1 /* Everything about breakpoints, for GDB. 2 3 Copyright (C) 1986-2019 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "arch-utils.h" 22 #include <ctype.h> 23 #include "hashtab.h" 24 #include "symtab.h" 25 #include "frame.h" 26 #include "breakpoint.h" 27 #include "tracepoint.h" 28 #include "gdbtypes.h" 29 #include "expression.h" 30 #include "gdbcore.h" 31 #include "gdbcmd.h" 32 #include "value.h" 33 #include "command.h" 34 #include "inferior.h" 35 #include "infrun.h" 36 #include "gdbthread.h" 37 #include "target.h" 38 #include "language.h" 39 #include "gdb-demangle.h" 40 #include "filenames.h" 41 #include "annotate.h" 42 #include "symfile.h" 43 #include "objfiles.h" 44 #include "source.h" 45 #include "linespec.h" 46 #include "completer.h" 47 #include "ui-out.h" 48 #include "cli/cli-script.h" 49 #include "block.h" 50 #include "solib.h" 51 #include "solist.h" 52 #include "observable.h" 53 #include "memattr.h" 54 #include "ada-lang.h" 55 #include "top.h" 56 #include "valprint.h" 57 #include "jit.h" 58 #include "parser-defs.h" 59 #include "gdb_regex.h" 60 #include "probe.h" 61 #include "cli/cli-utils.h" 62 #include "continuations.h" 63 #include "stack.h" 64 #include "skip.h" 65 #include "ax-gdb.h" 66 #include "dummy-frame.h" 67 #include "interps.h" 68 #include "common/format.h" 69 #include "thread-fsm.h" 70 #include "tid-parse.h" 71 #include "cli/cli-style.h" 72 73 /* readline include files */ 74 #include "readline/readline.h" 75 #include "readline/history.h" 76 77 /* readline defines this. */ 78 #undef savestring 79 80 #include "mi/mi-common.h" 81 #include "extension.h" 82 #include <algorithm> 83 #include "progspace-and-thread.h" 84 #include "common/array-view.h" 85 #include "common/gdb_optional.h" 86 87 /* Enums for exception-handling support. */ 88 enum exception_event_kind 89 { 90 EX_EVENT_THROW, 91 EX_EVENT_RETHROW, 92 EX_EVENT_CATCH 93 }; 94 95 /* Prototypes for local functions. */ 96 97 static void map_breakpoint_numbers (const char *, 98 gdb::function_view<void (breakpoint *)>); 99 100 static void breakpoint_re_set_default (struct breakpoint *); 101 102 static void 103 create_sals_from_location_default (const struct event_location *location, 104 struct linespec_result *canonical, 105 enum bptype type_wanted); 106 107 static void create_breakpoints_sal_default (struct gdbarch *, 108 struct linespec_result *, 109 gdb::unique_xmalloc_ptr<char>, 110 gdb::unique_xmalloc_ptr<char>, 111 enum bptype, 112 enum bpdisp, int, int, 113 int, 114 const struct breakpoint_ops *, 115 int, int, int, unsigned); 116 117 static std::vector<symtab_and_line> decode_location_default 118 (struct breakpoint *b, const struct event_location *location, 119 struct program_space *search_pspace); 120 121 static int can_use_hardware_watchpoint 122 (const std::vector<value_ref_ptr> &vals); 123 124 static void mention (struct breakpoint *); 125 126 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *, 127 enum bptype, 128 const struct breakpoint_ops *); 129 static struct bp_location *add_location_to_breakpoint (struct breakpoint *, 130 const struct symtab_and_line *); 131 132 /* This function is used in gdbtk sources and thus can not be made 133 static. */ 134 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch, 135 struct symtab_and_line, 136 enum bptype, 137 const struct breakpoint_ops *); 138 139 static struct breakpoint * 140 momentary_breakpoint_from_master (struct breakpoint *orig, 141 enum bptype type, 142 const struct breakpoint_ops *ops, 143 int loc_enabled); 144 145 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int); 146 147 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch, 148 CORE_ADDR bpaddr, 149 enum bptype bptype); 150 151 static void describe_other_breakpoints (struct gdbarch *, 152 struct program_space *, CORE_ADDR, 153 struct obj_section *, int); 154 155 static int watchpoint_locations_match (struct bp_location *loc1, 156 struct bp_location *loc2); 157 158 static int breakpoint_location_address_match (struct bp_location *bl, 159 const struct address_space *aspace, 160 CORE_ADDR addr); 161 162 static int breakpoint_location_address_range_overlap (struct bp_location *, 163 const address_space *, 164 CORE_ADDR, int); 165 166 static int remove_breakpoint (struct bp_location *); 167 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason); 168 169 static enum print_stop_action print_bp_stop_message (bpstat bs); 170 171 static int hw_breakpoint_used_count (void); 172 173 static int hw_watchpoint_use_count (struct breakpoint *); 174 175 static int hw_watchpoint_used_count_others (struct breakpoint *except, 176 enum bptype type, 177 int *other_type_used); 178 179 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp, 180 int count); 181 182 static void free_bp_location (struct bp_location *loc); 183 static void incref_bp_location (struct bp_location *loc); 184 static void decref_bp_location (struct bp_location **loc); 185 186 static struct bp_location *allocate_bp_location (struct breakpoint *bpt); 187 188 /* update_global_location_list's modes of operation wrt to whether to 189 insert locations now. */ 190 enum ugll_insert_mode 191 { 192 /* Don't insert any breakpoint locations into the inferior, only 193 remove already-inserted locations that no longer should be 194 inserted. Functions that delete a breakpoint or breakpoints 195 should specify this mode, so that deleting a breakpoint doesn't 196 have the side effect of inserting the locations of other 197 breakpoints that are marked not-inserted, but should_be_inserted 198 returns true on them. 199 200 This behavior is useful is situations close to tear-down -- e.g., 201 after an exec, while the target still has execution, but 202 breakpoint shadows of the previous executable image should *NOT* 203 be restored to the new image; or before detaching, where the 204 target still has execution and wants to delete breakpoints from 205 GDB's lists, and all breakpoints had already been removed from 206 the inferior. */ 207 UGLL_DONT_INSERT, 208 209 /* May insert breakpoints iff breakpoints_should_be_inserted_now 210 claims breakpoints should be inserted now. */ 211 UGLL_MAY_INSERT, 212 213 /* Insert locations now, irrespective of 214 breakpoints_should_be_inserted_now. E.g., say all threads are 215 stopped right now, and the user did "continue". We need to 216 insert breakpoints _before_ resuming the target, but 217 UGLL_MAY_INSERT wouldn't insert them, because 218 breakpoints_should_be_inserted_now returns false at that point, 219 as no thread is running yet. */ 220 UGLL_INSERT 221 }; 222 223 static void update_global_location_list (enum ugll_insert_mode); 224 225 static void update_global_location_list_nothrow (enum ugll_insert_mode); 226 227 static int is_hardware_watchpoint (const struct breakpoint *bpt); 228 229 static void insert_breakpoint_locations (void); 230 231 static void trace_pass_command (const char *, int); 232 233 static void set_tracepoint_count (int num); 234 235 static int is_masked_watchpoint (const struct breakpoint *b); 236 237 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address); 238 239 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero 240 otherwise. */ 241 242 static int strace_marker_p (struct breakpoint *b); 243 244 /* The breakpoint_ops structure to be inherited by all breakpoint_ops 245 that are implemented on top of software or hardware breakpoints 246 (user breakpoints, internal and momentary breakpoints, etc.). */ 247 static struct breakpoint_ops bkpt_base_breakpoint_ops; 248 249 /* Internal breakpoints class type. */ 250 static struct breakpoint_ops internal_breakpoint_ops; 251 252 /* Momentary breakpoints class type. */ 253 static struct breakpoint_ops momentary_breakpoint_ops; 254 255 /* The breakpoint_ops structure to be used in regular user created 256 breakpoints. */ 257 struct breakpoint_ops bkpt_breakpoint_ops; 258 259 /* Breakpoints set on probes. */ 260 static struct breakpoint_ops bkpt_probe_breakpoint_ops; 261 262 /* Dynamic printf class type. */ 263 struct breakpoint_ops dprintf_breakpoint_ops; 264 265 /* The style in which to perform a dynamic printf. This is a user 266 option because different output options have different tradeoffs; 267 if GDB does the printing, there is better error handling if there 268 is a problem with any of the arguments, but using an inferior 269 function lets you have special-purpose printers and sending of 270 output to the same place as compiled-in print functions. */ 271 272 static const char dprintf_style_gdb[] = "gdb"; 273 static const char dprintf_style_call[] = "call"; 274 static const char dprintf_style_agent[] = "agent"; 275 static const char *const dprintf_style_enums[] = { 276 dprintf_style_gdb, 277 dprintf_style_call, 278 dprintf_style_agent, 279 NULL 280 }; 281 static const char *dprintf_style = dprintf_style_gdb; 282 283 /* The function to use for dynamic printf if the preferred style is to 284 call into the inferior. The value is simply a string that is 285 copied into the command, so it can be anything that GDB can 286 evaluate to a callable address, not necessarily a function name. */ 287 288 static char *dprintf_function; 289 290 /* The channel to use for dynamic printf if the preferred style is to 291 call into the inferior; if a nonempty string, it will be passed to 292 the call as the first argument, with the format string as the 293 second. As with the dprintf function, this can be anything that 294 GDB knows how to evaluate, so in addition to common choices like 295 "stderr", this could be an app-specific expression like 296 "mystreams[curlogger]". */ 297 298 static char *dprintf_channel; 299 300 /* True if dprintf commands should continue to operate even if GDB 301 has disconnected. */ 302 static int disconnected_dprintf = 1; 303 304 struct command_line * 305 breakpoint_commands (struct breakpoint *b) 306 { 307 return b->commands ? b->commands.get () : NULL; 308 } 309 310 /* Flag indicating that a command has proceeded the inferior past the 311 current breakpoint. */ 312 313 static int breakpoint_proceeded; 314 315 const char * 316 bpdisp_text (enum bpdisp disp) 317 { 318 /* NOTE: the following values are a part of MI protocol and 319 represent values of 'disp' field returned when inferior stops at 320 a breakpoint. */ 321 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"}; 322 323 return bpdisps[(int) disp]; 324 } 325 326 /* Prototypes for exported functions. */ 327 /* If FALSE, gdb will not use hardware support for watchpoints, even 328 if such is available. */ 329 static int can_use_hw_watchpoints; 330 331 static void 332 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty, 333 struct cmd_list_element *c, 334 const char *value) 335 { 336 fprintf_filtered (file, 337 _("Debugger's willingness to use " 338 "watchpoint hardware is %s.\n"), 339 value); 340 } 341 342 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints. 343 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints 344 for unrecognized breakpoint locations. 345 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */ 346 static enum auto_boolean pending_break_support; 347 static void 348 show_pending_break_support (struct ui_file *file, int from_tty, 349 struct cmd_list_element *c, 350 const char *value) 351 { 352 fprintf_filtered (file, 353 _("Debugger's behavior regarding " 354 "pending breakpoints is %s.\n"), 355 value); 356 } 357 358 /* If 1, gdb will automatically use hardware breakpoints for breakpoints 359 set with "break" but falling in read-only memory. 360 If 0, gdb will warn about such breakpoints, but won't automatically 361 use hardware breakpoints. */ 362 static int automatic_hardware_breakpoints; 363 static void 364 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty, 365 struct cmd_list_element *c, 366 const char *value) 367 { 368 fprintf_filtered (file, 369 _("Automatic usage of hardware breakpoints is %s.\n"), 370 value); 371 } 372 373 /* If on, GDB keeps breakpoints inserted even if the inferior is 374 stopped, and immediately inserts any new breakpoints as soon as 375 they're created. If off (default), GDB keeps breakpoints off of 376 the target as long as possible. That is, it delays inserting 377 breakpoints until the next resume, and removes them again when the 378 target fully stops. This is a bit safer in case GDB crashes while 379 processing user input. */ 380 static int always_inserted_mode = 0; 381 382 static void 383 show_always_inserted_mode (struct ui_file *file, int from_tty, 384 struct cmd_list_element *c, const char *value) 385 { 386 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"), 387 value); 388 } 389 390 /* See breakpoint.h. */ 391 392 int 393 breakpoints_should_be_inserted_now (void) 394 { 395 if (gdbarch_has_global_breakpoints (target_gdbarch ())) 396 { 397 /* If breakpoints are global, they should be inserted even if no 398 thread under gdb's control is running, or even if there are 399 no threads under GDB's control yet. */ 400 return 1; 401 } 402 else if (target_has_execution) 403 { 404 if (always_inserted_mode) 405 { 406 /* The user wants breakpoints inserted even if all threads 407 are stopped. */ 408 return 1; 409 } 410 411 if (threads_are_executing ()) 412 return 1; 413 414 /* Don't remove breakpoints yet if, even though all threads are 415 stopped, we still have events to process. */ 416 for (thread_info *tp : all_non_exited_threads ()) 417 if (tp->resumed 418 && tp->suspend.waitstatus_pending_p) 419 return 1; 420 } 421 return 0; 422 } 423 424 static const char condition_evaluation_both[] = "host or target"; 425 426 /* Modes for breakpoint condition evaluation. */ 427 static const char condition_evaluation_auto[] = "auto"; 428 static const char condition_evaluation_host[] = "host"; 429 static const char condition_evaluation_target[] = "target"; 430 static const char *const condition_evaluation_enums[] = { 431 condition_evaluation_auto, 432 condition_evaluation_host, 433 condition_evaluation_target, 434 NULL 435 }; 436 437 /* Global that holds the current mode for breakpoint condition evaluation. */ 438 static const char *condition_evaluation_mode_1 = condition_evaluation_auto; 439 440 /* Global that we use to display information to the user (gets its value from 441 condition_evaluation_mode_1. */ 442 static const char *condition_evaluation_mode = condition_evaluation_auto; 443 444 /* Translate a condition evaluation mode MODE into either "host" 445 or "target". This is used mostly to translate from "auto" to the 446 real setting that is being used. It returns the translated 447 evaluation mode. */ 448 449 static const char * 450 translate_condition_evaluation_mode (const char *mode) 451 { 452 if (mode == condition_evaluation_auto) 453 { 454 if (target_supports_evaluation_of_breakpoint_conditions ()) 455 return condition_evaluation_target; 456 else 457 return condition_evaluation_host; 458 } 459 else 460 return mode; 461 } 462 463 /* Discovers what condition_evaluation_auto translates to. */ 464 465 static const char * 466 breakpoint_condition_evaluation_mode (void) 467 { 468 return translate_condition_evaluation_mode (condition_evaluation_mode); 469 } 470 471 /* Return true if GDB should evaluate breakpoint conditions or false 472 otherwise. */ 473 474 static int 475 gdb_evaluates_breakpoint_condition_p (void) 476 { 477 const char *mode = breakpoint_condition_evaluation_mode (); 478 479 return (mode == condition_evaluation_host); 480 } 481 482 /* Are we executing breakpoint commands? */ 483 static int executing_breakpoint_commands; 484 485 /* Are overlay event breakpoints enabled? */ 486 static int overlay_events_enabled; 487 488 /* See description in breakpoint.h. */ 489 int target_exact_watchpoints = 0; 490 491 /* Walk the following statement or block through all breakpoints. 492 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the 493 current breakpoint. */ 494 495 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next) 496 497 #define ALL_BREAKPOINTS_SAFE(B,TMP) \ 498 for (B = breakpoint_chain; \ 499 B ? (TMP=B->next, 1): 0; \ 500 B = TMP) 501 502 /* Similar iterator for the low-level breakpoints. SAFE variant is 503 not provided so update_global_location_list must not be called 504 while executing the block of ALL_BP_LOCATIONS. */ 505 506 #define ALL_BP_LOCATIONS(B,BP_TMP) \ 507 for (BP_TMP = bp_locations; \ 508 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\ 509 BP_TMP++) 510 511 /* Iterates through locations with address ADDRESS for the currently selected 512 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points 513 to where the loop should start from. 514 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the 515 appropriate location to start with. */ 516 517 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \ 518 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \ 519 BP_LOCP_TMP = BP_LOCP_START; \ 520 BP_LOCP_START \ 521 && (BP_LOCP_TMP < bp_locations + bp_locations_count \ 522 && (*BP_LOCP_TMP)->address == ADDRESS); \ 523 BP_LOCP_TMP++) 524 525 /* Iterator for tracepoints only. */ 526 527 #define ALL_TRACEPOINTS(B) \ 528 for (B = breakpoint_chain; B; B = B->next) \ 529 if (is_tracepoint (B)) 530 531 /* Chains of all breakpoints defined. */ 532 533 struct breakpoint *breakpoint_chain; 534 535 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */ 536 537 static struct bp_location **bp_locations; 538 539 /* Number of elements of BP_LOCATIONS. */ 540 541 static unsigned bp_locations_count; 542 543 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and 544 ADDRESS for the current elements of BP_LOCATIONS which get a valid 545 result from bp_location_has_shadow. You can use it for roughly 546 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for 547 an address you need to read. */ 548 549 static CORE_ADDR bp_locations_placed_address_before_address_max; 550 551 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS 552 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of 553 BP_LOCATIONS which get a valid result from bp_location_has_shadow. 