xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/d-exp.y (revision 9fd8799cb5ceb66c69f2eb1a6d26a1d587ba1f1e)
1 /* YACC parser for D expressions, for GDB.
2 
3    Copyright (C) 2014-2019 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 /* This file is derived from c-exp.y, jv-exp.y.  */
21 
22 /* Parse a D expression from text in a string,
23    and return the result as a struct expression pointer.
24    That structure contains arithmetic operations in reverse polish,
25    with constants represented by operations that are followed by special data.
26    See expression.h for the details of the format.
27    What is important here is that it can be built up sequentially
28    during the process of parsing; the lower levels of the tree always
29    come first in the result.
30 
31    Note that malloc's and realloc's in this file are transformed to
32    xmalloc and xrealloc respectively by the same sed command in the
33    makefile that remaps any other malloc/realloc inserted by the parser
34    generator.  Doing this with #defines and trying to control the interaction
35    with include files (<malloc.h> and <stdlib.h> for example) just became
36    too messy, particularly when such includes can be inserted at random
37    times by the parser generator.  */
38 
39 %{
40 
41 #include "defs.h"
42 #include <ctype.h>
43 #include "expression.h"
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "language.h"
47 #include "c-lang.h"
48 #include "d-lang.h"
49 #include "bfd.h" /* Required by objfiles.h.  */
50 #include "symfile.h" /* Required by objfiles.h.  */
51 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
52 #include "charset.h"
53 #include "block.h"
54 
55 #define parse_type(ps) builtin_type (parse_gdbarch (ps))
56 #define parse_d_type(ps) builtin_d_type (parse_gdbarch (ps))
57 
58 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
59    etc).  */
60 #define GDB_YY_REMAP_PREFIX d_
61 #include "yy-remap.h"
62 
63 /* The state of the parser, used internally when we are parsing the
64    expression.  */
65 
66 static struct parser_state *pstate = NULL;
67 
68 int yyparse (void);
69 
70 static int yylex (void);
71 
72 static void yyerror (const char *);
73 
74 static int type_aggregate_p (struct type *);
75 
76 %}
77 
78 /* Although the yacc "value" of an expression is not used,
79    since the result is stored in the structure being created,
80    other node types do have values.  */
81 
82 %union
83   {
84     struct {
85       LONGEST val;
86       struct type *type;
87     } typed_val_int;
88     struct {
89       gdb_byte val[16];
90       struct type *type;
91     } typed_val_float;
92     struct symbol *sym;
93     struct type *tval;
94     struct typed_stoken tsval;
95     struct stoken sval;
96     struct ttype tsym;
97     struct symtoken ssym;
98     int ival;
99     int voidval;
100     struct block *bval;
101     enum exp_opcode opcode;
102     struct stoken_vector svec;
103   }
104 
105 %{
106 /* YYSTYPE gets defined by %union */
107 static int parse_number (struct parser_state *, const char *,
108 			 int, int, YYSTYPE *);
109 %}
110 
111 %token <sval> IDENTIFIER UNKNOWN_NAME
112 %token <tsym> TYPENAME
113 %token <voidval> COMPLETE
114 
115 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
116    but which would parse as a valid number in the current input radix.
117    E.g. "c" when input_radix==16.  Depending on the parse, it will be
118    turned into a name or into a number.  */
119 
120 %token <sval> NAME_OR_INT
121 
122 %token <typed_val_int> INTEGER_LITERAL
123 %token <typed_val_float> FLOAT_LITERAL
124 %token <tsval> CHARACTER_LITERAL
125 %token <tsval> STRING_LITERAL
126 
127 %type <svec> StringExp
128 %type <tval> BasicType TypeExp
129 %type <sval> IdentifierExp
130 %type <ival> ArrayLiteral
131 
132 %token ENTRY
133 %token ERROR
134 
135 /* Keywords that have a constant value.  */
136 %token TRUE_KEYWORD FALSE_KEYWORD NULL_KEYWORD
137 /* Class 'super' accessor.  */
138 %token SUPER_KEYWORD
139 /* Properties.  */
140 %token CAST_KEYWORD SIZEOF_KEYWORD
141 %token TYPEOF_KEYWORD TYPEID_KEYWORD
142 %token INIT_KEYWORD
143 /* Comparison keywords.  */
144 /* Type storage classes.  */
145 %token IMMUTABLE_KEYWORD CONST_KEYWORD SHARED_KEYWORD
146 /* Non-scalar type keywords.  */
147 %token STRUCT_KEYWORD UNION_KEYWORD
148 %token CLASS_KEYWORD INTERFACE_KEYWORD
149 %token ENUM_KEYWORD TEMPLATE_KEYWORD
150 %token DELEGATE_KEYWORD FUNCTION_KEYWORD
151 
152 %token <sval> DOLLAR_VARIABLE
153 
154 %token <opcode> ASSIGN_MODIFY
155 
156 %left ','
157 %right '=' ASSIGN_MODIFY
158 %right '?'
159 %left OROR
160 %left ANDAND
161 %left '|'
162 %left '^'
163 %left '&'
164 %left EQUAL NOTEQUAL '<' '>' LEQ GEQ
165 %right LSH RSH
166 %left '+' '-'
167 %left '*' '/' '%'
168 %right HATHAT
169 %left IDENTITY NOTIDENTITY
170 %right INCREMENT DECREMENT
171 %right '.' '[' '('
172 %token DOTDOT
173 
174 
175 %%
176 
177 start   :
178 	Expression
179 |	TypeExp
180 ;
181 
182 /* Expressions, including the comma operator.  */
183 
184 Expression:
185 	CommaExpression
186 ;
187 
188 CommaExpression:
189 	AssignExpression
190 |	AssignExpression ',' CommaExpression
191 		{ write_exp_elt_opcode (pstate, BINOP_COMMA); }
192 ;
193 
194 AssignExpression:
195 	ConditionalExpression
196 |	ConditionalExpression '=' AssignExpression
197 		{ write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
198 |	ConditionalExpression ASSIGN_MODIFY AssignExpression
199 		{ write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
200 		  write_exp_elt_opcode (pstate, $2);
201 		  write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY); }
202 ;
203 
204 ConditionalExpression:
205 	OrOrExpression
206 |	OrOrExpression '?' Expression ':' ConditionalExpression
207 		{ write_exp_elt_opcode (pstate, TERNOP_COND); }
208 ;
209 
210 OrOrExpression:
211 	AndAndExpression
212 |	OrOrExpression OROR AndAndExpression
213 		{ write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
214 ;
215 
216 AndAndExpression:
217 	OrExpression
218 |	AndAndExpression ANDAND OrExpression
219 		{ write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
220 ;
221 
222 OrExpression:
223 	XorExpression
224 |	OrExpression '|' XorExpression
