xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/corelow.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /* Core dump and executable file functions below target vector, for GDB.
2 
3    Copyright (C) 1986-2015 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h>		/* needed for F_OK and friends */
26 #endif
27 #include "frame.h"		/* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "solib.h"
42 #include "filenames.h"
43 #include "progspace.h"
44 #include "objfiles.h"
45 #include "gdb_bfd.h"
46 #include "completer.h"
47 #include "filestuff.h"
48 
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52 
53 /* List of all available core_fns.  On gdb startup, each core file
54    register reader calls deprecated_add_core_fns() to register
55    information on each core format it is prepared to read.  */
56 
57 static struct core_fns *core_file_fns = NULL;
58 
59 /* The core_fns for a core file handler that is prepared to read the
60    core file currently open on core_bfd.  */
61 
62 static struct core_fns *core_vec = NULL;
63 
64 /* FIXME: kettenis/20031023: Eventually this variable should
65    disappear.  */
66 
67 static struct gdbarch *core_gdbarch = NULL;
68 
69 /* Per-core data.  Currently, only the section table.  Note that these
70    target sections are *not* mapped in the current address spaces' set
71    of target sections --- those should come only from pure executable
72    or shared library bfds.  The core bfd sections are an
73    implementation detail of the core target, just like ptrace is for
74    unix child targets.  */
75 static struct target_section_table *core_data;
76 
77 static void core_files_info (struct target_ops *);
78 
79 static struct core_fns *sniff_core_bfd (bfd *);
80 
81 static int gdb_check_format (bfd *);
82 
83 static void core_close (struct target_ops *self);
84 
85 static void core_close_cleanup (void *ignore);
86 
87 static void add_to_thread_list (bfd *, asection *, void *);
88 
89 static void init_core_ops (void);
90 
91 void _initialize_corelow (void);
92 
93 static struct target_ops core_ops;
94 
95 /* An arbitrary identifier for the core inferior.  */
96 #define CORELOW_PID 1
97 
98 /* Link a new core_fns into the global core_file_fns list.  Called on
99    gdb startup by the _initialize routine in each core file register
100    reader, to register information about each format the reader is
101    prepared to handle.  */
102 
103 void
104 deprecated_add_core_fns (struct core_fns *cf)
105 {
106   cf->next = core_file_fns;
107   core_file_fns = cf;
108 }
109 
110 /* The default function that core file handlers can use to examine a
111    core file BFD and decide whether or not to accept the job of
112    reading the core file.  */
113 
114 int
115 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
116 {
117   int result;
118 
119   result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
120   return (result);
121 }
122 
123 /* Walk through the list of core functions to find a set that can
124    handle the core file open on ABFD.  Returns pointer to set that is
125    selected.  */
126 
127 static struct core_fns *
128 sniff_core_bfd (bfd *abfd)
129 {
130   struct core_fns *cf;
131   struct core_fns *yummy = NULL;
132   int matches = 0;;
133 
134   /* Don't sniff if we have support for register sets in
135      CORE_GDBARCH.  */
136   if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
137     return NULL;
138 
139   for (cf = core_file_fns; cf != NULL; cf = cf->next)
140     {
141       if (cf->core_sniffer (cf, abfd))
142 	{
143 	  yummy = cf;
144 	  matches++;
145 	}
146     }
147   if (matches > 1)
148     {
149       warning (_("\"%s\": ambiguous core format, %d handlers match"),
150 	       bfd_get_filename (abfd), matches);
151     }
152   else if (matches == 0)
153     error (_("\"%s\": no core file handler recognizes format"),
154 	   bfd_get_filename (abfd));
155 
156   return (yummy);
157 }
158 
159 /* The default is to reject every core file format we see.  Either
160    BFD has to recognize it, or we have to provide a function in the
161    core file handler that recognizes it.  */
162 
163 int
164 default_check_format (bfd *abfd)
165 {
166   return (0);
167 }
168 
169 /* Attempt to recognize core file formats that BFD rejects.  */