554 You can use it for roughly limiting the subrange of BP_LOCATIONS to 555 scan for shadow bytes for an address you need to read. */ 556 557 static CORE_ADDR bp_locations_shadow_len_after_address_max; 558 559 /* The locations that no longer correspond to any breakpoint, unlinked 560 from the bp_locations array, but for which a hit may still be 561 reported by a target. */ 562 static std::vector<bp_location *> moribund_locations; 563 564 /* Number of last breakpoint made. */ 565 566 static int breakpoint_count; 567 568 /* The value of `breakpoint_count' before the last command that 569 created breakpoints. If the last (break-like) command created more 570 than one breakpoint, then the difference between BREAKPOINT_COUNT 571 and PREV_BREAKPOINT_COUNT is more than one. */ 572 static int prev_breakpoint_count; 573 574 /* Number of last tracepoint made. */ 575 576 static int tracepoint_count; 577 578 static struct cmd_list_element *breakpoint_set_cmdlist; 579 static struct cmd_list_element *breakpoint_show_cmdlist; 580 struct cmd_list_element *save_cmdlist; 581 582 /* See declaration at breakpoint.h. */ 583 584 struct breakpoint * 585 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d), 586 void *user_data) 587 { 588 struct breakpoint *b = NULL; 589 590 ALL_BREAKPOINTS (b) 591 { 592 if (func (b, user_data) != 0) 593 break; 594 } 595 596 return b; 597 } 598 599 /* Return whether a breakpoint is an active enabled breakpoint. */ 600 static int 601 breakpoint_enabled (struct breakpoint *b) 602 { 603 return (b->enable_state == bp_enabled); 604 } 605 606 /* Set breakpoint count to NUM. */ 607 608 static void 609 set_breakpoint_count (int num) 610 { 611 prev_breakpoint_count = breakpoint_count; 612 breakpoint_count = num; 613 set_internalvar_integer (lookup_internalvar ("bpnum"), num); 614 } 615 616 /* Used by `start_rbreak_breakpoints' below, to record the current 617 breakpoint count before "rbreak" creates any breakpoint. */ 618 static int rbreak_start_breakpoint_count; 619 620 /* Called at the start an "rbreak" command to record the first 621 breakpoint made. */ 622 623 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints () 624 { 625 rbreak_start_breakpoint_count = breakpoint_count; 626 } 627 628 /* Called at the end of an "rbreak" command to record the last 629 breakpoint made. */ 630 631 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints () 632 { 633 prev_breakpoint_count = rbreak_start_breakpoint_count; 634 } 635 636 /* Used in run_command to zero the hit count when a new run starts. */ 637 638 void 639 clear_breakpoint_hit_counts (void) 640 { 641 struct breakpoint *b; 642 643 ALL_BREAKPOINTS (b) 644 b->hit_count = 0; 645 } 646 647 648 /* Return the breakpoint with the specified number, or NULL 649 if the number does not refer to an existing breakpoint. */ 650 651 struct breakpoint * 652 get_breakpoint (int num) 653 { 654 struct breakpoint *b; 655 656 ALL_BREAKPOINTS (b) 657 if (b->number == num) 658 return b; 659 660 return NULL; 661 } 662 663 664 665 /* Mark locations as "conditions have changed" in case the target supports 666 evaluating conditions on its side. */ 667 668 static void 669 mark_breakpoint_modified (struct breakpoint *b) 670 { 671 struct bp_location *loc; 672 673 /* This is only meaningful if the target is 674 evaluating conditions and if the user has 675 opted for condition evaluation on the target's 676 side. */ 677 if (gdb_evaluates_breakpoint_condition_p () 678 || !target_supports_evaluation_of_breakpoint_conditions ()) 679 return; 680 681 if (!is_breakpoint (b)) 682 return; 683 684 for (loc = b->loc; loc; loc = loc->next) 685 loc->condition_changed = condition_modified; 686 } 687 688 /* Mark location as "conditions have changed" in case the target supports 689 evaluating conditions on its side. */ 690 691 static void 692 mark_breakpoint_location_modified (struct bp_location *loc) 693 { 694 /* This is only meaningful if the target is 695 evaluating conditions and if the user has 696 opted for condition evaluation on the target's 697 side. */ 698 if (gdb_evaluates_breakpoint_condition_p () 699 || !target_supports_evaluation_of_breakpoint_conditions ()) 700 701 return; 702 703 if (!is_breakpoint (loc->owner)) 704 return; 705 706 loc->condition_changed = condition_modified; 707 } 708 709 /* Sets the condition-evaluation mode using the static global 710 condition_evaluation_mode. */ 711 712 static void 713 set_condition_evaluation_mode (const char *args, int from_tty, 714 struct cmd_list_element *c) 715 { 716 const char *old_mode, *new_mode; 717 718 if ((condition_evaluation_mode_1 == condition_evaluation_target) 719 && !target_supports_evaluation_of_breakpoint_conditions ()) 720 { 721 condition_evaluation_mode_1 = condition_evaluation_mode; 722 warning (_("Target does not support breakpoint condition evaluation.\n" 723 "Using host evaluation mode instead.")); 724 return; 725 } 726 727 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1); 728 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode); 729 730 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the 731 settings was "auto". */ 732 condition_evaluation_mode = condition_evaluation_mode_1; 733 734 /* Only update the mode if the user picked a different one. */ 735 if (new_mode != old_mode) 736 { 737 struct bp_location *loc, **loc_tmp; 738 /* If the user switched to a different evaluation mode, we 739 need to synch the changes with the target as follows: 740 741 "host" -> "target": Send all (valid) conditions to the target. 742 "target" -> "host": Remove all the conditions from the target. 743 */ 744 745 if (new_mode == condition_evaluation_target) 746 { 747 /* Mark everything modified and synch conditions with the 748 target. */ 749 ALL_BP_LOCATIONS (loc, loc_tmp) 750 mark_breakpoint_location_modified (loc); 751 } 752 else 753 { 754 /* Manually mark non-duplicate locations to synch conditions 755 with the target. We do this to remove all the conditions the 756 target knows about. */ 757 ALL_BP_LOCATIONS (loc, loc_tmp) 758 if (is_breakpoint (loc->owner) && loc->inserted) 759 loc->needs_update = 1; 760 } 761 762 /* Do the update. */ 763 update_global_location_list (UGLL_MAY_INSERT); 764 } 765 766 return; 767 } 768 769 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows 770 what "auto" is translating to. */ 771 772 static void 773 show_condition_evaluation_mode (struct ui_file *file, int from_tty, 774 struct cmd_list_element *c, const char *value) 775 { 776 if (condition_evaluation_mode == condition_evaluation_auto) 777 fprintf_filtered (file, 778 _("Breakpoint condition evaluation " 779 "mode is %s (currently %s).\n"), 780 value, 781 breakpoint_condition_evaluation_mode ()); 782 else 783 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"), 784 value); 785 } 786 787 /* A comparison function for bp_location AP and BP that is used by 788 bsearch. This comparison function only cares about addresses, unlike 789 the more general bp_locations_compare function. */ 790 791 static int 792 bp_locations_compare_addrs (const void *ap, const void *bp) 793 { 794 const struct bp_location *a = *(const struct bp_location **) ap; 795 const struct bp_location *b = *(const struct bp_location **) bp; 796 797 if (a->address == b->address) 798 return 0; 799 else 800 return ((a->address > b->address) - (a->address < b->address)); 801 } 802 803 /* Helper function to skip all bp_locations with addresses 804 less than ADDRESS. It returns the first bp_location that 805 is greater than or equal to ADDRESS. If none is found, just 806 return NULL. */ 807 808 static struct bp_location ** 809 get_first_locp_gte_addr (CORE_ADDR address) 810 { 811 struct bp_location dummy_loc; 812 struct bp_location *dummy_locp = &dummy_loc; 813 struct bp_location **locp_found = NULL; 814 815 /* Initialize the dummy location's address field. */ 816 dummy_loc.address = address; 817 818 /* Find a close match to the first location at ADDRESS. */ 819 locp_found = ((struct bp_location **) 820 bsearch (&dummy_locp, bp_locations, bp_locations_count, 821 sizeof (struct bp_location **), 822 bp_locations_compare_addrs)); 823 824 /* Nothing was found, nothing left to do. */ 825 if (locp_found == NULL) 826 return NULL; 827 828 /* We may have found a location that is at ADDRESS but is not the first in the 829 location's list. Go backwards (if possible) and locate the first one. */ 830 while ((locp_found - 1) >= bp_locations 831 && (*(locp_found - 1))->address == address) 832 locp_found--; 833 834 return locp_found; 835 } 836 837 void 838 set_breakpoint_condition (struct breakpoint *b, const char *exp, 839 int from_tty) 840 { 841 xfree (b->cond_string); 842 b->cond_string = NULL; 843 844 if (is_watchpoint (b)) 845 { 846 struct watchpoint *w = (struct watchpoint *) b; 847 848 w->cond_exp.reset (); 849 } 850 else 851 { 852 struct bp_location *loc; 853 854 for (loc = b->loc; loc; loc = loc->next) 855 { 856 loc->cond.reset (); 857 858 /* No need to free the condition agent expression 859 bytecode (if we have one). We will handle this 860 when we go through update_global_location_list. */ 861 } 862 } 863 864 if (*exp == 0) 865 { 866 if (from_tty) 867 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number); 868 } 869 else 870 { 871 const char *arg = exp; 872 873 /* I don't know if it matters whether this is the string the user 874 typed in or the decompiled expression. */ 875 b->cond_string = xstrdup (arg); 876 b->condition_not_parsed = 0; 877 878 if (is_watchpoint (b)) 879 { 880 struct watchpoint *w = (struct watchpoint *) b; 881 882 innermost_block.reset (); 883 arg = exp; 884 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0); 885 if (*arg) 886 error (_("Junk at end of expression")); 887 w->cond_exp_valid_block = innermost_block.block (); 888 } 889 else 890 { 891 struct bp_location *loc; 892 893 for (loc = b->loc; loc; loc = loc->next) 894 { 895 arg = exp; 896 loc->cond = 897 parse_exp_1 (&arg, loc->address, 898 block_for_pc (loc->address), 0); 899 if (*arg) 900 error (_("Junk at end of expression")); 901 } 902 } 903 } 904 mark_breakpoint_modified (b); 905 906 gdb::observers::breakpoint_modified.notify (b); 907 } 908 909 /* Completion for the "condition" command. */ 910 911 static void 912 condition_completer (struct cmd_list_element *cmd, 913 completion_tracker &tracker, 914 const char *text, const char *word) 915 { 916 const char *space; 917 918 text = skip_spaces (text); 919 space = skip_to_space (text); 920 if (*space == '\0') 921 { 922 int len; 923 struct breakpoint *b; 924 925 if (text[0] == '$') 926 { 927 /* We don't support completion of history indices. */ 928 if (!isdigit (text[1])) 929 complete_internalvar (tracker, &text[1]); 930 return; 931 } 932 933 /* We're completing the breakpoint number. */ 934 len = strlen (text); 935 936 ALL_BREAKPOINTS (b) 937 { 938 char number[50]; 939 940 xsnprintf (number, sizeof (number), "%d", b->number); 941 942 if (strncmp (number, text, len) == 0) 943 { 944 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number)); 945 tracker.add_completion (std::move (copy)); 946 } 947 } 948 949 return; 950 } 951 952 /* We're completing the expression part. */ 953 text = skip_spaces (space); 954 expression_completer (cmd, tracker, text, word); 955 } 956 957 /* condition N EXP -- set break condition of breakpoint N to EXP. */ 958 959 static void 960 condition_command (const char *arg, int from_tty) 961 { 962 struct breakpoint *b; 963 const char *p; 964 int bnum; 965 966 if (arg == 0) 967 error_no_arg (_("breakpoint number")); 968 969 p = arg; 970 bnum = get_number (&p); 971 if (bnum == 0) 972 error (_("Bad breakpoint argument: '%s'"), arg); 973 974 ALL_BREAKPOINTS (b) 975 if (b->number == bnum) 976 { 977 /* Check if this breakpoint has a "stop" method implemented in an 978 extension language. This method and conditions entered into GDB 979 from the CLI are mutually exclusive. */ 980 const struct extension_language_defn *extlang 981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE); 982 983 if (extlang != NULL) 984 { 985 error (_("Only one stop condition allowed. There is currently" 986 " a %s stop condition defined for this breakpoint."), 987 ext_lang_capitalized_name (extlang)); 988 } 989 set_breakpoint_condition (b, p, from_tty); 990 991 if (is_breakpoint (b)) 992 update_global_location_list (UGLL_MAY_INSERT); 993 994 return; 995 } 996 997 error (_("No breakpoint number %d."), bnum); 998 } 999 1000 /* Check that COMMAND do not contain commands that are suitable 1001 only for tracepoints and not suitable for ordinary breakpoints. 1002 Throw if any such commands is found. */ 1003 1004 static void 1005 check_no_tracepoint_commands (struct command_line *commands) 1006 { 1007 struct command_line *c; 1008 1009 for (c = commands; c; c = c->next) 1010 { 1011 if (c->control_type == while_stepping_control) 1012 error (_("The 'while-stepping' command can " 1013 "only be used for tracepoints")); 1014 1015 check_no_tracepoint_commands (c->body_list_0.get ()); 1016 check_no_tracepoint_commands (c->body_list_1.get ()); 1017 1018 /* Not that command parsing removes leading whitespace and comment 1019 lines and also empty lines. So, we only need to check for 1020 command directly. */ 1021 if (strstr (c->line, "collect ") == c->line) 1022 error (_("The 'collect' command can only be used for tracepoints")); 1023 1024 if (strstr (c->line, "teval ") == c->line) 1025 error (_("The 'teval' command can only be used for tracepoints")); 1026 } 1027 } 1028 1029 struct longjmp_breakpoint : public breakpoint 1030 { 1031 ~longjmp_breakpoint () override; 1032 }; 1033 1034 /* Encapsulate tests for different types of tracepoints. */ 1035 1036 static bool 1037 is_tracepoint_type (bptype type) 1038 { 1039 return (type == bp_tracepoint 1040 || type == bp_fast_tracepoint 1041 || type == bp_static_tracepoint); 1042 } 1043 1044 static bool 1045 is_longjmp_type (bptype type) 1046 { 1047 return type == bp_longjmp || type == bp_exception; 1048 } 1049 1050 int 1051 is_tracepoint (const struct breakpoint *b) 1052 { 1053 return is_tracepoint_type (b->type); 1054 } 1055 1056 /* Factory function to create an appropriate instance of breakpoint given 1057 TYPE. */ 1058 1059 static std::unique_ptr<breakpoint> 1060 new_breakpoint_from_type (bptype type) 1061 { 1062 breakpoint *b; 1063 1064 if (is_tracepoint_type (type)) 1065 b = new tracepoint (); 1066 else if (is_longjmp_type (type)) 1067 b = new longjmp_breakpoint (); 1068 else 1069 b = new breakpoint (); 1070 1071 return std::unique_ptr<breakpoint> (b); 1072 } 1073 1074 /* A helper function that validates that COMMANDS are valid for a 1075 breakpoint. This function will throw an exception if a problem is 1076 found. */ 1077 1078 static void 1079 validate_commands_for_breakpoint (struct breakpoint *b, 1080 struct command_line *commands) 1081 { 1082 if (is_tracepoint (b)) 1083 { 1084 struct tracepoint *t = (struct tracepoint *) b; 1085 struct command_line *c; 1086 struct command_line *while_stepping = 0; 1087 1088 /* Reset the while-stepping step count. The previous commands 1089 might have included a while-stepping action, while the new 1090 ones might not. */ 1091 t->step_count = 0; 1092 1093 /* We need to verify that each top-level element of commands is 1094 valid for tracepoints, that there's at most one 1095 while-stepping element, and that the while-stepping's body 1096 has valid tracing commands excluding nested while-stepping. 