1 /* Target dependent code for CRIS, for GDB, the GNU debugger. 2 3 Copyright (C) 2001-2019 Free Software Foundation, Inc. 4 5 Contributed by Axis Communications AB. 6 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg. 7 8 This file is part of GDB. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 22 23 #include "defs.h" 24 #include "frame.h" 25 #include "frame-unwind.h" 26 #include "frame-base.h" 27 #include "trad-frame.h" 28 #include "dwarf2-frame.h" 29 #include "symtab.h" 30 #include "inferior.h" 31 #include "gdbtypes.h" 32 #include "gdbcore.h" 33 #include "gdbcmd.h" 34 #include "target.h" 35 #include "value.h" 36 #include "opcode/cris.h" 37 #include "osabi.h" 38 #include "arch-utils.h" 39 #include "regcache.h" 40 41 #include "objfiles.h" 42 43 #include "solib.h" /* Support for shared libraries. */ 44 #include "solib-svr4.h" 45 #include "dis-asm.h" 46 47 #include "cris-tdep.h" 48 49 enum cris_num_regs 50 { 51 /* There are no floating point registers. Used in gdbserver low-linux.c. */ 52 NUM_FREGS = 0, 53 54 /* There are 16 general registers. */ 55 NUM_GENREGS = 16, 56 57 /* There are 16 special registers. */ 58 NUM_SPECREGS = 16, 59 60 /* CRISv32 has a pseudo PC register, not noted here. */ 61 62 /* CRISv32 has 16 support registers. */ 63 NUM_SUPPREGS = 16 64 }; 65 66 /* Register numbers of various important registers. 67 CRIS_FP_REGNUM Contains address of executing stack frame. 68 STR_REGNUM Contains the address of structure return values. 69 RET_REGNUM Contains the return value when shorter than or equal to 32 bits 70 ARG1_REGNUM Contains the first parameter to a function. 71 ARG2_REGNUM Contains the second parameter to a function. 72 ARG3_REGNUM Contains the third parameter to a function. 73 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack. 74 gdbarch_sp_regnum Contains address of top of stack. 75 gdbarch_pc_regnum Contains address of next instruction. 76 SRP_REGNUM Subroutine return pointer register. 77 BRP_REGNUM Breakpoint return pointer register. */ 78 79 enum cris_regnums 80 { 81 /* Enums with respect to the general registers, valid for all 82 CRIS versions. The frame pointer is always in R8. */ 83 CRIS_FP_REGNUM = 8, 84 /* ABI related registers. */ 85 STR_REGNUM = 9, 86 RET_REGNUM = 10, 87 ARG1_REGNUM = 10, 88 ARG2_REGNUM = 11, 89 ARG3_REGNUM = 12, 90 ARG4_REGNUM = 13, 91 92 /* Registers which happen to be common. */ 93 VR_REGNUM = 17, 94 MOF_REGNUM = 23, 95 SRP_REGNUM = 27, 96 97 /* CRISv10 et al. specific registers. */ 98 P0_REGNUM = 16, 99 P4_REGNUM = 20, 100 CCR_REGNUM = 21, 101 P8_REGNUM = 24, 102 IBR_REGNUM = 25, 103 IRP_REGNUM = 26, 104 BAR_REGNUM = 28, 105 DCCR_REGNUM = 29, 106 BRP_REGNUM = 30, 107 USP_REGNUM = 31, 108 109 /* CRISv32 specific registers. */ 110 ACR_REGNUM = 15, 111 BZ_REGNUM = 16, 112 PID_REGNUM = 18, 113 SRS_REGNUM = 19, 114 WZ_REGNUM = 20, 115 EXS_REGNUM = 21, 116 EDA_REGNUM = 22, 117 DZ_REGNUM = 24, 118 EBP_REGNUM = 25, 119 ERP_REGNUM = 26, 120 NRP_REGNUM = 28, 121 CCS_REGNUM = 29, 122 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */ 123 SPC_REGNUM = 31, 124 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */ 125 126 S0_REGNUM = 33, 127 S1_REGNUM = 34, 128 S2_REGNUM = 35, 129 S3_REGNUM = 36, 130 S4_REGNUM = 37, 131 S5_REGNUM = 38, 132 S6_REGNUM = 39, 133 S7_REGNUM = 40, 134 S8_REGNUM = 41, 135 S9_REGNUM = 42, 136 S10_REGNUM = 43, 137 S11_REGNUM = 44, 138 S12_REGNUM = 45, 139 S13_REGNUM = 46, 140 S14_REGNUM = 47, 141 S15_REGNUM = 48, 142 }; 143 144 extern const struct cris_spec_reg cris_spec_regs[]; 145 146 /* CRIS version, set via the user command 'set cris-version'. Affects 147 register names and sizes. */ 148 static unsigned int usr_cmd_cris_version; 149 150 /* Indicates whether to trust the above variable. */ 151 static int usr_cmd_cris_version_valid = 0; 152 153 static const char cris_mode_normal[] = "normal"; 154 static const char cris_mode_guru[] = "guru"; 155 static const char *const cris_modes[] = { 156 cris_mode_normal, 157 cris_mode_guru, 158 0 159 }; 160 161 /* CRIS mode, set via the user command 'set cris-mode'. Affects 162 type of break instruction among other things. */ 163 static const char *usr_cmd_cris_mode = cris_mode_normal; 164 165 /* Whether to make use of Dwarf-2 CFI (default on). */ 166 static int usr_cmd_cris_dwarf2_cfi = 1; 167 168 /* Sigtramp identification code copied from i386-linux-tdep.c. */ 169 170 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */ 171 #define SIGTRAMP_OFFSET0 0 172 #define SIGTRAMP_INSN1 0xe93d /* break 13 */ 173 #define SIGTRAMP_OFFSET1 4 174 175 static const unsigned short sigtramp_code[] = 176 { 177 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */ 178 SIGTRAMP_INSN1 /* break 13 */ 179 }; 180 181 #define SIGTRAMP_LEN (sizeof sigtramp_code) 182 183 /* Note: same length as normal sigtramp code. */ 184 185 static const unsigned short rt_sigtramp_code[] = 186 { 187 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */ 188 SIGTRAMP_INSN1 /* break 13 */ 189 }; 190 191 /* If PC is in a sigtramp routine, return the address of the start of 192 the routine. Otherwise, return 0. */ 193 194 static CORE_ADDR 195 cris_sigtramp_start (struct frame_info *this_frame) 196 { 197 CORE_ADDR pc = get_frame_pc (this_frame); 198 gdb_byte buf[SIGTRAMP_LEN]; 199 200 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN)) 201 return 0; 202 203 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0) 204 { 205 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1) 206 return 0; 207 208 pc -= SIGTRAMP_OFFSET1; 209 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN)) 210 return 0; 211 } 212 213 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0) 214 return 0; 215 216 return pc; 217 } 218 219 /* If PC is in a RT sigtramp routine, return the address of the start of 220 the routine. Otherwise, return 0. */ 221 222 static CORE_ADDR 223 cris_rt_sigtramp_start (struct frame_info *this_frame) 224 { 225 CORE_ADDR pc = get_frame_pc (this_frame); 226 gdb_byte buf[SIGTRAMP_LEN]; 227 228 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN)) 229 return 0; 230 231 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0) 232 { 233 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1) 234 return 0; 235 236 pc -= SIGTRAMP_OFFSET1; 237 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN)) 238 return 0; 239 } 240 241 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0) 242 return 0; 243 244 return pc; 245 } 246 247 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine, 248 return the address of the associated sigcontext structure. */ 249 250 static CORE_ADDR 251 cris_sigcontext_addr (struct frame_info *this_frame) 252 { 253 struct gdbarch *gdbarch = get_frame_arch (this_frame); 254 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 255 CORE_ADDR pc; 256 CORE_ADDR sp; 257 gdb_byte buf[4]; 258 259 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf); 260 sp = extract_unsigned_integer (buf, 4, byte_order); 261 262 /* Look for normal sigtramp frame first. */ 263 pc = cris_sigtramp_start (this_frame); 264 if (pc) 265 { 266 /* struct signal_frame (arch/cris/kernel/signal.c) contains 267 struct sigcontext as its first member, meaning the SP points to 268 it already. */ 269 return sp; 270 } 271 272 pc = cris_rt_sigtramp_start (this_frame); 273 if (pc) 274 { 275 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains 276 a struct ucontext, which in turn contains a struct sigcontext. 277 Magic digging: 278 4 + 4 + 128 to struct ucontext, then 279 4 + 4 + 12 to struct sigcontext. */ 280 return (sp + 156); 281 } 282 283 error (_("Couldn't recognize signal trampoline.")); 284 return 0; 285 } 286 287 struct cris_unwind_cache 288 { 289 /* The previous frame's inner most stack address. Used as this 290 frame ID's stack_addr. */ 291 CORE_ADDR prev_sp; 292 /* The frame's base, optionally used by the high-level debug info. */ 293 CORE_ADDR base; 294 int size; 295 /* How far the SP and r8 (FP) have been offset from the start of 296 the stack frame (as defined by the previous frame's stack 297 pointer). */ 298 LONGEST sp_offset; 299 LONGEST r8_offset; 300 int uses_frame; 301 302 /* From old frame_extra_info struct. */ 303 CORE_ADDR return_pc; 304 int leaf_function; 305 306 /* Table indicating the location of each and every register. */ 307 struct trad_frame_saved_reg *saved_regs; 308 }; 309 310 static struct cris_unwind_cache * 311 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame, 312 void **this_cache) 313 { 314 struct gdbarch *gdbarch = get_frame_arch (this_frame); 315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 317 struct cris_unwind_cache *info; 318 CORE_ADDR addr; 319 gdb_byte buf[4]; 320 int i; 321 322 if ((*this_cache)) 323 return (struct cris_unwind_cache *) (*this_cache); 324 325 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache); 326 (*this_cache) = info; 327 info->saved_regs = trad_frame_alloc_saved_regs (this_frame); 328 329 /* Zero all fields. */ 330 info->prev_sp = 0; 331 info->base = 0; 332 info->size = 0; 333 info->sp_offset = 0; 334 info->r8_offset = 0; 335 info->uses_frame = 0; 336 info->return_pc = 0; 337 info->leaf_function = 0; 338 339 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf); 340 info->base = extract_unsigned_integer (buf, 4, byte_order); 341 342 addr = cris_sigcontext_addr (this_frame); 343 344 /* Layout of the sigcontext struct: 345 struct sigcontext { 346 struct pt_regs regs; 347 unsigned long oldmask; 348 unsigned long usp; 349 }; */ 350 351 if (tdep->cris_version == 10) 352 { 353 /* R0 to R13 are stored in reverse order at offset (2 * 4) in 354 struct pt_regs. */ 355 for (i = 0; i <= 13; i++) 356 info->saved_regs[i].addr = addr + ((15 - i) * 4); 357 358 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4); 359 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4); 360 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4); 361 /* Note: IRP is off by 2 at this point. There's no point in correcting 362 it though since that will mean that the backtrace will show a PC 363 different from what is shown when stopped. */ 364 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4); 365 info->saved_regs[gdbarch_pc_regnum (gdbarch)] 366 = info->saved_regs[IRP_REGNUM]; 367 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4); 368 } 369 else 370 { 371 /* CRISv32. */ 372 /* R0 to R13 are stored in order at offset (1 * 4) in 373 struct pt_regs. */ 374 for (i = 0; i <= 13; i++) 375 info->saved_regs[i].addr = addr + ((i + 1) * 4); 376 377 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4); 378 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4); 379 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4); 380 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4); 381 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4); 382 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4); 383 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4); 384 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4); 385 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4); 386 387 /* FIXME: If ERP is in a delay slot at this point then the PC will 388 be wrong at this point. This problem manifests itself in the 389 sigaltstack.exp test case, which occasionally generates FAILs when 390 the signal is received while in a delay slot. 391 392 This could be solved by a couple of read_memory_unsigned_integer and a 393 trad_frame_set_value. */ 394 info->saved_regs[gdbarch_pc_regnum (gdbarch)] 395 = info->saved_regs[ERP_REGNUM]; 396 397 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr 398 = addr + (25 * 4); 399 } 400 401 return info; 402 } 403 404 static void 405 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache, 406 struct frame_id *this_id) 407 { 408 struct cris_unwind_cache *cache = 409 cris_sigtramp_frame_unwind_cache (this_frame, this_cache); 410 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame)); 411 } 412 413 /* Forward declaration. */ 414 415 static struct value *cris_frame_prev_register (struct frame_info *this_frame, 416 void **this_cache, int regnum); 417 static struct value * 418 cris_sigtramp_frame_prev_register (struct frame_info *this_frame, 419 void **this_cache, int regnum) 420 { 421 /* Make sure we've initialized the cache. */ 422 cris_sigtramp_frame_unwind_cache (this_frame, this_cache); 423 return cris_frame_prev_register (this_frame, this_cache, regnum); 424 } 425 426 static int 427 cris_sigtramp_frame_sniffer (const struct frame_unwind *self, 428 struct frame_info *this_frame, 429 void **this_cache) 430 { 431 if (cris_sigtramp_start (this_frame) 432 || cris_rt_sigtramp_start (this_frame)) 433 return 1; 434 435 return 0; 436 } 437 438 static const struct frame_unwind cris_sigtramp_frame_unwind = 439 { 440 SIGTRAMP_FRAME, 441 default_frame_unwind_stop_reason, 442 cris_sigtramp_frame_this_id, 443 cris_sigtramp_frame_prev_register, 444 NULL, 445 cris_sigtramp_frame_sniffer 446 }; 447 448 static int 449 crisv32_single_step_through_delay (struct gdbarch *gdbarch, 450 struct frame_info *this_frame) 451 { 452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 453 ULONGEST erp; 454 int ret = 0; 455 456 if (tdep->cris_mode == cris_mode_guru) 457 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM); 458 else 459 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM); 460 461 if (erp & 0x1) 462 { 463 /* In delay slot - check if there's a breakpoint at the preceding 464 instruction. */ 465 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1)) 466 ret = 1; 467 } 468 return ret; 469 } 470 471 /* The instruction environment needed to find single-step breakpoints. */ 472 473 typedef 474 struct instruction_environment 475 { 476 unsigned long reg[NUM_GENREGS]; 477 unsigned long preg[NUM_SPECREGS]; 478 unsigned long branch_break_address; 479 unsigned long delay_slot_pc; 480 unsigned long prefix_value; 481 int branch_found; 482 int prefix_found; 483 int invalid; 484 int slot_needed; 485 int delay_slot_pc_active; 486 int xflag_found; 487 int disable_interrupt; 488 enum bfd_endian byte_order; 489 } inst_env_type; 490 491 /* Machine-dependencies in CRIS for opcodes. */ 492 493 /* Instruction sizes. */ 494 enum cris_instruction_sizes 495 { 496 INST_BYTE_SIZE = 0, 497 INST_WORD_SIZE = 1, 498 INST_DWORD_SIZE = 2 499 }; 500 501 /* Addressing modes. */ 502 enum cris_addressing_modes 503 { 504 REGISTER_MODE = 1, 505 INDIRECT_MODE = 2, 506 AUTOINC_MODE = 3 507 }; 508 509 /* Prefix addressing modes. */ 510 enum cris_prefix_addressing_modes 511 { 512 PREFIX_INDEX_MODE = 2, 513 PREFIX_ASSIGN_MODE = 3, 514 515 /* Handle immediate byte offset addressing mode prefix format. */ 516 PREFIX_OFFSET_MODE = 2 517 }; 518 519 /* Masks for opcodes. */ 520 enum cris_opcode_masks 521 { 522 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1, 523 SIGNED_EXTEND_BIT_MASK = 0x2, 524 SIGNED_BYTE_MASK = 0x80, 525 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00, 526 SIGNED_WORD_MASK = 0x8000, 527 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000, 528 SIGNED_DWORD_MASK = 0x80000000, 529 SIGNED_QUICK_VALUE_MASK = 0x20, 530 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0 531 }; 532 533 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction: 