170 
171 static int
172 gdb_check_format (bfd *abfd)
173 {
174   struct core_fns *cf;
175 
176   for (cf = core_file_fns; cf != NULL; cf = cf->next)
177     {
178       if (cf->check_format (abfd))
179 	{
180 	  return (1);
181 	}
182     }
183   return (0);
184 }
185 
186 /* Discard all vestiges of any previous core file and mark data and
187    stack spaces as empty.  */
188 
189 static void
190 core_close (struct target_ops *self)
191 {
192   if (core_bfd)
193     {
194       int pid = ptid_get_pid (inferior_ptid);
195       inferior_ptid = null_ptid;    /* Avoid confusion from thread
196 				       stuff.  */
197       if (pid != 0)
198 	exit_inferior_silent (pid);
199 
200       /* Clear out solib state while the bfd is still open.  See
201          comments in clear_solib in solib.c.  */
202       clear_solib ();
203 
204       if (core_data)
205 	{
206 	  xfree (core_data->sections);
207 	  xfree (core_data);
208 	  core_data = NULL;
209 	}
210 
211       gdb_bfd_unref (core_bfd);
212       core_bfd = NULL;
213     }
214   core_vec = NULL;
215   core_gdbarch = NULL;
216 }
217 
218 static void
219 core_close_cleanup (void *ignore)
220 {
221   core_close (NULL);
222 }
223 
224 /* Look for sections whose names start with `.reg/' so that we can
225    extract the list of threads in a core file.  */
226 
227 static void
228 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
229 {
230   ptid_t ptid;
231   int core_tid;
232   int pid, lwpid;
233   asection *reg_sect = (asection *) reg_sect_arg;
234   int fake_pid_p = 0;
235   struct inferior *inf;
236 
237   if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
238     return;
239 
240   core_tid = atoi (bfd_section_name (abfd, asect) + 5);
241 
242   pid = bfd_core_file_pid (core_bfd);
243   if (pid == 0)
244     {
245       fake_pid_p = 1;
246       pid = CORELOW_PID;
247     }
248 
249   lwpid = core_tid;
250 
251   inf = current_inferior ();
252   if (inf->pid == 0)
253     {
254       inferior_appeared (inf, pid);
255       inf->fake_pid_p = fake_pid_p;
256     }
257 
258   ptid = ptid_build (pid, lwpid, 0);
259 
260   add_thread (ptid);
261 
262 /* Warning, Will Robinson, looking at BFD private data! */
263 
264   if (reg_sect != NULL
265       && asect->filepos == reg_sect->filepos)	/* Did we find .reg?  */
266     inferior_ptid = ptid;			/* Yes, make it current.  */
267 }
268 
269 /* This routine opens and sets up the core file bfd.  */
270 
271 static void
272 core_open (const char *arg, int from_tty)
273 {
274   const char *p;
275   int siggy;
276   struct cleanup *old_chain;
277   char *temp;
278   bfd *temp_bfd;
279   int scratch_chan;
280   int flags;
281   volatile struct gdb_exception except;
282   char *filename;
283 
284   target_preopen (from_tty);
285   if (!arg)
286     {
287       if (core_bfd)
288 	error (_("No core file specified.  (Use `detach' "
289 		 "to stop debugging a core file.)"));
290       else
291 	error (_("No core file specified."));
292     }
293 
294   filename = tilde_expand (arg);
295   if (!IS_ABSOLUTE_PATH (filename))
296     {
297       temp = concat (current_directory, "/",
298 		     filename, (char *) NULL);
299       xfree (filename);
300       filename = temp;
301     }
302 
303   old_chain = make_cleanup (xfree, filename);
304 
305   flags = O_BINARY | O_LARGEFILE;
306   if (write_files)
307     flags |= O_RDWR;
308   else
309     flags |= O_RDONLY;
310   scratch_chan = gdb_open_cloexec (filename, flags, 0);
311   if (scratch_chan < 0)
312     perror_with_name (filename);
313 
314   temp_bfd = gdb_bfd_fopen (filename, gnutarget,
315 			    write_files ? FOPEN_RUB : FOPEN_RB,
316 			    scratch_chan);
317   if (temp_bfd == NULL)
318     perror_with_name (filename);
319 
320   if (!bfd_check_format (temp_bfd, bfd_core)
321       && !gdb_check_format (temp_bfd))
322     {
323       /* Do it after the err msg */
324       /* FIXME: should be checking for errors from bfd_close (for one
325          thing, on error it does not free all the storage associated
326          with the bfd).  */
327       make_cleanup_bfd_unref (temp_bfd);
328       error (_("\"%s\" is not a core dump: %s"),
329 	     filename, bfd_errmsg (bfd_get_error ()));
330     }
331 
332   /* Looks semi-reasonable.  Toss the old core file and work on the