1097 We also need to validate the tracepoint action line in the 1098 context of the tracepoint --- validate_actionline actually 1099 has side effects, like setting the tracepoint's 1100 while-stepping STEP_COUNT, in addition to checking if the 1101 collect/teval actions parse and make sense in the 1102 tracepoint's context. */ 1103 for (c = commands; c; c = c->next) 1104 { 1105 if (c->control_type == while_stepping_control) 1106 { 1107 if (b->type == bp_fast_tracepoint) 1108 error (_("The 'while-stepping' command " 1109 "cannot be used for fast tracepoint")); 1110 else if (b->type == bp_static_tracepoint) 1111 error (_("The 'while-stepping' command " 1112 "cannot be used for static tracepoint")); 1113 1114 if (while_stepping) 1115 error (_("The 'while-stepping' command " 1116 "can be used only once")); 1117 else 1118 while_stepping = c; 1119 } 1120 1121 validate_actionline (c->line, b); 1122 } 1123 if (while_stepping) 1124 { 1125 struct command_line *c2; 1126 1127 gdb_assert (while_stepping->body_list_1 == nullptr); 1128 c2 = while_stepping->body_list_0.get (); 1129 for (; c2; c2 = c2->next) 1130 { 1131 if (c2->control_type == while_stepping_control) 1132 error (_("The 'while-stepping' command cannot be nested")); 1133 } 1134 } 1135 } 1136 else 1137 { 1138 check_no_tracepoint_commands (commands); 1139 } 1140 } 1141 1142 /* Return a vector of all the static tracepoints set at ADDR. The 1143 caller is responsible for releasing the vector. */ 1144 1145 std::vector<breakpoint *> 1146 static_tracepoints_here (CORE_ADDR addr) 1147 { 1148 struct breakpoint *b; 1149 std::vector<breakpoint *> found; 1150 struct bp_location *loc; 1151 1152 ALL_BREAKPOINTS (b) 1153 if (b->type == bp_static_tracepoint) 1154 { 1155 for (loc = b->loc; loc; loc = loc->next) 1156 if (loc->address == addr) 1157 found.push_back (b); 1158 } 1159 1160 return found; 1161 } 1162 1163 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint, 1164 validate that only allowed commands are included. */ 1165 1166 void 1167 breakpoint_set_commands (struct breakpoint *b, 1168 counted_command_line &&commands) 1169 { 1170 validate_commands_for_breakpoint (b, commands.get ()); 1171 1172 b->commands = std::move (commands); 1173 gdb::observers::breakpoint_modified.notify (b); 1174 } 1175 1176 /* Set the internal `silent' flag on the breakpoint. Note that this 1177 is not the same as the "silent" that may appear in the breakpoint's 1178 commands. */ 1179 1180 void 1181 breakpoint_set_silent (struct breakpoint *b, int silent) 1182 { 1183 int old_silent = b->silent; 1184 1185 b->silent = silent; 1186 if (old_silent != silent) 1187 gdb::observers::breakpoint_modified.notify (b); 1188 } 1189 1190 /* Set the thread for this breakpoint. If THREAD is -1, make the 1191 breakpoint work for any thread. */ 1192 1193 void 1194 breakpoint_set_thread (struct breakpoint *b, int thread) 1195 { 1196 int old_thread = b->thread; 1197 1198 b->thread = thread; 1199 if (old_thread != thread) 1200 gdb::observers::breakpoint_modified.notify (b); 1201 } 1202 1203 /* Set the task for this breakpoint. If TASK is 0, make the 1204 breakpoint work for any task. */ 1205 1206 void 1207 breakpoint_set_task (struct breakpoint *b, int task) 1208 { 1209 int old_task = b->task; 1210 1211 b->task = task; 1212 if (old_task != task) 1213 gdb::observers::breakpoint_modified.notify (b); 1214 } 1215 1216 static void 1217 commands_command_1 (const char *arg, int from_tty, 1218 struct command_line *control) 1219 { 1220 counted_command_line cmd; 1221 /* cmd_read will be true once we have read cmd. Note that cmd might still be 1222 NULL after the call to read_command_lines if the user provides an empty 1223 list of command by just typing "end". */ 1224 bool cmd_read = false; 1225 1226 std::string new_arg; 1227 1228 if (arg == NULL || !*arg) 1229 { 1230 if (breakpoint_count - prev_breakpoint_count > 1) 1231 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1, 1232 breakpoint_count); 1233 else if (breakpoint_count > 0) 1234 new_arg = string_printf ("%d", breakpoint_count); 1235 arg = new_arg.c_str (); 1236 } 1237 1238 map_breakpoint_numbers 1239 (arg, [&] (breakpoint *b) 1240 { 1241 if (!cmd_read) 1242 { 1243 gdb_assert (cmd == NULL); 1244 if (control != NULL) 1245 cmd = control->body_list_0; 1246 else 1247 { 1248 std::string str 1249 = string_printf (_("Type commands for breakpoint(s) " 1250 "%s, one per line."), 1251 arg); 1252 1253 auto do_validate = [=] (const char *line) 1254 { 1255 validate_actionline (line, b); 1256 }; 1257 gdb::function_view<void (const char *)> validator; 1258 if (is_tracepoint (b)) 1259 validator = do_validate; 1260 1261 cmd = read_command_lines (str.c_str (), from_tty, 1, validator); 1262 } 1263 cmd_read = true; 1264 } 1265 1266 /* If a breakpoint was on the list more than once, we don't need to 1267 do anything. */ 1268 if (b->commands != cmd) 1269 { 1270 validate_commands_for_breakpoint (b, cmd.get ()); 1271 b->commands = cmd; 1272 gdb::observers::breakpoint_modified.notify (b); 1273 } 1274 }); 1275 } 1276 1277 static void 1278 commands_command (const char *arg, int from_tty) 1279 { 1280 commands_command_1 (arg, from_tty, NULL); 1281 } 1282 1283 /* Like commands_command, but instead of reading the commands from 1284 input stream, takes them from an already parsed command structure. 1285 1286 This is used by cli-script.c to DTRT with breakpoint commands 1287 that are part of if and while bodies. */ 1288 enum command_control_type 1289 commands_from_control_command (const char *arg, struct command_line *cmd) 1290 { 1291 commands_command_1 (arg, 0, cmd); 1292 return simple_control; 1293 } 1294 1295 /* Return non-zero if BL->TARGET_INFO contains valid information. */ 1296 1297 static int 1298 bp_location_has_shadow (struct bp_location *bl) 1299 { 1300 if (bl->loc_type != bp_loc_software_breakpoint) 1301 return 0; 1302 if (!bl->inserted) 1303 return 0; 1304 if (bl->target_info.shadow_len == 0) 1305 /* BL isn't valid, or doesn't shadow memory. */ 1306 return 0; 1307 return 1; 1308 } 1309 1310 /* Update BUF, which is LEN bytes read from the target address 1311 MEMADDR, by replacing a memory breakpoint with its shadowed 1312 contents. 1313 1314 If READBUF is not NULL, this buffer must not overlap with the of 1315 the breakpoint location's shadow_contents buffer. Otherwise, a 1316 failed assertion internal error will be raised. */ 1317 1318 static void 1319 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf, 1320 const gdb_byte *writebuf_org, 1321 ULONGEST memaddr, LONGEST len, 1322 struct bp_target_info *target_info, 1323 struct gdbarch *gdbarch) 1324 { 1325 /* Now do full processing of the found relevant range of elements. */ 1326 CORE_ADDR bp_addr = 0; 1327 int bp_size = 0; 1328 int bptoffset = 0; 1329 1330 if (!breakpoint_address_match (target_info->placed_address_space, 0, 1331 current_program_space->aspace, 0)) 1332 { 1333 /* The breakpoint is inserted in a different address space. */ 1334 return; 1335 } 1336 1337 /* Addresses and length of the part of the breakpoint that 1338 we need to copy. */ 1339 bp_addr = target_info->placed_address; 1340 bp_size = target_info->shadow_len; 1341 1342 if (bp_addr + bp_size <= memaddr) 1343 { 1344 /* The breakpoint is entirely before the chunk of memory we are 1345 reading. */ 1346 return; 1347 } 1348 1349 if (bp_addr >= memaddr + len) 1350 { 1351 /* The breakpoint is entirely after the chunk of memory we are 1352 reading. */ 1353 return; 1354 } 1355 1356 /* Offset within shadow_contents. */ 1357 if (bp_addr < memaddr) 1358 { 1359 /* Only copy the second part of the breakpoint. */ 1360 bp_size -= memaddr - bp_addr; 1361 bptoffset = memaddr - bp_addr; 1362 bp_addr = memaddr; 1363 } 1364 1365 if (bp_addr + bp_size > memaddr + len) 1366 { 1367 /* Only copy the first part of the breakpoint. */ 1368 bp_size -= (bp_addr + bp_size) - (memaddr + len); 1369 } 1370 1371 if (readbuf != NULL) 1372 { 1373 /* Verify that the readbuf buffer does not overlap with the 1374 shadow_contents buffer. */ 1375 gdb_assert (target_info->shadow_contents >= readbuf + len 1376 || readbuf >= (target_info->shadow_contents 1377 + target_info->shadow_len)); 1378 1379 /* Update the read buffer with this inserted breakpoint's 1380 shadow. */ 1381 memcpy (readbuf + bp_addr - memaddr, 1382 target_info->shadow_contents + bptoffset, bp_size); 1383 } 1384 else 1385 { 1386 const unsigned char *bp; 1387 CORE_ADDR addr = target_info->reqstd_address; 1388 int placed_size; 1389 1390 /* Update the shadow with what we want to write to memory. */ 1391 memcpy (target_info->shadow_contents + bptoffset, 1392 writebuf_org + bp_addr - memaddr, bp_size); 1393 1394 /* Determine appropriate breakpoint contents and size for this 1395 address. */ 1396 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size); 1397 1398 /* Update the final write buffer with this inserted 1399 breakpoint's INSN. */ 1400 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size); 1401 } 1402 } 1403 1404 /* Update BUF, which is LEN bytes read from the target address MEMADDR, 1405 by replacing any memory breakpoints with their shadowed contents. 1406 1407 If READBUF is not NULL, this buffer must not overlap with any of 1408 the breakpoint location's shadow_contents buffers. Otherwise, 1409 a failed assertion internal error will be raised. 1410 1411 The range of shadowed area by each bp_location is: 1412 bl->address - bp_locations_placed_address_before_address_max 1413 up to bl->address + bp_locations_shadow_len_after_address_max 1414 The range we were requested to resolve shadows for is: 1415 memaddr ... memaddr + len 1416 Thus the safe cutoff boundaries for performance optimization are 1417 memaddr + len <= (bl->address 1418 - bp_locations_placed_address_before_address_max) 1419 and: 1420 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */ 1421 1422 void 1423 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf, 1424 const gdb_byte *writebuf_org, 1425 ULONGEST memaddr, LONGEST len) 1426 { 1427 /* Left boundary, right boundary and median element of our binary 1428 search. */ 1429 unsigned bc_l, bc_r, bc; 1430 1431 /* Find BC_L which is a leftmost element which may affect BUF 1432 content. It is safe to report lower value but a failure to 1433 report higher one. */ 1434 1435 bc_l = 0; 1436 bc_r = bp_locations_count; 1437 while (bc_l + 1 < bc_r) 1438 { 1439 struct bp_location *bl; 1440 1441 bc = (bc_l + bc_r) / 2; 1442 bl = bp_locations[bc]; 1443 1444 /* Check first BL->ADDRESS will not overflow due to the added 1445 constant. Then advance the left boundary only if we are sure 1446 the BC element can in no way affect the BUF content (MEMADDR 1447 to MEMADDR + LEN range). 1448 1449 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety 1450 offset so that we cannot miss a breakpoint with its shadow 1451 range tail still reaching MEMADDR. */ 1452 1453 if ((bl->address + bp_locations_shadow_len_after_address_max 1454 >= bl->address) 1455 && (bl->address + bp_locations_shadow_len_after_address_max 1456 <= memaddr)) 1457 bc_l = bc; 1458 else 1459 bc_r = bc; 1460 } 1461 1462 /* Due to the binary search above, we need to make sure we pick the 1463 first location that's at BC_L's address. E.g., if there are 1464 multiple locations at the same address, BC_L may end up pointing 1465 at a duplicate location, and miss the "master"/"inserted" 1466 location. Say, given locations L1, L2 and L3 at addresses A and 1467 B: 1468 1469 L1@A, L2@A, L3@B, ... 1470 1471 BC_L could end up pointing at location L2, while the "master" 1472 location could be L1. Since the `loc->inserted' flag is only set 1473 on "master" locations, we'd forget to restore the shadow of L1 1474 and L2. */ 1475 while (bc_l > 0 1476 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address) 1477 bc_l--; 1478 1479 /* Now do full processing of the found relevant range of elements. */ 1480 1481 for (bc = bc_l; bc < bp_locations_count; bc++) 1482 { 1483 struct bp_location *bl = bp_locations[bc]; 1484 1485 /* bp_location array has BL->OWNER always non-NULL. */ 1486 if (bl->owner->type == bp_none) 1487 warning (_("reading through apparently deleted breakpoint #%d?"), 1488 bl->owner->number); 1489 1490 /* Performance optimization: any further element can no longer affect BUF 1491 content. */ 1492 1493 if (bl->address >= bp_locations_placed_address_before_address_max 1494 && memaddr + len <= (bl->address 1495 - bp_locations_placed_address_before_address_max)) 1496 break; 1497 1498 if (!bp_location_has_shadow (bl)) 1499 continue; 1500 1501 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org, 1502 memaddr, len, &bl->target_info, bl->gdbarch); 1503 } 1504 } 1505 1506 1507 1508 /* Return true if BPT is either a software breakpoint or a hardware 1509 breakpoint. */ 1510 1511 int 1512 is_breakpoint (const struct breakpoint *bpt) 1513 { 1514 return (bpt->type == bp_breakpoint 1515 || bpt->type == bp_hardware_breakpoint 1516 || bpt->type == bp_dprintf); 1517 } 1518 1519 /* Return true if BPT is of any hardware watchpoint kind. */ 1520 1521 static int 1522 is_hardware_watchpoint (const struct breakpoint *bpt) 1523 { 1524 return (bpt->type == bp_hardware_watchpoint 1525 || bpt->type == bp_read_watchpoint 1526 || bpt->type == bp_access_watchpoint); 1527 } 1528 1529 /* Return true if BPT is of any watchpoint kind, hardware or 1530 software. */ 1531 1532 int 1533 is_watchpoint (const struct breakpoint *bpt) 1534 { 1535 return (is_hardware_watchpoint (bpt) 1536 || bpt->type == bp_watchpoint); 1537 } 1538 1539 /* Returns true if the current thread and its running state are safe 1540 to evaluate or update watchpoint B. Watchpoints on local 1541 expressions need to be evaluated in the context of the thread that 1542 was current when the watchpoint was created, and, that thread needs 1543 to be stopped to be able to select the correct frame context. 1544 Watchpoints on global expressions can be evaluated on any thread, 1545 and in any state. It is presently left to the target allowing 1546 memory accesses when threads are running. */ 1547 1548 static int 1549 watchpoint_in_thread_scope (struct watchpoint *b) 1550 { 1551 return (b->pspace == current_program_space 1552 && (b->watchpoint_thread == null_ptid 1553 || (inferior_ptid == b->watchpoint_thread 1554 && !inferior_thread ()->executing))); 1555 } 1556 1557 /* Set watchpoint B to disp_del_at_next_stop, even including its possible 1558 associated bp_watchpoint_scope breakpoint. */ 1559 1560 static void 1561 watchpoint_del_at_next_stop (struct watchpoint *w) 1562 { 1563 if (w->related_breakpoint != w) 1564 { 1565 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope); 1566 gdb_assert (w->related_breakpoint->related_breakpoint == w); 1567 w->related_breakpoint->disposition = disp_del_at_next_stop; 1568 w->related_breakpoint->related_breakpoint = w->related_breakpoint; 1569 w->related_breakpoint = w; 1570 } 1571 w->disposition = disp_del_at_next_stop; 1572 } 1573 1574 /* Extract a bitfield value from value VAL using the bit parameters contained in 1575 watchpoint W. */ 1576 1577 static struct value * 1578 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val) 1579 { 1580 struct value *bit_val; 1581 1582 if (val == NULL) 1583 return NULL; 1584 1585 bit_val = allocate_value (value_type (val)); 1586 1587 unpack_value_bitfield (bit_val, 1588 w->val_bitpos, 1589 w->val_bitsize, 1590 value_contents_for_printing (val), 1591 value_offset (val), 1592 val); 1593 1594 return bit_val; 1595 } 1596 1597 /* Allocate a dummy location and add it to B, which must be a software 1598 watchpoint. This is required because even if a software watchpoint 1599 is not watching any memory, bpstat_stop_status requires a location 1600 to be able to report stops. */ 1601 1602 static void 1603 software_watchpoint_add_no_memory_location (struct breakpoint *b, 1604 struct program_space *pspace) 1605 { 1606 gdb_assert (b->type == bp_watchpoint && b->loc == NULL); 1607 1608 b->loc = allocate_bp_location (b); 1609 b->loc->pspace = pspace; 1610 b->loc->address = -1; 1611 b->loc->length = -1; 1612 } 1613 1614 /* Returns true if B is a software watchpoint that is not watching any 1615 memory (e.g., "watch $pc"). */ 1616 1617 static int 1618 is_no_memory_software_watchpoint (struct breakpoint *b) 1619 { 1620 return (b->type == bp_watchpoint 1621 && b->loc != NULL 1622 && b->loc->next == NULL 1623 && b->loc->address == -1 1624 && b->loc->length == -1); 1625 } 1626 1627 /* Assuming that B is a watchpoint: 1628 - Reparse watchpoint expression, if REPARSE is non-zero 1629 - Evaluate expression and store the result in B->val 1630 - Evaluate the condition if there is one, and store the result 1631 in b->loc->cond. 1632 - Update the list of values that must be watched in B->loc. 1633 1634 If the watchpoint disposition is disp_del_at_next_stop, then do 1635 nothing. If this is local watchpoint that is out of scope, delete 1636 it. 1637 1638 Even with `set breakpoint always-inserted on' the watchpoints are 1639 removed + inserted on each stop here. Normal breakpoints must 1640 never be removed because they might be missed by a running thread 1641 when debugging in non-stop mode. On the other hand, hardware 1642 watchpoints (is_hardware_watchpoint; processed here) are specific 1643 to each LWP since they are stored in each LWP's hardware debug 1644 registers. Therefore, such LWP must be stopped first in order to 1645 be able to modify its hardware watchpoints. 1646 1647 Hardware watchpoints must be reset exactly once after being 1648 presented to the user. It cannot be done sooner, because it would 1649 reset the data used to present the watchpoint hit to the user. And 1650 it must not be done later because it could display the same single 1651 watchpoint hit during multiple GDB stops. Note that the latter is 1652 relevant only to the hardware watchpoint types bp_read_watchpoint 1653 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is 1654 not user-visible - its hit is suppressed if the memory content has 1655 not changed. 1656 1657 The following constraints influence the location where we can reset 1658 hardware watchpoints: 1659 1660 * target_stopped_by_watchpoint and target_stopped_data_address are 1661 called several times when GDB stops. 