xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/corelow.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /* Core dump and executable file functions below target vector, for GDB.
2 
3    Copyright (C) 1986-2017 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h>		/* needed for F_OK and friends */
26 #endif
27 #include "frame.h"		/* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "solib.h"
42 #include "filenames.h"
43 #include "progspace.h"
44 #include "objfiles.h"
45 #include "gdb_bfd.h"
46 #include "completer.h"
47 #include "filestuff.h"
48 
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52 
53 /* List of all available core_fns.  On gdb startup, each core file
54    register reader calls deprecated_add_core_fns() to register
55    information on each core format it is prepared to read.  */
56 
57 static struct core_fns *core_file_fns = NULL;
58 
59 /* The core_fns for a core file handler that is prepared to read the
60    core file currently open on core_bfd.  */
61 
62 static struct core_fns *core_vec = NULL;
63 
64 /* FIXME: kettenis/20031023: Eventually this variable should
65    disappear.  */
66 
67 static struct gdbarch *core_gdbarch = NULL;
68 
69 /* Per-core data.  Currently, only the section table.  Note that these
70    target sections are *not* mapped in the current address spaces' set
71    of target sections --- those should come only from pure executable
72    or shared library bfds.  The core bfd sections are an
73    implementation detail of the core target, just like ptrace is for
74    unix child targets.  */
75 static struct target_section_table *core_data;
76 
77 static void core_files_info (struct target_ops *);
78 
79 static struct core_fns *sniff_core_bfd (bfd *);
80 
81 static int gdb_check_format (bfd *);
82 
83 static void core_close (struct target_ops *self);
84 
85 static void core_close_cleanup (void *ignore);
86 
87 static void add_to_thread_list (bfd *, asection *, void *);
88 
89 static void init_core_ops (void);
90 
91 void _initialize_corelow (void);
92 
93 static struct target_ops core_ops;
94 
95 /* An arbitrary identifier for the core inferior.  */
96 #define CORELOW_PID 1
97 
98 /* Link a new core_fns into the global core_file_fns list.  Called on
99    gdb startup by the _initialize routine in each core file register
100    reader, to register information about each format the reader is
101    prepared to handle.  */
102 
103 void
104 deprecated_add_core_fns (struct core_fns *cf)
105 {
106   cf->next = core_file_fns;
107   core_file_fns = cf;
108 }
109 
110 /* The default function that core file handlers can use to examine a
111    core file BFD and decide whether or not to accept the job of
112    reading the core file.  */
113 
114 int
115 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
116 {
117   int result;
118 
119   result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
120   return (result);
121 }
122 
123 /* Walk through the list of core functions to find a set that can
124    handle the core file open on ABFD.  Returns pointer to set that is
125    selected.  */
126 
127 static struct core_fns *
128 sniff_core_bfd (bfd *abfd)
129 {
130   struct core_fns *cf;
131   struct core_fns *yummy = NULL;
132   int matches = 0;;
133 
134   /* Don't sniff if we have support for register sets in
135      CORE_GDBARCH.  */
136   if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
137     return NULL;
138 
139   for (cf = core_file_fns; cf != NULL; cf = cf->next)
140     {
141       if (cf->core_sniffer (cf, abfd))
142 	{
143 	  yummy = cf;
144 	  matches++;
145 	}
146     }
147   if (matches > 1)
148     {
149       warning (_("\"%s\": ambiguous core format, %d handlers match"),
150 	       bfd_get_filename (abfd), matches);
151     }
152   else if (matches == 0)
153     error (_("\"%s\": no core file handler recognizes format"),
154 	   bfd_get_filename (abfd));
155 
156   return (yummy);
157 }
158 
159 /* The default is to reject every core file format we see.  Either
160    BFD has to recognize it, or we have to provide a function in the
161    core file handler that recognizes it.  */
162 
163 int
164 default_check_format (bfd *abfd)
165 {
166   return (0);
167 }
168 
169 /* Attempt to recognize core file formats that BFD rejects.  */
170 
171 static int
172 gdb_check_format (bfd *abfd)
173 {
174   struct core_fns *cf;
175 
176   for (cf = core_file_fns; cf != NULL; cf = cf->next)
177     {
178       if (cf->check_format (abfd))
179 	{
180 	  return (1);
181 	}
182     }
183   return (0);
184 }