333      new.  */
334 
335   do_cleanups (old_chain);
336   unpush_target (&core_ops);
337   core_bfd = temp_bfd;
338   old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
339 
340   core_gdbarch = gdbarch_from_bfd (core_bfd);
341 
342   /* Find a suitable core file handler to munch on core_bfd */
343   core_vec = sniff_core_bfd (core_bfd);
344 
345   validate_files ();
346 
347   core_data = XCNEW (struct target_section_table);
348 
349   /* Find the data section */
350   if (build_section_table (core_bfd,
351 			   &core_data->sections,
352 			   &core_data->sections_end))
353     error (_("\"%s\": Can't find sections: %s"),
354 	   bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
355 
356   /* If we have no exec file, try to set the architecture from the
357      core file.  We don't do this unconditionally since an exec file
358      typically contains more information that helps us determine the
359      architecture than a core file.  */
360   if (!exec_bfd)
361     set_gdbarch_from_file (core_bfd);
362 
363   push_target (&core_ops);
364   discard_cleanups (old_chain);
365 
366   /* Do this before acknowledging the inferior, so if
367      post_create_inferior throws (can happen easilly if you're loading
368      a core file with the wrong exec), we aren't left with threads
369      from the previous inferior.  */
370   init_thread_list ();
371 
372   inferior_ptid = null_ptid;
373 
374   /* Need to flush the register cache (and the frame cache) from a
375      previous debug session.  If inferior_ptid ends up the same as the
376      last debug session --- e.g., b foo; run; gcore core1; step; gcore
377      core2; core core1; core core2 --- then there's potential for
378      get_current_regcache to return the cached regcache of the
379      previous session, and the frame cache being stale.  */
380   registers_changed ();
381 
382   /* Build up thread list from BFD sections, and possibly set the
383      current thread to the .reg/NN section matching the .reg
384      section.  */
385   bfd_map_over_sections (core_bfd, add_to_thread_list,
386 			 bfd_get_section_by_name (core_bfd, ".reg"));
387 
388   if (ptid_equal (inferior_ptid, null_ptid))
389     {
390       /* Either we found no .reg/NN section, and hence we have a
391 	 non-threaded core (single-threaded, from gdb's perspective),
392 	 or for some reason add_to_thread_list couldn't determine
393 	 which was the "main" thread.  The latter case shouldn't
394 	 usually happen, but we're dealing with input here, which can
395 	 always be broken in different ways.  */
396       struct thread_info *thread = first_thread_of_process (-1);
397 
398       if (thread == NULL)
399 	{
400 	  inferior_appeared (current_inferior (), CORELOW_PID);
401 	  inferior_ptid = pid_to_ptid (CORELOW_PID);
402 	  add_thread_silent (inferior_ptid);
403 	}
404       else
405 	switch_to_thread (thread->ptid);
406     }
407 
408   post_create_inferior (&core_ops, from_tty);
409 
410   /* Now go through the target stack looking for threads since there
411      may be a thread_stratum target loaded on top of target core by
412      now.  The layer above should claim threads found in the BFD
413      sections.  */
414   TRY_CATCH (except, RETURN_MASK_ERROR)
415     {
416       target_update_thread_list ();
417     }
418 
419   if (except.reason < 0)
420     exception_print (gdb_stderr, except);
421 
422   p = bfd_core_file_failing_command (core_bfd);
423   if (p)
424     printf_filtered (_("Core was generated by `%s'.\n"), p);
425 
426   /* Clearing any previous state of convenience variables.  */
427   clear_exit_convenience_vars ();
428 
429   siggy = bfd_core_file_failing_signal (core_bfd);
430   if (siggy > 0)
431     {
432       /* If we don't have a CORE_GDBARCH to work with, assume a native
433 	 core (map gdb_signal from host signals).  If we do have
434 	 CORE_GDBARCH to work with, but no gdb_signal_from_target
435 	 implementation for that gdbarch, as a fallback measure,
436 	 assume the host signal mapping.  It'll be correct for native
437 	 cores, but most likely incorrect for cross-cores.  */
438       enum gdb_signal sig = (core_gdbarch != NULL
439 			     && gdbarch_gdb_signal_from_target_p (core_gdbarch)
