xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/corelow.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /* Core dump and executable file functions below target vector, for GDB.
2 
3    Copyright (C) 1986-2019 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #include "frame.h"		/* required by inferior.h */
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "symtab.h"
28 #include "command.h"
29 #include "bfd.h"
30 #include "target.h"
31 #include "process-stratum-target.h"
32 #include "gdbcore.h"
33 #include "gdbthread.h"
34 #include "regcache.h"
35 #include "regset.h"
36 #include "symfile.h"
37 #include "exec.h"
38 #include "readline/readline.h"
39 #include "solib.h"
40 #include "filenames.h"
41 #include "progspace.h"
42 #include "objfiles.h"
43 #include "gdb_bfd.h"
44 #include "completer.h"
45 #include "common/filestuff.h"
46 
47 #ifndef O_LARGEFILE
48 #define O_LARGEFILE 0
49 #endif
50 
51 static core_fns *sniff_core_bfd (gdbarch *core_gdbarch,
52 				 bfd *abfd);
53 
54 /* The core file target.  */
55 
56 static const target_info core_target_info = {
57   "core",
58   N_("Local core dump file"),
59   N_("Use a core file as a target.  Specify the filename of the core file.")
60 };
61 
62 class core_target final : public process_stratum_target
63 {
64 public:
65   core_target ();
66   ~core_target () override;
67 
68   const target_info &info () const override
69   { return core_target_info; }
70 
71   void close () override;
72   void detach (inferior *, int) override;
73   void fetch_registers (struct regcache *, int) override;
74 
75   enum target_xfer_status xfer_partial (enum target_object object,
76 					const char *annex,
77 					gdb_byte *readbuf,
78 					const gdb_byte *writebuf,
79 					ULONGEST offset, ULONGEST len,
80 					ULONGEST *xfered_len) override;
81   void files_info () override;
82 
83   bool thread_alive (ptid_t ptid) override;
84   const struct target_desc *read_description () override;
85 
86   const char *pid_to_str (ptid_t) override;
87 
88   const char *thread_name (struct thread_info *) override;
89 
90   bool has_all_memory () override { return false; }
91   bool has_memory () override;
92   bool has_stack () override;
93   bool has_registers () override;
94   bool has_execution (ptid_t) override { return false; }
95 
96   bool info_proc (const char *, enum info_proc_what) override;
97 
98   /* A few helpers.  */
99 
100   /* Getter, see variable definition.  */
101   struct gdbarch *core_gdbarch ()
102   {
103     return m_core_gdbarch;
104   }
105 
106   /* See definition.  */
107   void get_core_register_section (struct regcache *regcache,
108 				  const struct regset *regset,
109 				  const char *name,
110 				  int section_min_size,
111 				  int which,
112 				  const char *human_name,
113 				  bool required);
114 
115 private: /* per-core data */
116 
117   /* The core's section table.  Note that these target sections are
118      *not* mapped in the current address spaces' set of target
119      sections --- those should come only from pure executable or
120      shared library bfds.  The core bfd sections are an implementation
121      detail of the core target, just like ptrace is for unix child
122      targets.  */
123   target_section_table m_core_section_table {};
124 
125   /* The core_fns for a core file handler that is prepared to read the
126      core file currently open on core_bfd.  */
127   core_fns *m_core_vec = NULL;
128 
129   /* FIXME: kettenis/20031023: Eventually this field should
130      disappear.  */
131   struct gdbarch *m_core_gdbarch = NULL;
132 };
133 
134 core_target::core_target ()
135 {
136   m_core_gdbarch = gdbarch_from_bfd (core_bfd);
137 
138   /* Find a suitable core file handler to munch on core_bfd */
139   m_core_vec = sniff_core_bfd (m_core_gdbarch, core_bfd);
140 
141   /* Find the data section */
142   if (build_section_table (core_bfd,
143 			   &m_core_section_table.sections,
144 			   &m_core_section_table.sections_end))
145     error (_("\"%s\": Can't find sections: %s"),
146 	   bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
147 }
148 
149 core_target::~core_target ()