534 Bit 15 - 12 Operand2 535 11 - 10 Mode 536 9 - 6 Opcode 537 5 - 4 Size 538 3 - 0 Operand1 */ 539 540 static int 541 cris_get_operand2 (unsigned short insn) 542 { 543 return ((insn & 0xF000) >> 12); 544 } 545 546 static int 547 cris_get_mode (unsigned short insn) 548 { 549 return ((insn & 0x0C00) >> 10); 550 } 551 552 static int 553 cris_get_opcode (unsigned short insn) 554 { 555 return ((insn & 0x03C0) >> 6); 556 } 557 558 static int 559 cris_get_size (unsigned short insn) 560 { 561 return ((insn & 0x0030) >> 4); 562 } 563 564 static int 565 cris_get_operand1 (unsigned short insn) 566 { 567 return (insn & 0x000F); 568 } 569 570 /* Additional functions in order to handle opcodes. */ 571 572 static int 573 cris_get_quick_value (unsigned short insn) 574 { 575 return (insn & 0x003F); 576 } 577 578 static int 579 cris_get_bdap_quick_offset (unsigned short insn) 580 { 581 return (insn & 0x00FF); 582 } 583 584 static int 585 cris_get_branch_short_offset (unsigned short insn) 586 { 587 return (insn & 0x00FF); 588 } 589 590 static int 591 cris_get_asr_shift_steps (unsigned long value) 592 { 593 return (value & 0x3F); 594 } 595 596 static int 597 cris_get_clear_size (unsigned short insn) 598 { 599 return ((insn) & 0xC000); 600 } 601 602 static int 603 cris_is_signed_extend_bit_on (unsigned short insn) 604 { 605 return (((insn) & 0x20) == 0x20); 606 } 607 608 static int 609 cris_is_xflag_bit_on (unsigned short insn) 610 { 611 return (((insn) & 0x1000) == 0x1000); 612 } 613 614 static void 615 cris_set_size_to_dword (unsigned short *insn) 616 { 617 *insn &= 0xFFCF; 618 *insn |= 0x20; 619 } 620 621 static signed char 622 cris_get_signed_offset (unsigned short insn) 623 { 624 return ((signed char) (insn & 0x00FF)); 625 } 626 627 /* Calls an op function given the op-type, working on the insn and the 628 inst_env. */ 629 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short, 630 inst_env_type *); 631 632 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info, 633 struct gdbarch_list *); 634 635 static void cris_dump_tdep (struct gdbarch *, struct ui_file *); 636 637 static void set_cris_version (const char *ignore_args, int from_tty, 638 struct cmd_list_element *c); 639 640 static void set_cris_mode (const char *ignore_args, int from_tty, 641 struct cmd_list_element *c); 642 643 static void set_cris_dwarf2_cfi (const char *ignore_args, int from_tty, 644 struct cmd_list_element *c); 645 646 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc, 647 struct frame_info *this_frame, 648 struct cris_unwind_cache *info); 649 650 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc, 651 struct frame_info *this_frame, 652 struct cris_unwind_cache *info); 653 654 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch, 655 struct frame_info *next_frame); 656 657 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch, 658 struct frame_info *next_frame); 659 660 /* When arguments must be pushed onto the stack, they go on in reverse 661 order. The below implements a FILO (stack) to do this. 662 Copied from d10v-tdep.c. */ 663 664 struct stack_item 665 { 666 int len; 667 struct stack_item *prev; 668 gdb_byte *data; 669 }; 670 671 static struct stack_item * 672 push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len) 673 { 674 struct stack_item *si = XNEW (struct stack_item); 675 si->data = (gdb_byte *) xmalloc (len); 676 si->len = len; 677 si->prev = prev; 678 memcpy (si->data, contents, len); 679 return si; 680 } 681 682 static struct stack_item * 683 pop_stack_item (struct stack_item *si) 684 { 685 struct stack_item *dead = si; 686 si = si->prev; 687 xfree (dead->data); 688 xfree (dead); 689 return si; 690 } 691 692 /* Put here the code to store, into fi->saved_regs, the addresses of 693 the saved registers of frame described by FRAME_INFO. This 694 includes special registers such as pc and fp saved in special ways 695 in the stack frame. sp is even more special: the address we return 696 for it IS the sp for the next frame. */ 697 698 static struct cris_unwind_cache * 699 cris_frame_unwind_cache (struct frame_info *this_frame, 700 void **this_prologue_cache) 701 { 702 struct gdbarch *gdbarch = get_frame_arch (this_frame); 703 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 704 struct cris_unwind_cache *info; 705 706 if ((*this_prologue_cache)) 707 return (struct cris_unwind_cache *) (*this_prologue_cache); 708 709 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache); 710 (*this_prologue_cache) = info; 711 info->saved_regs = trad_frame_alloc_saved_regs (this_frame); 712 713 /* Zero all fields. */ 714 info->prev_sp = 0; 715 info->base = 0; 716 info->size = 0; 717 info->sp_offset = 0; 718 info->r8_offset = 0; 719 info->uses_frame = 0; 720 info->return_pc = 0; 721 info->leaf_function = 0; 722 723 /* Prologue analysis does the rest... */ 724 if (tdep->cris_version == 32) 725 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info); 726 else 727 cris_scan_prologue (get_frame_func (this_frame), this_frame, info); 728 729 return info; 730 } 731 732 /* Given a GDB frame, determine the address of the calling function's 733 frame. This will be used to create a new GDB frame struct. */ 734 735 static void 736 cris_frame_this_id (struct frame_info *this_frame, 737 void **this_prologue_cache, 738 struct frame_id *this_id) 739 { 740 struct cris_unwind_cache *info 741 = cris_frame_unwind_cache (this_frame, this_prologue_cache); 742 CORE_ADDR base; 743 CORE_ADDR func; 744 struct frame_id id; 745 746 /* The FUNC is easy. */ 747 func = get_frame_func (this_frame); 748 749 /* Hopefully the prologue analysis either correctly determined the 750 frame's base (which is the SP from the previous frame), or set 751 that base to "NULL". */ 752 base = info->prev_sp; 753 if (base == 0) 754 return; 755 756 id = frame_id_build (base, func); 757 758 (*this_id) = id; 759 } 760 761 static struct value * 762 cris_frame_prev_register (struct frame_info *this_frame, 763 void **this_prologue_cache, int regnum) 764 { 765 struct cris_unwind_cache *info 766 = cris_frame_unwind_cache (this_frame, this_prologue_cache); 767 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); 768 } 769 770 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy 771 frame. The frame ID's base needs to match the TOS value saved by 772 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ 773 774 static struct frame_id 775 cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) 776 { 777 CORE_ADDR sp; 778 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch)); 779 return frame_id_build (sp, get_frame_pc (this_frame)); 780 } 781 782 static CORE_ADDR 783 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) 784 { 785 /* Align to the size of an instruction (so that they can safely be 786 pushed onto the stack). */ 787 return sp & ~3; 788 } 789 790 static CORE_ADDR 791 cris_push_dummy_code (struct gdbarch *gdbarch, 792 CORE_ADDR sp, CORE_ADDR funaddr, 793 struct value **args, int nargs, 794 struct type *value_type, 795 CORE_ADDR *real_pc, CORE_ADDR *bp_addr, 796 struct regcache *regcache) 797 { 798 /* Allocate space sufficient for a breakpoint. */ 799 sp = (sp - 4) & ~3; 800 /* Store the address of that breakpoint */ 801 *bp_addr = sp; 802 /* CRIS always starts the call at the callee's entry point. */ 803 *real_pc = funaddr; 804 return sp; 805 } 806 807 static CORE_ADDR 808 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 809 struct regcache *regcache, CORE_ADDR bp_addr, 810 int nargs, struct value **args, CORE_ADDR sp, 811 function_call_return_method return_method, 812 CORE_ADDR struct_addr) 813 { 814 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 815 int argreg; 816 int argnum; 817 818 struct stack_item *si = NULL; 819 820 /* Push the return address. */ 821 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr); 822 823 /* Are we returning a value using a structure return or a normal value 824 return? struct_addr is the address of the reserved space for the return 825 structure to be written on the stack. */ 826 if (return_method == return_method_struct) 827 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr); 828 829 /* Now load as many as possible of the first arguments into registers, 830 and push the rest onto the stack. */ 831 argreg = ARG1_REGNUM; 832 833 for (argnum = 0; argnum < nargs; argnum++) 834 { 835 int len; 836 const gdb_byte *val; 837 int reg_demand; 838 int i; 839 840 len = TYPE_LENGTH (value_type (args[argnum])); 841 val = value_contents (args[argnum]); 842 843 /* How may registers worth of storage do we need for this argument? */ 844 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0); 845 846 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM)) 847 { 848 /* Data passed by value. Fits in available register(s). */ 849 for (i = 0; i < reg_demand; i++) 850 { 851 regcache->cooked_write (argreg, val); 852 argreg++; 853 val += 4; 854 } 855 } 856 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM) 857 { 858 /* Data passed by value. Does not fit in available register(s). 859 Use the register(s) first, then the stack. */ 860 for (i = 0; i < reg_demand; i++) 861 { 862 if (argreg <= ARG4_REGNUM) 863 { 864 regcache->cooked_write (argreg, val); 865 argreg++; 866 val += 4; 867 } 868 else 869 { 870 /* Push item for later so that pushed arguments 871 come in the right order. */ 872 si = push_stack_item (si, val, 4); 873 val += 4; 874 } 875 } 876 } 877 else if (len > (2 * 4)) 878 { 879 /* Data passed by reference. Push copy of data onto stack 880 and pass pointer to this copy as argument. */ 881 sp = (sp - len) & ~3; 882 write_memory (sp, val, len); 883 884 if (argreg <= ARG4_REGNUM) 885 { 886 regcache_cooked_write_unsigned (regcache, argreg, sp); 887 argreg++; 888 } 889 else 890 { 891 gdb_byte buf[4]; 892 store_unsigned_integer (buf, 4, byte_order, sp); 893 si = push_stack_item (si, buf, 4); 894 } 895 } 896 else 897 { 898 /* Data passed by value. No available registers. Put it on 899 the stack. */ 900 si = push_stack_item (si, val, len); 901 } 902 } 903 904 while (si) 905 { 906 /* fp_arg must be word-aligned (i.e., don't += len) to match 907 the function prologue. */ 908 sp = (sp - si->len) & ~3; 909 write_memory (sp, si->data, si->len); 910 si = pop_stack_item (si); 911 } 912 913 /* Finally, update the SP register. */ 914 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp); 915 916 return sp; 917 } 918 919 static const struct frame_unwind cris_frame_unwind = 920 { 921 NORMAL_FRAME, 922 default_frame_unwind_stop_reason, 923 cris_frame_this_id, 924 cris_frame_prev_register, 925 NULL, 926 default_frame_sniffer 927 }; 928 929 static CORE_ADDR 930 cris_frame_base_address (struct frame_info *this_frame, void **this_cache) 931 { 932 struct cris_unwind_cache *info 933 = cris_frame_unwind_cache (this_frame, this_cache); 934 return info->base; 935 } 936 937 static const struct frame_base cris_frame_base = 938 { 939 &cris_frame_unwind, 940 cris_frame_base_address, 941 cris_frame_base_address, 942 cris_frame_base_address 943 }; 944 945 /* Frames information. The definition of the struct frame_info is 946 947 CORE_ADDR frame 948 CORE_ADDR pc 949 enum frame_type type; 950 CORE_ADDR return_pc 951 int leaf_function 952 953 If the compilation option -fno-omit-frame-pointer is present the 954 variable frame will be set to the content of R8 which is the frame 955 pointer register. 956 957 The variable pc contains the address where execution is performed 958 in the present frame. The innermost frame contains the current content 959 of the register PC. All other frames contain the content of the 960 register PC in the next frame. 961 962 The variable `type' indicates the frame's type: normal, SIGTRAMP 963 (associated with a signal handler), dummy (associated with a dummy 964 frame). 965 966 The variable return_pc contains the address where execution should be 967 resumed when the present frame has finished, the return address. 968 969 The variable leaf_function is 1 if the return address is in the register 970 SRP, and 0 if it is on the stack. 971 972 Prologue instructions C-code. 973 The prologue may consist of (-fno-omit-frame-pointer) 974 1) 2) 975 push srp 976 push r8 push r8 977 move.d sp,r8 move.d sp,r8 978 subq X,sp subq X,sp 979 movem rY,[sp] movem rY,[sp] 980 move.S rZ,[r8-U] move.S rZ,[r8-U] 981 982 where 1 is a non-terminal function, and 2 is a leaf-function. 983 984 Note that this assumption is extremely brittle, and will break at the 985 slightest change in GCC's prologue. 986 987 If local variables are declared or register contents are saved on stack 988 the subq-instruction will be present with X as the number of bytes 989 needed for storage. The reshuffle with respect to r8 may be performed 990 with any size S (b, w, d) and any of the general registers Z={0..13}. 991 The offset U should be representable by a signed 8-bit value in all cases. 992 Thus, the prefix word is assumed to be immediate byte offset mode followed 993 by another word containing the instruction. 994 995 Degenerate cases: 996 3) 997 push r8 998 move.d sp,r8 999 move.d r8,sp 1000 pop r8 1001 1002 Prologue instructions C++-code. 1003 Case 1) and 2) in the C-code may be followed by 1004 1005 move.d r10,rS ; this 1006 move.d r11,rT ; P1 1007 move.d r12,rU ; P2 1008 move.d r13,rV ; P3 1009 move.S [r8+U],rZ ; P4 1010 1011 if any of the call parameters are stored. The host expects these 1012 instructions to be executed in order to get the call parameters right. */ 1013 1014 /* Examine the prologue of a function. The variable ip is the address of 1015 the first instruction of the prologue. The variable limit is the address 1016 of the first instruction after the prologue. The variable fi contains the 1017 information in struct frame_info. The variable frameless_p controls whether 1018 the entire prologue is examined (0) or just enough instructions to 1019 determine that it is a prologue (1). */ 1020 1021 static CORE_ADDR 1022 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame, 1023 struct cris_unwind_cache *info) 1024 { 1025 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1026 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1027 1028 /* Present instruction. */ 1029 unsigned short insn; 1030 1031 /* Next instruction, lookahead. */ 1032 unsigned short insn_next; 1033 int regno; 1034 1035 /* Number of byte on stack used for local variables and movem. */ 1036 int val; 1037 1038 /* Highest register number in a movem. */ 1039 int regsave; 1040 1041 /* move.d r<source_register>,rS */ 1042 short source_register; 1043 1044 /* Scan limit. */ 1045 int limit; 1046 1047 /* This frame is with respect to a leaf until a push srp is found. */ 1048 if (info) 1049 { 1050 info->leaf_function = 1; 1051 } 1052 1053 /* Assume nothing on stack. */ 1054 val = 0; 1055 regsave = -1; 1056 1057 /* If we were called without a this_frame, that means we were called 1058 from cris_skip_prologue which already tried to find the end of the 1059 prologue through the symbol information. 