225 		{ write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
226 ;
227 
228 XorExpression:
229 	AndExpression
230 |	XorExpression '^' AndExpression
231 		{ write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
232 ;
233 
234 AndExpression:
235 	CmpExpression
236 |	AndExpression '&' CmpExpression
237 		{ write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
238 ;
239 
240 CmpExpression:
241 	ShiftExpression
242 |	EqualExpression
243 |	IdentityExpression
244 |	RelExpression
245 ;
246 
247 EqualExpression:
248 	ShiftExpression EQUAL ShiftExpression
249 		{ write_exp_elt_opcode (pstate, BINOP_EQUAL); }
250 |	ShiftExpression NOTEQUAL ShiftExpression
251 		{ write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
252 ;
253 
254 IdentityExpression:
255 	ShiftExpression IDENTITY ShiftExpression
256 		{ write_exp_elt_opcode (pstate, BINOP_EQUAL); }
257 |	ShiftExpression NOTIDENTITY ShiftExpression
258 		{ write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
259 ;
260 
261 RelExpression:
262 	ShiftExpression '<' ShiftExpression
263 		{ write_exp_elt_opcode (pstate, BINOP_LESS); }
264 |	ShiftExpression LEQ ShiftExpression
265 		{ write_exp_elt_opcode (pstate, BINOP_LEQ); }
266 |	ShiftExpression '>' ShiftExpression
267 		{ write_exp_elt_opcode (pstate, BINOP_GTR); }
268 |	ShiftExpression GEQ ShiftExpression
269 		{ write_exp_elt_opcode (pstate, BINOP_GEQ); }
270 ;
271 
272 ShiftExpression:
273 	AddExpression
274 |	ShiftExpression LSH AddExpression
275 		{ write_exp_elt_opcode (pstate, BINOP_LSH); }
276 |	ShiftExpression RSH AddExpression
277 		{ write_exp_elt_opcode (pstate, BINOP_RSH); }
278 ;
279 
280 AddExpression:
281 	MulExpression
282 |	AddExpression '+' MulExpression
283 		{ write_exp_elt_opcode (pstate, BINOP_ADD); }
284 |	AddExpression '-' MulExpression
285 		{ write_exp_elt_opcode (pstate, BINOP_SUB); }
286 |	AddExpression '~' MulExpression
287 		{ write_exp_elt_opcode (pstate, BINOP_CONCAT); }
288 ;
289 
290 MulExpression:
291 	UnaryExpression
292 |	MulExpression '*' UnaryExpression
293 		{ write_exp_elt_opcode (pstate, BINOP_MUL); }
294 |	MulExpression '/' UnaryExpression
295 		{ write_exp_elt_opcode (pstate, BINOP_DIV); }
296 |	MulExpression '%' UnaryExpression
297 		{ write_exp_elt_opcode (pstate, BINOP_REM); }
298 
299 UnaryExpression:
300 	'&' UnaryExpression
301 		{ write_exp_elt_opcode (pstate, UNOP_ADDR); }
302 |	INCREMENT UnaryExpression
303 		{ write_exp_elt_opcode (pstate, UNOP_PREINCREMENT); }
304 |	DECREMENT UnaryExpression
305 		{ write_exp_elt_opcode (pstate, UNOP_PREDECREMENT); }
306 |	'*' UnaryExpression
307 		{ write_exp_elt_opcode (pstate, UNOP_IND); }
308 |	'-' UnaryExpression
309 		{ write_exp_elt_opcode (pstate, UNOP_NEG); }
310 |	'+' UnaryExpression
311 		{ write_exp_elt_opcode (pstate, UNOP_PLUS); }
312 |	'!' UnaryExpression
313 		{ write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
314 |	'~' UnaryExpression
315 		{ write_exp_elt_opcode (pstate, UNOP_COMPLEMENT); }
316 |	TypeExp '.' SIZEOF_KEYWORD
317 		{ write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
318 |	CastExpression
319 |	PowExpression
320 ;
321 
322 CastExpression:
323 	CAST_KEYWORD '(' TypeExp ')' UnaryExpression
324 		{ write_exp_elt_opcode (pstate, UNOP_CAST_TYPE); }
325 	/* C style cast is illegal D, but is still recognised in
326 	   the grammar, so we keep this around for convenience.  */
327 |	'(' TypeExp ')' UnaryExpression
328 		{ write_exp_elt_opcode (pstate, UNOP_CAST_TYPE); }
329 
330 ;
331 
332 PowExpression:
333 	PostfixExpression
334 |	PostfixExpression HATHAT UnaryExpression
335 		{ write_exp_elt_opcode (pstate, BINOP_EXP); }
336 ;
337 
338 PostfixExpression:
339 	PrimaryExpression
340 |	PostfixExpression '.' COMPLETE
341 		{ struct stoken s;
342 		  mark_struct_expression (pstate);
343 		  write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
344 		  s.ptr = "";
345 		  s.length = 0;
346 		  write_exp_string (pstate, s);
347 		  write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
348 |	PostfixExpression '.' IDENTIFIER
349 		{ write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
350 		  write_exp_string (pstate, $3);
351 		  write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
352 |	PostfixExpression '.' IDENTIFIER COMPLETE
353 		{ mark_struct_expression (pstate);
354 		  write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
355 		  write_exp_string (pstate, $3);
356 		  write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
357 |	PostfixExpression '.' SIZEOF_KEYWORD
358 		{ write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
359 |	PostfixExpression INCREMENT
360 		{ write_exp_elt_opcode (pstate, UNOP_POSTINCREMENT); }
361 |	PostfixExpression DECREMENT
362 		{ write_exp_elt_opcode (pstate, UNOP_POSTDECREMENT); }
363 |	CallExpression
364 |	IndexExpression
365 |	SliceExpression
366 ;
367 
368 ArgumentList:
369 	AssignExpression
370 		{ arglist_len = 1; }
371 |	ArgumentList ',' AssignExpression
372 		{ arglist_len++; }
373 ;
374 
375 ArgumentList_opt:
376 	/* EMPTY */
377 		{ arglist_len = 0; }
378 |	ArgumentList
379 ;
380 
381 CallExpression:
382 	PostfixExpression '('
383 		{ start_arglist (); }
384 	ArgumentList_opt ')'
385 		{ write_exp_elt_opcode (pstate, OP_FUNCALL);
386 		  write_exp_elt_longcst (pstate, (LONGEST) end_arglist ());
387 		  write_exp_elt_opcode (pstate, OP_FUNCALL); }
388 ;
389 
390 IndexExpression:
391 	PostfixExpression '[' ArgumentList ']'
392 		{ if (arglist_len > 0)
393 		    {
394 		      write_exp_elt_opcode (pstate, MULTI_SUBSCRIPT);
395 		      write_exp_elt_longcst (pstate, (LONGEST) arglist_len);
396 		      write_exp_elt_opcode (pstate, MULTI_SUBSCRIPT);
397 		    }
398 		  else
399 		    write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT);
400 		}
401 ;
402 
403 SliceExpression:
404 	PostfixExpression '[' ']'
405 		{ /* Do nothing.  */ }
406 |	PostfixExpression '[' AssignExpression DOTDOT AssignExpression ']'
407 		{ write_exp_elt_opcode (pstate, TERNOP_SLICE); }
408 ;
409 
410 PrimaryExpression:
411 	'(' Expression ')'
412 		{ /* Do nothing.  */ }
413 |	IdentifierExp
414 		{ struct bound_minimal_symbol msymbol;
415 		  char *copy = copy_name ($1);
416 		  struct field_of_this_result is_a_field_of_this;
417 		  struct block_symbol sym;