150 {
151   xfree (m_core_section_table.sections);
152 }
153 
154 /* List of all available core_fns.  On gdb startup, each core file
155    register reader calls deprecated_add_core_fns() to register
156    information on each core format it is prepared to read.  */
157 
158 static struct core_fns *core_file_fns = NULL;
159 
160 static int gdb_check_format (bfd *);
161 
162 static void add_to_thread_list (bfd *, asection *, void *);
163 
164 /* An arbitrary identifier for the core inferior.  */
165 #define CORELOW_PID 1
166 
167 /* Link a new core_fns into the global core_file_fns list.  Called on
168    gdb startup by the _initialize routine in each core file register
169    reader, to register information about each format the reader is
170    prepared to handle.  */
171 
172 void
173 deprecated_add_core_fns (struct core_fns *cf)
174 {
175   cf->next = core_file_fns;
176   core_file_fns = cf;
177 }
178 
179 /* The default function that core file handlers can use to examine a
180    core file BFD and decide whether or not to accept the job of
181    reading the core file.  */
182 
183 int
184 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
185 {
186   int result;
187 
188   result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
189   return (result);
190 }
191 
192 /* Walk through the list of core functions to find a set that can
193    handle the core file open on ABFD.  Returns pointer to set that is
194    selected.  */
195 
196 static struct core_fns *
197 sniff_core_bfd (struct gdbarch *core_gdbarch, bfd *abfd)
198 {
199   struct core_fns *cf;
200   struct core_fns *yummy = NULL;
201   int matches = 0;
202 
203   /* Don't sniff if we have support for register sets in
204      CORE_GDBARCH.  */
205   if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
206     return NULL;
207 
208   for (cf = core_file_fns; cf != NULL; cf = cf->next)
209     {
210       if (cf->core_sniffer (cf, abfd))
211 	{
212 	  yummy = cf;
213 	  matches++;
214 	}
215     }
216   if (matches > 1)
217     {
218       warning (_("\"%s\": ambiguous core format, %d handlers match"),
219 	       bfd_get_filename (abfd), matches);
220     }
221   else if (matches == 0)
222     error (_("\"%s\": no core file handler recognizes format"),
223 	   bfd_get_filename (abfd));
224 
225   return (yummy);
226 }
227 
228 /* The default is to reject every core file format we see.  Either
229    BFD has to recognize it, or we have to provide a function in the
230    core file handler that recognizes it.  */
231 
232 int
233 default_check_format (bfd *abfd)
234 {
235   return (0);
236 }
237 
238 /* Attempt to recognize core file formats that BFD rejects.  */
239 
240 static int
241 gdb_check_format (bfd *abfd)
242 {
243   struct core_fns *cf;
244 
245   for (cf = core_file_fns; cf != NULL; cf = cf->next)
246     {
247       if (cf->check_format (abfd))
248 	{
249 	  return (1);
250 	}
251     }
252   return (0);
253 }
254 
255 /* Close the core target.  */
256 
257 void
258 core_target::close ()
259 {
260   if (core_bfd)
261     {
262       inferior_ptid = null_ptid;    /* Avoid confusion from thread
263 				       stuff.  */
264       exit_inferior_silent (current_inferior ());
265 
266       /* Clear out solib state while the bfd is still open.  See
267          comments in clear_solib in solib.c.  */
268       clear_solib ();
269 
270       current_program_space->cbfd.reset (nullptr);
271     }
272 
273   /* Core targets are heap-allocated (see core_target_open), so here
274      we delete ourselves.  */
275   delete this;
276 }
277 
278 /* Look for sections whose names start with `.reg/' so that we can
279    extract the list of threads in a core file.  */
280 
281 static void
282 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
283 {
284   ptid_t ptid;
285   int core_tid;
286   int pid, lwpid;
287   asection *reg_sect = (asection *) reg_sect_arg;
288   int fake_pid_p = 0;
289   struct inferior *inf;
290 
291   if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
292     return;
293 
294   core_tid = atoi (bfd_section_name (abfd, asect) + 5);
295 
296   pid = bfd_core_file_pid (core_bfd);
