1 /* DWARF 2 Expression Evaluator. 2 3 Copyright (C) 2001-2023 Free Software Foundation, Inc. 4 5 Contributed by Daniel Berlin (dan@dberlin.org) 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "block.h" 24 #include "symtab.h" 25 #include "gdbtypes.h" 26 #include "value.h" 27 #include "gdbcore.h" 28 #include "dwarf2.h" 29 #include "dwarf2/expr.h" 30 #include "dwarf2/loc.h" 31 #include "dwarf2/read.h" 32 #include "frame.h" 33 #include "gdbsupport/underlying.h" 34 #include "gdbarch.h" 35 #include "objfiles.h" 36 37 /* This holds gdbarch-specific types used by the DWARF expression 38 evaluator. See comments in execute_stack_op. */ 39 40 struct dwarf_gdbarch_types 41 { 42 struct type *dw_types[3] {}; 43 }; 44 45 /* Cookie for gdbarch data. */ 46 47 static const registry<gdbarch>::key<dwarf_gdbarch_types> dwarf_arch_cookie; 48 49 /* Ensure that a FRAME is defined, throw an exception otherwise. */ 50 51 static void 52 ensure_have_frame (frame_info_ptr frame, const char *op_name) 53 { 54 if (frame == nullptr) 55 throw_error (GENERIC_ERROR, 56 _("%s evaluation requires a frame."), op_name); 57 } 58 59 /* Ensure that a PER_CU is defined and throw an exception otherwise. */ 60 61 static void 62 ensure_have_per_cu (dwarf2_per_cu_data *per_cu, const char* op_name) 63 { 64 if (per_cu == nullptr) 65 throw_error (GENERIC_ERROR, 66 _("%s evaluation requires a compilation unit."), op_name); 67 } 68 69 /* Return the number of bytes overlapping a contiguous chunk of N_BITS 70 bits whose first bit is located at bit offset START. */ 71 72 static size_t 73 bits_to_bytes (ULONGEST start, ULONGEST n_bits) 74 { 75 return (start % HOST_CHAR_BIT + n_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; 76 } 77 78 /* See expr.h. */ 79 80 CORE_ADDR 81 read_addr_from_reg (frame_info_ptr frame, int reg) 82 { 83 struct gdbarch *gdbarch = get_frame_arch (frame); 84 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg); 85 86 return address_from_register (regnum, frame); 87 } 88 89 struct piece_closure 90 { 91 /* Reference count. */ 92 int refc = 0; 93 94 /* The objfile from which this closure's expression came. */ 95 dwarf2_per_objfile *per_objfile = nullptr; 96 97 /* The CU from which this closure's expression came. */ 98 dwarf2_per_cu_data *per_cu = nullptr; 99 100 /* The pieces describing this variable. */ 101 std::vector<dwarf_expr_piece> pieces; 102 103 /* Frame ID of frame to which a register value is relative, used 104 only by DWARF_VALUE_REGISTER. */ 105 struct frame_id frame_id; 106 }; 107 108 /* Allocate a closure for a value formed from separately-described 109 PIECES. */ 110 111 static piece_closure * 112 allocate_piece_closure (dwarf2_per_cu_data *per_cu, 113 dwarf2_per_objfile *per_objfile, 114 std::vector<dwarf_expr_piece> &&pieces, 115 frame_info_ptr frame) 116 { 117 piece_closure *c = new piece_closure; 118 119 c->refc = 1; 120 /* We must capture this here due to sharing of DWARF state. */ 121 c->per_objfile = per_objfile; 122 c->per_cu = per_cu; 123 c->pieces = std::move (pieces); 124 if (frame == nullptr) 125 c->frame_id = null_frame_id; 126 else 127 c->frame_id = get_frame_id (frame); 128 129 for (dwarf_expr_piece &piece : c->pieces) 130 if (piece.location == DWARF_VALUE_STACK) 131 value_incref (piece.v.value); 132 133 return c; 134 } 135 136 /* Read or write a pieced value V. If FROM != NULL, operate in "write 137 mode": copy FROM into the pieces comprising V. If FROM == NULL, 138 operate in "read mode": fetch the contents of the (lazy) value V by 139 composing it from its pieces. If CHECK_OPTIMIZED is true, then no 140 reading or writing is done; instead the return value of this 141 function is true if any piece is optimized out. When 142 CHECK_OPTIMIZED is true, FROM must be nullptr. */ 143 144 static bool 145 rw_pieced_value (value *v, value *from, bool check_optimized) 146 { 147 int i; 148 LONGEST offset = 0, max_offset; 149 gdb_byte *v_contents; 150 const gdb_byte *from_contents; 151 piece_closure *c 152 = (piece_closure *) value_computed_closure (v); 153 gdb::byte_vector buffer; 154 bool bits_big_endian = type_byte_order (value_type (v)) == BFD_ENDIAN_BIG; 155 156 gdb_assert (!check_optimized || from == nullptr); 157 if (from != nullptr) 158 { 159 from_contents = value_contents (from).data (); 160 v_contents = nullptr; 161 } 162 else 163 { 164 if (value_type (v) != value_enclosing_type (v)) 165 internal_error (_("Should not be able to create a lazy value with " 166 "an enclosing type")); 167 if (check_optimized) 168 v_contents = nullptr; 169 else 170 v_contents = value_contents_raw (v).data (); 171 from_contents = nullptr; 172 } 173 174 ULONGEST bits_to_skip = 8 * value_offset (v); 175 if (value_bitsize (v)) 176 { 177 bits_to_skip += (8 * value_offset (value_parent (v)) 178 + value_bitpos (v)); 179 if (from != nullptr 180 && (type_byte_order (value_type (from)) 181 == BFD_ENDIAN_BIG)) 182 { 183 /* Use the least significant bits of FROM. */ 184 max_offset = 8 * value_type (from)->length (); 185 offset = max_offset - value_bitsize (v); 186 } 187 else 188 max_offset = value_bitsize (v); 189 } 190 else 191 max_offset = 8 * value_type (v)->length (); 192 193 /* Advance to the first non-skipped piece. */ 194 for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++) 195 bits_to_skip -= c->pieces[i].size; 196 197 for (; i < c->pieces.size () && offset < max_offset; i++) 198 { 199 dwarf_expr_piece *p = &c->pieces[i]; 200 size_t this_size_bits, this_size; 201 202 this_size_bits = p->size - bits_to_skip; 203 if (this_size_bits > max_offset - offset) 204 this_size_bits = max_offset - offset; 205 206 switch (p->location) 207 { 208 case DWARF_VALUE_REGISTER: 209 { 210 frame_info_ptr frame = frame_find_by_id (c->frame_id); 211 gdbarch *arch = get_frame_arch (frame); 212 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno); 213 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum); 214 int optim, unavail; 215 216 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG 217 && p->offset + p->size < reg_bits) 218 { 219 /* Big-endian, and we want less than full size. */ 220 bits_to_skip += reg_bits - (p->offset + p->size); 221 } 222 else 223 bits_to_skip += p->offset; 224 225 this_size = bits_to_bytes (bits_to_skip, this_size_bits); 226 buffer.resize (this_size); 227 228 if (from == nullptr) 229 { 230 /* Read mode. */ 231 if (!get_frame_register_bytes (frame, gdb_regnum, 232 bits_to_skip / 8, 233 buffer, &optim, &unavail)) 234 { 235 if (optim) 236 { 237 if (check_optimized) 238 return true; 239 mark_value_bits_optimized_out (v, offset, 240 this_size_bits); 241 } 242 if (unavail && !check_optimized) 243 mark_value_bits_unavailable (v, offset, 244 this_size_bits); 245 break; 246 } 247 248 if (!check_optimized) 249 copy_bitwise (v_contents, offset, 250 buffer.data (), bits_to_skip % 8, 251 this_size_bits, bits_big_endian); 252 } 253 else 254 { 255 /* Write mode. */ 256 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0) 257 { 258 /* Data is copied non-byte-aligned into the register. 259 Need some bits from original register value. */ 260 get_frame_register_bytes (frame, gdb_regnum, 261 bits_to_skip / 8, 262 buffer, &optim, &unavail); 263 if (optim) 264 throw_error (OPTIMIZED_OUT_ERROR, 265 _("Can't do read-modify-write to " 266 "update bitfield; containing word " 267 "has been optimized out")); 268 if (unavail) 269 throw_error (NOT_AVAILABLE_ERROR, 270 _("Can't do read-modify-write to " 271 "update bitfield; containing word " 272 "is unavailable")); 273 } 274 275 copy_bitwise (buffer.data (), bits_to_skip % 8, 276 from_contents, offset, 277 this_size_bits, bits_big_endian); 278 put_frame_register_bytes (frame, gdb_regnum, 279 bits_to_skip / 8, 280 buffer); 281 } 282 } 283 break; 284 285 case DWARF_VALUE_MEMORY: 286 { 287 if (check_optimized) 288 break; 289 290 bits_to_skip += p->offset; 291 292 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8; 293 294 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0 295 && offset % 8 == 0) 296 { 297 /* Everything is byte-aligned; no buffer needed. */ 298 if (from != nullptr) 299 write_memory_with_notification (start_addr, 300 (from_contents 301 + offset / 8), 302 this_size_bits / 8); 303 else 304 read_value_memory (v, offset, 305 p->v.mem.in_stack_memory, 306 p->v.mem.addr + bits_to_skip / 8, 307 v_contents + offset / 8, 308 this_size_bits / 8); 309 break; 310 } 311 312 this_size = bits_to_bytes (bits_to_skip, this_size_bits); 313 buffer.resize (this_size); 314 315 if (from == nullptr) 316 { 317 /* Read mode. */ 318 read_value_memory (v, offset, 319 p->v.mem.in_stack_memory, 320 p->v.mem.addr + bits_to_skip / 8, 321 buffer.data (), this_size); 322 copy_bitwise (v_contents, offset, 