xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/buildsym.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Support routines for building symbol tables in GDB's internal format.
2    Copyright (C) 1986-2016 Free Software Foundation, Inc.
3 
4    This file is part of GDB.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
18 
19 /* This module provides subroutines used for creating and adding to
20    the symbol table.  These routines are called from various symbol-
21    file-reading routines.
22 
23    Routines to support specific debugging information formats (stabs,
24    DWARF, etc) belong somewhere else.
25 
26    The basic way this module is used is as follows:
27 
28    buildsym_init ();
29    cleanups = make_cleanup (really_free_pendings, NULL);
30    cust = start_symtab (...);
31    ... read debug info ...
32    cust = end_symtab (...);
33    do_cleanups (cleanups);
34 
35    The compunit symtab pointer ("cust") is returned from both start_symtab
36    and end_symtab to simplify the debug info readers.
37 
38    There are minor variations on this, e.g., dwarf2read.c splits end_symtab
39    into two calls: end_symtab_get_static_block, end_symtab_from_static_block,
40    but all debug info readers follow this basic flow.
41 
42    Reading DWARF Type Units is another variation:
43 
44    buildsym_init ();
45    cleanups = make_cleanup (really_free_pendings, NULL);
46    cust = start_symtab (...);
47    ... read debug info ...
48    cust = end_expandable_symtab (...);
49    do_cleanups (cleanups);
50 
51    And then reading subsequent Type Units within the containing "Comp Unit"
52    will use a second flow:
53 
54    buildsym_init ();
55    cleanups = make_cleanup (really_free_pendings, NULL);
56    cust = restart_symtab (...);
57    ... read debug info ...
58    cust = augment_type_symtab (...);
59    do_cleanups (cleanups);
60 
61    dbxread.c and xcoffread.c use another variation:
62 
63    buildsym_init ();
64    cleanups = make_cleanup (really_free_pendings, NULL);
65    cust = start_symtab (...);
66    ... read debug info ...
67    cust = end_symtab (...);
68    ... start_symtab + read + end_symtab repeated ...
69    do_cleanups (cleanups);
70 */
71 
72 #include "defs.h"
73 #include "bfd.h"
74 #include "gdb_obstack.h"
75 #include "symtab.h"
76 #include "symfile.h"
77 #include "objfiles.h"
78 #include "gdbtypes.h"
79 #include "complaints.h"
80 #include "expression.h"		/* For "enum exp_opcode" used by...  */
81 #include "bcache.h"
82 #include "filenames.h"		/* For DOSish file names.  */
83 #include "macrotab.h"
84 #include "demangle.h"		/* Needed by SYMBOL_INIT_DEMANGLED_NAME.  */
85 #include "block.h"
86 #include "cp-support.h"
87 #include "dictionary.h"
88 #include "addrmap.h"
89 
90 /* Ask buildsym.h to define the vars it normally declares `extern'.  */
91 #define	EXTERN
92 /**/
93 #include "buildsym.h"		/* Our own declarations.  */
94 #undef	EXTERN
95 
96 /* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
97    questionable--see comment where we call them).  */
98 
99 #include "stabsread.h"
100 
101 /* Buildsym's counterpart to struct compunit_symtab.
102    TODO(dje): Move all related global state into here.  */
103 
104 struct buildsym_compunit
105 {
106   /* The objfile we're reading debug info from.  */
107   struct objfile *objfile;
108 
109   /* List of subfiles (source files).
110      Files are added to the front of the list.
111      This is important mostly for the language determination hacks we use,
112      which iterate over previously added files.  */
113   struct subfile *subfiles;
114 
115   /* The subfile of the main source file.  */
116   struct subfile *main_subfile;
117 
118   /* E.g., DW_AT_comp_dir if DWARF.  Space for this is malloc'd.  */
119   char *comp_dir;
120 
121   /* Space for this is not malloc'd, and is assumed to have at least
122      the same lifetime as objfile.  */
123   const char *producer;
124 
125   /* Space for this is not malloc'd, and is assumed to have at least
126      the same lifetime as objfile.  */
127   const char *debugformat;
128 
129   /* The compunit we are building.  */
130   struct compunit_symtab *compunit_symtab;
131 };
132 
133 /* The work-in-progress of the compunit we are building.
134    This is created first, before any subfiles by start_symtab.  */
135 
136 static struct buildsym_compunit *buildsym_compunit;
137 
138 /* List of free `struct pending' structures for reuse.  */
139 
140 static struct pending *free_pendings;
141 
142 /* Non-zero if symtab has line number info.  This prevents an
143    otherwise empty symtab from being tossed.  */
144 
145 static int have_line_numbers;
146 
147 /* The mutable address map for the compilation unit whose symbols
148    we're currently reading.  The symtabs' shared blockvector will
149    point to a fixed copy of this.  */
150 static struct addrmap *pending_addrmap;
151 
152 /* The obstack on which we allocate pending_addrmap.
153    If pending_addrmap is NULL, this is uninitialized; otherwise, it is
154    initialized (and holds pending_addrmap).  */
155 static struct obstack pending_addrmap_obstack;
156 
157 /* Non-zero if we recorded any ranges in the addrmap that are
158    different from those in the blockvector already.  We set this to
159    zero when we start processing a symfile, and if it's still zero at
160    the end, then we just toss the addrmap.  */
161 static int pending_addrmap_interesting;
162 
163 /* An obstack used for allocating pending blocks.  */
164 
165 static struct obstack pending_block_obstack;
166 
167 /* List of blocks already made (lexical contexts already closed).
168    This is used at the end to make the blockvector.  */
169 
170 struct pending_block
171   {
172     struct pending_block *next;
173     struct block *block;
174   };
175 
176 /* Pointer to the head of a linked list of symbol blocks which have
177    already been finalized (lexical contexts already closed) and which
178    are just waiting to be built into a blockvector when finalizing the
179    associated symtab.  */
180 
181 static struct pending_block *pending_blocks;
182 
183 struct subfile_stack
184   {
185     struct subfile_stack *next;
186     char *name;
187   };
188 
189 static struct subfile_stack *subfile_stack;
190 
191 /* The macro table for the compilation unit whose symbols we're
192    currently reading.  */
193 static struct macro_table *pending_macros;
194 
195 static void free_buildsym_compunit (void);
196 
197 static int compare_line_numbers (const void *ln1p, const void *ln2p);
198 
199 static void record_pending_block (struct objfile *objfile,
200 				  struct block *block,
201 				  struct pending_block *opblock);
202 
203 /* Initial sizes of data structures.  These are realloc'd larger if
204    needed, and realloc'd down to the size actually used, when
205    completed.  */
206 
207 #define	INITIAL_CONTEXT_STACK_SIZE	10
208 #define	INITIAL_LINE_VECTOR_LENGTH	1000
209 
210 
211 /* Maintain the lists of symbols and blocks.  */
212 
213 /* Add a symbol to one of the lists of symbols.  */
214 
215 void
216 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
217 {
218   struct pending *link;
219 
220   /* If this is an alias for another symbol, don't add it.  */
221   if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
222     return;
223 
224   /* We keep PENDINGSIZE symbols in each link of the list.  If we
225      don't have a link with room in it, add a new link.  */
226   if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
227     {
228       if (free_pendings)
229 	{
230 	  link = free_pendings;
231 	  free_pendings = link->next;
232 	}
233       else
234 	{
235 	  link = XNEW (struct pending);
236 	}
237 
238       link->next = *listhead;
239       *listhead = link;
240       link->nsyms = 0;
241     }
242 
243   (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
244 }
245 
246 /* Find a symbol named NAME on a LIST.  NAME need not be
247    '\0'-terminated; LENGTH is the length of the name.  */
248 
249 struct symbol *
250 find_symbol_in_list (struct pending *list, char *name, int length)
251 {
252   int j;
253   const char *pp;
254 
255   while (list != NULL)
256     {
257       for (j = list->nsyms; --j >= 0;)
258 	{
259 	  pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
260 	  if (*pp == *name && strncmp (pp, name, length) == 0
261 	      && pp[length] == '\0')
262 	    {
263 	      return (list->symbol[j]);
264 	    }
265 	}
266       list = list->next;
267     }
268   return (NULL);
269 }
270 
271 /* At end of reading syms, or in case of quit, ensure everything associated
272    with building symtabs is freed.  This is intended to be registered as a
273    cleanup before doing psymtab->symtab expansion.