297   if (pid == 0)
298     {
299       fake_pid_p = 1;
300       pid = CORELOW_PID;
301     }
302 
303   lwpid = core_tid;
304 
305   inf = current_inferior ();
306   if (inf->pid == 0)
307     {
308       inferior_appeared (inf, pid);
309       inf->fake_pid_p = fake_pid_p;
310     }
311 
312   ptid = ptid_t (pid, lwpid, 0);
313 
314   add_thread (ptid);
315 
316 /* Warning, Will Robinson, looking at BFD private data! */
317 
318   if (reg_sect != NULL
319       && asect->filepos == reg_sect->filepos)	/* Did we find .reg?  */
320     inferior_ptid = ptid;			/* Yes, make it current.  */
321 }
322 
323 /* Issue a message saying we have no core to debug, if FROM_TTY.  */
324 
325 static void
326 maybe_say_no_core_file_now (int from_tty)
327 {
328   if (from_tty)
329     printf_filtered (_("No core file now.\n"));
330 }
331 
332 /* Backward compatability with old way of specifying core files.  */
333 
334 void
335 core_file_command (const char *filename, int from_tty)
336 {
337   dont_repeat ();		/* Either way, seems bogus.  */
338 
339   if (filename == NULL)
340     {
341       if (core_bfd != NULL)
342 	{
343 	  target_detach (current_inferior (), from_tty);
344 	  gdb_assert (core_bfd == NULL);
345 	}
346       else
347 	maybe_say_no_core_file_now (from_tty);
348     }
349   else
350     core_target_open (filename, from_tty);
351 }
352 
353 /* See gdbcore.h.  */
354 
355 void
356 core_target_open (const char *arg, int from_tty)
357 {
358   const char *p;
359   int siggy;
360   int scratch_chan;
361   int flags;
362 
363   target_preopen (from_tty);
364   if (!arg)
365     {
366       if (core_bfd)
367 	error (_("No core file specified.  (Use `detach' "
368 		 "to stop debugging a core file.)"));
369       else
370 	error (_("No core file specified."));
371     }
372 
373   gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
374   if (!IS_ABSOLUTE_PATH (filename.get ()))
375     filename.reset (concat (current_directory, "/",
376 			    filename.get (), (char *) NULL));
377 
378   flags = O_BINARY | O_LARGEFILE;
379   if (write_files)
380     flags |= O_RDWR;
381   else
382     flags |= O_RDONLY;
383   scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
384   if (scratch_chan < 0)
385     perror_with_name (filename.get ());
386 
387   gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
388 					   write_files ? FOPEN_RUB : FOPEN_RB,
389 					   scratch_chan));
390   if (temp_bfd == NULL)
391     perror_with_name (filename.get ());
392 
393   if (!bfd_check_format (temp_bfd.get (), bfd_core)
394       && !gdb_check_format (temp_bfd.get ()))
395     {
396       /* Do it after the err msg */
397       /* FIXME: should be checking for errors from bfd_close (for one
398          thing, on error it does not free all the storage associated
399          with the bfd).  */
400       error (_("\"%s\" is not a core dump: %s"),
401 	     filename.get (), bfd_errmsg (bfd_get_error ()));
402     }
403 
404   current_program_space->cbfd = std::move (temp_bfd);
405 
406   core_target *target = new core_target ();
407 
408   /* Own the target until it is successfully pushed.  */
409   target_ops_up target_holder (target);
410 
411   validate_files ();
412 
413   /* If we have no exec file, try to set the architecture from the
414      core file.  We don't do this unconditionally since an exec file
415      typically contains more information that helps us determine the
416      architecture than a core file.  */
417   if (!exec_bfd)
418     set_gdbarch_from_file (core_bfd);
419 
420   push_target (std::move (target_holder));
421 
422   inferior_ptid = null_ptid;
423 
424   /* Need to flush the register cache (and the frame cache) from a
425      previous debug session.  If inferior_ptid ends up the same as the
426      last debug session --- e.g., b foo; run; gcore core1; step; gcore
427      core2; core core1; core core2 --- then there's potential for
428      get_current_regcache to return the cached regcache of the
429      previous session, and the frame cache being stale.  */
430   registers_changed ();
431 
432   /* Build up thread list from BFD sections, and possibly set the
