1 /* Evaluate expressions for GDB. 2 3 Copyright (C) 1986-2019 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "symtab.h" 22 #include "gdbtypes.h" 23 #include "value.h" 24 #include "expression.h" 25 #include "target.h" 26 #include "frame.h" 27 #include "gdbthread.h" 28 #include "language.h" /* For CAST_IS_CONVERSION. */ 29 #include "f-lang.h" /* For array bound stuff. */ 30 #include "cp-abi.h" 31 #include "infcall.h" 32 #include "objc-lang.h" 33 #include "block.h" 34 #include "parser-defs.h" 35 #include "cp-support.h" 36 #include "ui-out.h" 37 #include "regcache.h" 38 #include "user-regs.h" 39 #include "valprint.h" 40 #include "gdb_obstack.h" 41 #include "objfiles.h" 42 #include "typeprint.h" 43 #include <ctype.h> 44 45 /* This is defined in valops.c */ 46 extern int overload_resolution; 47 48 /* Prototypes for local functions. */ 49 50 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *, 51 enum noside); 52 53 static struct value *evaluate_subexp_for_address (struct expression *, 54 int *, enum noside); 55 56 static value *evaluate_subexp_for_cast (expression *exp, int *pos, 57 enum noside noside, 58 struct type *type); 59 60 static struct value *evaluate_struct_tuple (struct value *, 61 struct expression *, int *, 62 enum noside, int); 63 64 static LONGEST init_array_element (struct value *, struct value *, 65 struct expression *, int *, enum noside, 66 LONGEST, LONGEST); 67 68 struct value * 69 evaluate_subexp (struct type *expect_type, struct expression *exp, 70 int *pos, enum noside noside) 71 { 72 struct value *retval; 73 74 gdb::optional<enable_thread_stack_temporaries> stack_temporaries; 75 if (*pos == 0 && target_has_execution 76 && exp->language_defn->la_language == language_cplus 77 && !thread_stack_temporaries_enabled_p (inferior_thread ())) 78 stack_temporaries.emplace (inferior_thread ()); 79 80 retval = (*exp->language_defn->la_exp_desc->evaluate_exp) 81 (expect_type, exp, pos, noside); 82 83 if (stack_temporaries.has_value () 84 && value_in_thread_stack_temporaries (retval, inferior_thread ())) 85 retval = value_non_lval (retval); 86 87 return retval; 88 } 89 90 /* Parse the string EXP as a C expression, evaluate it, 91 and return the result as a number. */ 92 93 CORE_ADDR 94 parse_and_eval_address (const char *exp) 95 { 96 expression_up expr = parse_expression (exp); 97 98 return value_as_address (evaluate_expression (expr.get ())); 99 } 100 101 /* Like parse_and_eval_address, but treats the value of the expression 102 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */ 103 LONGEST 104 parse_and_eval_long (const char *exp) 105 { 106 expression_up expr = parse_expression (exp); 107 108 return value_as_long (evaluate_expression (expr.get ())); 109 } 110 111 struct value * 112 parse_and_eval (const char *exp) 113 { 114 expression_up expr = parse_expression (exp); 115 116 return evaluate_expression (expr.get ()); 117 } 118 119 /* Parse up to a comma (or to a closeparen) 120 in the string EXPP as an expression, evaluate it, and return the value. 121 EXPP is advanced to point to the comma. */ 122 123 struct value * 124 parse_to_comma_and_eval (const char **expp) 125 { 126 expression_up expr = parse_exp_1 (expp, 0, (struct block *) 0, 1); 127 128 return evaluate_expression (expr.get ()); 129 } 130 131 /* Evaluate an expression in internal prefix form 132 such as is constructed by parse.y. 133 134 See expression.h for info on the format of an expression. */ 135 136 struct value * 137 evaluate_expression (struct expression *exp) 138 { 139 int pc = 0; 140 141 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL); 142 } 143 144 /* Evaluate an expression, avoiding all memory references 145 and getting a value whose type alone is correct. */ 146 147 struct value * 148 evaluate_type (struct expression *exp) 149 { 150 int pc = 0; 151 152 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS); 153 } 154 155 /* Evaluate a subexpression, avoiding all memory references and 156 getting a value whose type alone is correct. */ 157 158 struct value * 159 evaluate_subexpression_type (struct expression *exp, int subexp) 160 { 161 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS); 162 } 163 164 /* Find the current value of a watchpoint on EXP. Return the value in 165 *VALP and *RESULTP and the chain of intermediate and final values 166 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does 167 not need them. 168 169 If PRESERVE_ERRORS is true, then exceptions are passed through. 170 Otherwise, if PRESERVE_ERRORS is false, then if a memory error 171 occurs while evaluating the expression, *RESULTP will be set to 172 NULL. *RESULTP may be a lazy value, if the result could not be 173 read from memory. It is used to determine whether a value is 174 user-specified (we should watch the whole value) or intermediate 175 (we should watch only the bit used to locate the final value). 176 177 If the final value, or any intermediate value, could not be read 178 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be 179 set to any referenced values. *VALP will never be a lazy value. 180 This is the value which we store in struct breakpoint. 181 182 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be 183 released from the value chain. If VAL_CHAIN is NULL, all generated 184 values will be left on the value chain. */ 185 186 void 187 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp, 188 struct value **resultp, 189 std::vector<value_ref_ptr> *val_chain, 190 int preserve_errors) 191 { 192 struct value *mark, *new_mark, *result; 193 194 *valp = NULL; 195 if (resultp) 196 *resultp = NULL; 197 if (val_chain) 198 val_chain->clear (); 199 200 /* Evaluate the expression. */ 201 mark = value_mark (); 202 result = NULL; 203 204 TRY 205 { 206 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL); 207 } 208 CATCH (ex, RETURN_MASK_ALL) 209 { 210 /* Ignore memory errors if we want watchpoints pointing at 211 inaccessible memory to still be created; otherwise, throw the 212 error to some higher catcher. */ 213 switch (ex.error) 214 { 215 case MEMORY_ERROR: 216 if (!preserve_errors) 217 break; 218 /* Fall through. */ 219 default: 220 throw_exception (ex); 221 break; 222 } 223 } 224 END_CATCH 225 226 new_mark = value_mark (); 227 if (mark == new_mark) 228 return; 229 if (resultp) 230 *resultp = result; 231 232 /* Make sure it's not lazy, so that after the target stops again we 233 have a non-lazy previous value to compare with. */ 234 if (result != NULL) 235 { 236 if (!value_lazy (result)) 237 *valp = result; 238 else 239 { 240 241 TRY 242 { 243 value_fetch_lazy (result); 244 *valp = result; 245 } 246 CATCH (except, RETURN_MASK_ERROR) 247 { 248 } 249 END_CATCH 250 } 251 } 252 253 if (val_chain) 254 { 255 /* Return the chain of intermediate values. We use this to 256 decide which addresses to watch. */ 257 *val_chain = value_release_to_mark (mark); 258 } 259 } 260 261 /* Extract a field operation from an expression. If the subexpression 262 of EXP starting at *SUBEXP is not a structure dereference 263 operation, return NULL. Otherwise, return the name of the 264 dereferenced field, and advance *SUBEXP to point to the 265 subexpression of the left-hand-side of the dereference. This is 266 used when completing field names. */ 267 268 const char * 269 extract_field_op (struct expression *exp, int *subexp) 270 { 271 int tem; 272 char *result; 273 274 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT 275 && exp->elts[*subexp].opcode != STRUCTOP_PTR) 276 return NULL; 277 tem = longest_to_int (exp->elts[*subexp + 1].longconst); 278 result = &exp->elts[*subexp + 2].string; 279 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1); 280 return result; 281 } 282 283 /* This function evaluates brace-initializers (in C/C++) for 284 structure types. */ 285 286 static struct value * 287 evaluate_struct_tuple (struct value *struct_val, 288 struct expression *exp, 289 int *pos, enum noside noside, int nargs) 290 { 291 struct type *struct_type = check_typedef (value_type (struct_val)); 292 struct type *field_type; 293 int fieldno = -1; 294 295 while (--nargs >= 0) 296 { 297 struct value *val = NULL; 298 int bitpos, bitsize; 299 bfd_byte *addr; 300 301 fieldno++; 302 /* Skip static fields. */ 303 while (fieldno < TYPE_NFIELDS (struct_type) 304 && field_is_static (&TYPE_FIELD (struct_type, 305 fieldno))) 306 fieldno++; 307 if (fieldno >= TYPE_NFIELDS (struct_type)) 308 error (_("too many initializers")); 309 field_type = TYPE_FIELD_TYPE (struct_type, fieldno); 310 if (TYPE_CODE (field_type) == TYPE_CODE_UNION 311 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0') 312 error (_("don't know which variant you want to set")); 313 314 /* Here, struct_type is the type of the inner struct, 315 while substruct_type is the type of the inner struct. 316 These are the same for normal structures, but a variant struct 317 contains anonymous union fields that contain substruct fields. 318 The value fieldno is the index of the top-level (normal or 319 anonymous union) field in struct_field, while the value 320 subfieldno is the index of the actual real (named inner) field 321 in substruct_type. */ 322 323 field_type = TYPE_FIELD_TYPE (struct_type, fieldno); 324 if (val == 0) 325 val = evaluate_subexp (field_type, exp, pos, noside); 326 327 /* Now actually set the field in struct_val. */ 328 329 /* Assign val to field fieldno. */ 330 if (value_type (val) != field_type) 331 val = value_cast (field_type, val); 332 333 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno); 334 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno); 335 addr = value_contents_writeable (struct_val) + bitpos / 8; 336 if (bitsize) 337 modify_field (struct_type, addr, 338 value_as_long (val), bitpos % 8, bitsize); 339 else 340 memcpy (addr, value_contents (val), 341 TYPE_LENGTH (value_type (val))); 342 343 } 344 return struct_val; 345 } 346 347 /* Recursive helper function for setting elements of array tuples. 348 The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND); the 349 element value is ELEMENT; EXP, POS and NOSIDE are as usual. 350 Evaluates index expresions and sets the specified element(s) of 351 ARRAY to ELEMENT. Returns last index value. */ 352 353 static LONGEST 354 init_array_element (struct value *array, struct value *element, 355 struct expression *exp, int *pos, 356 enum noside noside, LONGEST low_bound, LONGEST high_bound) 357 { 358 LONGEST index; 359 int element_size = TYPE_LENGTH (value_type (element)); 360 361 if (exp->elts[*pos].opcode == BINOP_COMMA) 362 { 363 (*pos)++; 364 init_array_element (array, element, exp, pos, noside, 365 low_bound, high_bound); 366 return init_array_element (array, element, 367 exp, pos, noside, low_bound, high_bound); 368 } 369 else 370 { 371 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); 372 if (index < low_bound || index > high_bound) 373 error (_("tuple index out of range")); 374 memcpy (value_contents_raw (array) + (index - low_bound) * element_size, 375 value_contents (element), element_size); 376 } 377 return index; 378 } 379 380 static struct value * 381 value_f90_subarray (struct value *array, 382 struct expression *exp, int *pos, enum noside noside) 383 { 384 int pc = (*pos) + 1; 385 LONGEST low_bound, high_bound; 386 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array))); 387 enum range_type range_type 388 = (enum range_type) longest_to_int (exp->elts[pc].longconst); 389 390 *pos += 3; 391 392 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT) 393 low_bound = TYPE_LOW_BOUND (range); 394 else 395 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); 396 397 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT) 398 high_bound = TYPE_HIGH_BOUND (range); 399 else 400 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); 401 402 return value_slice (array, low_bound, high_bound - low_bound + 1); 403 } 404 405 406 /* Promote value ARG1 as appropriate before performing a unary operation 407 on this argument. 408 If the result is not appropriate for any particular language then it 409 needs to patch this function. */ 410 411 void 412 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch, 413 struct value **arg1) 414 { 415 struct type *type1; 416 417 *arg1 = coerce_ref (*arg1); 418 type1 = check_typedef (value_type (*arg1)); 419 420 if (is_integral_type (type1)) 421 { 422 switch (language->la_language) 423 { 424 default: 425 /* Perform integral promotion for ANSI C/C++. 426 If not appropropriate for any particular language 427 it needs to modify this function. */ 428 { 429 struct type *builtin_int = builtin_type (gdbarch)->builtin_int; 430 431 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int)) 432 *arg1 = value_cast (builtin_int, *arg1); 433 } 434 break; 435 } 436 } 437 } 438 439 /* Promote values ARG1 and ARG2 as appropriate before performing a binary 440 operation on those two operands. 