1 /* Core dump and executable file functions below target vector, for GDB. 2 3 Copyright (C) 1986-2016 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "arch-utils.h" 22 #include <signal.h> 23 #include <fcntl.h> 24 #ifdef HAVE_SYS_FILE_H 25 #include <sys/file.h> /* needed for F_OK and friends */ 26 #endif 27 #include "frame.h" /* required by inferior.h */ 28 #include "inferior.h" 29 #include "infrun.h" 30 #include "symtab.h" 31 #include "command.h" 32 #include "bfd.h" 33 #include "target.h" 34 #include "gdbcore.h" 35 #include "gdbthread.h" 36 #include "regcache.h" 37 #include "regset.h" 38 #include "symfile.h" 39 #include "exec.h" 40 #include "readline/readline.h" 41 #include "solib.h" 42 #include "filenames.h" 43 #include "progspace.h" 44 #include "objfiles.h" 45 #include "gdb_bfd.h" 46 #include "completer.h" 47 #include "filestuff.h" 48 49 #ifndef O_LARGEFILE 50 #define O_LARGEFILE 0 51 #endif 52 53 /* List of all available core_fns. On gdb startup, each core file 54 register reader calls deprecated_add_core_fns() to register 55 information on each core format it is prepared to read. */ 56 57 static struct core_fns *core_file_fns = NULL; 58 59 /* The core_fns for a core file handler that is prepared to read the 60 core file currently open on core_bfd. */ 61 62 static struct core_fns *core_vec = NULL; 63 64 /* FIXME: kettenis/20031023: Eventually this variable should 65 disappear. */ 66 67 static struct gdbarch *core_gdbarch = NULL; 68 69 /* Per-core data. Currently, only the section table. Note that these 70 target sections are *not* mapped in the current address spaces' set 71 of target sections --- those should come only from pure executable 72 or shared library bfds. The core bfd sections are an 73 implementation detail of the core target, just like ptrace is for 74 unix child targets. */ 75 static struct target_section_table *core_data; 76 77 static void core_files_info (struct target_ops *); 78 79 static struct core_fns *sniff_core_bfd (bfd *); 80 81 static int gdb_check_format (bfd *); 82 83 static void core_close (struct target_ops *self); 84 85 static void core_close_cleanup (void *ignore); 86 87 static void add_to_thread_list (bfd *, asection *, void *); 88 89 static void init_core_ops (void); 90 91 void _initialize_corelow (void); 92 93 static struct target_ops core_ops; 94 95 /* An arbitrary identifier for the core inferior. */ 96 #define CORELOW_PID 1 97 98 /* Link a new core_fns into the global core_file_fns list. Called on 99 gdb startup by the _initialize routine in each core file register 100 reader, to register information about each format the reader is 101 prepared to handle. */ 102 103 void 104 deprecated_add_core_fns (struct core_fns *cf) 105 { 106 cf->next = core_file_fns; 107 core_file_fns = cf; 108 } 109 110 /* The default function that core file handlers can use to examine a 111 core file BFD and decide whether or not to accept the job of 112 reading the core file. */ 113 114 int 115 default_core_sniffer (struct core_fns *our_fns, bfd *abfd) 116 { 117 int result; 118 119 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour); 120 return (result); 121 } 122 123 /* Walk through the list of core functions to find a set that can 124 handle the core file open on ABFD. Returns pointer to set that is 125 selected. */ 126 127 static struct core_fns * 128 sniff_core_bfd (bfd *abfd) 129 { 130 struct core_fns *cf; 131 struct core_fns *yummy = NULL; 132 int matches = 0;; 133 134 /* Don't sniff if we have support for register sets in 135 CORE_GDBARCH. */ 136 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch)) 137 return NULL; 138 139 for (cf = core_file_fns; cf != NULL; cf = cf->next) 140 { 141 if (cf->core_sniffer (cf, abfd)) 