433      current thread to the .reg/NN section matching the .reg
434      section.  */
435   bfd_map_over_sections (core_bfd, add_to_thread_list,
436 			 bfd_get_section_by_name (core_bfd, ".reg"));
437 
438   if (inferior_ptid == null_ptid)
439     {
440       /* Either we found no .reg/NN section, and hence we have a
441 	 non-threaded core (single-threaded, from gdb's perspective),
442 	 or for some reason add_to_thread_list couldn't determine
443 	 which was the "main" thread.  The latter case shouldn't
444 	 usually happen, but we're dealing with input here, which can
445 	 always be broken in different ways.  */
446       thread_info *thread = first_thread_of_inferior (current_inferior ());
447 
448       if (thread == NULL)
449 	{
450 	  inferior_appeared (current_inferior (), CORELOW_PID);
451 	  inferior_ptid = ptid_t (CORELOW_PID);
452 	  add_thread_silent (inferior_ptid);
453 	}
454       else
455 	switch_to_thread (thread);
456     }
457 
458   post_create_inferior (target, from_tty);
459 
460   /* Now go through the target stack looking for threads since there
461      may be a thread_stratum target loaded on top of target core by
462      now.  The layer above should claim threads found in the BFD
463      sections.  */
464   TRY
465     {
466       target_update_thread_list ();
467     }
468 
469   CATCH (except, RETURN_MASK_ERROR)
470     {
471       exception_print (gdb_stderr, except);
472     }
473   END_CATCH
474 
475   p = bfd_core_file_failing_command (core_bfd);
476   if (p)
477     printf_filtered (_("Core was generated by `%s'.\n"), p);
478 
479   /* Clearing any previous state of convenience variables.  */
480   clear_exit_convenience_vars ();
481 
482   siggy = bfd_core_file_failing_signal (core_bfd);
483   if (siggy > 0)
484     {
485       gdbarch *core_gdbarch = target->core_gdbarch ();
486 
487       /* If we don't have a CORE_GDBARCH to work with, assume a native
488 	 core (map gdb_signal from host signals).  If we do have
489 	 CORE_GDBARCH to work with, but no gdb_signal_from_target
490 	 implementation for that gdbarch, as a fallback measure,
491 	 assume the host signal mapping.  It'll be correct for native
492 	 cores, but most likely incorrect for cross-cores.  */
493       enum gdb_signal sig = (core_gdbarch != NULL
494 			     && gdbarch_gdb_signal_from_target_p (core_gdbarch)
495 			     ? gdbarch_gdb_signal_from_target (core_gdbarch,
496 							       siggy)
497 			     : gdb_signal_from_host (siggy));
498 
499       printf_filtered (_("Program terminated with signal %s, %s.\n"),
500 		       gdb_signal_to_name (sig), gdb_signal_to_string (sig));
501 
502       /* Set the value of the internal variable $_exitsignal,
503 	 which holds the signal uncaught by the inferior.  */
504       set_internalvar_integer (lookup_internalvar ("_exitsignal"),
505 			       siggy);
506     }
507 
508   /* Fetch all registers from core file.  */
509   target_fetch_registers (get_current_regcache (), -1);
510 
511   /* Now, set up the frame cache, and print the top of stack.  */
512   reinit_frame_cache ();
513   print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
514 
515   /* Current thread should be NUM 1 but the user does not know that.
516      If a program is single threaded gdb in general does not mention
517      anything about threads.  That is why the test is >= 2.  */
518   if (thread_count () >= 2)
519     {
520       TRY
521 	{
522 	  thread_command (NULL, from_tty);
523 	}
524       CATCH (except, RETURN_MASK_ERROR)
525 	{
526 	  exception_print (gdb_stderr, except);
527 	}
528       END_CATCH
529     }
530 }
531 
532 void
533 core_target::detach (inferior *inf, int from_tty)
534 {
535   /* Note that 'this' is dangling after this call.  unpush_target
536      closes the target, and our close implementation deletes
537      'this'.  */
538   unpush_target (this);
539 
540   reinit_frame_cache ();
541   maybe_say_no_core_file_now (from_tty);
542 }
543 
544 /* Try to retrieve registers from a section in core_bfd, and supply
545    them to m_core_vec->core_read_registers, as the register set
546    numbered WHICH.