274 
275    N.B. This is *not* intended to be used when building psymtabs.  Some debug
276    info readers call this anyway, which is harmless if confusing.  */
277 
278 void
279 really_free_pendings (void *dummy)
280 {
281   struct pending *next, *next1;
282 
283   for (next = free_pendings; next; next = next1)
284     {
285       next1 = next->next;
286       xfree ((void *) next);
287     }
288   free_pendings = NULL;
289 
290   free_pending_blocks ();
291 
292   for (next = file_symbols; next != NULL; next = next1)
293     {
294       next1 = next->next;
295       xfree ((void *) next);
296     }
297   file_symbols = NULL;
298 
299   for (next = global_symbols; next != NULL; next = next1)
300     {
301       next1 = next->next;
302       xfree ((void *) next);
303     }
304   global_symbols = NULL;
305 
306   if (pending_macros)
307     free_macro_table (pending_macros);
308   pending_macros = NULL;
309 
310   if (pending_addrmap)
311     obstack_free (&pending_addrmap_obstack, NULL);
312   pending_addrmap = NULL;
313 
314   free_buildsym_compunit ();
315 }
316 
317 /* This function is called to discard any pending blocks.  */
318 
319 void
320 free_pending_blocks (void)
321 {
322   if (pending_blocks != NULL)
323     {
324       obstack_free (&pending_block_obstack, NULL);
325       pending_blocks = NULL;
326     }
327 }
328 
329 /* Take one of the lists of symbols and make a block from it.  Keep
330    the order the symbols have in the list (reversed from the input
331    file).  Put the block on the list of pending blocks.  */
332 
333 static struct block *
334 finish_block_internal (struct symbol *symbol,
335 		       struct pending **listhead,
336 		       struct pending_block *old_blocks,
337 		       const struct dynamic_prop *static_link,
338 		       CORE_ADDR start, CORE_ADDR end,
339 		       int is_global, int expandable)
340 {
341   struct objfile *objfile = buildsym_compunit->objfile;
342   struct gdbarch *gdbarch = get_objfile_arch (objfile);
343   struct pending *next, *next1;
344   struct block *block;
345   struct pending_block *pblock;
346   struct pending_block *opblock;
347 
348   block = (is_global
349 	   ? allocate_global_block (&objfile->objfile_obstack)
350 	   : allocate_block (&objfile->objfile_obstack));
351 
352   if (symbol)
353     {
354       BLOCK_DICT (block) = dict_create_linear (&objfile->objfile_obstack,
355 					       *listhead);
356     }
357   else
358     {
359       if (expandable)
360 	{
361 	  BLOCK_DICT (block) = dict_create_hashed_expandable ();
362 	  dict_add_pending (BLOCK_DICT (block), *listhead);
363 	}
364       else
365 	{
366 	  BLOCK_DICT (block) =
367 	    dict_create_hashed (&objfile->objfile_obstack, *listhead);
368 	}
369     }
370 
371   BLOCK_START (block) = start;
372   BLOCK_END (block) = end;
373 
374   /* Put the block in as the value of the symbol that names it.  */
375 
376   if (symbol)
377     {
378       struct type *ftype = SYMBOL_TYPE (symbol);
379       struct dict_iterator iter;
380       SYMBOL_BLOCK_VALUE (symbol) = block;
381       BLOCK_FUNCTION (block) = symbol;
382 
383       if (TYPE_NFIELDS (ftype) <= 0)
384 	{
385 	  /* No parameter type information is recorded with the
386 	     function's type.  Set that from the type of the
387 	     parameter symbols.  */
388 	  int nparams = 0, iparams;
389 	  struct symbol *sym;
390 
391 	  /* Here we want to directly access the dictionary, because
392 	     we haven't fully initialized the block yet.  */
393 	  ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
394 	    {
395 	      if (SYMBOL_IS_ARGUMENT (sym))
396 		nparams++;
397 	    }
398 	  if (nparams > 0)
399 	    {
400 	      TYPE_NFIELDS (ftype) = nparams;
401 	      TYPE_FIELDS (ftype) = (struct field *)
402 		TYPE_ALLOC (ftype, nparams * sizeof (struct field));
403 
404 	      iparams = 0;
405 	      /* Here we want to directly access the dictionary, because
406 		 we haven't fully initialized the block yet.  */
407 	      ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
408 		{
409 		  if (iparams == nparams)
410 		    break;
411 
412 		  if (SYMBOL_IS_ARGUMENT (sym))
413 		    {
414 		      TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
415 		      TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
416 		      iparams++;
417 		    }
418 		}
419 	    }
420 	}
421     }
422   else
423     {
424       BLOCK_FUNCTION (block) = NULL;
425     }
426 
427   if (static_link != NULL)
428     objfile_register_static_link (objfile, block, static_link);
429 
430   /* Now "free" the links of the list, and empty the list.  */
431 
432   for (next = *listhead; next; next = next1)
433     {
434       next1 = next->next;
435       next->next = free_pendings;
436       free_pendings = next;
437     }
438   *listhead = NULL;
439 
440   /* Check to be sure that the blocks have an end address that is
441      greater than starting address.  */
442 
443   if (BLOCK_END (block) < BLOCK_START (block))
444     {
445       if (symbol)
446 	{
447 	  complaint (&symfile_complaints,
448 		     _("block end address less than block "
449 		       "start address in %s (patched it)"),
450 		     SYMBOL_PRINT_NAME (symbol));
451 	}
452       else
453 	{
454 	  complaint (&symfile_complaints,
455 		     _("block end address %s less than block "
456 		       "start address %s (patched it)"),
457 		     paddress (gdbarch, BLOCK_END (block)),
458 		     paddress (gdbarch, BLOCK_START (block)));
459 	}
460       /* Better than nothing.  */
461       BLOCK_END (block) = BLOCK_START (block);
462     }
463 
464   /* Install this block as the superblock of all blocks made since the
465      start of this scope that don't have superblocks yet.  */
466 
467   opblock = NULL;
468   for (pblock = pending_blocks;
469        pblock && pblock != old_blocks;
470        pblock = pblock->next)
471     {
472       if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
473 	{
474 	  /* Check to be sure the blocks are nested as we receive
475 	     them.  If the compiler/assembler/linker work, this just
476 	     burns a small amount of time.
