xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/buildsym.c (revision 122b5006ee1bd67145794b4cde92f4fe4781a5ec)
1 /* Support routines for building symbol tables in GDB's internal format.
2    Copyright (C) 1986-2019 Free Software Foundation, Inc.
3 
4    This file is part of GDB.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
18 
19 #include "defs.h"
20 #include "buildsym-legacy.h"
21 #include "bfd.h"
22 #include "gdb_obstack.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "complaints.h"
28 #include "expression.h"		/* For "enum exp_opcode" used by...  */
29 #include "filenames.h"		/* For DOSish file names.  */
30 #include "macrotab.h"
31 #include "demangle.h"		/* Needed by SYMBOL_INIT_DEMANGLED_NAME.  */
32 #include "block.h"
33 #include "cp-support.h"
34 #include "dictionary.h"
35 #include "addrmap.h"
36 #include <algorithm>
37 
38 /* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
39    questionable--see comment where we call them).  */
40 
41 #include "stabsread.h"
42 
43 /* List of blocks already made (lexical contexts already closed).
44    This is used at the end to make the blockvector.  */
45 
46 struct pending_block
47   {
48     struct pending_block *next;
49     struct block *block;
50   };
51 
52 static int compare_line_numbers (const void *ln1p, const void *ln2p);
53 
54 /* Initial sizes of data structures.  These are realloc'd larger if
55    needed, and realloc'd down to the size actually used, when
56    completed.  */
57 
58 #define	INITIAL_LINE_VECTOR_LENGTH	1000
59 
60 
61 buildsym_compunit::buildsym_compunit (struct objfile *objfile_,
62 				      const char *name,
63 				      const char *comp_dir_,
64 				      enum language language_,
65 				      CORE_ADDR last_addr)
66   : m_objfile (objfile_),
67     m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
68     m_comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
69     m_language (language_),
70     m_last_source_start_addr (last_addr)
71 {
72   /* Allocate the compunit symtab now.  The caller needs it to allocate
73      non-primary symtabs.  It is also needed by get_macro_table.  */
74   m_compunit_symtab = allocate_compunit_symtab (m_objfile, name);
75 
76   /* Build the subfile for NAME (the main source file) so that we can record
77      a pointer to it for later.
78      IMPORTANT: Do not allocate a struct symtab for NAME here.
79      It can happen that the debug info provides a different path to NAME than
80      DIRNAME,NAME.  We cope with this in watch_main_source_file_lossage but
81      that only works if the main_subfile doesn't have a symtab yet.  */
82   start_subfile (name);
83   /* Save this so that we don't have to go looking for it at the end
84      of the subfiles list.  */
85   m_main_subfile = m_current_subfile;
86 }
87 
88 buildsym_compunit::~buildsym_compunit ()
89 {
90   struct subfile *subfile, *nextsub;
91 
92   if (m_pending_macros != nullptr)
93     free_macro_table (m_pending_macros);
94 
95   for (subfile = m_subfiles;
96        subfile != NULL;
97        subfile = nextsub)
98     {
99       nextsub = subfile->next;
100       xfree (subfile->name);
101       xfree (subfile->line_vector);
102       xfree (subfile);
103     }
104 
105   struct pending *next, *next1;
106 
107   for (next = m_file_symbols; next != NULL; next = next1)
108     {
109       next1 = next->next;
110       xfree ((void *) next);
111     }
112 
113   for (next = m_global_symbols; next != NULL; next = next1)
114     {
115       next1 = next->next;
116       xfree ((void *) next);
117     }
118 }
119 
120 struct macro_table *
121 buildsym_compunit::get_macro_table ()
122 {
123   if (m_pending_macros == nullptr)
124     m_pending_macros = new_macro_table (&m_objfile->per_bfd->storage_obstack,
125 					m_objfile->per_bfd->macro_cache,
126 					m_compunit_symtab);
127   return m_pending_macros;
128 }
129 
130 /* Maintain the lists of symbols and blocks.  */
131 
132 /* Add a symbol to one of the lists of symbols.  */
133 
134 void
135 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
136 {
137   struct pending *link;
138 
139   /* If this is an alias for another symbol, don't add it.  */
140   if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
141     return;
142 
143   /* We keep PENDINGSIZE symbols in each link of the list.  If we
144      don't have a link with room in it, add a new link.  */
145   if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
146     {
147       link = XNEW (struct pending);
148       link->next = *listhead;
149       *listhead = link;
150       link->nsyms = 0;
151     }
152 
153   (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
154 }
155 
156 /* Find a symbol named NAME on a LIST.  NAME need not be
157    '\0'-terminated; LENGTH is the length of the name.  */
158 
159 struct symbol *
160 find_symbol_in_list (struct pending *list, char *name, int length)
161 {
162   int j;
163   const char *pp;
164 
165   while (list != NULL)
166     {
167       for (j = list->nsyms; --j >= 0;)
168 	{
169 	  pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
170 	  if (*pp == *name && strncmp (pp, name, length) == 0
171 	      && pp[length] == '\0')
172 	    {
173 	      return (list->symbol[j]);
174 	    }
175 	}
176       list = list->next;
177     }
178   return (NULL);
179 }
180 