185 
186 /* Discard all vestiges of any previous core file and mark data and
187    stack spaces as empty.  */
188 
189 static void
190 core_close (struct target_ops *self)
191 {
192   if (core_bfd)
193     {
194       int pid = ptid_get_pid (inferior_ptid);
195       inferior_ptid = null_ptid;    /* Avoid confusion from thread
196 				       stuff.  */
197       if (pid != 0)
198 	exit_inferior_silent (pid);
199 
200       /* Clear out solib state while the bfd is still open.  See
201          comments in clear_solib in solib.c.  */
202       clear_solib ();
203 
204       if (core_data)
205 	{
206 	  xfree (core_data->sections);
207 	  xfree (core_data);
208 	  core_data = NULL;
209 	}
210 
211       gdb_bfd_unref (core_bfd);
212       core_bfd = NULL;
213     }
214   core_vec = NULL;
215   core_gdbarch = NULL;
216 }
217 
218 static void
219 core_close_cleanup (void *ignore)
220 {
221   core_close (NULL);
222 }
223 
224 /* Look for sections whose names start with `.reg/' so that we can
225    extract the list of threads in a core file.  */
226 
227 static void
228 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
229 {
230   ptid_t ptid;
231   int core_tid;
232   int pid, lwpid;
233   asection *reg_sect = (asection *) reg_sect_arg;
234   int fake_pid_p = 0;
235   struct inferior *inf;
236 
237   if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
238     return;
239 
240   core_tid = atoi (bfd_section_name (abfd, asect) + 5);
241 
242   pid = bfd_core_file_pid (core_bfd);
243   if (pid == 0)
244     {
245       fake_pid_p = 1;
246       pid = CORELOW_PID;
247     }
248 
249   lwpid = core_tid;
250 
251   inf = current_inferior ();
252   if (inf->pid == 0)
253     {
254       inferior_appeared (inf, pid);
255       inf->fake_pid_p = fake_pid_p;
256     }
257 
258   ptid = ptid_build (pid, lwpid, 0);
259 
260   add_thread (ptid);
261 
262 /* Warning, Will Robinson, looking at BFD private data! */
263 
264   if (reg_sect != NULL
265       && asect->filepos == reg_sect->filepos)	/* Did we find .reg?  */
266     inferior_ptid = ptid;			/* Yes, make it current.  */
267 }
268 
269 /* This routine opens and sets up the core file bfd.  */
270 
271 static void
272 core_open (const char *arg, int from_tty)
273 {
274   const char *p;
275   int siggy;
276   struct cleanup *old_chain;
277   char *temp;
278   int scratch_chan;
279   int flags;
280   char *filename;
281 
282   target_preopen (from_tty);
283   if (!arg)
284     {
285       if (core_bfd)
286 	error (_("No core file specified.  (Use `detach' "
287 		 "to stop debugging a core file.)"));
288       else
289 	error (_("No core file specified."));
290     }
291 
292   filename = tilde_expand (arg);
293   if (!IS_ABSOLUTE_PATH (filename))
294     {
295       temp = concat (current_directory, "/",
296 		     filename, (char *) NULL);
297       xfree (filename);
298       filename = temp;
299     }
300 
301   old_chain = make_cleanup (xfree, filename);
302 
303   flags = O_BINARY | O_LARGEFILE;
304   if (write_files)
305     flags |= O_RDWR;
306   else
307     flags |= O_RDONLY;
308   scratch_chan = gdb_open_cloexec (filename, flags, 0);
309   if (scratch_chan < 0)
310     perror_with_name (filename);
311 
312   gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename, gnutarget,
313 					   write_files ? FOPEN_RUB : FOPEN_RB,
314 					   scratch_chan));
315   if (temp_bfd == NULL)
316     perror_with_name (filename);
317 
318   if (!bfd_check_format (temp_bfd.get (), bfd_core)
319       && !gdb_check_format (temp_bfd.get ()))
320     {
321       /* Do it after the err msg */
322       /* FIXME: should be checking for errors from bfd_close (for one
323          thing, on error it does not free all the storage associated
324          with the bfd).  */
325       error (_("\"%s\" is not a core dump: %s"),
326 	     filename, bfd_errmsg (bfd_get_error ()));
327     }
328 
329   /* Looks semi-reasonable.  Toss the old core file and work on the
330      new.  */
331 
332   do_cleanups (old_chain);
333   unpush_target (&core_ops);
334   core_bfd = temp_bfd.release ();
335   old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
336 
337   core_gdbarch = gdbarch_from_bfd (core_bfd);
338 
339   /* Find a suitable core file handler to munch on core_bfd */
340   core_vec = sniff_core_bfd (core_bfd);
341 
342   validate_files ();
343 
344   core_data = XCNEW (struct target_section_table);
345 
346   /* Find the data section */
347   if (build_section_table (core_bfd,
348 			   &core_data->sections,
349 			   &core_data->sections_end))