64 instructions past current 1060 pc is arbitrarily chosen, but at least it means we'll stop eventually. */ 1061 limit = this_frame ? get_frame_pc (this_frame) : pc + 64; 1062 1063 /* Find the prologue instructions. */ 1064 while (pc > 0 && pc < limit) 1065 { 1066 insn = read_memory_unsigned_integer (pc, 2, byte_order); 1067 pc += 2; 1068 if (insn == 0xE1FC) 1069 { 1070 /* push <reg> 32 bit instruction. */ 1071 insn_next = read_memory_unsigned_integer (pc, 2, byte_order); 1072 pc += 2; 1073 regno = cris_get_operand2 (insn_next); 1074 if (info) 1075 { 1076 info->sp_offset += 4; 1077 } 1078 /* This check, meant to recognize srp, used to be regno == 1079 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */ 1080 if (insn_next == 0xBE7E) 1081 { 1082 if (info) 1083 { 1084 info->leaf_function = 0; 1085 } 1086 } 1087 else if (insn_next == 0x8FEE) 1088 { 1089 /* push $r8 */ 1090 if (info) 1091 { 1092 info->r8_offset = info->sp_offset; 1093 } 1094 } 1095 } 1096 else if (insn == 0x866E) 1097 { 1098 /* move.d sp,r8 */ 1099 if (info) 1100 { 1101 info->uses_frame = 1; 1102 } 1103 continue; 1104 } 1105 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch) 1106 && cris_get_mode (insn) == 0x0000 1107 && cris_get_opcode (insn) == 0x000A) 1108 { 1109 /* subq <val>,sp */ 1110 if (info) 1111 { 1112 info->sp_offset += cris_get_quick_value (insn); 1113 } 1114 } 1115 else if (cris_get_mode (insn) == 0x0002 1116 && cris_get_opcode (insn) == 0x000F 1117 && cris_get_size (insn) == 0x0003 1118 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch)) 1119 { 1120 /* movem r<regsave>,[sp] */ 1121 regsave = cris_get_operand2 (insn); 1122 } 1123 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch) 1124 && ((insn & 0x0F00) >> 8) == 0x0001 1125 && (cris_get_signed_offset (insn) < 0)) 1126 { 1127 /* Immediate byte offset addressing prefix word with sp as base 1128 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val> 1129 is between 64 and 128. 1130 movem r<regsave>,[sp=sp-<val>] */ 1131 if (info) 1132 { 1133 info->sp_offset += -cris_get_signed_offset (insn); 1134 } 1135 insn_next = read_memory_unsigned_integer (pc, 2, byte_order); 1136 pc += 2; 1137 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE 1138 && cris_get_opcode (insn_next) == 0x000F 1139 && cris_get_size (insn_next) == 0x0003 1140 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum 1141 (gdbarch)) 1142 { 1143 regsave = cris_get_operand2 (insn_next); 1144 } 1145 else 1146 { 1147 /* The prologue ended before the limit was reached. */ 1148 pc -= 4; 1149 break; 1150 } 1151 } 1152 else if (cris_get_mode (insn) == 0x0001 1153 && cris_get_opcode (insn) == 0x0009 1154 && cris_get_size (insn) == 0x0002) 1155 { 1156 /* move.d r<10..13>,r<0..15> */ 1157 source_register = cris_get_operand1 (insn); 1158 1159 /* FIXME? In the glibc solibs, the prologue might contain something 1160 like (this example taken from relocate_doit): 1161 move.d $pc,$r0 1162 sub.d 0xfffef426,$r0 1163 which isn't covered by the source_register check below. Question 1164 is whether to add a check for this combo, or make better use of 1165 the limit variable instead. */ 1166 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM) 1167 { 1168 /* The prologue ended before the limit was reached. */ 1169 pc -= 2; 1170 break; 1171 } 1172 } 1173 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM 1174 /* The size is a fixed-size. */ 1175 && ((insn & 0x0F00) >> 8) == 0x0001 1176 /* A negative offset. */ 1177 && (cris_get_signed_offset (insn) < 0)) 1178 { 1179 /* move.S rZ,[r8-U] (?) */ 1180 insn_next = read_memory_unsigned_integer (pc, 2, byte_order); 1181 pc += 2; 1182 regno = cris_get_operand2 (insn_next); 1183 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch)) 1184 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE 1185 && cris_get_opcode (insn_next) == 0x000F) 1186 { 1187 /* move.S rZ,[r8-U] */ 1188 continue; 1189 } 1190 else 1191 { 1192 /* The prologue ended before the limit was reached. */ 1193 pc -= 4; 1194 break; 1195 } 1196 } 1197 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM 1198 /* The size is a fixed-size. */ 1199 && ((insn & 0x0F00) >> 8) == 0x0001 1200 /* A positive offset. */ 1201 && (cris_get_signed_offset (insn) > 0)) 1202 { 1203 /* move.S [r8+U],rZ (?) */ 1204 insn_next = read_memory_unsigned_integer (pc, 2, byte_order); 1205 pc += 2; 1206 regno = cris_get_operand2 (insn_next); 1207 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch)) 1208 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE 1209 && cris_get_opcode (insn_next) == 0x0009 1210 && cris_get_operand1 (insn_next) == regno) 1211 { 1212 /* move.S [r8+U],rZ */ 1213 continue; 1214 } 1215 else 1216 { 1217 /* The prologue ended before the limit was reached. */ 1218 pc -= 4; 1219 break; 1220 } 1221 } 1222 else 1223 { 1224 /* The prologue ended before the limit was reached. */ 1225 pc -= 2; 1226 break; 1227 } 1228 } 1229 1230 /* We only want to know the end of the prologue when this_frame and info 1231 are NULL (called from cris_skip_prologue i.e.). */ 1232 if (this_frame == NULL && info == NULL) 1233 { 1234 return pc; 1235 } 1236 1237 info->size = info->sp_offset; 1238 1239 /* Compute the previous frame's stack pointer (which is also the 1240 frame's ID's stack address), and this frame's base pointer. */ 1241 if (info->uses_frame) 1242 { 1243 ULONGEST this_base; 1244 /* The SP was moved to the FP. This indicates that a new frame 1245 was created. Get THIS frame's FP value by unwinding it from 1246 the next frame. */ 1247 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM); 1248 info->base = this_base; 1249 info->saved_regs[CRIS_FP_REGNUM].addr = info->base; 1250 1251 /* The FP points at the last saved register. Adjust the FP back 1252 to before the first saved register giving the SP. */ 1253 info->prev_sp = info->base + info->r8_offset; 1254 } 1255 else 1256 { 1257 ULONGEST this_base; 1258 /* Assume that the FP is this frame's SP but with that pushed 1259 stack space added back. */ 1260 this_base = get_frame_register_unsigned (this_frame, 1261 gdbarch_sp_regnum (gdbarch)); 1262 info->base = this_base; 1263 info->prev_sp = info->base + info->size; 1264 } 1265 1266 /* Calculate the addresses for the saved registers on the stack. */ 1267 /* FIXME: The address calculation should really be done on the fly while 1268 we're analyzing the prologue (we only hold one regsave value as it is 1269 now). */ 1270 val = info->sp_offset; 1271 1272 for (regno = regsave; regno >= 0; regno--) 1273 { 1274 info->saved_regs[regno].addr = info->base + info->r8_offset - val; 1275 val -= 4; 1276 } 1277 1278 /* The previous frame's SP needed to be computed. Save the computed 1279 value. */ 1280 trad_frame_set_value (info->saved_regs, 1281 gdbarch_sp_regnum (gdbarch), info->prev_sp); 1282 1283 if (!info->leaf_function) 1284 { 1285 /* SRP saved on the stack. But where? */ 1286 if (info->r8_offset == 0) 1287 { 1288 /* R8 not pushed yet. */ 1289 info->saved_regs[SRP_REGNUM].addr = info->base; 1290 } 1291 else 1292 { 1293 /* R8 pushed, but SP may or may not be moved to R8 yet. */ 1294 info->saved_regs[SRP_REGNUM].addr = info->base + 4; 1295 } 1296 } 1297 1298 /* The PC is found in SRP (the actual register or located on the stack). */ 1299 info->saved_regs[gdbarch_pc_regnum (gdbarch)] 1300 = info->saved_regs[SRP_REGNUM]; 1301 1302 return pc; 1303 } 1304 1305 static CORE_ADDR 1306 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame, 1307 struct cris_unwind_cache *info) 1308 { 1309 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1310 ULONGEST this_base; 1311 1312 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not 1313 meant to be a full-fledged prologue scanner. It is only needed for 1314 the cases where we end up in code always lacking DWARF-2 CFI, notably: 1315 1316 * PLT stubs (library calls) 1317 * call dummys 1318 * signal trampolines 1319 1320 For those cases, it is assumed that there is no actual prologue; that 1321 the stack pointer is not adjusted, and (as a consequence) the return 1322 address is not pushed onto the stack. */ 1323 1324 /* We only want to know the end of the prologue when this_frame and info 1325 are NULL (called from cris_skip_prologue i.e.). */ 1326 if (this_frame == NULL && info == NULL) 1327 { 1328 return pc; 1329 } 1330 1331 /* The SP is assumed to be unaltered. */ 1332 this_base = get_frame_register_unsigned (this_frame, 1333 gdbarch_sp_regnum (gdbarch)); 1334 info->base = this_base; 1335 info->prev_sp = this_base; 1336 1337 /* The PC is assumed to be found in SRP. */ 1338 info->saved_regs[gdbarch_pc_regnum (gdbarch)] 1339 = info->saved_regs[SRP_REGNUM]; 1340 1341 return pc; 1342 } 1343 1344 /* Advance pc beyond any function entry prologue instructions at pc 1345 to reach some "real" code. */ 1346 1347 /* Given a PC value corresponding to the start of a function, return the PC 1348 of the first instruction after the function prologue. */ 1349 1350 static CORE_ADDR 1351 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 1352 { 1353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 1354 CORE_ADDR func_addr, func_end; 1355 struct symtab_and_line sal; 1356 CORE_ADDR pc_after_prologue; 1357 1358 /* If we have line debugging information, then the end of the prologue 1359 should the first assembly instruction of the first source line. */ 1360 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 1361 { 1362 sal = find_pc_line (func_addr, 0); 1363 if (sal.end > 0 && sal.end < func_end) 1364 return sal.end; 1365 } 1366 1367 if (tdep->cris_version == 32) 1368 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL); 1369 else 1370 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL); 1371 1372 return pc_after_prologue; 1373 } 1374 1375 static CORE_ADDR 1376 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 1377 { 1378 ULONGEST pc; 1379 pc = frame_unwind_register_unsigned (next_frame, 1380 gdbarch_pc_regnum (gdbarch)); 1381 return pc; 1382 } 1383 1384 static CORE_ADDR 1385 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) 1386 { 1387 ULONGEST sp; 1388 sp = frame_unwind_register_unsigned (next_frame, 1389 gdbarch_sp_regnum (gdbarch)); 1390 return sp; 1391 } 1392 1393 /* Implement the breakpoint_kind_from_pc gdbarch method. */ 1394 1395 static int 1396 cris_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) 1397 { 1398 return 2; 1399 } 1400 1401 /* Implement the sw_breakpoint_from_kind gdbarch method. */ 1402 1403 static const gdb_byte * 1404 cris_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) 1405 { 1406 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 1407 static unsigned char break8_insn[] = {0x38, 0xe9}; 1408 static unsigned char break15_insn[] = {0x3f, 0xe9}; 1409 1410 *size = kind; 1411 1412 if (tdep->cris_mode == cris_mode_guru) 1413 return break15_insn; 1414 else 1415 return break8_insn; 1416 } 1417 1418 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version, 1419 0 otherwise. */ 1420 1421 static int 1422 cris_spec_reg_applicable (struct gdbarch *gdbarch, 1423 struct cris_spec_reg spec_reg) 1424 { 1425 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 1426 unsigned int version = tdep->cris_version; 1427 1428 switch (spec_reg.applicable_version) 1429 { 1430 case cris_ver_version_all: 1431 return 1; 1432 case cris_ver_warning: 1433 /* Indeterminate/obsolete. */ 1434 return 0; 1435 case cris_ver_v0_3: 1436 return in_inclusive_range (version, 0U, 3U); 1437 case cris_ver_v3p: 1438 return (version >= 3); 1439 case cris_ver_v8: 1440 return in_inclusive_range (version, 8U, 9U); 1441 case cris_ver_v8p: 1442 return (version >= 8); 1443 case cris_ver_v0_10: 1444 return in_inclusive_range (version, 0U, 10U); 1445 case cris_ver_v3_10: 1446 return in_inclusive_range (version, 3U, 10U); 1447 case cris_ver_v8_10: 1448 return in_inclusive_range (version, 8U, 10U); 1449 case cris_ver_v10: 1450 return (version == 10); 1451 case cris_ver_v10p: 1452 return (version >= 10); 1453 case cris_ver_v32p: 1454 return (version >= 32); 1455 default: 1456 /* Invalid cris version. */ 1457 return 0; 1458 } 1459 } 1460 1461 /* Returns the register size in unit byte. Returns 0 for an unimplemented 1462 register, -1 for an invalid register. */ 1463 1464 static int 1465 cris_register_size (struct gdbarch *gdbarch, int regno) 1466 { 1467 int i; 1468 int spec_regno; 1469 1470 if (regno >= 0 && regno < NUM_GENREGS) 1471 { 1472 /* General registers (R0 - R15) are 32 bits. */ 1473 return 4; 1474 } 1475 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS)) 1476 { 1477 /* Special register (R16 - R31). cris_spec_regs is zero-based. 1478 Adjust regno accordingly. */ 1479 spec_regno = regno - NUM_GENREGS; 1480 1481 for (i = 0; cris_spec_regs[i].name != NULL; i++) 1482 { 1483 if (cris_spec_regs[i].number == spec_regno 1484 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i])) 1485 /* Go with the first applicable register. */ 1486 return cris_spec_regs[i].reg_size; 1487 } 1488 /* Special register not applicable to this CRIS version. */ 1489 return 0; 1490 } 1491 else if (regno >= gdbarch_pc_regnum (gdbarch) 1492 && regno < gdbarch_num_regs (gdbarch)) 1493 { 1494 /* This will apply to CRISv32 only where there are additional registers 1495 after the special registers (pseudo PC and support registers). */ 1496 return 4; 1497 } 1498 1499 1500 return -1; 1501 } 1502 1503 /* Nonzero if regno should not be fetched from the target. This is the case 1504 for unimplemented (size 0) and non-existant registers. */ 1505 1506 static int 1507 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno) 1508 { 1509 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch)) 1510 || (cris_register_size (gdbarch, regno) == 0)); 1511 } 1512 1513 /* Nonzero if regno should not be written to the target, for various 1514 reasons. */ 1515 1516 static int 1517 cris_cannot_store_register (struct gdbarch *gdbarch, int regno) 1518 { 1519 /* There are three kinds of registers we refuse to write to. 1520 1. Those that not implemented. 1521 2. Those that are read-only (depends on the processor mode). 1522 3. Those registers to which a write has no effect. */ 1523 1524 if (regno < 0 1525 || regno >= gdbarch_num_regs (gdbarch) 1526 || cris_register_size (gdbarch, regno) == 0) 1527 /* Not implemented. */ 1528 return 1; 1529 1530 else if (regno == VR_REGNUM) 1531 /* Read-only. */ 1532 return 1; 1533 1534 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM) 1535 /* Writing has no effect. */ 1536 return 1; 1537 1538 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug 1539 agent decide whether they are writable. */ 1540 1541 return 0; 1542 } 1543 1544 /* Nonzero if regno should not be fetched from the target. This is the case 1545 for unimplemented (size 0) and non-existant registers. */ 1546 1547 static int 1548 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno) 1549 { 1550 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch)) 1551 || (cris_register_size (gdbarch, regno) == 0)); 1552 } 1553 1554 /* Nonzero if regno should not be written to the target, for various 1555 reasons. */ 1556 1557 static int 1558 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno) 1559 { 1560 /* There are three kinds of registers we refuse to write to. 1561 1. Those that not implemented. 1562 2. Those that are read-only (depends on the processor mode). 