined_p (op, arg1, arg2))
2396 	{
2397 	  return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2398 	}
2399       else
2400 	{
2401 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2402 	  tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2403 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
2404 	  return value_from_longest (type, (LONGEST) tem);
2405 	}
2406 
2407     case BINOP_LEQ:
2408       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2409       arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2410       if (noside == EVAL_SKIP)
2411 	goto nosideret;
2412       if (binop_user_defined_p (op, arg1, arg2))
2413 	{
2414 	  return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2415 	}
2416       else
2417 	{
2418 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2419 	  tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2420 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
2421 	  return value_from_longest (type, (LONGEST) tem);
2422 	}
2423 
2424     case BINOP_REPEAT:
2425       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2426       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2427       if (noside == EVAL_SKIP)
2428 	goto nosideret;
2429       type = check_typedef (value_type (arg2));
2430       if (TYPE_CODE (type) != TYPE_CODE_INT)
2431 	error (_("Non-integral right operand for \"@\" operator."));
2432       if (noside == EVAL_AVOID_SIDE_EFFECTS)
2433 	{
2434 	  return allocate_repeat_value (value_type (arg1),
2435 				     longest_to_int (value_as_long (arg2)));
2436 	}
2437       else
2438 	return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2439 
2440     case BINOP_COMMA:
2441       evaluate_subexp (NULL_TYPE, exp, pos, noside);
2442       return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2443 
2444     case UNOP_PLUS:
2445       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2446       if (noside == EVAL_SKIP)
2447 	goto nosideret;
2448       if (unop_user_defined_p (op, arg1))
2449 	return value_x_unop (arg1, op, noside);
2450       else
2451 	{
2452 	  unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2453 	  return value_pos (arg1);
2454 	}
2455 
2456     case UNOP_NEG:
2457       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2458       if (noside == EVAL_SKIP)
2459 	goto nosideret;
2460       if (unop_user_defined_p (op, arg1))
2461 	return value_x_unop (arg1, op, noside);
2462       else
2463 	{
2464 	  unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2465 	  return value_neg (arg1);
2466 	}
2467 
2468     case UNOP_COMPLEMENT:
2469       /* C++: check for and handle destructor names.  */
2470       op = exp->elts[*pos].opcode;
2471 
2472       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2473       if (noside == EVAL_SKIP)
2474 	goto nosideret;
2475       if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2476 	return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2477       else
2478 	{
2479 	  unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2480 	  return value_complement (arg1);
2481 	}
2482 
2483     case UNOP_LOGICAL_NOT:
2484       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2485       if (noside == EVAL_SKIP)
2486 	goto nosideret;
2487       if (unop_user_defined_p (op, arg1))
2488 	return value_x_unop (arg1, op, noside);
2489       else
2490 	{
2491 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
2492 	  return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2493 	}
2494 
2495     case UNOP_IND:
2496       if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2497 	expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2498       arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2499       type = check_typedef (value_type (arg1));
2500       if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2501 	  || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2502 	error (_("Attempt to dereference pointer "
2503 		 "to member without an object"));
2504       if (noside == EVAL_SKIP)
2505 	goto nosideret;
2506       if (unop_user_defined_p (op, arg1))
2507 	return value_x_unop (arg1, op, noside);
2508       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2509 	{
2510 	  type = check_typedef (value_type (arg1));
2511 	  if (TYPE_CODE (type) == TYPE_CODE_PTR
2512 	      || TYPE_CODE (type) == TYPE_CODE_REF
2513 	  /* In C you can dereference an array to get the 1st elt.  */
2514 	      || TYPE_CODE (type) == TYPE_CODE_ARRAY
2515 	    )
2516 	    return value_zero (TYPE_TARGET_TYPE (type),
2517 			       lval_memory);
2518 	  else if (TYPE_CODE (type) == TYPE_CODE_INT)
2519 	    /* GDB allows dereferencing an int.  */
2520 	    return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2521 			       lval_memory);
2522 	  else
2523 	    error (_("Attempt to take contents of a non-pointer value."));
2524 	}
2525 
2526       /* Allow * on an integer so we can cast it to whatever we want.