441 If the result is not appropriate for any particular language then it 442 needs to patch this function. */ 443 444 void 445 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch, 446 struct value **arg1, struct value **arg2) 447 { 448 struct type *promoted_type = NULL; 449 struct type *type1; 450 struct type *type2; 451 452 *arg1 = coerce_ref (*arg1); 453 *arg2 = coerce_ref (*arg2); 454 455 type1 = check_typedef (value_type (*arg1)); 456 type2 = check_typedef (value_type (*arg2)); 457 458 if ((TYPE_CODE (type1) != TYPE_CODE_FLT 459 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT 460 && !is_integral_type (type1)) 461 || (TYPE_CODE (type2) != TYPE_CODE_FLT 462 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT 463 && !is_integral_type (type2))) 464 return; 465 466 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT 467 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT) 468 { 469 /* No promotion required. */ 470 } 471 else if (TYPE_CODE (type1) == TYPE_CODE_FLT 472 || TYPE_CODE (type2) == TYPE_CODE_FLT) 473 { 474 switch (language->la_language) 475 { 476 case language_c: 477 case language_cplus: 478 case language_asm: 479 case language_objc: 480 case language_opencl: 481 /* No promotion required. */ 482 break; 483 484 default: 485 /* For other languages the result type is unchanged from gdb 486 version 6.7 for backward compatibility. 487 If either arg was long double, make sure that value is also long 488 double. Otherwise use double. */ 489 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch) 490 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch)) 491 promoted_type = builtin_type (gdbarch)->builtin_long_double; 492 else 493 promoted_type = builtin_type (gdbarch)->builtin_double; 494 break; 495 } 496 } 497 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL 498 && TYPE_CODE (type2) == TYPE_CODE_BOOL) 499 { 500 /* No promotion required. */ 501 } 502 else 503 /* Integral operations here. */ 504 /* FIXME: Also mixed integral/booleans, with result an integer. */ 505 { 506 const struct builtin_type *builtin = builtin_type (gdbarch); 507 unsigned int promoted_len1 = TYPE_LENGTH (type1); 508 unsigned int promoted_len2 = TYPE_LENGTH (type2); 509 int is_unsigned1 = TYPE_UNSIGNED (type1); 510 int is_unsigned2 = TYPE_UNSIGNED (type2); 511 unsigned int result_len; 512 int unsigned_operation; 513 514 /* Determine type length and signedness after promotion for 515 both operands. */ 516 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int)) 517 { 518 is_unsigned1 = 0; 519 promoted_len1 = TYPE_LENGTH (builtin->builtin_int); 520 } 521 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int)) 522 { 523 is_unsigned2 = 0; 524 promoted_len2 = TYPE_LENGTH (builtin->builtin_int); 525 } 526 527 if (promoted_len1 > promoted_len2) 528 { 529 unsigned_operation = is_unsigned1; 530 result_len = promoted_len1; 531 } 532 else if (promoted_len2 > promoted_len1) 533 { 534 unsigned_operation = is_unsigned2; 535 result_len = promoted_len2; 536 } 537 else 538 { 539 unsigned_operation = is_unsigned1 || is_unsigned2; 540 result_len = promoted_len1; 541 } 542 543 switch (language->la_language) 544 { 545 case language_c: 546 case language_cplus: 547 case language_asm: 548 case language_objc: 549 if (result_len <= TYPE_LENGTH (builtin->builtin_int)) 550 { 551 promoted_type = (unsigned_operation 552 ? builtin->builtin_unsigned_int 553 : builtin->builtin_int); 554 } 555 else if (result_len <= TYPE_LENGTH (builtin->builtin_long)) 556 { 557 promoted_type = (unsigned_operation 558 ? builtin->builtin_unsigned_long 559 : builtin->builtin_long); 560 } 561 else 562 { 563 promoted_type = (unsigned_operation 564 ? builtin->builtin_unsigned_long_long 565 : builtin->builtin_long_long); 566 } 567 break; 568 case language_opencl: 569 if (result_len <= TYPE_LENGTH (lookup_signed_typename 570 (language, gdbarch, "int"))) 571 { 572 promoted_type = 573 (unsigned_operation 574 ? lookup_unsigned_typename (language, gdbarch, "int") 575 : lookup_signed_typename (language, gdbarch, "int")); 576 } 577 else if (result_len <= TYPE_LENGTH (lookup_signed_typename 578 (language, gdbarch, "long"))) 579 { 580 promoted_type = 581 (unsigned_operation 582 ? lookup_unsigned_typename (language, gdbarch, "long") 583 : lookup_signed_typename (language, gdbarch,"long")); 584 } 585 break; 586 default: 587 /* For other languages the result type is unchanged from gdb 588 version 6.7 for backward compatibility. 589 If either arg was long long, make sure that value is also long 590 long. Otherwise use long. */ 591 if (unsigned_operation) 592 { 593 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT) 594 promoted_type = builtin->builtin_unsigned_long_long; 595 else 596 promoted_type = builtin->builtin_unsigned_long; 597 } 598 else 599 { 600 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT) 601 promoted_type = builtin->builtin_long_long; 602 else 603 promoted_type = builtin->builtin_long; 604 } 605 break; 606 } 607 } 608 609 if (promoted_type) 610 { 611 /* Promote both operands to common type. */ 612 *arg1 = value_cast (promoted_type, *arg1); 613 *arg2 = value_cast (promoted_type, *arg2); 614 } 615 } 616 617 static int 618 ptrmath_type_p (const struct language_defn *lang, struct type *type) 619 { 620 type = check_typedef (type); 621 if (TYPE_IS_REFERENCE (type)) 622 type = TYPE_TARGET_TYPE (type); 623 624 switch (TYPE_CODE (type)) 625 { 626 case TYPE_CODE_PTR: 627 case TYPE_CODE_FUNC: 628 return 1; 629 630 case TYPE_CODE_ARRAY: 631 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays; 632 633 default: 634 return 0; 635 } 636 } 637 638 /* Represents a fake method with the given parameter types. This is 639 used by the parser to construct a temporary "expected" type for 640 method overload resolution. FLAGS is used as instance flags of the 641 new type, in order to be able to make the new type represent a 642 const/volatile overload. */ 643 644 class fake_method 645 { 646 public: 647 fake_method (type_instance_flags flags, 648 int num_types, struct type **param_types); 649 ~fake_method (); 650 651 /* The constructed type. */ 652 struct type *type () { return &m_type; } 653 654 private: 655 struct type m_type {}; 656 main_type m_main_type {}; 657 }; 658 659 fake_method::fake_method (type_instance_flags flags, 660 int num_types, struct type **param_types) 661 { 662 struct type *type = &m_type; 663 664 TYPE_MAIN_TYPE (type) = &m_main_type; 665 TYPE_LENGTH (type) = 1; 666 TYPE_CODE (type) = TYPE_CODE_METHOD; 667 TYPE_CHAIN (type) = type; 668 TYPE_INSTANCE_FLAGS (type) = flags; 669 if (num_types > 0) 670 { 671 if (param_types[num_types - 1] == NULL) 672 { 673 --num_types; 674 TYPE_VARARGS (type) = 1; 675 } 676 else if (TYPE_CODE (check_typedef (param_types[num_types - 1])) 677 == TYPE_CODE_VOID) 678 { 679 --num_types; 680 /* Caller should have ensured this. */ 681 gdb_assert (num_types == 0); 682 TYPE_PROTOTYPED (type) = 1; 683 } 684 } 685 686 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by 687 neither an objfile nor a gdbarch. As a result we must manually 688 allocate memory for auxiliary fields, and free the memory ourselves 689 when we are done with it. */ 690 TYPE_NFIELDS (type) = num_types; 691 TYPE_FIELDS (type) = (struct field *) 692 xzalloc (sizeof (struct field) * num_types); 693 694 while (num_types-- > 0) 695 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types]; 696 } 697 698 fake_method::~fake_method () 699 { 700 xfree (TYPE_FIELDS (&m_type)); 701 } 702 703 /* Helper for evaluating an OP_VAR_VALUE. */ 704 705 value * 706 evaluate_var_value (enum noside noside, const block *blk, symbol *var) 707 { 708 /* JYG: We used to just return value_zero of the symbol type if 709 we're asked to avoid side effects. Otherwise we return 710 value_of_variable (...). However I'm not sure if 711 value_of_variable () has any side effect. We need a full value 712 object returned here for whatis_exp () to call evaluate_type () 713 and then pass the full value to value_rtti_target_type () if we 714 are dealing with a pointer or reference to a base class and print 715 object is on. */ 716 717 struct value *ret = NULL; 718 719 TRY 720 { 721 ret = value_of_variable (var, blk); 722 } 723 724 CATCH (except, RETURN_MASK_ERROR) 725 { 726 if (noside != EVAL_AVOID_SIDE_EFFECTS) 727 throw_exception (except); 728 729 ret = value_zero (SYMBOL_TYPE (var), not_lval); 730 } 731 END_CATCH 732 733 return ret; 734 } 735 736 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */ 737 738 value * 739 evaluate_var_msym_value (enum noside noside, 740 struct objfile *objfile, minimal_symbol *msymbol) 741 { 742 CORE_ADDR address; 743 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address); 744 745 if (noside == EVAL_AVOID_SIDE_EFFECTS && !TYPE_GNU_IFUNC (the_type)) 746 return value_zero (the_type, not_lval); 747 else 748 return value_at_lazy (the_type, address); 749 } 750 751 /* Helper for returning a value when handling EVAL_SKIP. */ 752 753 value * 754 eval_skip_value (expression *exp) 755 { 756 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); 757 } 758 759 /* Evaluate a function call. The function to be called is in 760 ARGVEC[0] and the arguments passed to the function are in 761 ARGVEC[1..NARGS]. FUNCTION_NAME is the name of the function, if 762 known. DEFAULT_RETURN_TYPE is used as the function's return type 763 if the return type is unknown. */ 764 765 static value * 766 eval_call (expression *exp, enum noside noside, 767 int nargs, value **argvec, 768 const char *function_name, 769 type *default_return_type) 770 { 771 if (argvec[0] == NULL) 772 error (_("Cannot evaluate function -- may be inlined")); 773 if (noside == EVAL_AVOID_SIDE_EFFECTS) 774 { 775 /* If the return type doesn't look like a function type, 776 call an error. This can happen if somebody tries to turn 777 a variable into a function call. */ 778 779 type *ftype = value_type (argvec[0]); 780 781 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION) 782 { 783 /* We don't know anything about what the internal 784 function might return, but we have to return 785 something. */ 786 return value_zero (builtin_type (exp->gdbarch)->builtin_int, 787 not_lval); 788 } 789 else if (TYPE_CODE (ftype) == TYPE_CODE_XMETHOD) 790 { 791 type *return_type 792 = result_type_of_xmethod (argvec[0], 793 gdb::make_array_view (argvec + 1, 794 nargs)); 795 796 if (return_type == NULL) 797 error (_("Xmethod is missing return type.")); 798 return value_zero (return_type, not_lval); 799 } 800 else if (TYPE_CODE (ftype) == TYPE_CODE_FUNC 801 || TYPE_CODE (ftype) == TYPE_CODE_METHOD) 802 { 803 if (TYPE_GNU_IFUNC (ftype)) 804 { 805 CORE_ADDR address = value_address (argvec[0]); 806 type *resolved_type = find_gnu_ifunc_target_type (address); 807 808 if (resolved_type != NULL) 809 ftype = resolved_type; 810 } 811 812 type *return_type = TYPE_TARGET_TYPE (ftype); 813 814 if (return_type == NULL) 815 return_type = default_return_type; 816 817 if (return_type == NULL) 818 error_call_unknown_return_type (function_name); 819 820 return allocate_value (return_type); 821 } 822 else 823 error (_("Expression of type other than " 824 "\"Function returning ...\" used as function")); 825 } 826 switch (TYPE_CODE (value_type (argvec[0]))) 827 { 828 case TYPE_CODE_INTERNAL_FUNCTION: 829 return call_internal_function (exp->gdbarch, exp->language_defn, 830 argvec[0], nargs, argvec + 1); 831 case TYPE_CODE_XMETHOD: 832 return call_xmethod (argvec[0], gdb::make_array_view (argvec + 1, nargs)); 833 default: 834 return call_function_by_hand (argvec[0], default_return_type, 835 gdb::make_array_view (argvec + 1, nargs)); 836 } 837 } 838 839 /* Helper for evaluating an OP_FUNCALL. */ 840 841 static value * 842 evaluate_funcall (type *expect_type, expression *exp, int *pos, 843 enum noside noside) 844 { 845 int tem; 846 int pc2 = 0; 847 value *arg1 = NULL; 848 value *arg2 = NULL; 849 int save_pos1; 850 symbol *function = NULL; 851 char *function_name = NULL; 852 const char *var_func_name = NULL; 853 854 int pc = (*pos); 855 (*pos) += 2; 856 857 exp_opcode op = exp->elts[*pos].opcode; 858 int nargs = longest_to_int (exp->elts[pc].longconst); 859 /* Allocate arg vector, including space for the function to be 860 called in argvec[0], a potential `this', and a terminating 861 NULL. */ 862 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3)); 863 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR) 864 { 865 /* First, evaluate the structure into arg2. */ 866 pc2 = (*pos)++; 867 868 if (op == STRUCTOP_MEMBER) 869 { 870 arg2 = evaluate_subexp_for_address (exp, pos, noside); 871 } 872 else 873 { 874 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 875 } 876 877 /* If the function is a virtual function, then the aggregate 878 value (providing the structure) plays its part by providing 879 the vtable. Otherwise, it is just along for the ride: call 880 the function directly. */ 881 882 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 883 884 type *a1_type = check_typedef (value_type (arg1)); 885 if (noside == EVAL_SKIP) 886 tem = 1; /* Set it to the right arg index so that all 887 arguments can also be skipped. */ 888 else if (TYPE_CODE (a1_type) == TYPE_CODE_METHODPTR) 889 { 890 if (noside == EVAL_AVOID_SIDE_EFFECTS) 891 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval); 892 else 893 arg1 = cplus_method_ptr_to_value (&arg2, arg1); 894 895 /* Now, say which argument to start evaluating from. */ 896 nargs++; 897 tem = 2; 898 argvec[1] = arg2; 899 } 900 else if (TYPE_CODE (a1_type) == TYPE_CODE_MEMBERPTR) 901 { 902 struct type *type_ptr 903 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type)); 904 struct type *target_type_ptr 905 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type)); 906 907 /* Now, convert these values to an address. */ 908 arg2 = value_cast (type_ptr, arg2); 909 910 long mem_offset = value_as_long (arg1); 911 912 arg1 = value_from_pointer (target_type_ptr, 913 value_as_long (arg2) + mem_offset); 914 arg1 = value_ind (arg1); 915 tem = 1; 916 } 917 else 918 error (_("Non-pointer-to-member value used in pointer-to-member " 919 "construct")); 920 } 921 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR) 922 { 923 /* Hair for method invocations. */ 924 int tem2; 925 926 nargs++; 927 /* First, evaluate the structure into arg2. */ 928 pc2 = (*pos)++; 929 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst); 930 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1); 931 932 if (op == STRUCTOP_STRUCT) 933 { 934 /* If v is a variable in a register, and the user types 935 v.method (), this will produce an error, because v has no 936 address. 