1662 1663 [linux] 1664 * Multiple hardware watchpoints can be hit at the same time, 1665 causing GDB to stop. GDB only presents one hardware watchpoint 1666 hit at a time as the reason for stopping, and all the other hits 1667 are presented later, one after the other, each time the user 1668 requests the execution to be resumed. Execution is not resumed 1669 for the threads still having pending hit event stored in 1670 LWP_INFO->STATUS. While the watchpoint is already removed from 1671 the inferior on the first stop the thread hit event is kept being 1672 reported from its cached value by linux_nat_stopped_data_address 1673 until the real thread resume happens after the watchpoint gets 1674 presented and thus its LWP_INFO->STATUS gets reset. 1675 1676 Therefore the hardware watchpoint hit can get safely reset on the 1677 watchpoint removal from inferior. */ 1678 1679 static void 1680 update_watchpoint (struct watchpoint *b, int reparse) 1681 { 1682 int within_current_scope; 1683 struct frame_id saved_frame_id; 1684 int frame_saved; 1685 1686 /* If this is a local watchpoint, we only want to check if the 1687 watchpoint frame is in scope if the current thread is the thread 1688 that was used to create the watchpoint. */ 1689 if (!watchpoint_in_thread_scope (b)) 1690 return; 1691 1692 if (b->disposition == disp_del_at_next_stop) 1693 return; 1694 1695 frame_saved = 0; 1696 1697 /* Determine if the watchpoint is within scope. */ 1698 if (b->exp_valid_block == NULL) 1699 within_current_scope = 1; 1700 else 1701 { 1702 struct frame_info *fi = get_current_frame (); 1703 struct gdbarch *frame_arch = get_frame_arch (fi); 1704 CORE_ADDR frame_pc = get_frame_pc (fi); 1705 1706 /* If we're at a point where the stack has been destroyed 1707 (e.g. in a function epilogue), unwinding may not work 1708 properly. Do not attempt to recreate locations at this 1709 point. See similar comments in watchpoint_check. */ 1710 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc)) 1711 return; 1712 1713 /* Save the current frame's ID so we can restore it after 1714 evaluating the watchpoint expression on its own frame. */ 1715 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression 1716 took a frame parameter, so that we didn't have to change the 1717 selected frame. */ 1718 frame_saved = 1; 1719 saved_frame_id = get_frame_id (get_selected_frame (NULL)); 1720 1721 fi = frame_find_by_id (b->watchpoint_frame); 1722 within_current_scope = (fi != NULL); 1723 if (within_current_scope) 1724 select_frame (fi); 1725 } 1726 1727 /* We don't free locations. They are stored in the bp_location array 1728 and update_global_location_list will eventually delete them and 1729 remove breakpoints if needed. */ 1730 b->loc = NULL; 1731 1732 if (within_current_scope && reparse) 1733 { 1734 const char *s; 1735 1736 b->exp.reset (); 1737 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string; 1738 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0); 1739 /* If the meaning of expression itself changed, the old value is 1740 no longer relevant. We don't want to report a watchpoint hit 1741 to the user when the old value and the new value may actually 1742 be completely different objects. */ 1743 b->val = NULL; 1744 b->val_valid = 0; 1745 1746 /* Note that unlike with breakpoints, the watchpoint's condition 1747 expression is stored in the breakpoint object, not in the 1748 locations (re)created below. */ 1749 if (b->cond_string != NULL) 1750 { 1751 b->cond_exp.reset (); 1752 1753 s = b->cond_string; 1754 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0); 1755 } 1756 } 1757 1758 /* If we failed to parse the expression, for example because 1759 it refers to a global variable in a not-yet-loaded shared library, 1760 don't try to insert watchpoint. We don't automatically delete 1761 such watchpoint, though, since failure to parse expression 1762 is different from out-of-scope watchpoint. */ 1763 if (!target_has_execution) 1764 { 1765 /* Without execution, memory can't change. No use to try and 1766 set watchpoint locations. The watchpoint will be reset when 1767 the target gains execution, through breakpoint_re_set. */ 1768 if (!can_use_hw_watchpoints) 1769 { 1770 if (b->ops->works_in_software_mode (b)) 1771 b->type = bp_watchpoint; 1772 else 1773 error (_("Can't set read/access watchpoint when " 1774 "hardware watchpoints are disabled.")); 1775 } 1776 } 1777 else if (within_current_scope && b->exp) 1778 { 1779 int pc = 0; 1780 std::vector<value_ref_ptr> val_chain; 1781 struct value *v, *result; 1782 struct program_space *frame_pspace; 1783 1784 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0); 1785 1786 /* Avoid setting b->val if it's already set. The meaning of 1787 b->val is 'the last value' user saw, and we should update 1788 it only if we reported that last value to user. As it 1789 happens, the code that reports it updates b->val directly. 1790 We don't keep track of the memory value for masked 1791 watchpoints. */ 1792 if (!b->val_valid && !is_masked_watchpoint (b)) 1793 { 1794 if (b->val_bitsize != 0) 1795 v = extract_bitfield_from_watchpoint_value (b, v); 1796 b->val = release_value (v); 1797 b->val_valid = 1; 1798 } 1799 1800 frame_pspace = get_frame_program_space (get_selected_frame (NULL)); 1801 1802 /* Look at each value on the value chain. */ 1803 gdb_assert (!val_chain.empty ()); 1804 for (const value_ref_ptr &iter : val_chain) 1805 { 1806 v = iter.get (); 1807 1808 /* If it's a memory location, and GDB actually needed 1809 its contents to evaluate the expression, then we 1810 must watch it. If the first value returned is 1811 still lazy, that means an error occurred reading it; 1812 watch it anyway in case it becomes readable. */ 1813 if (VALUE_LVAL (v) == lval_memory 1814 && (v == val_chain[0] || ! value_lazy (v))) 1815 { 1816 struct type *vtype = check_typedef (value_type (v)); 1817 1818 /* We only watch structs and arrays if user asked 1819 for it explicitly, never if they just happen to 1820 appear in the middle of some value chain. */ 1821 if (v == result 1822 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT 1823 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY)) 1824 { 1825 CORE_ADDR addr; 1826 enum target_hw_bp_type type; 1827 struct bp_location *loc, **tmp; 1828 int bitpos = 0, bitsize = 0; 1829 1830 if (value_bitsize (v) != 0) 1831 { 1832 /* Extract the bit parameters out from the bitfield 1833 sub-expression. */ 1834 bitpos = value_bitpos (v); 1835 bitsize = value_bitsize (v); 1836 } 1837 else if (v == result && b->val_bitsize != 0) 1838 { 1839 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield 1840 lvalue whose bit parameters are saved in the fields 1841 VAL_BITPOS and VAL_BITSIZE. */ 1842 bitpos = b->val_bitpos; 1843 bitsize = b->val_bitsize; 1844 } 1845 1846 addr = value_address (v); 1847 if (bitsize != 0) 1848 { 1849 /* Skip the bytes that don't contain the bitfield. */ 1850 addr += bitpos / 8; 1851 } 1852 1853 type = hw_write; 1854 if (b->type == bp_read_watchpoint) 1855 type = hw_read; 1856 else if (b->type == bp_access_watchpoint) 1857 type = hw_access; 1858 1859 loc = allocate_bp_location (b); 1860 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next)) 1861 ; 1862 *tmp = loc; 1863 loc->gdbarch = get_type_arch (value_type (v)); 1864 1865 loc->pspace = frame_pspace; 1866 loc->address = address_significant (loc->gdbarch, addr); 1867 1868 if (bitsize != 0) 1869 { 1870 /* Just cover the bytes that make up the bitfield. */ 1871 loc->length = ((bitpos % 8) + bitsize + 7) / 8; 1872 } 1873 else 1874 loc->length = TYPE_LENGTH (value_type (v)); 1875 1876 loc->watchpoint_type = type; 1877 } 1878 } 1879 } 1880 1881 /* Change the type of breakpoint between hardware assisted or 1882 an ordinary watchpoint depending on the hardware support 1883 and free hardware slots. REPARSE is set when the inferior 1884 is started. */ 1885 if (reparse) 1886 { 1887 int reg_cnt; 1888 enum bp_loc_type loc_type; 1889 struct bp_location *bl; 1890 1891 reg_cnt = can_use_hardware_watchpoint (val_chain); 1892 1893 if (reg_cnt) 1894 { 1895 int i, target_resources_ok, other_type_used; 1896 enum bptype type; 1897 1898 /* Use an exact watchpoint when there's only one memory region to be 1899 watched, and only one debug register is needed to watch it. */ 1900 b->exact = target_exact_watchpoints && reg_cnt == 1; 1901 1902 /* We need to determine how many resources are already 1903 used for all other hardware watchpoints plus this one 1904 to see if we still have enough resources to also fit 1905 this watchpoint in as well. */ 1906 1907 /* If this is a software watchpoint, we try to turn it 1908 to a hardware one -- count resources as if B was of 1909 hardware watchpoint type. */ 1910 type = b->type; 1911 if (type == bp_watchpoint) 1912 type = bp_hardware_watchpoint; 1913 1914 /* This watchpoint may or may not have been placed on 1915 the list yet at this point (it won't be in the list 1916 if we're trying to create it for the first time, 1917 through watch_command), so always account for it 1918 manually. */ 1919 1920 /* Count resources used by all watchpoints except B. */ 1921 i = hw_watchpoint_used_count_others (b, type, &other_type_used); 1922 1923 /* Add in the resources needed for B. */ 1924 i += hw_watchpoint_use_count (b); 1925 1926 target_resources_ok 1927 = target_can_use_hardware_watchpoint (type, i, other_type_used); 1928 if (target_resources_ok <= 0) 1929 { 1930 int sw_mode = b->ops->works_in_software_mode (b); 1931 1932 if (target_resources_ok == 0 && !sw_mode) 1933 error (_("Target does not support this type of " 1934 "hardware watchpoint.")); 1935 else if (target_resources_ok < 0 && !sw_mode) 1936 error (_("There are not enough available hardware " 1937 "resources for this watchpoint.")); 1938 1939 /* Downgrade to software watchpoint. */ 1940 b->type = bp_watchpoint; 1941 } 1942 else 1943 { 1944 /* If this was a software watchpoint, we've just 1945 found we have enough resources to turn it to a 1946 hardware watchpoint. Otherwise, this is a 1947 nop. */ 1948 b->type = type; 1949 } 1950 } 1951 else if (!b->ops->works_in_software_mode (b)) 1952 { 1953 if (!can_use_hw_watchpoints) 1954 error (_("Can't set read/access watchpoint when " 1955 "hardware watchpoints are disabled.")); 1956 else 1957 error (_("Expression cannot be implemented with " 1958 "read/access watchpoint.")); 1959 } 1960 else 1961 b->type = bp_watchpoint; 1962 1963 loc_type = (b->type == bp_watchpoint? bp_loc_other 1964 : bp_loc_hardware_watchpoint); 1965 for (bl = b->loc; bl; bl = bl->next) 1966 bl->loc_type = loc_type; 1967 } 1968 1969 /* If a software watchpoint is not watching any memory, then the 1970 above left it without any location set up. But, 1971 bpstat_stop_status requires a location to be able to report 1972 stops, so make sure there's at least a dummy one. */ 1973 if (b->type == bp_watchpoint && b->loc == NULL) 1974 software_watchpoint_add_no_memory_location (b, frame_pspace); 1975 } 1976 else if (!within_current_scope) 1977 { 1978 printf_filtered (_("\ 1979 Watchpoint %d deleted because the program has left the block\n\ 1980 in which its expression is valid.\n"), 1981 b->number); 1982 watchpoint_del_at_next_stop (b); 1983 } 1984 1985 /* Restore the selected frame. */ 1986 if (frame_saved) 1987 select_frame (frame_find_by_id (saved_frame_id)); 1988 } 1989 1990 1991 /* Returns 1 iff breakpoint location should be 1992 inserted in the inferior. We don't differentiate the type of BL's owner 1993 (breakpoint vs. tracepoint), although insert_location in tracepoint's 1994 breakpoint_ops is not defined, because in insert_bp_location, 1995 tracepoint's insert_location will not be called. */ 1996 static int 1997 should_be_inserted (struct bp_location *bl) 1998 { 1999 if (bl->owner == NULL || !breakpoint_enabled (bl->owner)) 2000 return 0; 2001 2002 if (bl->owner->disposition == disp_del_at_next_stop) 2003 return 0; 2004 2005 if (!bl->enabled || bl->shlib_disabled || bl->duplicate) 2006 return 0; 2007 2008 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup) 2009 return 0; 2010 2011 /* This is set for example, when we're attached to the parent of a 2012 vfork, and have detached from the child. The child is running 2013 free, and we expect it to do an exec or exit, at which point the 2014 OS makes the parent schedulable again (and the target reports 2015 that the vfork is done). Until the child is done with the shared 2016 memory region, do not insert breakpoints in the parent, otherwise 2017 the child could still trip on the parent's breakpoints. Since 2018 the parent is blocked anyway, it won't miss any breakpoint. */ 2019 if (bl->pspace->breakpoints_not_allowed) 2020 return 0; 2021 2022 /* Don't insert a breakpoint if we're trying to step past its 2023 location, except if the breakpoint is a single-step breakpoint, 2024 and the breakpoint's thread is the thread which is stepping past 2025 a breakpoint. */ 2026 if ((bl->loc_type == bp_loc_software_breakpoint 2027 || bl->loc_type == bp_loc_hardware_breakpoint) 2028 && stepping_past_instruction_at (bl->pspace->aspace, 2029 bl->address) 2030 /* The single-step breakpoint may be inserted at the location 2031 we're trying to step if the instruction branches to itself. 2032 However, the instruction won't be executed at all and it may 2033 break the semantics of the instruction, for example, the 2034 instruction is a conditional branch or updates some flags. 2035 We can't fix it unless GDB is able to emulate the instruction 2036 or switch to displaced stepping. */ 2037 && !(bl->owner->type == bp_single_step 2038 && thread_is_stepping_over_breakpoint (bl->owner->thread))) 2039 { 2040 if (debug_infrun) 2041 { 2042 fprintf_unfiltered (gdb_stdlog, 2043 "infrun: skipping breakpoint: " 2044 "stepping past insn at: %s\n", 2045 paddress (bl->gdbarch, bl->address)); 2046 } 2047 return 0; 2048 } 2049 2050 /* Don't insert watchpoints if we're trying to step past the 2051 instruction that triggered one. */ 2052 if ((bl->loc_type == bp_loc_hardware_watchpoint) 2053 && stepping_past_nonsteppable_watchpoint ()) 2054 { 2055 if (debug_infrun) 2056 { 2057 fprintf_unfiltered (gdb_stdlog, 2058 "infrun: stepping past non-steppable watchpoint. " 2059 "skipping watchpoint at %s:%d\n", 2060 paddress (bl->gdbarch, bl->address), 2061 bl->length); 2062 } 2063 return 0; 2064 } 2065 2066 return 1; 2067 } 2068 2069 /* Same as should_be_inserted but does the check assuming 2070 that the location is not duplicated. */ 2071 2072 static int 2073 unduplicated_should_be_inserted (struct bp_location *bl) 2074 { 2075 int result; 2076 const int save_duplicate = bl->duplicate; 2077 2078 bl->duplicate = 0; 2079 result = should_be_inserted (bl); 2080 bl->duplicate = save_duplicate; 2081 return result; 2082 } 2083 2084 /* Parses a conditional described by an expression COND into an 2085 agent expression bytecode suitable for evaluation 2086 by the bytecode interpreter. Return NULL if there was 2087 any error during parsing. */ 2088 2089 static agent_expr_up 2090 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond) 2091 { 2092 if (cond == NULL) 2093 return NULL; 2094 2095 agent_expr_up aexpr; 2096 2097 /* We don't want to stop processing, so catch any errors 2098 that may show up. */ 2099 TRY 2100 { 2101 aexpr = gen_eval_for_expr (scope, cond); 2102 } 2103 2104 CATCH (ex, RETURN_MASK_ERROR) 2105 { 2106 /* If we got here, it means the condition could not be parsed to a valid 2107 bytecode expression and thus can't be evaluated on the target's side. 2108 It's no use iterating through the conditions. */ 2109 } 2110 END_CATCH 2111 2112 /* We have a valid agent expression. */ 2113 return aexpr; 2114 } 2115 2116 /* Based on location BL, create a list of breakpoint conditions to be 2117 passed on to the target. If we have duplicated locations with different 2118 conditions, we will add such conditions to the list. The idea is that the 2119 target will evaluate the list of conditions and will only notify GDB when 2120 one of them is true. */ 2121 2122 static void 2123 build_target_condition_list (struct bp_location *bl) 2124 { 2125 struct bp_location **locp = NULL, **loc2p; 2126 int null_condition_or_parse_error = 0; 2127 int modified = bl->needs_update; 2128 struct bp_location *loc; 2129 2130 /* Release conditions left over from a previous insert. */ 2131 bl->target_info.conditions.clear (); 2132 2133 /* This is only meaningful if the target is 2134 evaluating conditions and if the user has 2135 opted for condition evaluation on the target's 2136 side. */ 2137 if (gdb_evaluates_breakpoint_condition_p () 2138 || !target_supports_evaluation_of_breakpoint_conditions ()) 2139 return; 2140 2141 /* Do a first pass to check for locations with no assigned 2142 conditions or conditions that fail to parse to a valid agent expression 2143 bytecode. If any of these happen, then it's no use to send conditions 2144 to the target since this location will always trigger and generate a 2145 response back to GDB. */ 2146 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address) 2147 { 2148 loc = (*loc2p); 2149 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num) 2150 { 2151 if (modified) 2152 { 2153 /* Re-parse the conditions since something changed. In that 2154 case we already freed the condition bytecodes (see 2155 force_breakpoint_reinsertion). We just 2156 need to parse the condition to bytecodes again. */ 2157 loc->cond_bytecode = parse_cond_to_aexpr (bl->address, 2158 loc->cond.get ()); 2159 } 2160 2161 /* If we have a NULL bytecode expression, it means something 2162 went wrong or we have a null condition expression. */ 2163 if (!loc->cond_bytecode) 2164 { 2165 null_condition_or_parse_error = 1; 2166 break; 2167 } 2168 } 2169 } 2170 2171 /* If any of these happened, it means we will have to evaluate the conditions 2172 for the location's address on gdb's side. It is no use keeping bytecodes 2173 for all the other duplicate locations, thus we free all of them here. 2174 2175 This is so we have a finer control over which locations' conditions are 2176 being evaluated by GDB or the remote stub. */ 2177 if (null_condition_or_parse_error) 2178 { 2179 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address) 2180 { 2181 loc = (*loc2p); 2182 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num) 2183 { 2184 /* Only go as far as the first NULL bytecode is 2185 located. */ 2186 if (!loc->cond_bytecode) 2187 return; 2188 2189 loc->cond_bytecode.reset (); 2190 } 2191 } 2192 } 2193 2194 /* No NULL conditions or failed bytecode generation. Build a condition list 2195 for this location's address. */ 2196 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address) 2197 { 2198 loc = (*loc2p); 2199 if (loc->cond 2200 && is_breakpoint (loc->owner) 2201 && loc->pspace->num == bl->pspace->num 2202 && loc->owner->enable_state == bp_enabled 2203 && loc->enabled) 2204 { 2205 /* Add the condition to the vector. This will be used later 2206 to send the conditions to the target. */ 2207 bl->target_info.conditions.push_back (loc->cond_bytecode.get ()); 2208 } 2209 } 2210 2211 return; 2212 } 2213 2214 /* Parses a command described by string CMD into an agent expression 2215 bytecode suitable for evaluation by the bytecode interpreter. 