418 
419 		  /* Handle VAR, which could be local or global.  */
420 		  sym = lookup_symbol (copy, expression_context_block, VAR_DOMAIN,
421 				       &is_a_field_of_this);
422 		  if (sym.symbol && SYMBOL_CLASS (sym.symbol) != LOC_TYPEDEF)
423 		    {
424 		      if (symbol_read_needs_frame (sym.symbol))
425 			innermost_block.update (sym);
426 		      write_exp_elt_opcode (pstate, OP_VAR_VALUE);
427 		      write_exp_elt_block (pstate, sym.block);
428 		      write_exp_elt_sym (pstate, sym.symbol);
429 		      write_exp_elt_opcode (pstate, OP_VAR_VALUE);
430 		    }
431 		  else if (is_a_field_of_this.type != NULL)
432 		     {
433 		      /* It hangs off of `this'.  Must not inadvertently convert from a
434 			 method call to data ref.  */
435 		      innermost_block.update (sym);
436 		      write_exp_elt_opcode (pstate, OP_THIS);
437 		      write_exp_elt_opcode (pstate, OP_THIS);
438 		      write_exp_elt_opcode (pstate, STRUCTOP_PTR);
439 		      write_exp_string (pstate, $1);
440 		      write_exp_elt_opcode (pstate, STRUCTOP_PTR);
441 		    }
442 		  else
443 		    {
444 		      /* Lookup foreign name in global static symbols.  */
445 		      msymbol = lookup_bound_minimal_symbol (copy);
446 		      if (msymbol.minsym != NULL)
447 			write_exp_msymbol (pstate, msymbol);
448 		      else if (!have_full_symbols () && !have_partial_symbols ())
449 			error (_("No symbol table is loaded.  Use the \"file\" command"));
450 		      else
451 			error (_("No symbol \"%s\" in current context."), copy);
452 		    }
453 		  }
454 |	TypeExp '.' IdentifierExp
455 			{ struct type *type = check_typedef ($1);
456 
457 			  /* Check if the qualified name is in the global
458 			     context.  However if the symbol has not already
459 			     been resolved, it's not likely to be found.  */
460 			  if (TYPE_CODE (type) == TYPE_CODE_MODULE)
461 			    {
462 			      struct bound_minimal_symbol msymbol;
463 			      struct block_symbol sym;
464 			      const char *type_name = TYPE_SAFE_NAME (type);
465 			      int type_name_len = strlen (type_name);
466 			      std::string name
467 				= string_printf ("%.*s.%.*s",
468 						 type_name_len, type_name,
469 						 $3.length, $3.ptr);
470 
471 			      sym =
472 				lookup_symbol (name.c_str (),
473 					       (const struct block *) NULL,
474 					       VAR_DOMAIN, NULL);
475 			      if (sym.symbol)
476 				{
477 				  write_exp_elt_opcode (pstate, OP_VAR_VALUE);
478 				  write_exp_elt_block (pstate, sym.block);
479 				  write_exp_elt_sym (pstate, sym.symbol);
480 				  write_exp_elt_opcode (pstate, OP_VAR_VALUE);
481 				  break;
482 				}
483 
484 			      msymbol = lookup_bound_minimal_symbol (name.c_str ());
485 			      if (msymbol.minsym != NULL)
486 				write_exp_msymbol (pstate, msymbol);
487 			      else if (!have_full_symbols () && !have_partial_symbols ())
488 				error (_("No symbol table is loaded.  Use the \"file\" command."));
489 			      else
490 				error (_("No symbol \"%s\" in current context."),
491 				       name.c_str ());
492 			    }
493 
494 			  /* Check if the qualified name resolves as a member
495 			     of an aggregate or an enum type.  */
496 			  if (!type_aggregate_p (type))
497 			    error (_("`%s' is not defined as an aggregate type."),
498 				   TYPE_SAFE_NAME (type));
499 
500 			  write_exp_elt_opcode (pstate, OP_SCOPE);
501 			  write_exp_elt_type (pstate, type);
502 			  write_exp_string (pstate, $3);
503 			  write_exp_elt_opcode (pstate, OP_SCOPE);
504 			}
505 |	DOLLAR_VARIABLE
506 		{ write_dollar_variable (pstate, $1); }
507 |	NAME_OR_INT
508 		{ YYSTYPE val;
509                   parse_number (pstate, $1.ptr, $1.length, 0, &val);
510 		  write_exp_elt_opcode (pstate, OP_LONG);
511 		  write_exp_elt_type (pstate, val.typed_val_int.type);
512 		  write_exp_elt_longcst (pstate,
513 					 (LONGEST) val.typed_val_int.val);
514 		  write_exp_elt_opcode (pstate, OP_LONG); }
515 |	NULL_KEYWORD
516 		{ struct type *type = parse_d_type (pstate)->builtin_void;
517 		  type = lookup_pointer_type (type);
518 		  write_exp_elt_opcode (pstate, OP_LONG);
519 		  write_exp_elt_type (pstate, type);
520 		  write_exp_elt_longcst (pstate, (LONGEST) 0);
521 		  write_exp_elt_opcode (pstate, OP_LONG); }
522 |	TRUE_KEYWORD
523 		{ write_exp_elt_opcode (pstate, OP_BOOL);
524 		  write_exp_elt_longcst (pstate, (LONGEST) 1);
525 		  write_exp_elt_opcode (pstate, OP_BOOL); }
526 |	FALSE_KEYWORD
527 		{ write_exp_elt_opcode (pstate, OP_BOOL);
528 		  write_exp_elt_longcst (pstate, (LONGEST) 0);
529 		  write_exp_elt_opcode (pstate, OP_BOOL); }
530 |	INTEGER_LITERAL
531 		{ write_exp_elt_opcode (pstate, OP_LONG);
532 		  write_exp_elt_type (pstate, $1.type);
533 		  write_exp_elt_longcst (pstate, (LONGEST)($1.val));
534 		  write_exp_elt_opcode (pstate, OP_LONG); }
535 |	FLOAT_LITERAL
536 		{ write_exp_elt_opcode (pstate, OP_FLOAT);
537 		  write_exp_elt_type (pstate, $1.type);
538 		  write_exp_elt_floatcst (pstate, $1.val);
539 		  write_exp_elt_opcode (pstate, OP_FLOAT); }
540 |	CHARACTER_LITERAL
541 		{ struct stoken_vector vec;
542 		  vec.len = 1;
543 		  vec.tokens = &$1;
544 		  write_exp_string_vector (pstate, $1.type, &vec); }
545 |	StringExp
546 		{ int i;
547 		  write_exp_string_vector (pstate, 0, &$1);
548 		  for (i = 0; i < $1.len; ++i)
549 		    free ($1.tokens[i].ptr);
550 		  free ($1.tokens); }
551 |	ArrayLiteral
552 		{ write_exp_elt_opcode (pstate, OP_ARRAY);
553 		  write_exp_elt_longcst (pstate, (LONGEST) 0);
554 		  write_exp_elt_longcst (pstate, (LONGEST) $1 - 1);
555 		  write_exp_elt_opcode (pstate, OP_ARRAY); }
556 |	TYPEOF_KEYWORD '(' Expression ')'
557 		{ write_exp_elt_opcode (pstate, OP_TYPEOF); }
558 ;
559 
560 ArrayLiteral:
561 	'[' ArgumentList_opt ']'
562 		{ $$ = arglist_len; }
563 ;
564 
565 IdentifierExp:
566 	IDENTIFIER
567 ;
568 
569 StringExp:
570 	STRING_LITERAL
571 		{ /* We copy the string here, and not in the
572 		     lexer, to guarantee that we do not leak a
573 		     string.  Note that we follow the
574 		     NUL-termination convention of the
575 		     lexer.  */
576 		  struct typed_stoken *vec = XNEW (struct typed_stoken);
577 		  $$.len = 1;
578 		  $$.tokens = vec;
579 
580 		  vec->type = $1.type;