937 938 A possible way around this would be to allocate a copy of 939 the variable on the stack, copy in the contents, call the 940 function, and copy out the contents. I.e. convert this 941 from call by reference to call by copy-return (or 942 whatever it's called). However, this does not work 943 because it is not the same: the method being called could 944 stash a copy of the address, and then future uses through 945 that address (after the method returns) would be expected 946 to use the variable itself, not some copy of it. */ 947 arg2 = evaluate_subexp_for_address (exp, pos, noside); 948 } 949 else 950 { 951 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 952 953 /* Check to see if the operator '->' has been overloaded. 954 If the operator has been overloaded replace arg2 with the 955 value returned by the custom operator and continue 956 evaluation. */ 957 while (unop_user_defined_p (op, arg2)) 958 { 959 struct value *value = NULL; 960 TRY 961 { 962 value = value_x_unop (arg2, op, noside); 963 } 964 965 CATCH (except, RETURN_MASK_ERROR) 966 { 967 if (except.error == NOT_FOUND_ERROR) 968 break; 969 else 970 throw_exception (except); 971 } 972 END_CATCH 973 974 arg2 = value; 975 } 976 } 977 /* Now, say which argument to start evaluating from. */ 978 tem = 2; 979 } 980 else if (op == OP_SCOPE 981 && overload_resolution 982 && (exp->language_defn->la_language == language_cplus)) 983 { 984 /* Unpack it locally so we can properly handle overload 985 resolution. */ 986 char *name; 987 int local_tem; 988 989 pc2 = (*pos)++; 990 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst); 991 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1); 992 struct type *type = exp->elts[pc2 + 1].type; 993 name = &exp->elts[pc2 + 3].string; 994 995 function = NULL; 996 function_name = NULL; 997 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE) 998 { 999 function = cp_lookup_symbol_namespace (TYPE_NAME (type), 1000 name, 1001 get_selected_block (0), 1002 VAR_DOMAIN).symbol; 1003 if (function == NULL) 1004 error (_("No symbol \"%s\" in namespace \"%s\"."), 1005 name, TYPE_NAME (type)); 1006 1007 tem = 1; 1008 /* arg2 is left as NULL on purpose. */ 1009 } 1010 else 1011 { 1012 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT 1013 || TYPE_CODE (type) == TYPE_CODE_UNION); 1014 function_name = name; 1015 1016 /* We need a properly typed value for method lookup. For 1017 static methods arg2 is otherwise unused. */ 1018 arg2 = value_zero (type, lval_memory); 1019 ++nargs; 1020 tem = 2; 1021 } 1022 } 1023 else if (op == OP_ADL_FUNC) 1024 { 1025 /* Save the function position and move pos so that the arguments 1026 can be evaluated. */ 1027 int func_name_len; 1028 1029 save_pos1 = *pos; 1030 tem = 1; 1031 1032 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst); 1033 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1); 1034 } 1035 else 1036 { 1037 /* Non-method function call. */ 1038 save_pos1 = *pos; 1039 tem = 1; 1040 1041 /* If this is a C++ function wait until overload resolution. */ 1042 if (op == OP_VAR_VALUE 1043 && overload_resolution 1044 && (exp->language_defn->la_language == language_cplus)) 1045 { 1046 (*pos) += 4; /* Skip the evaluation of the symbol. */ 1047 argvec[0] = NULL; 1048 } 1049 else 1050 { 1051 if (op == OP_VAR_MSYM_VALUE) 1052 { 1053 minimal_symbol *msym = exp->elts[*pos + 2].msymbol; 1054 var_func_name = MSYMBOL_PRINT_NAME (msym); 1055 } 1056 else if (op == OP_VAR_VALUE) 1057 { 1058 symbol *sym = exp->elts[*pos + 2].symbol; 1059 var_func_name = SYMBOL_PRINT_NAME (sym); 1060 } 1061 1062 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside); 1063 type *type = value_type (argvec[0]); 1064 if (type && TYPE_CODE (type) == TYPE_CODE_PTR) 1065 type = TYPE_TARGET_TYPE (type); 1066 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC) 1067 { 1068 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++) 1069 { 1070 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, 1071 tem - 1), 1072 exp, pos, noside); 1073 } 1074 } 1075 } 1076 } 1077 1078 /* Evaluate arguments (if not already done, e.g., namespace::func() 1079 and overload-resolution is off). */ 1080 for (; tem <= nargs; tem++) 1081 { 1082 /* Ensure that array expressions are coerced into pointer 1083 objects. */ 1084 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside); 1085 } 1086 1087 /* Signal end of arglist. */ 1088 argvec[tem] = 0; 1089 1090 if (noside == EVAL_SKIP) 1091 return eval_skip_value (exp); 1092 1093 if (op == OP_ADL_FUNC) 1094 { 1095 struct symbol *symp; 1096 char *func_name; 1097 int name_len; 1098 int string_pc = save_pos1 + 3; 1099 1100 /* Extract the function name. */ 1101 name_len = longest_to_int (exp->elts[string_pc].longconst); 1102 func_name = (char *) alloca (name_len + 1); 1103 strcpy (func_name, &exp->elts[string_pc + 1].string); 1104 1105 find_overload_match (gdb::make_array_view (&argvec[1], nargs), 1106 func_name, 1107 NON_METHOD, /* not method */ 1108 NULL, NULL, /* pass NULL symbol since 1109 symbol is unknown */ 1110 NULL, &symp, NULL, 0, noside); 1111 1112 /* Now fix the expression being evaluated. */ 1113 exp->elts[save_pos1 + 2].symbol = symp; 1114 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside); 1115 } 1116 1117 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR 1118 || (op == OP_SCOPE && function_name != NULL)) 1119 { 1120 int static_memfuncp; 1121 char *tstr; 1122 1123 /* Method invocation: stuff "this" as first parameter. If the 1124 method turns out to be static we undo this below. */ 1125 argvec[1] = arg2; 1126 1127 if (op != OP_SCOPE) 1128 { 1129 /* Name of method from expression. */ 1130 tstr = &exp->elts[pc2 + 2].string; 1131 } 1132 else 1133 tstr = function_name; 1134 1135 if (overload_resolution && (exp->language_defn->la_language 1136 == language_cplus)) 1137 { 1138 /* Language is C++, do some overload resolution before 1139 evaluation. */ 1140 struct value *valp = NULL; 1141 1142 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs), 1143 tstr, 1144 METHOD, /* method */ 1145 &arg2, /* the object */ 1146 NULL, &valp, NULL, 1147 &static_memfuncp, 0, noside); 1148 1149 if (op == OP_SCOPE && !static_memfuncp) 1150 { 1151 /* For the time being, we don't handle this. */ 1152 error (_("Call to overloaded function %s requires " 1153 "`this' pointer"), 1154 function_name); 1155 } 1156 argvec[1] = arg2; /* the ``this'' pointer */ 1157 argvec[0] = valp; /* Use the method found after overload 1158 resolution. */ 1159 } 1160 else 1161 /* Non-C++ case -- or no overload resolution. */ 1162 { 1163 struct value *temp = arg2; 1164 1165 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr, 1166 &static_memfuncp, 1167 op == STRUCTOP_STRUCT 1168 ? "structure" : "structure pointer"); 1169 /* value_struct_elt updates temp with the correct value of 1170 the ``this'' pointer if necessary, so modify argvec[1] to 1171 reflect any ``this'' changes. */ 1172 arg2 1173 = value_from_longest (lookup_pointer_type(value_type (temp)), 1174 value_address (temp) 1175 + value_embedded_offset (temp)); 1176 argvec[1] = arg2; /* the ``this'' pointer */ 1177 } 1178 1179 /* Take out `this' if needed. */ 1180 if (static_memfuncp) 1181 { 1182 argvec[1] = argvec[0]; 1183 nargs--; 1184 argvec++; 1185 } 1186 } 1187 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR) 1188 { 1189 /* Pointer to member. argvec[1] is already set up. */ 1190 argvec[0] = arg1; 1191 } 1192 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL)) 1193 { 1194 /* Non-member function being called. */ 1195 /* fn: This can only be done for C++ functions. A C-style 1196 function in a C++ program, for instance, does not have the 1197 fields that are expected here. */ 1198 1199 if (overload_resolution && (exp->language_defn->la_language 1200 == language_cplus)) 1201 { 1202 /* Language is C++, do some overload resolution before 1203 evaluation. */ 1204 struct symbol *symp; 1205 int no_adl = 0; 1206 1207 /* If a scope has been specified disable ADL. */ 1208 if (op == OP_SCOPE) 1209 no_adl = 1; 1210 1211 if (op == OP_VAR_VALUE) 1212 function = exp->elts[save_pos1+2].symbol; 1213 1214 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs), 1215 NULL, /* no need for name */ 1216 NON_METHOD, /* not method */ 1217 NULL, function, /* the function */ 1218 NULL, &symp, NULL, no_adl, noside); 1219 1220 if (op == OP_VAR_VALUE) 1221 { 1222 /* Now fix the expression being evaluated. */ 1223 exp->elts[save_pos1+2].symbol = symp; 1224 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, 1225 noside); 1226 } 1227 else 1228 argvec[0] = value_of_variable (symp, get_selected_block (0)); 1229 } 1230 else 1231 { 1232 /* Not C++, or no overload resolution allowed. */ 1233 /* Nothing to be done; argvec already correctly set up. */ 1234 } 1235 } 1236 else 1237 { 1238 /* It is probably a C-style function. */ 1239 /* Nothing to be done; argvec already correctly set up. */ 1240 } 1241 1242 return eval_call (exp, noside, nargs, argvec, var_func_name, expect_type); 1243 } 1244 1245 /* Helper for skipping all the arguments in an undetermined argument list. 1246 This function was designed for use in the OP_F77_UNDETERMINED_ARGLIST 1247 case of evaluate_subexp_standard as multiple, but not all, code paths 1248 require a generic skip. */ 1249 1250 static void 1251 skip_undetermined_arglist (int nargs, struct expression *exp, int *pos, 1252 enum noside noside) 1253 { 1254 for (int i = 0; i < nargs; ++i) 1255 evaluate_subexp (NULL_TYPE, exp, pos, noside); 1256 } 1257 1258 struct value * 1259 evaluate_subexp_standard (struct type *expect_type, 1260 struct expression *exp, int *pos, 1261 enum noside noside) 1262 { 1263 enum exp_opcode op; 1264 int tem, tem2, tem3; 1265 int pc, oldpos; 1266 struct value *arg1 = NULL; 1267 struct value *arg2 = NULL; 1268 struct value *arg3; 1269 struct type *type; 1270 int nargs; 1271 struct value **argvec; 1272 int code; 1273 int ix; 1274 long mem_offset; 1275 struct type **arg_types; 1276 1277 pc = (*pos)++; 1278 op = exp->elts[pc].opcode; 1279 1280 switch (op) 1281 { 1282 case OP_SCOPE: 1283 tem = longest_to_int (exp->elts[pc + 2].longconst); 1284 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1); 1285 if (noside == EVAL_SKIP) 1286 return eval_skip_value (exp); 1287 arg1 = value_aggregate_elt (exp->elts[pc + 1].type, 1288 &exp->elts[pc + 3].string, 1289 expect_type, 0, noside); 1290 if (arg1 == NULL) 1291 error (_("There is no field named %s"), &exp->elts[pc + 3].string); 1292 return arg1; 1293 1294 case OP_LONG: 1295 (*pos) += 3; 1296 return value_from_longest (exp->elts[pc + 1].type, 1297 exp->elts[pc + 2].longconst); 1298 1299 case OP_FLOAT: 1300 (*pos) += 3; 1301 return value_from_contents (exp->elts[pc + 1].type, 1302 exp->elts[pc + 2].floatconst); 1303 1304 case OP_ADL_FUNC: 1305 case OP_VAR_VALUE: 1306 { 1307 (*pos) += 3; 1308 symbol *var = exp->elts[pc + 2].symbol; 1309 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_ERROR) 1310 error_unknown_type (SYMBOL_PRINT_NAME (var)); 1311 if (noside != EVAL_SKIP) 1312 return evaluate_var_value (noside, exp->elts[pc + 1].block, var); 1313 else 1314 { 1315 /* Return a dummy value of the correct type when skipping, so 1316 that parent functions know what is to be skipped. */ 1317 return allocate_value (SYMBOL_TYPE (var)); 1318 } 1319 } 1320 1321 case OP_VAR_MSYM_VALUE: 1322 { 1323 (*pos) += 3; 1324 1325 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol; 1326 value *val = evaluate_var_msym_value (noside, 1327 exp->elts[pc + 1].objfile, 1328 msymbol); 1329 1330 type = value_type (val); 1331 if (TYPE_CODE (type) == TYPE_CODE_ERROR 1332 && (noside != EVAL_AVOID_SIDE_EFFECTS || pc != 0)) 1333 error_unknown_type (MSYMBOL_PRINT_NAME (msymbol)); 1334 return val; 1335 } 1336 1337 case OP_VAR_ENTRY_VALUE: 1338 (*pos) += 2; 1339 if (noside == EVAL_SKIP) 1340 return eval_skip_value (exp); 1341 1342 { 1343 struct symbol *sym = exp->elts[pc + 1].symbol; 1344 struct frame_info *frame; 1345 1346 if (noside == EVAL_AVOID_SIDE_EFFECTS) 1347 return value_zero (SYMBOL_TYPE (sym), not_lval); 1348 1349 if (SYMBOL_COMPUTED_OPS (sym) == NULL 1350 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL) 1351 error (_("Symbol \"%s\" does not have any specific entry value"), 1352 SYMBOL_PRINT_NAME (sym)); 1353 1354 frame = get_selected_frame (NULL); 1355 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame); 1356 } 1357 1358 case OP_FUNC_STATIC_VAR: 1359 tem = longest_to_int (exp->elts[pc + 1].longconst); 1360 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); 1361 if (noside == EVAL_SKIP) 1362 return eval_skip_value (exp); 1363 1364 { 1365 value *func = evaluate_subexp_standard (NULL, exp, pos, noside); 1366 CORE_ADDR addr = value_address (func); 1367 1368 const block *blk = block_for_pc (addr); 1369 const char *var = &exp->elts[pc + 2].string; 1370 1371 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL); 1372 1373 if (sym.symbol == NULL) 1374 error (_("No symbol \"%s\" in specified context."), var); 1375 1376 return evaluate_var_value (noside, sym.block, sym.symbol); 1377 } 1378 1379 case OP_LAST: 1380 (*pos) += 2; 1381 return 1382 access_value_history (longest_to_int (exp->elts[pc + 1].longconst)); 1383 1384 case OP_REGISTER: 1385 { 1386 const char *name = &exp->elts[pc + 2].string; 1387 int regno; 1388 struct value *val; 1389 1390 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); 1391 regno = user_reg_map_name_to_regnum (exp->gdbarch, 1392 name, strlen (name)); 1393 if (regno == -1) 1394 error (_("Register $%s not available."), name); 1395 1396 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return 1397 a value with the appropriate register type. Unfortunately, 1398 we don't have easy access to the type of user registers. 1399 So for these registers, we fetch the register value regardless 1400 of the evaluation mode. */ 1401 if (noside == EVAL_AVOID_SIDE_EFFECTS 1402 && regno < gdbarch_num_cooked_regs (exp->gdbarch)) 1403 val = value_zero (register_type (exp->gdbarch, regno), not_lval); 1404 else 1405 val = value_of_register (regno, get_selected_frame (NULL)); 1406 if (val == NULL) 1407 error (_("Value of register %s not available."), name); 1408 else 1409 return val; 1410 } 1411 case OP_BOOL: 1412 (*pos) += 2; 1413 type = language_bool_type (exp->language_defn, exp->gdbarch); 1414 return value_from_longest (type, exp->elts[pc + 1].longconst); 1415 1416 case OP_INTERNALVAR: 1417 (*pos) += 2; 1418 return value_of_internalvar (exp->gdbarch, 1419 exp->elts[pc + 1].internalvar); 1420 1421 case OP_STRING: 1422 tem = longest_to_int (exp->elts[pc + 1].longconst); 1423 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); 1424 if (noside == EVAL_SKIP) 1425 return eval_skip_value (exp); 1426 type = language_string_char_type (exp->language_defn, exp->gdbarch); 1427 return value_string (&exp->elts[pc + 2].string, tem, type); 1428 1429 case OP_OBJC_NSSTRING: /* Objective C Foundation Class 1430 NSString constant. */ 1431 tem = longest_to_int (exp->elts[pc + 1].longconst); 1432 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); 1433 if (noside == EVAL_SKIP) 1434 return eval_skip_value (exp); 1435 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1); 1436 1437 case OP_ARRAY: 1438 (*pos) += 3; 1439 tem2 = longest_to_int (exp->elts[pc + 1].longconst); 1440 tem3 = longest_to_int (exp->elts[pc + 2].longconst); 1441 nargs = tem3 - tem2 + 1; 1442 type = expect_type ? check_typedef (expect_type) : NULL_TYPE; 1443 1444 if (expect_type != NULL_TYPE && noside != EVAL_SKIP 1445 && TYPE_CODE (type) == TYPE_CODE_STRUCT) 1446 { 1447 struct value *rec = allocate_value (expect_type); 1448 1449 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type)); 1450 return evaluate_struct_tuple (rec, exp, pos, noside, nargs); 1451 } 1452 1453 if (expect_type != NULL_TYPE && noside != EVAL_SKIP 1454 && TYPE_CODE (type) == TYPE_CODE_ARRAY) 1455 { 1456 struct type *range_type = TYPE_INDEX_TYPE (type); 1457 struct type *element_type = TYPE_TARGET_TYPE (type); 1458 struct value *array = allocate_value (expect_type); 1459 int element_size = TYPE_LENGTH (check_typedef (element_type)); 1460 LONGEST low_bound, high_bound, index; 1461 1462 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) 1463 { 1464 low_bound = 0; 1465 high_bound = (TYPE_LENGTH (type) / element_size) - 1; 1466 } 1467 index = low_bound; 1468 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type)); 1469 for (tem = nargs; --nargs >= 0;) 1470 { 1471 struct value *element; 1472 int index_pc = 0; 1473 1474 element = evaluate_subexp (element_type, exp, pos, noside); 1475 if (value_type (element) != element_type) 1476 element = value_cast (element_type, element); 1477 if (index_pc) 1478 { 1479 int continue_pc = *pos; 1480 1481 *pos = index_pc; 1482 index = init_array_element (array, element, exp, pos, noside, 1483 low_bound, high_bound); 1484 *pos = continue_pc; 1485 } 1486 else 1487 { 1488 if (index > high_bound) 1489 /* To avoid memory corruption. */ 1490 error (_("Too many array elements")); 1491 memcpy (value_contents_raw (array) 1492 + (index - low_bound) * element_size, 1493 value_contents (element), 1494 element_size); 1495 } 1496 index++; 1497 } 1498 return array; 1499 } 1500 1501 if (expect_type != NULL_TYPE && noside != EVAL_SKIP 1502 && TYPE_CODE (type) == TYPE_CODE_SET) 1503 { 1504 struct value *set = allocate_value (expect_type); 1505 gdb_byte *valaddr = value_contents_raw (set); 1506 struct type *element_type = TYPE_INDEX_TYPE (type); 1507 struct type *check_type = element_type; 1508 LONGEST low_bound, high_bound; 1509 1510 /* Get targettype of elementtype. */ 1511 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE 1512 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF) 1513 check_type = TYPE_TARGET_TYPE (check_type); 1514 1515 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0) 1516 error (_("(power)set type with unknown size")); 1517 memset (valaddr, '\0', TYPE_LENGTH (type)); 1518 for (tem = 0; tem < nargs; tem++) 1519 { 1520 LONGEST range_low, range_high; 1521 struct type *range_low_type, *range_high_type; 1522 struct value *elem_val; 1523 1524 elem_val = evaluate_subexp (element_type, exp, pos, noside); 1525 range_low_type = range_high_type = value_type (elem_val); 1526 range_low = range_high = value_as_long (elem_val); 1527 1528 /* Check types of elements to avoid mixture of elements from 1529 different types. Also check if type of element is "compatible" 1530 with element type of powerset. */ 1531 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE) 1532 range_low_type = TYPE_TARGET_TYPE (range_low_type); 1533 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE) 1534 range_high_type = TYPE_TARGET_TYPE (range_high_type); 1535 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) 1536 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM 1537 && (range_low_type != range_high_type))) 1538 /* different element modes. */ 1539 error (_("POWERSET tuple elements of different mode")); 1540 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) 1541 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM 1542 && range_low_type != check_type)) 1543 error (_("incompatible POWERSET tuple elements")); 1544 if (range_low > range_high) 1545 { 1546 warning (_("empty POWERSET tuple range")); 1547 continue; 1548 } 1549 if (range_low < low_bound || range_high > high_bound) 1550 error (_("POWERSET tuple element out of range")); 1551 range_low -= low_bound; 1552 range_high -= low_bound; 1553 for (; range_low <= range_high; range_low++) 1554 { 1555 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT; 1556 1557 if (gdbarch_bits_big_endian (exp->gdbarch)) 1558 bit_index = TARGET_CHAR_BIT - 1 - bit_index; 1559 valaddr[(unsigned) range_low / TARGET_CHAR_BIT] 1560 |= 1 << bit_index; 1561 } 1562 } 1563 return set; 1564 } 1565 1566 argvec = XALLOCAVEC (struct value *, nargs); 1567 for (tem = 0; tem < nargs; tem++) 1568 { 1569 /* Ensure that array expressions are coerced into pointer 1570 objects. */ 1571 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside); 1572 } 1573 if (noside == EVAL_SKIP) 1574 return eval_skip_value (exp); 1575 return value_array (tem2, tem3, argvec); 1576 1577 case TERNOP_SLICE: 1578 { 1579 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); 1580 int lowbound 1581 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); 1582 int upper 1583 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); 1584 1585 if (noside == EVAL_SKIP) 1586 return eval_skip_value (exp); 1587 return value_slice (array, lowbound, upper - lowbound + 1); 1588 } 1589 1590 case TERNOP_COND: 1591 /* Skip third and second args to evaluate the first one. */ 1592 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 1593 if (value_logical_not (arg1)) 1594 { 1595 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); 1596 return evaluate_subexp (NULL_TYPE, exp, pos, noside); 1597 } 1598 else 1599 { 1600 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 1601 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); 1602 return arg2; 1603 } 1604 1605 case OP_OBJC_SELECTOR: 1606 { /* Objective C @selector operator. */ 1607 char *sel = &exp->elts[pc + 2].string; 1608 int len = longest_to_int (exp->elts[pc + 1].longconst); 1609 struct type *selector_type; 1610 1611 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1); 1612 if (noside == EVAL_SKIP) 1613 return eval_skip_value (exp); 1614 1615 if (sel[len] != 0) 1616 sel[len] = 0; /* Make sure it's terminated. */ 1617 1618 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr; 1619 return value_from_longest (selector_type, 1620 lookup_child_selector (exp->gdbarch, sel)); 1621 } 1622 1623 case OP_OBJC_MSGCALL: 1624 { /* Objective C message (method) call. */ 1625 1626 CORE_ADDR responds_selector = 0; 1627 CORE_ADDR method_selector = 0; 1628 1629 CORE_ADDR selector = 0; 1630 1631 int struct_return = 0; 1632 enum noside sub_no_side = EVAL_NORMAL; 1633 1634 struct value *msg_send = NULL; 1635 struct value *msg_send_stret = NULL; 1636 int gnu_runtime = 0; 1637 1638 struct value *target = NULL; 1639 struct value *method = NULL; 1640 struct value *called_method = NULL; 1641 1642 struct type *selector_type = NULL; 1643 struct type *long_type; 1644 1645 struct value *ret = NULL; 1646 CORE_ADDR addr = 0; 1647 1648 selector = exp->elts[pc + 1].longconst; 1649 nargs = exp->elts[pc + 2].longconst; 1650 argvec = XALLOCAVEC (struct value *, nargs + 5); 1651 1652 (*pos) += 3; 1653 1654 long_type = builtin_type (exp->gdbarch)->builtin_long; 1655 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr; 1656 1657 if (noside == EVAL_AVOID_SIDE_EFFECTS) 1658 sub_no_side = EVAL_NORMAL; 1659 else 1660 sub_no_side = noside; 1661 1662 target = evaluate_subexp (selector_type, exp, pos, sub_no_side); 1663 1664 if (value_as_long (target) == 0) 1665 return value_from_longest (long_type, 0); 1666 1667 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym) 1668 gnu_runtime = 1; 1669 1670 /* Find the method dispatch (Apple runtime) or method lookup 1671 (GNU runtime) function for Objective-C. These will be used 1672 to lookup the symbol information for the method. If we 1673 can't find any symbol information, then we'll use these to 1674 call the method, otherwise we can call the method 1675 directly. The msg_send_stret function is used in the special 1676 case of a method that returns a structure (Apple runtime 1677 only). */ 1678 if (gnu_runtime) 1679 { 1680 type = selector_type; 1681 1682 type = lookup_function_type (type); 1683 type = lookup_pointer_type (type); 1684 type = lookup_function_type (type); 1685 type = lookup_pointer_type (type); 1686 1687 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL); 1688 msg_send_stret 1689 = find_function_in_inferior ("objc_msg_lookup", NULL); 1690 1691 msg_send = value_from_pointer (type, value_as_address (msg_send)); 1692 msg_send_stret = value_from_pointer (type, 1693 value_as_address (msg_send_stret)); 1694 } 1695 else 1696 { 1697 msg_send = find_function_in_inferior ("objc_msgSend", NULL); 1698 /* Special dispatcher for methods returning structs. */ 1699 msg_send_stret 1700 = find_function_in_inferior ("objc_msgSend_stret", NULL); 1701 } 1702 1703 /* Verify the target object responds to this method. The 1704 standard top-level 'Object' class uses a different name for 1705 the verification method than the non-standard, but more 1706 often used, 'NSObject' class. Make sure we check for both. */ 1707 1708 responds_selector 1709 = lookup_child_selector (exp->gdbarch, "respondsToSelector:"); 1710 if (responds_selector == 0) 1711 responds_selector 1712 = lookup_child_selector (exp->gdbarch, "respondsTo:"); 1713 1714 if (responds_selector == 0) 1715 error (_("no 