2216 Return NULL if there was any error during parsing. */ 2217 2218 static agent_expr_up 2219 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd) 2220 { 2221 const char *cmdrest; 2222 const char *format_start, *format_end; 2223 struct gdbarch *gdbarch = get_current_arch (); 2224 2225 if (cmd == NULL) 2226 return NULL; 2227 2228 cmdrest = cmd; 2229 2230 if (*cmdrest == ',') 2231 ++cmdrest; 2232 cmdrest = skip_spaces (cmdrest); 2233 2234 if (*cmdrest++ != '"') 2235 error (_("No format string following the location")); 2236 2237 format_start = cmdrest; 2238 2239 format_pieces fpieces (&cmdrest); 2240 2241 format_end = cmdrest; 2242 2243 if (*cmdrest++ != '"') 2244 error (_("Bad format string, non-terminated '\"'.")); 2245 2246 cmdrest = skip_spaces (cmdrest); 2247 2248 if (!(*cmdrest == ',' || *cmdrest == '\0')) 2249 error (_("Invalid argument syntax")); 2250 2251 if (*cmdrest == ',') 2252 cmdrest++; 2253 cmdrest = skip_spaces (cmdrest); 2254 2255 /* For each argument, make an expression. */ 2256 2257 std::vector<struct expression *> argvec; 2258 while (*cmdrest != '\0') 2259 { 2260 const char *cmd1; 2261 2262 cmd1 = cmdrest; 2263 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1); 2264 argvec.push_back (expr.release ()); 2265 cmdrest = cmd1; 2266 if (*cmdrest == ',') 2267 ++cmdrest; 2268 } 2269 2270 agent_expr_up aexpr; 2271 2272 /* We don't want to stop processing, so catch any errors 2273 that may show up. */ 2274 TRY 2275 { 2276 aexpr = gen_printf (scope, gdbarch, 0, 0, 2277 format_start, format_end - format_start, 2278 argvec.size (), argvec.data ()); 2279 } 2280 CATCH (ex, RETURN_MASK_ERROR) 2281 { 2282 /* If we got here, it means the command could not be parsed to a valid 2283 bytecode expression and thus can't be evaluated on the target's side. 2284 It's no use iterating through the other commands. */ 2285 } 2286 END_CATCH 2287 2288 /* We have a valid agent expression, return it. */ 2289 return aexpr; 2290 } 2291 2292 /* Based on location BL, create a list of breakpoint commands to be 2293 passed on to the target. If we have duplicated locations with 2294 different commands, we will add any such to the list. */ 2295 2296 static void 2297 build_target_command_list (struct bp_location *bl) 2298 { 2299 struct bp_location **locp = NULL, **loc2p; 2300 int null_command_or_parse_error = 0; 2301 int modified = bl->needs_update; 2302 struct bp_location *loc; 2303 2304 /* Clear commands left over from a previous insert. */ 2305 bl->target_info.tcommands.clear (); 2306 2307 if (!target_can_run_breakpoint_commands ()) 2308 return; 2309 2310 /* For now, limit to agent-style dprintf breakpoints. */ 2311 if (dprintf_style != dprintf_style_agent) 2312 return; 2313 2314 /* For now, if we have any duplicate location that isn't a dprintf, 2315 don't install the target-side commands, as that would make the 2316 breakpoint not be reported to the core, and we'd lose 2317 control. */ 2318 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address) 2319 { 2320 loc = (*loc2p); 2321 if (is_breakpoint (loc->owner) 2322 && loc->pspace->num == bl->pspace->num 2323 && loc->owner->type != bp_dprintf) 2324 return; 2325 } 2326 2327 /* Do a first pass to check for locations with no assigned 2328 conditions or conditions that fail to parse to a valid agent expression 2329 bytecode. If any of these happen, then it's no use to send conditions 2330 to the target since this location will always trigger and generate a 2331 response back to GDB. */ 2332 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address) 2333 { 2334 loc = (*loc2p); 2335 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num) 2336 { 2337 if (modified) 2338 { 2339 /* Re-parse the commands since something changed. In that 2340 case we already freed the command bytecodes (see 2341 force_breakpoint_reinsertion). We just 2342 need to parse the command to bytecodes again. */ 2343 loc->cmd_bytecode 2344 = parse_cmd_to_aexpr (bl->address, 2345 loc->owner->extra_string); 2346 } 2347 2348 /* If we have a NULL bytecode expression, it means something 2349 went wrong or we have a null command expression. */ 2350 if (!loc->cmd_bytecode) 2351 { 2352 null_command_or_parse_error = 1; 2353 break; 2354 } 2355 } 2356 } 2357 2358 /* If anything failed, then we're not doing target-side commands, 2359 and so clean up. */ 2360 if (null_command_or_parse_error) 2361 { 2362 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address) 2363 { 2364 loc = (*loc2p); 2365 if (is_breakpoint (loc->owner) 2366 && loc->pspace->num == bl->pspace->num) 2367 { 2368 /* Only go as far as the first NULL bytecode is 2369 located. */ 2370 if (loc->cmd_bytecode == NULL) 2371 return; 2372 2373 loc->cmd_bytecode.reset (); 2374 } 2375 } 2376 } 2377 2378 /* No NULL commands or failed bytecode generation. Build a command list 2379 for this location's address. */ 2380 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address) 2381 { 2382 loc = (*loc2p); 2383 if (loc->owner->extra_string 2384 && is_breakpoint (loc->owner) 2385 && loc->pspace->num == bl->pspace->num 2386 && loc->owner->enable_state == bp_enabled 2387 && loc->enabled) 2388 { 2389 /* Add the command to the vector. This will be used later 2390 to send the commands to the target. */ 2391 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ()); 2392 } 2393 } 2394 2395 bl->target_info.persist = 0; 2396 /* Maybe flag this location as persistent. */ 2397 if (bl->owner->type == bp_dprintf && disconnected_dprintf) 2398 bl->target_info.persist = 1; 2399 } 2400 2401 /* Return the kind of breakpoint on address *ADDR. Get the kind 2402 of breakpoint according to ADDR except single-step breakpoint. 2403 Get the kind of single-step breakpoint according to the current 2404 registers state. */ 2405 2406 static int 2407 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr) 2408 { 2409 if (bl->owner->type == bp_single_step) 2410 { 2411 struct thread_info *thr = find_thread_global_id (bl->owner->thread); 2412 struct regcache *regcache; 2413 2414 regcache = get_thread_regcache (thr); 2415 2416 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch, 2417 regcache, addr); 2418 } 2419 else 2420 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr); 2421 } 2422 2423 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint 2424 location. Any error messages are printed to TMP_ERROR_STREAM; and 2425 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems. 2426 Returns 0 for success, 1 if the bp_location type is not supported or 2427 -1 for failure. 2428 2429 NOTE drow/2003-09-09: This routine could be broken down to an 2430 object-style method for each breakpoint or catchpoint type. */ 2431 static int 2432 insert_bp_location (struct bp_location *bl, 2433 struct ui_file *tmp_error_stream, 2434 int *disabled_breaks, 2435 int *hw_breakpoint_error, 2436 int *hw_bp_error_explained_already) 2437 { 2438 gdb_exception bp_excpt = exception_none; 2439 2440 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update)) 2441 return 0; 2442 2443 /* Note we don't initialize bl->target_info, as that wipes out 2444 the breakpoint location's shadow_contents if the breakpoint 2445 is still inserted at that location. This in turn breaks 2446 target_read_memory which depends on these buffers when 2447 a memory read is requested at the breakpoint location: 2448 Once the target_info has been wiped, we fail to see that 2449 we have a breakpoint inserted at that address and thus 2450 read the breakpoint instead of returning the data saved in 2451 the breakpoint location's shadow contents. */ 2452 bl->target_info.reqstd_address = bl->address; 2453 bl->target_info.placed_address_space = bl->pspace->aspace; 2454 bl->target_info.length = bl->length; 2455 2456 /* When working with target-side conditions, we must pass all the conditions 2457 for the same breakpoint address down to the target since GDB will not 2458 insert those locations. With a list of breakpoint conditions, the target 2459 can decide when to stop and notify GDB. */ 2460 2461 if (is_breakpoint (bl->owner)) 2462 { 2463 build_target_condition_list (bl); 2464 build_target_command_list (bl); 2465 /* Reset the modification marker. */ 2466 bl->needs_update = 0; 2467 } 2468 2469 if (bl->loc_type == bp_loc_software_breakpoint 2470 || bl->loc_type == bp_loc_hardware_breakpoint) 2471 { 2472 if (bl->owner->type != bp_hardware_breakpoint) 2473 { 2474 /* If the explicitly specified breakpoint type 2475 is not hardware breakpoint, check the memory map to see 2476 if the breakpoint address is in read only memory or not. 2477 2478 Two important cases are: 2479 - location type is not hardware breakpoint, memory 2480 is readonly. We change the type of the location to 2481 hardware breakpoint. 2482 - location type is hardware breakpoint, memory is 2483 read-write. This means we've previously made the 2484 location hardware one, but then the memory map changed, 2485 so we undo. 2486 2487 When breakpoints are removed, remove_breakpoints will use 2488 location types we've just set here, the only possible 2489 problem is that memory map has changed during running 2490 program, but it's not going to work anyway with current 2491 gdb. */ 2492 struct mem_region *mr 2493 = lookup_mem_region (bl->target_info.reqstd_address); 2494 2495 if (mr) 2496 { 2497 if (automatic_hardware_breakpoints) 2498 { 2499 enum bp_loc_type new_type; 2500 2501 if (mr->attrib.mode != MEM_RW) 2502 new_type = bp_loc_hardware_breakpoint; 2503 else 2504 new_type = bp_loc_software_breakpoint; 2505 2506 if (new_type != bl->loc_type) 2507 { 2508 static int said = 0; 2509 2510 bl->loc_type = new_type; 2511 if (!said) 2512 { 2513 fprintf_filtered (gdb_stdout, 2514 _("Note: automatically using " 2515 "hardware breakpoints for " 2516 "read-only addresses.\n")); 2517 said = 1; 2518 } 2519 } 2520 } 2521 else if (bl->loc_type == bp_loc_software_breakpoint 2522 && mr->attrib.mode != MEM_RW) 2523 { 2524 fprintf_unfiltered (tmp_error_stream, 2525 _("Cannot insert breakpoint %d.\n" 2526 "Cannot set software breakpoint " 2527 "at read-only address %s\n"), 2528 bl->owner->number, 2529 paddress (bl->gdbarch, bl->address)); 2530 return 1; 2531 } 2532 } 2533 } 2534 2535 /* First check to see if we have to handle an overlay. */ 2536 if (overlay_debugging == ovly_off 2537 || bl->section == NULL 2538 || !(section_is_overlay (bl->section))) 2539 { 2540 /* No overlay handling: just set the breakpoint. */ 2541 TRY 2542 { 2543 int val; 2544 2545 val = bl->owner->ops->insert_location (bl); 2546 if (val) 2547 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR}; 2548 } 2549 CATCH (e, RETURN_MASK_ALL) 2550 { 2551 bp_excpt = e; 2552 } 2553 END_CATCH 2554 } 2555 else 2556 { 2557 /* This breakpoint is in an overlay section. 2558 Shall we set a breakpoint at the LMA? */ 2559 if (!overlay_events_enabled) 2560 { 2561 /* Yes -- overlay event support is not active, 2562 so we must try to set a breakpoint at the LMA. 2563 This will not work for a hardware breakpoint. */ 2564 if (bl->loc_type == bp_loc_hardware_breakpoint) 2565 warning (_("hardware breakpoint %d not supported in overlay!"), 2566 bl->owner->number); 2567 else 2568 { 2569 CORE_ADDR addr = overlay_unmapped_address (bl->address, 2570 bl->section); 2571 /* Set a software (trap) breakpoint at the LMA. */ 2572 bl->overlay_target_info = bl->target_info; 2573 bl->overlay_target_info.reqstd_address = addr; 2574 2575 /* No overlay handling: just set the breakpoint. */ 2576 TRY 2577 { 2578 int val; 2579 2580 bl->overlay_target_info.kind 2581 = breakpoint_kind (bl, &addr); 2582 bl->overlay_target_info.placed_address = addr; 2583 val = target_insert_breakpoint (bl->gdbarch, 2584 &bl->overlay_target_info); 2585 if (val) 2586 bp_excpt 2587 = gdb_exception {RETURN_ERROR, GENERIC_ERROR}; 2588 } 2589 CATCH (e, RETURN_MASK_ALL) 2590 { 2591 bp_excpt = e; 2592 } 2593 END_CATCH 2594 2595 if (bp_excpt.reason != 0) 2596 fprintf_unfiltered (tmp_error_stream, 2597 "Overlay breakpoint %d " 2598 "failed: in ROM?\n", 2599 bl->owner->number); 2600 } 2601 } 2602 /* Shall we set a breakpoint at the VMA? */ 2603 if (section_is_mapped (bl->section)) 2604 { 2605 /* Yes. This overlay section is mapped into memory. */ 2606 TRY 2607 { 2608 int val; 2609 2610 val = bl->owner->ops->insert_location (bl); 2611 if (val) 2612 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR}; 2613 } 2614 CATCH (e, RETURN_MASK_ALL) 2615 { 2616 bp_excpt = e; 2617 } 2618 END_CATCH 2619 } 2620 else 2621 { 2622 /* No. This breakpoint will not be inserted. 2623 No error, but do not mark the bp as 'inserted'. */ 2624 return 0; 2625 } 2626 } 2627 2628 if (bp_excpt.reason != 0) 2629 { 2630 /* Can't set the breakpoint. */ 2631 2632 /* In some cases, we might not be able to insert a 2633 breakpoint in a shared library that has already been 2634 removed, but we have not yet processed the shlib unload 2635 event. Unfortunately, some targets that implement 2636 breakpoint insertion themselves can't tell why the 2637 breakpoint insertion failed (e.g., the remote target 2638 doesn't define error codes), so we must treat generic 2639 errors as memory errors. */ 2640 if (bp_excpt.reason == RETURN_ERROR 2641 && (bp_excpt.error == GENERIC_ERROR 2642 || bp_excpt.error == MEMORY_ERROR) 2643 && bl->loc_type == bp_loc_software_breakpoint 2644 && (solib_name_from_address (bl->pspace, bl->address) 2645 || shared_objfile_contains_address_p (bl->pspace, 2646 bl->address))) 2647 { 2648 /* See also: disable_breakpoints_in_shlibs. */ 2649 bl->shlib_disabled = 1; 2650 gdb::observers::breakpoint_modified.notify (bl->owner); 2651 if (!*disabled_breaks) 2652 { 2653 fprintf_unfiltered (tmp_error_stream, 2654 "Cannot insert breakpoint %d.\n", 2655 bl->owner->number); 2656 fprintf_unfiltered (tmp_error_stream, 2657 "Temporarily disabling shared " 2658 "library breakpoints:\n"); 2659 } 2660 *disabled_breaks = 1; 2661 fprintf_unfiltered (tmp_error_stream, 2662 "breakpoint #%d\n", bl->owner->number); 2663 return 0; 2664 } 2665 else 2666 { 2667 if (bl->loc_type == bp_loc_hardware_breakpoint) 2668 { 2669 *hw_breakpoint_error = 1; 2670 *hw_bp_error_explained_already = bp_excpt.message != NULL; 2671 fprintf_unfiltered (tmp_error_stream, 2672 "Cannot insert hardware breakpoint %d%s", 2673 bl->owner->number, 2674 bp_excpt.message ? ":" : ".\n"); 2675 if (bp_excpt.message != NULL) 2676 fprintf_unfiltered (tmp_error_stream, "%s.\n", 2677 bp_excpt.message); 2678 } 2679 else 2680 { 2681 if (bp_excpt.message == NULL) 2682 { 2683 std::string message 2684 = memory_error_message (TARGET_XFER_E_IO, 2685 bl->gdbarch, bl->address); 2686 2687 fprintf_unfiltered (tmp_error_stream, 2688 "Cannot insert breakpoint %d.