142 { 143 yummy = cf; 144 matches++; 145 } 146 } 147 if (matches > 1) 148 { 149 warning (_("\"%s\": ambiguous core format, %d handlers match"), 150 bfd_get_filename (abfd), matches); 151 } 152 else if (matches == 0) 153 error (_("\"%s\": no core file handler recognizes format"), 154 bfd_get_filename (abfd)); 155 156 return (yummy); 157 } 158 159 /* The default is to reject every core file format we see. Either 160 BFD has to recognize it, or we have to provide a function in the 161 core file handler that recognizes it. */ 162 163 int 164 default_check_format (bfd *abfd) 165 { 166 return (0); 167 } 168 169 /* Attempt to recognize core file formats that BFD rejects. */ 170 171 static int 172 gdb_check_format (bfd *abfd) 173 { 174 struct core_fns *cf; 175 176 for (cf = core_file_fns; cf != NULL; cf = cf->next) 177 { 178 if (cf->check_format (abfd)) 179 { 180 return (1); 181 } 182 } 183 return (0); 184 } 185 186 /* Discard all vestiges of any previous core file and mark data and 187 stack spaces as empty. */ 188 189 static void 190 core_close (struct target_ops *self) 191 { 192 if (core_bfd) 193 { 194 int pid = ptid_get_pid (inferior_ptid); 195 inferior_ptid = null_ptid; /* Avoid confusion from thread 196 stuff. */ 197 if (pid != 0) 198 exit_inferior_silent (pid); 199 200 /* Clear out solib state while the bfd is still open. See 201 comments in clear_solib in solib.c. */ 202 clear_solib (); 203 204 if (core_data) 205 { 206 xfree (core_data->sections); 207 xfree (core_data); 208 core_data = NULL; 209 } 210 211 gdb_bfd_unref (core_bfd); 212 core_bfd = NULL; 213 } 214 core_vec = NULL; 215 core_gdbarch = NULL; 216 } 217 218 static void 219 core_close_cleanup (void *ignore) 220 { 221 core_close (NULL); 222 } 223 224 /* Look for sections whose names start with `.reg/' so that we can 225 extract the list of threads in a core file. */ 226 227 static void 228 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg) 229 { 230 ptid_t ptid; 231 int core_tid; 232 int pid, lwpid; 233 asection *reg_sect = (asection *) reg_sect_arg; 234 int fake_pid_p = 0; 235 struct inferior *inf; 236 237 if (!startswith (bfd_section_name (abfd, asect), ".reg/")) 238 return; 239 240 core_tid = atoi (bfd_section_name (abfd, asect) + 5); 241 242 pid = bfd_core_file_pid (core_bfd); 243 if (pid == 0) 244 { 245 fake_pid_p = 1; 246 pid = CORELOW_PID; 247 } 248 249 lwpid = core_tid; 250 251 inf = current_inferior (); 252 if (inf->pid == 0) 253 { 254 inferior_appeared (inf, pid); 255 inf->fake_pid_p = fake_pid_p; 256 } 257 258 ptid = ptid_build (pid, lwpid, 0); 259 260 add_thread (ptid); 261 262 /* Warning, Will Robinson, looking at BFD private data! */ 263 264 if (reg_sect != NULL 265 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */ 266 inferior_ptid = ptid; /* Yes, make it current. */ 267 } 268 269 /* This routine opens and sets up the core file bfd. */ 270 271 static void 272 core_open (const char *arg, int from_tty) 273 { 274 const char *p; 275 int siggy; 276 struct cleanup *old_chain; 277 char *temp; 278 bfd *temp_bfd; 279 int scratch_chan; 280 int flags; 281 char *filename; 282 283 target_preopen (from_tty); 284 if (!arg) 285 { 286 if (core_bfd) 287 error (_("No core file specified. (Use `detach' " 288 "to stop debugging a core file.)")); 289 else 290 error (_("No core file specified.")); 291 } 292 293 filename = tilde_expand (arg); 294 if (!IS_ABSOLUTE_PATH (filename)) 295 { 296 temp = concat (current_directory, "/", 297 filename, (char *) NULL); 298 xfree (filename); 299 filename = temp; 300 } 301 302 old_chain = make_cleanup (xfree, filename); 303 304 flags = O_BINARY | O_LARGEFILE; 305 if (write_files) 306 flags |= O_RDWR; 307 else 308 flags |= O_RDONLY; 309 scratch_chan = gdb_open_cloexec (filename, flags, 0); 310 if (scratch_chan < 0) 311 perror_with_name (filename); 312 313 temp_bfd = gdb_bfd_fopen (filename, gnutarget, 314 write_files ? FOPEN_RUB : FOPEN_RB, 315 scratch_chan); 316 if (temp_bfd == NULL) 317 perror_with_name (filename); 318 319 if (!bfd_check_format (temp_bfd, bfd_core) 320 && !gdb_check_format (temp_bfd)) 321 { 322 /* Do it after the err msg */ 323 /* FIXME: should be checking for errors from bfd_close (for one 324 thing, on error it does not free all the storage associated 325 with the bfd). */ 326 make_cleanup_bfd_unref (temp_bfd); 327 error (_("\"%s\" is not a core dump: %s"), 328 filename, bfd_errmsg (bfd_get_error ())); 329 } 330 331 /* Looks semi-reasonable. Toss the old core file and work on the 332 new. */ 333 334 do_cleanups (old_chain); 335 unpush_target (&core_ops); 336 core_bfd = temp_bfd; 337 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/); 338 339 core_gdbarch = gdbarch_from_bfd (core_bfd); 340 341 /* Find a suitable core file handler to munch on core_bfd */ 342 core_vec = sniff_core_bfd (core_bfd); 343 344 validate_files (); 345 346 core_data = XCNEW (struct target_section_table); 347 348 /* Find the data section */ 349 if (build_section_table (core_bfd, 350 &core_data->sections, 351 &core_data->sections_end)) 352 error (_("\"%s\": Can't find sections: %s"), 353 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ())); 354 355 /* If we have no exec file, try to set the architecture from the 356 core file. We don't do this unconditionally since an exec file 357 typically contains more information that helps us determine the 358 architecture than a core file. */ 359 if (!exec_bfd) 360 set_gdbarch_from_file (core_bfd); 361 362 push_target (&core_ops); 363 discard_cleanups (old_chain); 364 365 /* Do this before acknowledging the inferior, so if 366 post_create_inferior throws (can happen easilly if you're loading 367 a core file with the wrong exec), we aren't left with threads 368 from the previous inferior. */ 369 init_thread_list (); 370 371 inferior_ptid = null_ptid; 372 373 /* Need to flush the register cache (and the frame cache) from a 374 previous debug session. If inferior_ptid ends up the same as the 375 last debug session --- e.g., b foo; run; gcore core1; step; gcore 376 core2; core core1; core core2 --- then there's potential for 377 get_current_regcache to return the cached regcache of the 378 previous session, and the frame cache being stale. */ 379 registers_changed (); 380 381 /* Build up thread list from BFD sections, and possibly set the 382 current thread to the .reg/NN section matching the .reg 383 section. */ 384 bfd_map_over_sections (core_bfd, add_to_thread_list, 385 bfd_get_section_by_name (core_bfd, ".reg")); 386 387 if (ptid_equal (inferior_ptid, null_ptid)) 388 { 389 /* Either we found no .reg/NN section, and hence we have a 390 non-threaded core (single-threaded, from gdb's perspective), 391 or for some reason add_to_thread_list couldn't determine 392 which was the "main" thread. The latter case shouldn't 393 usually happen, but we're dealing with input here, which can 394 always be broken in different ways. */ 395 struct thread_info *thread = first_thread_of_process (-1); 396 397 if (thread == NULL) 398 { 399 inferior_appeared (current_inferior (), CORELOW_PID); 400 inferior_ptid = pid_to_ptid (CORELOW_PID); 401 add_thread_silent (inferior_ptid); 402 } 403 else 404 switch_to_thread (thread->ptid); 405 } 406 407 post_create_inferior (&core_ops, from_tty); 408 409 /* Now go through the target stack looking for threads since there 410 may be a thread_stratum target loaded on top of target core by 411 now. The layer above should claim threads found in the BFD 412 sections. */ 413 TRY 414 { 415 target_update_thread_list (); 416 } 417 418 CATCH (except, RETURN_MASK_ERROR) 419 { 420 exception_print (gdb_stderr, except); 421 } 422 END_CATCH 423 424 p = bfd_core_file_failing_command (core_bfd); 425 if (p) 426 printf_filtered (_("Core was generated by `%s'.