547 
548    If ptid's lwp member is zero, do the single-threaded
549    thing: look for a section named NAME.  If ptid's lwp
550    member is non-zero, do the multi-threaded thing: look for a section
551    named "NAME/LWP", where LWP is the shortest ASCII decimal
552    representation of ptid's lwp member.
553 
554    HUMAN_NAME is a human-readable name for the kind of registers the
555    NAME section contains, for use in error messages.
556 
557    If REQUIRED is true, print an error if the core file doesn't have a
558    section by the appropriate name.  Otherwise, just do nothing.  */
559 
560 void
561 core_target::get_core_register_section (struct regcache *regcache,
562 					const struct regset *regset,
563 					const char *name,
564 					int section_min_size,
565 					int which,
566 					const char *human_name,
567 					bool required)
568 {
569   struct bfd_section *section;
570   bfd_size_type size;
571   char *contents;
572   bool variable_size_section = (regset != NULL
573 				&& regset->flags & REGSET_VARIABLE_SIZE);
574 
575   thread_section_name section_name (name, regcache->ptid ());
576 
577   section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
578   if (! section)
579     {
580       if (required)
581 	warning (_("Couldn't find %s registers in core file."),
582 		 human_name);
583       return;
584     }
585 
586   size = bfd_section_size (core_bfd, section);
587   if (size < section_min_size)
588     {
589       warning (_("Section `%s' in core file too small."),
590 	       section_name.c_str ());
591       return;
592     }
593   if (size != section_min_size && !variable_size_section)
594     {
595       warning (_("Unexpected size of section `%s' in core file."),
596 	       section_name.c_str ());
597     }
598 
599   contents = (char *) alloca (size);
600   if (! bfd_get_section_contents (core_bfd, section, contents,
601 				  (file_ptr) 0, size))
602     {
603       warning (_("Couldn't read %s registers from `%s' section in core file."),
604 	       human_name, section_name.c_str ());
605       return;
606     }
607 
608   if (regset != NULL)
609     {
610       regset->supply_regset (regset, regcache, -1, contents, size);
611       return;
612     }
613 
614   gdb_assert (m_core_vec != nullptr);
615   m_core_vec->core_read_registers (regcache, contents, size, which,
616 				   ((CORE_ADDR)
617 				    bfd_section_vma (core_bfd, section)));
618 }
619 
620 /* Data passed to gdbarch_iterate_over_regset_sections's callback.  */
621 struct get_core_registers_cb_data
622 {
623   core_target *target;
624   struct regcache *regcache;
625 };
626 
627 /* Callback for get_core_registers that handles a single core file
628    register note section. */
629 
630 static void
631 get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
632 		       const struct regset *regset,
633 		       const char *human_name, void *cb_data)
634 {
635   auto *data = (get_core_registers_cb_data *) cb_data;
636   bool required = false;
637   bool variable_size_section = (regset != NULL
638 				&& regset->flags & REGSET_VARIABLE_SIZE);
639 
640   if (!variable_size_section)
641     gdb_assert (supply_size == collect_size);
642 
643   if (strcmp (sect_name, ".reg") == 0)
644     {
645       required = true;
646       if (human_name == NULL)
647 	human_name = "general-purpose";
648     }
649   else if (strcmp (sect_name, ".reg2") == 0)
650     {
651       if (human_name == NULL)
652 	human_name = "floating-point";
653     }
654 
655   /* The 'which' parameter is only used when no regset is provided.