477 
478 	     Skip blocks which correspond to a function; they're not
479 	     physically nested inside this other blocks, only
480 	     lexically nested.  */
481 	  if (BLOCK_FUNCTION (pblock->block) == NULL
482 	      && (BLOCK_START (pblock->block) < BLOCK_START (block)
483 		  || BLOCK_END (pblock->block) > BLOCK_END (block)))
484 	    {
485 	      if (symbol)
486 		{
487 		  complaint (&symfile_complaints,
488 			     _("inner block not inside outer block in %s"),
489 			     SYMBOL_PRINT_NAME (symbol));
490 		}
491 	      else
492 		{
493 		  complaint (&symfile_complaints,
494 			     _("inner block (%s-%s) not "
495 			       "inside outer block (%s-%s)"),
496 			     paddress (gdbarch, BLOCK_START (pblock->block)),
497 			     paddress (gdbarch, BLOCK_END (pblock->block)),
498 			     paddress (gdbarch, BLOCK_START (block)),
499 			     paddress (gdbarch, BLOCK_END (block)));
500 		}
501 	      if (BLOCK_START (pblock->block) < BLOCK_START (block))
502 		BLOCK_START (pblock->block) = BLOCK_START (block);
503 	      if (BLOCK_END (pblock->block) > BLOCK_END (block))
504 		BLOCK_END (pblock->block) = BLOCK_END (block);
505 	    }
506 	  BLOCK_SUPERBLOCK (pblock->block) = block;
507 	}
508       opblock = pblock;
509     }
510 
511   block_set_using (block,
512 		   (is_global
513 		    ? global_using_directives
514 		    : local_using_directives),
515 		   &objfile->objfile_obstack);
516   if (is_global)
517     global_using_directives = NULL;
518   else
519     local_using_directives = NULL;
520 
521   record_pending_block (objfile, block, opblock);
522 
523   return block;
524 }
525 
526 struct block *
527 finish_block (struct symbol *symbol,
528 	      struct pending **listhead,
529 	      struct pending_block *old_blocks,
530 	      const struct dynamic_prop *static_link,
531 	      CORE_ADDR start, CORE_ADDR end)
532 {
533   return finish_block_internal (symbol, listhead, old_blocks, static_link,
534 				start, end, 0, 0);
535 }
536 
537 /* Record BLOCK on the list of all blocks in the file.  Put it after
538    OPBLOCK, or at the beginning if opblock is NULL.  This puts the
539    block in the list after all its subblocks.
540 
541    Allocate the pending block struct in the objfile_obstack to save
542    time.  This wastes a little space.  FIXME: Is it worth it?  */
543 
544 static void
545 record_pending_block (struct objfile *objfile, struct block *block,
546 		      struct pending_block *opblock)
547 {
548   struct pending_block *pblock;
549 
550   if (pending_blocks == NULL)
551     obstack_init (&pending_block_obstack);
552 
553   pblock = XOBNEW (&pending_block_obstack, struct pending_block);
554   pblock->block = block;
555   if (opblock)
556     {
557       pblock->next = opblock->next;
558       opblock->next = pblock;
559     }
560   else
561     {
562       pblock->next = pending_blocks;
563       pending_blocks = pblock;
564     }
565 }
566 
567 
568 /* Record that the range of addresses from START to END_INCLUSIVE
569    (inclusive, like it says) belongs to BLOCK.  BLOCK's start and end
570    addresses must be set already.  You must apply this function to all
571    BLOCK's children before applying it to BLOCK.
572 
573    If a call to this function complicates the picture beyond that
574    already provided by BLOCK_START and BLOCK_END, then we create an
575    address map for the block.  */
576 void
577 record_block_range (struct block *block,
578                     CORE_ADDR start, CORE_ADDR end_inclusive)
579 {
580   /* If this is any different from the range recorded in the block's
581      own BLOCK_START and BLOCK_END, then note that the address map has
582      become interesting.  Note that even if this block doesn't have
583      any "interesting" ranges, some later block might, so we still
584      need to record this block in the addrmap.  */
585   if (start != BLOCK_START (block)
586       || end_inclusive + 1 != BLOCK_END (block))
587     pending_addrmap_interesting = 1;
588 
589   if (! pending_addrmap)
590     {
591       obstack_init (&pending_addrmap_obstack);
592       pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
593     }
594 
595   addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
596 }
597 
598 static struct blockvector *
599 make_blockvector (void)
600 {
601   struct objfile *objfile = buildsym_compunit->objfile;
602   struct pending_block *next;
603   struct blockvector *blockvector;
604   int i;
605 
606   /* Count the length of the list of blocks.  */
607 
608   for (next = pending_blocks, i = 0; next; next = next->next, i++)
609     {;
610     }
611 
612   blockvector = (struct blockvector *)
613     obstack_alloc (&objfile->objfile_obstack,
614 		   (sizeof (struct blockvector)
615 		    + (i - 1) * sizeof (struct block *)));
616 
617   /* Copy the blocks into the blockvector.  This is done in reverse
618      order, which happens to put the blocks into the proper order
619      (ascending starting address).  finish_block has hair to insert
620      each block into the list after its subblocks in order to make
621      sure this is true.  */
622 
623   BLOCKVECTOR_NBLOCKS (blockvector) = i;
624   for (next = pending_blocks; next; next = next->next)
625     {
626       BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
627     }
628 
629   free_pending_blocks ();
630 
631   /* If we needed an address map for this symtab, record it in the
632      blockvector.  */
633   if (pending_addrmap && pending_addrmap_interesting)
634     BLOCKVECTOR_MAP (blockvector)
635       = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
636   else
637     BLOCKVECTOR_MAP (blockvector) = 0;
638 
639   /* Some compilers output blocks in the wrong order, but we depend on
640      their being in the right order so we can binary search.  Check the
641      order and moan about it.
642      Note: Remember that the first two blocks are the global and static
643      blocks.  We could special case that fact and begin checking at block 2.
644      To avoid making that assumption we do not.  */
645   if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
646     {
647       for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
648 	{
649 	  if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
650 	      > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
651 	    {
652 	      CORE_ADDR start
653 		= BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
654 
655 	      complaint (&symfile_complaints, _("block at %s out of order"),
656 			 hex_string ((LONGEST) start));
657 	    }
658 	}
659     }
660 
661   return (blockvector);
662 }
663 
664 /* Start recording information about source code that came from an
665    included (or otherwise merged-in) source file with a different
666    name.  NAME is the name of the file (cannot be NULL).  */
667 
668 void
669 start_subfile (const char *name)
670 {
671   const char *subfile_dirname;
672   struct subfile *subfile;
673 
674   gdb_assert (buildsym_compunit != NULL);
675 
676   subfile_dirname = buildsym_compunit->comp_dir;
677 
678   /* See if this subfile is already registered.  */
679 
680   for (subfile = buildsym_compunit->subfiles; subfile; subfile = subfile->next)
681     {
682       char *subfile_name;
683 
684       /* If NAME is an absolute path, and this subfile is not, then
685 	 attempt to create an absolute path to compare.  */
686       if (IS_ABSOLUTE_PATH (name)
687 	  && !IS_ABSOLUTE_PATH (subfile->name)
688 	  && subfile_dirname != NULL)
689 	subfile_name = concat (subfile_dirname, SLASH_STRING,
690 			       subfile->name, (char *) NULL);
691       else
692 	subfile_name = subfile->name;
693 
694       if (FILENAME_CMP (subfile_name, name) == 0)
695 	{
696 	  current_subfile = subfile;
697 	  if (subfile_name != subfile->name)
698 	    xfree (subfile_name);
699 	  return;
700 	}
701       if (subfile_name != subfile->name)
702 	xfree (subfile_name);
703     }
704 
705   /* This subfile is not known.  Add an entry for it.  */
706 
707   subfile = XNEW (struct subfile);
708   memset (subfile, 0, sizeof (struct subfile));
709   subfile->buildsym_compunit = buildsym_compunit;
710 
711   subfile->next = buildsym_compunit->subfiles;
712   buildsym_compunit->subfiles = subfile;
713 
714   current_subfile = subfile;
715 
716   subfile->name = xstrdup (name);
717 
718   /* Initialize line-number recording for this subfile.  */
719   subfile->line_vector = NULL;
720 
721   /* Default the source language to whatever can be deduced from the
722      filename.  If nothing can be deduced (such as for a C/C++ include
723      file with a ".h" extension), then inherit whatever language the
724      previous subfile had.  This kludgery is necessary because there
725      is no standard way in some object formats to record the source
726      language.  Also, when symtabs are allocated we try to deduce a
727      language then as well, but it is too late for us to use that
728      information while reading symbols, since symtabs aren't allocated
729      until after all the symbols have been processed for a given
730      source file.  */
731 
732   subfile->language = deduce_language_from_filename (subfile->name);
733   if (subfile->language == language_unknown
734       && subfile->next != NULL)
735     {
736       subfile->language = subfile->next->language;
737     }
738 
739   /* If the filename of this subfile ends in .C, then change the
740      language of any pending subfiles from C to C++.  We also accept
741      any other C++ suffixes accepted by deduce_language_from_filename.  */
742   /* Likewise for f2c.  */
743 
744   if (subfile->name)
745     {
746       struct subfile *s;
747       enum language sublang = deduce_language_from_filename (subfile->name);
748 
749       if (sublang == language_cplus || sublang == language_fortran)
750 	for (s = buildsym_compunit->subfiles; s != NULL; s = s->next)
751 	  if (s->language == language_c)
752 	    s->language = sublang;
753     }
754 
755   /* And patch up this file if necessary.  */
756   if (subfile->language == language_c
757       && subfile->next != NULL
758       && (subfile->next->language == language_cplus
759 	  || subfile->next->language == language_fortran))
760     {
761       subfile->language = subfile->next->language;
762     }
763 }
764 
765 /* Start recording information about a primary source file (IOW, not an
766    included source file).