\n"), p); 427 428 /* Clearing any previous state of convenience variables. */ 429 clear_exit_convenience_vars (); 430 431 siggy = bfd_core_file_failing_signal (core_bfd); 432 if (siggy > 0) 433 { 434 /* If we don't have a CORE_GDBARCH to work with, assume a native 435 core (map gdb_signal from host signals). If we do have 436 CORE_GDBARCH to work with, but no gdb_signal_from_target 437 implementation for that gdbarch, as a fallback measure, 438 assume the host signal mapping. It'll be correct for native 439 cores, but most likely incorrect for cross-cores. */ 440 enum gdb_signal sig = (core_gdbarch != NULL 441 && gdbarch_gdb_signal_from_target_p (core_gdbarch) 442 ? gdbarch_gdb_signal_from_target (core_gdbarch, 443 siggy) 444 : gdb_signal_from_host (siggy)); 445 446 printf_filtered (_("Program terminated with signal %s, %s.\n"), 447 gdb_signal_to_name (sig), gdb_signal_to_string (sig)); 448 449 /* Set the value of the internal variable $_exitsignal, 450 which holds the signal uncaught by the inferior. */ 451 set_internalvar_integer (lookup_internalvar ("_exitsignal"), 452 siggy); 453 } 454 455 /* Fetch all registers from core file. */ 456 target_fetch_registers (get_current_regcache (), -1); 457 458 /* Now, set up the frame cache, and print the top of stack. */ 459 reinit_frame_cache (); 460 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1); 461 462 /* Current thread should be NUM 1 but the user does not know that. 463 If a program is single threaded gdb in general does not mention 464 anything about threads. That is why the test is >= 2. */ 465 if (thread_count () >= 2) 466 { 467 TRY 468 { 469 thread_command (NULL, from_tty); 470 } 471 CATCH (except, RETURN_MASK_ERROR) 472 { 473 exception_print (gdb_stderr, except); 474 } 475 END_CATCH 476 } 477 } 478 479 static void 480 core_detach (struct target_ops *ops, const char *args, int from_tty) 481 { 482 if (args) 483 error (_("Too many arguments")); 484 unpush_target (ops); 485 reinit_frame_cache (); 486 if (from_tty) 487 printf_filtered (_("No core file now.\n")); 488 } 489 490 /* Try to retrieve registers from a section in core_bfd, and supply 491 them to core_vec->core_read_registers, as the register set numbered 492 WHICH. 493 494 If inferior_ptid's lwp member is zero, do the single-threaded 495 thing: look for a section named NAME. If inferior_ptid's lwp 496 member is non-zero, do the multi-threaded thing: look for a section 497 named "NAME/LWP", where LWP is the shortest ASCII decimal 498 representation of inferior_ptid's lwp member. 499 500 HUMAN_NAME is a human-readable name for the kind of registers the 501 NAME section contains, for use in error messages. 502 503 If REQUIRED is non-zero, print an error if the core file doesn't 504 have a section by the appropriate name. Otherwise, just do 505 nothing. */ 506 507 static void 508 get_core_register_section (struct regcache *regcache, 509 const struct regset *regset, 510 const char *name, 511 int min_size, 512 int which, 513 const char *human_name, 514 int required) 515 { 516 static char *section_name = NULL; 517 struct bfd_section *section; 518 bfd_size_type size; 519 char *contents; 520 521 xfree (section_name); 522 523 if (ptid_get_lwp (inferior_ptid)) 524 section_name = xstrprintf ("%s/%ld", name, 525 ptid_get_lwp (inferior_ptid)); 526 else 527 section_name = xstrdup (name); 528 529 section = bfd_get_section_by_name (core_bfd, section_name); 530 if (! section) 531 { 532 if (required) 533 warning (_("Couldn't find %s registers in core file."), 534 human_name); 535 return; 536 } 537 538 size = bfd_section_size (core_bfd, section); 539 if (size < min_size) 540 { 541 warning (_("Section `%s' in core file too small."), section_name); 542 return; 543 } 544 if (size != min_size && !