440 			     ? gdbarch_gdb_signal_from_target (core_gdbarch,
441 							       siggy)
442 			     : gdb_signal_from_host (siggy));
443 
444       printf_filtered (_("Program terminated with signal %s, %s.\n"),
445 		       gdb_signal_to_name (sig), gdb_signal_to_string (sig));
446 
447       /* Set the value of the internal variable $_exitsignal,
448 	 which holds the signal uncaught by the inferior.  */
449       set_internalvar_integer (lookup_internalvar ("_exitsignal"),
450 			       siggy);
451     }
452 
453   /* Fetch all registers from core file.  */
454   target_fetch_registers (get_current_regcache (), -1);
455 
456   /* Now, set up the frame cache, and print the top of stack.  */
457   reinit_frame_cache ();
458   print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
459 }
460 
461 static void
462 core_detach (struct target_ops *ops, const char *args, int from_tty)
463 {
464   if (args)
465     error (_("Too many arguments"));
466   unpush_target (ops);
467   reinit_frame_cache ();
468   if (from_tty)
469     printf_filtered (_("No core file now.\n"));
470 }
471 
472 /* Try to retrieve registers from a section in core_bfd, and supply
473    them to core_vec->core_read_registers, as the register set numbered
474    WHICH.
475 
476    If inferior_ptid's lwp member is zero, do the single-threaded
477    thing: look for a section named NAME.  If inferior_ptid's lwp
478    member is non-zero, do the multi-threaded thing: look for a section
479    named "NAME/LWP", where LWP is the shortest ASCII decimal
480    representation of inferior_ptid's lwp member.
481 
482    HUMAN_NAME is a human-readable name for the kind of registers the
483    NAME section contains, for use in error messages.
484 
485    If REQUIRED is non-zero, print an error if the core file doesn't
486    have a section by the appropriate name.  Otherwise, just do
487    nothing.  */
488 
489 static void
490 get_core_register_section (struct regcache *regcache,
491 			   const struct regset *regset,
492 			   const char *name,
493 			   int min_size,
494 			   int which,
495 			   const char *human_name,
496 			   int required)
497 {
498   static char *section_name = NULL;
499   struct bfd_section *section;
500   bfd_size_type size;
501   char *contents;
502 
503   xfree (section_name);
504 
505   if (ptid_get_lwp (inferior_ptid))
506     section_name = xstrprintf ("%s/%ld", name,
507 			       ptid_get_lwp (inferior_ptid));
508   else
509     section_name = xstrdup (name);
510 
511   section = bfd_get_section_by_name (core_bfd, section_name);
512   if (! section)
513     {
514       if (required)
515 	warning (_("Couldn't find %s registers in core file."),
516 		 human_name);
517       return;
518     }
519 
520   size = bfd_section_size (core_bfd, section);
521   if (size < min_size)
522     {
523       warning (_("Section `%s' in core file too small."), section_name);
524       return;
525     }
526 
527   contents = alloca (size);
528   if (! bfd_get_section_contents (core_bfd, section, contents,
529 				  (file_ptr) 0, size))
530     {
531       warning (_("Couldn't read %s registers from `%s' section in core file."),
532 	       human_name, name);
533       return;
534     }
535 
536   if (regset != NULL)
537     {
538       regset->supply_regset (regset, regcache, -1, contents, size);
539       return;
540     }
541 
542   gdb_assert (core_vec);
543   core_vec->core_read_registers (regcache, contents, size, which,
544 				 ((CORE_ADDR)
545 				  bfd_section_vma (core_bfd, section)));
546 }
547 
548 /* Callback for get_core_registers that handles a single core file
549    register note section. */
550 
551 static void
552 get_core_registers_cb (const char *sect_name, int size,
553 		       const struct regset *regset,
554 		       const char *human_name, void *cb_data)
555 {
556   struct regcache *regcache = (struct regcache *) cb_data;
557   int required = 0;
558 
559   if (strcmp (sect_name, ".reg") == 0)
560     {
561       required = 1;
562       if (human_name == NULL)
563 	human_name = "general-purpose";
564     }
565   else if (strcmp (sect_name, ".reg2") == 0)
566     {
567       if (human_name == NULL)
568 	human_name = "floating-point";
569     }
570 
571   /* The 'which' parameter is only used when no regset is provided.