350     error (_("\"%s\": Can't find sections: %s"),
351 	   bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
352 
353   /* If we have no exec file, try to set the architecture from the
354      core file.  We don't do this unconditionally since an exec file
355      typically contains more information that helps us determine the
356      architecture than a core file.  */
357   if (!exec_bfd)
358     set_gdbarch_from_file (core_bfd);
359 
360   push_target (&core_ops);
361   discard_cleanups (old_chain);
362 
363   /* Do this before acknowledging the inferior, so if
364      post_create_inferior throws (can happen easilly if you're loading
365      a core file with the wrong exec), we aren't left with threads
366      from the previous inferior.  */
367   init_thread_list ();
368 
369   inferior_ptid = null_ptid;
370 
371   /* Need to flush the register cache (and the frame cache) from a
372      previous debug session.  If inferior_ptid ends up the same as the
373      last debug session --- e.g., b foo; run; gcore core1; step; gcore
374      core2; core core1; core core2 --- then there's potential for
375      get_current_regcache to return the cached regcache of the
376      previous session, and the frame cache being stale.  */
377   registers_changed ();
378 
379   /* Build up thread list from BFD sections, and possibly set the
380      current thread to the .reg/NN section matching the .reg
381      section.  */
382   bfd_map_over_sections (core_bfd, add_to_thread_list,
383 			 bfd_get_section_by_name (core_bfd, ".reg"));
384 
385   if (ptid_equal (inferior_ptid, null_ptid))
386     {
387       /* Either we found no .reg/NN section, and hence we have a
388 	 non-threaded core (single-threaded, from gdb's perspective),
389 	 or for some reason add_to_thread_list couldn't determine
390 	 which was the "main" thread.  The latter case shouldn't
391 	 usually happen, but we're dealing with input here, which can
392 	 always be broken in different ways.  */
393       struct thread_info *thread = first_thread_of_process (-1);
394 
395       if (thread == NULL)
396 	{
397 	  inferior_appeared (current_inferior (), CORELOW_PID);
398 	  inferior_ptid = pid_to_ptid (CORELOW_PID);
399 	  add_thread_silent (inferior_ptid);
400 	}
401       else
402 	switch_to_thread (thread->ptid);
403     }
404 
405   post_create_inferior (&core_ops, from_tty);
406 
407   /* Now go through the target stack looking for threads since there
408      may be a thread_stratum target loaded on top of target core by
409      now.  The layer above should claim threads found in the BFD
410      sections.  */
411   TRY
412     {
413       target_update_thread_list ();
414     }
415 
416   CATCH (except, RETURN_MASK_ERROR)
417     {
418       exception_print (gdb_stderr, except);
419     }
420   END_CATCH
421 
422   p = bfd_core_file_failing_command (core_bfd);
423   if (p)
424     printf_filtered (_("Core was generated by `%s'.\n"), p);
425 
426   /* Clearing any previous state of convenience variables.  */
427   clear_exit_convenience_vars ();
428 
429   siggy = bfd_core_file_failing_signal (core_bfd);
430   if (siggy > 0)
431     {
432       /* If we don't have a CORE_GDBARCH to work with, assume a native
433 	 core (map gdb_signal from host signals).  If we do have
434 	 CORE_GDBARCH to work with, but no gdb_signal_from_target
435 	 implementation for that gdbarch, as a fallback measure,
436 	 assume the host signal mapping.  It'll be correct for native
437 	 cores, but most likely incorrect for cross-cores.  */
438       enum gdb_signal sig = (core_gdbarch != NULL
439 			     && gdbarch_gdb_signal_from_target_p (core_gdbarch)
440 			     ? gdbarch_gdb_signal_from_target (core_gdbarch,
441 							       siggy)
442 			     : gdb_signal_from_host (siggy));
443 
444       printf_filtered (_("Program terminated with signal %s, %s.\n"),
445 		       gdb_signal_to_name (sig), gdb_signal_to_string (sig));
446 
447       /* Set the value of the internal variable $_exitsignal,
448 	 which holds the signal uncaught by the inferior.  */
449       set_internalvar_integer (lookup_internalvar ("_exitsignal"),
450 			       siggy);
451     }
452 
453   /* Fetch all registers from core file.  */
454   target_fetch_registers (get_current_regcache (), -1);
455 
456   /* Now, set up the frame cache, and print the top of stack.  */
457   reinit_frame_cache ();
458   print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
459 
460   /* Current thread should be NUM 1 but the user does not know that.