'respondsTo:' or 'respondsToSelector:' method")); 1716 1717 method_selector 1718 = lookup_child_selector (exp->gdbarch, "methodForSelector:"); 1719 if (method_selector == 0) 1720 method_selector 1721 = lookup_child_selector (exp->gdbarch, "methodFor:"); 1722 1723 if (method_selector == 0) 1724 error (_("no 'methodFor:' or 'methodForSelector:' method")); 1725 1726 /* Call the verification method, to make sure that the target 1727 class implements the desired method. */ 1728 1729 argvec[0] = msg_send; 1730 argvec[1] = target; 1731 argvec[2] = value_from_longest (long_type, responds_selector); 1732 argvec[3] = value_from_longest (long_type, selector); 1733 argvec[4] = 0; 1734 1735 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3}); 1736 if (gnu_runtime) 1737 { 1738 /* Function objc_msg_lookup returns a pointer. */ 1739 argvec[0] = ret; 1740 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3}); 1741 } 1742 if (value_as_long (ret) == 0) 1743 error (_("Target does not respond to this message selector.")); 1744 1745 /* Call "methodForSelector:" method, to get the address of a 1746 function method that implements this selector for this 1747 class. If we can find a symbol at that address, then we 1748 know the return type, parameter types etc. (that's a good 1749 thing). */ 1750 1751 argvec[0] = msg_send; 1752 argvec[1] = target; 1753 argvec[2] = value_from_longest (long_type, method_selector); 1754 argvec[3] = value_from_longest (long_type, selector); 1755 argvec[4] = 0; 1756 1757 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3}); 1758 if (gnu_runtime) 1759 { 1760 argvec[0] = ret; 1761 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3}); 1762 } 1763 1764 /* ret should now be the selector. */ 1765 1766 addr = value_as_long (ret); 1767 if (addr) 1768 { 1769 struct symbol *sym = NULL; 1770 1771 /* The address might point to a function descriptor; 1772 resolve it to the actual code address instead. */ 1773 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr, 1774 current_top_target ()); 1775 1776 /* Is it a high_level symbol? */ 1777 sym = find_pc_function (addr); 1778 if (sym != NULL) 1779 method = value_of_variable (sym, 0); 1780 } 1781 1782 /* If we found a method with symbol information, check to see 1783 if it returns a struct. Otherwise assume it doesn't. */ 1784 1785 if (method) 1786 { 1787 CORE_ADDR funaddr; 1788 struct type *val_type; 1789 1790 funaddr = find_function_addr (method, &val_type); 1791 1792 block_for_pc (funaddr); 1793 1794 val_type = check_typedef (val_type); 1795 1796 if ((val_type == NULL) 1797 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR)) 1798 { 1799 if (expect_type != NULL) 1800 val_type = expect_type; 1801 } 1802 1803 struct_return = using_struct_return (exp->gdbarch, method, 1804 val_type); 1805 } 1806 else if (expect_type != NULL) 1807 { 1808 struct_return = using_struct_return (exp->gdbarch, NULL, 1809 check_typedef (expect_type)); 1810 } 1811 1812 /* Found a function symbol. Now we will substitute its 1813 value in place of the message dispatcher (obj_msgSend), 1814 so that we call the method directly instead of thru 1815 the dispatcher. The main reason for doing this is that 1816 we can now evaluate the return value and parameter values 1817 according to their known data types, in case we need to 1818 do things like promotion, dereferencing, special handling 1819 of structs and doubles, etc. 1820 1821 We want to use the type signature of 'method', but still 1822 jump to objc_msgSend() or objc_msgSend_stret() to better 1823 mimic the behavior of the runtime. */ 1824 1825 if (method) 1826 { 1827 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC) 1828 error (_("method address has symbol information " 1829 "with non-function type; skipping")); 1830 1831 /* Create a function pointer of the appropriate type, and 1832 replace its value with the value of msg_send or 1833 msg_send_stret. We must use a pointer here, as 1834 msg_send and msg_send_stret are of pointer type, and 1835 the representation may be different on systems that use 1836 function descriptors. */ 1837 if (struct_return) 1838 called_method 1839 = value_from_pointer (lookup_pointer_type (value_type (method)), 1840 value_as_address (msg_send_stret)); 1841 else 1842 called_method 1843 = value_from_pointer (lookup_pointer_type (value_type (method)), 1844 value_as_address (msg_send)); 1845 } 1846 else 1847 { 1848 if (struct_return) 1849 called_method = msg_send_stret; 1850 else 1851 called_method = msg_send; 1852 } 1853 1854 if (noside == EVAL_SKIP) 1855 return eval_skip_value (exp); 1856 1857 if (noside == EVAL_AVOID_SIDE_EFFECTS) 1858 { 1859 /* If the return type doesn't look like a function type, 1860 call an error. This can happen if somebody tries to 1861 turn a variable into a function call. This is here 1862 because people often want to call, eg, strcmp, which 1863 gdb doesn't know is a function. If gdb isn't asked for 1864 it's opinion (ie. through "whatis"), it won't offer 1865 it. */ 1866 1867 struct type *callee_type = value_type (called_method); 1868 1869 if (callee_type && TYPE_CODE (callee_type) == TYPE_CODE_PTR) 1870 callee_type = TYPE_TARGET_TYPE (callee_type); 1871 callee_type = TYPE_TARGET_TYPE (callee_type); 1872 1873 if (callee_type) 1874 { 1875 if ((TYPE_CODE (callee_type) == TYPE_CODE_ERROR) && expect_type) 1876 return allocate_value (expect_type); 1877 else 1878 return allocate_value (callee_type); 1879 } 1880 else 1881 error (_("Expression of type other than " 1882 "\"method returning ...\" used as a method")); 1883 } 1884 1885 /* Now depending on whether we found a symbol for the method, 1886 we will either call the runtime dispatcher or the method 1887 directly. */ 1888 1889 argvec[0] = called_method; 1890 argvec[1] = target; 1891 argvec[2] = value_from_longest (long_type, selector); 1892 /* User-supplied arguments. */ 1893 for (tem = 0; tem < nargs; tem++) 1894 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside); 1895 argvec[tem + 3] = 0; 1896 1897 auto call_args = gdb::make_array_view (argvec + 1, nargs + 2); 1898 1899 if (gnu_runtime && (method != NULL)) 1900 { 1901 /* Function objc_msg_lookup returns a pointer. */ 1902 deprecated_set_value_type (argvec[0], 1903 lookup_pointer_type (lookup_function_type (value_type (argvec[0])))); 1904 argvec[0] = call_function_by_hand (argvec[0], NULL, call_args); 1905 } 1906 1907 return call_function_by_hand (argvec[0], NULL, call_args); 1908 } 1909 break; 1910 1911 case OP_FUNCALL: 1912 return evaluate_funcall (expect_type, exp, pos, noside); 1913 1914 case OP_F77_UNDETERMINED_ARGLIST: 1915 1916 /* Remember that in F77, functions, substring ops and 1917 array subscript operations cannot be disambiguated 1918 at parse time. We have made all array subscript operations, 1919 substring operations as well as function calls come here 1920 and we now have to discover what the heck this thing actually was. 1921 If it is a function, we process just as if we got an OP_FUNCALL. */ 1922 1923 nargs = longest_to_int (exp->elts[pc + 1].longconst); 1924 (*pos) += 2; 1925 1926 /* First determine the type code we are dealing with. */ 1927 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 1928 type = check_typedef (value_type (arg1)); 1929 code = TYPE_CODE (type); 1930 1931 if (code == TYPE_CODE_PTR) 1932 { 1933 /* Fortran always passes variable to subroutines as pointer. 1934 So we need to look into its target type to see if it is 1935 array, string or function. If it is, we need to switch 1936 to the target value the original one points to. */ 1937 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type)); 1938 1939 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY 1940 || TYPE_CODE (target_type) == TYPE_CODE_STRING 1941 || TYPE_CODE (target_type) == TYPE_CODE_FUNC) 1942 { 1943 arg1 = value_ind (arg1); 1944 type = check_typedef (value_type (arg1)); 1945 code = TYPE_CODE (type); 1946 } 1947 } 1948 1949 switch (code) 1950 { 1951 case TYPE_CODE_ARRAY: 1952 if (exp->elts[*pos].opcode == OP_RANGE) 1953 return value_f90_subarray (arg1, exp, pos, noside); 1954 else 1955 { 1956 if (noside == EVAL_SKIP) 1957 { 1958 skip_undetermined_arglist (nargs, exp, pos, noside); 1959 /* Return the dummy value with the correct type. */ 1960 return arg1; 1961 } 1962 goto multi_f77_subscript; 1963 } 1964 1965 case TYPE_CODE_STRING: 1966 if (exp->elts[*pos].opcode == OP_RANGE) 1967 return value_f90_subarray (arg1, exp, pos, noside); 1968 else 1969 { 1970 if (noside == EVAL_SKIP) 1971 { 1972 skip_undetermined_arglist (nargs, exp, pos, noside); 1973 /* Return the dummy value with the correct type. */ 1974 return arg1; 1975 } 1976 arg2 = evaluate_subexp_with_coercion (exp, pos, noside); 1977 return value_subscript (arg1, value_as_long (arg2)); 1978 } 1979 1980 case TYPE_CODE_PTR: 1981 case TYPE_CODE_FUNC: 1982 /* It's a function call. */ 1983 /* Allocate arg vector, including space for the function to be 1984 called in argvec[0] and a terminating NULL. */ 1985 argvec = (struct value **) 1986 alloca (sizeof (struct value *) * (nargs + 2)); 1987 argvec[0] = arg1; 1988 tem = 1; 1989 for (; tem <= nargs; tem++) 1990 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside); 1991 argvec[tem] = 0; /* signal end of arglist */ 1992 if (noside == EVAL_SKIP) 1993 return eval_skip_value (exp); 1994 return eval_call (exp, noside, nargs, argvec, NULL, expect_type); 1995 1996 default: 1997 error (_("Cannot perform substring on this type")); 1998 } 1999 2000 case OP_COMPLEX: 2001 /* We have a complex number, There should be 2 floating 2002 point numbers that compose it. */ 2003 (*pos) += 2; 2004 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2005 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2006 2007 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type); 2008 2009 case STRUCTOP_STRUCT: 2010 tem = longest_to_int (exp->elts[pc + 1].longconst); 2011 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); 2012 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2013 if (noside == EVAL_SKIP) 2014 return eval_skip_value (exp); 2015 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string, 2016 NULL, "structure"); 2017 if (noside == EVAL_AVOID_SIDE_EFFECTS) 2018 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3)); 2019 return arg3; 2020 2021 case STRUCTOP_PTR: 2022 tem = longest_to_int (exp->elts[pc + 1].longconst); 2023 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); 2024 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2025 if (noside == EVAL_SKIP) 2026 return eval_skip_value (exp); 2027 2028 /* Check to see if operator '->' has been overloaded. If so replace 2029 arg1 with the value returned by evaluating operator->(). */ 2030 while (unop_user_defined_p (op, arg1)) 2031 { 2032 struct value *value = NULL; 2033 TRY 2034 { 2035 value = value_x_unop (arg1, op, noside); 2036 } 2037 2038 CATCH (except, RETURN_MASK_ERROR) 2039 { 2040 if (except.error == NOT_FOUND_ERROR) 2041 break; 2042 else 2043 throw_exception (except); 2044 } 2045 END_CATCH 2046 2047 arg1 = value; 2048 } 2049 2050 /* JYG: if print object is on we need to replace the base type 2051 with rtti type in order to continue on with successful 2052 lookup of member / method only available in the rtti type. */ 2053 { 2054 struct type *arg_type = value_type (arg1); 2055 struct type *real_type; 2056 int full, using_enc; 2057 LONGEST top; 2058 struct value_print_options opts; 2059 2060 get_user_print_options (&opts); 2061 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type) 2062 && (TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_STRUCT)) 2063 { 2064 real_type = value_rtti_indirect_type (arg1, &full, &top, 2065 &using_enc); 2066 if (real_type) 2067 arg1 = value_cast (real_type, arg1); 2068 } 2069 } 2070 2071 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string, 2072 NULL, "structure pointer"); 2073 if (noside == EVAL_AVOID_SIDE_EFFECTS) 2074 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3)); 2075 return arg3; 2076 2077 case STRUCTOP_MEMBER: 2078 case STRUCTOP_MPTR: 2079 if (op == STRUCTOP_MEMBER) 2080 arg1 = evaluate_subexp_for_address (exp, pos, noside); 2081 else 2082 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2083 2084 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2085 2086 if (noside == EVAL_SKIP) 2087 return eval_skip_value (exp); 2088 2089 type = check_typedef (value_type (arg2)); 2090 switch (TYPE_CODE (type)) 2091 { 2092 case TYPE_CODE_METHODPTR: 2093 if (noside == EVAL_AVOID_SIDE_EFFECTS) 2094 return value_zero (TYPE_TARGET_TYPE (type), not_lval); 2095 else 2096 { 2097 arg2 = cplus_method_ptr_to_value (&arg1, arg2); 2098 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR); 2099 return value_ind (arg2); 2100 } 2101 2102 case TYPE_CODE_MEMBERPTR: 2103 /* Now, convert these values to an address. */ 2104 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)), 2105 arg1, 1); 2106 2107 mem_offset = value_as_long (arg2); 2108 2109 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)), 2110 value_as_long (arg1) + mem_offset); 2111 