323 buffer.data (), bits_to_skip % 8, 324 this_size_bits, bits_big_endian); 325 } 326 else 327 { 328 /* Write mode. */ 329 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0) 330 { 331 if (this_size <= 8) 332 { 333 /* Perform a single read for small sizes. */ 334 read_memory (start_addr, buffer.data (), 335 this_size); 336 } 337 else 338 { 339 /* Only the first and last bytes can possibly have 340 any bits reused. */ 341 read_memory (start_addr, buffer.data (), 1); 342 read_memory (start_addr + this_size - 1, 343 &buffer[this_size - 1], 1); 344 } 345 } 346 347 copy_bitwise (buffer.data (), bits_to_skip % 8, 348 from_contents, offset, 349 this_size_bits, bits_big_endian); 350 write_memory_with_notification (start_addr, 351 buffer.data (), 352 this_size); 353 } 354 } 355 break; 356 357 case DWARF_VALUE_STACK: 358 { 359 if (check_optimized) 360 break; 361 362 if (from != nullptr) 363 { 364 mark_value_bits_optimized_out (v, offset, this_size_bits); 365 break; 366 } 367 368 gdbarch *objfile_gdbarch = c->per_objfile->objfile->arch (); 369 ULONGEST stack_value_size_bits 370 = 8 * value_type (p->v.value)->length (); 371 372 /* Use zeroes if piece reaches beyond stack value. */ 373 if (p->offset + p->size > stack_value_size_bits) 374 break; 375 376 /* Piece is anchored at least significant bit end. */ 377 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG) 378 bits_to_skip += stack_value_size_bits - p->offset - p->size; 379 else 380 bits_to_skip += p->offset; 381 382 copy_bitwise (v_contents, offset, 383 value_contents_all (p->v.value).data (), 384 bits_to_skip, 385 this_size_bits, bits_big_endian); 386 } 387 break; 388 389 case DWARF_VALUE_LITERAL: 390 { 391 if (check_optimized) 392 break; 393 394 if (from != nullptr) 395 { 396 mark_value_bits_optimized_out (v, offset, this_size_bits); 397 break; 398 } 399 400 ULONGEST literal_size_bits = 8 * p->v.literal.length; 401 size_t n = this_size_bits; 402 403 /* Cut off at the end of the implicit value. */ 404 bits_to_skip += p->offset; 405 if (bits_to_skip >= literal_size_bits) 406 break; 407 if (n > literal_size_bits - bits_to_skip) 408 n = literal_size_bits - bits_to_skip; 409 410 copy_bitwise (v_contents, offset, 411 p->v.literal.data, bits_to_skip, 412 n, bits_big_endian); 413 } 414 break; 415 416 case DWARF_VALUE_IMPLICIT_POINTER: 417 if (from != nullptr) 418 { 419 mark_value_bits_optimized_out (v, offset, this_size_bits); 420 break; 421 } 422 423 /* These bits show up as zeros -- but do not cause the value to 424 be considered optimized-out. */ 425 break; 426 427 case DWARF_VALUE_OPTIMIZED_OUT: 428 if (check_optimized) 429 return true; 430 mark_value_bits_optimized_out (v, offset, this_size_bits); 431 break; 432 433 default: 434 internal_error (_("invalid location type")); 435 } 436 437 offset += this_size_bits; 438 bits_to_skip = 0; 439 } 440 441 return false; 442 } 443 444 static void 445 read_pieced_value (value *v) 446 { 447 rw_pieced_value (v, nullptr, false); 448 } 449 450 static void 451 write_pieced_value (value *to, value *from) 452 { 453 rw_pieced_value (to, from, false); 454 } 455 456 static bool 457 is_optimized_out_pieced_value (value *v) 458 { 459 return rw_pieced_value (v, nullptr, true); 460 } 461 462 /* An implementation of an lval_funcs method to see whether a value is 463 a synthetic pointer. */ 464 465 static int 466 check_pieced_synthetic_pointer (const value *value, LONGEST bit_offset, 467 int bit_length) 468 { 469 piece_closure *c = (piece_closure *) value_computed_closure (value); 470 int i; 471 472 bit_offset += 8 * value_offset (value); 473 if (value_bitsize (value)) 474 bit_offset += value_bitpos (value); 475 476 for (i = 0; i < c->pieces.size () && bit_length > 0; i++) 477 { 478 dwarf_expr_piece *p = &c->pieces[i]; 479 size_t this_size_bits = p->size; 480 481 if (bit_offset > 0) 482 { 483 if (bit_offset >= this_size_bits) 484 { 485 bit_offset -= this_size_bits; 486 continue; 487 } 488 489 bit_length -= this_size_bits - bit_offset; 490 bit_offset = 0; 491 } 492 else 493 bit_length -= this_size_bits; 494 495 if (p->location != DWARF_VALUE_IMPLICIT_POINTER) 496 return 0; 497 } 498 499 return 1; 500 } 501 502 /* An implementation of an lval_funcs method to indirect through a 503 pointer. This handles the synthetic pointer case when needed. */ 504 505 static value * 506 indirect_pieced_value (value *value) 507 { 508 piece_closure *c 509 = (piece_closure *) value_computed_closure (value); 510 int i; 511 dwarf_expr_piece *piece = NULL; 512 513 struct type *type = check_typedef (value_type (value)); 514 if (type->code () != TYPE_CODE_PTR) 515 return NULL; 516 517 int bit_length = 8 * type->length (); 518 LONGEST bit_offset = 8 * value_offset (value); 519 if (value_bitsize (value)) 520 bit_offset += value_bitpos (value); 521 522 for (i = 0; i < c->pieces.size () && bit_length > 0; i++) 523 { 524 dwarf_expr_piece *p = &c->pieces[i]; 525 size_t this_size_bits = p->size; 526 527 if (bit_offset > 0) 528 { 529 if (bit_offset >= this_size_bits) 530 { 531 bit_offset -= this_size_bits; 532 continue; 533 } 534 535 bit_length -= this_size_bits - bit_offset; 536 bit_offset = 0; 537 } 538 else 539 bit_length -= this_size_bits; 540 541 if (p->location != DWARF_VALUE_IMPLICIT_POINTER) 542 return NULL; 543 544 if (bit_length != 0) 545 error (_("Invalid use of DW_OP_implicit_pointer")); 546 547 piece = p; 548 break; 549 } 550 551 gdb_assert (piece != NULL && c->per_cu != nullptr); 552 frame_info_ptr frame = get_selected_frame (_("No frame selected.")); 553 554 /* This is an offset requested by GDB, such as value subscripts. 555 However, due to how synthetic pointers are implemented, this is 556 always presented to us as a pointer type. This means we have to 557 sign-extend it manually as appropriate. Use raw 558 extract_signed_integer directly rather than value_as_address and 559 sign extend afterwards on architectures that would need it 560 (mostly everywhere except MIPS, which has signed addresses) as 561 the later would go through gdbarch_pointer_to_address and thus 562 return a CORE_ADDR with high bits set on architectures that 563 encode address spaces and other things in CORE_ADDR. */ 564 bfd_endian byte_order = gdbarch_byte_order (get_frame_arch (frame)); 565 LONGEST byte_offset 566 = extract_signed_integer (value_contents (value), byte_order); 567 byte_offset += piece->v.ptr.offset; 568 569 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off, 570 byte_offset, c->per_cu, 571 c->per_objfile, frame, type); 572 } 573 574 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++ 575 references. */ 576 577 static value * 578 coerce_pieced_ref (const value *value) 579 { 580 struct type *type = check_typedef (value_type (value)); 581 582 if (value_bits_synthetic_pointer (value, value_embedded_offset (value), 583 TARGET_CHAR_BIT * type->length ())) 584 { 585 const piece_closure *closure 586 = (piece_closure *) value_computed_closure (value); 587 frame_info_ptr frame 588 = get_selected_frame (_("No frame selected.")); 589 590 /* gdb represents synthetic pointers as pieced values with a single 591 piece. */ 592 gdb_assert (closure != NULL); 593 gdb_assert (closure->pieces.size () == 1); 594 595 return indirect_synthetic_pointer 596 (closure->pieces[0].v.ptr.die_sect_off, 597 closure->pieces[0].v.ptr.offset, 598 closure->per_cu, closure->per_objfile, frame, type); 599 } 600 else 601 { 602 /* Else: not a synthetic reference; do nothing. */ 603 return NULL; 604 } 605 } 606 607 static void * 608 copy_pieced_value_closure (const value *v) 609 { 610 piece_closure *c = (piece_closure *) value_computed_closure (v); 611 612 ++c->refc; 613 return c; 614 } 615 616 static void 617 free_pieced_value_closure (value *v) 618 { 619 piece_closure *c = (piece_closure *) value_computed_closure (v); 620 621 --c->refc; 622 if (c->refc == 0) 623 { 624 for (dwarf_expr_piece &p : c->pieces) 625 if (p.location == DWARF_VALUE_STACK) 626 value_decref (p.v.value); 627 628 delete c; 629 } 630 } 631 632 /* Functions for accessing a variable described by DW_OP_piece. */ 633 static const struct lval_funcs pieced_value_funcs = { 634 read_pieced_value, 635 write_pieced_value, 636 is_optimized_out_pieced_value, 637 indirect_pieced_value, 638 coerce_pieced_ref, 639 check_pieced_synthetic_pointer, 640 copy_pieced_value_closure, 641 free_pieced_value_closure 642 }; 643 644 /* Given context CTX, section offset SECT_OFF, and compilation unit 645 data PER_CU, execute the "variable value" operation on the DIE 646 found at SECT_OFF. */ 647 648 static value * 649 sect_variable_value (sect_offset sect_off, 650 dwarf2_per_cu_data *per_cu, 651 dwarf2_per_objfile *per_objfile) 652 { 653 const