461      If a program is single threaded gdb in general does not mention
462      anything about threads.  That is why the test is >= 2.  */
463   if (thread_count () >= 2)
464     {
465       TRY
466 	{
467 	  thread_command (NULL, from_tty);
468 	}
469       CATCH (except, RETURN_MASK_ERROR)
470 	{
471 	  exception_print (gdb_stderr, except);
472 	}
473       END_CATCH
474     }
475 }
476 
477 static void
478 core_detach (struct target_ops *ops, const char *args, int from_tty)
479 {
480   if (args)
481     error (_("Too many arguments"));
482   unpush_target (ops);
483   reinit_frame_cache ();
484   if (from_tty)
485     printf_filtered (_("No core file now.\n"));
486 }
487 
488 /* Try to retrieve registers from a section in core_bfd, and supply
489    them to core_vec->core_read_registers, as the register set numbered
490    WHICH.
491 
492    If ptid's lwp member is zero, do the single-threaded
493    thing: look for a section named NAME.  If ptid's lwp
494    member is non-zero, do the multi-threaded thing: look for a section
495    named "NAME/LWP", where LWP is the shortest ASCII decimal
496    representation of ptid's lwp member.
497 
498    HUMAN_NAME is a human-readable name for the kind of registers the
499    NAME section contains, for use in error messages.
500 
501    If REQUIRED is non-zero, print an error if the core file doesn't
502    have a section by the appropriate name.  Otherwise, just do
503    nothing.  */
504 
505 static void
506 get_core_register_section (struct regcache *regcache,
507 			   const struct regset *regset,
508 			   const char *name,
509 			   int min_size,
510 			   int which,
511 			   const char *human_name,
512 			   int required)
513 {
514   static char *section_name = NULL;
515   struct bfd_section *section;
516   bfd_size_type size;
517   char *contents;
518   bool variable_size_section = (regset != NULL
519 				&& regset->flags & REGSET_VARIABLE_SIZE);
520   ptid_t ptid = regcache_get_ptid (regcache);
521 
522   xfree (section_name);
523 
524   if (ptid_get_lwp (ptid))
525     section_name = xstrprintf ("%s/%ld", name,
526 			       ptid_get_lwp (ptid));
527   else
528     section_name = xstrdup (name);
529 
530   section = bfd_get_section_by_name (core_bfd, section_name);
531   if (! section)
532     {
533       if (required)
534 	warning (_("Couldn't find %s registers in core file."),
535 		 human_name);
536       return;
537     }
538 
539   size = bfd_section_size (core_bfd, section);
540   if (size < min_size)
541     {
542       warning (_("Section `%s' in core file too small."), section_name);
543       return;
544     }
545   if (size != min_size && !variable_size_section)
546     {
547       warning (_("Unexpected size of section `%s' in core file."),
548 	       section_name);
549     }
550 
551   contents = (char *) alloca (size);
552   if (! bfd_get_section_contents (core_bfd, section, contents,
553 				  (file_ptr) 0, size))
554     {
555       warning (_("Couldn't read %s registers from `%s' section in core file."),
556 	       human_name, name);
557       return;
558     }
559 
560   if (regset != NULL)
561     {
562       regset->supply_regset (regset, regcache, -1, contents, size);
563       return;
564     }
565 
566   gdb_assert (core_vec);
567   core_vec->core_read_registers (regcache, contents, size, which,
568 				 ((CORE_ADDR)
569 				  bfd_section_vma (core_bfd, section)));
570 }
571 
572 /* Callback for get_core_registers that handles a single core file
573    register note section. */
574 
575 static void
576 get_core_registers_cb (const char *sect_name, int size,
577 		       const struct regset *regset,
578 		       const char *human_name, void *cb_data)
579 {
580   struct regcache *regcache = (struct regcache *) cb_data;
581   int required = 0;
582 
583   if (strcmp (sect_name, ".reg") == 0)
584     {
585       required = 1;
586       if (human_name == NULL)
587 	human_name = "general-purpose";
588     }
589   else if (strcmp (sect_name, ".reg2") == 0)
590     {
591       if (human_name == NULL)
592 	human_name = "floating-point";
593     }
594 
595   /* The 'which' parameter is only used when no regset is provided.