572      Thus we just set it to -1. */
573   get_core_register_section (regcache, regset, sect_name,
574 			     size, -1, human_name, required);
575 }
576 
577 /* Get the registers out of a core file.  This is the machine-
578    independent part.  Fetch_core_registers is the machine-dependent
579    part, typically implemented in the xm-file for each
580    architecture.  */
581 
582 /* We just get all the registers, so we don't use regno.  */
583 
584 static void
585 get_core_registers (struct target_ops *ops,
586 		    struct regcache *regcache, int regno)
587 {
588   int i;
589   struct gdbarch *gdbarch;
590 
591   if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
592       && (core_vec == NULL || core_vec->core_read_registers == NULL))
593     {
594       fprintf_filtered (gdb_stderr,
595 		     "Can't fetch registers from this type of core file\n");
596       return;
597     }
598 
599   gdbarch = get_regcache_arch (regcache);
600   if (gdbarch_iterate_over_regset_sections_p (gdbarch))
601     gdbarch_iterate_over_regset_sections (gdbarch,
602 					  get_core_registers_cb,
603 					  (void *) regcache, NULL);
604   else
605     {
606       get_core_register_section (regcache, NULL,
607 				 ".reg", 0, 0, "general-purpose", 1);
608       get_core_register_section (regcache, NULL,
609 				 ".reg2", 0, 2, "floating-point", 0);
610     }
611 
612   /* Mark all registers not found in the core as unavailable.  */
613   for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
614     if (regcache_register_status (regcache, i) == REG_UNKNOWN)
615       regcache_raw_supply (regcache, i, NULL);
616 }
617 
618 static void
619 core_files_info (struct target_ops *t)
620 {
621   print_section_info (core_data, core_bfd);
622 }
623 
624 struct spuid_list
625 {
626   gdb_byte *buf;
627   ULONGEST offset;
628   LONGEST len;
629   ULONGEST pos;
630   ULONGEST written;
631 };
632 
633 static void
634 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
635 {
636   struct spuid_list *list = list_p;
637   enum bfd_endian byte_order
638     = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
639   int fd, pos = 0;
640 
641   sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
642   if (pos == 0)
643     return;
644 
645   if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
646     {
647       store_unsigned_integer (list->buf + list->pos - list->offset,
648 			      4, byte_order, fd);
649       list->written += 4;
650     }
651   list->pos += 4;
652 }
653 
654 /* Read siginfo data from the core, if possible.  Returns -1 on
655    failure.  Otherwise, returns the number of bytes read.  ABFD is the
656    core file's BFD; READBUF, OFFSET, and LEN are all as specified by
657    the to_xfer_partial interface.  */
658 
659 static LONGEST
660 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, ULONGEST len)
661 {
662   asection *section;
663   char *section_name;
664   const char *name = ".note.linuxcore.siginfo";
665 
666   if (ptid_get_lwp (inferior_ptid))
667     section_name = xstrprintf ("%s/%ld", name,
668 			       ptid_get_lwp (inferior_ptid));
669   else
670     section_name = xstrdup (name);
671 
672   section = bfd_get_section_by_name (abfd, section_name);
673   xfree (section_name);
674   if (section == NULL)