767    COMP_DIR is the directory in which the compilation unit was compiled
768    (or NULL if not known).  */
769 
770 static struct buildsym_compunit *
771 start_buildsym_compunit (struct objfile *objfile, const char *comp_dir)
772 {
773   struct buildsym_compunit *bscu;
774 
775   bscu = XNEW (struct buildsym_compunit);
776   memset (bscu, 0, sizeof (struct buildsym_compunit));
777 
778   bscu->objfile = objfile;
779   bscu->comp_dir = (comp_dir == NULL) ? NULL : xstrdup (comp_dir);
780 
781   /* Initialize the debug format string to NULL.  We may supply it
782      later via a call to record_debugformat.  */
783   bscu->debugformat = NULL;
784 
785   /* Similarly for the producer.  */
786   bscu->producer = NULL;
787 
788   return bscu;
789 }
790 
791 /* Delete the buildsym compunit.  */
792 
793 static void
794 free_buildsym_compunit (void)
795 {
796   struct subfile *subfile, *nextsub;
797 
798   if (buildsym_compunit == NULL)
799     return;
800   for (subfile = buildsym_compunit->subfiles;
801        subfile != NULL;
802        subfile = nextsub)
803     {
804       nextsub = subfile->next;
805       xfree (subfile->name);
806       xfree (subfile->line_vector);
807       xfree (subfile);
808     }
809   xfree (buildsym_compunit->comp_dir);
810   xfree (buildsym_compunit);
811   buildsym_compunit = NULL;
812   current_subfile = NULL;
813 }
814 
815 /* For stabs readers, the first N_SO symbol is assumed to be the
816    source file name, and the subfile struct is initialized using that
817    assumption.  If another N_SO symbol is later seen, immediately
818    following the first one, then the first one is assumed to be the
819    directory name and the second one is really the source file name.
820 
821    So we have to patch up the subfile struct by moving the old name
822    value to dirname and remembering the new name.  Some sanity
823    checking is performed to ensure that the state of the subfile
824    struct is reasonable and that the old name we are assuming to be a
825    directory name actually is (by checking for a trailing '/').  */
826 
827 void
828 patch_subfile_names (struct subfile *subfile, char *name)
829 {
830   if (subfile != NULL
831       && buildsym_compunit->comp_dir == NULL
832       && subfile->name != NULL
833       && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
834     {
835       buildsym_compunit->comp_dir = subfile->name;
836       subfile->name = xstrdup (name);
837       set_last_source_file (name);
838 
839       /* Default the source language to whatever can be deduced from
840          the filename.  If nothing can be deduced (such as for a C/C++
841          include file with a ".h" extension), then inherit whatever
842          language the previous subfile had.  This kludgery is
843          necessary because there is no standard way in some object
844          formats to record the source language.  Also, when symtabs
845          are allocated we try to deduce a language then as well, but
846          it is too late for us to use that information while reading
847          symbols, since symtabs aren't allocated until after all the
848          symbols have been processed for a given source file.  */
849 
850       subfile->language = deduce_language_from_filename (subfile->name);
851       if (subfile->language == language_unknown
852 	  && subfile->next != NULL)
853 	{
854 	  subfile->language = subfile->next->language;
855 	}
856     }
857 }
858 
859 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
860    switching source files (different subfiles, as we call them) within
861    one object file, but using a stack rather than in an arbitrary
862    order.  */
863 
864 void
865 push_subfile (void)
866 {
867   struct subfile_stack *tem = XNEW (struct subfile_stack);
868 
869   tem->next = subfile_stack;
870   subfile_stack = tem;
871   if (current_subfile == NULL || current_subfile->name == NULL)
872     {
873       internal_error (__FILE__, __LINE__,
874 		      _("failed internal consistency check"));
875     }
876   tem->name = current_subfile->name;
877 }
878 
879 char *
880 pop_subfile (void)
881 {
882   char *name;
883   struct subfile_stack *link = subfile_stack;
884 
885   if (link == NULL)
886     {
887       internal_error (__FILE__, __LINE__,
888 		      _("failed internal consistency check"));
889     }
890   name = link->name;
891   subfile_stack = link->next;
892   xfree ((void *) link);
893   return (name);
894 }
895 
896 /* Add a linetable entry for line number LINE and address PC to the
897    line vector for SUBFILE.  */
898 
899 void
900 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
901 {
902   struct linetable_entry *e;
903 
904   /* Ignore the dummy line number in libg.o */
905   if (line == 0xffff)
906     {
907       return;
908     }
909 
910   /* Make sure line vector exists and is big enough.  */
911   if (!subfile->line_vector)
912     {
913       subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
914       subfile->line_vector = (struct linetable *)
915 	xmalloc (sizeof (struct linetable)
916 	   + subfile->line_vector_length * sizeof (struct linetable_entry));
917       subfile->line_vector->nitems = 0;
918       have_line_numbers = 1;
919     }
920 
921   if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
922     {
923       subfile->line_vector_length *= 2;
924       subfile->line_vector = (struct linetable *)
925 	xrealloc ((char *) subfile->line_vector,
926 		  (sizeof (struct linetable)
927 		   + (subfile->line_vector_length
928 		      * sizeof (struct linetable_entry))));
929     }
930 
931   /* Normally, we treat lines as unsorted.  But the end of sequence
932      marker is special.  We sort line markers at the same PC by line
933      number, so end of sequence markers (which have line == 0) appear
934      first.  This is right if the marker ends the previous function,
935      and there is no padding before the next function.  But it is
936      wrong if the previous line was empty and we are now marking a
937      switch to a different subfile.  We must leave the end of sequence
938      marker at the end of this group of lines, not sort the empty line
939      to after the marker.  The easiest way to accomplish this is to
940      delete any empty lines from our table, if they are followed by
941      end of sequence markers.  All we lose is the ability to set
942      breakpoints at some lines which contain no instructions
943      anyway.  */
944   if (line == 0 && subfile->line_vector->nitems > 0)
945     {
946       e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
947       while (subfile->line_vector->nitems > 0 && e->pc == pc)
948 	{
949 	  e--;
950 	  subfile->line_vector->nitems--;
951 	}
952     }
953 
954   e = subfile->line_vector->item + subfile->line_vector->nitems++;
955   e->line = line;
956   e->pc = pc;
957 }
958 
959 /* Needed in order to sort line tables from IBM xcoff files.  Sigh!  */
960 
961 static int
962 compare_line_numbers (const void *ln1p, const void *ln2p)
963 {
964   struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
965   struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
966 
967   /* Note: this code does not assume that CORE_ADDRs can fit in ints.