596      Thus we just set it to -1. */
597   get_core_register_section (regcache, regset, sect_name,
598 			     size, -1, human_name, required);
599 }
600 
601 /* Get the registers out of a core file.  This is the machine-
602    independent part.  Fetch_core_registers is the machine-dependent
603    part, typically implemented in the xm-file for each
604    architecture.  */
605 
606 /* We just get all the registers, so we don't use regno.  */
607 
608 static void
609 get_core_registers (struct target_ops *ops,
610 		    struct regcache *regcache, int regno)
611 {
612   int i;
613   struct gdbarch *gdbarch;
614 
615   if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
616       && (core_vec == NULL || core_vec->core_read_registers == NULL))
617     {
618       fprintf_filtered (gdb_stderr,
619 		     "Can't fetch registers from this type of core file\n");
620       return;
621     }
622 
623   gdbarch = get_regcache_arch (regcache);
624   if (gdbarch_iterate_over_regset_sections_p (gdbarch))
625     gdbarch_iterate_over_regset_sections (gdbarch,
626 					  get_core_registers_cb,
627 					  (void *) regcache, NULL);
628   else
629     {
630       get_core_register_section (regcache, NULL,
631 				 ".reg", 0, 0, "general-purpose", 1);
632       get_core_register_section (regcache, NULL,
633 				 ".reg2", 0, 2, "floating-point", 0);
634     }
635 
636   /* Mark all registers not found in the core as unavailable.  */
637   for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
638     if (regcache_register_status (regcache, i) == REG_UNKNOWN)
639       regcache_raw_supply (regcache, i, NULL);
640 }
641 
642 static void
643 core_files_info (struct target_ops *t)
644 {
645   print_section_info (core_data, core_bfd);
646 }
647 
648 struct spuid_list
649 {
650   gdb_byte *buf;
651   ULONGEST offset;
652   LONGEST len;
653   ULONGEST pos;
654   ULONGEST written;
655 };
656 
657 static void
658 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
659 {
660   struct spuid_list *list = (struct spuid_list *) list_p;
661   enum bfd_endian byte_order
662     = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
663   int fd, pos = 0;
664 
665   sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
666   if (pos == 0)
667     return;
668 
669   if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
670     {
671       store_unsigned_integer (list->buf + list->pos - list->offset,
672 			      4, byte_order, fd);
673       list->written += 4;
674     }
675   list->pos += 4;
676 }
677 
678 /* Read siginfo data from the core, if possible.  Returns -1 on
679    failure.  Otherwise, returns the number of bytes read.  ABFD is the
680    core file's BFD; READBUF, OFFSET, and LEN are all as specified by
681    the to_xfer_partial interface.  */
682 
683 static LONGEST
684 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, ULONGEST len)
685 {
686   asection *section;
687   char *section_name;
688   const char *name = ".note.linuxcore.siginfo";
689 
690   if (ptid_get_lwp (inferior_ptid))
691     section_name = xstrprintf ("%s/%ld", name,
692 			       ptid_get_lwp (inferior_ptid));
693   else
694     section_name = xstrdup (name);
695 
696   section = bfd_get_section_by_name (abfd, section_name);
697   xfree (section_name);
698   if (section == NULL)
699     return -1;
700 
701   if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