675     return -1;
676 
677   if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
678     return -1;
679 
680   return len;
681 }
682 
683 static enum target_xfer_status
684 core_xfer_partial (struct target_ops *ops, enum target_object object,
685 		   const char *annex, gdb_byte *readbuf,
686 		   const gdb_byte *writebuf, ULONGEST offset,
687 		   ULONGEST len, ULONGEST *xfered_len)
688 {
689   switch (object)
690     {
691     case TARGET_OBJECT_MEMORY:
692       return section_table_xfer_memory_partial (readbuf, writebuf,
693 						offset, len, xfered_len,
694 						core_data->sections,
695 						core_data->sections_end,
696 						NULL);
697 
698     case TARGET_OBJECT_AUXV:
699       if (readbuf)
700 	{
701 	  /* When the aux vector is stored in core file, BFD
702 	     represents this with a fake section called ".auxv".  */
703 
704 	  struct bfd_section *section;
705 	  bfd_size_type size;
706 
707 	  section = bfd_get_section_by_name (core_bfd, ".auxv");
708 	  if (section == NULL)
709 	    return TARGET_XFER_E_IO;
710 
711 	  size = bfd_section_size (core_bfd, section);
712 	  if (offset >= size)
713 	    return TARGET_XFER_EOF;
714 	  size -= offset;
715 	  if (size > len)
716 	    size = len;
717 
718 	  if (size == 0)
719 	    return TARGET_XFER_EOF;
720 	  if (!bfd_get_section_contents (core_bfd, section, readbuf,
721 					 (file_ptr) offset, size))
722 	    {
723 	      warning (_("Couldn't read NT_AUXV note in core file."));
724 	      return TARGET_XFER_E_IO;
725 	    }
726 
727 	  *xfered_len = (ULONGEST) size;
728 	  return TARGET_XFER_OK;
729 	}
730       return TARGET_XFER_E_IO;
731 
732     case TARGET_OBJECT_WCOOKIE:
733       if (readbuf)
734 	{
735 	  /* When the StackGhost cookie is stored in core file, BFD
736 	     represents this with a fake section called
737 	     ".wcookie".  */
738 
739 	  struct bfd_section *section;
740 	  bfd_size_type size;
741 
742 	  section = bfd_get_section_by_name (core_bfd, ".wcookie");
743 	  if (section == NULL)
744 	    return TARGET_XFER_E_IO;
745 
746 	  size = bfd_section_size (core_bfd, section);
747 	  if (offset >= size)
748 	    return TARGET_XFER_EOF;
749 	  size -= offset;
750 	  if (size > len)
751 	    size = len;
752 
753 	  if (size == 0)
754 	    return TARGET_XFER_EOF;
755 	  if (!bfd_get_section_contents (core_bfd, section, readbuf,
756 					 (file_ptr) offset, size))
757 	    {
758 	      warning (_("Couldn't read StackGhost cookie in core file."));
759 	      return TARGET_XFER_E_IO;
760 	    }
761 
762 	  *xfered_len = (ULONGEST) size;
763 	  return TARGET_XFER_OK;
764 
765 	}
766       return TARGET_XFER_E_IO;
767 
768     case TARGET_OBJECT_LIBRARIES:
769       if (core_gdbarch
770 	  && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
771 	{
772 	  if (writebuf)
773 	    return TARGET_XFER_E_IO;
774 	  else
775 	    {
776 	      *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
777 								readbuf,
778 								offset, len);
779 
780 	      if (*xfered_len == 0)
781 		return TARGET_XFER_EOF;
782 	      else
783 		return TARGET_XFER_OK;
784 	    }
785 	}
786       /* FALL THROUGH */
787 
788     case TARGET_OBJECT_LIBRARIES_AIX:
789       if (core_gdbarch
790 	  && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
791 	{
792 	  if (writebuf)