2527 	 This returns an int, which seems like the most C-like thing to
2528 	 do.  "long long" variables are rare enough that
2529 	 BUILTIN_TYPE_LONGEST would seem to be a mistake.  */
2530       if (TYPE_CODE (type) == TYPE_CODE_INT)
2531 	return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2532 			      (CORE_ADDR) value_as_address (arg1));
2533       return value_ind (arg1);
2534 
2535     case UNOP_ADDR:
2536       /* C++: check for and handle pointer to members.  */
2537 
2538       op = exp->elts[*pos].opcode;
2539 
2540       if (noside == EVAL_SKIP)
2541 	{
2542 	  evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2543 	  goto nosideret;
2544 	}
2545       else
2546 	{
2547 	  struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2548 							       noside);
2549 
2550 	  return retvalp;
2551 	}
2552 
2553     case UNOP_SIZEOF:
2554       if (noside == EVAL_SKIP)
2555 	{
2556 	  evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2557 	  goto nosideret;
2558 	}
2559       return evaluate_subexp_for_sizeof (exp, pos, noside);
2560 
2561     case UNOP_CAST:
2562       (*pos) += 2;
2563       type = exp->elts[pc + 1].type;
2564       arg1 = evaluate_subexp (type, exp, pos, noside);
2565       if (noside == EVAL_SKIP)
2566 	goto nosideret;
2567       if (type != value_type (arg1))
2568 	arg1 = value_cast (type, arg1);
2569       return arg1;
2570 
2571     case UNOP_CAST_TYPE:
2572       arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2573       type = value_type (arg1);
2574       arg1 = evaluate_subexp (type, exp, pos, noside);
2575       if (noside == EVAL_SKIP)
2576 	goto nosideret;
2577       if (type != value_type (arg1))
2578 	arg1 = value_cast (type, arg1);
2579       return arg1;
2580 
2581     case UNOP_DYNAMIC_CAST:
2582       arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2583       type = value_type (arg1);
2584       arg1 = evaluate_subexp (type, exp, pos, noside);
2585       if (noside == EVAL_SKIP)
2586 	goto nosideret;
2587       return value_dynamic_cast (type, arg1);
2588 
2589     case UNOP_REINTERPRET_CAST:
2590       arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2591       type = value_type (arg1);
2592       arg1 = evaluate_subexp (type, exp, pos, noside);
2593       if (noside == EVAL_SKIP)
2594 	goto nosideret;
2595       return value_reinterpret_cast (type, arg1);
2596 
2597     case UNOP_MEMVAL:
2598       (*pos) += 2;
2599       arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2600       if (noside == EVAL_SKIP)
2601 	goto nosideret;
2602       if (noside == EVAL_AVOID_SIDE_EFFECTS)
2603 	return value_zero (exp->elts[pc + 1].type, lval_memory);
2604       else
2605 	return value_at_lazy (exp->elts[pc + 1].type,
2606 			      value_as_address (arg1));
2607 
2608     case UNOP_MEMVAL_TYPE:
2609       arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2610       type = value_type (arg1);
2611       arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2612       if (noside == EVAL_SKIP)
2613 	goto nosideret;
2614       if (noside == EVAL_AVOID_SIDE_EFFECTS)
2615 	return value_zero (type, lval_memory);
2616       else
2617 	return value_at_lazy (type, value_as_address (arg1));
2618 
2619     case UNOP_MEMVAL_TLS:
2620       (*pos) += 3;
2621       arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2622       if (noside == EVAL_SKIP)
2623 	goto nosideret;
2624       if (noside == EVAL_AVOID_SIDE_EFFECTS)
2625 	return value_zero (exp->elts[pc + 2].type, lval_memory);
2626       else
2627 	{
2628 	  CORE_ADDR tls_addr;
2629 
2630 	  tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2631 						   value_as_address (arg1));
2632 	  return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2633 	}
2634 
2635     case UNOP_PREINCREMENT:
2636       arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2637       if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2638 	return arg1;
2639       else if (unop_user_defined_p (op, arg1))
2640 	{
2641 	  return value_x_unop (arg1, op, noside);
2642 	}
2643       else