1563 3. Those registers to which a write has no effect. */ 1564 1565 if (regno < 0 1566 || regno >= gdbarch_num_regs (gdbarch) 1567 || cris_register_size (gdbarch, regno) == 0) 1568 /* Not implemented. */ 1569 return 1; 1570 1571 else if (regno == VR_REGNUM) 1572 /* Read-only. */ 1573 return 1; 1574 1575 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM) 1576 /* Writing has no effect. */ 1577 return 1; 1578 1579 /* Many special registers are read-only in user mode. Let the debug 1580 agent decide whether they are writable. */ 1581 1582 return 0; 1583 } 1584 1585 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type 1586 of data in register regno. */ 1587 1588 static struct type * 1589 cris_register_type (struct gdbarch *gdbarch, int regno) 1590 { 1591 if (regno == gdbarch_pc_regnum (gdbarch)) 1592 return builtin_type (gdbarch)->builtin_func_ptr; 1593 else if (regno == gdbarch_sp_regnum (gdbarch) 1594 || regno == CRIS_FP_REGNUM) 1595 return builtin_type (gdbarch)->builtin_data_ptr; 1596 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch)) 1597 || (regno >= MOF_REGNUM && regno <= USP_REGNUM)) 1598 /* Note: R8 taken care of previous clause. */ 1599 return builtin_type (gdbarch)->builtin_uint32; 1600 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM) 1601 return builtin_type (gdbarch)->builtin_uint16; 1602 else if (regno >= P0_REGNUM && regno <= VR_REGNUM) 1603 return builtin_type (gdbarch)->builtin_uint8; 1604 else 1605 /* Invalid (unimplemented) register. */ 1606 return builtin_type (gdbarch)->builtin_int0; 1607 } 1608 1609 static struct type * 1610 crisv32_register_type (struct gdbarch *gdbarch, int regno) 1611 { 1612 if (regno == gdbarch_pc_regnum (gdbarch)) 1613 return builtin_type (gdbarch)->builtin_func_ptr; 1614 else if (regno == gdbarch_sp_regnum (gdbarch) 1615 || regno == CRIS_FP_REGNUM) 1616 return builtin_type (gdbarch)->builtin_data_ptr; 1617 else if ((regno >= 0 && regno <= ACR_REGNUM) 1618 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM) 1619 || (regno == PID_REGNUM) 1620 || (regno >= S0_REGNUM && regno <= S15_REGNUM)) 1621 /* Note: R8 and SP taken care of by previous clause. */ 1622 return builtin_type (gdbarch)->builtin_uint32; 1623 else if (regno == WZ_REGNUM) 1624 return builtin_type (gdbarch)->builtin_uint16; 1625 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM) 1626 return builtin_type (gdbarch)->builtin_uint8; 1627 else 1628 { 1629 /* Invalid (unimplemented) register. Should not happen as there are 1630 no unimplemented CRISv32 registers. */ 1631 warning (_("crisv32_register_type: unknown regno %d"), regno); 1632 return builtin_type (gdbarch)->builtin_int0; 1633 } 1634 } 1635 1636 /* Stores a function return value of type type, where valbuf is the address 1637 of the value to be stored. */ 1638 1639 /* In the CRIS ABI, R10 and R11 are used to store return values. */ 1640 1641 static void 1642 cris_store_return_value (struct type *type, struct regcache *regcache, 1643 const gdb_byte *valbuf) 1644 { 1645 struct gdbarch *gdbarch = regcache->arch (); 1646 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1647 ULONGEST val; 1648 int len = TYPE_LENGTH (type); 1649 1650 if (len <= 4) 1651 { 1652 /* Put the return value in R10. */ 1653 val = extract_unsigned_integer (valbuf, len, byte_order); 1654 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val); 1655 } 1656 else if (len <= 8) 1657 { 1658 /* Put the return value in R10 and R11. */ 1659 val = extract_unsigned_integer (valbuf, 4, byte_order); 1660 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val); 1661 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order); 1662 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val); 1663 } 1664 else 1665 error (_("cris_store_return_value: type length too large.")); 1666 } 1667 1668 /* Return the name of register regno as a string. Return NULL for an 1669 invalid or unimplemented register. */ 1670 1671 static const char * 1672 cris_special_register_name (struct gdbarch *gdbarch, int regno) 1673 { 1674 int spec_regno; 1675 int i; 1676 1677 /* Special register (R16 - R31). cris_spec_regs is zero-based. 1678 Adjust regno accordingly. */ 1679 spec_regno = regno - NUM_GENREGS; 1680 1681 /* Assume nothing about the layout of the cris_spec_regs struct 1682 when searching. */ 1683 for (i = 0; cris_spec_regs[i].name != NULL; i++) 1684 { 1685 if (cris_spec_regs[i].number == spec_regno 1686 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i])) 1687 /* Go with the first applicable register. */ 1688 return cris_spec_regs[i].name; 1689 } 1690 /* Special register not applicable to this CRIS version. */ 1691 return NULL; 1692 } 1693 1694 static const char * 1695 cris_register_name (struct gdbarch *gdbarch, int regno) 1696 { 1697 static const char *cris_genreg_names[] = 1698 { "r0", "r1", "r2", "r3", \ 1699 "r4", "r5", "r6", "r7", \ 1700 "r8", "r9", "r10", "r11", \ 1701 "r12", "r13", "sp", "pc" }; 1702 1703 if (regno >= 0 && regno < NUM_GENREGS) 1704 { 1705 /* General register. */ 1706 return cris_genreg_names[regno]; 1707 } 1708 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch)) 1709 { 1710 return cris_special_register_name (gdbarch, regno); 1711 } 1712 else 1713 { 1714 /* Invalid register. */ 1715 return NULL; 1716 } 1717 } 1718 1719 static const char * 1720 crisv32_register_name (struct gdbarch *gdbarch, int regno) 1721 { 1722 static const char *crisv32_genreg_names[] = 1723 { "r0", "r1", "r2", "r3", \ 1724 "r4", "r5", "r6", "r7", \ 1725 "r8", "r9", "r10", "r11", \ 1726 "r12", "r13", "sp", "acr" 1727 }; 1728 1729 static const char *crisv32_sreg_names[] = 1730 { "s0", "s1", "s2", "s3", \ 1731 "s4", "s5", "s6", "s7", \ 1732 "s8", "s9", "s10", "s11", \ 1733 "s12", "s13", "s14", "s15" 1734 }; 1735 1736 if (regno >= 0 && regno < NUM_GENREGS) 1737 { 1738 /* General register. */ 1739 return crisv32_genreg_names[regno]; 1740 } 1741 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS)) 1742 { 1743 return cris_special_register_name (gdbarch, regno); 1744 } 1745 else if (regno == gdbarch_pc_regnum (gdbarch)) 1746 { 1747 return "pc"; 1748 } 1749 else if (regno >= S0_REGNUM && regno <= S15_REGNUM) 1750 { 1751 return crisv32_sreg_names[regno - S0_REGNUM]; 1752 } 1753 else 1754 { 1755 /* Invalid register. */ 1756 return NULL; 1757 } 1758 } 1759 1760 /* Convert DWARF register number REG to the appropriate register 1761 number used by GDB. */ 1762 1763 static int 1764 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg) 1765 { 1766 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register 1767 numbering, MOF is 18). 1768 Adapted from gcc/config/cris/cris.h. */ 1769 static int cris_dwarf_regmap[] = { 1770 0, 1, 2, 3, 1771 4, 5, 6, 7, 1772 8, 9, 10, 11, 1773 12, 13, 14, 15, 1774 27, -1, -1, -1, 1775 -1, -1, -1, 23, 1776 -1, -1, -1, 27, 1777 -1, -1, -1, -1 1778 }; 1779 int regnum = -1; 1780 1781 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap)) 1782 regnum = cris_dwarf_regmap[reg]; 1783 1784 return regnum; 1785 } 1786 1787 /* DWARF-2 frame support. */ 1788 1789 static void 1790 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, 1791 struct dwarf2_frame_state_reg *reg, 1792 struct frame_info *this_frame) 1793 { 1794 /* The return address column. */ 1795 if (regnum == gdbarch_pc_regnum (gdbarch)) 1796 reg->how = DWARF2_FRAME_REG_RA; 1797 1798 /* The call frame address. */ 1799 else if (regnum == gdbarch_sp_regnum (gdbarch)) 1800 reg->how = DWARF2_FRAME_REG_CFA; 1801 } 1802 1803 /* Extract from an array regbuf containing the raw register state a function 1804 return value of type type, and copy that, in virtual format, into 1805 valbuf. */ 1806 1807 /* In the CRIS ABI, R10 and R11 are used to store return values. */ 1808 1809 static void 1810 cris_extract_return_value (struct type *type, struct regcache *regcache, 1811 gdb_byte *valbuf) 1812 { 1813 struct gdbarch *gdbarch = regcache->arch (); 1814 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1815 ULONGEST val; 1816 int len = TYPE_LENGTH (type); 1817 1818 if (len <= 4) 1819 { 1820 /* Get the return value from R10. */ 1821 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val); 1822 store_unsigned_integer (valbuf, len, byte_order, val); 1823 } 1824 else if (len <= 8) 1825 { 1826 /* Get the return value from R10 and R11. */ 1827 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val); 1828 store_unsigned_integer (valbuf, 4, byte_order, val); 1829 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val); 1830 store_unsigned_integer (valbuf + 4, len - 4, byte_order, val); 1831 } 1832 else 1833 error (_("cris_extract_return_value: type length too large")); 1834 } 1835 1836 /* Handle the CRIS return value convention. */ 1837 1838 static enum return_value_convention 1839 cris_return_value (struct gdbarch *gdbarch, struct value *function, 1840 struct type *type, struct regcache *regcache, 1841 gdb_byte *readbuf, const gdb_byte *writebuf) 1842 { 1843 if (TYPE_CODE (type) == TYPE_CODE_STRUCT 1844 || TYPE_CODE (type) == TYPE_CODE_UNION 1845 || TYPE_LENGTH (type) > 8) 1846 /* Structs, unions, and anything larger than 8 bytes (2 registers) 1847 goes on the stack. */ 1848 return RETURN_VALUE_STRUCT_CONVENTION; 1849 1850 if (readbuf) 1851 cris_extract_return_value (type, regcache, readbuf); 1852 if (writebuf) 1853 cris_store_return_value (type, regcache, writebuf); 1854 1855 return RETURN_VALUE_REGISTER_CONVENTION; 1856 } 1857 1858 /* Calculates a value that measures how good inst_args constraints an 1859 instruction. It stems from cris_constraint, found in cris-dis.c. */ 1860 1861 static int 1862 constraint (unsigned int insn, const char *inst_args, 1863 inst_env_type *inst_env) 1864 { 1865 int retval = 0; 1866 int tmp, i; 1867 1868 const gdb_byte *s = (const gdb_byte *) inst_args; 1869 1870 for (; *s; s++) 1871 switch (*s) 1872 { 1873 case 'm': 1874 if ((insn & 0x30) == 0x30) 1875 return -1; 1876 break; 1877 1878 case 'S': 1879 /* A prefix operand. */ 1880 if (inst_env->prefix_found) 1881 break; 1882 else 1883 return -1; 1884 1885 case 'B': 1886 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for 1887 valid "push" size. In case of special register, it may be != 4. */ 1888 if (inst_env->prefix_found) 1889 break; 1890 else 1891 return -1; 1892 1893 case 'D': 1894 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF)); 1895 if (!retval) 1896 return -1; 1897 else 1898 retval += 4; 1899 break; 1900 1901 case 'P': 1902 tmp = (insn >> 0xC) & 0xF; 1903 1904 for (i = 0; cris_spec_regs[i].name != NULL; i++) 1905 { 1906 /* Since we match four bits, we will give a value of 1907 4 - 1 = 3 in a match. If there is a corresponding 1908 exact match of a special register in another pattern, it 1909 will get a value of 4, which will be higher. This should 1910 be correct in that an exact pattern would match better that 1911 a general pattern. 1912 Note that there is a reason for not returning zero; the 1913 pattern for "clear" is partly matched in the bit-pattern 1914 (the two lower bits must be zero), while the bit-pattern 1915 for a move from a special register is matched in the 1916 register constraint. 1917 This also means we will will have a race condition if 1918 there is a partly match in three bits in the bit pattern. */ 1919 if (tmp == cris_spec_regs[i].number) 1920 { 1921 retval += 3; 1922 break; 1923 } 1924 } 1925 1926 if (cris_spec_regs[i].name == NULL) 1927 return -1; 1928 break; 1929 } 1930 return retval; 1931 } 1932 1933 /* Returns the number of bits set in the variable value. */ 1934 1935 static int 1936 number_of_bits (unsigned int value) 1937 { 1938 int number_of_bits = 0; 1939 1940 while (value != 0) 1941 { 1942 number_of_bits += 1; 1943 value &= (value - 1); 1944 } 1945 return number_of_bits; 1946 } 1947 1948 /* Finds the address that should contain the single step breakpoint(s). 1949 It stems from code in cris-dis.c. */ 1950 1951 static int 1952 find_cris_op (unsigned short insn, inst_env_type *inst_env) 1953 { 1954 int i; 1955 int max_level_of_match = -1; 1956 int max_matched = -1; 1957 int level_of_match; 1958 1959 for (i = 0; cris_opcodes[i].name != NULL; i++) 1960 { 1961 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match) 1962 && ((cris_opcodes[i].lose & insn) == 0) 1963 /* Only CRISv10 instructions, please. */ 1964 && (cris_opcodes[i].applicable_version != cris_ver_v32p)) 1965 { 1966 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env); 1967 if (level_of_match >= 0) 1968 { 1969 level_of_match += 1970 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose); 1971 if (level_of_match > max_level_of_match) 1972 { 1973 max_matched = i; 1974 max_level_of_match = level_of_match; 1975 if (level_of_match == 16) 1976 { 1977 /* All bits matched, cannot find better. */ 1978 break; 1979 } 1980 } 1981 } 1982 } 1983 } 1984 return max_matched; 1985 } 1986 1987 /* Attempts to find single-step breakpoints. Returns -1 on failure which is 1988 actually an internal error. */ 1989 1990 static int 1991 find_step_target (struct regcache *regcache, inst_env_type *inst_env) 1992 { 1993 int i; 1994 int offset; 1995 unsigned short insn; 1996 struct gdbarch *gdbarch = regcache->arch (); 1997 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1998 1999 /* Create a local register image and set the initial state. */ 2000 for (i = 0; i < NUM_GENREGS; i++) 2001 { 2002 inst_env->reg[i] = 2003 (unsigned long) regcache_raw_get_unsigned (regcache, i); 2004 } 2005 offset = NUM_GENREGS; 2006 for (i = 0; i < NUM_SPECREGS; i++) 2007 { 2008 inst_env->preg[i] = 2009 (unsigned long) regcache_raw_get_unsigned (regcache, offset + i); 2010 } 2011 inst_env->branch_found = 0; 2012 inst_env->slot_needed = 0; 2013 inst_env->delay_slot_pc_active = 0; 2014 inst_env->prefix_found = 0; 2015 inst_env->invalid = 0; 2016 inst_env->xflag_found = 0; 2017 inst_env->disable_interrupt = 0; 2018 inst_env->byte_order = byte_order; 2019 2020 /* Look for a step target. */ 2021 do 2022 { 2023 /* Read an instruction from the client. */ 2024 insn = read_memory_unsigned_integer 2025 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order); 2026 2027 /* If the instruction is not in a delay slot the new content of the 2028 PC is [PC] + 2. If the instruction is in a delay slot it is not 2029 that simple. Since a instruction in a delay slot cannot change 2030 the content of the PC, it does not matter what value PC will have. 2031 Just make sure it is a valid instruction. */ 2032 if (!inst_env->delay_slot_pc_active) 2033 { 2034 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2; 2035 } 2036 else 2037 { 2038 inst_env->delay_slot_pc_active = 0; 2039 inst_env->reg[gdbarch_pc_regnum (gdbarch)] 2040 = inst_env->delay_slot_pc; 2041 } 2042 /* Analyse the present instruction. */ 2043 i = find_cris_op (insn, inst_env); 2044 if (i == -1) 2045 { 2046 inst_env->invalid = 1; 2047 } 2048 else 2049 { 2050 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env); 2051 } 2052 } while (!inst_env->invalid 2053 && (inst_env->prefix_found || inst_env->xflag_found 2054 || inst_env->slot_needed)); 2055 return i; 2056 } 2057 2058 /* There is no hardware single-step support. The function find_step_target 2059 digs through the opcodes in order to find all possible targets. 