793 	    return TARGET_XFER_E_IO;
794 	  else
795 	    {
796 	      *xfered_len
797 		= gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
798 							  readbuf, offset,
799 							  len);
800 
801 	      if (*xfered_len == 0)
802 		return TARGET_XFER_EOF;
803 	      else
804 		return TARGET_XFER_OK;
805 	    }
806 	}
807       /* FALL THROUGH */
808 
809     case TARGET_OBJECT_SPU:
810       if (readbuf && annex)
811 	{
812 	  /* When the SPU contexts are stored in a core file, BFD
813 	     represents this with a fake section called
814 	     "SPU/<annex>".  */
815 
816 	  struct bfd_section *section;
817 	  bfd_size_type size;
818 	  char sectionstr[100];
819 
820 	  xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
821 
822 	  section = bfd_get_section_by_name (core_bfd, sectionstr);
823 	  if (section == NULL)
824 	    return TARGET_XFER_E_IO;
825 
826 	  size = bfd_section_size (core_bfd, section);
827 	  if (offset >= size)
828 	    return TARGET_XFER_EOF;
829 	  size -= offset;
830 	  if (size > len)
831 	    size = len;
832 
833 	  if (size == 0)
834 	    return TARGET_XFER_EOF;
835 	  if (!bfd_get_section_contents (core_bfd, section, readbuf,
836 					 (file_ptr) offset, size))
837 	    {
838 	      warning (_("Couldn't read SPU section in core file."));
839 	      return TARGET_XFER_E_IO;
840 	    }
841 
842 	  *xfered_len = (ULONGEST) size;
843 	  return TARGET_XFER_OK;
844 	}
845       else if (readbuf)
846 	{
847 	  /* NULL annex requests list of all present spuids.  */
848 	  struct spuid_list list;
849 
850 	  list.buf = readbuf;
851 	  list.offset = offset;
852 	  list.len = len;
853 	  list.pos = 0;
854 	  list.written = 0;
855 	  bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
856 
857 	  if (list.written == 0)
858 	    return TARGET_XFER_EOF;
859 	  else
860 	    {
861 	      *xfered_len = (ULONGEST) list.written;
862 	      return TARGET_XFER_OK;
863 	    }
864 	}
865       return TARGET_XFER_E_IO;
866 
867     case TARGET_OBJECT_SIGNAL_INFO:
868       if (readbuf)
869 	{
870 	  LONGEST l = get_core_siginfo (core_bfd, readbuf, offset, len);
871 
872 	  if (l > 0)
873 	    {
874 	      *xfered_len = len;
875 	      return TARGET_XFER_OK;
876 	    }
877 	}
878       return TARGET_XFER_E_IO;
879 
880     default:
881       return ops->beneath->to_xfer_partial (ops->beneath, object,
882 					    annex, readbuf,
883 					    writebuf, offset, len,
884 					    xfered_len);
885     }
886 }
887 
888 
889 /* If mourn is being called in all the right places, this could be say
890    `gdb internal error' (since generic_mourn calls
891    breakpoint_init_inferior).  */
892 
893 static int
894 ignore (struct target_ops *ops, struct gdbarch *gdbarch,
895 	struct bp_target_info *bp_tgt)
896 {
897   return 0;
898 }
899 
900 
901 /* Okay, let's be honest: threads gleaned from a core file aren't
902    exactly lively, are they?  On the other hand, if we don't claim
903    that each & every one is alive, then we don't get any of them
904    to appear in an "info thread" command, which is quite a useful
905    behaviour.
906  */
907 static int
908 core_thread_alive (struct target_ops *ops, ptid_t ptid)
909 {
910   return 1;
911 }
912 
913 /* Ask the current architecture what it knows about this core file.