2644 	{
2645 	  if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2646 	    arg2 = value_ptradd (arg1, 1);
2647 	  else
2648 	    {
2649 	      struct value *tmp = arg1;
2650 
2651 	      arg2 = value_one (value_type (arg1));
2652 	      binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2653 	      arg2 = value_binop (tmp, arg2, BINOP_ADD);
2654 	    }
2655 
2656 	  return value_assign (arg1, arg2);
2657 	}
2658 
2659     case UNOP_PREDECREMENT:
2660       arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2661       if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2662 	return arg1;
2663       else if (unop_user_defined_p (op, arg1))
2664 	{
2665 	  return value_x_unop (arg1, op, noside);
2666 	}
2667       else
2668 	{
2669 	  if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2670 	    arg2 = value_ptradd (arg1, -1);
2671 	  else
2672 	    {
2673 	      struct value *tmp = arg1;
2674 
2675 	      arg2 = value_one (value_type (arg1));
2676 	      binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2677 	      arg2 = value_binop (tmp, arg2, BINOP_SUB);
2678 	    }
2679 
2680 	  return value_assign (arg1, arg2);
2681 	}
2682 
2683     case UNOP_POSTINCREMENT:
2684       arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2685       if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2686 	return arg1;
2687       else if (unop_user_defined_p (op, arg1))
2688 	{
2689 	  return value_x_unop (arg1, op, noside);
2690 	}
2691       else
2692 	{
2693 	  arg3 = value_non_lval (arg1);
2694 
2695 	  if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2696 	    arg2 = value_ptradd (arg1, 1);
2697 	  else
2698 	    {
2699 	      struct value *tmp = arg1;
2700 
2701 	      arg2 = value_one (value_type (arg1));
2702 	      binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2703 	      arg2 = value_binop (tmp, arg2, BINOP_ADD);
2704 	    }
2705 
2706 	  value_assign (arg1, arg2);
2707 	  return arg3;
2708 	}
2709 
2710     case UNOP_POSTDECREMENT:
2711       arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2712       if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2713 	return arg1;
2714       else if (unop_user_defined_p (op, arg1))
2715 	{
2716 	  return value_x_unop (arg1, op, noside);
2717 	}
2718       else
2719 	{
2720 	  arg3 = value_non_lval (arg1);
2721 
2722 	  if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2723 	    arg2 = value_ptradd (arg1, -1);
2724 	  else
2725 	    {
2726 	      struct value *tmp = arg1;
2727 
2728 	      arg2 = value_one (value_type (arg1));
2729 	      binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2730 	      arg2 = value_binop (tmp, arg2, BINOP_SUB);
2731 	    }
2732 
2733 	  value_assign (arg1, arg2);
2734 	  return arg3;
2735 	}
2736 
2737     case OP_THIS:
2738       (*pos) += 1;
2739       return value_of_this (exp->language_defn);
2740 
2741     case OP_TYPE:
2742       /* The value is not supposed to be used.  This is here to make it
2743          easier to accommodate expressions that contain types.  */
2744       (*pos) += 2;
2745       if (noside == EVAL_SKIP)
2746         goto nosideret;
2747       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2748 	{
2749 	  struct type *type = exp->elts[pc + 1].type;
2750 
2751 	  /* If this is a typedef, then find its immediate target.  We
2752 	     use check_typedef to resolve stubs, but we ignore its
2753 	     result because we do not want to dig past all
2754 	     typedefs.  */
2755 	  check_typedef (type);
2756 	  if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2757 	    type = TYPE_TARGET_TYPE (type);
2758 	  return allocate_value (type);
2759 	}
2760       else
2761         error (_("Attempt to use a type name as an expression"));
2762 
2763     case OP_TYPEOF:
2764     case OP_DECLTYPE:
2765       if (noside == EVAL_SKIP)
2766 	{
2767 	  evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2768 	  goto nosideret;
2769 	}
2770       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2771 	{
2772 	  enum exp_opcode sub_op = exp->elts[*pos].opcode;