581 		  vec->length = $1.length;
582 		  vec->ptr = (char *) malloc ($1.length + 1);
583 		  memcpy (vec->ptr, $1.ptr, $1.length + 1);
584 		}
585 |	StringExp STRING_LITERAL
586 		{ /* Note that we NUL-terminate here, but just
587 		     for convenience.  */
588 		  char *p;
589 		  ++$$.len;
590 		  $$.tokens
591 		    = XRESIZEVEC (struct typed_stoken, $$.tokens, $$.len);
592 
593 		  p = (char *) malloc ($2.length + 1);
594 		  memcpy (p, $2.ptr, $2.length + 1);
595 
596 		  $$.tokens[$$.len - 1].type = $2.type;
597 		  $$.tokens[$$.len - 1].length = $2.length;
598 		  $$.tokens[$$.len - 1].ptr = p;
599 		}
600 ;
601 
602 TypeExp:
603 	'(' TypeExp ')'
604 		{ /* Do nothing.  */ }
605 |	BasicType
606 		{ write_exp_elt_opcode (pstate, OP_TYPE);
607 		  write_exp_elt_type (pstate, $1);
608 		  write_exp_elt_opcode (pstate, OP_TYPE); }
609 |	BasicType BasicType2
610 		{ $$ = follow_types ($1);
611 		  write_exp_elt_opcode (pstate, OP_TYPE);
612 		  write_exp_elt_type (pstate, $$);
613 		  write_exp_elt_opcode (pstate, OP_TYPE);
614 		}
615 ;
616 
617 BasicType2:
618 	'*'
619 		{ push_type (tp_pointer); }
620 |	'*' BasicType2
621 		{ push_type (tp_pointer); }
622 |	'[' INTEGER_LITERAL ']'
623 		{ push_type_int ($2.val);
624 		  push_type (tp_array); }
625 |	'[' INTEGER_LITERAL ']' BasicType2
626 		{ push_type_int ($2.val);
627 		  push_type (tp_array); }
628 ;
629 
630 BasicType:
631 	TYPENAME
632 		{ $$ = $1.type; }
633 ;
634 
635 %%
636 
637 /* Return true if the type is aggregate-like.  */
638 
639 static int
640 type_aggregate_p (struct type *type)
641 {
642   return (TYPE_CODE (type) == TYPE_CODE_STRUCT
643 	  || TYPE_CODE (type) == TYPE_CODE_UNION
644 	  || TYPE_CODE (type) == TYPE_CODE_MODULE
645 	  || (TYPE_CODE (type) == TYPE_CODE_ENUM
646 	      && TYPE_DECLARED_CLASS (type)));
647 }
648 
649 /* Take care of parsing a number (anything that starts with a digit).
650    Set yylval and return the token type; update lexptr.
651    LEN is the number of characters in it.  */
652 
653 /*** Needs some error checking for the float case ***/
654 
655 static int
656 parse_number (struct parser_state *ps, const char *p,
657 	      int len, int parsed_float, YYSTYPE *putithere)
658 {
659   ULONGEST n = 0;
660   ULONGEST prevn = 0;
661   ULONGEST un;
662 
663   int i = 0;
664   int c;
665   int base = input_radix;
666   int unsigned_p = 0;
667   int long_p = 0;
668 
669   /* We have found a "L" or "U" suffix.  */
670   int found_suffix = 0;
671 
672   ULONGEST high_bit;
673   struct type *signed_type;
674   struct type *unsigned_type;
675 
676   if (parsed_float)
677     {
678       char *s, *sp;
679 
680       /* Strip out all embedded '_' before passing to parse_float.  */
681       s = (char *) alloca (len + 1);
682       sp = s;
683       while (len-- > 0)
684 	{
685 	  if (*p != '_')
686 	    *sp++ = *p;
687 	  p++;
688 	}
689       *sp = '\0';
690       len = strlen (s);
691 
692       /* Check suffix for `i' , `fi' or `li' (idouble, ifloat or ireal).  */
693       if (len >= 1 && tolower (s[len - 1]) == 'i')
694 	{
695 	  if (len >= 2 && tolower (s[len - 2]) == 'f')
696 	    {
697 	      putithere->typed_val_float.type
698 		= parse_d_type (ps)->builtin_ifloat;
699 	      len -= 2;
700 	    }
701 	  else if (len >= 2 && tolower (s[len - 2]) == 'l')
702 	    {
703 	      putithere->typed_val_float.type
704 		= parse_d_type (ps)->builtin_ireal;
705 	      len -= 2;
706 	    }
707 	  else
708 	    {
709 	      putithere->typed_val_float.type
710 		= parse_d_type (ps)->builtin_idouble;
711 	      len -= 1;
712 	    }
713 	}
714       /* Check suffix for `f' or `l'' (float or real).  */
715       else if (len >= 1 && tolower (s[len - 1]) == 'f')
716 	{
717 	  putithere->typed_val_float.type
718 	    = parse_d_type (ps)->builtin_float;
719 	  len -= 1;
720 	}
721       else if (len >= 1 && tolower (s[len - 1]) == 'l')
722 	{
723 	  putithere->typed_val_float.type
724 	    = parse_d_type (ps)->builtin_real;
725 	  len -= 1;
726 	}
727       /* Default type if no suffix.  */
728       else
729 	{
730 	  putithere->typed_val_float.type
731 	    = parse_d_type (ps)->builtin_double;
732 	}
733 
734       if (!parse_float (s, len,
735 			putithere->typed_val_float.type,
736 			putithere->typed_val_float.val))
737 	return ERROR;
738 
739       return FLOAT_LITERAL;
740     }
741 
742   /* Handle base-switching prefixes 0x, 0b, 0 */
743   if (p[0] == '0')
744     switch (p[1])
745       {
746       case 'x':
747       case 'X':
748 	if (len >= 3)
749 	  {
750 	    p += 2;
751 	    base = 16;
752 	    len -= 2;
753 	  }
754 	break;
755 
756       case 'b':
757       case 'B':
758 	if (len >= 3)
759 	  {
760 	    p += 2;
761 	    base = 2;
762 	    len -= 2;
763 	  }
764 	break;
765 
766       default:
767 	base = 8;
768 	break;
769       }
770 
771   while (len-- > 0)
772     {
773       c = *p++;
774       if (c == '_')
775 	continue;	/* Ignore embedded '_'.  */
776       if (c >= 'A' && c <= 'Z')
777 	c += 'a' - 'A';
778       if (c != 'l' && c != 'u')
779 	n *= base;
780       if (c >= '0' && c <= '9')
781 	{
782 	  if (found_suffix)
783 	    return ERROR;
784 	  n += i = c - '0';
785 	}
786       else
787 	{
788 	  if (base > 10 && c >= 'a' && c <= 'f')
789 	    {
790 	      if (found_suffix)
791 	        return ERROR;
792 	      n += i = c - 'a' + 10;
793 	    }
794 	  else if (c == 'l' && long_p == 0)
795 	    {
796 	      long_p = 1;
797 	      found_suffix = 1;
798 	    }
799 	  else if (c == 'u' && unsigned_p == 0)
800 	    {
801 	      unsigned_p = 1;
802 	      found_suffix = 1;
803 	    }
804 	  else
805 	    return ERROR;	/* Char not a digit */
806 	}
807       if (i >= base)
808 	return ERROR;		/* Invalid digit in this base.  */
809       /* Portably test for integer overflow.  */
810       if (c != 'l' && c != 'u')
811 	{
812 	  ULONGEST n2 = prevn * base;
813 	  if ((n2 / base != prevn) || (n2 + i < prevn))
814 	    error (_("Numeric constant too large."));
815 	}
816       prevn = n;
817     }
818 
819   /* An integer constant is an int or a long.  An L suffix forces it to
820      be long, and a U suffix forces it to be unsigned.  To figure out
821      whether it fits, we shift it right and see whether anything remains.