2060 Either one ordinary target or two targets for branches may be found. */ 2061 2062 static std::vector<CORE_ADDR> 2063 cris_software_single_step (struct regcache *regcache) 2064 { 2065 struct gdbarch *gdbarch = regcache->arch (); 2066 inst_env_type inst_env; 2067 std::vector<CORE_ADDR> next_pcs; 2068 2069 /* Analyse the present instruction environment and insert 2070 breakpoints. */ 2071 int status = find_step_target (regcache, &inst_env); 2072 if (status == -1) 2073 { 2074 /* Could not find a target. Things are likely to go downhill 2075 from here. */ 2076 warning (_("CRIS software single step could not find a step target.")); 2077 } 2078 else 2079 { 2080 /* Insert at most two breakpoints. One for the next PC content 2081 and possibly another one for a branch, jump, etc. */ 2082 CORE_ADDR next_pc 2083 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)]; 2084 2085 next_pcs.push_back (next_pc); 2086 if (inst_env.branch_found 2087 && (CORE_ADDR) inst_env.branch_break_address != next_pc) 2088 { 2089 CORE_ADDR branch_target_address 2090 = (CORE_ADDR) inst_env.branch_break_address; 2091 2092 next_pcs.push_back (branch_target_address); 2093 } 2094 } 2095 2096 return next_pcs; 2097 } 2098 2099 /* Calculates the prefix value for quick offset addressing mode. */ 2100 2101 static void 2102 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env) 2103 { 2104 /* It's invalid to be in a delay slot. You can't have a prefix to this 2105 instruction (not 100% sure). */ 2106 if (inst_env->slot_needed || inst_env->prefix_found) 2107 { 2108 inst_env->invalid = 1; 2109 return; 2110 } 2111 2112 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)]; 2113 inst_env->prefix_value += cris_get_bdap_quick_offset (inst); 2114 2115 /* A prefix doesn't change the xflag_found. But the rest of the flags 2116 need updating. */ 2117 inst_env->slot_needed = 0; 2118 inst_env->prefix_found = 1; 2119 } 2120 2121 /* Updates the autoincrement register. The size of the increment is derived 2122 from the size of the operation. The PC is always kept aligned on even 2123 word addresses. */ 2124 2125 static void 2126 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env) 2127 { 2128 if (size == INST_BYTE_SIZE) 2129 { 2130 inst_env->reg[cris_get_operand1 (inst)] += 1; 2131 2132 /* The PC must be word aligned, so increase the PC with one 2133 word even if the size is byte. */ 2134 if (cris_get_operand1 (inst) == REG_PC) 2135 { 2136 inst_env->reg[REG_PC] += 1; 2137 } 2138 } 2139 else if (size == INST_WORD_SIZE) 2140 { 2141 inst_env->reg[cris_get_operand1 (inst)] += 2; 2142 } 2143 else if (size == INST_DWORD_SIZE) 2144 { 2145 inst_env->reg[cris_get_operand1 (inst)] += 4; 2146 } 2147 else 2148 { 2149 /* Invalid size. */ 2150 inst_env->invalid = 1; 2151 } 2152 } 2153 2154 /* Just a forward declaration. */ 2155 2156 static unsigned long get_data_from_address (unsigned short *inst, 2157 CORE_ADDR address, 2158 enum bfd_endian byte_order); 2159 2160 /* Calculates the prefix value for the general case of offset addressing 2161 mode. */ 2162 2163 static void 2164 bdap_prefix (unsigned short inst, inst_env_type *inst_env) 2165 { 2166 /* It's invalid to be in a delay slot. */ 2167 if (inst_env->slot_needed || inst_env->prefix_found) 2168 { 2169 inst_env->invalid = 1; 2170 return; 2171 } 2172 2173 /* The calculation of prefix_value used to be after process_autoincrement, 2174 but that fails for an instruction such as jsr [$r0+12] which is encoded 2175 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it 2176 mustn't be incremented until we have read it and what it points at. */ 2177 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)]; 2178 2179 /* The offset is an indirection of the contents of the operand1 register. */ 2180 inst_env->prefix_value += 2181 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)], 2182 inst_env->byte_order); 2183 2184 if (cris_get_mode (inst) == AUTOINC_MODE) 2185 { 2186 process_autoincrement (cris_get_size (inst), inst, inst_env); 2187 } 2188 2189 /* A prefix doesn't change the xflag_found. But the rest of the flags 2190 need updating. */ 2191 inst_env->slot_needed = 0; 2192 inst_env->prefix_found = 1; 2193 } 2194 2195 /* Calculates the prefix value for the index addressing mode. */ 2196 2197 static void 2198 biap_prefix (unsigned short inst, inst_env_type *inst_env) 2199 { 2200 /* It's invalid to be in a delay slot. I can't see that it's possible to 2201 have a prefix to this instruction. So I will treat this as invalid. */ 2202 if (inst_env->slot_needed || inst_env->prefix_found) 2203 { 2204 inst_env->invalid = 1; 2205 return; 2206 } 2207 2208 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)]; 2209 2210 /* The offset is the operand2 value shifted the size of the instruction 2211 to the left. */ 2212 inst_env->prefix_value += 2213 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst); 2214 2215 /* If the PC is operand1 (base) the address used is the address after 2216 the main instruction, i.e. address + 2 (the PC is already compensated 2217 for the prefix operation). */ 2218 if (cris_get_operand1 (inst) == REG_PC) 2219 { 2220 inst_env->prefix_value += 2; 2221 } 2222 2223 /* A prefix doesn't change the xflag_found. But the rest of the flags 2224 need updating. */ 2225 inst_env->slot_needed = 0; 2226 inst_env->xflag_found = 0; 2227 inst_env->prefix_found = 1; 2228 } 2229 2230 /* Calculates the prefix value for the double indirect addressing mode. */ 2231 2232 static void 2233 dip_prefix (unsigned short inst, inst_env_type *inst_env) 2234 { 2235 2236 CORE_ADDR address; 2237 2238 /* It's invalid to be in a delay slot. */ 2239 if (inst_env->slot_needed || inst_env->prefix_found) 2240 { 2241 inst_env->invalid = 1; 2242 return; 2243 } 2244 2245 /* The prefix value is one dereference of the contents of the operand1 2246 register. */ 2247 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)]; 2248 inst_env->prefix_value 2249 = read_memory_unsigned_integer (address, 4, inst_env->byte_order); 2250 2251 /* Check if the mode is autoincrement. */ 2252 if (cris_get_mode (inst) == AUTOINC_MODE) 2253 { 2254 inst_env->reg[cris_get_operand1 (inst)] += 4; 2255 } 2256 2257 /* A prefix doesn't change the xflag_found. But the rest of the flags 2258 need updating. */ 2259 inst_env->slot_needed = 0; 2260 inst_env->xflag_found = 0; 2261 inst_env->prefix_found = 1; 2262 } 2263 2264 /* Finds the destination for a branch with 8-bits offset. */ 2265 2266 static void 2267 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env) 2268 { 2269 2270 short offset; 2271 2272 /* If we have a prefix or are in a delay slot it's bad. */ 2273 if (inst_env->slot_needed || inst_env->prefix_found) 2274 { 2275 inst_env->invalid = 1; 2276 return; 2277 } 2278 2279 /* We have a branch, find out where the branch will land. */ 2280 offset = cris_get_branch_short_offset (inst); 2281 2282 /* Check if the offset is signed. */ 2283 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK) 2284 { 2285 offset |= 0xFF00; 2286 } 2287 2288 /* The offset ends with the sign bit, set it to zero. The address 2289 should always be word aligned. */ 2290 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK; 2291 2292 inst_env->branch_found = 1; 2293 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset; 2294 2295 inst_env->slot_needed = 1; 2296 inst_env->prefix_found = 0; 2297 inst_env->xflag_found = 0; 2298 inst_env->disable_interrupt = 1; 2299 } 2300 2301 /* Finds the destination for a branch with 16-bits offset. */ 2302 2303 static void 2304 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env) 2305 { 2306 short offset; 2307 2308 /* If we have a prefix or is in a delay slot it's bad. */ 2309 if (inst_env->slot_needed || inst_env->prefix_found) 2310 { 2311 inst_env->invalid = 1; 2312 return; 2313 } 2314 2315 /* We have a branch, find out the offset for the branch. */ 2316 offset = read_memory_integer (inst_env->reg[REG_PC], 2, 2317 inst_env->byte_order); 2318 2319 /* The instruction is one word longer than normal, so add one word 2320 to the PC. */ 2321 inst_env->reg[REG_PC] += 2; 2322 2323 inst_env->branch_found = 1; 2324 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset; 2325 2326 2327 inst_env->slot_needed = 1; 2328 inst_env->prefix_found = 0; 2329 inst_env->xflag_found = 0; 2330 inst_env->disable_interrupt = 1; 2331 } 2332 2333 /* Handles the ABS instruction. */ 2334 2335 static void 2336 abs_op (unsigned short inst, inst_env_type *inst_env) 2337 { 2338 2339 long value; 2340 2341 /* ABS can't have a prefix, so it's bad if it does. */ 2342 if (inst_env->prefix_found) 2343 { 2344 inst_env->invalid = 1; 2345 return; 2346 } 2347 2348 /* Check if the operation affects the PC. */ 2349 if (cris_get_operand2 (inst) == REG_PC) 2350 { 2351 2352 /* It's invalid to change to the PC if we are in a delay slot. */ 2353 if (inst_env->slot_needed) 2354 { 2355 inst_env->invalid = 1; 2356 return; 2357 } 2358 2359 value = (long) inst_env->reg[REG_PC]; 2360 2361 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */ 2362 if (value != SIGNED_DWORD_MASK) 2363 { 2364 value = -value; 2365 inst_env->reg[REG_PC] = (long) value; 2366 } 2367 } 2368 2369 inst_env->slot_needed = 0; 2370 inst_env->prefix_found = 0; 2371 inst_env->xflag_found = 0; 2372 inst_env->disable_interrupt = 0; 2373 } 2374 2375 /* Handles the ADDI instruction. */ 2376 2377 static void 2378 addi_op (unsigned short inst, inst_env_type *inst_env) 2379 { 2380 /* It's invalid to have the PC as base register. And ADDI can't have 2381 a prefix. */ 2382 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC)) 2383 { 2384 inst_env->invalid = 1; 2385 return; 2386 } 2387 2388 inst_env->slot_needed = 0; 2389 inst_env->prefix_found = 0; 2390 inst_env->xflag_found = 0; 2391 inst_env->disable_interrupt = 0; 2392 } 2393 2394 /* Handles the ASR instruction. */ 2395 2396 static void 2397 asr_op (unsigned short inst, inst_env_type *inst_env) 2398 { 2399 int shift_steps; 2400 unsigned long value; 2401 unsigned long signed_extend_mask = 0; 2402 2403 /* ASR can't have a prefix, so check that it doesn't. */ 2404 if (inst_env->prefix_found) 2405 { 2406 inst_env->invalid = 1; 2407 return; 2408 } 2409 2410 /* Check if the PC is the target register. */ 2411 if (cris_get_operand2 (inst) == REG_PC) 2412 { 2413 /* It's invalid to change the PC in a delay slot. */ 2414 if (inst_env->slot_needed) 2415 { 2416 inst_env->invalid = 1; 2417 return; 2418 } 2419 /* Get the number of bits to shift. */ 2420 shift_steps 2421 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]); 2422 value = inst_env->reg[REG_PC]; 2423 2424 /* Find out how many bits the operation should apply to. */ 2425 if (cris_get_size (inst) == INST_BYTE_SIZE) 2426 { 2427 if (value & SIGNED_BYTE_MASK) 2428 { 2429 signed_extend_mask = 0xFF; 2430 signed_extend_mask = signed_extend_mask >> shift_steps; 2431 signed_extend_mask = ~signed_extend_mask; 2432 } 2433 value = value >> shift_steps; 2434 value |= signed_extend_mask; 2435 value &= 0xFF; 2436 inst_env->reg[REG_PC] &= 0xFFFFFF00; 2437 inst_env->reg[REG_PC] |= value; 2438 } 2439 else if (cris_get_size (inst) == INST_WORD_SIZE) 2440 { 2441 if (value & SIGNED_WORD_MASK) 2442 { 2443 signed_extend_mask = 0xFFFF; 2444 signed_extend_mask = signed_extend_mask >> shift_steps; 2445 signed_extend_mask = ~signed_extend_mask; 2446 } 2447 value = value >> shift_steps; 2448 value |= signed_extend_mask; 2449 value &= 0xFFFF; 2450 inst_env->reg[REG_PC] &= 0xFFFF0000; 2451 inst_env->reg[REG_PC] |= value; 2452 } 2453 else if (cris_get_size (inst) == INST_DWORD_SIZE) 2454 { 2455 if (value & SIGNED_DWORD_MASK) 2456 { 2457 signed_extend_mask = 0xFFFFFFFF; 2458 signed_extend_mask = signed_extend_mask >> shift_steps; 2459 signed_extend_mask = ~signed_extend_mask; 2460 } 2461 value = value >> shift_steps; 2462 value |= signed_extend_mask; 2463 inst_env->reg[REG_PC] = value; 2464 } 2465 } 2466 inst_env->slot_needed = 0; 2467 inst_env->prefix_found = 0; 2468 inst_env->xflag_found = 0; 2469 inst_env->disable_interrupt = 0; 2470 } 2471 2472 /* Handles the ASRQ instruction. */ 2473 2474 static void 2475 asrq_op (unsigned short inst, inst_env_type *inst_env) 2476 { 2477 2478 int shift_steps; 2479 unsigned long value; 2480 unsigned long signed_extend_mask = 0; 2481 2482 /* ASRQ can't have a prefix, so check that it doesn't. */ 2483 if (inst_env->prefix_found) 2484 { 2485 inst_env->invalid = 1; 2486 return; 2487 } 2488 2489 /* Check if the PC is the target register. */ 2490 if (cris_get_operand2 (inst) == REG_PC) 2491 { 2492 2493 /* It's invalid to change the PC in a delay slot. */ 2494 if (inst_env->slot_needed) 2495 { 2496 inst_env->invalid = 1; 2497 return; 2498 } 2499 /* The shift size is given as a 5 bit quick value, i.e. we don't 2500 want the sign bit of the quick value. */ 2501 shift_steps = cris_get_asr_shift_steps (inst); 2502 value = inst_env->reg[REG_PC]; 2503 if (value & SIGNED_DWORD_MASK) 2504 { 2505 signed_extend_mask = 0xFFFFFFFF; 2506 signed_extend_mask = signed_extend_mask >> shift_steps; 2507 signed_extend_mask = ~signed_extend_mask; 2508 } 2509 value = value >> shift_steps; 2510 value |= signed_extend_mask; 2511 inst_env->reg[REG_PC] = value; 2512 } 2513 inst_env->slot_needed = 0; 2514 inst_env->prefix_found = 0; 2515 inst_env->xflag_found = 0; 2516 inst_env->disable_interrupt = 0; 2517 } 2518 2519 /* Handles the AX, EI and SETF instruction. */ 2520 2521 static void 2522 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env) 2523 { 2524 if (inst_env->prefix_found) 2525 { 2526 inst_env->invalid = 1; 2527 return; 2528 } 2529 /* Check if the instruction is setting the X flag. */ 2530 if (cris_is_xflag_bit_on (inst)) 2531 { 2532 inst_env->xflag_found = 1; 2533 } 2534 else 2535 { 2536 inst_env->xflag_found = 0; 2537 } 2538 inst_env->slot_needed = 0; 2539 inst_env->prefix_found = 0; 2540 inst_env->disable_interrupt = 1; 2541 } 2542 2543 /* Checks if the instruction is in assign mode. If so, it updates the assign 2544 register. Note that check_assign assumes that the caller has checked that 2545 there is a prefix to this instruction. The mode check depends on this. */ 2546 2547 static void 2548 check_assign (unsigned short inst, inst_env_type *inst_env) 2549 { 2550 /* Check if it's an assign addressing mode. */ 2551 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE) 2552 { 2553 /* Assign the prefix value to operand 1. */ 2554 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value; 2555 } 2556 } 2557 2558 /* Handles the 2-operand BOUND instruction. */ 2559 2560 static void 2561 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env) 2562 { 2563 /* It's invalid to have the PC as the index operand. */ 2564 if (cris_get_operand2 (inst) == REG_PC) 2565 { 2566 inst_env->invalid = 1; 2567 return; 2568 } 2569 /* Check if we have a prefix. */ 2570 if (inst_env->prefix_found) 2571 { 2572 check_assign (inst, inst_env); 2573 } 2574 /* Check if this is an autoincrement mode. */ 2575 else if (cris_get_mode (inst) == AUTOINC_MODE) 2576 { 2577 /* It's invalid to change the PC in a delay slot. */ 2578 if (inst_env->slot_needed) 2579 { 2580 inst_env->invalid = 1; 2581 return; 2582 } 2583 process_autoincrement (cris_get_size (inst), inst, inst_env); 2584 } 2585 inst_env->slot_needed = 0; 2586 inst_env->prefix_found = 0; 2587 inst_env->xflag_found = 0; 2588 inst_env->disable_interrupt = 0; 2589 } 2590 2591 /* Handles the 3-operand BOUND instruction. */ 2592 2593 static void 2594 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env) 2595 { 2596 /* It's an error if we haven't got a prefix. And it's also an error 2597 if the PC is the destination register. */ 2598 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC)) 2599 { 2600 inst_env->invalid = 1; 2601 return; 2602 } 2603 inst_env->slot_needed = 0; 2604 inst_env->prefix_found = 0; 2605 inst_env->xflag_found = 0; 2606 inst_env->disable_interrupt = 0; 2607 } 2608 2609 /* Clears the status flags in inst_env. */ 2610 2611 static void 2612 btst_nop_op (unsigned short inst, inst_env_type *inst_env) 2613 { 2614 /* It's an error if we have got a prefix. */ 2615 if (inst_env->prefix_found) 2616 { 2617 inst_env->invalid = 1; 2618 return; 2619 } 2620 2621 inst_env->slot_needed = 0; 2622 inst_env->prefix_found = 0; 2623 inst_env->xflag_found = 0; 2624 inst_env->disable_interrupt = 0; 2625 } 2626 2627 /* Clears the status flags in inst_env. */ 2628 2629 static void 2630 clearf_di_op (unsigned short inst, inst_env_type *inst_env) 2631 { 2632 /* It's an error if we have got a prefix. */ 2633 if (inst_env->prefix_found) 2634 { 2635 inst_env->invalid = 1; 2636 return; 2637 } 2638 2639 inst_env->slot_needed = 0; 2640 inst_env->prefix_found = 0; 2641 inst_env->xflag_found = 0; 2642 inst_env->disable_interrupt = 1; 2643 } 2644 2645 /* Handles the CLEAR instruction if it's in register mode. */ 2646 2647 static void 2648 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env) 2649 { 2650 /* Check if the target is the PC. */ 2651 if (cris_get_operand2 (inst) == REG_PC) 2652 { 2653 /* The instruction will clear the instruction's size bits. */ 2654 int clear_size = cris_get_clear_size (inst); 2655 if (clear_size == INST_BYTE_SIZE) 2656 { 2657 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00; 2658 } 2659 if (clear_size == INST_WORD_SIZE) 2660 { 2661 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000; 2662 } 2663 if (clear_size == INST_DWORD_SIZE) 2664 { 2665 inst_env->delay_slot_pc = 0x0; 2666 } 2667 /* The jump will be delayed with one delay slot. So we need a delay 2668 slot. */ 2669 inst_env->slot_needed = 1; 2670 inst_env->delay_slot_pc_active = 1; 2671 } 2672 else 2673 { 2674 /* The PC will not change => no delay slot. */ 2675 inst_env->slot_needed = 0; 2676 } 2677 inst_env->prefix_found = 0; 2678 inst_env->xflag_found = 0; 2679 inst_env->disable_interrupt = 0; 2680 } 2681 2682 /* Handles the TEST instruction if it's in register mode. */ 2683 2684 static void 2685 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env) 2686 { 2687 /* It's an error if we have got a prefix. */ 2688 if (inst_env->prefix_found) 2689 { 2690 inst_env->invalid = 1; 2691 return; 2692 } 2693 inst_env->slot_needed = 0; 2694 inst_env->prefix_found = 0; 2695 inst_env->xflag_found = 0; 2696 inst_env->disable_interrupt = 0; 2697 2698 } 2699 2700 /* Handles the CLEAR and TEST instruction if the instruction isn't 2701 in register mode. */ 2702 2703 static void 2704 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env) 2705 { 2706 /* Check if we are in a prefix mode. */ 2707 if (inst_env->prefix_found) 2708 { 2709 /* The only way the PC can change is if this instruction is in 2710 assign addressing mode. */ 2711 check_assign (inst, inst_env); 2712 } 2713 /* Indirect mode can't change the PC so just check if the mode is 2714 autoincrement. */ 2715 else if (cris_get_mode (inst) == AUTOINC_MODE) 2716 { 2717 process_autoincrement (cris_get_size (inst), inst, inst_env); 2718 } 2719 inst_env->slot_needed = 0; 2720 inst_env->prefix_found = 0; 2721 inst_env->xflag_found = 0; 2722 inst_env->disable_interrupt = 0; 2723 } 2724 2725 /* Checks that the PC isn't the destination register or the instructions has 2726 a prefix. */ 2727 2728 static void 2729 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env) 2730 { 2731 /* It's invalid to have the PC as the destination. The instruction can't 2732 have a prefix. */ 2733 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found) 2734 { 2735 inst_env->invalid = 1; 2736 return; 2737 } 2738 2739 inst_env->slot_needed = 0; 2740 inst_env->prefix_found = 0; 2741 inst_env->xflag_found = 0; 2742 inst_env->disable_interrupt = 0; 2743 } 2744 2745 /* Checks that the instruction doesn't have a prefix. */ 2746 2747 static void 2748 break_op (unsigned short inst, inst_env_type *inst_env) 2749 { 2750 /* The instruction can't have a prefix. */ 2751 if (inst_env->prefix_found) 2752 { 2753 inst_env->invalid = 1; 2754 return; 2755 } 2756 2757 inst_env->slot_needed = 0; 2758 inst_env->prefix_found = 0; 2759 inst_env->xflag_found = 0; 2760 inst_env->disable_interrupt = 1; 2761 } 2762 2763 /* Checks that the PC isn't the destination register and that the instruction 2764 doesn't have a prefix. */ 2765 2766 static void 2767 scc_op (unsigned short inst, inst_env_type *inst_env) 2768 { 2769 /* It's invalid to have the PC as the destination. The instruction can't 2770 have a prefix. */ 2771 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found) 2772 { 2773 inst_env->invalid = 1; 2774 return; 2775 } 2776 2777 inst_env->slot_needed = 0; 2778 inst_env->prefix_found = 0; 2779 inst_env->xflag_found = 0; 2780 inst_env->disable_interrupt = 1; 2781 } 2782 2783 /* Handles the register mode JUMP instruction. */ 2784 2785 static void 2786 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env) 2787 { 2788 /* It's invalid to do a JUMP in a delay slot. The mode is register, so 2789 you can't have a prefix. */ 2790 if ((inst_env->slot_needed) || (inst_env->prefix_found)) 2791 { 2792 inst_env->invalid = 1; 2793 return; 2794 } 2795 2796 /* Just change the PC. */ 2797 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)]; 2798 inst_env->slot_needed = 0; 2799 inst_env->prefix_found = 0; 2800 inst_env->xflag_found = 0; 2801 inst_env->disable_interrupt = 1; 2802 } 2803 2804 /* Handles the JUMP instruction for all modes except register. */ 2805 2806 static void 2807 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env) 2808 { 2809 unsigned long newpc; 2810 CORE_ADDR address; 2811 2812 /* It's invalid to do a JUMP in a delay slot. */ 2813 if (inst_env->slot_needed) 2814 { 2815 inst_env->invalid = 1; 2816 } 2817 else 2818 { 2819 /* Check if we have a prefix. */ 2820 if (inst_env->prefix_found) 2821 { 2822 check_assign (inst, inst_env); 2823 2824 /* Get the new value for the PC. */ 2825 newpc = 2826 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value, 2827 4, inst_env->byte_order); 2828 } 2829 else 2830 { 2831 /* Get the new value for the PC. */ 2832 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)]; 2833 newpc = read_memory_unsigned_integer (address, 2834 4, inst_env->byte_order); 2835 2836 /* Check if we should increment a register. */ 2837 if (cris_get_mode (inst) == AUTOINC_MODE) 2838 { 2839 inst_env->reg[cris_get_operand1 (inst)] += 4; 2840 } 2841 } 2842 inst_env->reg[REG_PC] = newpc; 2843 } 2844 inst_env->slot_needed = 0; 2845 inst_env->prefix_found = 0; 2846 inst_env->xflag_found = 0; 2847 inst_env->disable_interrupt = 1; 2848 } 2849 2850 /* Handles moves to special registers (aka P-register) for all modes. */ 2851 2852 static void 2853 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst, 2854 inst_env_type *inst_env) 2855 { 2856 if (inst_env->prefix_found) 2857 { 2858 /* The instruction has a prefix that means we are only interested if 2859 the instruction is in assign mode. */ 2860 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE) 2861 { 2862 /* The prefix handles the problem if we are in a delay slot. */ 2863 if (cris_get_operand1 (inst) == REG_PC) 2864 { 2865 /* Just take care of the assign. */ 2866 check_assign (inst, inst_env); 2867 } 2868 } 2869 } 2870 else if (cris_get_mode (inst) == AUTOINC_MODE) 2871 { 2872 /* The instruction doesn't have a prefix, the only case left that we 2873 are interested in is the autoincrement mode. */ 2874 if (cris_get_operand1 (inst) == REG_PC) 2875 { 2876 /* If the PC is to be incremented it's invalid to be in a 2877 delay slot. */ 2878 if (inst_env->slot_needed) 2879 { 2880 inst_env->invalid = 1; 2881 return; 2882 } 2883 2884 /* The increment depends on the size of the special register. */ 2885 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1) 2886 { 2887 process_autoincrement (INST_BYTE_SIZE, inst, inst_env); 2888 } 2889 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2) 2890 { 2891 process_autoincrement (INST_WORD_SIZE, inst, inst_env); 2892 } 2893 else 2894 { 2895 process_autoincrement (INST_DWORD_SIZE, inst, inst_env); 2896 } 2897 } 2898 } 2899 inst_env->slot_needed = 0; 2900 inst_env->prefix_found = 0; 2901 inst_env->xflag_found = 0; 2902 inst_env->disable_interrupt = 1; 2903 } 2904 2905 /* Handles moves from special registers (aka P-register) for all modes 2906 except register. */ 2907 2908 static void 2909 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst, 2910 inst_env_type *inst_env) 2911 { 2912 if (inst_env->prefix_found) 2913 { 2914 /* The instruction has a prefix that means we are only interested if 2915 the instruction is in assign mode. */ 2916 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE) 2917 { 2918 /* The prefix handles the problem if we are in a delay slot. */ 2919 if (cris_get_operand1 (inst) == REG_PC) 2920 { 2921 /* Just take care of the assign. */ 2922 check_assign (inst, inst_env); 2923 } 2924 } 2925 } 2926 /* The instruction doesn't have a prefix, the only case left that we 2927 are interested in is the autoincrement mode. */ 2928 else if (cris_get_mode (inst) == AUTOINC_MODE) 2929 { 2930 if (cris_get_operand1 (inst) == REG_PC) 2931 { 2932 /* If the PC is to be incremented it's invalid to be in a 2933 delay slot. */ 2934 if (inst_env->slot_needed) 2935 { 2936 inst_env->invalid = 1; 2937 return; 2938 } 2939 2940 /* The increment depends on the size of the special register. */ 2941 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1) 2942 { 2943 process_autoincrement (INST_BYTE_SIZE, inst, inst_env); 2944 } 2945 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2) 2946 { 2947 process_autoincrement (INST_WORD_SIZE, inst, inst_env); 2948 } 2949 else 2950 { 2951 process_autoincrement (INST_DWORD_SIZE, inst, inst_env); 2952 } 2953 } 2954 } 2955 inst_env->slot_needed = 0; 2956 inst_env->prefix_found = 0; 2957 inst_env->xflag_found = 0; 2958 inst_env->disable_interrupt = 1; 2959 } 2960 2961 /* Handles moves from special registers (aka P-register) when the mode 2962 is register. */ 2963 2964 static void 2965 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env) 2966 { 2967 /* Register mode move from special register can't have a prefix. */ 2968 if (inst_env->prefix_found) 2969 { 2970 inst_env->invalid = 1; 2971 return; 2972 } 2973 2974 if (cris_get_operand1 (inst) == REG_PC) 2975 { 2976 /* It's invalid to change the PC in a delay slot. */ 2977 if (inst_env->slot_needed) 2978 { 2979 inst_env->invalid = 1; 2980 return; 2981 } 2982 /* The destination is the PC, the jump will have a delay slot. */ 2983 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)]; 2984 inst_env->slot_needed = 1; 2985 inst_env->delay_slot_pc_active = 1; 2986 } 2987 else 2988 { 2989 /* If the destination isn't PC, there will be no jump. */ 2990 inst_env->slot_needed = 0; 2991 } 2992 inst_env->prefix_found = 0; 2993 inst_env->xflag_found = 0; 2994 inst_env->disable_interrupt = 1; 2995 } 2996 2997 /* Handles the MOVEM from memory to general register instruction. */ 2998 2999 static void 3000 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env) 3001 { 3002 if (inst_env->prefix_found) 3003 { 3004 /* The prefix handles the problem if we are in a delay slot. Is the 3005 MOVEM instruction going to change the PC? */ 3006 if (cris_get_operand2 (inst) >= REG_PC) 3007 { 3008 inst_env->reg[REG_PC] = 3009 read_memory_unsigned_integer (inst_env->prefix_value, 3010 4, inst_env->byte_order); 3011 } 3012 /* The assign value is the value after the increment. Normally, the 3013 assign value is the value before the increment. */ 3014 if ((cris_get_operand1 (inst) == REG_PC) 3015 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)) 3016 { 3017 inst_env->reg[REG_PC] = inst_env->prefix_value; 3018 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1); 3019 } 3020 } 3021 else 3022 { 3023 /* Is the MOVEM instruction going to change the PC? */ 3024 if (cris_get_operand2 (inst) == REG_PC) 3025 { 3026 /* It's invalid to change the PC in a delay slot. */ 3027 if (inst_env->slot_needed) 3028 { 3029 inst_env->invalid = 1; 3030 return; 3031 } 3032 inst_env->reg[REG_PC] = 3033 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)], 3034 4, inst_env->byte_order); 3035 } 3036 /* The increment is not depending on the size, instead it's depending 3037 on the number of registers loaded from memory. */ 3038 if ((cris_get_operand1 (inst) == REG_PC) 3039 && (cris_get_mode (inst) == AUTOINC_MODE)) 3040 { 3041 /* It's invalid to change the PC in a delay slot. */ 3042 if (inst_env->slot_needed) 3043 { 3044 inst_env->invalid = 1; 3045 return; 3046 } 3047 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1); 3048 } 3049 } 3050 inst_env->slot_needed = 0; 3051 inst_env->prefix_found = 0; 3052 inst_env->xflag_found = 0; 3053 inst_env->disable_interrupt = 0; 3054 } 3055 3056 /* Handles the MOVEM to memory from general register instruction. */ 3057 3058 static void 3059 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env) 3060 { 3061 if (inst_env->prefix_found) 3062 { 3063 /* The assign value is the value after the increment. Normally, the 3064 assign value is the value before the increment. */ 3065 if ((cris_get_operand1 (inst) == REG_PC) 3066 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)) 3067 { 3068 /* The prefix handles the problem if we are in a delay slot. */ 3069 inst_env->reg[REG_PC] = inst_env->prefix_value; 3070 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1); 3071 } 3072 } 3073 else 3074 { 3075 /* The increment is not depending on the size, instead it's depending 3076 on the number of registers loaded to memory. */ 3077 if ((cris_get_operand1 (inst) == REG_PC) 3078 && (cris_get_mode (inst) == AUTOINC_MODE)) 3079 { 3080 /* It's invalid to change the PC in a delay slot. */ 3081 if (inst_env->slot_needed) 3082 { 3083 inst_env->invalid = 1; 3084 return; 3085 } 3086 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1); 3087 } 3088 } 3089 inst_env->slot_needed = 0; 3090 inst_env->prefix_found = 0; 3091 inst_env->xflag_found = 0; 3092 inst_env->disable_interrupt = 0; 3093 } 3094 3095 /* Handles the intructions that's not yet implemented, by setting 3096 inst_env->invalid to true. */ 3097 3098 static void 3099 not_implemented_op (unsigned short inst, inst_env_type *inst_env) 3100 { 3101 inst_env->invalid = 1; 3102 } 3103 3104 /* Handles the XOR instruction. */ 3105 3106 static void 3107 xor_op (unsigned short inst, inst_env_type *inst_env) 3108 { 3109 /* XOR can't have a prefix. */ 3110 if (inst_env->prefix_found) 3111 { 3112 inst_env->invalid = 1; 3113 return; 3114 } 3115 3116 /* Check if the PC is the target. */ 3117 if (cris_get_operand2 (inst) == REG_PC) 3118 { 3119 /* It's invalid to change the PC in a delay slot. */ 3120 if (inst_env->slot_needed) 3121 { 3122 inst_env->invalid = 1; 3123 return; 3124 } 3125 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)]; 3126 } 3127 inst_env->slot_needed = 0; 3128 inst_env->prefix_found = 0; 3129 inst_env->xflag_found = 0; 3130 inst_env->disable_interrupt = 0; 3131 } 3132 3133 /* Handles the MULS instruction. */ 3134 3135 static void 3136 muls_op (unsigned short inst, inst_env_type *inst_env) 3137 { 3138 /* MULS/U can't have a prefix. */ 3139 if (inst_env->prefix_found) 3140 { 3141 inst_env->invalid = 1; 3142 return; 3143 } 3144 3145 /* Consider it invalid if the PC is the target. */ 3146 if (cris_get_operand2 (inst) == REG_PC) 3147 { 3148 inst_env->invalid = 1; 3149 return; 3150 } 3151 inst_env->slot_needed = 0; 3152 inst_env->prefix_found = 0; 3153 inst_env->xflag_found = 0; 3154 inst_env->disable_interrupt = 0; 3155 } 3156 3157 /* Handles the MULU instruction. */ 3158 3159 static void 3160 mulu_op (unsigned short inst, inst_env_type *inst_env) 3161 { 3162 /* MULS/U can't have a prefix. */ 3163 if (inst_env->prefix_found) 3164 { 3165 inst_env->invalid = 1; 3166 return; 3167 } 3168 3169 /* Consider it invalid if the PC is the target. */ 3170 if (cris_get_operand2 (inst) == REG_PC) 3171 { 3172 inst_env->invalid = 1; 3173 return; 3174 } 3175 inst_env->slot_needed = 0; 3176 inst_env->prefix_found = 0; 3177 inst_env->xflag_found = 0; 3178 inst_env->disable_interrupt = 0; 3179 } 3180 3181 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE. 3182 The MOVE instruction is the move from source to register. */ 3183 3184 static void 3185 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env, 3186 unsigned long source1, unsigned long source2) 3187 { 3188 unsigned long pc_mask; 3189 unsigned long operation_mask; 3190 3191 /* Find out how many bits the operation should apply to. */ 3192 if (cris_get_size (inst) == INST_BYTE_SIZE) 3193 { 3194 pc_mask = 0xFFFFFF00; 3195 operation_mask = 0xFF; 3196 } 3197 else if (cris_get_size (inst) == INST_WORD_SIZE) 3198 { 3199 pc_mask = 0xFFFF0000; 3200 operation_mask = 0xFFFF; 3201 } 3202 else if (cris_get_size (inst) == INST_DWORD_SIZE) 3203 { 3204 pc_mask = 0x0; 3205 operation_mask = 0xFFFFFFFF; 3206 } 3207 else 3208 { 3209 /* The size is out of range. */ 3210 inst_env->invalid = 1; 3211 return; 3212 } 3213 3214 /* The instruction just works on uw_operation_mask bits. */ 3215 source2 &= operation_mask; 3216 source1 &= operation_mask; 3217 3218 /* Now calculate the result. The opcode's 3 first bits separates 3219 the different actions. */ 3220 switch (cris_get_opcode (inst) & 7) 3221 { 3222 case 0: /* add */ 3223 source1 += source2; 3224 break; 3225 3226 case 1: /* move */ 3227 source1 = source2; 3228 break; 3229 3230 case 2: /* subtract */ 3231 source1 -= source2; 3232 break; 3233 3234 case 3: /* compare */ 3235 break; 3236 3237 case 4: /* and */ 3238 source1 &= source2; 3239 break; 3240 3241 case 5: /* or */ 3242 source1 |= source2; 3243 break; 3244 3245 default: 3246 inst_env->invalid = 1; 3247 return; 3248 3249 break; 3250 } 3251 3252 /* Make sure that the result doesn't contain more than the instruction 3253 size bits. */ 3254 source2 &= operation_mask; 3255 3256 /* Calculate the new breakpoint address. */ 3257 inst_env->reg[REG_PC] &= pc_mask; 3258 inst_env->reg[REG_PC] |= source1; 3259 3260 } 3261 3262 /* Extends the value from either byte or word size to a dword. If the mode 3263 is zero extend then the value is extended with zero. If instead the mode 3264 is signed extend the sign bit of the value is taken into consideration. */ 3265 3266 static unsigned long 3267 do_sign_or_zero_extend (unsigned long value, unsigned short *inst) 3268 { 3269 /* The size can be either byte or word, check which one it is. 3270 Don't check the highest bit, it's indicating if it's a zero 3271 or sign extend. */ 3272 if (cris_get_size (*inst) & INST_WORD_SIZE) 3273 { 3274 /* Word size. */ 3275 value &= 0xFFFF; 3276 3277 /* Check if the instruction is signed extend. If so, check if value has 3278 the sign bit on. */ 3279 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK)) 3280 { 3281 value |= SIGNED_WORD_EXTEND_MASK; 3282 } 3283 } 3284 else 3285 { 3286 /* Byte size. */ 3287 value &= 0xFF; 3288 3289 /* Check if the instruction is signed extend. If so, check if value has 3290 the sign bit on. */ 3291 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK)) 3292 { 3293 value |= SIGNED_BYTE_EXTEND_MASK; 3294 } 3295 } 3296 /* The size should now be dword. */ 3297 cris_set_size_to_dword (inst); 3298 return value; 3299 } 3300 3301 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE 3302 instruction. The MOVE instruction is the move from source to register. */ 3303 3304 static void 3305 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst, 3306 inst_env_type *inst_env) 3307 { 3308 unsigned long operand1; 3309 unsigned long operand2; 3310 3311 /* It's invalid to have a prefix to the instruction. This is a register 3312 mode instruction and can't have a prefix. */ 3313 if (inst_env->prefix_found) 3314 { 3315 inst_env->invalid = 1; 3316 return; 3317 } 3318 /* Check if the instruction has PC as its target. */ 3319 if (cris_get_operand2 (inst) == REG_PC) 3320 { 3321 if (inst_env->slot_needed) 3322 { 3323 inst_env->invalid = 1; 3324 return; 3325 } 3326 /* The instruction has the PC as its target register. */ 3327 operand1 = inst_env->reg[cris_get_operand1 (inst)]; 3328 operand2 = inst_env->reg[REG_PC]; 3329 3330 /* Check if it's a extend, signed or zero instruction. */ 3331 if (cris_get_opcode (inst) < 4) 3332 { 3333 operand1 = do_sign_or_zero_extend (operand1, &inst); 3334 } 3335 /* Calculate the PC value after the instruction, i.e. where the 3336 breakpoint should be. The order of the udw_operands is vital. */ 3337 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1); 3338 } 3339 inst_env->slot_needed = 0; 3340 inst_env->prefix_found = 0; 3341 inst_env->xflag_found = 0; 3342 inst_env->disable_interrupt = 0; 3343 } 3344 3345 /* Returns the data contained at address. The size of the data is derived from 3346 the size of the operation. If the instruction is a zero or signed 3347 extend instruction, the size field is changed in instruction. */ 3348 3349 static unsigned long 3350 get_data_from_address (unsigned short *inst, CORE_ADDR address, 3351 enum bfd_endian byte_order) 3352 { 3353 int size = cris_get_size (*inst); 3354 unsigned long value; 3355 3356 /* If it's an extend instruction we don't want the signed extend bit, 3357 because it influences the size. */ 3358 if (cris_get_opcode (*inst) < 4) 3359 { 3360 size &= ~SIGNED_EXTEND_BIT_MASK; 3361 } 3362 /* Is there a need for checking the size? Size should contain the number of 3363 bytes to read. */ 3364 size = 1 << size; 3365 value = read_memory_unsigned_integer (address, size, byte_order); 3366 3367 /* Check if it's an extend, signed or zero instruction. */ 3368 if (cris_get_opcode (*inst) < 4) 3369 { 3370 value = do_sign_or_zero_extend (value, inst); 3371 } 3372 return value; 3373 } 3374 3375 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE 3376 instructions. The MOVE instruction is the move from source to register. */ 3377 3378 static void 3379 handle_prefix_assign_mode_for_aritm_op (unsigned short inst, 3380 inst_env_type *inst_env) 3381 { 3382 unsigned long operand2; 3383 unsigned long operand3; 3384 3385 check_assign (inst, inst_env); 3386 if (cris_get_operand2 (inst) == REG_PC) 3387 { 3388 operand2 = inst_env->reg[REG_PC]; 3389 3390 /* Get the value of the third operand. */ 3391 operand3 = get_data_from_address (&inst, inst_env->prefix_value, 3392 inst_env->byte_order); 3393 3394 /* Calculate the PC value after the instruction, i.e. where the 3395 breakpoint should be. The order of the udw_operands is vital. */ 3396 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3); 3397 } 3398 inst_env->slot_needed = 0; 3399 inst_env->prefix_found = 0; 3400 inst_env->xflag_found = 0; 3401 inst_env->disable_interrupt = 0; 3402 } 3403 3404 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and 3405 OR instructions. Note that for this to work as expected, the calling 3406 function must have made sure that there is a prefix to this instruction. */ 3407 3408 static void 3409 three_operand_add_sub_cmp_and_or_op (unsigned short inst, 3410 inst_env_type *inst_env) 3411 { 3412 unsigned long operand2; 3413 unsigned long operand3; 3414 3415 if (cris_get_operand1 (inst) == REG_PC) 3416 { 3417 /* The PC will be changed by the instruction. */ 3418 operand2 = inst_env->reg[cris_get_operand2 (inst)]; 3419 3420 /* Get the value of the third operand. */ 3421 operand3 = get_data_from_address (&inst, inst_env->prefix_value, 3422 inst_env->byte_order); 3423 3424 /* Calculate the PC value after the instruction, i.e. where the 3425 breakpoint should be. */ 3426 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3); 3427 } 3428 inst_env->slot_needed = 0; 3429 inst_env->prefix_found = 0; 3430 inst_env->xflag_found = 0; 3431 inst_env->disable_interrupt = 0; 3432 } 3433 3434 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE 3435 instructions. The MOVE instruction is the move from source to register. */ 3436 3437 static void 3438 handle_prefix_index_mode_for_aritm_op (unsigned short inst, 3439 inst_env_type *inst_env) 3440 { 3441 if (cris_get_operand1 (inst) != cris_get_operand2 (inst)) 3442 { 3443 /* If the instruction is MOVE it's invalid. If the instruction is ADD, 3444 SUB, AND or OR something weird is going on (if everything works these 3445 instructions should end up in the three operand version). */ 3446 inst_env->invalid = 1; 3447 return; 3448 } 3449 else 3450 { 3451 /* three_operand_add_sub_cmp_and_or does the same as we should do here 3452 so use it. */ 3453 three_operand_add_sub_cmp_and_or_op (inst, inst_env); 3454 } 3455 inst_env->slot_needed = 0; 3456 inst_env->prefix_found = 0; 3457 inst_env->xflag_found = 0; 3458 inst_env->disable_interrupt = 0; 3459 } 3460 3461 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB, 3462 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from 3463 source to register. */ 3464 3465 static void 3466 handle_inc_and_index_mode_for_aritm_op (unsigned short inst, 3467 inst_env_type *inst_env) 3468 { 3469 unsigned long operand1; 3470 unsigned long operand2; 3471 unsigned long operand3; 3472 int size; 3473 3474 /* The instruction is either an indirect or autoincrement addressing mode. 3475 Check if the destination register is the PC. */ 3476 if (cris_get_operand2 (inst) == REG_PC) 3477 { 3478 /* Must be done here, get_data_from_address may change the size 3479 field. */ 3480 size = cris_get_size (inst); 3481 operand2 = inst_env->reg[REG_PC]; 3482 3483 /* Get the value of the third operand, i.e. the indirect operand. */ 3484 operand1 = inst_env->reg[cris_get_operand1 (inst)]; 3485 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order); 3486 3487 /* Calculate the PC value after the instruction, i.e. where the 3488 breakpoint should be. The order of the udw_operands is vital. */ 3489 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3); 3490 } 3491 /* If this is an autoincrement addressing mode, check if the increment 3492 changes the PC. */ 3493 if ((cris_get_operand1 (inst) == REG_PC) 3494 && (cris_get_mode (inst) == AUTOINC_MODE)) 3495 { 3496 /* Get the size field. */ 3497 size = cris_get_size (inst); 3498 3499 /* If it's an extend instruction we don't want the signed extend bit, 3500 because it influences the size. */ 3501 if (cris_get_opcode (inst) < 4) 3502 { 3503 size &= ~SIGNED_EXTEND_BIT_MASK; 3504 } 3505 process_autoincrement (size, inst, inst_env); 3506 } 3507 inst_env->slot_needed = 0; 3508 inst_env->prefix_found = 0; 3509 inst_env->xflag_found = 0; 3510 inst_env->disable_interrupt = 0; 3511 } 3512 3513 /* Handles the two-operand addressing mode, all modes except register, for 3514 the ADD, SUB CMP, AND and OR instruction. */ 3515 3516 static void 3517 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst, 3518 inst_env_type *inst_env) 3519 { 3520 if (inst_env->prefix_found) 3521 { 3522 if (cris_get_mode (inst) == PREFIX_INDEX_MODE) 3523 { 3524 handle_prefix_index_mode_for_aritm_op (inst, inst_env); 3525 } 3526 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE) 3527 { 3528 handle_prefix_assign_mode_for_aritm_op (inst, inst_env); 3529 } 3530 else 3531 { 3532 /* The mode is invalid for a prefixed base instruction. */ 3533 inst_env->invalid = 1; 3534 return; 3535 } 3536 } 3537 else 3538 { 3539 handle_inc_and_index_mode_for_aritm_op (inst, inst_env); 3540 } 3541 } 3542 3543 /* Handles the quick addressing mode for the ADD and SUB instruction. */ 3544 3545 static void 3546 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env) 3547 { 3548 unsigned long operand1; 3549 unsigned long operand2; 3550 3551 /* It's a bad idea to be in a prefix instruction now. This is a quick mode 3552 instruction and can't have a prefix. */ 3553 if (inst_env->prefix_found) 3554 { 3555 inst_env->invalid = 1; 3556 return; 3557 } 3558 3559 /* Check if the instruction has PC as its target. */ 3560 if (cris_get_operand2 (inst) == REG_PC) 3561 { 3562 if (inst_env->slot_needed) 3563 { 3564 inst_env->invalid = 1; 3565 return; 3566 } 3567 operand1 = cris_get_quick_value (inst); 3568 operand2 = inst_env->reg[REG_PC]; 3569 3570 /* The size should now be dword. */ 3571 cris_set_size_to_dword (&inst); 3572 3573 /* Calculate the PC value after the instruction, i.e. where the 3574 breakpoint should be. */ 3575 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1); 3576 } 3577 inst_env->slot_needed = 0; 3578 inst_env->prefix_found = 0; 3579 inst_env->xflag_found = 0; 3580 inst_env->disable_interrupt = 0; 3581 } 3582 3583 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */ 3584 3585 static void 3586 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env) 3587 { 3588 unsigned long operand1; 3589 unsigned long operand2; 3590 3591 /* It's a bad idea to be in a prefix instruction now. This is a quick mode 3592 instruction and can't have a prefix. */ 3593 if (inst_env->prefix_found) 3594 { 3595 inst_env->invalid = 1; 3596 return; 3597 } 3598 /* Check if the instruction has PC as its target. */ 3599 if (cris_get_operand2 (inst) == REG_PC) 3600 { 3601 if (inst_env->slot_needed) 3602 { 3603 inst_env->invalid = 1; 3604 return; 3605 } 3606 /* The instruction has the PC as its target register. */ 3607 operand1 = cris_get_quick_value (inst); 3608 operand2 = inst_env->reg[REG_PC]; 3609 3610 /* The quick value is signed, so check if we must do a signed extend. */ 3611 if (operand1 & SIGNED_QUICK_VALUE_MASK) 3612 { 3613 /* sign extend */ 3614 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK; 3615 } 3616 /* The size should now be dword. */ 3617 cris_set_size_to_dword (&inst); 3618 3619 /* Calculate the PC value after the instruction, i.e. where the 3620 breakpoint should be. */ 3621 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1); 3622 } 3623 