\n" 2689 "%s\n", 2690 bl->owner->number, message.c_str ()); 2691 } 2692 else 2693 { 2694 fprintf_unfiltered (tmp_error_stream, 2695 "Cannot insert breakpoint %d: %s\n", 2696 bl->owner->number, 2697 bp_excpt.message); 2698 } 2699 } 2700 return 1; 2701 2702 } 2703 } 2704 else 2705 bl->inserted = 1; 2706 2707 return 0; 2708 } 2709 2710 else if (bl->loc_type == bp_loc_hardware_watchpoint 2711 /* NOTE drow/2003-09-08: This state only exists for removing 2712 watchpoints. It's not clear that it's necessary... */ 2713 && bl->owner->disposition != disp_del_at_next_stop) 2714 { 2715 int val; 2716 2717 gdb_assert (bl->owner->ops != NULL 2718 && bl->owner->ops->insert_location != NULL); 2719 2720 val = bl->owner->ops->insert_location (bl); 2721 2722 /* If trying to set a read-watchpoint, and it turns out it's not 2723 supported, try emulating one with an access watchpoint. */ 2724 if (val == 1 && bl->watchpoint_type == hw_read) 2725 { 2726 struct bp_location *loc, **loc_temp; 2727 2728 /* But don't try to insert it, if there's already another 2729 hw_access location that would be considered a duplicate 2730 of this one. */ 2731 ALL_BP_LOCATIONS (loc, loc_temp) 2732 if (loc != bl 2733 && loc->watchpoint_type == hw_access 2734 && watchpoint_locations_match (bl, loc)) 2735 { 2736 bl->duplicate = 1; 2737 bl->inserted = 1; 2738 bl->target_info = loc->target_info; 2739 bl->watchpoint_type = hw_access; 2740 val = 0; 2741 break; 2742 } 2743 2744 if (val == 1) 2745 { 2746 bl->watchpoint_type = hw_access; 2747 val = bl->owner->ops->insert_location (bl); 2748 2749 if (val) 2750 /* Back to the original value. */ 2751 bl->watchpoint_type = hw_read; 2752 } 2753 } 2754 2755 bl->inserted = (val == 0); 2756 } 2757 2758 else if (bl->owner->type == bp_catchpoint) 2759 { 2760 int val; 2761 2762 gdb_assert (bl->owner->ops != NULL 2763 && bl->owner->ops->insert_location != NULL); 2764 2765 val = bl->owner->ops->insert_location (bl); 2766 if (val) 2767 { 2768 bl->owner->enable_state = bp_disabled; 2769 2770 if (val == 1) 2771 warning (_("\ 2772 Error inserting catchpoint %d: Your system does not support this type\n\ 2773 of catchpoint."), bl->owner->number); 2774 else 2775 warning (_("Error inserting catchpoint %d."), bl->owner->number); 2776 } 2777 2778 bl->inserted = (val == 0); 2779 2780 /* We've already printed an error message if there was a problem 2781 inserting this catchpoint, and we've disabled the catchpoint, 2782 so just return success. */ 2783 return 0; 2784 } 2785 2786 return 0; 2787 } 2788 2789 /* This function is called when program space PSPACE is about to be 2790 deleted. It takes care of updating breakpoints to not reference 2791 PSPACE anymore. */ 2792 2793 void 2794 breakpoint_program_space_exit (struct program_space *pspace) 2795 { 2796 struct breakpoint *b, *b_temp; 2797 struct bp_location *loc, **loc_temp; 2798 2799 /* Remove any breakpoint that was set through this program space. */ 2800 ALL_BREAKPOINTS_SAFE (b, b_temp) 2801 { 2802 if (b->pspace == pspace) 2803 delete_breakpoint (b); 2804 } 2805 2806 /* Breakpoints set through other program spaces could have locations 2807 bound to PSPACE as well. Remove those. */ 2808 ALL_BP_LOCATIONS (loc, loc_temp) 2809 { 2810 struct bp_location *tmp; 2811 2812 if (loc->pspace == pspace) 2813 { 2814 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */ 2815 if (loc->owner->loc == loc) 2816 loc->owner->loc = loc->next; 2817 else 2818 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next) 2819 if (tmp->next == loc) 2820 { 2821 tmp->next = loc->next; 2822 break; 2823 } 2824 } 2825 } 2826 2827 /* Now update the global location list to permanently delete the 2828 removed locations above. */ 2829 update_global_location_list (UGLL_DONT_INSERT); 2830 } 2831 2832 /* Make sure all breakpoints are inserted in inferior. 2833 Throws exception on any error. 2834 A breakpoint that is already inserted won't be inserted 2835 again, so calling this function twice is safe. */ 2836 void 2837 insert_breakpoints (void) 2838 { 2839 struct breakpoint *bpt; 2840 2841 ALL_BREAKPOINTS (bpt) 2842 if (is_hardware_watchpoint (bpt)) 2843 { 2844 struct watchpoint *w = (struct watchpoint *) bpt; 2845 2846 update_watchpoint (w, 0 /* don't reparse. */); 2847 } 2848 2849 /* Updating watchpoints creates new locations, so update the global 2850 location list. Explicitly tell ugll to insert locations and 2851 ignore breakpoints_always_inserted_mode. */ 2852 update_global_location_list (UGLL_INSERT); 2853 } 2854 2855 /* Invoke CALLBACK for each of bp_location. */ 2856 2857 void 2858 iterate_over_bp_locations (walk_bp_location_callback callback) 2859 { 2860 struct bp_location *loc, **loc_tmp; 2861 2862 ALL_BP_LOCATIONS (loc, loc_tmp) 2863 { 2864 callback (loc, NULL); 2865 } 2866 } 2867 2868 /* This is used when we need to synch breakpoint conditions between GDB and the 2869 target. It is the case with deleting and disabling of breakpoints when using 2870 always-inserted mode. */ 2871 2872 static void 2873 update_inserted_breakpoint_locations (void) 2874 { 2875 struct bp_location *bl, **blp_tmp; 2876 int error_flag = 0; 2877 int val = 0; 2878 int disabled_breaks = 0; 2879 int hw_breakpoint_error = 0; 2880 int hw_bp_details_reported = 0; 2881 2882 string_file tmp_error_stream; 2883 2884 /* Explicitly mark the warning -- this will only be printed if 2885 there was an error. */ 2886 tmp_error_stream.puts ("Warning:\n"); 2887 2888 scoped_restore_current_pspace_and_thread restore_pspace_thread; 2889 2890 ALL_BP_LOCATIONS (bl, blp_tmp) 2891 { 2892 /* We only want to update software breakpoints and hardware 2893 breakpoints. */ 2894 if (!is_breakpoint (bl->owner)) 2895 continue; 2896 2897 /* We only want to update locations that are already inserted 2898 and need updating. This is to avoid unwanted insertion during 2899 deletion of breakpoints. */ 2900 if (!bl->inserted || !bl->needs_update) 2901 continue; 2902 2903 switch_to_program_space_and_thread (bl->pspace); 2904 2905 /* For targets that support global breakpoints, there's no need 2906 to select an inferior to insert breakpoint to. In fact, even 2907 if we aren't attached to any process yet, we should still 2908 insert breakpoints. */ 2909 if (!gdbarch_has_global_breakpoints (target_gdbarch ()) 2910 && inferior_ptid == null_ptid) 2911 continue; 2912 2913 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks, 2914 &hw_breakpoint_error, &hw_bp_details_reported); 2915 if (val) 2916 error_flag = val; 2917 } 2918 2919 if (error_flag) 2920 { 2921 target_terminal::ours_for_output (); 2922 error_stream (tmp_error_stream); 2923 } 2924 } 2925 2926 /* Used when starting or continuing the program. */ 2927 2928 static void 2929 insert_breakpoint_locations (void) 2930 { 2931 struct breakpoint *bpt; 2932 struct bp_location *bl, **blp_tmp; 2933 int error_flag = 0; 2934 int val = 0; 2935 int disabled_breaks = 0; 2936 int hw_breakpoint_error = 0; 2937 int hw_bp_error_explained_already = 0; 2938 2939 string_file tmp_error_stream; 2940 2941 /* Explicitly mark the warning -- this will only be printed if 2942 there was an error. */ 2943 tmp_error_stream.puts ("Warning:\n"); 2944 2945 scoped_restore_current_pspace_and_thread restore_pspace_thread; 2946 2947 ALL_BP_LOCATIONS (bl, blp_tmp) 2948 { 2949 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update)) 2950 continue; 2951 2952 /* There is no point inserting thread-specific breakpoints if 2953 the thread no longer exists. ALL_BP_LOCATIONS bp_location 2954 has BL->OWNER always non-NULL. */ 2955 if (bl->owner->thread != -1 2956 && !valid_global_thread_id (bl->owner->thread)) 2957 continue; 2958 2959 switch_to_program_space_and_thread (bl->pspace); 2960 2961 /* For targets that support global breakpoints, there's no need 2962 to select an inferior to insert breakpoint to. In fact, even 2963 if we aren't attached to any process yet, we should still 2964 insert breakpoints. */ 2965 if (!gdbarch_has_global_breakpoints (target_gdbarch ()) 2966 && inferior_ptid == null_ptid) 2967 continue; 2968 2969 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks, 2970 &hw_breakpoint_error, &hw_bp_error_explained_already); 2971 if (val) 2972 error_flag = val; 2973 } 2974 2975 /* If we failed to insert all locations of a watchpoint, remove 2976 them, as half-inserted watchpoint is of limited use. */ 2977 ALL_BREAKPOINTS (bpt) 2978 { 2979 int some_failed = 0; 2980 struct bp_location *loc; 2981 2982 if (!is_hardware_watchpoint (bpt)) 2983 continue; 2984 2985 if (!breakpoint_enabled (bpt)) 2986 continue; 2987 2988 if (bpt->disposition == disp_del_at_next_stop) 2989 continue; 2990 2991 for (loc = bpt->loc; loc; loc = loc->next) 2992 if (!loc->inserted && should_be_inserted (loc)) 2993 { 2994 some_failed = 1; 2995 break; 2996 } 2997 if (some_failed) 2998 { 2999 for (loc = bpt->loc; loc; loc = loc->next) 3000 if (loc->inserted) 3001 remove_breakpoint (loc); 3002 3003 hw_breakpoint_error = 1; 3004 tmp_error_stream.printf ("Could not insert " 3005 "hardware watchpoint %d.\n", 3006 bpt->number); 3007 error_flag = -1; 3008 } 3009 } 3010 3011 if (error_flag) 3012 { 3013 /* If a hardware breakpoint or watchpoint was inserted, add a 3014 message about possibly exhausted resources. */ 3015 if (hw_breakpoint_error && !hw_bp_error_explained_already) 3016 { 3017 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\ 3018 You may have requested too many hardware breakpoints/watchpoints.\n"); 3019 } 3020 target_terminal::ours_for_output (); 3021 error_stream (tmp_error_stream); 3022 } 3023 } 3024 3025 /* Used when the program stops. 3026 Returns zero if successful, or non-zero if there was a problem 3027 removing a breakpoint location. */ 3028 3029 int 3030 remove_breakpoints (void) 3031 { 3032 struct bp_location *bl, **blp_tmp; 3033 int val = 0; 3034 3035 ALL_BP_LOCATIONS (bl, blp_tmp) 3036 { 3037 if (bl->inserted && !is_tracepoint (bl->owner)) 3038 val |= remove_breakpoint (bl); 3039 } 3040 return val; 3041 } 3042 3043 /* When a thread exits, remove breakpoints that are related to 3044 that thread. */ 3045 3046 static void 3047 remove_threaded_breakpoints (struct thread_info *tp, int silent) 3048 { 3049 struct breakpoint *b, *b_tmp; 3050 3051 ALL_BREAKPOINTS_SAFE (b, b_tmp) 3052 { 3053 if (b->thread == tp->global_num && user_breakpoint_p (b)) 3054 { 3055 b->disposition = disp_del_at_next_stop; 3056 3057 printf_filtered (_("\ 3058 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"), 3059 b->number, print_thread_id (tp)); 3060 3061 /* Hide it from the user. */ 3062 b->number = 0; 3063 } 3064 } 3065 } 3066 3067 /* Remove breakpoints of inferior INF. */ 3068 3069 int 3070 remove_breakpoints_inf (inferior *inf) 3071 { 3072 struct bp_location *bl, **blp_tmp; 3073 int val; 3074 3075 ALL_BP_LOCATIONS (bl, blp_tmp) 3076 { 3077 if (bl->pspace != inf->pspace) 3078 continue; 3079 3080 if (bl->inserted && !bl->target_info.persist) 3081 { 3082 val = remove_breakpoint (bl); 3083 if (val != 0) 3084 return val; 3085 } 3086 } 3087 return 0; 3088 } 3089 3090 static int internal_breakpoint_number = -1; 3091 3092 /* Set the breakpoint number of B, depending on the value of INTERNAL. 3093 If INTERNAL is non-zero, the breakpoint number will be populated 3094 from internal_breakpoint_number and that variable decremented. 3095 Otherwise the breakpoint number will be populated from 3096 breakpoint_count and that value incremented. Internal breakpoints 3097 do not set the internal var bpnum. */ 3098 static void 3099 set_breakpoint_number (int internal, struct breakpoint *b) 3100 { 3101 if (internal) 3102 b->number = internal_breakpoint_number--; 3103 else 3104 { 3105 set_breakpoint_count (breakpoint_count + 1); 3106 b->number = breakpoint_count; 3107 } 3108 } 3109 3110 static struct breakpoint * 3111 create_internal_breakpoint (struct gdbarch *gdbarch, 3112 CORE_ADDR address, enum bptype type, 3113 const struct breakpoint_ops *ops) 3114 { 3115 symtab_and_line sal; 3116 sal.pc = address; 3117 sal.section = find_pc_overlay (sal.pc); 3118 sal.pspace = current_program_space; 3119 3120 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops); 3121 b->number = internal_breakpoint_number--; 3122 b->disposition = disp_donttouch; 3123 3124 return b; 3125 } 3126 3127 static const char *const longjmp_names[] = 3128 { 3129 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp" 3130 }; 3131 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names) 3132 3133 /* Per-objfile data private to breakpoint.c. */ 3134 struct breakpoint_objfile_data 3135 { 3136 /* Minimal symbol for "_ovly_debug_event" (if any). */ 3137 struct bound_minimal_symbol overlay_msym {}; 3138 3139 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */ 3140 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {}; 3141 3142 /* True if we have looked for longjmp probes. */ 3143 int longjmp_searched = 0; 3144 3145 /* SystemTap probe points for longjmp (if any). These are non-owning 3146 references. */ 3147 std::vector<probe *> longjmp_probes; 3148 3149 /* Minimal symbol for "std::terminate()" (if any). */ 3150 struct bound_minimal_symbol terminate_msym {}; 3151 3152 /* Minimal symbol for "_Unwind_DebugHook" (if any). */ 3153 struct bound_minimal_symbol exception_msym {}; 3154 3155 /* True if we have looked for exception probes. */ 3156 int exception_searched = 0; 3157 3158 /* SystemTap probe points for unwinding (if any). These are non-owning 3159 references. */ 3160 std::vector<probe *> exception_probes; 3161 }; 3162 3163 static const struct objfile_data *breakpoint_objfile_key; 3164 3165 /* Minimal symbol not found sentinel. */ 3166 static struct minimal_symbol msym_not_found; 3167 3168 /* Returns TRUE if MSYM point to the "not found" sentinel. */ 3169 3170 static int 3171 msym_not_found_p (const struct minimal_symbol *msym) 3172 { 3173 return msym == &msym_not_found; 3174 } 3175 3176 /* Return per-objfile data needed by breakpoint.c. 3177 Allocate the data if necessary. */ 3178 3179 static struct breakpoint_objfile_data * 3180 get_breakpoint_objfile_data (struct objfile *objfile) 3181 { 3182 struct breakpoint_objfile_data *bp_objfile_data; 3183 3184 bp_objfile_data = ((struct breakpoint_objfile_data *) 3185 objfile_data (objfile, breakpoint_objfile_key)); 3186 if (bp_objfile_data == NULL) 3187 { 3188 bp_objfile_data = new breakpoint_objfile_data (); 3189 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data); 3190 } 3191 return bp_objfile_data; 3192 } 3193 3194 static void 3195 free_breakpoint_objfile_data (struct objfile *obj, void *data) 3196 { 3197 struct breakpoint_objfile_data *bp_objfile_data 3198 = (struct breakpoint_objfile_data *) data; 3199 3200 delete bp_objfile_data; 3201 } 3202 3203 static void 3204 create_overlay_event_breakpoint (void) 3205 { 3206 const char *const func_name = "_ovly_debug_event"; 3207 3208 for (objfile *objfile : current_program_space->objfiles ()) 3209 { 3210 struct breakpoint *b; 3211 struct breakpoint_objfile_data *bp_objfile_data; 3212 CORE_ADDR addr; 3213 struct explicit_location explicit_loc; 3214 3215 bp_objfile_data = get_breakpoint_objfile_data (objfile); 3216 3217 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym)) 3218 continue; 3219 3220 if (bp_objfile_data->overlay_msym.minsym == NULL) 3221 { 3222 struct bound_minimal_symbol m; 3223 3224 m = lookup_minimal_symbol_text (func_name, objfile); 3225 if (m.minsym == NULL) 3226 { 3227 /* Avoid future lookups in this objfile. */ 3228 bp_objfile_data->overlay_msym.minsym = &msym_not_found; 3229 continue; 3230 } 3231 bp_objfile_data->overlay_msym = m; 3232 } 3233 3234 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym); 3235 b = create_internal_breakpoint (get_objfile_arch (objfile), addr, 3236 bp_overlay_event, 3237 &internal_breakpoint_ops); 3238 initialize_explicit_location (&explicit_loc); 3239 explicit_loc.function_name = ASTRDUP (func_name); 3240 b->location = new_explicit_location (&explicit_loc); 3241 3242 if (overlay_debugging == ovly_auto) 3243 { 3244 b->enable_state = bp_enabled; 3245 overlay_events_enabled = 1; 3246 } 3247 else 3248 { 3249 b->enable_state = bp_disabled; 3250 overlay_events_enabled = 0; 3251 } 3252 } 3253 } 3254 3255 static void 3256 create_longjmp_master_breakpoint (void) 3257 { 3258 struct program_space *pspace; 3259 3260 scoped_restore_current_program_space restore_pspace; 3261 3262 ALL_PSPACES (pspace) 3263 { 3264 set_current_program_space (pspace); 3265 3266 for (objfile *objfile : current_program_space->objfiles ()) 3267 { 3268 int i; 3269 struct gdbarch *gdbarch; 3270 struct breakpoint_objfile_data *bp_objfile_data; 3271 3272 gdbarch = get_objfile_arch (objfile); 3273 3274 bp_objfile_data = get_breakpoint_objfile_data (objfile); 3275 3276 if (!bp_objfile_data->longjmp_searched) 3277 { 3278 std::vector<probe *> ret 3279 = find_probes_in_objfile (objfile, "libc", "longjmp"); 3280 3281 if (!ret.empty ()) 3282 { 3283 /* We are only interested in checking one element. */ 3284 probe *p = ret[0]; 3285 3286 if (!p->can_evaluate_arguments ()) 3287 { 3288 /* We cannot use the probe interface here, because it does 3289 not know how to evaluate arguments. */ 3290 ret.clear (); 3291 } 3292 } 3293 bp_objfile_data->longjmp_probes = ret; 3294 bp_objfile_data->longjmp_searched = 1; 3295 } 3296 3297 if (!bp_objfile_data->longjmp_probes.empty ()) 3298 { 3299 for (probe *p : bp_objfile_data->longjmp_probes) 3300 { 3301 struct breakpoint *b; 3302 3303 b = create_internal_breakpoint (gdbarch, 3304 p->get_relocated_address (objfile), 3305 bp_longjmp_master, 3306 &internal_breakpoint_ops); 3307 b->location = new_probe_location ("-probe-stap libc:longjmp"); 3308 b->enable_state = bp_disabled; 3309 } 3310 3311 continue; 3312 } 3313 3314 if (!gdbarch_get_longjmp_target_p (gdbarch)) 3315 continue; 3316 3317 for (i = 0; i < NUM_LONGJMP_NAMES; i++) 3318 { 3319 struct breakpoint *b; 3320 const char *func_name; 3321 CORE_ADDR addr; 3322 struct explicit_location explicit_loc; 3323 3324 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym)) 3325 continue; 3326 3327 func_name = longjmp_names[i]; 3328 if (bp_objfile_data->longjmp_msym[i].minsym == NULL) 3329 { 3330 struct bound_minimal_symbol m; 3331 3332 m = lookup_minimal_symbol_text (func_name, objfile); 3333 if (m.minsym == NULL) 3334 { 3335 /* Prevent future lookups in this objfile. */ 3336 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found; 3337 continue; 3338 } 3339 bp_objfile_data->longjmp_msym[i] = m; 3340 } 3341 