char *var_name = nullptr; 654 struct type *die_type 655 = dwarf2_fetch_die_type_sect_off (sect_off, per_cu, per_objfile, 656 &var_name); 657 658 if (die_type == NULL) 659 error (_("Bad DW_OP_GNU_variable_value DIE.")); 660 661 /* Note: Things still work when the following test is removed. This 662 test and error is here to conform to the proposed specification. */ 663 if (die_type->code () != TYPE_CODE_INT 664 && die_type->code () != TYPE_CODE_ENUM 665 && die_type->code () != TYPE_CODE_RANGE 666 && die_type->code () != TYPE_CODE_PTR) 667 error (_("Type of DW_OP_GNU_variable_value DIE must be an integer or pointer.")); 668 669 if (var_name != nullptr) 670 { 671 value *result = compute_var_value (var_name); 672 if (result != nullptr) 673 return result; 674 } 675 676 struct type *type = lookup_pointer_type (die_type); 677 frame_info_ptr frame = get_selected_frame (_("No frame selected.")); 678 return indirect_synthetic_pointer (sect_off, 0, per_cu, per_objfile, frame, 679 type, true); 680 } 681 682 /* Return the type used for DWARF operations where the type is 683 unspecified in the DWARF spec. Only certain sizes are 684 supported. */ 685 686 struct type * 687 dwarf_expr_context::address_type () const 688 { 689 gdbarch *arch = this->m_per_objfile->objfile->arch (); 690 dwarf_gdbarch_types *types = dwarf_arch_cookie.get (arch); 691 if (types == nullptr) 692 types = dwarf_arch_cookie.emplace (arch); 693 int ndx; 694 695 if (this->m_addr_size == 2) 696 ndx = 0; 697 else if (this->m_addr_size == 4) 698 ndx = 1; 699 else if (this->m_addr_size == 8) 700 ndx = 2; 701 else 702 error (_("Unsupported address size in DWARF expressions: %d bits"), 703 8 * this->m_addr_size); 704 705 if (types->dw_types[ndx] == NULL) 706 types->dw_types[ndx] 707 = arch_integer_type (arch, 8 * this->m_addr_size, 708 0, "<signed DWARF address type>"); 709 710 return types->dw_types[ndx]; 711 } 712 713 /* Create a new context for the expression evaluator. */ 714 715 dwarf_expr_context::dwarf_expr_context (dwarf2_per_objfile *per_objfile, 716 int addr_size) 717 : m_addr_size (addr_size), 718 m_per_objfile (per_objfile) 719 { 720 } 721 722 /* Push VALUE onto the stack. */ 723 724 void 725 dwarf_expr_context::push (struct value *value, bool in_stack_memory) 726 { 727 this->m_stack.emplace_back (value, in_stack_memory); 728 } 729 730 /* Push VALUE onto the stack. */ 731 732 void 733 dwarf_expr_context::push_address (CORE_ADDR value, bool in_stack_memory) 734 { 735 push (value_from_ulongest (address_type (), value), in_stack_memory); 736 } 737 738 /* Pop the top item off of the stack. */ 739 740 void 741 dwarf_expr_context::pop () 742 { 743 if (this->m_stack.empty ()) 744 error (_("dwarf expression stack underflow")); 745 746 this->m_stack.pop_back (); 747 } 748 749 /* Retrieve the N'th item on the stack. */ 750 751 struct value * 752 dwarf_expr_context::fetch (int n) 753 { 754 if (this->m_stack.size () <= n) 755 error (_("Asked for position %d of stack, " 756 "stack only has %zu elements on it."), 757 n, this->m_stack.size ()); 758 return this->m_stack[this->m_stack.size () - (1 + n)].value; 759 } 760 761 /* See expr.h. */ 762 763 void 764 dwarf_expr_context::get_frame_base (const gdb_byte **start, 765 size_t * length) 766 { 767 ensure_have_frame (this->m_frame, "DW_OP_fbreg"); 768 769 const block *bl = get_frame_block (this->m_frame, NULL); 770 771 if (bl == NULL) 772 error (_("frame address is not available.")); 773 774 /* Use block_linkage_function, which returns a real (not inlined) 775 function, instead of get_frame_function, which may return an 776 inlined function. */ 777 symbol *framefunc = block_linkage_function (bl); 778 779 /* If we found a frame-relative symbol then it was certainly within 780 some function associated with a frame. If we can't find the frame, 781 something has gone wrong. */ 782 gdb_assert (framefunc != NULL); 783 784 func_get_frame_base_dwarf_block (framefunc, 785 get_frame_address_in_block (this->m_frame), 786 start, length); 787 } 788 789 /* See expr.h. */ 790 791 struct type * 792 dwarf_expr_context::get_base_type (cu_offset die_cu_off) 793 { 794 if (this->m_per_cu == nullptr) 795 return builtin_type (this->m_per_objfile->objfile->arch ())->builtin_int; 796 797 struct type *result = dwarf2_get_die_type (die_cu_off, this->m_per_cu, 798 this->m_per_objfile); 799 800 if (result == nullptr) 801 error (_("Could not find type for operation")); 802 803 return result; 804 } 805 806 /* See expr.h. */ 807 808 void 809 dwarf_expr_context::dwarf_call (cu_offset die_cu_off) 810 { 811 ensure_have_per_cu (this->m_per_cu, "DW_OP_call"); 812 813 frame_info_ptr frame = this->m_frame; 814 815 auto get_pc_from_frame = [frame] () 816 { 817 ensure_have_frame (frame, "DW_OP_call"); 818 return get_frame_address_in_block (frame); 819 }; 820 821 dwarf2_locexpr_baton block 822 = dwarf2_fetch_die_loc_cu_off (die_cu_off, this->m_per_cu, 823 this->m_per_objfile, get_pc_from_frame); 824 825 /* DW_OP_call_ref is currently not supported. */ 826 gdb_assert (block.per_cu == this->m_per_cu); 827 828 this->eval (block.data, block.size); 829 } 830 831 /* See expr.h. */ 832 833 void 834 dwarf_expr_context::read_mem (gdb_byte *buf, CORE_ADDR addr, 835 size_t length) 836 { 837 if (length == 0) 838 return; 839 840 /* Prefer the passed-in memory, if it exists. */ 841 if (this->m_addr_info != nullptr) 842 { 843 CORE_ADDR offset = addr - this->m_addr_info->addr; 844 845 if (offset < this->m_addr_info->valaddr.size () 846 && offset + length <= this->m_addr_info->valaddr.size ()) 847 { 848 memcpy (buf, this->m_addr_info->valaddr.data (), length); 849 return; 850 } 851 } 852 853 read_memory (addr, buf, length); 854 } 855 856 /* See expr.h. */ 857 858 void 859 dwarf_expr_context::push_dwarf_reg_entry_value (call_site_parameter_kind kind, 860 call_site_parameter_u kind_u, 861 int deref_size) 862 { 863 ensure_have_per_cu (this->m_per_cu, "DW_OP_entry_value"); 864 ensure_have_frame (this->m_frame, "DW_OP_entry_value"); 865 866 dwarf2_per_cu_data *caller_per_cu; 867 dwarf2_per_objfile *caller_per_objfile; 868 frame_info_ptr caller_frame = get_prev_frame (this->m_frame); 869 call_site_parameter *parameter 870 = dwarf_expr_reg_to_entry_parameter (this->m_frame, kind, kind_u, 871 &caller_per_cu, 872 &caller_per_objfile); 873 const gdb_byte *data_src 874 = deref_size == -1 ? parameter->value : parameter->data_value; 875 size_t size 876 = deref_size == -1 ? parameter->value_size : parameter->data_value_size; 877 878 /* DEREF_SIZE size is not verified here. */ 879 if (data_src == nullptr) 880 throw_error (NO_ENTRY_VALUE_ERROR, 881 _("Cannot resolve DW_AT_call_data_value")); 882 883 /* We are about to evaluate an expression in the context of the caller 884 of the current frame. This evaluation context may be different from 885 the current (callee's) context), so temporarily set the caller's context. 886 887 It is possible for the caller to be from a different objfile from the 888 callee if the call is made through a function pointer. */ 889 scoped_restore save_frame = make_scoped_restore (&this->m_frame, 890 caller_frame); 891 scoped_restore save_per_cu = make_scoped_restore (&this->m_per_cu, 892 caller_per_cu); 893 scoped_restore save_addr_info = make_scoped_restore (&this->m_addr_info, 894 nullptr); 895 scoped_restore save_per_objfile = make_scoped_restore (&this->m_per_objfile, 896 caller_per_objfile); 897 898 scoped_restore save_addr_size = make_scoped_restore (&this->m_addr_size); 899 this->m_addr_size = this->m_per_cu->addr_size (); 900 901 this->eval (data_src, size); 902 } 903 904 /* See expr.h. */ 905 906 value * 907 dwarf_expr_context::fetch_result (struct type *type, struct type *subobj_type, 908 LONGEST subobj_offset, bool as_lval) 909 { 910 value *retval = nullptr; 911 gdbarch *arch = this->m_per_objfile->objfile->arch (); 912 913 if (type == nullptr) 914 type = address_type (); 915 916 if (subobj_type == nullptr) 917 subobj_type = type; 918 919 /* Ensure that, if TYPE or SUBOBJ_TYPE are typedefs, their length is filled 920 in instead of being zero. */ 921 check_typedef (type); 922 check_typedef (subobj_type); 923 924 if (this->m_pieces.size () > 0) 925 { 926 ULONGEST bit_size = 0; 927 928 for (dwarf_expr_piece &piece : this->m_pieces) 929 bit_size += piece.size; 930 /* Complain if the expression is larger than the size of the 931 outer type. */ 932 if (bit_size > 8 * type->length ()) 933 invalid_synthetic_pointer (); 934 935 piece_closure *c 936 = allocate_piece_closure (this->m_per_cu, this->m_per_objfile, 937 std::move (this->m_pieces), this->m_frame); 938 retval = allocate_computed_value (subobj_type, 939 &pieced_value_funcs, c); 940 set_value_offset (retval, subobj_offset); 941 } 942 else 943 { 944 /* If AS_LVAL is false, means that the implicit conversion 945 from a location description to value is expected. */ 946 if (!as_lval) 947 this->m_location = DWARF_VALUE_STACK; 948 949 switch (this->m_location) 950 { 951 case DWARF_VALUE_REGISTER: 952 { 953 gdbarch *f_arch = get_frame_arch (this->m_frame); 954 int dwarf_regnum 955 = longest_to_int (value_as_long (this->fetch (0))); 956 int gdb_regnum = dwarf_reg_to_regnum_or_error (f_arch, 957 dwarf_regnum); 958 959 if (subobj_offset != 0) 960 error (_("cannot use offset on synthetic pointer to register")); 961 962 gdb_assert (this->m_frame != NULL); 963 964 retval = value_from_register (subobj_type, gdb_regnum, 965 this->m_frame); 966 if (value_optimized_out (retval)) 967 { 968 /* This means the register has undefined value / was 969 not saved. As we're computing the location of some 970 variable etc. in the program, not a value for 971 inspecting a register ($pc, $sp, etc.), return a 972 generic optimized out value instead, so that we show 973 <optimized out> instead of <not saved>. */ 974 value *tmp = allocate_value (subobj_type); 975 value_contents_copy (tmp, 0, retval, 0, 976 subobj_type->length ()); 977 retval = tmp; 978 } 979 } 980 break; 981 982 case DWARF_VALUE_MEMORY: 983 { 984 struct type *ptr_type; 985 CORE_ADDR address = this->fetch_address (0); 986 bool in_stack_memory = this->fetch_in_stack_memory (0); 987 988 /* DW_OP_deref_size (and possibly other operations too) may 989 create a pointer instead of an address. Ideally, the 990 pointer to address conversion would be performed as part 991 of those operations, but the type of the object to 992 which the address refers is not known at the time of 993 the operation. Therefore, we do the conversion here 994 since the type is readily available. */ 995 996 switch (subobj_type->code ()) 997 { 998 case TYPE_CODE_FUNC: 999 case TYPE_CODE_METHOD: 1000 ptr_type = builtin_type (arch)->builtin_func_ptr; 1001 break; 1002 default: 1003 ptr_type = builtin_type (arch)->builtin_data_ptr; 1004 break; 1005 } 1006 address = value_as_address (value_from_pointer (ptr_type, address)); 1007 1008 retval = value_at_lazy (subobj_type, 1009 address + subobj_offset); 1010 if (in_stack_memory) 1011 set_value_stack (retval, 1); 1012 } 1013 break; 1014 1015 case DWARF_VALUE_STACK: 1016 { 1017 value *val = this->fetch (0); 1018 size_t n = value_type (val)->length (); 1019 size_t len = subobj_type->length (); 1020 size_t max = type->length (); 1021 1022 if (subobj_offset + len > max) 1023 invalid_synthetic_pointer (); 1024 1025 retval = allocate_value (subobj_type); 1026 1027 /* The given offset is relative to the actual object. */ 1028 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG) 1029 subobj_offset += n - max; 1030 1031 copy (value_contents_all (val).slice (subobj_offset, len), 1032 value_contents_raw (retval)); 1033 } 1034 break; 1035 1036 case DWARF_VALUE_LITERAL: 1037 { 1038 size_t n = subobj_type->length (); 1039 1040 if (subobj_offset + n > this->m_len) 1041 invalid_synthetic_pointer (); 1042 1043 retval = allocate_value (subobj_type); 1044 bfd_byte *contents = value_contents_raw (retval).data (); 1045 memcpy (contents, this->m_data + subobj_offset, n); 1046 } 1047 break; 1048 1049 case DWARF_VALUE_OPTIMIZED_OUT: 1050 retval = allocate_optimized_out_value (subobj_type); 1051 break; 1052 1053 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced 1054 operation by execute_stack_op. */ 1055 case DWARF_VALUE_IMPLICIT_POINTER: 1056 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context -- 1057 it can only be encountered when making a piece. */ 1058 default: 1059 internal_error (_("invalid location type")); 1060 } 1061 } 1062 1063 set_value_initialized (retval, this->m_initialized); 1064 1065 return retval; 1066 } 1067 1068 /* See expr.h. */ 1069 1070 value * 1071 dwarf_expr_context::evaluate (const gdb_byte *addr, size_t len, bool as_lval, 1072 dwarf2_per_cu_data *per_cu, frame_info_ptr frame, 1073 const struct property_addr_info *addr_info, 1074 struct type *type, struct type *subobj_type, 1075 LONGEST subobj_offset) 1076 { 1077 this->m_per_cu = per_cu; 1078 this->m_frame = frame; 1079 this->m_addr_info = addr_info; 1080 1081 eval (addr, len); 1082 return fetch_result (type, subobj_type, subobj_offset, as_lval); 1083 } 1084 1085 /* Require that TYPE be an integral type; throw an exception if not. */ 1086 1087 static void 1088 dwarf_require_integral (struct type *type) 1089 { 1090 if (type->code () != TYPE_CODE_INT 1091 && type->code () != TYPE_CODE_CHAR 1092 && type->code () != TYPE_CODE_BOOL) 1093 error (_("integral type expected in DWARF expression")); 1094 } 1095 1096 /* Return the unsigned form of TYPE. TYPE is necessarily an integral 1097 type. */ 1098 1099 static struct type * 1100 get_unsigned_type (struct gdbarch *gdbarch, struct type *type) 1101 { 1102 switch (type->length ()) 1103 { 1104 case 1: 1105 return builtin_type (gdbarch)->builtin_uint8; 1106 case 2: 1107 return builtin_type (gdbarch)->builtin_uint16; 1108 case 4: 1109 return builtin_type (gdbarch)->builtin_uint32; 1110 case 8: 1111 return builtin_type (gdbarch)->builtin_uint64; 1112 default: 1113 error (_("no unsigned variant found for type, while evaluating " 1114 "DWARF expression")); 1115 } 1116 } 1117 1118 /* Return the signed form of TYPE. TYPE is necessarily an integral 1119 type. */ 1120 1121 static struct type * 1122 get_signed_type (struct gdbarch *gdbarch, struct type *type) 1123 { 1124 switch (type->length ()) 1125 { 1126 case 1: 1127 return builtin_type (gdbarch)->builtin_int8; 1128 case 2: 1129 return builtin_type (gdbarch)->builtin_int16; 1130 case 4: 1131 return builtin_type (gdbarch)->builtin_int32; 1132 case 8: 1133 return builtin_type (gdbarch)->builtin_int64; 1134 default: 1135 error (_("no signed variant found for type, while evaluating " 1136 "DWARF expression")); 1137 } 1138 } 1139 1140 /* Retrieve the N'th item on the stack, converted to an address. */ 1141 1142 CORE_ADDR 1143 dwarf_expr_context::fetch_address (int n) 1144 { 1145 gdbarch *arch = this->m_per_objfile->objfile->arch (); 1146 value *result_val = fetch (n); 1147 bfd_endian byte_order = gdbarch_byte_order (arch); 1148 ULONGEST result; 1149 1150 dwarf_require_integral (value_type (result_val)); 1151 result = extract_unsigned_integer (value_contents (result_val), byte_order); 1152 1153 /* For most architectures, calling extract_unsigned_integer() alone 1154 is sufficient for extracting an address. However, some 1155 architectures (e.g. MIPS) use signed addresses and using 1156 extract_unsigned_integer() will not produce a correct 1157 result. Make sure we invoke gdbarch_integer_to_address() 1158 for those architectures which require it. */ 1159 if (gdbarch_integer_to_address_p (arch)) 1160 { 1161 gdb_byte *buf = (gdb_byte *) alloca (this->m_addr_size); 1162 type *int_type = get_unsigned_type (arch, 1163 value_type (result_val)); 1164 1165 store_unsigned_integer (buf, this->m_addr_size, byte_order, result); 1166 return gdbarch_integer_to_address (arch, int_type, buf); 1167 } 1168 1169 return (CORE_ADDR) result; 1170 } 1171 1172 /* Retrieve the in_stack_memory flag of the N'th item on the stack. */ 1173 1174 bool 1175 dwarf_expr_context::fetch_in_stack_memory (int n) 1176 { 1177 if (this->m_stack.size () <= n) 1178 error (_("Asked for position %d of stack, " 1179 "stack only has %zu elements on it."), 1180 n, this->m_stack.size ()); 1181 return this->m_stack[this->m_stack.size () - (1 + n)].in_stack_memory; 1182 } 1183 1184 /* Return true if the expression stack is empty. */ 1185 1186 bool 1187 dwarf_expr_context::stack_empty_p () const 1188 { 1189 return m_stack.empty (); 1190 } 1191 1192 /* Add a new piece to the dwarf_expr_context's piece list. */ 1193 void 1194 dwarf_expr_context::add_piece (ULONGEST size, ULONGEST offset) 1195 { 1196 this->m_pieces.emplace_back (); 1197 dwarf_expr_piece &p = this->m_pieces.back (); 1198 1199 p.location = this->m_location; 1200 p.size = size; 1201 p.offset = offset; 1202 1203 if (p.location == DWARF_VALUE_LITERAL) 1204 { 1205 p.v.literal.data = this->m_data; 1206 p.v.literal.length = this->m_len; 1207 } 1208 else if (stack_empty_p ()) 1209 { 1210 p.location = DWARF_VALUE_OPTIMIZED_OUT; 1211 /* Also reset the context's location, for our callers. This is 1212 a somewhat strange approach, but this lets us avoid setting 1213 the location to DWARF_VALUE_MEMORY in all the individual 1214 cases in the evaluator. */ 1215 this->m_location = DWARF_VALUE_OPTIMIZED_OUT; 1216 } 1217 else if (p.location == DWARF_VALUE_MEMORY) 1218 { 1219 p.v.mem.addr = fetch_address (0); 1220 p.v.mem.in_stack_memory = fetch_in_stack_memory (0); 1221 } 1222 else if (p.location == DWARF_VALUE_IMPLICIT_POINTER) 1223 { 1224 p.v.ptr.die_sect_off = (sect_offset) this->m_len; 1225 p.v.ptr.offset = value_as_long (fetch (0)); 1226 } 1227 else if (p.location == DWARF_VALUE_REGISTER) 1228 p.v.regno = value_as_long (fetch (0)); 1229 else 1230 { 1231 p.v.value = fetch (0); 1232 } 1233 } 1234 1235 /* Evaluate the expression at ADDR (LEN bytes long). */ 1236 1237 void 1238 dwarf_expr_context::eval (const gdb_byte *addr, size_t len) 1239 { 1240 int old_recursion_depth = this->m_recursion_depth; 1241 1242 execute_stack_op (addr, addr + len); 1243 1244 /* RECURSION_DEPTH becomes invalid if an exception was thrown here. */ 1245 1246 gdb_assert (this->m_recursion_depth == old_recursion_depth); 1247 } 1248 1249 /* Helper to read a uleb128 value or throw an error. */ 1250 1251 const gdb_byte * 1252 safe_read_uleb128 (const gdb_byte *buf, const gdb_byte *buf_end, 1253 uint64_t *r) 1254 { 1255 buf = gdb_read_uleb128 (buf, buf_end, r); 1256 if (buf == NULL) 1257 error (_("DWARF expression error: ran off end of buffer reading uleb128 value")); 1258 return buf; 1259 } 1260 1261 /* Helper to read a sleb128 value or throw an error. */ 1262 1263 const gdb_byte * 1264 safe_read_sleb128 (const gdb_byte *buf, const gdb_byte *buf_end, 1265 int64_t *r) 1266 { 1267 buf = gdb_read_sleb128 (buf, buf_end, r); 1268 if (buf == NULL) 1269 error (_("DWARF expression error: ran off end of buffer reading sleb128 value")); 1270 return buf; 1271 } 1272 1273 const gdb_byte * 1274 safe_skip_leb128 (const gdb_byte *buf, const gdb_byte *buf_end) 1275 { 1276 buf = gdb_skip_leb128 (buf, buf_end); 1277 if (buf == NULL) 1278 error (_("DWARF expression error: ran off end of buffer reading leb128 value")); 1279 return buf; 1280 } 1281 1282 1283 /* Check that the current operator is either at the end of an 1284 expression, or that it is followed by a composition operator or by 1285 DW_OP_GNU_uninit (which should terminate the expression). */ 1286 1287 void 1288 dwarf_expr_require_composition (const gdb_byte *op_ptr, const gdb_byte *op_end, 1289 const char *op_name) 1290 { 1291 if (op_ptr != op_end && *op_ptr != DW_OP_piece && *op_ptr != DW_OP_bit_piece 1292 && *op_ptr != DW_OP_GNU_uninit) 1293 error (_("DWARF-2 expression error: `%s' operations must be " 1294 "used either alone or in conjunction with DW_OP_piece " 1295 "or DW_OP_bit_piece."), 1296 op_name); 1297 } 1298 1299 /* Return true iff the types T1 and T2 are "the same". This only does 1300 checks that might reasonably be needed to compare DWARF base 1301 types. */ 1302 1303 static int 1304 base_types_equal_p (struct type *t1, struct type *t2) 1305 { 1306 if (t1->code () != t2->code ()) 1307 return 0; 1308 if (t1->is_unsigned () != t2->is_unsigned ()) 1309 return 0; 1310 return t1->length () == t2->length (); 1311 } 1312 1313 /* If <BUF..BUF_END] contains DW_FORM_block* with single DW_OP_reg* return the 1314 DWARF register number. Otherwise return -1. */ 1315 1316 int 1317 dwarf_block_to_dwarf_reg (const gdb_byte *buf, const gdb_byte *buf_end) 1318 { 1319 uint64_t dwarf_reg; 1320 1321 if (buf_end <= buf) 1322 return -1; 1323 if (*buf >= DW_OP_reg0 && *buf <= DW_OP_reg31) 1324 { 1325 if (buf_end - buf != 1) 1326 return -1; 1327 return *buf - DW_OP_reg0; 1328 } 1329 1330 if (*buf == DW_OP_regval_type || *buf == DW_OP_GNU_regval_type) 1331 { 1332 buf++; 1333 buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg); 1334 if (buf == NULL) 1335 return -1; 1336 buf = gdb_skip_leb128 (buf, buf_end); 1337 if (buf == NULL) 1338 return -1; 1339 } 1340 else if (*buf == DW_OP_regx) 1341 { 1342 buf++; 1343 buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg); 1344 if (buf == NULL) 1345 return -1; 1346 } 1347 else 1348 return -1; 1349 if (buf != buf_end || (int) dwarf_reg != dwarf_reg) 1350 return -1; 1351 return dwarf_reg; 1352 } 1353 1354 /* If <BUF..BUF_END] contains DW_FORM_block* with just DW_OP_breg*(0) and 1355 DW_OP_deref* return the DWARF register number. Otherwise return -1. 1356 DEREF_SIZE_RETURN contains -1 for DW_OP_deref; otherwise it contains the 1357 size from DW_OP_deref_size. */ 1358 1359 int 1360 dwarf_block_to_dwarf_reg_deref (const gdb_byte *buf, const gdb_byte *buf_end, 1361 CORE_ADDR *deref_size_return) 1362 { 1363 uint64_t dwarf_reg; 1364 int64_t offset; 1365 1366 if (buf_end <= buf) 1367 return -1; 1368 1369 if (*buf >= DW_OP_breg0 && *buf <= DW_OP_breg31) 1370 { 1371 dwarf_reg = *buf - DW_OP_breg0; 1372 buf++; 1373 if (buf >= buf_end) 1374 return -1; 1375 } 1376 else if (*buf == DW_OP_bregx) 1377 { 1378 buf++; 1379 buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg); 1380 if (buf == NULL) 1381 return -1; 1382 if ((int) dwarf_reg != dwarf_reg) 1383 return -1; 1384 } 1385 else 1386 return -1; 1387 1388 buf = gdb_read_sleb128 (buf, buf_end, &offset); 1389 if (buf == NULL) 1390 return -1; 1391 if (offset != 0) 1392 return -1; 1393 1394 if (*buf == DW_OP_deref) 1395 { 1396 buf++; 1397 *deref_size_return = -1; 1398 } 1399 else if (*buf == DW_OP_deref_size) 1400 { 1401 buf++; 1402 if (buf >= buf_end) 1403 return -1; 1404 *deref_size_return = *buf++; 1405 } 1406 else 1407 return -1; 1408 1409 if (buf != buf_end) 1410 return -1; 1411 1412 return dwarf_reg; 1413 } 1414 1415 /* If <BUF..BUF_END] contains DW_FORM_block* with single DW_OP_fbreg(X) fill 1416 in FB_OFFSET_RETURN with the X offset and return 1. Otherwise return 0. */ 1417 1418 int 1419 dwarf_block_to_fb_offset (const gdb_byte *buf, const gdb_byte *buf_end, 1420 CORE_ADDR *fb_offset_return) 1421 { 1422 int64_t fb_offset; 1423 1424 if (buf_end <= buf) 1425 return 0; 1426 1427 if (*buf != DW_OP_fbreg) 1428 return 0; 1429 buf++; 1430 1431 buf = gdb_read_sleb128 (buf, buf_end, &fb_offset); 1432 if (buf == NULL) 1433 return 0; 1434 *fb_offset_return = fb_offset; 1435 if (buf != buf_end || fb_offset != (LONGEST) *fb_offset_return) 1436 return 0; 1437 1438 return 1; 1439 } 1440 1441 /* If <BUF..BUF_END] contains DW_FORM_block* with single DW_OP_bregSP(X) fill 1442 in SP_OFFSET_RETURN with the X offset and return 1. Otherwise return 0. 1443 The matched SP register number depends on GDBARCH. */ 1444 1445 int 1446 dwarf_block_to_sp_offset (struct gdbarch *gdbarch, const gdb_byte *buf, 1447 const gdb_byte *buf_end, CORE_ADDR *sp_offset_return) 1448 { 1449 uint64_t dwarf_reg; 1450 int64_t sp_offset; 1451 1452 if (buf_end <= buf) 1453 return 0; 1454 if (*buf >= DW_OP_breg0 && *buf <= DW_OP_breg31) 1455 { 1456 dwarf_reg = *buf - DW_OP_breg0; 1457 buf++; 1458 } 1459 else 1460 { 1461 if (*buf != DW_OP_bregx) 1462 return 0; 1463 buf++; 1464 buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg); 1465 if (buf == NULL) 1466 return 0; 1467 } 1468 1469 if (dwarf_reg_to_regnum (gdbarch, dwarf_reg) 1470 != gdbarch_sp_regnum (gdbarch)) 1471 return 0; 1472 1473 buf = gdb_read_sleb128 (buf, buf_end, &sp_offset); 1474 if (buf == NULL) 1475 return 0; 1476 *sp_offset_return = sp_offset; 1477 if (buf != buf_end || sp_offset != (LONGEST) *sp_offset_return) 1478 return 0; 1479 1480 return 1; 1481 } 1482 1483 /* The engine for the expression evaluator. Using the context in this 1484 object, evaluate the expression between OP_PTR and OP_END. */ 1485 1486 void 1487 dwarf_expr_context::execute_stack_op (const gdb_byte *op_ptr, 1488 const gdb_byte *op_end) 1489 { 1490 gdbarch *arch = this->m_per_objfile->objfile->arch (); 1491 bfd_endian byte_order = gdbarch_byte_order (arch); 1492 /* Old-style "untyped" DWARF values need special treatment in a 1493 couple of places, specifically DW_OP_mod and DW_OP_shr. We need 1494 a special type for these values so we can distinguish them from 1495 values that have an explicit type, because explicitly-typed 1496 values do not need special treatment. This special type must be 1497 different (in the `==' sense) from any base type coming from the 1498 CU. */ 1499 type *address_type = this->address_type (); 1500 1501 this->m_location = DWARF_VALUE_MEMORY; 1502 this->m_initialized = 1; /* Default is initialized. */ 1503 1504 if (this->m_recursion_depth > this->m_max_recursion_depth) 1505 error (_("DWARF-2 expression error: Loop detected (%d)."), 1506 this->m_recursion_depth); 1507 this->m_recursion_depth++; 1508 1509 while (op_ptr < op_end) 1510 { 1511 dwarf_location_atom op = (dwarf_location_atom) *op_ptr++; 1512 ULONGEST result; 1513 /* Assume the value is not in stack memory. 