inst_env->slot_needed = 0; 3624 inst_env->prefix_found = 0; 3625 inst_env->xflag_found = 0; 3626 inst_env->disable_interrupt = 0; 3627 } 3628 3629 /* Translate op_type to a function and call it. */ 3630 3631 static void 3632 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type, 3633 unsigned short inst, inst_env_type *inst_env) 3634 { 3635 switch (op_type) 3636 { 3637 case cris_not_implemented_op: 3638 not_implemented_op (inst, inst_env); 3639 break; 3640 3641 case cris_abs_op: 3642 abs_op (inst, inst_env); 3643 break; 3644 3645 case cris_addi_op: 3646 addi_op (inst, inst_env); 3647 break; 3648 3649 case cris_asr_op: 3650 asr_op (inst, inst_env); 3651 break; 3652 3653 case cris_asrq_op: 3654 asrq_op (inst, inst_env); 3655 break; 3656 3657 case cris_ax_ei_setf_op: 3658 ax_ei_setf_op (inst, inst_env); 3659 break; 3660 3661 case cris_bdap_prefix: 3662 bdap_prefix (inst, inst_env); 3663 break; 3664 3665 case cris_biap_prefix: 3666 biap_prefix (inst, inst_env); 3667 break; 3668 3669 case cris_break_op: 3670 break_op (inst, inst_env); 3671 break; 3672 3673 case cris_btst_nop_op: 3674 btst_nop_op (inst, inst_env); 3675 break; 3676 3677 case cris_clearf_di_op: 3678 clearf_di_op (inst, inst_env); 3679 break; 3680 3681 case cris_dip_prefix: 3682 dip_prefix (inst, inst_env); 3683 break; 3684 3685 case cris_dstep_logshift_mstep_neg_not_op: 3686 dstep_logshift_mstep_neg_not_op (inst, inst_env); 3687 break; 3688 3689 case cris_eight_bit_offset_branch_op: 3690 eight_bit_offset_branch_op (inst, inst_env); 3691 break; 3692 3693 case cris_move_mem_to_reg_movem_op: 3694 move_mem_to_reg_movem_op (inst, inst_env); 3695 break; 3696 3697 case cris_move_reg_to_mem_movem_op: 3698 move_reg_to_mem_movem_op (inst, inst_env); 3699 break; 3700 3701 case cris_move_to_preg_op: 3702 move_to_preg_op (gdbarch, inst, inst_env); 3703 break; 3704 3705 case cris_muls_op: 3706 muls_op (inst, inst_env); 3707 break; 3708 3709 case cris_mulu_op: 3710 mulu_op (inst, inst_env); 3711 break; 3712 3713 case cris_none_reg_mode_add_sub_cmp_and_or_move_op: 3714 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env); 3715 break; 3716 3717 case cris_none_reg_mode_clear_test_op: 3718 none_reg_mode_clear_test_op (inst, inst_env); 3719 break; 3720 3721 case cris_none_reg_mode_jump_op: 3722 none_reg_mode_jump_op (inst, inst_env); 3723 break; 3724 3725 case cris_none_reg_mode_move_from_preg_op: 3726 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env); 3727 break; 3728 3729 case cris_quick_mode_add_sub_op: 3730 quick_mode_add_sub_op (inst, inst_env); 3731 break; 3732 3733 case cris_quick_mode_and_cmp_move_or_op: 3734 quick_mode_and_cmp_move_or_op (inst, inst_env); 3735 break; 3736 3737 case cris_quick_mode_bdap_prefix: 3738 quick_mode_bdap_prefix (inst, inst_env); 3739 break; 3740 3741 case cris_reg_mode_add_sub_cmp_and_or_move_op: 3742 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env); 3743 break; 3744 3745 case cris_reg_mode_clear_op: 3746 reg_mode_clear_op (inst, inst_env); 3747 break; 3748 3749 case cris_reg_mode_jump_op: 3750 reg_mode_jump_op (inst, inst_env); 3751 break; 3752 3753 case cris_reg_mode_move_from_preg_op: 3754 reg_mode_move_from_preg_op (inst, inst_env); 3755 break; 3756 3757 case cris_reg_mode_test_op: 3758 reg_mode_test_op (inst, inst_env); 3759 break; 3760 3761 case cris_scc_op: 3762 scc_op (inst, inst_env); 3763 break; 3764 3765 case cris_sixteen_bit_offset_branch_op: 3766 sixteen_bit_offset_branch_op (inst, inst_env); 3767 break; 3768 3769 case cris_three_operand_add_sub_cmp_and_or_op: 3770 three_operand_add_sub_cmp_and_or_op (inst, inst_env); 3771 break; 3772 3773 case cris_three_operand_bound_op: 3774 three_operand_bound_op (inst, inst_env); 3775 break; 3776 3777 case cris_two_operand_bound_op: 3778 two_operand_bound_op (inst, inst_env); 3779 break; 3780 3781 case cris_xor_op: 3782 xor_op (inst, inst_env); 3783 break; 3784 } 3785 } 3786 3787 /* Originally from <asm/elf.h>. */ 3788 typedef unsigned char cris_elf_greg_t[4]; 3789 3790 /* Same as user_regs_struct struct in <asm/user.h>. */ 3791 #define CRISV10_ELF_NGREG 35 3792 typedef cris_elf_greg_t cris_elf_gregset_t[CRISV10_ELF_NGREG]; 3793 3794 #define CRISV32_ELF_NGREG 32 3795 typedef cris_elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG]; 3796 3797 /* Unpack a cris_elf_gregset_t into GDB's register cache. */ 3798 3799 static void 3800 cris_supply_gregset (struct regcache *regcache, cris_elf_gregset_t *gregsetp) 3801 { 3802 struct gdbarch *gdbarch = regcache->arch (); 3803 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 3804 int i; 3805 cris_elf_greg_t *regp = *gregsetp; 3806 3807 /* The kernel dumps all 32 registers as unsigned longs, but supply_register 3808 knows about the actual size of each register so that's no problem. */ 3809 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++) 3810 { 3811 regcache->raw_supply (i, (char *)®p[i]); 3812 } 3813 3814 if (tdep->cris_version == 32) 3815 { 3816 /* Needed to set pseudo-register PC for CRISv32. */ 3817 /* FIXME: If ERP is in a delay slot at this point then the PC will 3818 be wrong. Issue a warning to alert the user. */ 3819 regcache->raw_supply (gdbarch_pc_regnum (gdbarch), 3820 (char *)®p[ERP_REGNUM]); 3821 3822 if (*(char *)®p[ERP_REGNUM] & 0x1) 3823 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n"); 3824 } 3825 } 3826 3827 /* Use a local version of this function to get the correct types for 3828 regsets, until multi-arch core support is ready. */ 3829 3830 static void 3831 fetch_core_registers (struct regcache *regcache, 3832 char *core_reg_sect, unsigned core_reg_size, 3833 int which, CORE_ADDR reg_addr) 3834 { 3835 cris_elf_gregset_t gregset; 3836 3837 switch (which) 3838 { 3839 case 0: 3840 if (core_reg_size != sizeof (cris_elf_gregset_t) 3841 && core_reg_size != sizeof (crisv32_elf_gregset_t)) 3842 { 3843 warning (_("wrong size gregset struct in core file")); 3844 } 3845 else 3846 { 3847 memcpy (&gregset, core_reg_sect, sizeof (gregset)); 3848 cris_supply_gregset (regcache, &gregset); 3849 } 3850 3851 default: 3852 /* We've covered all the kinds of registers we know about here, 3853 so this must be something we wouldn't know what to do with 3854 anyway. Just ignore it. */ 3855 break; 3856 } 3857 } 3858 3859 static struct core_fns cris_elf_core_fns = 3860 { 3861 bfd_target_elf_flavour, /* core_flavour */ 3862 default_check_format, /* check_format */ 3863 default_core_sniffer, /* core_sniffer */ 3864 fetch_core_registers, /* core_read_registers */ 3865 NULL /* next */ 3866 }; 3867 3868 void 3869 _initialize_cris_tdep (void) 3870 { 3871 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep); 3872 3873 /* CRIS-specific user-commands. */ 3874 add_setshow_zuinteger_cmd ("cris-version", class_support, 3875 &usr_cmd_cris_version, 3876 _("Set the current CRIS version."), 3877 _("Show the current CRIS version."), 3878 _("\ 3879 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\ 3880 Defaults to 10. "), 3881 set_cris_version, 3882 NULL, /* FIXME: i18n: Current CRIS version 3883 is %s. */ 3884 &setlist, &showlist); 3885 3886 add_setshow_enum_cmd ("cris-mode", class_support, 3887 cris_modes, &usr_cmd_cris_mode, 3888 _("Set the current CRIS mode."), 3889 _("Show the current CRIS mode."), 3890 _("\ 3891 Set to CRIS_MODE_GURU when debugging in guru mode.\n\ 3892 Makes GDB use the NRP register instead of the ERP register in certain cases."), 3893 set_cris_mode, 3894 NULL, /* FIXME: i18n: Current CRIS version is %s. */ 3895 &setlist, &showlist); 3896 3897 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support, 3898 &usr_cmd_cris_dwarf2_cfi, 3899 _("Set the usage of Dwarf-2 CFI for CRIS."), 3900 _("Show the usage of Dwarf-2 CFI for CRIS."), 3901 _("Set this to \"off\" if using gcc-cris < R59."), 3902 set_cris_dwarf2_cfi, 3903 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI 3904 for CRIS is %d. */ 3905 &setlist, &showlist); 3906 3907 deprecated_add_core_fns (&cris_elf_core_fns); 3908 } 3909 3910 /* Prints out all target specific values. */ 3911 3912 static void 3913 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) 3914 { 3915 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 3916 if (tdep != NULL) 3917 { 3918 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n", 3919 tdep->cris_version); 3920 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n", 3921 tdep->cris_mode); 3922 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n", 3923 tdep->cris_dwarf2_cfi); 3924 } 3925 } 3926 3927 static void 3928 set_cris_version (const char *ignore_args, int from_tty, 3929 struct cmd_list_element *c) 3930 { 3931 struct gdbarch_info info; 3932 3933 usr_cmd_cris_version_valid = 1; 3934 3935 /* Update the current architecture, if needed. */ 3936 gdbarch_info_init (&info); 3937 if (!gdbarch_update_p (info)) 3938 internal_error (__FILE__, __LINE__, 3939 _("cris_gdbarch_update: failed to update architecture.")); 3940 } 3941 3942 static void 3943 set_cris_mode (const char *ignore_args, int from_tty, 3944 struct cmd_list_element *c) 3945 { 3946 struct gdbarch_info info; 3947 3948 /* Update the current architecture, if needed. */ 3949 gdbarch_info_init (&info); 3950 if (!gdbarch_update_p (info)) 3951 internal_error (__FILE__, __LINE__, 3952 "cris_gdbarch_update: failed to update architecture."); 3953 } 3954 3955 static void 3956 set_cris_dwarf2_cfi (const char *ignore_args, int from_tty, 3957 struct cmd_list_element *c) 3958 { 3959 struct gdbarch_info info; 3960 3961 /* Update the current architecture, if needed. */ 3962 gdbarch_info_init (&info); 3963 if (!gdbarch_update_p (info)) 3964 internal_error (__FILE__, __LINE__, 3965 _("cris_gdbarch_update: failed to update architecture.")); 3966 } 3967 3968 static struct gdbarch * 3969 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 3970 { 3971 struct gdbarch *gdbarch; 3972 struct gdbarch_tdep *tdep; 3973 unsigned int cris_version; 3974 3975 if (usr_cmd_cris_version_valid) 3976 { 3977 /* Trust the user's CRIS version setting. */ 3978 cris_version = usr_cmd_cris_version; 3979 } 3980 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32) 3981 { 3982 cris_version = 32; 3983 } 3984 else 3985 { 3986 /* Assume it's CRIS version 10. */ 3987 cris_version = 10; 3988 } 3989 3990 /* Make the current settings visible to the user. */ 3991 usr_cmd_cris_version = cris_version; 3992 3993 /* Find a candidate among the list of pre-declared architectures. */ 3994 for (arches = gdbarch_list_lookup_by_info (arches, &info); 3995 arches != NULL; 3996 arches = gdbarch_list_lookup_by_info (arches->next, &info)) 3997 { 3998 if ((gdbarch_tdep (arches->gdbarch)->cris_version 3999 == usr_cmd_cris_version) 4000 && (gdbarch_tdep (arches->gdbarch)->cris_mode 4001 == usr_cmd_cris_mode) 4002 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi 4003 == usr_cmd_cris_dwarf2_cfi)) 4004 return arches->gdbarch; 4005 } 4006 4007 /* No matching architecture was found. Create a new one. */ 4008 tdep = XCNEW (struct gdbarch_tdep); 4009 info.byte_order = BFD_ENDIAN_LITTLE; 4010 gdbarch = gdbarch_alloc (&info, tdep); 4011 4012 tdep->cris_version = usr_cmd_cris_version; 4013 tdep->cris_mode = usr_cmd_cris_mode; 4014 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi; 4015 4016 set_gdbarch_return_value (gdbarch, cris_return_value); 4017 set_gdbarch_sp_regnum (gdbarch, 14); 4018 4019 /* Length of ordinary registers used in push_word and a few other 4020 places. register_size() is the real way to know how big a 4021 register is. */ 4022 4023 set_gdbarch_double_bit (gdbarch, 64); 4024 /* The default definition of a long double is 2 * gdbarch_double_bit, 4025 which means we have to set this explicitly. */ 4026 set_gdbarch_long_double_bit (gdbarch, 64); 4027 4028 /* The total amount of space needed to store (in an array called registers) 4029 GDB's copy of the machine's register state. Note: We can not use 4030 cris_register_size at this point, since it relies on gdbarch 4031 being set. */ 4032 switch (tdep->cris_version) 4033 { 4034 case 0: 4035 case 1: 4036 case 2: 4037 case 3: 4038 case 8: 4039 case 9: 4040 /* Old versions; not supported. */ 4041 return 0; 4042 4043 case 10: 4044 case 11: 4045 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100, 4046 P7 (32 bits), and P15 (32 bits) have been implemented. */ 4047 set_gdbarch_pc_regnum (gdbarch, 15); 4048 set_gdbarch_register_type (gdbarch, cris_register_type); 4049 /* There are 32 registers (some of which may not be implemented). */ 4050 set_gdbarch_num_regs (gdbarch, 32); 4051 set_gdbarch_register_name (gdbarch, cris_register_name); 4052 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register); 4053 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register); 4054 4055 set_gdbarch_software_single_step (gdbarch, cris_software_single_step); 4056 break; 4057 4058 case 32: 4059 /* CRIS v32. General registers R0 - R15 (32 bits), special registers 4060 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits) 4061 and pseudo-register PC (32 bits). */ 4062 set_gdbarch_pc_regnum (gdbarch, 32); 4063 set_gdbarch_register_type (gdbarch, crisv32_register_type); 4064 /* 32 registers + pseudo-register PC + 16 support registers. */ 4065 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16); 4066 set_gdbarch_register_name (gdbarch, crisv32_register_name); 4067 4068 set_gdbarch_cannot_store_register 4069 (gdbarch, crisv32_cannot_store_register); 4070 set_gdbarch_cannot_fetch_register 4071 (gdbarch, crisv32_cannot_fetch_register); 4072 4073 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); 4074 4075 set_gdbarch_single_step_through_delay 4076 (gdbarch, crisv32_single_step_through_delay); 4077 4078 break; 4079 4080 default: 4081 /* Unknown version. */ 4082 return 0; 4083 } 4084 4085 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they 4086 have the same ABI). */ 4087 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code); 4088 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call); 4089 set_gdbarch_frame_align (gdbarch, cris_frame_align); 4090 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue); 4091 4092 /* The stack grows downward. */ 4093 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 4094 4095 set_gdbarch_breakpoint_kind_from_pc (gdbarch, cris_breakpoint_kind_from_pc); 4096 set_gdbarch_sw_breakpoint_from_kind (gdbarch, cris_sw_breakpoint_from_kind); 4097 4098 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc); 4099 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp); 4100 set_gdbarch_dummy_id (gdbarch, cris_dummy_id); 4101 4102 if (tdep->cris_dwarf2_cfi == 1) 4103 { 4104 /* Hook in the Dwarf-2 frame sniffer. */ 4105 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum); 4106 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg); 4107 dwarf2_append_unwinders (gdbarch); 4108 } 4109 4110 if (tdep->cris_mode != cris_mode_guru) 4111 { 4112 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind); 4113 } 4114 4115 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind); 4116 frame_base_set_default (gdbarch, &cris_frame_base); 4117 4118 /* Hook in ABI-specific overrides, if they have been registered. */ 4119 gdbarch_init_osabi (info, gdbarch); 4120 4121 return gdbarch; 4122 } 4123