181 /* Record BLOCK on the list of all blocks in the file.  Put it after
182    OPBLOCK, or at the beginning if opblock is NULL.  This puts the
183    block in the list after all its subblocks.  */
184 
185 void
186 buildsym_compunit::record_pending_block (struct block *block,
187 					 struct pending_block *opblock)
188 {
189   struct pending_block *pblock;
190 
191   pblock = XOBNEW (&m_pending_block_obstack, struct pending_block);
192   pblock->block = block;
193   if (opblock)
194     {
195       pblock->next = opblock->next;
196       opblock->next = pblock;
197     }
198   else
199     {
200       pblock->next = m_pending_blocks;
201       m_pending_blocks = pblock;
202     }
203 }
204 
205 /* Take one of the lists of symbols and make a block from it.  Keep
206    the order the symbols have in the list (reversed from the input
207    file).  Put the block on the list of pending blocks.  */
208 
209 struct block *
210 buildsym_compunit::finish_block_internal
211     (struct symbol *symbol,
212      struct pending **listhead,
213      struct pending_block *old_blocks,
214      const struct dynamic_prop *static_link,
215      CORE_ADDR start, CORE_ADDR end,
216      int is_global, int expandable)
217 {
218   struct gdbarch *gdbarch = get_objfile_arch (m_objfile);
219   struct pending *next, *next1;
220   struct block *block;
221   struct pending_block *pblock;
222   struct pending_block *opblock;
223 
224   block = (is_global
225 	   ? allocate_global_block (&m_objfile->objfile_obstack)
226 	   : allocate_block (&m_objfile->objfile_obstack));
227 
228   if (symbol)
229     {
230       BLOCK_MULTIDICT (block)
231 	= mdict_create_linear (&m_objfile->objfile_obstack, *listhead);
232     }
233   else
234     {
235       if (expandable)
236 	{
237 	  BLOCK_MULTIDICT (block) = mdict_create_hashed_expandable (m_language);
238 	  mdict_add_pending (BLOCK_MULTIDICT (block), *listhead);
239 	}
240       else
241 	{
242 	  BLOCK_MULTIDICT (block) =
243 	    mdict_create_hashed (&m_objfile->objfile_obstack, *listhead);
244 	}
245     }
246 
247   BLOCK_START (block) = start;
248   BLOCK_END (block) = end;
249 
250   /* Put the block in as the value of the symbol that names it.  */
251 
252   if (symbol)
253     {
254       struct type *ftype = SYMBOL_TYPE (symbol);
255       struct mdict_iterator miter;
256       SYMBOL_BLOCK_VALUE (symbol) = block;
257       BLOCK_FUNCTION (block) = symbol;
258 
259       if (TYPE_NFIELDS (ftype) <= 0)
260 	{
261 	  /* No parameter type information is recorded with the
262 	     function's type.  Set that from the type of the
263 	     parameter symbols.  */
264 	  int nparams = 0, iparams;
265 	  struct symbol *sym;
266 
267 	  /* Here we want to directly access the dictionary, because
268 	     we haven't fully initialized the block yet.  */
269 	  ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (block), miter, sym)
270 	    {
271 	      if (SYMBOL_IS_ARGUMENT (sym))
272 		nparams++;
273 	    }
274 	  if (nparams > 0)
275 	    {
276 	      TYPE_NFIELDS (ftype) = nparams;
277 	      TYPE_FIELDS (ftype) = (struct field *)
278 		TYPE_ALLOC (ftype, nparams * sizeof (struct field));
279 
280 	      iparams = 0;
281 	      /* Here we want to directly access the dictionary, because
282 		 we haven't fully initialized the block yet.  */
283 	      ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (block), miter, sym)
284 		{
285 		  if (iparams == nparams)
286 		    break;
287 
288 		  if (SYMBOL_IS_ARGUMENT (sym))
289 		    {
290 		      TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
291 		      TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
292 		      iparams++;
293 		    }
294 		}
295 	    }
296 	}
297     }
298   else
299     {
300       BLOCK_FUNCTION (block) = NULL;
301     }
302 
303   if (static_link != NULL)
304     objfile_register_static_link (m_objfile, block, static_link);
305 
306   /* Now free the links of the list, and empty the list.  */
307 
308   for (next = *listhead; next; next = next1)
309     {
310       next1 = next->next;
311       xfree (next);
312     }
313   *listhead = NULL;
314 
315   /* Check to be sure that the blocks have an end address that is
316      greater than starting address.  */
317 
318   if (BLOCK_END (block) < BLOCK_START (block))
319     {
320       if (symbol)
321 	{
322 	  complaint (_("block end address less than block "
323 		       "start address in %s (patched it)"),
324 		     SYMBOL_PRINT_NAME (symbol));
325 	}
326       else
327 	{
328 	  complaint (_("block end address %s less than block "
329 		       "start address %s (patched it)"),
330 		     paddress (gdbarch, BLOCK_END (block)),
331 		     paddress (gdbarch, BLOCK_START (block)));
332 	}
333       /* Better than nothing.  */
334       BLOCK_END (block) = BLOCK_START (block);
335     }
336 
337   /* Install this block as the superblock of all blocks made since the
338      start of this scope that don't have superblocks yet.  */
339 
340   opblock = NULL;
341   for (pblock = m_pending_blocks;
342        pblock && pblock != old_blocks;
343        pblock = pblock->next)
344     {
345       if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
346 	{
347 	  /* Check to be sure the blocks are nested as we receive
348 	     them.  If the compiler/assembler/linker work, this just
349 	     burns a small amount of time.