702     return -1;
703 
704   return len;
705 }
706 
707 static enum target_xfer_status
708 core_xfer_partial (struct target_ops *ops, enum target_object object,
709 		   const char *annex, gdb_byte *readbuf,
710 		   const gdb_byte *writebuf, ULONGEST offset,
711 		   ULONGEST len, ULONGEST *xfered_len)
712 {
713   switch (object)
714     {
715     case TARGET_OBJECT_MEMORY:
716       return section_table_xfer_memory_partial (readbuf, writebuf,
717 						offset, len, xfered_len,
718 						core_data->sections,
719 						core_data->sections_end,
720 						NULL);
721 
722     case TARGET_OBJECT_AUXV:
723       if (readbuf)
724 	{
725 	  /* When the aux vector is stored in core file, BFD
726 	     represents this with a fake section called ".auxv".  */
727 
728 	  struct bfd_section *section;
729 	  bfd_size_type size;
730 
731 	  section = bfd_get_section_by_name (core_bfd, ".auxv");
732 	  if (section == NULL)
733 	    return TARGET_XFER_E_IO;
734 
735 	  size = bfd_section_size (core_bfd, section);
736 	  if (offset >= size)
737 	    return TARGET_XFER_EOF;
738 	  size -= offset;
739 	  if (size > len)
740 	    size = len;
741 
742 	  if (size == 0)
743 	    return TARGET_XFER_EOF;
744 	  if (!bfd_get_section_contents (core_bfd, section, readbuf,
745 					 (file_ptr) offset, size))
746 	    {
747 	      warning (_("Couldn't read NT_AUXV note in core file."));
748 	      return TARGET_XFER_E_IO;
749 	    }
750 
751 	  *xfered_len = (ULONGEST) size;
752 	  return TARGET_XFER_OK;
753 	}
754       return TARGET_XFER_E_IO;
755 
756     case TARGET_OBJECT_WCOOKIE:
757       if (readbuf)
758 	{
759 	  /* When the StackGhost cookie is stored in core file, BFD
760 	     represents this with a fake section called
761 	     ".wcookie".  */
762 
763 	  struct bfd_section *section;
764 	  bfd_size_type size;
765 
766 	  section = bfd_get_section_by_name (core_bfd, ".wcookie");
767 	  if (section == NULL)
768 	    return TARGET_XFER_E_IO;
769 
770 	  size = bfd_section_size (core_bfd, section);
771 	  if (offset >= size)
772 	    return TARGET_XFER_EOF;
773 	  size -= offset;
774 	  if (size > len)
775 	    size = len;
776 
777 	  if (size == 0)
778 	    return TARGET_XFER_EOF;
779 	  if (!bfd_get_section_contents (core_bfd, section, readbuf,
780 					 (file_ptr) offset, size))
781 	    {
782 	      warning (_("Couldn't read StackGhost cookie in core file."));
783 	      return TARGET_XFER_E_IO;
784 	    }
785 
786 	  *xfered_len = (ULONGEST) size;
787 	  return TARGET_XFER_OK;
788 
789 	}
790       return TARGET_XFER_E_IO;
791 
792     case TARGET_OBJECT_LIBRARIES:
793       if (core_gdbarch
794 	  && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
795 	{
796 	  if (writebuf)
797 	    return TARGET_XFER_E_IO;
798 	  else
799 	    {
800 	      *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
801 								readbuf,
802 								offset, len);
803 
804 	      if (*xfered_len == 0)
805 		return TARGET_XFER_EOF;
806 	      else
807 		return TARGET_XFER_OK;
808 	    }
809 	}
810       /* FALL THROUGH */
811 
812     case TARGET_OBJECT_LIBRARIES_AIX:
813       if (core_gdbarch
814 	  && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
815 	{
816 	  if (writebuf)
817 	    return TARGET_XFER_E_IO;
818 	  else
819 	    {
820 	      *xfered_len
821 		= gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