(regset->flags & REGSET_VARIABLE_SIZE)) 545 { 546 warning (_("Unexpected size of section `%s' in core file."), 547 section_name); 548 } 549 550 contents = (char *) alloca (size); 551 if (! bfd_get_section_contents (core_bfd, section, contents, 552 (file_ptr) 0, size)) 553 { 554 warning (_("Couldn't read %s registers from `%s' section in core file."), 555 human_name, name); 556 return; 557 } 558 559 if (regset != NULL) 560 { 561 regset->supply_regset (regset, regcache, -1, contents, size); 562 return; 563 } 564 565 gdb_assert (core_vec); 566 core_vec->core_read_registers (regcache, contents, size, which, 567 ((CORE_ADDR) 568 bfd_section_vma (core_bfd, section))); 569 } 570 571 /* Callback for get_core_registers that handles a single core file 572 register note section. */ 573 574 static void 575 get_core_registers_cb (const char *sect_name, int size, 576 const struct regset *regset, 577 const char *human_name, void *cb_data) 578 { 579 struct regcache *regcache = (struct regcache *) cb_data; 580 int required = 0; 581 582 if (strcmp (sect_name, ".reg") == 0) 583 { 584 required = 1; 585 if (human_name == NULL) 586 human_name = "general-purpose"; 587 } 588 else if (strcmp (sect_name, ".reg2") == 0) 589 { 590 if (human_name == NULL) 591 human_name = "floating-point"; 592 } 593 594 /* The 'which' parameter is only used when no regset is provided. 595 Thus we just set it to -1. */ 596 get_core_register_section (regcache, regset, sect_name, 597 size, -1, human_name, required); 598 } 599 600 /* Get the registers out of a core file. This is the machine- 601 independent part. Fetch_core_registers is the machine-dependent 602 part, typically implemented in the xm-file for each 603 architecture. */ 604 605 /* We just get all the registers, so we don't use regno. */ 606 607 static void 608 get_core_registers (struct target_ops *ops, 609 struct regcache *regcache, int regno) 610 { 611 int i; 612 struct gdbarch *gdbarch; 613 614 if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch)) 615 && (core_vec == NULL || core_vec->core_read_registers == NULL)) 616 { 617 fprintf_filtered (gdb_stderr, 618 "Can't fetch registers from this type of core file\n"); 619 return; 620 } 621 622 gdbarch = get_regcache_arch (regcache); 623 if (gdbarch_iterate_over_regset_sections_p (gdbarch)) 624 gdbarch_iterate_over_regset_sections (gdbarch, 625 get_core_registers_cb, 626 (void *) regcache, NULL); 627 else 628 { 629 get_core_register_section (regcache, NULL, 630 ".reg", 0, 0, "general-purpose", 1); 631 get_core_register_section (regcache, NULL, 632 ".reg2", 0, 2, "floating-point", 0); 633 } 634 635 /* Mark all registers not found in the core as unavailable. */ 636 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++) 637 if (regcache_register_status (regcache, i) == REG_UNKNOWN) 638 regcache_raw_supply (regcache, i, NULL); 639 } 640 641 static void 642 core_files_info (struct target_ops *t) 643 { 644 print_section_info (core_data, core_bfd); 645 } 646 647 struct spuid_list 648 { 649 gdb_byte *buf; 650 ULONGEST offset; 651 LONGEST len; 652 ULONGEST pos; 653 ULONGEST written; 654 }; 655 656 static void 657 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p) 658 { 659 struct spuid_list *list = (struct spuid_list *) list_p; 660 enum bfd_endian byte_order 661 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE; 662 int fd, pos = 0; 663 664 