350 
351 	     Skip blocks which correspond to a function; they're not
352 	     physically nested inside this other blocks, only
353 	     lexically nested.  */
354 	  if (BLOCK_FUNCTION (pblock->block) == NULL
355 	      && (BLOCK_START (pblock->block) < BLOCK_START (block)
356 		  || BLOCK_END (pblock->block) > BLOCK_END (block)))
357 	    {
358 	      if (symbol)
359 		{
360 		  complaint (_("inner block not inside outer block in %s"),
361 			     SYMBOL_PRINT_NAME (symbol));
362 		}
363 	      else
364 		{
365 		  complaint (_("inner block (%s-%s) not "
366 			       "inside outer block (%s-%s)"),
367 			     paddress (gdbarch, BLOCK_START (pblock->block)),
368 			     paddress (gdbarch, BLOCK_END (pblock->block)),
369 			     paddress (gdbarch, BLOCK_START (block)),
370 			     paddress (gdbarch, BLOCK_END (block)));
371 		}
372 	      if (BLOCK_START (pblock->block) < BLOCK_START (block))
373 		BLOCK_START (pblock->block) = BLOCK_START (block);
374 	      if (BLOCK_END (pblock->block) > BLOCK_END (block))
375 		BLOCK_END (pblock->block) = BLOCK_END (block);
376 	    }
377 	  BLOCK_SUPERBLOCK (pblock->block) = block;
378 	}
379       opblock = pblock;
380     }
381 
382   block_set_using (block,
383 		   (is_global
384 		    ? m_global_using_directives
385 		    : m_local_using_directives),
386 		   &m_objfile->objfile_obstack);
387   if (is_global)
388     m_global_using_directives = NULL;
389   else
390     m_local_using_directives = NULL;
391 
392   record_pending_block (block, opblock);
393 
394   return block;
395 }
396 
397 struct block *
398 buildsym_compunit::finish_block (struct symbol *symbol,
399 				 struct pending_block *old_blocks,
400 				 const struct dynamic_prop *static_link,
401 				 CORE_ADDR start, CORE_ADDR end)
402 {
403   return finish_block_internal (symbol, &m_local_symbols,
404 				old_blocks, static_link, start, end, 0, 0);
405 }
406 
407 /* Record that the range of addresses from START to END_INCLUSIVE
408    (inclusive, like it says) belongs to BLOCK.  BLOCK's start and end
409    addresses must be set already.  You must apply this function to all
410    BLOCK's children before applying it to BLOCK.
411 
412    If a call to this function complicates the picture beyond that
413    already provided by BLOCK_START and BLOCK_END, then we create an
414    address map for the block.  */
415 void
416 buildsym_compunit::record_block_range (struct block *block,
417 				       CORE_ADDR start,
418 				       CORE_ADDR end_inclusive)
419 {
420   /* If this is any different from the range recorded in the block's
421      own BLOCK_START and BLOCK_END, then note that the address map has
422      become interesting.  Note that even if this block doesn't have
423      any "interesting" ranges, some later block might, so we still
424      need to record this block in the addrmap.  */
425   if (start != BLOCK_START (block)
426       || end_inclusive + 1 != BLOCK_END (block))
427     m_pending_addrmap_interesting = true;
428 
429   if (m_pending_addrmap == nullptr)
430     m_pending_addrmap = addrmap_create_mutable (&m_pending_addrmap_obstack);
431 
432   addrmap_set_empty (m_pending_addrmap, start, end_inclusive, block);
433 }
434 
435 struct blockvector *
436 buildsym_compunit::make_blockvector ()
437 {
438   struct pending_block *next;
439   struct blockvector *blockvector;
440   int i;
441 
442   /* Count the length of the list of blocks.  */
443 
444   for (next = m_pending_blocks, i = 0; next; next = next->next, i++)
445     {
446     }
447 
448   blockvector = (struct blockvector *)
449     obstack_alloc (&m_objfile->objfile_obstack,
450 		   (sizeof (struct blockvector)
451 		    + (i - 1) * sizeof (struct block *)));
452 
453   /* Copy the blocks into the blockvector.  This is done in reverse
454      order, which happens to put the blocks into the proper order
455      (ascending starting address).  finish_block has hair to insert
456      each block into the list after its subblocks in order to make
457      sure this is true.  */
458 
459   BLOCKVECTOR_NBLOCKS (blockvector) = i;
460   for (next = m_pending_blocks; next; next = next->next)
461     {
462       BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
463     }
464 
465   free_pending_blocks ();
466 
467   /* If we needed an address map for this symtab, record it in the
468      blockvector.  */
469   if (m_pending_addrmap != nullptr && m_pending_addrmap_interesting)
470     BLOCKVECTOR_MAP (blockvector)
471       = addrmap_create_fixed (m_pending_addrmap, &m_objfile->objfile_obstack);
472   else
473     BLOCKVECTOR_MAP (blockvector) = 0;
474 
475   /* Some compilers output blocks in the wrong order, but we depend on
476      their being in the right order so we can binary search.  Check the
477      order and moan about it.
478      Note: Remember that the first two blocks are the global and static
479      blocks.  We could special case that fact and begin checking at block 2.