822      Note that we can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or
823      more in one operation, because many compilers will warn about such a
824      shift (which always produces a zero result).  To deal with the case
825      where it is we just always shift the value more than once, with fewer
826      bits each time.  */
827   un = (ULONGEST) n >> 2;
828   if (long_p == 0 && (un >> 30) == 0)
829     {
830       high_bit = ((ULONGEST) 1) << 31;
831       signed_type = parse_d_type (ps)->builtin_int;
832       /* For decimal notation, keep the sign of the worked out type.  */
833       if (base == 10 && !unsigned_p)
834 	unsigned_type = parse_d_type (ps)->builtin_long;
835       else
836 	unsigned_type = parse_d_type (ps)->builtin_uint;
837     }
838   else
839     {
840       int shift;
841       if (sizeof (ULONGEST) * HOST_CHAR_BIT < 64)
842 	/* A long long does not fit in a LONGEST.  */
843 	shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
844       else
845 	shift = 63;
846       high_bit = (ULONGEST) 1 << shift;
847       signed_type = parse_d_type (ps)->builtin_long;
848       unsigned_type = parse_d_type (ps)->builtin_ulong;
849     }
850 
851   putithere->typed_val_int.val = n;
852 
853   /* If the high bit of the worked out type is set then this number
854      has to be unsigned_type.  */
855   if (unsigned_p || (n & high_bit))
856     putithere->typed_val_int.type = unsigned_type;
857   else
858     putithere->typed_val_int.type = signed_type;
859 
860   return INTEGER_LITERAL;
861 }
862 
863 /* Temporary obstack used for holding strings.  */
864 static struct obstack tempbuf;
865 static int tempbuf_init;
866 
867 /* Parse a string or character literal from TOKPTR.  The string or
868    character may be wide or unicode.  *OUTPTR is set to just after the
869    end of the literal in the input string.  The resulting token is
870    stored in VALUE.  This returns a token value, either STRING or
871    CHAR, depending on what was parsed.  *HOST_CHARS is set to the
872    number of host characters in the literal.  */
873 
874 static int
875 parse_string_or_char (const char *tokptr, const char **outptr,
876 		      struct typed_stoken *value, int *host_chars)
877 {
878   int quote;
879 
880   /* Build the gdb internal form of the input string in tempbuf.  Note
881      that the buffer is null byte terminated *only* for the
882      convenience of debugging gdb itself and printing the buffer
883      contents when the buffer contains no embedded nulls.  Gdb does
884      not depend upon the buffer being null byte terminated, it uses
885      the length string instead.  This allows gdb to handle C strings
886      (as well as strings in other languages) with embedded null
887      bytes */
888 
889   if (!tempbuf_init)
890     tempbuf_init = 1;
891   else
892     obstack_free (&tempbuf, NULL);
893   obstack_init (&tempbuf);
894 
895   /* Skip the quote.  */
896   quote = *tokptr;
897   ++tokptr;
898 
899   *host_chars = 0;
900 
901   while (*tokptr)
902     {
903       char c = *tokptr;
904       if (c == '\\')
905 	{
906 	   ++tokptr;
907 	   *host_chars += c_parse_escape (&tokptr, &tempbuf);
908 	}
909       else if (c == quote)
910 	break;
911       else
912 	{
913 	  obstack_1grow (&tempbuf, c);
914 	  ++tokptr;
915 	  /* FIXME: this does the wrong thing with multi-byte host
916 	     characters.  We could use mbrlen here, but that would
917 	     make "set host-charset" a bit less useful.  */
918 	  ++*host_chars;
919 	}
920     }
921 
922   if (*tokptr != quote)
923     {
924       if (quote == '"' || quote == '`')
925 	error (_("Unterminated string in expression."));
926       else
927 	error (_("Unmatched single quote."));
928     }
929   ++tokptr;
930 
931   /* FIXME: should instead use own language string_type enum
932      and handle D-specific string suffixes here. */
933   if (quote == '\'')
934     value->type = C_CHAR;
935   else
936     value->type = C_STRING;
937 
938   value->ptr = (char *) obstack_base (&tempbuf);
939   value->length = obstack_object_size (&tempbuf);
940 
941   *outptr = tokptr;
942 
943   return quote == '\'' ? CHARACTER_LITERAL : STRING_LITERAL;
944 }
945 
946 struct token
947 {
948   const char *oper;
949   int token;
950   enum exp_opcode opcode;
951 };
952 
953 static const struct token tokentab3[] =
954   {
955     {"^^=", ASSIGN_MODIFY, BINOP_EXP},
956     {"<<=", ASSIGN_MODIFY, BINOP_LSH},
957     {">>=", ASSIGN_MODIFY, BINOP_RSH},
958   };
959 
960 static const struct token tokentab2[] =
961   {
962     {"+=", ASSIGN_MODIFY, BINOP_ADD},
963     {"-=", ASSIGN_MODIFY, BINOP_SUB},
964     {"*=", ASSIGN_MODIFY, BINOP_MUL},
965     {"/=", ASSIGN_MODIFY, BINOP_DIV},
966     {"%=", ASSIGN_MODIFY, BINOP_REM},
967     {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
968     {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
969     {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
970     {"++", INCREMENT, BINOP_END},
971     {"--", DECREMENT, BINOP_END},
972     {"&&", ANDAND, BINOP_END},
973     {"||", OROR, BINOP_END},
974     {"^^", HATHAT, BINOP_END},
975     {"<<", LSH, BINOP_END},
976     {">>", RSH, BINOP_END},
977     {"==", EQUAL, BINOP_END},
978     {"!=", NOTEQUAL, BINOP_END},
979     {"<=", LEQ, BINOP_END},
980     {">=", GEQ, BINOP_END},
981     {"..", DOTDOT, BINOP_END},
982   };
983 
984 /* Identifier-like tokens.  */
985 static const struct token ident_tokens[] =
986   {
987     {"is", IDENTITY, BINOP_END},
988     {"!is", NOTIDENTITY, BINOP_END},
989 
990     {"cast", CAST_KEYWORD, OP_NULL},
991     {"const", CONST_KEYWORD, OP_NULL},
992     {"immutable", IMMUTABLE_KEYWORD, OP_NULL},
993     {"shared", SHARED_KEYWORD, OP_NULL},
994     {"super", SUPER_KEYWORD, OP_NULL},
995 
996     {"null", NULL_KEYWORD, OP_NULL},
997     {"true", TRUE_KEYWORD, OP_NULL},
998     {"false", FALSE_KEYWORD, OP_NULL},
999 
1000     {"init", INIT_KEYWORD, OP_NULL},
1001     {"sizeof", SIZEOF_KEYWORD, OP_NULL},
1002     {"typeof", TYPEOF_KEYWORD, OP_NULL},
1003     {"typeid", TYPEID_KEYWORD, OP_NULL},
1004 
1005     {"delegate", DELEGATE_KEYWORD, OP_NULL},
1006     {"function", FUNCTION_KEYWORD, OP_NULL},
1007     {"struct", STRUCT_KEYWORD, OP_NULL},
1008     {"union", UNION_KEYWORD, OP_NULL},
1009     {"class", CLASS_KEYWORD, OP_NULL},
1010     {"interface", INTERFACE_KEYWORD, OP_NULL},
1011     {"enum", ENUM_KEYWORD, OP_NULL},
1012     {"template", TEMPLATE_KEYWORD, OP_NULL},
1013   };
1014 
1015 /* This is set if a NAME token appeared at the very end of the input
1016    string, with no whitespace separating the name from the EOF.  This
1017    is used only when parsing to do field name completion.  */
1018 static int saw_name_at_eof;
1019 
1020 /* This is set if the previously-returned token was a structure operator.