656      Thus we just set it to -1. */
657   data->target->get_core_register_section (data->regcache, regset, sect_name,
658 					   supply_size, -1, human_name,
659 					   required);
660 }
661 
662 /* Get the registers out of a core file.  This is the machine-
663    independent part.  Fetch_core_registers is the machine-dependent
664    part, typically implemented in the xm-file for each
665    architecture.  */
666 
667 /* We just get all the registers, so we don't use regno.  */
668 
669 void
670 core_target::fetch_registers (struct regcache *regcache, int regno)
671 {
672   int i;
673   struct gdbarch *gdbarch;
674 
675   if (!(m_core_gdbarch != nullptr
676 	&& gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
677       && (m_core_vec == NULL || m_core_vec->core_read_registers == NULL))
678     {
679       fprintf_filtered (gdb_stderr,
680 		     "Can't fetch registers from this type of core file\n");
681       return;
682     }
683 
684   gdbarch = regcache->arch ();
685   if (gdbarch_iterate_over_regset_sections_p (gdbarch))
686     {
687       get_core_registers_cb_data data = { this, regcache };
688       gdbarch_iterate_over_regset_sections (gdbarch,
689 					    get_core_registers_cb,
690 					    (void *) &data, NULL);
691     }
692   else
693     {
694       get_core_register_section (regcache, NULL,
695 				 ".reg", 0, 0, "general-purpose", 1);
696       get_core_register_section (regcache, NULL,
697 				 ".reg2", 0, 2, "floating-point", 0);
698     }
699 
700   /* Mark all registers not found in the core as unavailable.  */
701   for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
702     if (regcache->get_register_status (i) == REG_UNKNOWN)
703       regcache->raw_supply (i, NULL);
704 }
705 
706 void
707 core_target::files_info ()
708 {
709   print_section_info (&m_core_section_table, core_bfd);
710 }
711 
712 struct spuid_list
713 {
714   gdb_byte *buf;
715   ULONGEST offset;
716   LONGEST len;
717   ULONGEST pos;
718   ULONGEST written;
719 };
720 
721 static void
722 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
723 {
724   struct spuid_list *list = (struct spuid_list *) list_p;
725   enum bfd_endian byte_order
726     = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
727   int fd, pos = 0;
728 
729   sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
730   if (pos == 0)
731     return;
732 
733   if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
734     {
735       store_unsigned_integer (list->buf + list->pos - list->offset,
736 			      4, byte_order, fd);
737       list->written += 4;
738     }
739   list->pos += 4;
740 }
741 
742 enum target_xfer_status
743 core_target::xfer_partial (enum target_object object, const char *annex,
744 			   gdb_byte *readbuf, const gdb_byte *writebuf,
745 			   ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
746 {
747   switch (object)
748     {
749     case TARGET_OBJECT_MEMORY:
750       return (section_table_xfer_memory_partial
751 	      (readbuf, writebuf,
752 	       offset, len, xfered_len,
753 	       m_core_section_table.sections,
754 	       m_core_section_table.sections_end,
755 	       NULL));
756 
757     case TARGET_OBJECT_AUXV:
758       if (readbuf)
759 	{
760 	  /* When the aux vector is stored in core file, BFD
761 	     represents this with a fake section called ".auxv".  */
762 
763 	  struct bfd_section *section;
764 	  bfd_size_type size;
765 
766 	  section = bfd_get_section_by_name (core_bfd, ".auxv");
767 	  if (section == NULL)
768 	    return TARGET_XFER_E_IO;
769 
770 	  size = bfd_section_size (core_bfd, section);
771 	  if (offset >= size)
772 	    return TARGET_XFER_EOF;
773 	  size -= offset;
774 	  if (size > len)
775 	    size = len;
776 
777 	  if (size == 0)
778 	    return TARGET_XFER_EOF;
779 	  if (!bfd_get_section_contents (core_bfd, section, readbuf,
780 					 (file_ptr) offset, size))
781 	    {
782 	      warning (_("Couldn't read NT_AUXV note in core file."));
783 	      return TARGET_XFER_E_IO;
784 	    }
785 
786 	  *xfered_len = (ULONGEST) size;
787 	  return TARGET_XFER_OK;
788 	}
789       return TARGET_XFER_E_IO;
790 
791     case TARGET_OBJECT_WCOOKIE:
792       if (readbuf)
793 	{
794 	  /* When the StackGhost cookie is stored in core file, BFD
795 	     represents this with a fake section called
796 	     ".wcookie".  */
797 
798 	  struct bfd_section *section;