480      To avoid making that assumption we do not.  */
481   if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
482     {
483       for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
484 	{
485 	  if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
486 	      > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
487 	    {
488 	      CORE_ADDR start
489 		= BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
490 
491 	      complaint (_("block at %s out of order"),
492 			 hex_string ((LONGEST) start));
493 	    }
494 	}
495     }
496 
497   return (blockvector);
498 }
499 
500 /* Start recording information about source code that came from an
501    included (or otherwise merged-in) source file with a different
502    name.  NAME is the name of the file (cannot be NULL).  */
503 
504 void
505 buildsym_compunit::start_subfile (const char *name)
506 {
507   const char *subfile_dirname;
508   struct subfile *subfile;
509 
510   subfile_dirname = m_comp_dir.get ();
511 
512   /* See if this subfile is already registered.  */
513 
514   for (subfile = m_subfiles; subfile; subfile = subfile->next)
515     {
516       char *subfile_name;
517 
518       /* If NAME is an absolute path, and this subfile is not, then
519 	 attempt to create an absolute path to compare.  */
520       if (IS_ABSOLUTE_PATH (name)
521 	  && !IS_ABSOLUTE_PATH (subfile->name)
522 	  && subfile_dirname != NULL)
523 	subfile_name = concat (subfile_dirname, SLASH_STRING,
524 			       subfile->name, (char *) NULL);
525       else
526 	subfile_name = subfile->name;
527 
528       if (FILENAME_CMP (subfile_name, name) == 0)
529 	{
530 	  m_current_subfile = subfile;
531 	  if (subfile_name != subfile->name)
532 	    xfree (subfile_name);
533 	  return;
534 	}
535       if (subfile_name != subfile->name)
536 	xfree (subfile_name);
537     }
538 
539   /* This subfile is not known.  Add an entry for it.  */
540 
541   subfile = XNEW (struct subfile);
542   memset (subfile, 0, sizeof (struct subfile));
543   subfile->buildsym_compunit = this;
544 
545   subfile->next = m_subfiles;
546   m_subfiles = subfile;
547 
548   m_current_subfile = subfile;
549 
550   subfile->name = xstrdup (name);
551 
552   /* Initialize line-number recording for this subfile.  */
553   subfile->line_vector = NULL;
554 
555   /* Default the source language to whatever can be deduced from the
556      filename.  If nothing can be deduced (such as for a C/C++ include
557      file with a ".h" extension), then inherit whatever language the
558      previous subfile had.  This kludgery is necessary because there
559      is no standard way in some object formats to record the source
560      language.  Also, when symtabs are allocated we try to deduce a
561      language then as well, but it is too late for us to use that
562      information while reading symbols, since symtabs aren't allocated
563      until after all the symbols have been processed for a given
564      source file.  */
565 
566   subfile->language = deduce_language_from_filename (subfile->name);
567   if (subfile->language == language_unknown
568       && subfile->next != NULL)
569     {
570       subfile->language = subfile->next->language;
571     }
572 
573   /* If the filename of this subfile ends in .C, then change the
574      language of any pending subfiles from C to C++.  We also accept
575      any other C++ suffixes accepted by deduce_language_from_filename.  */
576   /* Likewise for f2c.  */
577 
578   if (subfile->name)
579     {
580       struct subfile *s;
581       enum language sublang = deduce_language_from_filename (subfile->name);
582 
583       if (sublang == language_cplus || sublang == language_fortran)
584 	for (s = m_subfiles; s != NULL; s = s->next)
585 	  if (s->language == language_c)
586 	    s->language = sublang;
587     }
588 
589   /* And patch up this file if necessary.  */
590   if (subfile->language == language_c
591       && subfile->next != NULL
592       && (subfile->next->language == language_cplus
593 	  || subfile->next->language == language_fortran))
594     {
595       subfile->language = subfile->next->language;
596     }
597 }
598 
599 /* For stabs readers, the first N_SO symbol is assumed to be the
600    source file name, and the subfile struct is initialized using that
601    assumption.  If another N_SO symbol is later seen, immediately
602    following the first one, then the first one is assumed to be the
603    directory name and the second one is really the source file name.
604 
605    So we have to patch up the subfile struct by moving the old name
606    value to dirname and remembering the new name.  Some sanity
607    checking is performed to ensure that the state of the subfile
608    struct is reasonable and that the old name we are assuming to be a
609    directory name actually is (by checking for a trailing '/').  */
610 
611 void
612 buildsym_compunit::patch_subfile_names (struct subfile *subfile,
613 					const char *name)
614 {
615   if (subfile != NULL
616       && m_comp_dir == NULL
617       && subfile->name != NULL
618       && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
619     {
620       m_comp_dir.reset (subfile->name);
621       subfile->name = xstrdup (name);
622       set_last_source_file (name);
623 
624       /* Default the source language to whatever can be deduced from
625          the filename.  If nothing can be deduced (such as for a C/C++
626          include file with a ".h" extension), then inherit whatever
627          language the previous subfile had.  This kludgery is
628          necessary because there is no standard way in some object
629          formats to record the source language.  Also, when symtabs
630          are allocated we try to deduce a language then as well, but
631          it is too late for us to use that information while reading
632          symbols, since symtabs aren't allocated until after all the
633          symbols have been processed for a given source file.  */
634 
635       subfile->language = deduce_language_from_filename (subfile->name);
636       if (subfile->language == language_unknown
637 	  && subfile->next != NULL)
638 	{
639 	  subfile->language = subfile->next->language;
640 	}
641     }
642 }
643 
644 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
645    switching source files (different subfiles, as we call them) within