1021    This is used only when parsing to do field name completion.  */
1022 static int last_was_structop;
1023 
1024 /* Read one token, getting characters through lexptr.  */
1025 
1026 static int
1027 lex_one_token (struct parser_state *par_state)
1028 {
1029   int c;
1030   int namelen;
1031   unsigned int i;
1032   const char *tokstart;
1033   int saw_structop = last_was_structop;
1034   char *copy;
1035 
1036   last_was_structop = 0;
1037 
1038  retry:
1039 
1040   prev_lexptr = lexptr;
1041 
1042   tokstart = lexptr;
1043   /* See if it is a special token of length 3.  */
1044   for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1045     if (strncmp (tokstart, tokentab3[i].oper, 3) == 0)
1046       {
1047 	lexptr += 3;
1048 	yylval.opcode = tokentab3[i].opcode;
1049 	return tokentab3[i].token;
1050       }
1051 
1052   /* See if it is a special token of length 2.  */
1053   for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1054     if (strncmp (tokstart, tokentab2[i].oper, 2) == 0)
1055       {
1056 	lexptr += 2;
1057 	yylval.opcode = tokentab2[i].opcode;
1058 	return tokentab2[i].token;
1059       }
1060 
1061   switch (c = *tokstart)
1062     {
1063     case 0:
1064       /* If we're parsing for field name completion, and the previous
1065 	 token allows such completion, return a COMPLETE token.
1066 	 Otherwise, we were already scanning the original text, and
1067 	 we're really done.  */
1068       if (saw_name_at_eof)
1069 	{
1070 	  saw_name_at_eof = 0;
1071 	  return COMPLETE;
1072 	}
1073       else if (saw_structop)
1074 	return COMPLETE;
1075       else
1076         return 0;
1077 
1078     case ' ':
1079     case '\t':
1080     case '\n':
1081       lexptr++;
1082       goto retry;
1083 
1084     case '[':
1085     case '(':
1086       paren_depth++;
1087       lexptr++;
1088       return c;
1089 
1090     case ']':
1091     case ')':
1092       if (paren_depth == 0)
1093 	return 0;
1094       paren_depth--;
1095       lexptr++;
1096       return c;
1097 
1098     case ',':
1099       if (comma_terminates && paren_depth == 0)
1100 	return 0;
1101       lexptr++;
1102       return c;
1103 
1104     case '.':
1105       /* Might be a floating point number.  */
1106       if (lexptr[1] < '0' || lexptr[1] > '9')
1107 	{
1108 	  if (parse_completion)
1109 	    last_was_structop = 1;
1110 	  goto symbol;		/* Nope, must be a symbol.  */
1111 	}
1112       /* FALL THRU.  */
1113 
1114     case '0':
1115     case '1':
1116     case '2':
1117     case '3':
1118     case '4':
1119     case '5':
1120     case '6':
1121     case '7':
1122     case '8':
1123     case '9':
1124       {
1125 	/* It's a number.  */
1126 	int got_dot = 0, got_e = 0, toktype;
1127 	const char *p = tokstart;
1128 	int hex = input_radix > 10;
1129 
1130 	if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1131 	  {
1132 	    p += 2;
1133 	    hex = 1;
1134 	  }
1135 
1136 	for (;; ++p)
1137 	  {
1138 	    /* Hex exponents start with 'p', because 'e' is a valid hex
1139 	       digit and thus does not indicate a floating point number
1140 	       when the radix is hex.  */
1141 	    if ((!hex && !got_e && tolower (p[0]) == 'e')
1142 		|| (hex && !got_e && tolower (p[0] == 'p')))
1143 	      got_dot = got_e = 1;
1144 	    /* A '.' always indicates a decimal floating point number
1145 	       regardless of the radix.  If we have a '..' then its the
1146 	       end of the number and the beginning of a slice.  */
1147 	    else if (!got_dot && (p[0] == '.' && p[1] != '.'))
1148 		got_dot = 1;
1149 	    /* This is the sign of the exponent, not the end of the number.  */
1150 	    else if (got_e && (tolower (p[-1]) == 'e' || tolower (p[-1]) == 'p')
1151 		     && (*p == '-' || *p == '+'))
1152 	      continue;
1153 	    /* We will take any letters or digits, ignoring any embedded '_'.