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos); 665 if (pos == 0) 666 return; 667 668 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len) 669 { 670 store_unsigned_integer (list->buf + list->pos - list->offset, 671 4, byte_order, fd); 672 list->written += 4; 673 } 674 list->pos += 4; 675 } 676 677 /* Read siginfo data from the core, if possible. Returns -1 on 678 failure. Otherwise, returns the number of bytes read. ABFD is the 679 core file's BFD; READBUF, OFFSET, and LEN are all as specified by 680 the to_xfer_partial interface. */ 681 682 static LONGEST 683 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, ULONGEST len) 684 { 685 asection *section; 686 char *section_name; 687 const char *name = ".note.linuxcore.siginfo"; 688 689 if (ptid_get_lwp (inferior_ptid)) 690 section_name = xstrprintf ("%s/%ld", name, 691 ptid_get_lwp (inferior_ptid)); 692 else 693 section_name = xstrdup (name); 694 695 section = bfd_get_section_by_name (abfd, section_name); 696 xfree (section_name); 697 if (section == NULL) 698 return -1; 699 700 if (!bfd_get_section_contents (abfd, section, readbuf, offset, len)) 701 return -1; 702 703 return len; 704 } 705 706 static enum target_xfer_status 707 core_xfer_partial (struct target_ops *ops, enum target_object object, 708 const char *annex, gdb_byte *readbuf, 709 const gdb_byte *writebuf, ULONGEST offset, 710 ULONGEST len, ULONGEST *xfered_len) 711 { 712 switch (object) 713 { 714 case TARGET_OBJECT_MEMORY: 715 return section_table_xfer_memory_partial (readbuf, writebuf, 716 offset, len, xfered_len, 717 core_data->sections, 718 core_data->sections_end, 719 NULL); 720 721 case TARGET_OBJECT_AUXV: 722 if (readbuf) 723 { 724 /* When the aux vector is stored in core file, BFD 725 represents this with a fake section called ".auxv". */ 726 727 struct bfd_section *section; 728 bfd_size_type size; 729 730 section = bfd_get_section_by_name (core_bfd, ".auxv"); 731 if (section == NULL) 732 return TARGET_XFER_E_IO; 733 734 size = bfd_section_size (core_bfd, section); 735 if (offset >= size) 736 return TARGET_XFER_EOF; 737 size -= offset; 738 if (size > len) 739 size = len; 740 741 if (size == 0) 742 return TARGET_XFER_EOF; 743 if (!bfd_get_section_contents (core_bfd, section, readbuf, 744 (file_ptr) offset, size)) 745 { 746 warning (_("Couldn't read NT_AUXV note in core file.")); 747 return TARGET_XFER_E_IO; 748 } 749 750 *xfered_len = (ULONGEST) size; 751 return TARGET_XFER_OK; 752 } 753 return TARGET_XFER_E_IO; 754 755 case TARGET_OBJECT_WCOOKIE: 756 if (readbuf) 757 { 758 /* When the StackGhost cookie is stored in core file, BFD 759 represents this with a fake section called 760 ".wcookie". */ 761 762 struct bfd_section *section; 763 bfd_size_type size; 764 765 section = bfd_get_section_by_name (core_bfd, ".wcookie"); 766 if (section == NULL) 767 return TARGET_XFER_E_IO; 768 769 size = bfd_section_size (core_bfd, section); 770 if (offset >= size) 771 return TARGET_XFER_EOF; 772 size -= offset; 773 if (size > len) 774 size = len; 775 776 if (size == 0) 777 return TARGET_XFER_EOF; 778 if (!bfd_get_section_contents (core_bfd, section, readbuf, 779 (file_ptr) offset, size)) 780 { 781 warning (_("Couldn't read StackGhost cookie in core file.")); 782 return TARGET_XFER_E_IO; 783 } 784 785 *xfered_len = (ULONGEST) size; 786 return TARGET_XFER_OK; 787 788 } 789 return TARGET_XFER_E_IO; 790 791 case TARGET_OBJECT_LIBRARIES: 792 if (core_gdbarch 793 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch)) 794 { 795 if (writebuf) 796 return TARGET_XFER_E_IO; 797 else 798 { 799 *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch, 800 readbuf, 801 offset, len); 802 803 if (*xfered_len == 0) 804 return TARGET_XFER_EOF; 805 else 806 return TARGET_XFER_OK; 