646    one object file, but using a stack rather than in an arbitrary
647    order.  */
648 
649 void
650 buildsym_compunit::push_subfile ()
651 {
652   gdb_assert (m_current_subfile != NULL);
653   gdb_assert (m_current_subfile->name != NULL);
654   m_subfile_stack.push_back (m_current_subfile->name);
655 }
656 
657 const char *
658 buildsym_compunit::pop_subfile ()
659 {
660   gdb_assert (!m_subfile_stack.empty ());
661   const char *name = m_subfile_stack.back ();
662   m_subfile_stack.pop_back ();
663   return name;
664 }
665 
666 /* Add a linetable entry for line number LINE and address PC to the
667    line vector for SUBFILE.  */
668 
669 void
670 buildsym_compunit::record_line (struct subfile *subfile, int line,
671 				CORE_ADDR pc)
672 {
673   struct linetable_entry *e;
674 
675   /* Ignore the dummy line number in libg.o */
676   if (line == 0xffff)
677     {
678       return;
679     }
680 
681   /* Make sure line vector exists and is big enough.  */
682   if (!subfile->line_vector)
683     {
684       subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
685       subfile->line_vector = (struct linetable *)
686 	xmalloc (sizeof (struct linetable)
687 	   + subfile->line_vector_length * sizeof (struct linetable_entry));
688       subfile->line_vector->nitems = 0;
689       m_have_line_numbers = true;
690     }
691 
692   if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
693     {
694       subfile->line_vector_length *= 2;
695       subfile->line_vector = (struct linetable *)
696 	xrealloc ((char *) subfile->line_vector,
697 		  (sizeof (struct linetable)
698 		   + (subfile->line_vector_length
699 		      * sizeof (struct linetable_entry))));
700     }
701 
702   /* Normally, we treat lines as unsorted.  But the end of sequence
703      marker is special.  We sort line markers at the same PC by line
704      number, so end of sequence markers (which have line == 0) appear
705      first.  This is right if the marker ends the previous function,
706      and there is no padding before the next function.  But it is
707      wrong if the previous line was empty and we are now marking a
708      switch to a different subfile.  We must leave the end of sequence
709      marker at the end of this group of lines, not sort the empty line
710      to after the marker.  The easiest way to accomplish this is to
711      delete any empty lines from our table, if they are followed by
712      end of sequence markers.  All we lose is the ability to set
713      breakpoints at some lines which contain no instructions
714      anyway.  */
715   if (line == 0 && subfile->line_vector->nitems > 0)
716     {
717       e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
718       while (subfile->line_vector->nitems > 0 && e->pc == pc)
719 	{
720 	  e--;
721 	  subfile->line_vector->nitems--;
722 	}
723     }
724 
725   e = subfile->line_vector->item + subfile->line_vector->nitems++;
726   e->line = line;
727   e->pc = pc;
728 }
729 
730 /* Needed in order to sort line tables from IBM xcoff files.  Sigh!  */
731 
732 static int
733 compare_line_numbers (const void *ln1p, const void *ln2p)
734 {
735   struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
736   struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
737 
738   /* Note: this code does not assume that CORE_ADDRs can fit in ints.
739      Please keep it that way.  */
740   if (ln1->pc < ln2->pc)
741     return -1;
742 
743   if (ln1->pc > ln2->pc)
744     return 1;
745 
746   /* If pc equal, sort by line.  I'm not sure whether this is optimum
747      behavior (see comment at struct linetable in symtab.h).  */
748   return ln1->line - ln2->line;
749 }
750 
751 /* Subroutine of end_symtab to simplify it.  Look for a subfile that
752    matches the main source file's basename.  If there is only one, and
753    if the main source file doesn't have any symbol or line number
754    information, then copy this file's symtab and line_vector to the
755    main source file's subfile and discard the other subfile.  This can
756    happen because of a compiler bug or from the user playing games
757    with #line or from things like a distributed build system that
758    manipulates the debug info.  This can also happen from an innocent
759    symlink in the paths, we don't canonicalize paths here.  */
760 
761 void
762 buildsym_compunit::watch_main_source_file_lossage ()
763 {
764   struct subfile *mainsub, *subfile;
765 
766   /* Get the main source file.  */
767   mainsub = m_main_subfile;
768 
769   /* If the main source file doesn't have any line number or symbol
770      info, look for an alias in another subfile.  */
771 
772   if (mainsub->line_vector == NULL
773       && mainsub->symtab == NULL)
774     {
775       const char *mainbase = lbasename (mainsub->name);
776       int nr_matches = 0;
777       struct subfile *prevsub;
778       struct subfile *mainsub_alias = NULL;
779       struct subfile *prev_mainsub_alias = NULL;
780 
781       prevsub = NULL;
782       for (subfile = m_subfiles;
783 	   subfile != NULL;
784 	   subfile = subfile->next)
785 	{
786 	  if (subfile == mainsub)
787 	    continue;
788 	  if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
789 	    {
790 	      ++nr_matches;
791 	      mainsub_alias = subfile;
792 	      prev_mainsub_alias = prevsub;
793 	    }
794 	  prevsub = subfile;
795 	}
796 
797       if (nr_matches == 1)
798 	{
799 	  gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
800 
801 	  /* Found a match for the main source file.
802 	     Copy its line_vector and symtab to the main subfile
803 	     and then discard it.  */
804 
805 	  mainsub->line_vector = mainsub_alias->line_vector;
806 	  mainsub->line_vector_length = mainsub_alias->line_vector_length;
807 	  mainsub->symtab = mainsub_alias->symtab;
808 
809 	  if (prev_mainsub_alias == NULL)
810 	    m_subfiles = mainsub_alias->next;
811 	  else
812 	    prev_mainsub_alias->next = mainsub_alias->next;
813 	  xfree (mainsub_alias->name);
814 	  xfree (mainsub_alias);
815 	}
816     }
817 }
818 
819 /* Implementation of the first part of end_symtab.  It allows modifying
820    STATIC_BLOCK before it gets finalized by end_symtab_from_static_block.
821    If the returned value is NULL there is no blockvector created for
822    this symtab (you still must call end_symtab_from_static_block).