799 	  bfd_size_type size;
800 
801 	  section = bfd_get_section_by_name (core_bfd, ".wcookie");
802 	  if (section == NULL)
803 	    return TARGET_XFER_E_IO;
804 
805 	  size = bfd_section_size (core_bfd, section);
806 	  if (offset >= size)
807 	    return TARGET_XFER_EOF;
808 	  size -= offset;
809 	  if (size > len)
810 	    size = len;
811 
812 	  if (size == 0)
813 	    return TARGET_XFER_EOF;
814 	  if (!bfd_get_section_contents (core_bfd, section, readbuf,
815 					 (file_ptr) offset, size))
816 	    {
817 	      warning (_("Couldn't read StackGhost cookie in core file."));
818 	      return TARGET_XFER_E_IO;
819 	    }
820 
821 	  *xfered_len = (ULONGEST) size;
822 	  return TARGET_XFER_OK;
823 
824 	}
825       return TARGET_XFER_E_IO;
826 
827     case TARGET_OBJECT_LIBRARIES:
828       if (m_core_gdbarch != nullptr
829 	  && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
830 	{
831 	  if (writebuf)
832 	    return TARGET_XFER_E_IO;
833 	  else
834 	    {
835 	      *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
836 								readbuf,
837 								offset, len);
838 
839 	      if (*xfered_len == 0)
840 		return TARGET_XFER_EOF;
841 	      else
842 		return TARGET_XFER_OK;
843 	    }
844 	}
845       /* FALL THROUGH */
846 
847     case TARGET_OBJECT_LIBRARIES_AIX:
848       if (m_core_gdbarch != nullptr
849 	  && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
850 	{
851 	  if (writebuf)
852 	    return TARGET_XFER_E_IO;
853 	  else
854 	    {
855 	      *xfered_len
856 		= gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
857 							  readbuf, offset,
858 							  len);
859 
860 	      if (*xfered_len == 0)
861 		return TARGET_XFER_EOF;
862 	      else
863 		return TARGET_XFER_OK;
864 	    }
865 	}
866       /* FALL THROUGH */
867 
868     case TARGET_OBJECT_SPU:
869       if (readbuf && annex)
870 	{
871 	  /* When the SPU contexts are stored in a core file, BFD
872 	     represents this with a fake section called
873 	     "SPU/<annex>".  */
874 
875 	  struct bfd_section *section;
876 	  bfd_size_type size;
877 	  char sectionstr[100];
878 
879 	  xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
880 
881 	  section = bfd_get_section_by_name (core_bfd, sectionstr);
882 	  if (section == NULL)
883 	    return TARGET_XFER_E_IO;
884 
885 	  size = bfd_section_size (core_bfd, section);
886 	  if (offset >= size)
887 	    return TARGET_XFER_EOF;
888 	  size -= offset;
889 	  if (size > len)
890 	    size = len;
891 
892 	  if (size == 0)
893 	    return TARGET_XFER_EOF;
894 	  if (!bfd_get_section_contents (core_bfd, section, readbuf,
895 					 (file_ptr) offset, size))
896 	    {
897 	      warning (_("Couldn't read SPU section in core file."));
898 	      return TARGET_XFER_E_IO;
899 	    }
900 
901 	  *xfered_len = (ULONGEST) size;
902 	  return TARGET_XFER_OK;
903 	}
904       else if (readbuf)
905 	{
906 	  /* NULL annex requests list of all present spuids.  */
907 	  struct spuid_list list;
908 
909 	  list.buf = readbuf;
910 	  list.offset = offset;
911 	  list.len = len;
912 	  list.pos = 0;
913 	  list.written = 0;
914 	  bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
915 
916 	  if (list.written == 0)
917 	    return TARGET_XFER_EOF;
918 	  else
919 	    {
920 	      *xfered_len = (ULONGEST) list.written;
921 	      return TARGET_XFER_OK;
922 	    }
923 	}
924       return TARGET_XFER_E_IO;
925 
926     case TARGET_OBJECT_SIGNAL_INFO:
927       if (readbuf)
928 	{
929 	  if (m_core_gdbarch != nullptr
930 	      && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
931 	    {
932 	      LONGEST l = gdbarch_core_xfer_siginfo  (m_core_gdbarch, readbuf,
933 						      offset, len);
934 
935 	      if (l >= 0)
936 		{
937 		  *xfered_len = l;
938 		  if (l == 0)
939 		    return TARGET_XFER_EOF;
940 		  else
941 		    return TARGET_XFER_OK;
942 		}
943 	    }
944 	}
945       return TARGET_XFER_E_IO;
946 
947     default:
948       return this->beneath ()->xfer_partial (object, annex, readbuf,
949 					     writebuf, offset, len,
950 					     xfered_len);
951     }
952 }
953 
954 
955 
956 /* Okay, let's be honest: threads gleaned from a core file aren't
957    exactly lively, are they?  On the other hand, if we don't claim
958    that each & every one is alive, then we don't get any of them
959    to appear in an "info thread" command, which is quite a useful
960    behaviour.