1514 Code that knows otherwise sets this to true. 1515 Some arithmetic on stack addresses can probably be assumed to still 1516 be a stack address, but we skip this complication for now. 1517 This is just an optimization, so it's always ok to punt 1518 and leave this as false. */ 1519 bool in_stack_memory = false; 1520 uint64_t uoffset, reg; 1521 int64_t offset; 1522 value *result_val = NULL; 1523 1524 /* The DWARF expression might have a bug causing an infinite 1525 loop. In that case, quitting is the only way out. */ 1526 QUIT; 1527 1528 switch (op) 1529 { 1530 case DW_OP_lit0: 1531 case DW_OP_lit1: 1532 case DW_OP_lit2: 1533 case DW_OP_lit3: 1534 case DW_OP_lit4: 1535 case DW_OP_lit5: 1536 case DW_OP_lit6: 1537 case DW_OP_lit7: 1538 case DW_OP_lit8: 1539 case DW_OP_lit9: 1540 case DW_OP_lit10: 1541 case DW_OP_lit11: 1542 case DW_OP_lit12: 1543 case DW_OP_lit13: 1544 case DW_OP_lit14: 1545 case DW_OP_lit15: 1546 case DW_OP_lit16: 1547 case DW_OP_lit17: 1548 case DW_OP_lit18: 1549 case DW_OP_lit19: 1550 case DW_OP_lit20: 1551 case DW_OP_lit21: 1552 case DW_OP_lit22: 1553 case DW_OP_lit23: 1554 case DW_OP_lit24: 1555 case DW_OP_lit25: 1556 case DW_OP_lit26: 1557 case DW_OP_lit27: 1558 case DW_OP_lit28: 1559 case DW_OP_lit29: 1560 case DW_OP_lit30: 1561 case DW_OP_lit31: 1562 result = op - DW_OP_lit0; 1563 result_val = value_from_ulongest (address_type, result); 1564 break; 1565 1566 case DW_OP_addr: 1567 result = extract_unsigned_integer (op_ptr, 1568 this->m_addr_size, byte_order); 1569 op_ptr += this->m_addr_size; 1570 /* Some versions of GCC emit DW_OP_addr before 1571 DW_OP_GNU_push_tls_address. In this case the value is an 1572 index, not an address. We don't support things like 1573 branching between the address and the TLS op. */ 1574 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address) 1575 result += this->m_per_objfile->objfile->text_section_offset (); 1576 result_val = value_from_ulongest (address_type, result); 1577 break; 1578 1579 case DW_OP_addrx: 1580 case DW_OP_GNU_addr_index: 1581 ensure_have_per_cu (this->m_per_cu, "DW_OP_addrx"); 1582 1583 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset); 1584 result = dwarf2_read_addr_index (this->m_per_cu, this->m_per_objfile, 1585 uoffset); 1586 result += this->m_per_objfile->objfile->text_section_offset (); 1587 result_val = value_from_ulongest (address_type, result); 1588 break; 1589 case DW_OP_GNU_const_index: 1590 ensure_have_per_cu (this->m_per_cu, "DW_OP_GNU_const_index"); 1591 1592 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset); 1593 result = dwarf2_read_addr_index (this->m_per_cu, this->m_per_objfile, 1594 uoffset); 1595 result_val = value_from_ulongest (address_type, result); 1596 break; 1597 1598 case DW_OP_const1u: 1599 result = extract_unsigned_integer (op_ptr, 1, byte_order); 1600 result_val = value_from_ulongest (address_type, result); 1601 op_ptr += 1; 1602 break; 1603 case DW_OP_const1s: 1604 result = extract_signed_integer (op_ptr, 1, byte_order); 1605 result_val = value_from_ulongest (address_type, result); 1606 op_ptr += 1; 1607 break; 1608 case DW_OP_const2u: 1609 result = extract_unsigned_integer (op_ptr, 2, byte_order); 1610 result_val = value_from_ulongest (address_type, result); 1611 op_ptr += 2; 1612 break; 1613 case DW_OP_const2s: 1614 result = extract_signed_integer (op_ptr, 2, byte_order); 1615 result_val = value_from_ulongest (address_type, result); 1616 op_ptr += 2; 1617 break; 1618 case DW_OP_const4u: 1619 result = extract_unsigned_integer (op_ptr, 4, byte_order); 1620 result_val = value_from_ulongest (address_type, result); 1621 op_ptr += 4; 1622 break; 1623 case DW_OP_const4s: 1624 result = extract_signed_integer (op_ptr, 4, byte_order); 1625 result_val = value_from_ulongest (address_type, result); 1626 op_ptr += 4; 1627 break; 1628 case DW_OP_const8u: 1629 result = extract_unsigned_integer (op_ptr, 8, byte_order); 1630 result_val = value_from_ulongest (address_type, result); 1631 op_ptr += 8; 1632 break; 1633 case DW_OP_const8s: 1634 result = extract_signed_integer (op_ptr, 8, byte_order); 1635 result_val = value_from_ulongest (address_type, result); 1636 op_ptr += 8; 1637 break; 1638 case DW_OP_constu: 1639 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset); 1640 result = uoffset; 1641 result_val = value_from_ulongest (address_type, result); 1642 break; 1643 case DW_OP_consts: 1644 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset); 1645 result = offset; 1646 result_val = value_from_ulongest (address_type, result); 1647 break; 1648 1649 /* The DW_OP_reg operations are required to occur alone in 1650 location expressions. */ 1651 case DW_OP_reg0: 1652 case DW_OP_reg1: 1653 case DW_OP_reg2: 1654 case DW_OP_reg3: 1655 case DW_OP_reg4: 1656 case DW_OP_reg5: 1657 case DW_OP_reg6: 1658 case DW_OP_reg7: 1659 case DW_OP_reg8: 1660 case DW_OP_reg9: 1661 case DW_OP_reg10: 1662 case DW_OP_reg11: 1663 case DW_OP_reg12: 1664 case DW_OP_reg13: 1665 case DW_OP_reg14: 1666 case DW_OP_reg15: 1667 case DW_OP_reg16: 1668 case DW_OP_reg17: 1669 case DW_OP_reg18: 1670 case DW_OP_reg19: 1671 case DW_OP_reg20: 1672 case DW_OP_reg21: 1673 case DW_OP_reg22: 1674 case DW_OP_reg23: 1675 case DW_OP_reg24: 1676 case DW_OP_reg25: 1677 case DW_OP_reg26: 1678 case DW_OP_reg27: 1679 case DW_OP_reg28: 1680 case DW_OP_reg29: 1681 case DW_OP_reg30: 1682 case DW_OP_reg31: 1683 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_reg"); 1684 1685 result = op - DW_OP_reg0; 1686 result_val = value_from_ulongest (address_type, result); 1687 this->m_location = DWARF_VALUE_REGISTER; 1688 break; 1689 1690 case DW_OP_regx: 1691 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®); 1692 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx"); 1693 1694 result = reg; 1695 result_val = value_from_ulongest (address_type, result); 1696 this->m_location = DWARF_VALUE_REGISTER; 1697 break; 1698 1699 case DW_OP_implicit_value: 1700 { 1701 uint64_t len; 1702 1703 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len); 1704 if (op_ptr + len > op_end) 1705 error (_("DW_OP_implicit_value: too few bytes available.")); 1706 this->m_len = len; 1707 this->m_data = op_ptr; 1708 this->m_location = DWARF_VALUE_LITERAL; 1709 op_ptr += len; 1710 dwarf_expr_require_composition (op_ptr, op_end, 1711 "DW_OP_implicit_value"); 1712 } 1713 goto no_push; 1714 1715 case DW_OP_stack_value: 1716 this->m_location = DWARF_VALUE_STACK; 1717 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value"); 1718 goto no_push; 1719 1720 case DW_OP_implicit_pointer: 1721 case DW_OP_GNU_implicit_pointer: 1722 { 1723 int64_t len; 1724 ensure_have_per_cu (this->m_per_cu, "DW_OP_implicit_pointer"); 1725 1726 int ref_addr_size = this->m_per_cu->ref_addr_size (); 1727 1728 /* The referred-to DIE of sect_offset kind. */ 1729 this->m_len = extract_unsigned_integer (op_ptr, ref_addr_size, 1730 byte_order); 1731 op_ptr += ref_addr_size; 1732 1733 /* The byte offset into the data. */ 1734 op_ptr = safe_read_sleb128 (op_ptr, op_end, &len); 1735 result = (ULONGEST) len; 1736 result_val = value_from_ulongest (address_type, result); 1737 1738 this->m_location = DWARF_VALUE_IMPLICIT_POINTER; 1739 dwarf_expr_require_composition (op_ptr, op_end, 1740 "DW_OP_implicit_pointer"); 1741 } 1742 break; 1743 1744 case DW_OP_breg0: 1745 case DW_OP_breg1: 1746 case DW_OP_breg2: 1747 case DW_OP_breg3: 1748 case DW_OP_breg4: 1749 case DW_OP_breg5: 1750 case DW_OP_breg6: 1751 case DW_OP_breg7: 1752 case DW_OP_breg8: 1753 case DW_OP_breg9: 1754 case DW_OP_breg10: 1755 case DW_OP_breg11: 1756 case DW_OP_breg12: 1757 case DW_OP_breg13: 1758 case DW_OP_breg14: 1759 case DW_OP_breg15: 1760 case DW_OP_breg16: 1761 case DW_OP_breg17: 1762 case DW_OP_breg18: 1763 case DW_OP_breg19: 1764 case DW_OP_breg20: 1765 case DW_OP_breg21: 1766 case DW_OP_breg22: 1767 case DW_OP_breg23: 1768 case DW_OP_breg24: 1769 case DW_OP_breg25: 1770 case DW_OP_breg26: 1771 case DW_OP_breg27: 1772 case DW_OP_breg28: 1773 case DW_OP_breg29: 1774 case DW_OP_breg30: 1775 case DW_OP_breg31: 1776 { 1777 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset); 1778 ensure_have_frame (this->m_frame, "DW_OP_breg"); 1779 1780 result = read_addr_from_reg (this->m_frame, op - DW_OP_breg0); 1781 result += offset; 1782 result_val = value_from_ulongest (address_type, result); 1783 } 1784 break; 1785 case DW_OP_bregx: 1786 { 1787 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®); 1788 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset); 1789 ensure_have_frame (this->m_frame, "DW_OP_bregx"); 1790 1791 result = read_addr_from_reg (this->m_frame, reg); 1792 result += offset; 1793 result_val = value_from_ulongest (address_type, result); 1794 } 1795 break; 1796 case DW_OP_fbreg: 1797 { 1798 const gdb_byte *datastart; 1799 size_t datalen; 1800 1801 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset); 1802 1803 /* Rather than create a whole new context, we simply 1804 backup the