822 							  readbuf, offset,
823 							  len);
824 
825 	      if (*xfered_len == 0)
826 		return TARGET_XFER_EOF;
827 	      else
828 		return TARGET_XFER_OK;
829 	    }
830 	}
831       /* FALL THROUGH */
832 
833     case TARGET_OBJECT_SPU:
834       if (readbuf && annex)
835 	{
836 	  /* When the SPU contexts are stored in a core file, BFD
837 	     represents this with a fake section called
838 	     "SPU/<annex>".  */
839 
840 	  struct bfd_section *section;
841 	  bfd_size_type size;
842 	  char sectionstr[100];
843 
844 	  xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
845 
846 	  section = bfd_get_section_by_name (core_bfd, sectionstr);
847 	  if (section == NULL)
848 	    return TARGET_XFER_E_IO;
849 
850 	  size = bfd_section_size (core_bfd, section);
851 	  if (offset >= size)
852 	    return TARGET_XFER_EOF;
853 	  size -= offset;
854 	  if (size > len)
855 	    size = len;
856 
857 	  if (size == 0)
858 	    return TARGET_XFER_EOF;
859 	  if (!bfd_get_section_contents (core_bfd, section, readbuf,
860 					 (file_ptr) offset, size))
861 	    {
862 	      warning (_("Couldn't read SPU section in core file."));
863 	      return TARGET_XFER_E_IO;
864 	    }
865 
866 	  *xfered_len = (ULONGEST) size;
867 	  return TARGET_XFER_OK;
868 	}
869       else if (readbuf)
870 	{
871 	  /* NULL annex requests list of all present spuids.  */
872 	  struct spuid_list list;
873 
874 	  list.buf = readbuf;
875 	  list.offset = offset;
876 	  list.len = len;
877 	  list.pos = 0;
878 	  list.written = 0;
879 	  bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
880 
881 	  if (list.written == 0)
882 	    return TARGET_XFER_EOF;
883 	  else
884 	    {
885 	      *xfered_len = (ULONGEST) list.written;
886 	      return TARGET_XFER_OK;
887 	    }
888 	}
889       return TARGET_XFER_E_IO;
890 
891     case TARGET_OBJECT_SIGNAL_INFO:
892       if (readbuf)
893 	{
894 	  LONGEST l = get_core_siginfo (core_bfd, readbuf, offset, len);
895 
896 	  if (l > 0)
897 	    {
898 	      *xfered_len = len;
899 	      return TARGET_XFER_OK;
900 	    }
901 	}
902       return TARGET_XFER_E_IO;
903 
904     default:
905       return ops->beneath->to_xfer_partial (ops->beneath, object,
906 					    annex, readbuf,
907 					    writebuf, offset, len,
908 					    xfered_len);
909     }
910 }
911 
912 
913 /* If mourn is being called in all the right places, this could be say
914    `gdb internal error' (since generic_mourn calls
915    breakpoint_init_inferior).  */
916 
917 static int
918 ignore (struct target_ops *ops, struct gdbarch *gdbarch,
919 	struct bp_target_info *bp_tgt)
920 {
921   return 0;
922 }
923 
924 /* Implement the to_remove_breakpoint method.  */
925 
926 static int
927 core_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
928 			struct bp_target_info *bp_tgt,
929 			enum remove_bp_reason reason)
930 {
931   return 0;
932 }
933 
934 
935 /* Okay, let's be honest: threads gleaned from a core file aren't
936    exactly lively, are they?  On the other hand, if we don't claim
937    that each & every one is alive, then we don't get any of them
938    to appear in an "info thread" command, which is quite a useful
939    behaviour.
940  */
941 static int
942 core_thread_alive (struct target_ops *ops, ptid_t ptid)
943 {
944   return 1;
945 }
946 
947 /* Ask the current architecture what it knows about this core file.