968      Please keep it that way.  */
969   if (ln1->pc < ln2->pc)
970     return -1;
971 
972   if (ln1->pc > ln2->pc)
973     return 1;
974 
975   /* If pc equal, sort by line.  I'm not sure whether this is optimum
976      behavior (see comment at struct linetable in symtab.h).  */
977   return ln1->line - ln2->line;
978 }
979 
980 /* See buildsym.h.  */
981 
982 struct compunit_symtab *
983 buildsym_compunit_symtab (void)
984 {
985   gdb_assert (buildsym_compunit != NULL);
986 
987   return buildsym_compunit->compunit_symtab;
988 }
989 
990 /* See buildsym.h.  */
991 
992 struct macro_table *
993 get_macro_table (void)
994 {
995   struct objfile *objfile;
996 
997   gdb_assert (buildsym_compunit != NULL);
998 
999   objfile = buildsym_compunit->objfile;
1000 
1001   if (! pending_macros)
1002     {
1003       pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
1004 					objfile->per_bfd->macro_cache,
1005 					buildsym_compunit->compunit_symtab);
1006     }
1007 
1008   return pending_macros;
1009 }
1010 
1011 /* Init state to prepare for building a symtab.
1012    Note: This can't be done in buildsym_init because dbxread.c and xcoffread.c
1013    can call start_symtab+end_symtab multiple times after one call to
1014    buildsym_init.  */
1015 
1016 static void
1017 prepare_for_building (const char *name, CORE_ADDR start_addr)
1018 {
1019   set_last_source_file (name);
1020   last_source_start_addr = start_addr;
1021 
1022   local_symbols = NULL;
1023   local_using_directives = NULL;
1024   within_function = 0;
1025   have_line_numbers = 0;
1026 
1027   context_stack_depth = 0;
1028 
1029   /* These should have been reset either by successful completion of building
1030      a symtab, or by the really_free_pendings cleanup.  */
1031   gdb_assert (file_symbols == NULL);
1032   gdb_assert (global_symbols == NULL);
1033   gdb_assert (global_using_directives == NULL);
1034   gdb_assert (pending_macros == NULL);
1035   gdb_assert (pending_addrmap == NULL);
1036   gdb_assert (current_subfile == NULL);
1037 }
1038 
1039 /* Start a new symtab for a new source file in OBJFILE.  Called, for example,
1040    when a stabs symbol of type N_SO is seen, or when a DWARF
1041    TAG_compile_unit DIE is seen.  It indicates the start of data for
1042    one original source file.
1043 
1044    NAME is the name of the file (cannot be NULL).  COMP_DIR is the directory in
1045    which the file was compiled (or NULL if not known).  START_ADDR is the
1046    lowest address of objects in the file (or 0 if not known).  */
1047 
1048 struct compunit_symtab *
1049 start_symtab (struct objfile *objfile, const char *name, const char *comp_dir,
1050 	      CORE_ADDR start_addr)
1051 {
1052   prepare_for_building (name, start_addr);
1053 
1054   buildsym_compunit = start_buildsym_compunit (objfile, comp_dir);
1055 
1056   /* Allocate the compunit symtab now.  The caller needs it to allocate
1057      non-primary symtabs.  It is also needed by get_macro_table.  */
1058   buildsym_compunit->compunit_symtab = allocate_compunit_symtab (objfile,
1059 								 name);
1060 
1061   /* Build the subfile for NAME (the main source file) so that we can record
1062      a pointer to it for later.
1063      IMPORTANT: Do not allocate a struct symtab for NAME here.
1064      It can happen that the debug info provides a different path to NAME than
1065      DIRNAME,NAME.  We cope with this in watch_main_source_file_lossage but
1066      that only works if the main_subfile doesn't have a symtab yet.  */
1067   start_subfile (name);
1068   /* Save this so that we don't have to go looking for it at the end
1069      of the subfiles list.  */
1070   buildsym_compunit->main_subfile = current_subfile;
1071 
1072   return buildsym_compunit->compunit_symtab;
1073 }
1074 
1075 /* Restart compilation for a symtab.
1076    CUST is the result of end_expandable_symtab.
1077    NAME, START_ADDR are the source file we are resuming with.
1078 
1079    This is used when a symtab is built from multiple sources.
1080    The symtab is first built with start_symtab/end_expandable_symtab
1081    and then for each additional piece call restart_symtab/augment_*_symtab.
1082    Note: At the moment there is only augment_type_symtab.  */
1083 
1084 void
1085 restart_symtab (struct compunit_symtab *cust,
1086 		const char *name, CORE_ADDR start_addr)
1087 {
1088   prepare_for_building (name, start_addr);
1089 
1090   buildsym_compunit = start_buildsym_compunit (COMPUNIT_OBJFILE (cust),
1091 					       COMPUNIT_DIRNAME (cust));
1092   buildsym_compunit->compunit_symtab = cust;
1093 }
1094 
1095 /* Subroutine of end_symtab to simplify it.  Look for a subfile that
1096    matches the main source file's basename.  If there is only one, and
1097    if the main source file doesn't have any symbol or line number
1098    information, then copy this file's symtab and line_vector to the
1099    main source file's subfile and discard the other subfile.  This can
1100    happen because of a compiler bug or from the user playing games
1101    with #line or from things like a distributed build system that
1102    manipulates the debug info.  This can also happen from an innocent
1103    symlink in the paths, we don't canonicalize paths here.  */
1104 
1105 static void
1106 watch_main_source_file_lossage (void)
1107 {
1108   struct subfile *mainsub, *subfile;
1109 
1110   /* We have to watch for buildsym_compunit == NULL here.  It's a quirk of
1111      end_symtab, it can return NULL so there may not be a main subfile.  */
1112   if (buildsym_compunit == NULL)
1113     return;
1114 
1115   /* Get the main source file.  */
1116   mainsub = buildsym_compunit->main_subfile;
1117 
1118   /* If the main source file doesn't have any line number or symbol
1119      info, look for an alias in another subfile.  */
1120 
1121   if (mainsub->line_vector == NULL
1122       && mainsub->symtab == NULL)
1123     {
1124       const char *mainbase = lbasename (mainsub->name);
1125       int nr_matches = 0;
1126       struct subfile *prevsub;
1127       struct subfile *mainsub_alias = NULL;
1128       struct subfile *prev_mainsub_alias = NULL;
1129 
1130       prevsub = NULL;
1131       for (subfile = buildsym_compunit->subfiles;
1132 	   subfile != NULL;
1133 	   subfile = subfile->next)
1134 	{
1135 	  if (subfile == mainsub)
1136 	    continue;
1137 	  if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
1138 	    {
1139 	      ++nr_matches;
1140 	      mainsub_alias = subfile;
1141 	      prev_mainsub_alias = prevsub;
1142 	    }
1143 	  prevsub = subfile;
1144 	}
1145 
1146       if (nr_matches == 1)
1147 	{
1148 	  gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
1149 
1150 	  /* Found a match for the main source file.