823 
824    END_ADDR is the same as for end_symtab: the address of the end of the
825    file's text.
826 
827    If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
828    expandable.
829 
830    If REQUIRED is non-zero, then a symtab is created even if it does
831    not contain any symbols.  */
832 
833 struct block *
834 buildsym_compunit::end_symtab_get_static_block (CORE_ADDR end_addr,
835 						int expandable, int required)
836 {
837   /* Finish the lexical context of the last function in the file; pop
838      the context stack.  */
839 
840   if (!m_context_stack.empty ())
841     {
842       struct context_stack cstk = pop_context ();
843 
844       /* Make a block for the local symbols within.  */
845       finish_block (cstk.name, cstk.old_blocks, NULL,
846 		    cstk.start_addr, end_addr);
847 
848       if (!m_context_stack.empty ())
849 	{
850 	  /* This is said to happen with SCO.  The old coffread.c
851 	     code simply emptied the context stack, so we do the
852 	     same.  FIXME: Find out why it is happening.  This is not
853 	     believed to happen in most cases (even for coffread.c);
854 	     it used to be an abort().  */
855 	  complaint (_("Context stack not empty in end_symtab"));
856 	  m_context_stack.clear ();
857 	}
858     }
859 
860   /* Reordered executables may have out of order pending blocks; if
861      OBJF_REORDERED is true, then sort the pending blocks.  */
862 
863   if ((m_objfile->flags & OBJF_REORDERED) && m_pending_blocks)
864     {
865       struct pending_block *pb;
866 
867       std::vector<block *> barray;
868 
869       for (pb = m_pending_blocks; pb != NULL; pb = pb->next)
870 	barray.push_back (pb->block);
871 
872       /* Sort blocks by start address in descending order.  Blocks with the
873 	 same start address must remain in the original order to preserve
874 	 inline function caller/callee relationships.  */
875       std::stable_sort (barray.begin (), barray.end (),
876 			[] (const block *a, const block *b)
877 			{
878 			  return BLOCK_START (a) > BLOCK_START (b);
879 			});
880 
881       int i = 0;
882       for (pb = m_pending_blocks; pb != NULL; pb = pb->next)
883 	pb->block = barray[i++];
884     }
885 
886   /* Cleanup any undefined types that have been left hanging around
887      (this needs to be done before the finish_blocks so that
888      file_symbols is still good).
889 
890      Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
891      specific, but harmless for other symbol readers, since on gdb
892      startup or when finished reading stabs, the state is set so these
893      are no-ops.  FIXME: Is this handled right in case of QUIT?  Can
894      we make this cleaner?  */
895 
896   cleanup_undefined_stabs_types (m_objfile);
897   finish_global_stabs (m_objfile);
898 
899   if (!required
900       && m_pending_blocks == NULL
901       && m_file_symbols == NULL
902       && m_global_symbols == NULL
903       && !m_have_line_numbers
904       && m_pending_macros == NULL
905       && m_global_using_directives == NULL)
906     {
907       /* Ignore symtabs that have no functions with real debugging info.  */
908       return NULL;
909     }
910   else
911     {
912       /* Define the STATIC_BLOCK.  */
913       return finish_block_internal (NULL, get_file_symbols (), NULL, NULL,
914 				    m_last_source_start_addr,
915 				    end_addr, 0, expandable);
916     }
917 }
918 
919 /* Subroutine of end_symtab_from_static_block to simplify it.
920    Handle the "have blockvector" case.
921    See end_symtab_from_static_block for a description of the arguments.  */
922 
923 struct compunit_symtab *
924 buildsym_compunit::end_symtab_with_blockvector (struct block *static_block,
925 						int section, int expandable)
926 {
927   struct compunit_symtab *cu = m_compunit_symtab;
928   struct blockvector *blockvector;
929   struct subfile *subfile;
930   CORE_ADDR end_addr;
931 
932   gdb_assert (static_block != NULL);
933   gdb_assert (m_subfiles != NULL);
934 
935   end_addr = BLOCK_END (static_block);
936 
937   /* Create the GLOBAL_BLOCK and build the blockvector.  */
938   finish_block_internal (NULL, get_global_symbols (), NULL, NULL,
939 			 m_last_source_start_addr, end_addr,
940 			 1, expandable);
941   blockvector = make_blockvector ();
942 
943   /* Read the line table if it has to be read separately.