2773 	  struct value *result;
2774 
2775 	  result = evaluate_subexp (NULL_TYPE, exp, pos,
2776 				    EVAL_AVOID_SIDE_EFFECTS);
2777 
2778 	  /* 'decltype' has special semantics for lvalues.  */
2779 	  if (op == OP_DECLTYPE
2780 	      && (sub_op == BINOP_SUBSCRIPT
2781 		  || sub_op == STRUCTOP_MEMBER
2782 		  || sub_op == STRUCTOP_MPTR
2783 		  || sub_op == UNOP_IND
2784 		  || sub_op == STRUCTOP_STRUCT
2785 		  || sub_op == STRUCTOP_PTR
2786 		  || sub_op == OP_SCOPE))
2787 	    {
2788 	      struct type *type = value_type (result);
2789 
2790 	      if (TYPE_CODE (check_typedef (type)) != TYPE_CODE_REF)
2791 		{
2792 		  type = lookup_reference_type (type);
2793 		  result = allocate_value (type);
2794 		}
2795 	    }
2796 
2797 	  return result;
2798 	}
2799       else
2800         error (_("Attempt to use a type as an expression"));
2801 
2802     case OP_TYPEID:
2803       {
2804 	struct value *result;
2805 	enum exp_opcode sub_op = exp->elts[*pos].opcode;
2806 
2807 	if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2808 	  result = evaluate_subexp (NULL_TYPE, exp, pos,
2809 				    EVAL_AVOID_SIDE_EFFECTS);
2810 	else
2811 	  result = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2812 
2813 	if (noside != EVAL_NORMAL)
2814 	  return allocate_value (cplus_typeid_type (exp->gdbarch));
2815 
2816 	return cplus_typeid (result);
2817       }
2818 
2819     default:
2820       /* Removing this case and compiling with gcc -Wall reveals that
2821          a lot of cases are hitting this case.  Some of these should
2822          probably be removed from expression.h; others are legitimate
2823          expressions which are (apparently) not fully implemented.
2824 
2825          If there are any cases landing here which mean a user error,
2826          then they should be separate cases, with more descriptive
2827          error messages.  */
2828 
2829       error (_("GDB does not (yet) know how to "
2830 	       "evaluate that kind of expression"));
2831     }
2832 
2833 nosideret:
2834   return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2835 }
2836 
2837 /* Evaluate a subexpression of EXP, at index *POS,
2838    and return the address of that subexpression.
2839    Advance *POS over the subexpression.
2840    If the subexpression isn't an lvalue, get an error.
2841    NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2842    then only the type of the result need be correct.  */
2843 
2844 static struct value *
2845 evaluate_subexp_for_address (struct expression *exp, int *pos,
2846 			     enum noside noside)
2847 {
2848   enum exp_opcode op;
2849   int pc;
2850   struct symbol *var;
2851   struct value *x;
2852   int tem;
2853 
2854   pc = (*pos);
2855   op = exp->elts[pc].opcode;
2856 
2857   switch (op)
2858     {
2859     case UNOP_IND:
2860       (*pos)++;
2861       x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2862 
2863       /* We can't optimize out "&*" if there's a user-defined operator*.  */
2864       if (unop_user_defined_p (op, x))
2865 	{
2866 	  x = value_x_unop (x, op, noside);
2867 	  goto default_case_after_eval;
2868 	}
2869 
2870       return coerce_array (x);
2871 
2872     case UNOP_MEMVAL:
2873       (*pos) += 3;
2874       return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2875 			 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2876 
2877     case UNOP_MEMVAL_TYPE:
2878       {
2879 	struct type *type;
2880 
2881 	(*pos) += 1;
2882 	x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2883 	type = value_type (x);
2884 	return value_cast (lookup_pointer_type (type),
2885 			   evaluate_subexp (NULL_TYPE, exp, pos, noside));
2886       }
2887 
2888     case OP_VAR_VALUE:
2889       var = exp->elts[pc + 2].symbol;
2890 
2891       /* C++: The "address" of a reference should yield the address
2892        * of the object pointed to.  Let value_addr() deal with it.  */
2893       if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2894 	goto default_case;
2895 
2896       (*pos) += 4;