807 } 808 } 809 /* FALL THROUGH */ 810 811 case TARGET_OBJECT_LIBRARIES_AIX: 812 if (core_gdbarch 813 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch)) 814 { 815 if (writebuf) 816 return TARGET_XFER_E_IO; 817 else 818 { 819 *xfered_len 820 = gdbarch_core_xfer_shared_libraries_aix (core_gdbarch, 821 readbuf, offset, 822 len); 823 824 if (*xfered_len == 0) 825 return TARGET_XFER_EOF; 826 else 827 return TARGET_XFER_OK; 828 } 829 } 830 /* FALL THROUGH */ 831 832 case TARGET_OBJECT_SPU: 833 if (readbuf && annex) 834 { 835 /* When the SPU contexts are stored in a core file, BFD 836 represents this with a fake section called 837 "SPU/<annex>". */ 838 839 struct bfd_section *section; 840 bfd_size_type size; 841 char sectionstr[100]; 842 843 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex); 844 845 section = bfd_get_section_by_name (core_bfd, sectionstr); 846 if (section == NULL) 847 return TARGET_XFER_E_IO; 848 849 size = bfd_section_size (core_bfd, section); 850 if (offset >= size) 851 return TARGET_XFER_EOF; 852 size -= offset; 853 if (size > len) 854 size = len; 855 856 if (size == 0) 857 return TARGET_XFER_EOF; 858 if (!bfd_get_section_contents (core_bfd, section, readbuf, 859 (file_ptr) offset, size)) 860 { 861 warning (_("Couldn't read SPU section in core file.")); 862 return TARGET_XFER_E_IO; 863 } 864 865 *xfered_len = (ULONGEST) size; 866 return TARGET_XFER_OK; 867 } 868 else if (readbuf) 869 { 870 /* NULL annex requests list of all present spuids. */ 871 struct spuid_list list; 872 873 list.buf = readbuf; 874 list.offset = offset; 875 list.len = len; 876 list.pos = 0; 877 list.written = 0; 878 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list); 879 880 if (list.written == 0) 881 return TARGET_XFER_EOF; 882 else 883 { 884 *xfered_len = (ULONGEST) list.written; 885 return TARGET_XFER_OK; 886 } 887 } 888 return TARGET_XFER_E_IO; 889 890 case TARGET_OBJECT_SIGNAL_INFO: 891 if (readbuf) 892 { 893 LONGEST l = get_core_siginfo (core_bfd, readbuf, offset, len); 894 895 if (l > 0) 896 { 897 *xfered_len = len; 898 return TARGET_XFER_OK; 899 } 900 } 901 return TARGET_XFER_E_IO; 902 903 default: 904 return ops->beneath->to_xfer_partial (ops->beneath, object, 905 annex, readbuf, 906 writebuf, offset, len, 907 xfered_len); 908 } 909 } 910 911 912 /* If mourn is being called in all the right places, this could be say 913 `gdb internal error' (since generic_mourn calls 914 breakpoint_init_inferior). */ 915 916 static int 917 ignore (struct target_ops *ops, struct gdbarch *gdbarch, 918 struct bp_target_info *bp_tgt) 919 { 920 return 0; 921 } 922 923 /* Implement the to_remove_breakpoint method. */ 924 925 static int 926 core_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch, 927 struct bp_target_info *bp_tgt, 928 enum remove_bp_reason reason) 929 { 930 return 0; 931 } 932 933 934 /* Okay, let's be honest: threads gleaned from a core file aren't 935 exactly lively, are they? On the other hand, if we don't claim 936 that each & every one is alive, then we don't get any of them 937 to appear in an "info thread" command, which is quite a useful 938 behaviour. 939 */ 940 static int 941 core_thread_alive (struct target_ops *ops, ptid_t ptid) 942 { 943 return 1; 944 } 945 946 /* Ask the current architecture what it knows about this core file. 947 That will be used, in turn, to pick a better architecture. This 948 wrapper could be avoided if targets got a chance to specialize 949 core_ops. */ 950 951 static const struct target_desc * 952 core_read_description (struct target_ops *target) 953 { 954 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch)) 955 { 956 const struct target_desc *result; 957 958 result = gdbarch_core_read_description (core_gdbarch, 959 target, core_bfd); 960 if (result != NULL) 961 return result; 962 } 963 964 return target->beneath->to_read_description (target->beneath); 965 } 966 967 static char * 968 core_pid_to_str (struct target_ops *ops, ptid_t ptid) 969 { 970 static char buf[64]; 971 struct inferior *inf; 972 int pid; 973 974 /* The preferred way is to have a gdbarch/OS specific 975 implementation. */ 976 if (core_gdbarch 977 && gdbarch_core_pid_to_str_p (core_gdbarch)) 978 return gdbarch_core_pid_to_str (core_gdbarch, ptid); 979 980 /* Otherwise, if we don't have one, we'll just fallback to 981 "process", with normal_pid_to_str. */ 982 983 /* Try the LWPID field first. */ 984 pid = ptid_get_lwp (ptid); 985 if (pid != 0) 986 return normal_pid_to_str (pid_to_ptid (pid)); 987 988 /* Otherwise, this isn't a "threaded" core -- use the PID field, but 989 only if it isn't a fake PID. */ 990 inf = find_inferior_ptid (ptid); 991 if (inf != NULL && !inf->fake_pid_p) 992 return normal_pid_to_str (ptid); 993 994 /* No luck. We simply don't have a valid PID to print. */ 995 xsnprintf (buf, sizeof buf, "<main task>"); 996 return buf; 997 } 998 999 static const char * 1000 core_thread_name (struct target_ops *self, struct thread_info *thr) 1001 { 1002 if (core_gdbarch 1003 && gdbarch_core_thread_name_p (core_gdbarch)) 1004 return gdbarch_core_thread_name (core_gdbarch, thr); 1005 return NULL; 1006 } 1007 1008 static int 1009 core_has_memory (struct target_ops *ops) 1010 { 1011 return (core_bfd != NULL); 1012 } 1013 1014 static int 1015 core_has_stack (struct target_ops *ops) 1016 { 1017 return (core_bfd != NULL); 1018 } 1019 1020 static int 1021 core_has_registers (struct target_ops *ops) 1022 { 1023 return (core_bfd != NULL); 1024 } 1025 1026 /* Implement the to_info_proc method. */ 1027 1028 static void 1029 core_info_proc (struct target_ops *ops, const char *args, 1030 enum info_proc_what request) 1031 { 1032 struct gdbarch *gdbarch = get_current_arch (); 1033 1034 /* Since this is the core file target, call the 'core_info_proc' 1035 method on gdbarch, not 'info_proc'. */ 1036 if (gdbarch_core_info_proc_p (gdbarch)) 1037 gdbarch_core_info_proc (gdbarch, args, request); 1038 } 1039 1040 /* Fill in core_ops with its defined operations and properties. */ 1041 1042 static void 1043 init_core_ops (void) 1044 { 1045 core_ops.to_shortname = "core"; 1046 core_ops.to_longname = "Local core dump file"; 1047 core_ops.to_doc = 1048 "Use a core file as a target. Specify the filename of the core file."; 1049 core_ops.to_open = core_open; 1050 core_ops.to_close = core_close; 1051 core_ops.to_detach = core_detach; 1052 core_ops.to_fetch_registers = get_core_registers; 1053 core_ops.to_xfer_partial = core_xfer_partial; 1054 core_ops.to_files_info = core_files_info; 1055 core_ops.to_insert_breakpoint = ignore; 1056 core_ops.to_remove_breakpoint = core_remove_breakpoint; 1057 core_ops.to_thread_alive = core_thread_alive; 1058 core_ops.to_read_description = core_read_description; 1059 core_ops.to_pid_to_str = core_pid_to_str; 1060 core_ops.to_thread_name = core_thread_name; 1061 core_ops.to_stratum = process_stratum; 1062 core_ops.to_has_memory = core_has_memory; 1063 core_ops.to_has_stack = core_has_stack; 1064 core_ops.to_has_registers = core_has_registers; 1065 core_ops.to_info_proc = core_info_proc; 1066 core_ops.to_magic = OPS_MAGIC; 1067 1068 if (core_target) 1069 internal_error (__FILE__, __LINE__, 1070 _("init_core_ops: core target already exists (\"%s\")."), 1071 core_target->to_longname); 1072 core_target = &core_ops; 1073 } 1074 1075 void 1076 _initialize_corelow (void) 1077 { 1078 init_core_ops (); 1079 1080 add_target_with_completer (&core_ops, filename_completer); 1081 } 1082