return value_ind (arg3); 2112 2113 default: 2114 error (_("non-pointer-to-member value used " 2115 "in pointer-to-member construct")); 2116 } 2117 2118 case TYPE_INSTANCE: 2119 { 2120 type_instance_flags flags 2121 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst); 2122 nargs = longest_to_int (exp->elts[pc + 2].longconst); 2123 arg_types = (struct type **) alloca (nargs * sizeof (struct type *)); 2124 for (ix = 0; ix < nargs; ++ix) 2125 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type; 2126 2127 fake_method fake_expect_type (flags, nargs, arg_types); 2128 *(pos) += 4 + nargs; 2129 return evaluate_subexp_standard (fake_expect_type.type (), exp, pos, 2130 noside); 2131 } 2132 2133 case BINOP_CONCAT: 2134 arg1 = evaluate_subexp_with_coercion (exp, pos, noside); 2135 arg2 = evaluate_subexp_with_coercion (exp, pos, noside); 2136 if (noside == EVAL_SKIP) 2137 return eval_skip_value (exp); 2138 if (binop_user_defined_p (op, arg1, arg2)) 2139 return value_x_binop (arg1, arg2, op, OP_NULL, noside); 2140 else 2141 return value_concat (arg1, arg2); 2142 2143 case BINOP_ASSIGN: 2144 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2145 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); 2146 2147 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) 2148 return arg1; 2149 if (binop_user_defined_p (op, arg1, arg2)) 2150 return value_x_binop (arg1, arg2, op, OP_NULL, noside); 2151 else 2152 return value_assign (arg1, arg2); 2153 2154 case BINOP_ASSIGN_MODIFY: 2155 (*pos) += 2; 2156 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2157 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); 2158 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) 2159 return arg1; 2160 op = exp->elts[pc + 1].opcode; 2161 if (binop_user_defined_p (op, arg1, arg2)) 2162 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside); 2163 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn, 2164 value_type (arg1)) 2165 && is_integral_type (value_type (arg2))) 2166 arg2 = value_ptradd (arg1, value_as_long (arg2)); 2167 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn, 2168 value_type (arg1)) 2169 && is_integral_type (value_type (arg2))) 2170 arg2 = value_ptradd (arg1, - value_as_long (arg2)); 2171 else 2172 { 2173 struct value *tmp = arg1; 2174 2175 /* For shift and integer exponentiation operations, 2176 only promote the first argument. */ 2177 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP) 2178 && is_integral_type (value_type (arg2))) 2179 unop_promote (exp->language_defn, exp->gdbarch, &tmp); 2180 else 2181 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2); 2182 2183 arg2 = value_binop (tmp, arg2, op); 2184 } 2185 return value_assign (arg1, arg2); 2186 2187 case BINOP_ADD: 2188 arg1 = evaluate_subexp_with_coercion (exp, pos, noside); 2189 arg2 = evaluate_subexp_with_coercion (exp, pos, noside); 2190 if (noside == EVAL_SKIP) 2191 return eval_skip_value (exp); 2192 if (binop_user_defined_p (op, arg1, arg2)) 2193 return value_x_binop (arg1, arg2, op, OP_NULL, noside); 2194 else if (ptrmath_type_p (exp->language_defn, value_type (arg1)) 2195 && is_integral_type (value_type (arg2))) 2196 return value_ptradd (arg1, value_as_long (arg2)); 2197 else if (ptrmath_type_p (exp->language_defn, value_type (arg2)) 2198 && is_integral_type (value_type (arg1))) 2199 return value_ptradd (arg2, value_as_long (arg1)); 2200 else 2201 { 2202 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 2203 return value_binop (arg1, arg2, BINOP_ADD); 2204 } 2205 2206 case BINOP_SUB: 2207 arg1 = evaluate_subexp_with_coercion (exp, pos, noside); 2208 arg2 = evaluate_subexp_with_coercion (exp, pos, noside); 2209 if (noside == EVAL_SKIP) 2210 return eval_skip_value (exp); 2211 if (binop_user_defined_p (op, arg1, arg2)) 2212 return value_x_binop (arg1, arg2, op, OP_NULL, noside); 2213 else if (ptrmath_type_p (exp->language_defn, value_type (arg1)) 2214 && ptrmath_type_p (exp->language_defn, value_type (arg2))) 2215 { 2216 /* FIXME -- should be ptrdiff_t */ 2217 type = builtin_type (exp->gdbarch)->builtin_long; 2218 return value_from_longest (type, value_ptrdiff (arg1, arg2)); 2219 } 2220 else if (ptrmath_type_p (exp->language_defn, value_type (arg1)) 2221 && is_integral_type (value_type (arg2))) 2222 return value_ptradd (arg1, - value_as_long (arg2)); 2223 else 2224 { 2225 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 2226 return value_binop (arg1, arg2, BINOP_SUB); 2227 } 2228 2229 case BINOP_EXP: 2230 case BINOP_MUL: 2231 case BINOP_DIV: 2232 case BINOP_INTDIV: 2233 case BINOP_REM: 2234 case BINOP_MOD: 2235 case BINOP_LSH: 2236 case BINOP_RSH: 2237 case BINOP_BITWISE_AND: 2238 case BINOP_BITWISE_IOR: 2239 case BINOP_BITWISE_XOR: 2240 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2241 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2242 if (noside == EVAL_SKIP) 2243 return eval_skip_value (exp); 2244 if (binop_user_defined_p (op, arg1, arg2)) 2245 return value_x_binop (arg1, arg2, op, OP_NULL, noside); 2246 else 2247 { 2248 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero, 2249 fudge arg2 to avoid division-by-zero, the caller is 2250 (theoretically) only looking for the type of the result. */ 2251 if (noside == EVAL_AVOID_SIDE_EFFECTS 2252 /* ??? Do we really want to test for BINOP_MOD here? 2253 The implementation of value_binop gives it a well-defined 2254 value. */ 2255 && (op == BINOP_DIV 2256 || op == BINOP_INTDIV 2257 || op == BINOP_REM 2258 || op == BINOP_MOD) 2259 && value_logical_not (arg2)) 2260 { 2261 struct value *v_one, *retval; 2262 2263 v_one = value_one (value_type (arg2)); 2264 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one); 2265 retval = value_binop (arg1, v_one, op); 2266 return retval; 2267 } 2268 else 2269 { 2270 /* For shift and integer exponentiation operations, 2271 only promote the first argument. */ 2272 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP) 2273 && is_integral_type (value_type (arg2))) 2274 unop_promote (exp->language_defn, exp->gdbarch, &arg1); 2275 else 2276 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 2277 2278 return value_binop (arg1, arg2, op); 2279 } 2280 } 2281 2282 case BINOP_SUBSCRIPT: 2283 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2284 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2285 if (noside == EVAL_SKIP) 2286 return eval_skip_value (exp); 2287 if (binop_user_defined_p (op, arg1, arg2)) 2288 return value_x_binop (arg1, arg2, op, OP_NULL, noside); 2289 else 2290 { 2291 /* If the user attempts to subscript something that is not an 2292 array or pointer type (like a plain int variable for example), 2293 then report this as an error. */ 2294 2295 arg1 = coerce_ref (arg1); 2296 type = check_typedef (value_type (arg1)); 2297 if (TYPE_CODE (type) != TYPE_CODE_ARRAY 2298 && TYPE_CODE (type) != TYPE_CODE_PTR) 2299 { 2300 if (TYPE_NAME (type)) 2301 error (_("cannot subscript something of type `%s'"), 2302 TYPE_NAME (type)); 2303 else 2304 error (_("cannot subscript requested type")); 2305 } 2306 2307 if (noside == EVAL_AVOID_SIDE_EFFECTS) 2308 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1)); 2309 else 2310 return value_subscript (arg1, value_as_long (arg2)); 2311 } 2312 case MULTI_SUBSCRIPT: 2313 (*pos) += 2; 2314 nargs = longest_to_int (exp->elts[pc + 1].longconst); 2315 arg1 = evaluate_subexp_with_coercion (exp, pos, noside); 2316 while (nargs-- > 0) 2317 { 2318 arg2 = evaluate_subexp_with_coercion (exp, pos, noside); 2319 /* FIXME: EVAL_SKIP handling may not be correct. */ 2320 if (noside == EVAL_SKIP) 2321 { 2322 if (nargs > 0) 2323 continue; 2324 return eval_skip_value (exp); 2325 } 2326 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */ 2327 if (noside == EVAL_AVOID_SIDE_EFFECTS) 2328 { 2329 /* If the user attempts to subscript something that has no target 2330 type (like a plain int variable for example), then report this 2331 as an error. */ 2332 2333 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1))); 2334 if (type != NULL) 2335 { 2336 arg1 = value_zero (type, VALUE_LVAL (arg1)); 2337 noside = EVAL_SKIP; 2338 continue; 2339 } 2340 else 2341 { 2342 error (_("cannot subscript something of type `%s'"), 2343 TYPE_NAME (value_type (arg1))); 2344 } 2345 } 2346 2347 if (binop_user_defined_p (op, arg1, arg2)) 2348 { 2349 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside); 2350 } 2351 else 2352 { 2353 arg1 = coerce_ref (arg1); 2354 type = check_typedef (value_type (arg1)); 2355 2356 switch (TYPE_CODE (type)) 2357 { 2358 case TYPE_CODE_PTR: 2359 case TYPE_CODE_ARRAY: 2360 case TYPE_CODE_STRING: 2361 arg1 = value_subscript (arg1, value_as_long (arg2)); 2362 break; 2363 2364 default: 2365 if (TYPE_NAME (type)) 2366 error (_("cannot subscript something of type `%s'"), 2367 TYPE_NAME (type)); 2368 else 2369 error (_("cannot subscript requested type")); 2370 } 2371 } 2372 } 2373 return (arg1); 2374 2375 multi_f77_subscript: 2376 { 2377 LONGEST subscript_array[MAX_FORTRAN_DIMS]; 2378 int ndimensions = 1, i; 2379 struct value *array = arg1; 2380 2381 if (nargs > MAX_FORTRAN_DIMS) 2382 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS); 2383 2384 ndimensions = calc_f77_array_dims (type); 2385 2386 if (nargs != ndimensions) 2387 error (_("Wrong number of subscripts")); 2388 2389 gdb_assert (nargs > 0); 2390 2391 /* Now that we know we have a legal array subscript expression 2392 let us actually find out where this element exists in the array. */ 2393 2394 /* Take array indices left to right. */ 2395 for (i = 0; i < nargs; i++) 2396 { 2397 /* Evaluate each subscript; it must be a legal integer in F77. */ 2398 arg2 = evaluate_subexp_with_coercion (exp, pos, noside); 2399 2400 /* Fill in the subscript array. */ 2401 2402 subscript_array[i] = value_as_long (arg2); 2403 } 2404 2405 /* Internal type of array is arranged right to left. */ 2406 for (i = nargs; i > 0; i--) 2407 { 2408 struct type *array_type = check_typedef (value_type (array)); 2409 LONGEST index = subscript_array[i - 1]; 2410 2411 array = value_subscripted_rvalue (array, index, 2412 f77_get_lowerbound (array_type)); 2413 } 2414 2415 return array; 2416 } 2417 2418 case BINOP_LOGICAL_AND: 2419 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2420 if (noside == EVAL_SKIP) 2421 { 2422 evaluate_subexp (NULL_TYPE, exp, pos, noside); 2423 return eval_skip_value (exp); 2424 } 2425 2426 oldpos = *pos; 2427 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); 2428 *pos = oldpos; 2429 2430 if (binop_user_defined_p (op, arg1, arg2)) 2431 { 2432 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2433 return value_x_binop (arg1, arg2, op, OP_NULL, noside); 2434 } 2435 else 2436 { 2437 tem = value_logical_not (arg1); 2438 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, 2439 (tem ? EVAL_SKIP : noside)); 2440 type = language_bool_type (exp->language_defn, exp->gdbarch); 2441 return value_from_longest (type, 2442 (LONGEST) (!tem && !value_logical_not (arg2))); 2443 } 2444 2445 case BINOP_LOGICAL_OR: 2446 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2447 if (noside == EVAL_SKIP) 2448 { 2449 evaluate_subexp (NULL_TYPE, exp, pos, noside); 2450 return eval_skip_value (exp); 2451 } 2452 2453 oldpos = *pos; 2454 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); 2455 *pos = oldpos; 2456 2457 if (binop_user_defined_p (op, arg1, arg2)) 2458 { 2459 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2460 return value_x_binop (arg1, arg2, op, OP_NULL, noside); 2461 } 2462 else 2463 { 2464 tem = value_logical_not (arg1); 2465 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, 2466 (!tem ? EVAL_SKIP : noside)); 2467 type = language_bool_type (exp->language_defn, exp->gdbarch); 2468 return value_from_longest (type, 2469 (LONGEST) (!tem || !value_logical_not (arg2))); 2470 } 2471 2472 case BINOP_EQUAL: 2473 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2474 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); 2475 if (noside == EVAL_SKIP) 2476 return eval_skip_value (exp); 2477 if (binop_user_defined_p (op, arg1, arg2)) 2478 { 2479 return value_x_binop (arg1, arg2, op, OP_NULL, noside); 2480 } 2481 else 2482 { 2483 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 2484 tem = value_equal (arg1, arg2); 2485 type = language_bool_type (exp->language_defn, exp->gdbarch); 2486 return value_from_longest (type, (LONGEST) tem); 2487 } 2488 2489 case BINOP_NOTEQUAL: 2490 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2491 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); 2492 if (noside == EVAL_SKIP) 2493 return eval_skip_value (exp); 2494 if (binop_user_defined_p (op, arg1, arg2)) 2495 { 2496 return value_x_binop (arg1, arg2, op, OP_NULL, noside); 2497 } 2498 else 2499 { 2500 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 2501 tem = value_equal (arg1, arg2); 2502 type = language_bool_type (exp->language_defn, exp->gdbarch); 2503 return value_from_longest (type, (LONGEST) ! tem); 2504 } 2505 2506 case BINOP_LESS: 2507 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2508 