1154 	       parse_number will complain if past the radix, or if L or U are
1155 	       not final.  */
1156 	    else if ((*p < '0' || *p > '9') && (*p != '_')
1157 		     && ((*p < 'a' || *p > 'z') && (*p < 'A' || *p > 'Z')))
1158 	      break;
1159 	  }
1160 
1161 	toktype = parse_number (par_state, tokstart, p - tokstart,
1162 				got_dot|got_e, &yylval);
1163 	if (toktype == ERROR)
1164 	  {
1165 	    char *err_copy = (char *) alloca (p - tokstart + 1);
1166 
1167 	    memcpy (err_copy, tokstart, p - tokstart);
1168 	    err_copy[p - tokstart] = 0;
1169 	    error (_("Invalid number \"%s\"."), err_copy);
1170 	  }
1171 	lexptr = p;
1172 	return toktype;
1173       }
1174 
1175     case '@':
1176       {
1177 	const char *p = &tokstart[1];
1178 	size_t len = strlen ("entry");
1179 
1180 	while (isspace (*p))
1181 	  p++;
1182 	if (strncmp (p, "entry", len) == 0 && !isalnum (p[len])
1183 	    && p[len] != '_')
1184 	  {
1185 	    lexptr = &p[len];
1186 	    return ENTRY;
1187 	  }
1188       }
1189       /* FALLTHRU */
1190     case '+':
1191     case '-':
1192     case '*':
1193     case '/':
1194     case '%':
1195     case '|':
1196     case '&':
1197     case '^':
1198     case '~':
1199     case '!':
1200     case '<':
1201     case '>':
1202     case '?':
1203     case ':':
1204     case '=':
1205     case '{':
1206     case '}':
1207     symbol:
1208       lexptr++;
1209       return c;
1210 
1211     case '\'':
1212     case '"':
1213     case '`':
1214       {
1215 	int host_len;
1216 	int result = parse_string_or_char (tokstart, &lexptr, &yylval.tsval,
1217 					   &host_len);
1218 	if (result == CHARACTER_LITERAL)
1219 	  {
1220 	    if (host_len == 0)
1221 	      error (_("Empty character constant."));
1222 	    else if (host_len > 2 && c == '\'')
1223 	      {
1224 		++tokstart;
1225 		namelen = lexptr - tokstart - 1;
1226 		goto tryname;
1227 	      }
1228 	    else if (host_len > 1)
1229 	      error (_("Invalid character constant."));
1230 	  }
1231 	return result;
1232       }
1233     }
1234 
1235   if (!(c == '_' || c == '$'
1236 	|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1237     /* We must have come across a bad character (e.g. ';').  */
1238     error (_("Invalid character '%c' in expression"), c);
1239 
1240   /* It's a name.  See how long it is.  */
1241   namelen = 0;
1242   for (c = tokstart[namelen];
1243        (c == '_' || c == '$' || (c >= '0' && c <= '9')
1244 	|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));)
1245     c = tokstart[++namelen];
1246 
1247   /* The token "if" terminates the expression and is NOT
1248      removed from the input stream.  */
1249   if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1250     return 0;
1251 
1252   /* For the same reason (breakpoint conditions), "thread N"
1253      terminates the expression.  "thread" could be an identifier, but
1254      an identifier is never followed by a number without intervening
1255      punctuation.  "task" is similar.  Handle abbreviations of these,
1256      similarly to breakpoint.c:find_condition_and_thread.  */
1257   if (namelen >= 1
1258       && (strncmp (tokstart, "thread", namelen) == 0
1259 	  || strncmp (tokstart, "task", namelen) == 0)
1260       && (tokstart[namelen] == ' ' || tokstart[namelen] == '\t'))
1261     {
1262       const char *p = tokstart + namelen + 1;
1263 
1264       while (*p == ' ' || *p == '\t')
1265         p++;
1266       if (*p >= '0' && *p <= '9')
1267         return 0;
1268     }
1269 
1270   lexptr += namelen;
1271 
1272  tryname:
1273 
1274   yylval.sval.ptr = tokstart;
1275   yylval.sval.length = namelen;
1276 
1277   /* Catch specific keywords.  */
1278   copy = copy_name (yylval.sval);
1279   for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++)
1280     if (strcmp (copy, ident_tokens[i].oper) == 0)
1281       {
1282 	/* It is ok to always set this, even though we don't always
1283 	   strictly need to.  */
1284 	yylval.opcode = ident_tokens[i].opcode;
1285 	return ident_tokens[i].token;
1286       }
1287 
1288   if (*tokstart == '$')
1289     return DOLLAR_VARIABLE;
1290 
1291   yylval.tsym.type
1292     = language_lookup_primitive_type (parse_language (par_state),
1293 				      parse_gdbarch (par_state), copy);
1294   if (yylval.tsym.type != NULL)
1295     return TYPENAME;
1296 
1297   /* Input names that aren't symbols but ARE valid hex numbers,
1298      when the input radix permits them, can be names or numbers
1299      depending on the parse.  Note we support radixes > 16 here.  */
1300   if ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1301       || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10))
1302     {
1303       YYSTYPE newlval;	/* Its value is ignored.  */
1304       int hextype = parse_number (par_state, tokstart, namelen, 0, &newlval);
1305       if (hextype == INTEGER_LITERAL)
1306 	return NAME_OR_INT;
1307     }
1308 
1309   if (parse_completion && *lexptr == '\0')
1310     saw_name_at_eof = 1;
1311 
1312   return IDENTIFIER;
1313 }
1314 
1315 /* An object of this type is pushed on a FIFO by the "outer" lexer.  */
1316 struct token_and_value
1317 {
1318   int token;
1319   YYSTYPE value;
1320 };
1321 
1322 
1323 /* A FIFO of tokens that have been read but not yet returned to the
1324    parser.  */
1325 static std::vector<token_and_value> token_fifo;
1326 
1327 /* Non-zero if the lexer should return tokens from the FIFO.  */
1328 static int popping;
1329 
1330 /* Temporary storage for yylex; this holds symbol names as they are
1331    built up.  */
1332 static auto_obstack name_obstack;
1333 
1334 /* Classify an IDENTIFIER token.  The contents of the token are in `yylval'.
1335    Updates yylval and returns the new token type.  BLOCK is the block
1336    in which lookups start; this can be NULL to mean the global scope.  */
1337 
1338 static int
1339 classify_name (struct parser_state *par_state, const struct block *block)
1340 {
1341   struct block_symbol sym;
1342   char *copy;
1343   struct field_of_this_result is_a_field_of_this;
1344 
1345   copy = copy_name (yylval.sval);
1346 
1347   sym = lookup_symbol (copy, block, VAR_DOMAIN, &is_a_field_of_this);
1348   if (sym.symbol && SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF)
1349     {
1350       yylval.tsym.type = SYMBOL_TYPE (sym.symbol);
1351       return TYPENAME;
1352     }
1353   else if (sym.symbol == NULL)
1354     {
1355       /* Look-up first for a module name, then a type.  */
1356       sym = lookup_symbol (copy, block, MODULE_DOMAIN, NULL);
1357       if (sym.symbol == NULL)
1358 	sym = lookup_symbol (copy, block, STRUCT_DOMAIN, NULL);
1359 
1360       if (sym.symbol != NULL)
1361 	{
1362 	  yylval.tsym.type = SYMBOL_TYPE (sym.symbol);
1363 	  return TYPENAME;
1364 	}
1365 
1366       return UNKNOWN_NAME;
1367     }
1368 
1369   return IDENTIFIER;
1370 }
1371 
1372 /* Like classify_name, but used by the inner loop of the lexer, when a
1373    name might have already been seen.  CONTEXT is the context type, or
1374    NULL if this is the first component of a name.  */
1375 
1376 static int
1377 classify_inner_name (struct parser_state *par_state,
1378 		     const struct block *block, struct type *context)
1379 {
1380   struct type *type;
1381   char *copy;
1382 
1383   if (context == NULL)
1384     return classify_name (par_state, block);
1385 
1386   type = check_typedef (context);
1387   if (!type_aggregate_p (type))
1388     return ERROR;
1389 
1390   copy = copy_name (yylval.ssym.stoken);
1391   yylval.ssym.sym = d_lookup_nested_symbol (type, copy, block);
1392 
1393   if (yylval.ssym.sym.symbol == NULL)
1394     return ERROR;
1395 
1396   if (SYMBOL_CLASS (yylval.ssym.sym.symbol) == LOC_TYPEDEF)
1397     {
1398       yylval.tsym.type = SYMBOL_TYPE (yylval.ssym.sym.symbol);
1399       return TYPENAME;
1400     }
1401 
1402   return IDENTIFIER;
1403 }
1404 
1405 /* The outer level of a two-level lexer.  This calls the inner lexer
1406    to return tokens.  It then either returns these tokens, or
1407    aggregates them into a larger token.  This lets us work around a
1408    problem in our parsing approach, where the parser could not
1409    distinguish between qualified names and qualified types at the
1410    right point.  */
1411 
1412 static int
1413 yylex (void)
1414 {
1415   token_and_value current;
1416   int last_was_dot;
1417   struct type *context_type = NULL;
1418   int last_to_examine, next_to_examine, checkpoint;
1419   const struct block *search_block;
1420 
1421   if (popping && !token_fifo.empty ())
1422     goto do_pop;
1423   popping = 0;
1424 
1425   /* Read the first token and decide what to do.  */
1426   current.token = lex_one_token (pstate);
1427   if (current.token != IDENTIFIER && current.token != '.')