3342 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]); 3343 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master, 3344 &internal_breakpoint_ops); 3345 initialize_explicit_location (&explicit_loc); 3346 explicit_loc.function_name = ASTRDUP (func_name); 3347 b->location = new_explicit_location (&explicit_loc); 3348 b->enable_state = bp_disabled; 3349 } 3350 } 3351 } 3352 } 3353 3354 /* Create a master std::terminate breakpoint. */ 3355 static void 3356 create_std_terminate_master_breakpoint (void) 3357 { 3358 struct program_space *pspace; 3359 const char *const func_name = "std::terminate()"; 3360 3361 scoped_restore_current_program_space restore_pspace; 3362 3363 ALL_PSPACES (pspace) 3364 { 3365 CORE_ADDR addr; 3366 3367 set_current_program_space (pspace); 3368 3369 for (objfile *objfile : current_program_space->objfiles ()) 3370 { 3371 struct breakpoint *b; 3372 struct breakpoint_objfile_data *bp_objfile_data; 3373 struct explicit_location explicit_loc; 3374 3375 bp_objfile_data = get_breakpoint_objfile_data (objfile); 3376 3377 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym)) 3378 continue; 3379 3380 if (bp_objfile_data->terminate_msym.minsym == NULL) 3381 { 3382 struct bound_minimal_symbol m; 3383 3384 m = lookup_minimal_symbol (func_name, NULL, objfile); 3385 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text 3386 && MSYMBOL_TYPE (m.minsym) != mst_file_text)) 3387 { 3388 /* Prevent future lookups in this objfile. */ 3389 bp_objfile_data->terminate_msym.minsym = &msym_not_found; 3390 continue; 3391 } 3392 bp_objfile_data->terminate_msym = m; 3393 } 3394 3395 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym); 3396 b = create_internal_breakpoint (get_objfile_arch (objfile), addr, 3397 bp_std_terminate_master, 3398 &internal_breakpoint_ops); 3399 initialize_explicit_location (&explicit_loc); 3400 explicit_loc.function_name = ASTRDUP (func_name); 3401 b->location = new_explicit_location (&explicit_loc); 3402 b->enable_state = bp_disabled; 3403 } 3404 } 3405 } 3406 3407 /* Install a master breakpoint on the unwinder's debug hook. */ 3408 3409 static void 3410 create_exception_master_breakpoint (void) 3411 { 3412 const char *const func_name = "_Unwind_DebugHook"; 3413 3414 for (objfile *objfile : current_program_space->objfiles ()) 3415 { 3416 struct breakpoint *b; 3417 struct gdbarch *gdbarch; 3418 struct breakpoint_objfile_data *bp_objfile_data; 3419 CORE_ADDR addr; 3420 struct explicit_location explicit_loc; 3421 3422 bp_objfile_data = get_breakpoint_objfile_data (objfile); 3423 3424 /* We prefer the SystemTap probe point if it exists. */ 3425 if (!bp_objfile_data->exception_searched) 3426 { 3427 std::vector<probe *> ret 3428 = find_probes_in_objfile (objfile, "libgcc", "unwind"); 3429 3430 if (!ret.empty ()) 3431 { 3432 /* We are only interested in checking one element. */ 3433 probe *p = ret[0]; 3434 3435 if (!p->can_evaluate_arguments ()) 3436 { 3437 /* We cannot use the probe interface here, because it does 3438 not know how to evaluate arguments. */ 3439 ret.clear (); 3440 } 3441 } 3442 bp_objfile_data->exception_probes = ret; 3443 bp_objfile_data->exception_searched = 1; 3444 } 3445 3446 if (!bp_objfile_data->exception_probes.empty ()) 3447 { 3448 gdbarch = get_objfile_arch (objfile); 3449 3450 for (probe *p : bp_objfile_data->exception_probes) 3451 { 3452 b = create_internal_breakpoint (gdbarch, 3453 p->get_relocated_address (objfile), 3454 bp_exception_master, 3455 &internal_breakpoint_ops); 3456 b->location = new_probe_location ("-probe-stap libgcc:unwind"); 3457 b->enable_state = bp_disabled; 3458 } 3459 3460 continue; 3461 } 3462 3463 /* Otherwise, try the hook function. */ 3464 3465 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym)) 3466 continue; 3467 3468 gdbarch = get_objfile_arch (objfile); 3469 3470 if (bp_objfile_data->exception_msym.minsym == NULL) 3471 { 3472 struct bound_minimal_symbol debug_hook; 3473 3474 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile); 3475 if (debug_hook.minsym == NULL) 3476 { 3477 bp_objfile_data->exception_msym.minsym = &msym_not_found; 3478 continue; 3479 } 3480 3481 bp_objfile_data->exception_msym = debug_hook; 3482 } 3483 3484 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym); 3485 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, 3486 current_top_target ()); 3487 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master, 3488 &internal_breakpoint_ops); 3489 initialize_explicit_location (&explicit_loc); 3490 explicit_loc.function_name = ASTRDUP (func_name); 3491 b->location = new_explicit_location (&explicit_loc); 3492 b->enable_state = bp_disabled; 3493 } 3494 } 3495 3496 /* Does B have a location spec? */ 3497 3498 static int 3499 breakpoint_event_location_empty_p (const struct breakpoint *b) 3500 { 3501 return b->location != NULL && event_location_empty_p (b->location.get ()); 3502 } 3503 3504 void 3505 update_breakpoints_after_exec (void) 3506 { 3507 struct breakpoint *b, *b_tmp; 3508 struct bp_location *bploc, **bplocp_tmp; 3509 3510 /* We're about to delete breakpoints from GDB's lists. If the 3511 INSERTED flag is true, GDB will try to lift the breakpoints by 3512 writing the breakpoints' "shadow contents" back into memory. The 3513 "shadow contents" are NOT valid after an exec, so GDB should not 3514 do that. Instead, the target is responsible from marking 3515 breakpoints out as soon as it detects an exec. We don't do that 3516 here instead, because there may be other attempts to delete 3517 breakpoints after detecting an exec and before reaching here. */ 3518 ALL_BP_LOCATIONS (bploc, bplocp_tmp) 3519 if (bploc->pspace == current_program_space) 3520 gdb_assert (!bploc->inserted); 3521 3522 ALL_BREAKPOINTS_SAFE (b, b_tmp) 3523 { 3524 if (b->pspace != current_program_space) 3525 continue; 3526 3527 /* Solib breakpoints must be explicitly reset after an exec(). */ 3528 if (b->type == bp_shlib_event) 3529 { 3530 delete_breakpoint (b); 3531 continue; 3532 } 3533 3534 /* JIT breakpoints must be explicitly reset after an exec(). */ 3535 if (b->type == bp_jit_event) 3536 { 3537 delete_breakpoint (b); 3538 continue; 3539 } 3540 3541 /* Thread event breakpoints must be set anew after an exec(), 3542 as must overlay event and longjmp master breakpoints. */ 3543 if (b->type == bp_thread_event || b->type == bp_overlay_event 3544 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master 3545 || b->type == bp_exception_master) 3546 { 3547 delete_breakpoint (b); 3548 continue; 3549 } 3550 3551 /* Step-resume breakpoints are meaningless after an exec(). */ 3552 if (b->type == bp_step_resume || b->type == bp_hp_step_resume) 3553 { 3554 delete_breakpoint (b); 3555 continue; 3556 } 3557 3558 /* Just like single-step breakpoints. */ 3559 if (b->type == bp_single_step) 3560 { 3561 delete_breakpoint (b); 3562 continue; 3563 } 3564 3565 /* Longjmp and longjmp-resume breakpoints are also meaningless 3566 after an exec. */ 3567 if (b->type == bp_longjmp || b->type == bp_longjmp_resume 3568 || b->type == bp_longjmp_call_dummy 3569 || b->type == bp_exception || b->type == bp_exception_resume) 3570 { 3571 delete_breakpoint (b); 3572 continue; 3573 } 3574 3575 if (b->type == bp_catchpoint) 3576 { 3577 /* For now, none of the bp_catchpoint breakpoints need to 3578 do anything at this point. In the future, if some of 3579 the catchpoints need to something, we will need to add 3580 a new method, and call this method from here. */ 3581 continue; 3582 } 3583 3584 /* bp_finish is a special case. The only way we ought to be able 3585 to see one of these when an exec() has happened, is if the user 3586 caught a vfork, and then said "finish". Ordinarily a finish just 3587 carries them to the call-site of the current callee, by setting 3588 a temporary bp there and resuming. But in this case, the finish 3589 will carry them entirely through the vfork & exec. 3590 3591 We don't want to allow a bp_finish to remain inserted now. But 3592 we can't safely delete it, 'cause finish_command has a handle to 3593 the bp on a bpstat, and will later want to delete it. There's a 3594 chance (and I've seen it happen) that if we delete the bp_finish 3595 here, that its storage will get reused by the time finish_command 3596 gets 'round to deleting the "use to be a bp_finish" breakpoint. 3597 We really must allow finish_command to delete a bp_finish. 3598 3599 In the absence of a general solution for the "how do we know 3600 it's safe to delete something others may have handles to?" 3601 problem, what we'll do here is just uninsert the bp_finish, and 3602 let finish_command delete it. 3603 3604 (We know the bp_finish is "doomed" in the sense that it's 3605 momentary, and will be deleted as soon as finish_command sees 3606 the inferior stopped. So it doesn't matter that the bp's 3607 address is probably bogus in the new a.out, unlike e.g., the 3608 solib breakpoints.) */ 3609 3610 if (b->type == bp_finish) 3611 { 3612 continue; 3613 } 3614 3615 /* Without a symbolic address, we have little hope of the 3616 pre-exec() address meaning the same thing in the post-exec() 3617 a.out. */ 3618 if (breakpoint_event_location_empty_p (b)) 3619 { 3620 delete_breakpoint (b); 3621 continue; 3622 } 3623 } 3624 } 3625 3626 int 3627 detach_breakpoints (ptid_t ptid) 3628 { 3629 struct bp_location *bl, **blp_tmp; 3630 int val = 0; 3631 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); 3632 struct inferior *inf = current_inferior (); 3633 3634 if (ptid.pid () == inferior_ptid.pid ()) 3635 error (_("Cannot detach breakpoints of inferior_ptid")); 3636 3637 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */ 3638 inferior_ptid = ptid; 3639 ALL_BP_LOCATIONS (bl, blp_tmp) 3640 { 3641 if (bl->pspace != inf->pspace) 3642 continue; 3643 3644 /* This function must physically remove breakpoints locations 3645 from the specified ptid, without modifying the breakpoint 3646 package's state. Locations of type bp_loc_other are only 3647 maintained at GDB side. So, there is no need to remove 3648 these bp_loc_other locations. Moreover, removing these 3649 would modify the breakpoint package's state. */ 3650 if (bl->loc_type == bp_loc_other) 3651 continue; 3652 3653 if (bl->inserted) 3654 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT); 3655 } 3656 3657 return val; 3658 } 3659 3660 /* Remove the breakpoint location BL from the current address space. 3661 Note that this is used to detach breakpoints from a child fork. 3662 When we get here, the child isn't in the inferior list, and neither 3663 do we have objects to represent its address space --- we should 3664 *not* look at bl->pspace->aspace here. */ 3665 3666 static int 3667 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason) 3668 { 3669 int val; 3670 3671 /* BL is never in moribund_locations by our callers. */ 3672 gdb_assert (bl->owner != NULL); 3673 3674 /* The type of none suggests that owner is actually deleted. 3675 This should not ever happen. */ 3676 gdb_assert (bl->owner->type != bp_none); 3677 3678 if (bl->loc_type == bp_loc_software_breakpoint 3679 || bl->loc_type == bp_loc_hardware_breakpoint) 3680 { 3681 /* "Normal" instruction breakpoint: either the standard 3682 trap-instruction bp (bp_breakpoint), or a 3683 bp_hardware_breakpoint. */ 3684 3685 /* First check to see if we have to handle an overlay. */ 3686 if (overlay_debugging == ovly_off 3687 || bl->section == NULL 3688 || !(section_is_overlay (bl->section))) 3689 { 3690 /* No overlay handling: just remove the breakpoint. */ 3691 3692 /* If we're trying to uninsert a memory breakpoint that we 3693 know is set in a dynamic object that is marked 3694 shlib_disabled, then either the dynamic object was 3695 removed with "remove-symbol-file" or with 3696 "nosharedlibrary". In the former case, we don't know 3697 whether another dynamic object might have loaded over the 3698 breakpoint's address -- the user might well let us know 3699 about it next with add-symbol-file (the whole point of 3700 add-symbol-file is letting the user manually maintain a 3701 list of dynamically loaded objects). If we have the 3702 breakpoint's shadow memory, that is, this is a software 3703 breakpoint managed by GDB, check whether the breakpoint 3704 is still inserted in memory, to avoid overwriting wrong 3705 code with stale saved shadow contents. Note that HW 3706 breakpoints don't have shadow memory, as they're 3707 implemented using a mechanism that is not dependent on 3708 being able to modify the target's memory, and as such 3709 they should always be removed. */ 3710 if (bl->shlib_disabled 3711 && bl->target_info.shadow_len != 0 3712 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info)) 3713 val = 0; 3714 else 3715 val = bl->owner->ops->remove_location (bl, reason); 3716 } 3717 else 3718 { 3719 /* This breakpoint is in an overlay section. 3720 Did we set a breakpoint at the LMA? */ 3721 if (!overlay_events_enabled) 3722 { 3723 /* Yes -- overlay event support is not active, so we 3724 should have set a breakpoint at the LMA. Remove it. 3725 */ 3726 /* Ignore any failures: if the LMA is in ROM, we will 3727 have already warned when we failed to insert it. */ 3728 if (bl->loc_type == bp_loc_hardware_breakpoint) 3729 target_remove_hw_breakpoint (bl->gdbarch, 3730 &bl->overlay_target_info); 3731 else 3732 target_remove_breakpoint (bl->gdbarch, 3733 &bl->overlay_target_info, 3734 reason); 3735 } 3736 /* Did we set a breakpoint at the VMA? 3737 If so, we will have marked the breakpoint 'inserted'. */ 3738 if (bl->inserted) 3739 { 3740 /* Yes -- remove it. Previously we did not bother to 3741 remove the breakpoint if the section had been 3742 unmapped, but let's not rely on that being safe. We 3743 don't know what the overlay manager might do. */ 3744 3745 /* However, we should remove *software* breakpoints only 3746 if the section is still mapped, or else we overwrite 3747 wrong code with the saved shadow contents. */ 3748 if (bl->loc_type == bp_loc_hardware_breakpoint 3749 || section_is_mapped (bl->section)) 3750 val = bl->owner->ops->remove_location (bl, reason); 3751 else 3752 val = 0; 3753 } 3754 else 3755 { 3756 /* No -- not inserted, so no need to remove. No error. */ 3757 val = 0; 3758 } 3759 } 3760 3761 /* In some cases, we might not be able to remove a breakpoint in 3762 a shared library that has already been removed, but we have 3763 not yet processed the shlib unload event. Similarly for an 3764 unloaded add-symbol-file object - the user might not yet have 3765 had the chance to remove-symbol-file it. shlib_disabled will 3766 be set if the library/object has already been removed, but 3767 the breakpoint hasn't been uninserted yet, e.g., after 3768 "nosharedlibrary" or "remove-symbol-file" with breakpoints 3769 always-inserted mode. */ 3770 if (val 3771 && (bl->loc_type == bp_loc_software_breakpoint 3772 && (bl->shlib_disabled 3773 || solib_name_from_address (bl->pspace, bl->address) 3774 || shared_objfile_contains_address_p (bl->pspace, 3775 bl->address)))) 3776 val = 0; 3777 3778 if (val) 3779 return val; 3780 bl->inserted = (reason == DETACH_BREAKPOINT); 3781 } 3782 else if (bl->loc_type == bp_loc_hardware_watchpoint) 3783 { 3784 gdb_assert (bl->owner->ops != NULL 3785 && bl->owner->ops->remove_location != NULL); 3786 3787 bl->inserted = (reason == DETACH_BREAKPOINT); 3788 bl->owner->ops->remove_location (bl, reason); 3789 3790 /* Failure to remove any of the hardware watchpoints comes here. */ 3791 if (reason == REMOVE_BREAKPOINT && bl->inserted) 3792 warning (_("Could not remove hardware watchpoint %d."), 3793 bl->owner->number); 3794 } 3795 else if (bl->owner->type == bp_catchpoint 3796 && breakpoint_enabled (bl->owner) 3797 && !bl->duplicate) 3798 { 3799 gdb_assert (bl->owner->ops != NULL 3800 && bl->owner->ops->remove_location != NULL); 3801 3802 val = bl->owner->ops->remove_location (bl, reason); 3803 if (val) 3804 return val; 3805 3806 bl->inserted = (reason == DETACH_BREAKPOINT); 3807 } 3808 3809 return 0; 3810 } 3811 3812 static int 3813 remove_breakpoint (struct bp_location *bl) 3814 { 3815 /* BL is never in moribund_locations by our callers. */ 3816 gdb_assert (bl->owner != NULL); 3817 3818 /* The type of none suggests that owner is actually deleted. 3819 This should not ever happen. */ 3820 gdb_assert (bl->owner->type != bp_none); 3821 3822 scoped_restore_current_pspace_and_thread restore_pspace_thread; 3823 3824 switch_to_program_space_and_thread (bl->pspace); 3825 3826 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT); 3827 } 3828 3829 /* Clear the "inserted" flag in all breakpoints. */ 3830 3831 void 3832 mark_breakpoints_out (void) 3833 { 3834 struct bp_location *bl, **blp_tmp; 3835 3836 ALL_BP_LOCATIONS (bl, blp_tmp) 3837 if (bl->pspace == current_program_space) 3838 bl->inserted = 0; 3839 } 3840 3841 /* Clear the "inserted" flag in all breakpoints and delete any 3842 breakpoints which should go away between runs of the program. 