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); 2509 if (noside == EVAL_SKIP) 2510 return eval_skip_value (exp); 2511 if (binop_user_defined_p (op, arg1, arg2)) 2512 { 2513 return value_x_binop (arg1, arg2, op, OP_NULL, noside); 2514 } 2515 else 2516 { 2517 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 2518 tem = value_less (arg1, arg2); 2519 type = language_bool_type (exp->language_defn, exp->gdbarch); 2520 return value_from_longest (type, (LONGEST) tem); 2521 } 2522 2523 case BINOP_GTR: 2524 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2525 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); 2526 if (noside == EVAL_SKIP) 2527 return eval_skip_value (exp); 2528 if (binop_user_defined_p (op, arg1, arg2)) 2529 { 2530 return value_x_binop (arg1, arg2, op, OP_NULL, noside); 2531 } 2532 else 2533 { 2534 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 2535 tem = value_less (arg2, arg1); 2536 type = language_bool_type (exp->language_defn, exp->gdbarch); 2537 return value_from_longest (type, (LONGEST) tem); 2538 } 2539 2540 case BINOP_GEQ: 2541 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2542 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); 2543 if (noside == EVAL_SKIP) 2544 return eval_skip_value (exp); 2545 if (binop_user_defined_p (op, arg1, arg2)) 2546 { 2547 return value_x_binop (arg1, arg2, op, OP_NULL, noside); 2548 } 2549 else 2550 { 2551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 2552 tem = value_less (arg2, arg1) || value_equal (arg1, arg2); 2553 type = language_bool_type (exp->language_defn, exp->gdbarch); 2554 return value_from_longest (type, (LONGEST) tem); 2555 } 2556 2557 case BINOP_LEQ: 2558 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2559 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); 2560 if (noside == EVAL_SKIP) 2561 return eval_skip_value (exp); 2562 if (binop_user_defined_p (op, arg1, arg2)) 2563 { 2564 return value_x_binop (arg1, arg2, op, OP_NULL, noside); 2565 } 2566 else 2567 { 2568 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 2569 tem = value_less (arg1, arg2) || value_equal (arg1, arg2); 2570 type = language_bool_type (exp->language_defn, exp->gdbarch); 2571 return value_from_longest (type, (LONGEST) tem); 2572 } 2573 2574 case BINOP_REPEAT: 2575 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2576 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2577 if (noside == EVAL_SKIP) 2578 return eval_skip_value (exp); 2579 type = check_typedef (value_type (arg2)); 2580 if (TYPE_CODE (type) != TYPE_CODE_INT 2581 && TYPE_CODE (type) != TYPE_CODE_ENUM) 2582 error (_("Non-integral right operand for \"@\" operator.")); 2583 if (noside == EVAL_AVOID_SIDE_EFFECTS) 2584 { 2585 return allocate_repeat_value (value_type (arg1), 2586 longest_to_int (value_as_long (arg2))); 2587 } 2588 else 2589 return value_repeat (arg1, longest_to_int (value_as_long (arg2))); 2590 2591 case BINOP_COMMA: 2592 evaluate_subexp (NULL_TYPE, exp, pos, noside); 2593 return evaluate_subexp (NULL_TYPE, exp, pos, noside); 2594 2595 case UNOP_PLUS: 2596 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2597 if (noside == EVAL_SKIP) 2598 return eval_skip_value (exp); 2599 if (unop_user_defined_p (op, arg1)) 2600 return value_x_unop (arg1, op, noside); 2601 else 2602 { 2603 unop_promote (exp->language_defn, exp->gdbarch, &arg1); 2604 return value_pos (arg1); 2605 } 2606 2607 case UNOP_NEG: 2608 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2609 if (noside == EVAL_SKIP) 2610 return eval_skip_value (exp); 2611 if (unop_user_defined_p (op, arg1)) 2612 return value_x_unop (arg1, op, noside); 2613 else 2614 { 2615 unop_promote (exp->language_defn, exp->gdbarch, &arg1); 2616 return value_neg (arg1); 2617 } 2618 2619 case UNOP_COMPLEMENT: 2620 /* C++: check for and handle destructor names. */ 2621 2622 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2623 if (noside == EVAL_SKIP) 2624 return eval_skip_value (exp); 2625 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1)) 2626 return value_x_unop (arg1, UNOP_COMPLEMENT, noside); 2627 else 2628 { 2629 unop_promote (exp->language_defn, exp->gdbarch, &arg1); 2630 return value_complement (arg1); 2631 } 2632 2633 case UNOP_LOGICAL_NOT: 2634 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2635 if (noside == EVAL_SKIP) 2636 return eval_skip_value (exp); 2637 if (unop_user_defined_p (op, arg1)) 2638 return value_x_unop (arg1, op, noside); 2639 else 2640 { 2641 type = language_bool_type (exp->language_defn, exp->gdbarch); 2642 return value_from_longest (type, (LONGEST) value_logical_not (arg1)); 2643 } 2644 2645 case UNOP_IND: 2646 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR) 2647 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type)); 2648 arg1 = evaluate_subexp (expect_type, exp, pos, noside); 2649 type = check_typedef (value_type (arg1)); 2650 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR 2651 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR) 2652 error (_("Attempt to dereference pointer " 2653 "to member without an object")); 2654 if (noside == EVAL_SKIP) 2655 return eval_skip_value (exp); 2656 if (unop_user_defined_p (op, arg1)) 2657 return value_x_unop (arg1, op, noside); 2658 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 2659 { 2660 type = check_typedef (value_type (arg1)); 2661 if (TYPE_CODE (type) == TYPE_CODE_PTR 2662 || TYPE_IS_REFERENCE (type) 2663 /* In C you can dereference an array to get the 1st elt. */ 2664 || TYPE_CODE (type) == TYPE_CODE_ARRAY 2665 ) 2666 return value_zero (TYPE_TARGET_TYPE (type), 2667 lval_memory); 2668 else if (TYPE_CODE (type) == TYPE_CODE_INT) 2669 /* GDB allows dereferencing an int. */ 2670 return value_zero (builtin_type (exp->gdbarch)->builtin_int, 2671 lval_memory); 2672 else 2673 error (_("Attempt to take contents of a non-pointer value.")); 2674 } 2675 2676 /* Allow * on an integer so we can cast it to whatever we want. 2677 This returns an int, which seems like the most C-like thing to 2678 do. "long long" variables are rare enough that 2679 BUILTIN_TYPE_LONGEST would seem to be a mistake. */ 2680 if (TYPE_CODE (type) == TYPE_CODE_INT) 2681 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, 2682 (CORE_ADDR) value_as_address (arg1)); 2683 return value_ind (arg1); 2684 2685 case UNOP_ADDR: 2686 /* C++: check for and handle pointer to members. */ 2687 2688 if (noside == EVAL_SKIP) 2689 { 2690 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); 2691 return eval_skip_value (exp); 2692 } 2693 else 2694 { 2695 struct value *retvalp = evaluate_subexp_for_address (exp, pos, 2696 noside); 2697 2698 return retvalp; 2699 } 2700 2701 case UNOP_SIZEOF: 2702 if (noside == EVAL_SKIP) 2703 { 2704 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); 2705 return eval_skip_value (exp); 2706 } 2707 return evaluate_subexp_for_sizeof (exp, pos, noside); 2708 2709 case UNOP_ALIGNOF: 2710 { 2711 type = value_type (evaluate_subexp (NULL_TYPE, exp, pos, 2712 EVAL_AVOID_SIDE_EFFECTS)); 2713 /* FIXME: This should be size_t. */ 2714 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int; 2715 ULONGEST align = type_align (type); 2716 if (align == 0) 2717 error (_("could not determine alignment of type")); 2718 return value_from_longest (size_type, align); 2719 } 2720 2721 case UNOP_CAST: 2722 (*pos) += 2; 2723 type = exp->elts[pc + 1].type; 2724 return evaluate_subexp_for_cast (exp, pos, noside, type); 2725 2726 case UNOP_CAST_TYPE: 2727 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS); 2728 type = value_type (arg1); 2729 return evaluate_subexp_for_cast (exp, pos, noside, type); 2730 2731 case UNOP_DYNAMIC_CAST: 2732 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS); 2733 type = value_type (arg1); 2734 arg1 = evaluate_subexp (type, exp, pos, noside); 2735 if (noside == EVAL_SKIP) 2736 return eval_skip_value (exp); 2737 return value_dynamic_cast (type, arg1); 2738 2739 case UNOP_REINTERPRET_CAST: 2740 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS); 2741 type = value_type (arg1); 2742 arg1 = evaluate_subexp (type, exp, pos, noside); 2743 if (noside == EVAL_SKIP) 2744 return eval_skip_value (exp); 2745 return value_reinterpret_cast (type, arg1); 2746 2747 case UNOP_MEMVAL: 2748 (*pos) += 2; 2749 arg1 = evaluate_subexp (expect_type, exp, pos, noside); 2750 if (noside == EVAL_SKIP) 2751 return eval_skip_value (exp); 2752 if (noside == EVAL_AVOID_SIDE_EFFECTS) 2753 return value_zero (exp->elts[pc + 1].type, lval_memory); 2754 else 2755 return value_at_lazy (exp->elts[pc + 1].type, 2756 value_as_address (arg1)); 2757 2758 case UNOP_MEMVAL_TYPE: 2759 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS); 2760 type = value_type (arg1); 2761 arg1 = evaluate_subexp (expect_type, exp, pos, noside); 2762 if (noside == EVAL_SKIP) 2763 return eval_skip_value (exp); 2764 if (noside == EVAL_AVOID_SIDE_EFFECTS) 2765 return value_zero (type, lval_memory); 2766 else 2767 return value_at_lazy (type, value_as_address (arg1)); 2768 2769 case UNOP_PREINCREMENT: 2770 arg1 = evaluate_subexp (expect_type, exp, pos, noside); 2771 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) 2772 return arg1; 2773 else if (unop_user_defined_p (op, arg1)) 2774 { 2775 return value_x_unop (arg1, op, noside); 2776 } 2777 else 2778 { 2779 if (ptrmath_type_p (exp->language_defn, value_type (arg1))) 2780 arg2 = value_ptradd (arg1, 1); 2781 else 2782 { 2783 struct value *tmp = arg1; 2784 2785 arg2 = value_one (value_type (arg1)); 2786 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2); 2787 arg2 = value_binop (tmp, arg2, BINOP_ADD); 2788 } 2789 2790 return value_assign (arg1, arg2); 2791 } 2792 2793 case UNOP_PREDECREMENT: 2794 arg1 = evaluate_subexp (expect_type, exp, pos, noside); 2795 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) 2796 return arg1; 2797 else if (unop_user_defined_p (op, arg1)) 2798 { 2799 return value_x_unop (arg1, op, noside); 2800 } 2801 else 2802 { 2803 if (ptrmath_type_p (exp->language_defn, value_type (arg1))) 2804 arg2 = value_ptradd (arg1, -1); 2805 else 2806 { 2807 struct value *tmp = arg1; 2808 2809 arg2 = value_one (value_type (arg1)); 2810 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2); 2811 arg2 = value_binop (tmp, arg2, BINOP_SUB); 2812 } 2813 2814 return value_assign (arg1, arg2); 2815 } 2816 2817 case UNOP_POSTINCREMENT: 2818 arg1 = evaluate_subexp (expect_type, exp, pos, noside); 2819 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) 2820 return arg1; 2821 else if (unop_user_defined_p (op, arg1)) 2822 { 2823 return value_x_unop (arg1, op, noside); 2824 } 2825 else 2826 { 2827 arg3 = value_non_lval (arg1); 2828 2829 if (ptrmath_type_p (exp->language_defn, value_type (arg1))) 2830 arg2 = value_ptradd (arg1, 1); 2831 else 2832 { 2833 struct value *tmp = arg1; 2834 2835 arg2 = value_one (value_type (arg1)); 2836 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2); 2837 arg2 = value_binop (tmp, arg2, BINOP_ADD); 2838 } 2839 2840 value_assign (arg1, arg2); 2841 return arg3; 2842 } 2843 2844 case UNOP_POSTDECREMENT: 2845 arg1 = evaluate_subexp (expect_type, exp, pos, noside); 2846 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) 2847 return arg1; 2848 else if (unop_user_defined_p (op, arg1)) 2849 { 2850 return value_x_unop (arg1, op, noside); 2851 } 2852 else 2853 { 2854 arg3 = value_non_lval (arg1); 2855 2856 if (ptrmath_type_p (exp->language_defn, value_type (arg1))) 2857 arg2 = value_ptradd (arg1, -1); 2858 else 2859 { 2860 struct value *tmp = arg1; 2861 2862 arg2 = value_one (value_type (arg1)); 2863 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2); 2864 arg2 = value_binop (tmp, arg2, BINOP_SUB); 2865 } 2866 2867 value_assign (arg1, arg2); 2868 return arg3; 2869 } 2870 2871 case OP_THIS: 2872 (*pos) += 1; 2873 return value_of_this (exp->language_defn); 2874 2875 case OP_TYPE: 2876 /* The value is not supposed to be used. This is here to make it 2877 easier to accommodate expressions that contain types. */ 2878 (*pos) += 2; 2879 if (noside == EVAL_SKIP) 2880 return eval_skip_value (exp); 2881 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 2882 return allocate_value (exp->elts[pc + 1].type); 2883 else 2884 error (_("Attempt to use a type name as an expression")); 2885 2886 case OP_TYPEOF: 2887 case OP_DECLTYPE: 2888 if (noside == EVAL_SKIP) 2889 { 2890 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); 2891 return eval_skip_value (exp); 2892 } 2893 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 2894 { 2895 enum exp_opcode sub_op = exp->elts[*pos].opcode; 2896 struct value *result; 2897 2898 result = evaluate_subexp (NULL_TYPE, exp, pos, 2899 EVAL_AVOID_SIDE_EFFECTS); 2900 2901 /* 'decltype' has special semantics for lvalues. */ 2902 if (op == OP_DECLTYPE 2903 && (sub_op == BINOP_SUBSCRIPT 2904 || sub_op == STRUCTOP_MEMBER 2905 || sub_op == STRUCTOP_MPTR 2906 || sub_op == UNOP_IND 2907 || sub_op == STRUCTOP_STRUCT 2908 || sub_op == STRUCTOP_PTR 2909 || sub_op == OP_SCOPE)) 2910 { 2911 type = value_type (result); 2912 2913 if (!TYPE_IS_REFERENCE (type)) 2914 { 2915 type = lookup_lvalue_reference_type (type); 2916 result = allocate_value (type); 2917 } 2918 } 2919 2920 return result; 2921 } 2922 else 2923 error (_("Attempt to use a type as an expression")); 2924 2925 case OP_TYPEID: 2926 { 2927 struct value *result; 2928 enum exp_opcode sub_op = exp->elts[*pos].opcode; 2929 2930 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF) 2931 result = evaluate_subexp (NULL_TYPE, exp, pos, 2932 EVAL_AVOID_SIDE_EFFECTS); 2933 else 2934 result = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2935 2936 if (noside != EVAL_NORMAL) 2937 return allocate_value (cplus_typeid_type (exp->gdbarch)); 2938 2939 return cplus_typeid (result); 2940 } 2941 2942 default: 2943 /* Removing this case and compiling with gcc -Wall reveals that 2944 a lot of cases are hitting this case. Some of these should 2945 probably be removed from expression.h; others are legitimate 2946 expressions which are (apparently) not fully implemented. 