914    That will be used, in turn, to pick a better architecture.  This
915    wrapper could be avoided if targets got a chance to specialize
916    core_ops.  */
917 
918 static const struct target_desc *
919 core_read_description (struct target_ops *target)
920 {
921   if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
922     {
923       const struct target_desc *result;
924 
925       result = gdbarch_core_read_description (core_gdbarch,
926 					      target, core_bfd);
927       if (result != NULL)
928 	return result;
929     }
930 
931   return target->beneath->to_read_description (target->beneath);
932 }
933 
934 static char *
935 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
936 {
937   static char buf[64];
938   struct inferior *inf;
939   int pid;
940 
941   /* The preferred way is to have a gdbarch/OS specific
942      implementation.  */
943   if (core_gdbarch
944       && gdbarch_core_pid_to_str_p (core_gdbarch))
945     return gdbarch_core_pid_to_str (core_gdbarch, ptid);
946 
947   /* Otherwise, if we don't have one, we'll just fallback to
948      "process", with normal_pid_to_str.  */
949 
950   /* Try the LWPID field first.  */
951   pid = ptid_get_lwp (ptid);
952   if (pid != 0)
953     return normal_pid_to_str (pid_to_ptid (pid));
954 
955   /* Otherwise, this isn't a "threaded" core -- use the PID field, but
956      only if it isn't a fake PID.  */
957   inf = find_inferior_ptid (ptid);
958   if (inf != NULL && !inf->fake_pid_p)
959     return normal_pid_to_str (ptid);
960 
961   /* No luck.  We simply don't have a valid PID to print.  */
962   xsnprintf (buf, sizeof buf, "<main task>");
963   return buf;
964 }
965 
966 static int
967 core_has_memory (struct target_ops *ops)
968 {
969   return (core_bfd != NULL);
970 }
971 
972 static int
973 core_has_stack (struct target_ops *ops)
974 {
975   return (core_bfd != NULL);
976 }
977 
978 static int
979 core_has_registers (struct target_ops *ops)
980 {
981   return (core_bfd != NULL);
982 }
983 
984 /* Implement the to_info_proc method.  */
985 
986 static void
987 core_info_proc (struct target_ops *ops, const char *args,
988 		enum info_proc_what request)
989 {
990   struct gdbarch *gdbarch = get_current_arch ();
991 
992   /* Since this is the core file target, call the 'core_info_proc'
993      method on gdbarch, not 'info_proc'.  */
994   if (gdbarch_core_info_proc_p (gdbarch))
995     gdbarch_core_info_proc (gdbarch, args, request);
996 }
997 
998 /* Fill in core_ops with its defined operations and properties.  */
999 
1000 static void
1001 init_core_ops (void)
1002 {
1003   core_ops.to_shortname = "core";
1004   core_ops.to_longname = "Local core dump file";
1005   core_ops.to_doc =
1006     "Use a core file as a target.  Specify the filename of the core file.";
1007   core_ops.to_open = core_open;
1008   core_ops.to_close = core_close;
1009   core_ops.to_detach = core_detach;
1010   core_ops.to_fetch_registers = get_core_registers;
1011   core_ops.to_xfer_partial = core_xfer_partial;
1012   core_ops.to_files_info = core_files_info;
1013   core_ops.to_insert_breakpoint = ignore;
1014   core_ops.to_remove_breakpoint = ignore;
1015   core_ops.to_thread_alive = core_thread_alive;
1016   core_ops.to_read_description = core_read_description;
1017   core_ops.to_pid_to_str = core_pid_to_str;
1018   core_ops.to_stratum = process_stratum;
1019   core_ops.to_has_memory = core_has_memory;
1020   core_ops.to_has_stack = core_has_stack;
1021   core_ops.to_has_registers = core_has_registers;
1022   core_ops.to_info_proc = core_info_proc;
1023   core_ops.to_magic = OPS_MAGIC;
1024 
1025   if (core_target)
1026     internal_error (__FILE__, __LINE__,
1027 		    _("init_core_ops: core target already exists (\"%s\")."),
1028 		    core_target->to_longname);
1029   core_target = &core_ops;
1030 }
1031 
1032 void
1033 _initialize_corelow (void)
1034 {
1035   init_core_ops ();
1036 
1037   add_target_with_completer (&core_ops, filename_completer);
1038 }
1039