current stack locally and install a new empty stack, 1805 then reset it afterwards, effectively erasing whatever the 1806 recursive call put there. */ 1807 std::vector<dwarf_stack_value> saved_stack = std::move (this->m_stack); 1808 this->m_stack.clear (); 1809 1810 /* FIXME: cagney/2003-03-26: This code should be using 1811 get_frame_base_address(), and then implement a dwarf2 1812 specific this_base method. */ 1813 this->get_frame_base (&datastart, &datalen); 1814 eval (datastart, datalen); 1815 if (this->m_location == DWARF_VALUE_MEMORY) 1816 result = fetch_address (0); 1817 else if (this->m_location == DWARF_VALUE_REGISTER) 1818 result 1819 = read_addr_from_reg (this->m_frame, value_as_long (fetch (0))); 1820 else 1821 error (_("Not implemented: computing frame " 1822 "base using explicit value operator")); 1823 result = result + offset; 1824 result_val = value_from_ulongest (address_type, result); 1825 in_stack_memory = true; 1826 1827 /* Restore the content of the original stack. */ 1828 this->m_stack = std::move (saved_stack); 1829 1830 this->m_location = DWARF_VALUE_MEMORY; 1831 } 1832 break; 1833 1834 case DW_OP_dup: 1835 result_val = fetch (0); 1836 in_stack_memory = fetch_in_stack_memory (0); 1837 break; 1838 1839 case DW_OP_drop: 1840 pop (); 1841 goto no_push; 1842 1843 case DW_OP_pick: 1844 offset = *op_ptr++; 1845 result_val = fetch (offset); 1846 in_stack_memory = fetch_in_stack_memory (offset); 1847 break; 1848 1849 case DW_OP_swap: 1850 { 1851 if (this->m_stack.size () < 2) 1852 error (_("Not enough elements for " 1853 "DW_OP_swap. Need 2, have %zu."), 1854 this->m_stack.size ()); 1855 1856 dwarf_stack_value &t1 = this->m_stack[this->m_stack.size () - 1]; 1857 dwarf_stack_value &t2 = this->m_stack[this->m_stack.size () - 2]; 1858 std::swap (t1, t2); 1859 goto no_push; 1860 } 1861 1862 case DW_OP_over: 1863 result_val = fetch (1); 1864 in_stack_memory = fetch_in_stack_memory (1); 1865 break; 1866 1867 case DW_OP_rot: 1868 { 1869 if (this->m_stack.size () < 3) 1870 error (_("Not enough elements for " 1871 "DW_OP_rot. Need 3, have %zu."), 1872 this->m_stack.size ()); 1873 1874 dwarf_stack_value temp = this->m_stack[this->m_stack.size () - 1]; 1875 this->m_stack[this->m_stack.size () - 1] 1876 = this->m_stack[this->m_stack.size () - 2]; 1877 this->m_stack[this->m_stack.size () - 2] 1878 = this->m_stack[this->m_stack.size () - 3]; 1879 this->m_stack[this->m_stack.size () - 3] = temp; 1880 goto no_push; 1881 } 1882 1883 case DW_OP_deref: 1884 case DW_OP_deref_size: 1885 case DW_OP_deref_type: 1886 case DW_OP_GNU_deref_type: 1887 { 1888 int addr_size = (op == DW_OP_deref ? this->m_addr_size : *op_ptr++); 1889 gdb_byte *buf = (gdb_byte *) alloca (addr_size); 1890 CORE_ADDR addr = fetch_address (0); 1891 struct type *type; 1892 1893 pop (); 1894 1895 if (op == DW_OP_deref_type || op == DW_OP_GNU_deref_type) 1896 { 1897 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset); 1898 cu_offset type_die_cu_off = (cu_offset) uoffset; 1899 type = get_base_type (type_die_cu_off); 1900 } 1901 else 1902 type = address_type; 1903 1904 this->read_mem (buf, addr, addr_size); 1905 1906 /* If the size of the object read from memory is different 1907 from the type length, we need to zero-extend it. */ 1908 if (type->length () != addr_size) 1909 { 1910 ULONGEST datum = 1911 extract_unsigned_integer (buf, addr_size, byte_order); 1912 1913 buf = (gdb_byte *) alloca (type->length ()); 1914 store_unsigned_integer (buf, type->length (), 1915 byte_order, datum); 1916 } 1917 1918 result_val = value_from_contents_and_address (type, buf, addr); 1919 break; 1920 } 1921 1922 case DW_OP_abs: 1923 case DW_OP_neg: 1924 case DW_OP_not: 1925 case DW_OP_plus_uconst: 1926 { 1927 /* Unary operations. */ 1928 result_val = fetch (0); 1929 pop (); 1930 1931 switch (op) 1932 { 1933 case DW_OP_abs: 1934 if (value_less (result_val, 1935 value_zero (value_type (result_val), not_lval))) 1936 result_val = value_neg (result_val); 1937 break; 1938 case DW_OP_neg: 1939 result_val = value_neg (result_val); 1940 break; 1941 case DW_OP_not: 1942 dwarf_require_integral (value_type (result_val)); 1943 result_val = value_complement (result_val); 1944 break; 1945 case DW_OP_plus_uconst: 1946 dwarf_require_integral (value_type (result_val)); 1947 result = value_as_long (result_val); 1948 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®); 1949 result += reg; 1950 result_val = value_from_ulongest (address_type, result); 1951 break; 1952 } 1953 } 1954 break; 1955 1956 case DW_OP_and: 1957 case DW_OP_div: 1958 case DW_OP_minus: 1959 case DW_OP_mod: 1960 case DW_OP_mul: 1961 case DW_OP_or: 1962 case DW_OP_plus: 1963 case DW_OP_shl: 1964 case DW_OP_shr: 1965 case DW_OP_shra: 1966 case DW_OP_xor: 1967 case DW_OP_le: 1968 case DW_OP_ge: 1969 case DW_OP_eq: 1970 case DW_OP_lt: 1971 case DW_OP_gt: 1972 case DW_OP_ne: 1973 { 1974 /* Binary operations. */ 1975 struct value *first, *second; 1976 1977 second = fetch (0); 1978 pop (); 1979 1980 first = fetch (0); 1981 pop (); 1982 1983 if (! base_types_equal_p (value_type (first), value_type (second))) 1984 error (_("Incompatible types on DWARF stack")); 1985 1986 switch (op) 1987 { 1988 case DW_OP_and: 1989 dwarf_require_integral (value_type (first)); 1990 dwarf_require_integral (value_type (second)); 1991 result_val = value_binop (first, second, BINOP_BITWISE_AND); 1992 break; 1993 case DW_OP_div: 1994 result_val = value_binop (first, second, BINOP_DIV); 1995 break; 1996 case DW_OP_minus: 1997 result_val = value_binop (first, second, BINOP_SUB); 1998 break; 1999 case DW_OP_mod: 2000 { 2001 int cast_back = 0; 2002 struct type *orig_type = value_type (first); 2003 2004 /* We have to special-case "old-style" untyped values 2005 -- these must have mod computed using unsigned 2006 math. */ 2007 if (orig_type == address_type) 2008 { 2009 struct type *utype = get_unsigned_type (arch, orig_type); 2010 2011 cast_back = 1; 2012 first = value_cast (utype, first); 2013 second = value_cast (utype, second); 2014 } 2015 /* Note that value_binop doesn't handle float or 2016 decimal float here. This seems unimportant. */ 2017 result_val = value_binop (first, second, BINOP_MOD); 2018 if (cast_back) 2019 result_val = value_cast (orig_type, result_val); 2020 } 2021 break; 2022 case DW_OP_mul: 2023 result_val = value_binop (first, second, BINOP_MUL); 2024 break; 2025 case DW_OP_or: 2026 dwarf_require_integral (value_type (first)); 2027 dwarf_require_integral (value_type (second)); 2028 result_val = value_binop (first, second, BINOP_BITWISE_IOR); 2029 break; 2030 case DW_OP_plus: 2031 result_val = value_binop (first, second, BINOP_ADD); 2032 break; 2033 case DW_OP_shl: 2034 dwarf_require_integral (value_type (first)); 2035 dwarf_require_integral (value_type (second)); 2036 result_val = value_binop (first, second, BINOP_LSH); 2037 break; 2038 case DW_OP_shr: 2039 dwarf_require_integral (value_type (first)); 2040 dwarf_require_integral (value_type (second)); 2041 if (!value_type (first)->is_unsigned ()) 2042 { 2043 struct type *utype 2044 = get_unsigned_type (arch, value_type (first)); 2045 2046 first = value_cast (utype, first); 2047 } 2048 2049 result_val = value_binop (first, second, BINOP_RSH); 2050 /* Make sure we wind up with the same type we started 2051 with. */ 2052 if (value_type (result_val) != value_type (second)) 2053 result_val = value_cast (value_type (second), result_val); 2054 break; 2055 case DW_OP_shra: 2056 dwarf_require_integral (value_type (first)); 2057 dwarf_require_integral (value_type (second)); 2058 if (value_type (first)->is_unsigned ()) 2059 { 2060 struct type *stype 2061 = get_signed_type (arch, value_type (first)); 2062 2063 first = value_cast (stype, first); 2064 } 2065 2066 result_val = value_binop (first, second, BINOP_RSH); 2067 /* Make sure we wind up with the same type we started 2068 with. */ 2069 if (value_type (result_val) != value_type (second)) 2070 result_val = value_cast (value_type (second), result_val); 2071 break; 2072 case DW_OP_xor: 2073 dwarf_require_integral (value_type (first)); 2074 dwarf_require_integral (value_type (second)); 2075 result_val = value_binop (first, second, BINOP_BITWISE_XOR); 2076 break; 2077 case DW_OP_le: 2078 /* A <= B is !(B < A). */ 2079 result = ! value_less (second, first); 2080 result_val = value_from_ulongest (address_type, result); 2081 break; 2082 case DW_OP_ge: 2083 /* A >= B is !