1151 	     Copy its line_vector and symtab to the main subfile
1152 	     and then discard it.  */
1153 
1154 	  mainsub->line_vector = mainsub_alias->line_vector;
1155 	  mainsub->line_vector_length = mainsub_alias->line_vector_length;
1156 	  mainsub->symtab = mainsub_alias->symtab;
1157 
1158 	  if (prev_mainsub_alias == NULL)
1159 	    buildsym_compunit->subfiles = mainsub_alias->next;
1160 	  else
1161 	    prev_mainsub_alias->next = mainsub_alias->next;
1162 	  xfree (mainsub_alias->name);
1163 	  xfree (mainsub_alias);
1164 	}
1165     }
1166 }
1167 
1168 /* Helper function for qsort.  Parameters are `struct block *' pointers,
1169    function sorts them in descending order by their BLOCK_START.  */
1170 
1171 static int
1172 block_compar (const void *ap, const void *bp)
1173 {
1174   const struct block *a = *(const struct block **) ap;
1175   const struct block *b = *(const struct block **) bp;
1176 
1177   return ((BLOCK_START (b) > BLOCK_START (a))
1178 	  - (BLOCK_START (b) < BLOCK_START (a)));
1179 }
1180 
1181 /* Reset state after a successful building of a symtab.
1182    This exists because dbxread.c and xcoffread.c can call
1183    start_symtab+end_symtab multiple times after one call to buildsym_init,
1184    and before the really_free_pendings cleanup is called.
1185    We keep the free_pendings list around for dbx/xcoff sake.  */
1186 
1187 static void
1188 reset_symtab_globals (void)
1189 {
1190   set_last_source_file (NULL);
1191 
1192   local_symbols = NULL;
1193   local_using_directives = NULL;
1194   file_symbols = NULL;
1195   global_symbols = NULL;
1196   global_using_directives = NULL;
1197 
1198   /* We don't free pending_macros here because if the symtab was successfully
1199      built then ownership was transferred to the symtab.  */
1200   pending_macros = NULL;
1201 
1202   if (pending_addrmap)
1203     obstack_free (&pending_addrmap_obstack, NULL);
1204   pending_addrmap = NULL;
1205 
1206   free_buildsym_compunit ();
1207 }
1208 
1209 /* Implementation of the first part of end_symtab.  It allows modifying
1210    STATIC_BLOCK before it gets finalized by end_symtab_from_static_block.
1211    If the returned value is NULL there is no blockvector created for
1212    this symtab (you still must call end_symtab_from_static_block).
1213 
1214    END_ADDR is the same as for end_symtab: the address of the end of the
1215    file's text.
1216 
1217    If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
1218    expandable.
1219 
1220    If REQUIRED is non-zero, then a symtab is created even if it does
1221    not contain any symbols.  */
1222 
1223 struct block *
1224 end_symtab_get_static_block (CORE_ADDR end_addr, int expandable, int required)
1225 {
1226   struct objfile *objfile = buildsym_compunit->objfile;
1227 
1228   /* Finish the lexical context of the last function in the file; pop
1229      the context stack.  */
1230 
1231   if (context_stack_depth > 0)
1232     {
1233       struct context_stack *cstk = pop_context ();
1234 
1235       /* Make a block for the local symbols within.  */
1236       finish_block (cstk->name, &local_symbols, cstk->old_blocks, NULL,
1237 		    cstk->start_addr, end_addr);
1238 
1239       if (context_stack_depth > 0)
1240 	{
1241 	  /* This is said to happen with SCO.  The old coffread.c
1242 	     code simply emptied the context stack, so we do the
1243 	     same.  FIXME: Find out why it is happening.  This is not
1244 	     believed to happen in most cases (even for coffread.c);
1245 	     it used to be an abort().  */
1246 	  complaint (&symfile_complaints,
1247 	             _("Context stack not empty in end_symtab"));
1248 	  context_stack_depth = 0;
1249 	}
1250     }
1251 
1252   /* Reordered executables may have out of order pending blocks; if
1253      OBJF_REORDERED is true, then sort the pending blocks.  */
1254 
1255   if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
1256     {
1257       unsigned count = 0;
1258       struct pending_block *pb;
1259       struct block **barray, **bp;
1260       struct cleanup *back_to;
1261 
1262       for (pb = pending_blocks; pb != NULL; pb = pb->next)
1263 	count++;
1264 
1265       barray = XNEWVEC (struct block *, count);
1266       back_to = make_cleanup (xfree, barray);
1267 
1268       bp = barray;
1269       for (pb = pending_blocks; pb != NULL; pb = pb->next)
1270 	*bp++ = pb->block;
1271 
1272       qsort (barray, count, sizeof (*barray), block_compar);
1273 
1274       bp = barray;
1275       for (pb = pending_blocks; pb != NULL; pb = pb->next)
1276 	pb->block = *bp++;
1277 
1278       do_cleanups (back_to);
1279     }
1280 
1281   /* Cleanup any undefined types that have been left hanging around
1282      (this needs to be done before the finish_blocks so that
1283      file_symbols is still good).
1284 
1285      Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
1286      specific, but harmless for other symbol readers, since on gdb
1287      startup or when finished reading stabs, the state is set so these
1288      are no-ops.  FIXME: Is this handled right in case of QUIT?  Can
1289      we make this cleaner?  */
1290 
1291   cleanup_undefined_stabs_types (objfile);
1292   finish_global_stabs (objfile);
1293 
1294   if (!required
1295       && pending_blocks == NULL
1296       && file_symbols == NULL
1297       && global_symbols == NULL
1298       && have_line_numbers == 0
1299       && pending_macros == NULL
1300       && global_using_directives == NULL)
1301     {
1302       /* Ignore symtabs that have no functions with real debugging info.  */
1303       return NULL;
1304     }
1305   else
1306     {
1307       /* Define the STATIC_BLOCK.  */
1308       return finish_block_internal (NULL, &file_symbols, NULL, NULL,
1309 				    last_source_start_addr, end_addr,
1310 				    0, expandable);
1311     }
1312 }
1313 
1314 /* Subroutine of end_symtab_from_static_block to simplify it.
1315    Handle the "have blockvector" case.
1316    See end_symtab_from_static_block for a description of the arguments.  */
1317 
1318 static struct compunit_symtab *
1319 end_symtab_with_blockvector (struct block *static_block,
1320 			     int section, int expandable)
1321 {
1322   struct objfile *objfile = buildsym_compunit->objfile;
1323   struct compunit_symtab *cu = buildsym_compunit->compunit_symtab;
1324   struct symtab *symtab;
1325   struct blockvector *blockvector;
1326   struct subfile *subfile;
1327   CORE_ADDR end_addr;
1328 
1329   gdb_assert (static_block != NULL);
1330   gdb_assert (buildsym_compunit != NULL);
1331   gdb_assert (buildsym_compunit->subfiles != NULL);
1332 
1333   end_addr = BLOCK_END (static_block);
1334 
1335   /* Create the GLOBAL_BLOCK and build the blockvector.  */
1336   finish_block_internal (NULL, &global_symbols, NULL, NULL,
1337 			 last_source_start_addr, end_addr,
1338 			 1, expandable);
1339   blockvector = make_blockvector ();
1340 
1341   /* Read the line table if it has to be read separately.