2897       if (noside == EVAL_AVOID_SIDE_EFFECTS)
2898 	{
2899 	  struct type *type =
2900 	    lookup_pointer_type (SYMBOL_TYPE (var));
2901 	  enum address_class sym_class = SYMBOL_CLASS (var);
2902 
2903 	  if (sym_class == LOC_CONST
2904 	      || sym_class == LOC_CONST_BYTES
2905 	      || sym_class == LOC_REGISTER)
2906 	    error (_("Attempt to take address of register or constant."));
2907 
2908 	  return
2909 	    value_zero (type, not_lval);
2910 	}
2911       else
2912 	return address_of_variable (var, exp->elts[pc + 1].block);
2913 
2914     case OP_SCOPE:
2915       tem = longest_to_int (exp->elts[pc + 2].longconst);
2916       (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2917       x = value_aggregate_elt (exp->elts[pc + 1].type,
2918 			       &exp->elts[pc + 3].string,
2919 			       NULL, 1, noside);
2920       if (x == NULL)
2921 	error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2922       return x;
2923 
2924     default:
2925     default_case:
2926       x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2927     default_case_after_eval:
2928       if (noside == EVAL_AVOID_SIDE_EFFECTS)
2929 	{
2930 	  struct type *type = check_typedef (value_type (x));
2931 
2932 	  if (TYPE_CODE (type) == TYPE_CODE_REF)
2933 	    return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2934 			       not_lval);
2935 	  else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2936 	    return value_zero (lookup_pointer_type (value_type (x)),
2937 			       not_lval);
2938 	  else
2939 	    error (_("Attempt to take address of "
2940 		     "value not located in memory."));
2941 	}
2942       return value_addr (x);
2943     }
2944 }
2945 
2946 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2947    When used in contexts where arrays will be coerced anyway, this is
2948    equivalent to `evaluate_subexp' but much faster because it avoids
2949    actually fetching array contents (perhaps obsolete now that we have
2950    value_lazy()).
2951 
2952    Note that we currently only do the coercion for C expressions, where
2953    arrays are zero based and the coercion is correct.  For other languages,
2954    with nonzero based arrays, coercion loses.  Use CAST_IS_CONVERSION
2955    to decide if coercion is appropriate.  */
2956 
2957 struct value *
2958 evaluate_subexp_with_coercion (struct expression *exp,
2959 			       int *pos, enum noside noside)
2960 {
2961   enum exp_opcode op;
2962   int pc;
2963   struct value *val;
2964   struct symbol *var;
2965   struct type *type;
2966 
2967   pc = (*pos);
2968   op = exp->elts[pc].opcode;
2969 
2970   switch (op)
2971     {
2972     case OP_VAR_VALUE:
2973       var = exp->elts[pc + 2].symbol;
2974       type = check_typedef (SYMBOL_TYPE (var));
2975       if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2976 	  && !TYPE_VECTOR (type)
2977 	  && CAST_IS_CONVERSION (exp->language_defn))
2978 	{
2979 	  (*pos) += 4;
2980 	  val = address_of_variable (var, exp->elts[pc + 1].block);
2981 	  return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2982 			     val);
2983 	}
2984       /* FALLTHROUGH */
2985 
2986     default:
2987       return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2988     }
2989 }
2990 
2991 /* Evaluate a subexpression of EXP, at index *POS,
2992    and return a value for the size of that subexpression.
2993    Advance *POS over the subexpression.  If NOSIDE is EVAL_NORMAL
2994    we allow side-effects on the operand if its type is a variable
2995    length array.   */
2996 
2997 static struct value *
2998 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
2999 			    enum noside noside)
3000 {
3001   /* FIXME: This should be size_t.  */
3002   struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3003   enum exp_opcode op;
3004   int pc;
3005   struct type *type;
3006   struct value *val;
3007 
3008   pc = (*pos);
3009   op = exp->elts[pc].opcode;
3010 
3011   switch (op)
3012     {
3013       /* This case is handled specially
3014          so that we avoid creating a value for the result type.