(A < B). */ 2084 result = ! value_less (first, second); 2085 result_val = value_from_ulongest (address_type, result); 2086 break; 2087 case DW_OP_eq: 2088 result = value_equal (first, second); 2089 result_val = value_from_ulongest (address_type, result); 2090 break; 2091 case DW_OP_lt: 2092 result = value_less (first, second); 2093 result_val = value_from_ulongest (address_type, result); 2094 break; 2095 case DW_OP_gt: 2096 /* A > B is B < A. */ 2097 result = value_less (second, first); 2098 result_val = value_from_ulongest (address_type, result); 2099 break; 2100 case DW_OP_ne: 2101 result = ! value_equal (first, second); 2102 result_val = value_from_ulongest (address_type, result); 2103 break; 2104 default: 2105 internal_error (_("Can't be reached.")); 2106 } 2107 } 2108 break; 2109 2110 case DW_OP_call_frame_cfa: 2111 ensure_have_frame (this->m_frame, "DW_OP_call_frame_cfa"); 2112 2113 result = dwarf2_frame_cfa (this->m_frame); 2114 result_val = value_from_ulongest (address_type, result); 2115 in_stack_memory = true; 2116 break; 2117 2118 case DW_OP_GNU_push_tls_address: 2119 case DW_OP_form_tls_address: 2120 /* Variable is at a constant offset in the thread-local 2121 storage block into the objfile for the current thread and 2122 the dynamic linker module containing this expression. Here 2123 we return returns the offset from that base. The top of the 2124 stack has the offset from the beginning of the thread 2125 control block at which the variable is located. Nothing 2126 should follow this operator, so the top of stack would be 2127 returned. */ 2128 result = value_as_long (fetch (0)); 2129 pop (); 2130 result = target_translate_tls_address (this->m_per_objfile->objfile, 2131 result); 2132 result_val = value_from_ulongest (address_type, result); 2133 break; 2134 2135 case DW_OP_skip: 2136 offset = extract_signed_integer (op_ptr, 2, byte_order); 2137 op_ptr += 2; 2138 op_ptr += offset; 2139 goto no_push; 2140 2141 case DW_OP_bra: 2142 { 2143 struct value *val; 2144 2145 offset = extract_signed_integer (op_ptr, 2, byte_order); 2146 op_ptr += 2; 2147 val = fetch (0); 2148 dwarf_require_integral (value_type (val)); 2149 if (value_as_long (val) != 0) 2150 op_ptr += offset; 2151 pop (); 2152 } 2153 goto no_push; 2154 2155 case DW_OP_nop: 2156 goto no_push; 2157 2158 case DW_OP_piece: 2159 { 2160 uint64_t size; 2161 2162 /* Record the piece. */ 2163 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size); 2164 add_piece (8 * size, 0); 2165 2166 /* Pop off the address/regnum, and reset the location 2167 type. */ 2168 if (this->m_location != DWARF_VALUE_LITERAL 2169 && this->m_location != DWARF_VALUE_OPTIMIZED_OUT) 2170 pop (); 2171 this->m_location = DWARF_VALUE_MEMORY; 2172 } 2173 goto no_push; 2174 2175 case DW_OP_bit_piece: 2176 { 2177 uint64_t size, uleb_offset; 2178 2179 /* Record the piece. */ 2180 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size); 2181 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uleb_offset); 2182 add_piece (size, uleb_offset); 2183 2184 /* Pop off the address/regnum, and reset the location 2185 type. */ 2186 if (this->m_location != DWARF_VALUE_LITERAL 2187 && this->m_location != DWARF_VALUE_OPTIMIZED_OUT) 2188 pop (); 2189 this->m_location = DWARF_VALUE_MEMORY; 2190 } 2191 goto no_push; 2192 2193 case DW_OP_GNU_uninit: 2194 if (op_ptr != op_end) 2195 error (_("DWARF-2 expression error: DW_OP_GNU_uninit must always " 2196 "be the very last op.")); 2197 2198 this->m_initialized = 0; 2199 goto no_push; 2200 2201 case DW_OP_call2: 2202 { 2203 cu_offset cu_off 2204 = (cu_offset) extract_unsigned_integer (op_ptr, 2, byte_order); 2205 op_ptr += 2; 2206 this->dwarf_call (cu_off); 2207 } 2208 goto no_push; 2209 2210 case DW_OP_call4: 2211 { 2212 cu_offset cu_off 2213 = (cu_offset) extract_unsigned_integer (op_ptr, 4, byte_order); 2214 op_ptr += 4; 2215 this->dwarf_call (cu_off); 2216 } 2217 goto no_push; 2218 2219 case DW_OP_GNU_variable_value: 2220 { 2221 ensure_have_per_cu (this->m_per_cu, "DW_OP_GNU_variable_value"); 2222 int ref_addr_size = this->m_per_cu->ref_addr_size (); 2223 2224 sect_offset sect_off 2225 = (sect_offset) extract_unsigned_integer (op_ptr, 2226 ref_addr_size, 2227 byte_order); 2228 op_ptr += ref_addr_size; 2229 result_val = sect_variable_value (sect_off, this->m_per_cu, 2230 this->m_per_objfile); 2231 result_val = value_cast (address_type, result_val); 2232 } 2233 break; 2234 2235 case DW_OP_entry_value: 2236 case DW_OP_GNU_entry_value: 2237 { 2238 uint64_t len; 2239 CORE_ADDR deref_size; 2240 union call_site_parameter_u kind_u; 2241 2242 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len); 2243 if (op_ptr + len > op_end) 2244 error (_("DW_OP_entry_value: too few bytes available.")); 2245 2246 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (op_ptr, op_ptr + len); 2247 if (kind_u.dwarf_reg != -1) 2248 { 2249 op_ptr += len; 2250 this->push_dwarf_reg_entry_value (CALL_SITE_PARAMETER_DWARF_REG, 2251 kind_u, 2252 -1 /* deref_size */); 2253 goto no_push; 2254 } 2255 2256 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg_deref (op_ptr, 2257 op_ptr + len, 2258 &deref_size); 2259 if (kind_u.dwarf_reg != -1) 2260 { 2261 if (deref_size == -1) 2262 deref_size = this->m_addr_size; 2263 op_ptr += len; 2264 this->push_dwarf_reg_entry_value (CALL_SITE_PARAMETER_DWARF_REG, 2265 kind_u, deref_size); 2266 goto no_push; 2267 } 2268 2269 error (_("DWARF-2 expression error: DW_OP_entry_value is " 2270 "supported only for single DW_OP_reg* " 2271 "or for DW_OP_breg*(0)+DW_OP_deref*")); 2272 } 2273 2274 case DW_OP_GNU_parameter_ref: 2275 { 2276 union call_site_parameter_u kind_u; 2277 2278 kind_u.param_cu_off 2279 = (cu_offset) extract_unsigned_integer (op_ptr, 4, byte_order); 2280 op_ptr += 4; 2281 this->push_dwarf_reg_entry_value (CALL_SITE_PARAMETER_PARAM_OFFSET, 2282 kind_u, 2283 -1 /* deref_size */); 2284 } 2285 goto no_push; 2286 2287 case DW_OP_const_type: 2288 case DW_OP_GNU_const_type: 2289 { 2290 int n; 2291 const gdb_byte *data; 2292 struct type *type; 2293 2294 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset); 2295 cu_offset type_die_cu_off = (cu_offset) uoffset; 2296 2297 n = *op_ptr++; 2298 data = op_ptr; 2299 op_ptr += n; 2300 2301 type = get_base_type (type_die_cu_off); 2302 2303 if (type->length () != n) 2304 error (_("DW_OP_const_type has different sizes for type and data")); 2305 2306 result_val = value_from_contents (type, data); 2307 } 2308 break; 2309 2310 case DW_OP_regval_type: 2311 case DW_OP_GNU_regval_type: 2312 { 2313 op_ptr = safe_read_uleb128 (op_ptr, op_end, ®); 2314 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset); 2315 cu_offset type_die_cu_off = (cu_offset) uoffset; 2316 2317 ensure_have_frame (this->m_frame, "DW_OP_regval_type"); 2318 2319 struct type *type = get_base_type (type_die_cu_off); 2320 int regnum 2321 = dwarf_reg_to_regnum_or_error (get_frame_arch (this->m_frame), 2322 reg); 2323 result_val = value_from_register (type, regnum, this->m_frame); 2324 } 2325 break; 2326 2327 case DW_OP_convert: 2328 case DW_OP_GNU_convert: 2329 case DW_OP_reinterpret: 2330 case DW_OP_GNU_reinterpret: 2331 { 2332 struct type *type; 2333 2334 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset); 2335 cu_offset type_die_cu_off = (cu_offset) uoffset; 2336 2337 if (to_underlying (type_die_cu_off) == 0) 2338 type = address_type; 2339 else 2340 type = get_base_type (type_die_cu_off); 2341 2342 result_val = fetch (0); 2343 pop (); 2344 2345 if (op == DW_OP_convert || op == DW_OP_GNU_convert) 2346 result_val = value_cast (type, result_val); 2347 else if (type == value_type (result_val)) 2348 { 2349 /* Nothing. */ 2350 } 2351 else if (type->length () 2352 != value_type (result_val)->length ()) 2353 error (_("DW_OP_reinterpret has wrong size")); 2354 else 2355 result_val 2356 = value_from_contents (type, 2357 value_contents_all (result_val).data ()); 2358 } 2359 break; 2360 2361 case DW_OP_push_object_address: 2362 /* Return the address of the object we are currently observing. */ 2363 if (this->m_addr_info == nullptr 2364 || (this->m_addr_info->valaddr.data () == nullptr 2365 && this->m_addr_info->addr == 0)) 2366 error (_("Location address is not set.")); 2367 2368 result_val 2369 = value_from_ulongest (address_type, this->m_addr_info->addr); 2370 break; 2371 2372 default: 2373 error (_("Unhandled dwarf expression opcode 0x%x"), op); 2374 } 2375 2376 /* Most things push a result value. */ 2377 gdb_assert (result_val != NULL); 2378 push (result_val, in_stack_memory); 2379 no_push: 2380 ; 2381 } 2382 2383 /* To simplify our main caller, if the result is an implicit 2384 pointer, then make a pieced value. This is ok because we can't 2385 have implicit pointers in contexts where pieces are invalid. */ 2386 if (this->m_location == DWARF_VALUE_IMPLICIT_POINTER) 2387 add_piece (8 * this->m_addr_size, 0); 2388 2389 this->m_recursion_depth--; 2390 gdb_assert (this->m_recursion_depth >= 0); 2391 } 2392