1342      This is only used by xcoffread.c.  */
1343   if (objfile->sf->sym_read_linetable != NULL)
1344     objfile->sf->sym_read_linetable (objfile);
1345 
1346   /* Handle the case where the debug info specifies a different path
1347      for the main source file.  It can cause us to lose track of its
1348      line number information.  */
1349   watch_main_source_file_lossage ();
1350 
1351   /* Now create the symtab objects proper, if not already done,
1352      one for each subfile.  */
1353 
1354   for (subfile = buildsym_compunit->subfiles;
1355        subfile != NULL;
1356        subfile = subfile->next)
1357     {
1358       int linetablesize = 0;
1359 
1360       if (subfile->line_vector)
1361 	{
1362 	  linetablesize = sizeof (struct linetable) +
1363 	    subfile->line_vector->nitems * sizeof (struct linetable_entry);
1364 
1365 	  /* Like the pending blocks, the line table may be
1366 	     scrambled in reordered executables.  Sort it if
1367 	     OBJF_REORDERED is true.  */
1368 	  if (objfile->flags & OBJF_REORDERED)
1369 	    qsort (subfile->line_vector->item,
1370 		   subfile->line_vector->nitems,
1371 		   sizeof (struct linetable_entry), compare_line_numbers);
1372 	}
1373 
1374       /* Allocate a symbol table if necessary.  */
1375       if (subfile->symtab == NULL)
1376 	subfile->symtab = allocate_symtab (cu, subfile->name);
1377       symtab = subfile->symtab;
1378 
1379       /* Fill in its components.  */
1380 
1381       if (subfile->line_vector)
1382 	{
1383 	  /* Reallocate the line table on the symbol obstack.  */
1384 	  SYMTAB_LINETABLE (symtab) = (struct linetable *)
1385 	    obstack_alloc (&objfile->objfile_obstack, linetablesize);
1386 	  memcpy (SYMTAB_LINETABLE (symtab), subfile->line_vector,
1387 		  linetablesize);
1388 	}
1389       else
1390 	{
1391 	  SYMTAB_LINETABLE (symtab) = NULL;
1392 	}
1393 
1394       /* Use whatever language we have been using for this
1395 	 subfile, not the one that was deduced in allocate_symtab
1396 	 from the filename.  We already did our own deducing when
1397 	 we created the subfile, and we may have altered our
1398 	 opinion of what language it is from things we found in
1399 	 the symbols.  */
1400       symtab->language = subfile->language;
1401     }
1402 
1403   /* Make sure the symtab of main_subfile is the first in its list.  */
1404   {
1405     struct symtab *main_symtab, *prev_symtab;
1406 
1407     main_symtab = buildsym_compunit->main_subfile->symtab;
1408     prev_symtab = NULL;
1409     ALL_COMPUNIT_FILETABS (cu, symtab)
1410       {
1411 	if (symtab == main_symtab)
1412 	  {
1413 	    if (prev_symtab != NULL)
1414 	      {
1415 		prev_symtab->next = main_symtab->next;
1416 		main_symtab->next = COMPUNIT_FILETABS (cu);
1417 		COMPUNIT_FILETABS (cu) = main_symtab;
1418 	      }
1419 	    break;
1420 	  }
1421 	prev_symtab = symtab;
1422       }
1423     gdb_assert (main_symtab == COMPUNIT_FILETABS (cu));
1424   }
1425 
1426   /* Fill out the compunit symtab.  */
1427 
1428   if (buildsym_compunit->comp_dir != NULL)
1429     {
1430       /* Reallocate the dirname on the symbol obstack.  */
1431       COMPUNIT_DIRNAME (cu)
1432 	= (const char *) obstack_copy0 (&objfile->objfile_obstack,
1433 					buildsym_compunit->comp_dir,
1434 					strlen (buildsym_compunit->comp_dir));
1435     }
1436 
1437   /* Save the debug format string (if any) in the symtab.  */
1438   COMPUNIT_DEBUGFORMAT (cu) = buildsym_compunit->debugformat;
1439 
1440   /* Similarly for the producer.  */
1441   COMPUNIT_PRODUCER (cu) = buildsym_compunit->producer;
1442 
1443   COMPUNIT_BLOCKVECTOR (cu) = blockvector;
1444   {
1445     struct block *b = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1446 
1447     set_block_compunit_symtab (b, cu);
1448   }
1449 
1450   COMPUNIT_BLOCK_LINE_SECTION (cu) = section;
1451 
1452   COMPUNIT_MACRO_TABLE (cu) = pending_macros;
1453 
1454   /* Default any symbols without a specified symtab to the primary symtab.  */
1455   {
1456     int block_i;
1457 
1458     /* The main source file's symtab.  */
1459     symtab = COMPUNIT_FILETABS (cu);
1460 
1461     for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1462       {
1463 	struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1464 	struct symbol *sym;
1465 	struct dict_iterator iter;
1466 
1467 	/* Inlined functions may have symbols not in the global or
1468 	   static symbol lists.  */
1469 	if (BLOCK_FUNCTION (block) != NULL)
1470 	  if (symbol_symtab (BLOCK_FUNCTION (block)) == NULL)
1471 	    symbol_set_symtab (BLOCK_FUNCTION (block), symtab);
1472 
1473 	/* Note that we only want to fix up symbols from the local
1474 	   blocks, not blocks coming from included symtabs.  That is why
1475 	   we use ALL_DICT_SYMBOLS here and not ALL_BLOCK_SYMBOLS.  */
1476 	ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
1477 	  if (symbol_symtab (sym) == NULL)
1478 	    symbol_set_symtab (sym, symtab);
1479       }
1480   }
1481 
1482   add_compunit_symtab_to_objfile (cu);
1483 
1484   return cu;
1485 }
1486 
1487 /* Implementation of the second part of end_symtab.  Pass STATIC_BLOCK
1488    as value returned by end_symtab_get_static_block.
1489 
1490    SECTION is the same as for end_symtab: the section number
1491    (in objfile->section_offsets) of the blockvector and linetable.
1492 
1493    If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
1494    expandable.  */
1495 
1496 struct compunit_symtab *
1497 end_symtab_from_static_block (struct block *static_block,
1498 			      int section, int expandable)
1499 {
1500   struct compunit_symtab *cu;
1501 
1502   if (static_block == NULL)
1503     {
1504       /* Handle the "no blockvector" case.
1505 	 When this happens there is nothing to record, so there's nothing
1506 	 to do: memory will be freed up later.
1507 
1508 	 Note: We won't be adding a compunit to the objfile's list of
1509 	 compunits, so there's nothing to unchain.  However, since each symtab
1510 	 is added to the objfile's obstack we can't free that space.
1511 	 We could do better, but this is believed to be a sufficiently rare
1512 	 event.  */
1513       cu = NULL;
1514     }
1515   else
1516     cu = end_symtab_with_blockvector (static_block, section, expandable);
1517 
1518   reset_symtab_globals ();
1519 
1520   return cu;
1521 }
1522 
1523 /* Finish the symbol definitions for one main source file, close off
1524    all the lexical contexts for that file (creating struct block's for
1525    them), then make the struct symtab for that file and put it in the
1526    list of all such.
1527 
1528    END_ADDR is the address of the end of the file's text.  SECTION is
1529    the section number (in objfile->section_offsets) of the blockvector
1530    and linetable.
1531 
1532    Note that it is possible for end_symtab() to return NULL.  In
1533    particular, for the DWARF case at least, it will return NULL when
1534    it finds a compilation unit that has exactly one DIE, a
1535    TAG_compile_unit DIE.  This can happen when we link in an object
1536    file that was compiled from an empty source file.  Returning NULL
1537    is probably not the correct thing to do, because then gdb will
1538    never know about this empty file (FIXME).
1539 
1540    If you need to modify STATIC_BLOCK before it is finalized you should
1541    call end_symtab_get_static_block and end_symtab_from_static_block
1542    yourself.  */
1543 
1544 struct compunit_symtab *
1545 end_symtab (CORE_ADDR end_addr, int section)
1546 {
1547   struct block *static_block;
1548 
1549   static_block = end_symtab_get_static_block (end_addr, 0, 0);
1550   return end_symtab_from_static_block (static_block, section, 0);
1551 }
1552 
1553 /* Same as end_symtab except create a symtab that can be later added to.  */
1554 
1555 struct compunit_symtab *
1556 end_expandable_symtab (CORE_ADDR end_addr, int section)
1557 {
1558   struct block *static_block;
1559 
1560   static_block = end_symtab_get_static_block (end_addr, 1, 0);
1561   return end_symtab_from_static_block (static_block, section, 1);
1562 }
1563 
1564 /* Subroutine of augment_type_symtab to simplify it.