944      This is only used by xcoffread.c.  */
945   if (m_objfile->sf->sym_read_linetable != NULL)
946     m_objfile->sf->sym_read_linetable (m_objfile);
947 
948   /* Handle the case where the debug info specifies a different path
949      for the main source file.  It can cause us to lose track of its
950      line number information.  */
951   watch_main_source_file_lossage ();
952 
953   /* Now create the symtab objects proper, if not already done,
954      one for each subfile.  */
955 
956   for (subfile = m_subfiles;
957        subfile != NULL;
958        subfile = subfile->next)
959     {
960       int linetablesize = 0;
961 
962       if (subfile->line_vector)
963 	{
964 	  linetablesize = sizeof (struct linetable) +
965 	    subfile->line_vector->nitems * sizeof (struct linetable_entry);
966 
967 	  /* Like the pending blocks, the line table may be
968 	     scrambled in reordered executables.  Sort it if
969 	     OBJF_REORDERED is true.  */
970 	  if (m_objfile->flags & OBJF_REORDERED)
971 	    qsort (subfile->line_vector->item,
972 		   subfile->line_vector->nitems,
973 		   sizeof (struct linetable_entry), compare_line_numbers);
974 	}
975 
976       /* Allocate a symbol table if necessary.  */
977       if (subfile->symtab == NULL)
978 	subfile->symtab = allocate_symtab (cu, subfile->name);
979       struct symtab *symtab = subfile->symtab;
980 
981       /* Fill in its components.  */
982 
983       if (subfile->line_vector)
984 	{
985 	  /* Reallocate the line table on the symbol obstack.  */
986 	  SYMTAB_LINETABLE (symtab) = (struct linetable *)
987 	    obstack_alloc (&m_objfile->objfile_obstack, linetablesize);
988 	  memcpy (SYMTAB_LINETABLE (symtab), subfile->line_vector,
989 		  linetablesize);
990 	}
991       else
992 	{
993 	  SYMTAB_LINETABLE (symtab) = NULL;
994 	}
995 
996       /* Use whatever language we have been using for this
997 	 subfile, not the one that was deduced in allocate_symtab
998 	 from the filename.  We already did our own deducing when
999 	 we created the subfile, and we may have altered our
1000 	 opinion of what language it is from things we found in
1001 	 the symbols.  */
1002       symtab->language = subfile->language;
1003     }
1004 
1005   /* Make sure the symtab of main_subfile is the first in its list.  */
1006   {
1007     struct symtab *main_symtab, *prev_symtab;
1008 
1009     main_symtab = m_main_subfile->symtab;
1010     prev_symtab = NULL;
1011     for (symtab *symtab : compunit_filetabs (cu))
1012       {
1013 	if (symtab == main_symtab)
1014 	  {
1015 	    if (prev_symtab != NULL)
1016 	      {
1017 		prev_symtab->next = main_symtab->next;
1018 		main_symtab->next = COMPUNIT_FILETABS (cu);
1019 		COMPUNIT_FILETABS (cu) = main_symtab;
1020 	      }
1021 	    break;
1022 	  }
1023 	prev_symtab = symtab;
1024       }
1025     gdb_assert (main_symtab == COMPUNIT_FILETABS (cu));
1026   }
1027 
1028   /* Fill out the compunit symtab.  */
1029 
1030   if (m_comp_dir != NULL)
1031     {
1032       /* Reallocate the dirname on the symbol obstack.  */
1033       const char *comp_dir = m_comp_dir.get ();
1034       COMPUNIT_DIRNAME (cu)
1035 	= (const char *) obstack_copy0 (&m_objfile->objfile_obstack,
1036 					comp_dir, strlen (comp_dir));
1037     }
1038 
1039   /* Save the debug format string (if any) in the symtab.  */
1040   COMPUNIT_DEBUGFORMAT (cu) = m_debugformat;
1041 
1042   /* Similarly for the producer.  */
1043   COMPUNIT_PRODUCER (cu) = m_producer;
1044 
1045   COMPUNIT_BLOCKVECTOR (cu) = blockvector;
1046   {
1047     struct block *b = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1048 
1049     set_block_compunit_symtab (b, cu);
1050   }
1051 
1052   COMPUNIT_BLOCK_LINE_SECTION (cu) = section;
1053 
1054   COMPUNIT_MACRO_TABLE (cu) = release_macros ();
1055 
1056   /* Default any symbols without a specified symtab to the primary symtab.  */
1057   {
1058     int block_i;
1059 
1060     /* The main source file's symtab.  */
1061     struct symtab *symtab = COMPUNIT_FILETABS (cu);
1062 
1063     for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1064       {
1065 	struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1066 	struct symbol *sym;
1067 	struct mdict_iterator miter;
1068 
1069 	/* Inlined functions may have symbols not in the global or
1070 	   static symbol lists.  */
1071 	if (BLOCK_FUNCTION (block) != NULL)
1072 	  if (symbol_symtab (BLOCK_FUNCTION (block)) == NULL)
1073 	    symbol_set_symtab (BLOCK_FUNCTION (block), symtab);
1074 
1075 	/* Note that we only want to fix up symbols from the local
1076 	   blocks, not blocks coming from included symtabs.  That is why
1077 	   we use ALL_DICT_SYMBOLS here and not ALL_BLOCK_SYMBOLS.  */
1078 	ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (block), miter, sym)
1079 	  if (symbol_symtab (sym) == NULL)
1080 	    symbol_set_symtab (sym, symtab);
1081       }
1082   }
1083 
1084   add_compunit_symtab_to_objfile (cu);
1085 
1086   return cu;
1087 }
1088 
1089 /* Implementation of the second part of end_symtab.  Pass STATIC_BLOCK
1090    as value returned by end_symtab_get_static_block.
1091 
1092    SECTION is the same as for end_symtab: the section number
1093    (in objfile->section_offsets) of the blockvector and linetable.
1094 
1095    If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
1096    expandable.  */
1097 
1098 struct compunit_symtab *
1099 buildsym_compunit::end_symtab_from_static_block (struct block *static_block,
1100 						 int section, int expandable)
1101 {
1102   struct compunit_symtab *cu;
1103 
1104   if (static_block == NULL)
1105     {
1106       /* Handle the "no blockvector" case.
1107 	 When this happens there is nothing to record, so there's nothing
1108 	 to do: memory will be freed up later.
1109 
1110 	 Note: We won't be adding a compunit to the objfile's list of
1111 	 compunits, so there's nothing to unchain.  However, since each symtab
1112 	 is added to the objfile's obstack we can't free that space.