2947 2948 If there are any cases landing here which mean a user error, 2949 then they should be separate cases, with more descriptive 2950 error messages. */ 2951 2952 error (_("GDB does not (yet) know how to " 2953 "evaluate that kind of expression")); 2954 } 2955 2956 gdb_assert_not_reached ("missed return?"); 2957 } 2958 2959 /* Evaluate a subexpression of EXP, at index *POS, 2960 and return the address of that subexpression. 2961 Advance *POS over the subexpression. 2962 If the subexpression isn't an lvalue, get an error. 2963 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS; 2964 then only the type of the result need be correct. */ 2965 2966 static struct value * 2967 evaluate_subexp_for_address (struct expression *exp, int *pos, 2968 enum noside noside) 2969 { 2970 enum exp_opcode op; 2971 int pc; 2972 struct symbol *var; 2973 struct value *x; 2974 int tem; 2975 2976 pc = (*pos); 2977 op = exp->elts[pc].opcode; 2978 2979 switch (op) 2980 { 2981 case UNOP_IND: 2982 (*pos)++; 2983 x = evaluate_subexp (NULL_TYPE, exp, pos, noside); 2984 2985 /* We can't optimize out "&*" if there's a user-defined operator*. */ 2986 if (unop_user_defined_p (op, x)) 2987 { 2988 x = value_x_unop (x, op, noside); 2989 goto default_case_after_eval; 2990 } 2991 2992 return coerce_array (x); 2993 2994 case UNOP_MEMVAL: 2995 (*pos) += 3; 2996 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type), 2997 evaluate_subexp (NULL_TYPE, exp, pos, noside)); 2998 2999 case UNOP_MEMVAL_TYPE: 3000 { 3001 struct type *type; 3002 3003 (*pos) += 1; 3004 x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); 3005 type = value_type (x); 3006 return value_cast (lookup_pointer_type (type), 3007 evaluate_subexp (NULL_TYPE, exp, pos, noside)); 3008 } 3009 3010 case OP_VAR_VALUE: 3011 var = exp->elts[pc + 2].symbol; 3012 3013 /* C++: The "address" of a reference should yield the address 3014 * of the object pointed to. Let value_addr() deal with it. */ 3015 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var))) 3016 goto default_case; 3017 3018 (*pos) += 4; 3019 if (noside == EVAL_AVOID_SIDE_EFFECTS) 3020 { 3021 struct type *type = 3022 lookup_pointer_type (SYMBOL_TYPE (var)); 3023 enum address_class sym_class = SYMBOL_CLASS (var); 3024 3025 if (sym_class == LOC_CONST 3026 || sym_class == LOC_CONST_BYTES 3027 || sym_class == LOC_REGISTER) 3028 error (_("Attempt to take address of register or constant.")); 3029 3030 return 3031 value_zero (type, not_lval); 3032 } 3033 else 3034 return address_of_variable (var, exp->elts[pc + 1].block); 3035 3036 case OP_VAR_MSYM_VALUE: 3037 { 3038 (*pos) += 4; 3039 3040 value *val = evaluate_var_msym_value (noside, 3041 exp->elts[pc + 1].objfile, 3042 exp->elts[pc + 2].msymbol); 3043 if (noside == EVAL_AVOID_SIDE_EFFECTS) 3044 { 3045 struct type *type = lookup_pointer_type (value_type (val)); 3046 return value_zero (type, not_lval); 3047 } 3048 else 3049 return value_addr (val); 3050 } 3051 3052 case OP_SCOPE: 3053 tem = longest_to_int (exp->elts[pc + 2].longconst); 3054 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1); 3055 x = value_aggregate_elt (exp->elts[pc + 1].type, 3056 &exp->elts[pc + 3].string, 3057 NULL, 1, noside); 3058 if (x == NULL) 3059 error (_("There is no field named %s"), &exp->elts[pc + 3].string); 3060 return x; 3061 3062 default: 3063 default_case: 3064 x = evaluate_subexp (NULL_TYPE, exp, pos, noside); 3065 default_case_after_eval: 3066 if (noside == EVAL_AVOID_SIDE_EFFECTS) 3067 { 3068 struct type *type = check_typedef (value_type (x)); 3069 3070 if (TYPE_IS_REFERENCE (type)) 3071 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)), 3072 not_lval); 3073 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x)) 3074 return value_zero (lookup_pointer_type (value_type (x)), 3075 not_lval); 3076 else 3077 error (_("Attempt to take address of " 3078 "value not located in memory.")); 3079 } 3080 return value_addr (x); 3081 } 3082 } 3083 3084 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers. 3085 When used in contexts where arrays will be coerced anyway, this is 3086 equivalent to `evaluate_subexp' but much faster because it avoids 3087 actually fetching array contents (perhaps obsolete now that we have 3088 value_lazy()). 3089 3090 Note that we currently only do the coercion for C expressions, where 3091 arrays are zero based and the coercion is correct. For other languages, 3092 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION 3093 to decide if coercion is appropriate. */ 3094 3095 struct value * 3096 evaluate_subexp_with_coercion (struct expression *exp, 3097 int *pos, enum noside noside) 3098 { 3099 enum exp_opcode op; 3100 int pc; 3101 struct value *val; 3102 struct symbol *var; 3103 struct type *type; 3104 3105 pc = (*pos); 3106 op = exp->elts[pc].opcode; 3107 3108 switch (op) 3109 { 3110 case OP_VAR_VALUE: 3111 var = exp->elts[pc + 2].symbol; 3112 type = check_typedef (SYMBOL_TYPE (var)); 3113 if (TYPE_CODE (type) == TYPE_CODE_ARRAY 3114 && !TYPE_VECTOR (type) 3115 && CAST_IS_CONVERSION (exp->language_defn)) 3116 { 3117 (*pos) += 4; 3118 val = address_of_variable (var, exp->elts[pc + 1].block); 3119 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), 3120 val); 3121 } 3122 /* FALLTHROUGH */ 3123 3124 default: 3125 return evaluate_subexp (NULL_TYPE, exp, pos, noside); 3126 } 3127 } 3128 3129 /* Evaluate a subexpression of EXP, at index *POS, 3130 and return a value for the size of that subexpression. 3131 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL 3132 we allow side-effects on the operand if its type is a variable 3133 length array. */ 3134 3135 static struct value * 3136 evaluate_subexp_for_sizeof (struct expression *exp, int *pos, 3137 enum noside noside) 3138 { 3139 /* FIXME: This should be size_t. */ 3140 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int; 3141 enum exp_opcode op; 3142 int pc; 3143 struct type *type; 3144 struct value *val; 3145 3146 pc = (*pos); 3147 op = exp->elts[pc].opcode; 3148 3149 switch (op) 3150 { 3151 /* This case is handled specially 3152 so that we avoid creating a value for the result type. 3153 If the result type is very big, it's desirable not to 3154 create a value unnecessarily. */ 3155 case UNOP_IND: 3156 (*pos)++; 3157 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); 3158 type = check_typedef (value_type (val)); 3159 if (TYPE_CODE (type) != TYPE_CODE_PTR 3160 && !TYPE_IS_REFERENCE (type) 3161 && TYPE_CODE (type) != TYPE_CODE_ARRAY) 3162 error (_("Attempt to take contents of a non-pointer value.")); 3163 type = TYPE_TARGET_TYPE (type); 3164 if (is_dynamic_type (type)) 3165 type = value_type (value_ind (val)); 3166 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type)); 3167 3168 case UNOP_MEMVAL: 3169 (*pos) += 3; 3170 type = exp->elts[pc + 1].type; 3171 break; 3172 3173 case UNOP_MEMVAL_TYPE: 3174 (*pos) += 1; 3175 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS); 3176 type = value_type (val); 3177 break; 3178 3179 case OP_VAR_VALUE: 3180 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol); 3181 if (is_dynamic_type (type)) 3182 { 3183 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); 3184 type = value_type (val); 3185 if (TYPE_CODE (type) == TYPE_CODE_ARRAY 3186 && is_dynamic_type (TYPE_INDEX_TYPE (type)) 3187 && TYPE_HIGH_BOUND_UNDEFINED (TYPE_INDEX_TYPE (type))) 3188 return allocate_optimized_out_value (size_type); 3189 } 3190 else 3191 (*pos) += 4; 3192 break; 3193 3194 case OP_VAR_MSYM_VALUE: 3195 { 3196 (*pos) += 4; 3197 3198 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol; 3199 value *mval = evaluate_var_msym_value (noside, 3200 exp->elts[pc + 1].objfile, 3201 msymbol); 3202 3203 type = value_type (mval); 3204 if (TYPE_CODE (type) == TYPE_CODE_ERROR) 3205 error_unknown_type (MSYMBOL_PRINT_NAME (msymbol)); 3206 3207 return value_from_longest (size_type, TYPE_LENGTH (type)); 3208 } 3209 break; 3210 3211 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting 3212 type of the subscript is a variable length array type. In this case we 3213 must re-evaluate the right hand side of the subcription to allow 3214 side-effects. */ 3215 case BINOP_SUBSCRIPT: 3216 if (noside == EVAL_NORMAL) 3217 { 3218 int npc = (*pos) + 1; 3219 3220 val = evaluate_subexp (NULL_TYPE, exp, &npc, EVAL_AVOID_SIDE_EFFECTS); 3221 type = check_typedef (value_type (val)); 3222 if (TYPE_CODE (type) == TYPE_CODE_ARRAY) 3223 { 3224 type = check_typedef (TYPE_TARGET_TYPE (type)); 3225 if (TYPE_CODE (type) == TYPE_CODE_ARRAY) 3226 { 3227 type = TYPE_INDEX_TYPE (type); 3228 /* Only re-evaluate the right hand side if the resulting type 3229 is a variable length type. */ 3230 if (TYPE_RANGE_DATA (type)->flag_bound_evaluated) 3231 { 3232 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); 3233 return value_from_longest 3234 (size_type, (LONGEST) TYPE_LENGTH (value_type (val))); 3235 } 3236 } 3237 } 3238 } 3239 3240 /* Fall through. */ 3241 3242 default: 3243 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); 3244 type = value_type (val); 3245 break; 3246 } 3247 3248 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof: 3249 "When applied to a reference or a reference type, the result is 3250 the size of the referenced type." */ 3251 type = check_typedef (type); 3252 if (exp->language_defn->la_language == language_cplus 3253 && (TYPE_IS_REFERENCE (type))) 3254 type = check_typedef (TYPE_TARGET_TYPE (type)); 3255 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type)); 3256 } 3257 3258 /* Evaluate a subexpression of EXP, at index *POS, and return a value 3259 for that subexpression cast to TO_TYPE. Advance *POS over the 3260 subexpression. */ 3261 3262 static value * 3263 evaluate_subexp_for_cast (expression *exp, int *pos, 3264 enum noside noside, 3265 struct type *to_type) 3266 { 3267 int pc = *pos; 3268 3269 /* Don't let symbols be evaluated with evaluate_subexp because that 3270 throws an "unknown type" error for no-debug data symbols. 3271 Instead, we want the cast to reinterpret the symbol. */ 3272 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE 3273 || exp->elts[pc].opcode == OP_VAR_VALUE) 3274 { 3275 (*pos) += 4; 3276 3277 value *val; 3278 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE) 3279 { 3280 if (noside == EVAL_AVOID_SIDE_EFFECTS) 3281 return value_zero (to_type, not_lval); 3282 3283 val = evaluate_var_msym_value (noside, 3284 exp->elts[pc + 1].objfile, 3285 exp->elts[pc + 2].msymbol); 3286 } 3287 else 3288 val = evaluate_var_value (noside, 3289 exp->elts[pc + 1].block, 3290 exp->elts[pc + 2].symbol); 3291 3292 if (noside == EVAL_SKIP) 3293 return eval_skip_value (exp); 3294 3295 val = value_cast (to_type, val); 3296 3297 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */ 3298 if (VALUE_LVAL (val) == lval_memory) 3299 { 3300 if (value_lazy (val)) 3301 value_fetch_lazy (val); 3302 VALUE_LVAL (val) = not_lval; 3303 } 3304 return val; 3305 } 3306 3307 value *val = evaluate_subexp (to_type, exp, pos, noside); 3308 if (noside == EVAL_SKIP) 3309 return eval_skip_value (exp); 3310 return value_cast (to_type, val); 3311 } 3312 3313 /* Parse a type expression in the string [P..P+LENGTH). */ 3314 3315 struct type * 3316 parse_and_eval_type (char *p, int length) 3317 { 3318 char *tmp = (char *) alloca (length + 4); 3319 3320 tmp[0] = '('; 3321 memcpy (tmp + 1, p, length); 3322 tmp[length + 1] = ')'; 3323 tmp[length + 2] = '0'; 3324 tmp[length + 3] = '\0'; 3325 expression_up expr = parse_expression (tmp); 3326 if (expr->elts[0].opcode != UNOP_CAST) 3327 error (_("Internal error in eval_type.")); 3328 return expr->elts[1].type; 3329 } 3330 3331 int 3332 calc_f77_array_dims (struct type *array_type) 3333 { 3334 int ndimen = 1; 3335 struct type *tmp_type; 3336 3337 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY)) 3338 error (_("Can't get dimensions for a non-array type")); 3339 3340 tmp_type = array_type; 3341 3342 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type))) 3343 { 3344 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY) 3345 ++ndimen; 3346 } 3347 return ndimen; 3348 } 3349