3015          If the result type is very big, it's desirable not to
3016          create a value unnecessarily.  */
3017     case UNOP_IND:
3018       (*pos)++;
3019       val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3020       type = check_typedef (value_type (val));
3021       if (TYPE_CODE (type) != TYPE_CODE_PTR
3022 	  && TYPE_CODE (type) != TYPE_CODE_REF
3023 	  && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3024 	error (_("Attempt to take contents of a non-pointer value."));
3025       type = TYPE_TARGET_TYPE (type);
3026       if (is_dynamic_type (type))
3027 	type = value_type (value_ind (val));
3028       return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3029 
3030     case UNOP_MEMVAL:
3031       (*pos) += 3;
3032       type = exp->elts[pc + 1].type;
3033       break;
3034 
3035     case UNOP_MEMVAL_TYPE:
3036       (*pos) += 1;
3037       val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3038       type = value_type (val);
3039       break;
3040 
3041     case OP_VAR_VALUE:
3042       type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3043       if (is_dynamic_type (type))
3044 	{
3045 	  val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3046 	  type = value_type (val);
3047 	}
3048       else
3049 	(*pos) += 4;
3050       break;
3051 
3052       /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3053 	 type of the subscript is a variable length array type. In this case we
3054 	 must re-evaluate the right hand side of the subcription to allow
3055 	 side-effects. */
3056     case BINOP_SUBSCRIPT:
3057       if (noside == EVAL_NORMAL)
3058 	{
3059 	  int pc = (*pos) + 1;
3060 
3061 	  val = evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
3062 	  type = check_typedef (value_type (val));
3063 	  if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3064 	    {
3065 	      type = check_typedef (TYPE_TARGET_TYPE (type));
3066 	      if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3067 		{
3068 		  type = TYPE_INDEX_TYPE (type);
3069 		  /* Only re-evaluate the right hand side if the resulting type
3070 		     is a variable length type.  */
3071 		  if (TYPE_RANGE_DATA (type)->flag_bound_evaluated)
3072 		    {
3073 		      val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3074 		      return value_from_longest
3075 			(size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3076 		    }
3077 		}
3078 	    }
3079 	}
3080 
3081       /* Fall through.  */
3082 
3083     default:
3084       val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3085       type = value_type (val);
3086       break;
3087     }
3088 
3089   /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3090      "When applied to a reference or a reference type, the result is
3091      the size of the referenced type."  */
3092   CHECK_TYPEDEF (type);
3093   if (exp->language_defn->la_language == language_cplus
3094       && TYPE_CODE (type) == TYPE_CODE_REF)
3095     type = check_typedef (TYPE_TARGET_TYPE (type));
3096   return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3097 }
3098 
3099 /* Parse a type expression in the string [P..P+LENGTH).  */
3100 
3101 struct type *
3102 parse_and_eval_type (char *p, int length)
3103 {
3104   char *tmp = (char *) alloca (length + 4);
3105   struct expression *expr;
3106 
3107   tmp[0] = '(';
3108   memcpy (tmp + 1, p, length);
3109   tmp[length + 1] = ')';
3110   tmp[length + 2] = '0';
3111   tmp[length + 3] = '\0';
3112   expr = parse_expression (tmp);
3113   if (expr->elts[0].opcode != UNOP_CAST)
3114     error (_("Internal error in eval_type."));
3115   return expr->elts[1].type;
3116 }
3117 
3118 int
3119 calc_f77_array_dims (struct type *array_type)
3120 {
3121   int ndimen = 1;
3122   struct type *tmp_type;
3123 
3124   if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3125     error (_("Can't get dimensions for a non-array type"));
3126 
3127   tmp_type = array_type;
3128 
3129   while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3130     {
3131       if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3132 	++ndimen;
3133     }
3134   return ndimen;
3135 }
3136