1565    Attach the main source file's symtab to all symbols in PENDING_LIST that
1566    don't have one.  */
1567 
1568 static void
1569 set_missing_symtab (struct pending *pending_list,
1570 		    struct compunit_symtab *cu)
1571 {
1572   struct pending *pending;
1573   int i;
1574 
1575   for (pending = pending_list; pending != NULL; pending = pending->next)
1576     {
1577       for (i = 0; i < pending->nsyms; ++i)
1578 	{
1579 	  if (symbol_symtab (pending->symbol[i]) == NULL)
1580 	    symbol_set_symtab (pending->symbol[i], COMPUNIT_FILETABS (cu));
1581 	}
1582     }
1583 }
1584 
1585 /* Same as end_symtab, but for the case where we're adding more symbols
1586    to an existing symtab that is known to contain only type information.
1587    This is the case for DWARF4 Type Units.  */
1588 
1589 void
1590 augment_type_symtab (void)
1591 {
1592   struct compunit_symtab *cust = buildsym_compunit->compunit_symtab;
1593   const struct blockvector *blockvector = COMPUNIT_BLOCKVECTOR (cust);
1594 
1595   if (context_stack_depth > 0)
1596     {
1597       complaint (&symfile_complaints,
1598 		 _("Context stack not empty in augment_type_symtab"));
1599       context_stack_depth = 0;
1600     }
1601   if (pending_blocks != NULL)
1602     complaint (&symfile_complaints, _("Blocks in a type symtab"));
1603   if (pending_macros != NULL)
1604     complaint (&symfile_complaints, _("Macro in a type symtab"));
1605   if (have_line_numbers)
1606     complaint (&symfile_complaints,
1607 	       _("Line numbers recorded in a type symtab"));
1608 
1609   if (file_symbols != NULL)
1610     {
1611       struct block *block = BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK);
1612 
1613       /* First mark any symbols without a specified symtab as belonging
1614 	 to the primary symtab.  */
1615       set_missing_symtab (file_symbols, cust);
1616 
1617       dict_add_pending (BLOCK_DICT (block), file_symbols);
1618     }
1619 
1620   if (global_symbols != NULL)
1621     {
1622       struct block *block = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1623 
1624       /* First mark any symbols without a specified symtab as belonging
1625 	 to the primary symtab.  */
1626       set_missing_symtab (global_symbols, cust);
1627 
1628       dict_add_pending (BLOCK_DICT (block), global_symbols);
1629     }
1630 
1631   reset_symtab_globals ();
1632 }
1633 
1634 /* Push a context block.  Args are an identifying nesting level
1635    (checkable when you pop it), and the starting PC address of this
1636    context.  */
1637 
1638 struct context_stack *
1639 push_context (int desc, CORE_ADDR valu)
1640 {
1641   struct context_stack *newobj;
1642 
1643   if (context_stack_depth == context_stack_size)
1644     {
1645       context_stack_size *= 2;
1646       context_stack = (struct context_stack *)
1647 	xrealloc ((char *) context_stack,
1648 		  (context_stack_size * sizeof (struct context_stack)));
1649     }
1650 
1651   newobj = &context_stack[context_stack_depth++];
1652   newobj->depth = desc;
1653   newobj->locals = local_symbols;
1654   newobj->old_blocks = pending_blocks;
1655   newobj->start_addr = valu;
1656   newobj->local_using_directives = local_using_directives;
1657   newobj->name = NULL;
1658 
1659   local_symbols = NULL;
1660   local_using_directives = NULL;
1661 
1662   return newobj;
1663 }
1664 
1665 /* Pop a context block.  Returns the address of the context block just
1666    popped.  */
1667 
1668 struct context_stack *
1669 pop_context (void)
1670 {
1671   gdb_assert (context_stack_depth > 0);
1672   return (&context_stack[--context_stack_depth]);
1673 }
1674 
1675 
1676 
1677 /* Compute a small integer hash code for the given name.  */
1678 
1679 int
1680 hashname (const char *name)
1681 {
1682     return (hash(name,strlen(name)) % HASHSIZE);
1683 }
1684 
1685 
1686 void
1687 record_debugformat (const char *format)
1688 {
1689   buildsym_compunit->debugformat = format;
1690 }
1691 
1692 void
1693 record_producer (const char *producer)
1694 {
1695   buildsym_compunit->producer = producer;
1696 }
1697 
1698 /* Merge the first symbol list SRCLIST into the second symbol list
1699    TARGETLIST by repeated calls to add_symbol_to_list().  This
1700    procedure "frees" each link of SRCLIST by adding it to the
1701    free_pendings list.  Caller must set SRCLIST to a null list after
1702    calling this function.
1703 
1704    Void return.  */
1705 
1706 void
1707 merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
1708 {
1709   int i;
1710 
1711   if (!srclist || !*srclist)
1712     return;
1713 
1714   /* Merge in elements from current link.  */
1715   for (i = 0; i < (*srclist)->nsyms; i++)
1716     add_symbol_to_list ((*srclist)->symbol[i], targetlist);
1717 
1718   /* Recurse on next.  */
1719   merge_symbol_lists (&(*srclist)->next, targetlist);
1720 
1721   /* "Free" the current link.  */
1722   (*srclist)->next = free_pendings;
1723   free_pendings = (*srclist);
1724 }
1725 
1726 
1727 /* Name of source file whose symbol data we are now processing.  This
1728    comes from a symbol of type N_SO for stabs.  For Dwarf it comes
1729    from the DW_AT_name attribute of a DW_TAG_compile_unit DIE.  */
1730 
1731 static char *last_source_file;
1732 
1733 /* See buildsym.h.  */
1734 
1735 void
1736 set_last_source_file (const char *name)
1737 {
1738   xfree (last_source_file);
1739   last_source_file = name == NULL ? NULL : xstrdup (name);
1740 }
1741 
1742 /* See buildsym.h.  */
1743 
1744 const char *
1745 get_last_source_file (void)
1746 {
1747   return last_source_file;
1748 }
1749 
1750 
1751 
1752 /* Initialize anything that needs initializing when starting to read a
1753    fresh piece of a symbol file, e.g. reading in the stuff
1754    corresponding to a psymtab.  */
1755 
1756 void
1757 buildsym_init (void)
1758 {
1759   subfile_stack = NULL;
1760 
1761   pending_addrmap_interesting = 0;
1762 
1763   /* Context stack is initially empty.  Allocate first one with room
1764      for a few levels; reuse it forever afterward.  */
1765   if (context_stack == NULL)
1766     {
1767       context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
1768       context_stack = XNEWVEC (struct context_stack, context_stack_size);
1769     }
1770 
1771   /* Ensure the really_free_pendings cleanup was called after
1772      the last time.  */
1773   gdb_assert (free_pendings == NULL);
1774   gdb_assert (pending_blocks == NULL);
1775   gdb_assert (file_symbols == NULL);
1776   gdb_assert (global_symbols == NULL);
1777   gdb_assert (global_using_directives == NULL);
1778   gdb_assert (pending_macros == NULL);
1779   gdb_assert (pending_addrmap == NULL);
1780   gdb_assert (buildsym_compunit == NULL);
1781 }
1782 
1783 /* Initialize anything that needs initializing when a completely new
1784    symbol file is specified (not just adding some symbols from another
1785    file, e.g. a shared library).  */
1786 
1787 void
1788 buildsym_new_init (void)
1789 {
1790   buildsym_init ();
1791 }
1792