948    That will be used, in turn, to pick a better architecture.  This
949    wrapper could be avoided if targets got a chance to specialize
950    core_ops.  */
951 
952 static const struct target_desc *
953 core_read_description (struct target_ops *target)
954 {
955   if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
956     {
957       const struct target_desc *result;
958 
959       result = gdbarch_core_read_description (core_gdbarch,
960 					      target, core_bfd);
961       if (result != NULL)
962 	return result;
963     }
964 
965   return target->beneath->to_read_description (target->beneath);
966 }
967 
968 static const char *
969 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
970 {
971   static char buf[64];
972   struct inferior *inf;
973   int pid;
974 
975   /* The preferred way is to have a gdbarch/OS specific
976      implementation.  */
977   if (core_gdbarch
978       && gdbarch_core_pid_to_str_p (core_gdbarch))
979     return gdbarch_core_pid_to_str (core_gdbarch, ptid);
980 
981   /* Otherwise, if we don't have one, we'll just fallback to
982      "process", with normal_pid_to_str.  */
983 
984   /* Try the LWPID field first.  */
985   pid = ptid_get_lwp (ptid);
986   if (pid != 0)
987     return normal_pid_to_str (pid_to_ptid (pid));
988 
989   /* Otherwise, this isn't a "threaded" core -- use the PID field, but
990      only if it isn't a fake PID.  */
991   inf = find_inferior_ptid (ptid);
992   if (inf != NULL && !inf->fake_pid_p)
993     return normal_pid_to_str (ptid);
994 
995   /* No luck.  We simply don't have a valid PID to print.  */
996   xsnprintf (buf, sizeof buf, "<main task>");
997   return buf;
998 }
999 
1000 static const char *
1001 core_thread_name (struct target_ops *self, struct thread_info *thr)
1002 {
1003   if (core_gdbarch
1004       && gdbarch_core_thread_name_p (core_gdbarch))
1005     return gdbarch_core_thread_name (core_gdbarch, thr);
1006   return NULL;
1007 }
1008 
1009 static int
1010 core_has_memory (struct target_ops *ops)
1011 {
1012   return (core_bfd != NULL);
1013 }
1014 
1015 static int
1016 core_has_stack (struct target_ops *ops)
1017 {
1018   return (core_bfd != NULL);
1019 }
1020 
1021 static int
1022 core_has_registers (struct target_ops *ops)
1023 {
1024   return (core_bfd != NULL);
1025 }
1026 
1027 /* Implement the to_info_proc method.  */
1028 
1029 static void
1030 core_info_proc (struct target_ops *ops, const char *args,
1031 		enum info_proc_what request)
1032 {
1033   struct gdbarch *gdbarch = get_current_arch ();
1034 
1035   /* Since this is the core file target, call the 'core_info_proc'
1036      method on gdbarch, not 'info_proc'.  */
1037   if (gdbarch_core_info_proc_p (gdbarch))
1038     gdbarch_core_info_proc (gdbarch, args, request);
1039 }
1040 
1041 /* Fill in core_ops with its defined operations and properties.  */
1042 
1043 static void
1044 init_core_ops (void)
1045 {
1046   core_ops.to_shortname = "core";
1047   core_ops.to_longname = "Local core dump file";
1048   core_ops.to_doc =
1049     "Use a core file as a target.  Specify the filename of the core file.";
1050   core_ops.to_open = core_open;
1051   core_ops.to_close = core_close;
1052   core_ops.to_detach = core_detach;
1053   core_ops.to_fetch_registers = get_core_registers;
1054   core_ops.to_xfer_partial = core_xfer_partial;
1055   core_ops.to_files_info = core_files_info;
1056   core_ops.to_insert_breakpoint = ignore;
1057   core_ops.to_remove_breakpoint = core_remove_breakpoint;
1058   core_ops.to_thread_alive = core_thread_alive;
1059   core_ops.to_read_description = core_read_description;
1060   core_ops.to_pid_to_str = core_pid_to_str;
1061   core_ops.to_thread_name = core_thread_name;
1062   core_ops.to_stratum = process_stratum;
1063   core_ops.to_has_memory = core_has_memory;
1064   core_ops.to_has_stack = core_has_stack;
1065   core_ops.to_has_registers = core_has_registers;
1066   core_ops.to_info_proc = core_info_proc;
1067   core_ops.to_magic = OPS_MAGIC;
1068 
1069   if (core_target)
1070     internal_error (__FILE__, __LINE__,
1071 		    _("init_core_ops: core target already exists (\"%s\")."),
1072 		    core_target->to_longname);
1073   core_target = &core_ops;
1074 }
1075 
1076 void
1077 _initialize_corelow (void)
1078 {
1079   init_core_ops ();
1080 
1081   add_target_with_completer (&core_ops, filename_completer);
1082 }
1083