1113 	 We could do better, but this is believed to be a sufficiently rare
1114 	 event.  */
1115       cu = NULL;
1116     }
1117   else
1118     cu = end_symtab_with_blockvector (static_block, section, expandable);
1119 
1120   return cu;
1121 }
1122 
1123 /* Finish the symbol definitions for one main source file, close off
1124    all the lexical contexts for that file (creating struct block's for
1125    them), then make the struct symtab for that file and put it in the
1126    list of all such.
1127 
1128    END_ADDR is the address of the end of the file's text.  SECTION is
1129    the section number (in objfile->section_offsets) of the blockvector
1130    and linetable.
1131 
1132    Note that it is possible for end_symtab() to return NULL.  In
1133    particular, for the DWARF case at least, it will return NULL when
1134    it finds a compilation unit that has exactly one DIE, a
1135    TAG_compile_unit DIE.  This can happen when we link in an object
1136    file that was compiled from an empty source file.  Returning NULL
1137    is probably not the correct thing to do, because then gdb will
1138    never know about this empty file (FIXME).
1139 
1140    If you need to modify STATIC_BLOCK before it is finalized you should
1141    call end_symtab_get_static_block and end_symtab_from_static_block
1142    yourself.  */
1143 
1144 struct compunit_symtab *
1145 buildsym_compunit::end_symtab (CORE_ADDR end_addr, int section)
1146 {
1147   struct block *static_block;
1148 
1149   static_block = end_symtab_get_static_block (end_addr, 0, 0);
1150   return end_symtab_from_static_block (static_block, section, 0);
1151 }
1152 
1153 /* Same as end_symtab except create a symtab that can be later added to.  */
1154 
1155 struct compunit_symtab *
1156 buildsym_compunit::end_expandable_symtab (CORE_ADDR end_addr, int section)
1157 {
1158   struct block *static_block;
1159 
1160   static_block = end_symtab_get_static_block (end_addr, 1, 0);
1161   return end_symtab_from_static_block (static_block, section, 1);
1162 }
1163 
1164 /* Subroutine of augment_type_symtab to simplify it.
1165    Attach the main source file's symtab to all symbols in PENDING_LIST that
1166    don't have one.  */
1167 
1168 static void
1169 set_missing_symtab (struct pending *pending_list,
1170 		    struct compunit_symtab *cu)
1171 {
1172   struct pending *pending;
1173   int i;
1174 
1175   for (pending = pending_list; pending != NULL; pending = pending->next)
1176     {
1177       for (i = 0; i < pending->nsyms; ++i)
1178 	{
1179 	  if (symbol_symtab (pending->symbol[i]) == NULL)
1180 	    symbol_set_symtab (pending->symbol[i], COMPUNIT_FILETABS (cu));
1181 	}
1182     }
1183 }
1184 
1185 /* Same as end_symtab, but for the case where we're adding more symbols
1186    to an existing symtab that is known to contain only type information.
1187    This is the case for DWARF4 Type Units.  */
1188 
1189 void
1190 buildsym_compunit::augment_type_symtab ()
1191 {
1192   struct compunit_symtab *cust = m_compunit_symtab;
1193   const struct blockvector *blockvector = COMPUNIT_BLOCKVECTOR (cust);
1194 
1195   if (!m_context_stack.empty ())
1196     complaint (_("Context stack not empty in augment_type_symtab"));
1197   if (m_pending_blocks != NULL)
1198     complaint (_("Blocks in a type symtab"));
1199   if (m_pending_macros != NULL)
1200     complaint (_("Macro in a type symtab"));
1201   if (m_have_line_numbers)
1202     complaint (_("Line numbers recorded in a type symtab"));
1203 
1204   if (m_file_symbols != NULL)
1205     {
1206       struct block *block = BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK);
1207 
1208       /* First mark any symbols without a specified symtab as belonging
1209 	 to the primary symtab.  */
1210       set_missing_symtab (m_file_symbols, cust);
1211 
1212       mdict_add_pending (BLOCK_MULTIDICT (block), m_file_symbols);
1213     }
1214 
1215   if (m_global_symbols != NULL)
1216     {
1217       struct block *block = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1218 
1219       /* First mark any symbols without a specified symtab as belonging
1220 	 to the primary symtab.  */
1221       set_missing_symtab (m_global_symbols, cust);
1222 
1223       mdict_add_pending (BLOCK_MULTIDICT (block),
1224 			m_global_symbols);
1225     }
1226 }
1227 
1228 /* Push a context block.  Args are an identifying nesting level
1229    (checkable when you pop it), and the starting PC address of this
1230    context.  */
1231 
1232 struct context_stack *
1233 buildsym_compunit::push_context (int desc, CORE_ADDR valu)
1234 {
1235   m_context_stack.emplace_back ();
1236   struct context_stack *newobj = &m_context_stack.back ();
1237 
1238   newobj->depth = desc;
1239   newobj->locals = m_local_symbols;
1240   newobj->old_blocks = m_pending_blocks;
1241   newobj->start_addr = valu;
1242   newobj->local_using_directives = m_local_using_directives;
1243   newobj->name = NULL;
1244 
1245   m_local_symbols = NULL;
1246   m_local_using_directives = NULL;
1247 
1248   return newobj;
1249 }
1250 
1251 /* Pop a context block.  Returns the address of the context block just
1252    popped.  */
1253 
1254 struct context_stack
1255 buildsym_compunit::pop_context ()
1256 {
1257   gdb_assert (!m_context_stack.empty ());
1258   struct context_stack result = m_context_stack.back ();
1259   m_context_stack.pop_back ();
1260   return result;
1261 }
1262