1428     return current.token;
1429 
1430   /* Read any sequence of alternating "." and identifier tokens into
1431      the token FIFO.  */
1432   current.value = yylval;
1433   token_fifo.push_back (current);
1434   last_was_dot = current.token == '.';
1435 
1436   while (1)
1437     {
1438       current.token = lex_one_token (pstate);
1439       current.value = yylval;
1440       token_fifo.push_back (current);
1441 
1442       if ((last_was_dot && current.token != IDENTIFIER)
1443 	  || (!last_was_dot && current.token != '.'))
1444 	break;
1445 
1446       last_was_dot = !last_was_dot;
1447     }
1448   popping = 1;
1449 
1450   /* We always read one extra token, so compute the number of tokens
1451      to examine accordingly.  */
1452   last_to_examine = token_fifo.size () - 2;
1453   next_to_examine = 0;
1454 
1455   current = token_fifo[next_to_examine];
1456   ++next_to_examine;
1457 
1458   /* If we are not dealing with a typename, now is the time to find out.  */
1459   if (current.token == IDENTIFIER)
1460     {
1461       yylval = current.value;
1462       current.token = classify_name (pstate, expression_context_block);
1463       current.value = yylval;
1464     }
1465 
1466   /* If the IDENTIFIER is not known, it could be a package symbol,
1467      first try building up a name until we find the qualified module.  */
1468   if (current.token == UNKNOWN_NAME)
1469     {
1470       name_obstack.clear ();
1471       obstack_grow (&name_obstack, current.value.sval.ptr,
1472 		    current.value.sval.length);
1473 
1474       last_was_dot = 0;
1475 
1476       while (next_to_examine <= last_to_examine)
1477 	{
1478 	  token_and_value next;
1479 
1480 	  next = token_fifo[next_to_examine];
1481 	  ++next_to_examine;
1482 
1483 	  if (next.token == IDENTIFIER && last_was_dot)
1484 	    {
1485 	      /* Update the partial name we are constructing.  */
1486               obstack_grow_str (&name_obstack, ".");
1487 	      obstack_grow (&name_obstack, next.value.sval.ptr,
1488 			    next.value.sval.length);
1489 
1490 	      yylval.sval.ptr = (char *) obstack_base (&name_obstack);
1491 	      yylval.sval.length = obstack_object_size (&name_obstack);
1492 
1493 	      current.token = classify_name (pstate, expression_context_block);
1494 	      current.value = yylval;
1495 
1496 	      /* We keep going until we find a TYPENAME.  */
1497 	      if (current.token == TYPENAME)
1498 		{
1499 		  /* Install it as the first token in the FIFO.  */
1500 		  token_fifo[0] = current;
1501 		  token_fifo.erase (token_fifo.begin () + 1,
1502 				    token_fifo.begin () + next_to_examine);
1503 		  break;
1504 		}
1505 	    }
1506 	  else if (next.token == '.' && !last_was_dot)
1507 	    last_was_dot = 1;
1508 	  else
1509 	    {
1510 	      /* We've reached the end of the name.  */
1511 	      break;
1512 	    }
1513 	}
1514 
1515       /* Reset our current token back to the start, if we found nothing
1516 	 this means that we will just jump to do pop.  */
1517       current = token_fifo[0];
1518       next_to_examine = 1;
1519     }
1520   if (current.token != TYPENAME && current.token != '.')
1521     goto do_pop;
1522 
1523   name_obstack.clear ();
1524   checkpoint = 0;
1525   if (current.token == '.')
1526     search_block = NULL;
1527   else
1528     {
1529       gdb_assert (current.token == TYPENAME);
1530       search_block = expression_context_block;
1531       obstack_grow (&name_obstack, current.value.sval.ptr,
1532 		    current.value.sval.length);
1533       context_type = current.value.tsym.type;
1534       checkpoint = 1;
1535     }
1536 
1537   last_was_dot = current.token == '.';
1538 
1539   while (next_to_examine <= last_to_examine)
1540     {
1541       token_and_value next;
1542 
1543       next = token_fifo[next_to_examine];
1544       ++next_to_examine;
1545 
1546       if (next.token == IDENTIFIER && last_was_dot)
1547 	{
1548 	  int classification;
1549 
1550 	  yylval = next.value;
1551 	  classification = classify_inner_name (pstate, search_block,
1552 						context_type);
1553 	  /* We keep going until we either run out of names, or until
1554 	     we have a qualified name which is not a type.  */
1555 	  if (classification != TYPENAME && classification != IDENTIFIER)
1556 	    break;
1557 
1558 	  /* Accept up to this token.  */
1559 	  checkpoint = next_to_examine;
1560 
1561 	  /* Update the partial name we are constructing.  */
1562 	  if (context_type != NULL)
1563 	    {
1564 	      /* We don't want to put a leading "." into the name.  */
1565               obstack_grow_str (&name_obstack, ".");
1566 	    }
1567 	  obstack_grow (&name_obstack, next.value.sval.ptr,
1568 			next.value.sval.length);
1569 
1570 	  yylval.sval.ptr = (char *) obstack_base (&name_obstack);
1571 	  yylval.sval.length = obstack_object_size (&name_obstack);
1572 	  current.value = yylval;
1573 	  current.token = classification;
1574 
1575 	  last_was_dot = 0;
1576 
1577 	  if (classification == IDENTIFIER)
1578 	    break;
1579 
1580 	  context_type = yylval.tsym.type;
1581 	}
1582       else if (next.token == '.' && !last_was_dot)
1583 	last_was_dot = 1;
1584       else
1585 	{
1586 	  /* We've reached the end of the name.  */
1587 	  break;
1588 	}
1589     }
1590 
1591   /* If we have a replacement token, install it as the first token in
1592      the FIFO, and delete the other constituent tokens.  */
1593   if (checkpoint > 0)
1594     {
1595       token_fifo[0] = current;
1596       if (checkpoint > 1)
1597 	token_fifo.erase (token_fifo.begin () + 1,
1598 			  token_fifo.begin () + checkpoint);
1599     }
1600 
1601  do_pop:
1602   current = token_fifo[0];
1603   token_fifo.erase (token_fifo.begin ());
1604   yylval = current.value;
1605   return current.token;
1606 }
1607 
1608 int
1609 d_parse (struct parser_state *par_state)
1610 {
1611   /* Setting up the parser state.  */
1612   scoped_restore pstate_restore = make_scoped_restore (&pstate);
1613   gdb_assert (par_state != NULL);
1614   pstate = par_state;
1615 
1616   scoped_restore restore_yydebug = make_scoped_restore (&yydebug,
1617 							parser_debug);
1618 
1619   /* Initialize some state used by the lexer.  */
1620   last_was_structop = 0;
1621   saw_name_at_eof = 0;
1622 
1623   token_fifo.clear ();
1624   popping = 0;
1625   name_obstack.clear ();
1626 
1627   return yyparse ();
1628 }
1629 
1630 static void
1631 yyerror (const char *msg)
1632 {
1633   if (prev_lexptr)
1634     lexptr = prev_lexptr;
1635 
1636   error (_("A %s in expression, near `%s'."), msg, lexptr);
1637 }
1638 
1639