961  */
962 bool
963 core_target::thread_alive (ptid_t ptid)
964 {
965   return true;
966 }
967 
968 /* Ask the current architecture what it knows about this core file.
969    That will be used, in turn, to pick a better architecture.  This
970    wrapper could be avoided if targets got a chance to specialize
971    core_target.  */
972 
973 const struct target_desc *
974 core_target::read_description ()
975 {
976   if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
977     {
978       const struct target_desc *result;
979 
980       result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
981       if (result != NULL)
982 	return result;
983     }
984 
985   return this->beneath ()->read_description ();
986 }
987 
988 const char *
989 core_target::pid_to_str (ptid_t ptid)
990 {
991   static char buf[64];
992   struct inferior *inf;
993   int pid;
994 
995   /* The preferred way is to have a gdbarch/OS specific
996      implementation.  */
997   if (m_core_gdbarch != nullptr
998       && gdbarch_core_pid_to_str_p (m_core_gdbarch))
999     return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
1000 
1001   /* Otherwise, if we don't have one, we'll just fallback to
1002      "process", with normal_pid_to_str.  */
1003 
1004   /* Try the LWPID field first.  */
1005   pid = ptid.lwp ();
1006   if (pid != 0)
1007     return normal_pid_to_str (ptid_t (pid));
1008 
1009   /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1010      only if it isn't a fake PID.  */
1011   inf = find_inferior_ptid (ptid);
1012   if (inf != NULL && !inf->fake_pid_p)
1013     return normal_pid_to_str (ptid);
1014 
1015   /* No luck.  We simply don't have a valid PID to print.  */
1016   xsnprintf (buf, sizeof buf, "<main task>");
1017   return buf;
1018 }
1019 
1020 const char *
1021 core_target::thread_name (struct thread_info *thr)
1022 {
1023   if (m_core_gdbarch != nullptr
1024       && gdbarch_core_thread_name_p (m_core_gdbarch))
1025     return gdbarch_core_thread_name (m_core_gdbarch, thr);
1026   return NULL;
1027 }
1028 
1029 bool
1030 core_target::has_memory ()
1031 {
1032   return (core_bfd != NULL);
1033 }
1034 
1035 bool
1036 core_target::has_stack ()
1037 {
1038   return (core_bfd != NULL);
1039 }
1040 
1041 bool
1042 core_target::has_registers ()
1043 {
1044   return (core_bfd != NULL);
1045 }
1046 
1047 /* Implement the to_info_proc method.  */
1048 
1049 bool
1050 core_target::info_proc (const char *args, enum info_proc_what request)
1051 {
1052   struct gdbarch *gdbarch = get_current_arch ();
1053 
1054   /* Since this is the core file target, call the 'core_info_proc'
1055      method on gdbarch, not 'info_proc'.  */
1056   if (gdbarch_core_info_proc_p (gdbarch))
1057     gdbarch_core_info_proc (gdbarch, args, request);
1058 
1059   return true;
1060 }
1061 
1062 void
1063 _initialize_corelow (void)
1064 {
1065   add_target (core_target_info, core_target_open, filename_completer);
1066 }
1067