3843 3844 Plus other such housekeeping that has to be done for breakpoints 3845 between runs. 3846 3847 Note: this function gets called at the end of a run (by 3848 generic_mourn_inferior) and when a run begins (by 3849 init_wait_for_inferior). */ 3850 3851 3852 3853 void 3854 breakpoint_init_inferior (enum inf_context context) 3855 { 3856 struct breakpoint *b, *b_tmp; 3857 struct program_space *pspace = current_program_space; 3858 3859 /* If breakpoint locations are shared across processes, then there's 3860 nothing to do. */ 3861 if (gdbarch_has_global_breakpoints (target_gdbarch ())) 3862 return; 3863 3864 mark_breakpoints_out (); 3865 3866 ALL_BREAKPOINTS_SAFE (b, b_tmp) 3867 { 3868 if (b->loc && b->loc->pspace != pspace) 3869 continue; 3870 3871 switch (b->type) 3872 { 3873 case bp_call_dummy: 3874 case bp_longjmp_call_dummy: 3875 3876 /* If the call dummy breakpoint is at the entry point it will 3877 cause problems when the inferior is rerun, so we better get 3878 rid of it. */ 3879 3880 case bp_watchpoint_scope: 3881 3882 /* Also get rid of scope breakpoints. */ 3883 3884 case bp_shlib_event: 3885 3886 /* Also remove solib event breakpoints. Their addresses may 3887 have changed since the last time we ran the program. 3888 Actually we may now be debugging against different target; 3889 and so the solib backend that installed this breakpoint may 3890 not be used in by the target. E.g., 3891 3892 (gdb) file prog-linux 3893 (gdb) run # native linux target 3894 ... 3895 (gdb) kill 3896 (gdb) file prog-win.exe 3897 (gdb) tar rem :9999 # remote Windows gdbserver. 3898 */ 3899 3900 case bp_step_resume: 3901 3902 /* Also remove step-resume breakpoints. */ 3903 3904 case bp_single_step: 3905 3906 /* Also remove single-step breakpoints. */ 3907 3908 delete_breakpoint (b); 3909 break; 3910 3911 case bp_watchpoint: 3912 case bp_hardware_watchpoint: 3913 case bp_read_watchpoint: 3914 case bp_access_watchpoint: 3915 { 3916 struct watchpoint *w = (struct watchpoint *) b; 3917 3918 /* Likewise for watchpoints on local expressions. */ 3919 if (w->exp_valid_block != NULL) 3920 delete_breakpoint (b); 3921 else 3922 { 3923 /* Get rid of existing locations, which are no longer 3924 valid. New ones will be created in 3925 update_watchpoint, when the inferior is restarted. 3926 The next update_global_location_list call will 3927 garbage collect them. */ 3928 b->loc = NULL; 3929 3930 if (context == inf_starting) 3931 { 3932 /* Reset val field to force reread of starting value in 3933 insert_breakpoints. */ 3934 w->val.reset (nullptr); 3935 w->val_valid = 0; 3936 } 3937 } 3938 } 3939 break; 3940 default: 3941 break; 3942 } 3943 } 3944 3945 /* Get rid of the moribund locations. */ 3946 for (bp_location *bl : moribund_locations) 3947 decref_bp_location (&bl); 3948 moribund_locations.clear (); 3949 } 3950 3951 /* These functions concern about actual breakpoints inserted in the 3952 target --- to e.g. check if we need to do decr_pc adjustment or if 3953 we need to hop over the bkpt --- so we check for address space 3954 match, not program space. */ 3955 3956 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint 3957 exists at PC. It returns ordinary_breakpoint_here if it's an 3958 ordinary breakpoint, or permanent_breakpoint_here if it's a 3959 permanent breakpoint. 3960 - When continuing from a location with an ordinary breakpoint, we 3961 actually single step once before calling insert_breakpoints. 3962 - When continuing from a location with a permanent breakpoint, we 3963 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by 3964 the target, to advance the PC past the breakpoint. */ 3965 3966 enum breakpoint_here 3967 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc) 3968 { 3969 struct bp_location *bl, **blp_tmp; 3970 int any_breakpoint_here = 0; 3971 3972 ALL_BP_LOCATIONS (bl, blp_tmp) 3973 { 3974 if (bl->loc_type != bp_loc_software_breakpoint 3975 && bl->loc_type != bp_loc_hardware_breakpoint) 3976 continue; 3977 3978 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */ 3979 if ((breakpoint_enabled (bl->owner) 3980 || bl->permanent) 3981 && breakpoint_location_address_match (bl, aspace, pc)) 3982 { 3983 if (overlay_debugging 3984 && section_is_overlay (bl->section) 3985 && !section_is_mapped (bl->section)) 3986 continue; /* unmapped overlay -- can't be a match */ 3987 else if (bl->permanent) 3988 return permanent_breakpoint_here; 3989 else 3990 any_breakpoint_here = 1; 3991 } 3992 } 3993 3994 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here; 3995 } 3996 3997 /* See breakpoint.h. */ 3998 3999 int 4000 breakpoint_in_range_p (const address_space *aspace, 4001 CORE_ADDR addr, ULONGEST len) 4002 { 4003 struct bp_location *bl, **blp_tmp; 4004 4005 ALL_BP_LOCATIONS (bl, blp_tmp) 4006 { 4007 if (bl->loc_type != bp_loc_software_breakpoint 4008 && bl->loc_type != bp_loc_hardware_breakpoint) 4009 continue; 4010 4011 if ((breakpoint_enabled (bl->owner) 4012 || bl->permanent) 4013 && breakpoint_location_address_range_overlap (bl, aspace, 4014 addr, len)) 4015 { 4016 if (overlay_debugging 4017 && section_is_overlay (bl->section) 4018 && !section_is_mapped (bl->section)) 4019 { 4020 /* Unmapped overlay -- can't be a match. */ 4021 continue; 4022 } 4023 4024 return 1; 4025 } 4026 } 4027 4028 return 0; 4029 } 4030 4031 /* Return true if there's a moribund breakpoint at PC. */ 4032 4033 int 4034 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc) 4035 { 4036 for (bp_location *loc : moribund_locations) 4037 if (breakpoint_location_address_match (loc, aspace, pc)) 4038 return 1; 4039 4040 return 0; 4041 } 4042 4043 /* Returns non-zero iff BL is inserted at PC, in address space 4044 ASPACE. */ 4045 4046 static int 4047 bp_location_inserted_here_p (struct bp_location *bl, 4048 const address_space *aspace, CORE_ADDR pc) 4049 { 4050 if (bl->inserted 4051 && breakpoint_address_match (bl->pspace->aspace, bl->address, 4052 aspace, pc)) 4053 { 4054 if (overlay_debugging 4055 && section_is_overlay (bl->section) 4056 && !section_is_mapped (bl->section)) 4057 return 0; /* unmapped overlay -- can't be a match */ 4058 else 4059 return 1; 4060 } 4061 return 0; 4062 } 4063 4064 /* Returns non-zero iff there's a breakpoint inserted at PC. */ 4065 4066 int 4067 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc) 4068 { 4069 struct bp_location **blp, **blp_tmp = NULL; 4070 4071 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc) 4072 { 4073 struct bp_location *bl = *blp; 4074 4075 if (bl->loc_type != bp_loc_software_breakpoint 4076 && bl->loc_type != bp_loc_hardware_breakpoint) 4077 continue; 4078 4079 if (bp_location_inserted_here_p (bl, aspace, pc)) 4080 return 1; 4081 } 4082 return 0; 4083 } 4084 4085 /* This function returns non-zero iff there is a software breakpoint 4086 inserted at PC. */ 4087 4088 int 4089 software_breakpoint_inserted_here_p (const address_space *aspace, 4090 CORE_ADDR pc) 4091 { 4092 struct bp_location **blp, **blp_tmp = NULL; 4093 4094 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc) 4095 { 4096 struct bp_location *bl = *blp; 4097 4098 if (bl->loc_type != bp_loc_software_breakpoint) 4099 continue; 4100 4101 if (bp_location_inserted_here_p (bl, aspace, pc)) 4102 return 1; 4103 } 4104 4105 return 0; 4106 } 4107 4108 /* See breakpoint.h. */ 4109 4110 int 4111 hardware_breakpoint_inserted_here_p (const address_space *aspace, 4112 CORE_ADDR pc) 4113 { 4114 struct bp_location **blp, **blp_tmp = NULL; 4115 4116 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc) 4117 { 4118 struct bp_location *bl = *blp; 4119 4120 if (bl->loc_type != bp_loc_hardware_breakpoint) 4121 continue; 4122 4123 if (bp_location_inserted_here_p (bl, aspace, pc)) 4124 return 1; 4125 } 4126 4127 return 0; 4128 } 4129 4130 int 4131 hardware_watchpoint_inserted_in_range (const address_space *aspace, 4132 CORE_ADDR addr, ULONGEST len) 4133 { 4134 struct breakpoint *bpt; 4135 4136 ALL_BREAKPOINTS (bpt) 4137 { 4138 struct bp_location *loc; 4139 4140 if (bpt->type != bp_hardware_watchpoint 4141 && bpt->type != bp_access_watchpoint) 4142 continue; 4143 4144 if (!breakpoint_enabled (bpt)) 4145 continue; 4146 4147 for (loc = bpt->loc; loc; loc = loc->next) 4148 if (loc->pspace->aspace == aspace && loc->inserted) 4149 { 4150 CORE_ADDR l, h; 4151 4152 /* Check for intersection. */ 4153 l = std::max<CORE_ADDR> (loc->address, addr); 4154 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len); 4155 if (l < h) 4156 return 1; 4157 } 4158 } 4159 return 0; 4160 } 4161 4162 4163 /* bpstat stuff. External routines' interfaces are documented 4164 in breakpoint.h. */ 4165 4166 int 4167 is_catchpoint (struct breakpoint *ep) 4168 { 4169 return (ep->type == bp_catchpoint); 4170 } 4171 4172 /* Frees any storage that is part of a bpstat. Does not walk the 4173 'next' chain. */ 4174 4175 bpstats::~bpstats () 4176 { 4177 if (bp_location_at != NULL) 4178 decref_bp_location (&bp_location_at); 4179 } 4180 4181 /* Clear a bpstat so that it says we are not at any breakpoint. 4182 Also free any storage that is part of a bpstat. */ 4183 4184 void 4185 bpstat_clear (bpstat *bsp) 4186 { 4187 bpstat p; 4188 bpstat q; 4189 4190 if (bsp == 0) 4191 return; 4192 p = *bsp; 4193 while (p != NULL) 4194 { 4195 q = p->next; 4196 delete p; 4197 p = q; 4198 } 4199 *bsp = NULL; 4200 } 4201 4202 bpstats::bpstats (const bpstats &other) 4203 : next (NULL), 4204 bp_location_at (other.bp_location_at), 4205 breakpoint_at (other.breakpoint_at), 4206 commands (other.commands), 4207 print (other.print), 4208 stop (other.stop), 4209 print_it (other.print_it) 4210 { 4211 if (other.old_val != NULL) 4212 old_val = release_value (value_copy (other.old_val.get ())); 4213 incref_bp_location (bp_location_at); 4214 } 4215 4216 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that 4217 is part of the bpstat is copied as well. */ 4218 4219 bpstat 4220 bpstat_copy (bpstat bs) 4221 { 4222 bpstat p = NULL; 4223 bpstat tmp; 4224 bpstat retval = NULL; 4225 4226 if (bs == NULL) 4227 return bs; 4228 4229 for (; bs != NULL; bs = bs->next) 4230 { 4231 tmp = new bpstats (*bs); 4232 4233 if (p == NULL) 4234 /* This is the first thing in the chain. */ 4235 retval = tmp; 4236 else 4237 p->next = tmp; 4238 p = tmp; 4239 } 4240 p->next = NULL; 4241 return retval; 4242 } 4243 4244 /* Find the bpstat associated with this breakpoint. */ 4245 4246 bpstat 4247 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint) 4248 { 4249 if (bsp == NULL) 4250 return NULL; 4251 4252 for (; bsp != NULL; bsp = bsp->next) 4253 { 4254 if (bsp->breakpoint_at == breakpoint) 4255 return bsp; 4256 } 4257 return NULL; 4258 } 4259 4260 /* See breakpoint.h. */ 4261 4262 int 4263 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig) 4264 { 4265 for (; bsp != NULL; bsp = bsp->next) 4266 { 4267 if (bsp->breakpoint_at == NULL) 4268 { 4269 /* A moribund location can never explain a signal other than 4270 GDB_SIGNAL_TRAP. */ 4271 if (sig == GDB_SIGNAL_TRAP) 4272 return 1; 4273 } 4274 else 4275 { 4276 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at, 4277 sig)) 4278 return 1; 4279 } 4280 } 4281 4282 return 0; 4283 } 4284 4285 /* Put in *NUM the breakpoint number of the first breakpoint we are 4286 stopped at. *BSP upon return is a bpstat which points to the 4287 remaining breakpoints stopped at (but which is not guaranteed to be 4288 good for anything but further calls to bpstat_num). 4289 4290 Return 0 if passed a bpstat which does not indicate any breakpoints. 4291 Return -1 if stopped at a breakpoint that has been deleted since 4292 we set it. 4293 Return 1 otherwise. */ 4294 4295 int 4296 bpstat_num (bpstat *bsp, int *num) 4297 { 4298 struct breakpoint *b; 4299 4300 if ((*bsp) == NULL) 4301 return 0; /* No more breakpoint values */ 4302 4303 /* We assume we'll never have several bpstats that correspond to a 4304 single breakpoint -- otherwise, this function might return the 4305 same number more than once and this will look ugly. */ 4306 b = (*bsp)->breakpoint_at; 4307 *bsp = (*bsp)->next; 4308 if (b == NULL) 4309 return -1; /* breakpoint that's been deleted since */ 4310 4311 *num = b->number; /* We have its number */ 4312 return 1; 4313 } 4314 4315 /* See breakpoint.h. */ 4316 4317 void 4318 bpstat_clear_actions (void) 4319 { 4320 bpstat bs; 4321 4322 if (inferior_ptid == null_ptid) 4323 return; 4324 4325 thread_info *tp = inferior_thread (); 4326 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next) 4327 { 4328 bs->commands = NULL; 4329 bs->old_val.reset (nullptr); 4330 } 4331 } 4332 4333 /* Called when a command is about to proceed the inferior. */ 4334 4335 static void 4336 breakpoint_about_to_proceed (void) 4337 { 4338 if (inferior_ptid != null_ptid) 4339 { 4340 struct thread_info *tp = inferior_thread (); 4341 4342 /* Allow inferior function calls in breakpoint commands to not 4343 interrupt the command list. When the call finishes 4344 successfully, the inferior will be standing at the same 4345 breakpoint as if nothing happened. */ 4346 if (tp->control.in_infcall) 4347 return; 4348 } 4349 4350 breakpoint_proceeded = 1; 4351 } 4352 4353 /* Return non-zero iff CMD as the first line of a command sequence is `silent' 4354 or its equivalent. */ 4355 4356 static int 4357 command_line_is_silent (struct command_line *cmd) 4358 { 4359 return cmd && (strcmp ("silent", cmd->line) == 0); 4360 } 4361 4362 /* Execute all the commands associated with all the breakpoints at 4363 this location. Any of these commands could cause the process to 4364 proceed beyond this point, etc. We look out for such changes by 4365 checking the global "breakpoint_proceeded" after each command. 4366 4367 Returns true if a breakpoint command resumed the inferior. In that 4368 case, it is the caller's responsibility to recall it again with the 4369 bpstat of the current thread. */ 4370 4371 static int 4372 bpstat_do_actions_1 (bpstat *bsp) 4373 { 4374 bpstat bs; 4375 int again = 0; 4376 4377 /* Avoid endless recursion if a `source' command is contained 4378 in bs->commands. */ 4379 if (executing_breakpoint_commands) 4380 return 0; 4381 4382 scoped_restore save_executing 4383 = make_scoped_restore (&executing_breakpoint_commands, 1); 4384 4385 scoped_restore preventer = prevent_dont_repeat (); 4386 4387 /* This pointer will iterate over the list of bpstat's. */ 4388 bs = *bsp; 4389 4390 breakpoint_proceeded = 0; 4391 for (; bs != NULL; bs = bs->next) 4392 { 4393 struct command_line *cmd = NULL; 4394 4395 /* Take ownership of the BSP's command tree, if it has one. 4396 4397 The command tree could legitimately contain commands like 4398 'step' and 'next', which call clear_proceed_status, which 4399 frees stop_bpstat's command tree. To make sure this doesn't 4400 free the tree we're executing out from under us, we need to 4401 take ownership of the tree ourselves. Since a given bpstat's 4402 commands are only executed once, we don't need to copy it; we 4403 can clear the pointer in the bpstat, and make sure we free 4404 the tree when we're done. */ 4405 counted_command_line ccmd = bs->commands; 4406 bs->commands = NULL; 4407 if (ccmd != NULL) 4408 cmd = ccmd.get (); 4409 if (command_line_is_silent (cmd)) 4410 { 4411 /* The action has been already done by bpstat_stop_status. */ 4412 cmd = cmd->next; 4413 } 4414 4415 while (cmd != NULL) 4416 { 4417 execute_control_command (cmd); 4418 4419 if (breakpoint_proceeded) 4420 break; 4421 else 4422 cmd = cmd->next; 4423 } 4424 4425 if (breakpoint_proceeded) 4426 { 4427 if (current_ui->async) 4428 /* If we are in async mode, then the target might be still 4429 running, not stopped at any breakpoint, so nothing for 4430 us to do here -- just return to the event loop. */ 4431 ; 4432 else 4433 /* In sync mode, when execute_control_command returns 4434 we're already standing on the next breakpoint. 4435 Breakpoint commands for that stop were not run, since 4436 execute_command does not run breakpoint commands -- 4437 only command_line_handler does, but that one is not 4438 involved in execution of breakpoint commands. So, we 4439 can now execute breakpoint commands. It should be 4440 noted that making execute_command do bpstat actions is 4441 not an option -- in this case we'll have recursive 4442 invocation of bpstat for each breakpoint with a 4443 command, and can easily blow up GDB stack. Instead, we 4444 return true, which will trigger the caller to recall us 4445 with the new stop_bpstat. */ 4446 again = 1; 4447 break; 4448 } 4449 } 4450 return again; 4451 } 4452 4453 /* Helper for bpstat_do_actions. Get the current thread, if there's 4454 one, is alive and has execution. Return NULL otherwise. */ 4455 4456 static thread_info * 4457 get_bpstat_thread () 4458 { 4459 if (inferior_ptid == null_ptid || !target_has_execution) 4460 return NULL; 4461 4462 thread_info *tp = inferior_thread (); 4463 if (tp->state == THREAD_EXITED || tp->executing) 4464 return NULL; 4465 return tp; 4466 } 4467 4468 void 4469 bpstat_do_actions (void) 4470 { 4471 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions); 4472 thread_info *tp; 4473 4474 /* Do any commands attached to breakpoint we are stopped at. */ 4475 while ((tp = get_bpstat_thread ()) != NULL) 4476 { 4477 /* Since in sync mode, bpstat_do_actions may resume the 4478 inferior, and only return when it is stopped at the next 4479 breakpoint, we keep doing breakpoint actions until it returns 4480 false to indicate the inferior was not resumed. */ 4481 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat)) 4482 break; 4483 } 4484 4485 cleanup_if_error.release (); 4486 } 4487 4488 /* Print out the (old or new) value associated with a watchpoint. */ 4489 4490 static void 4491 watchpoint_value_print (struct value *val, struct ui_file *stream) 4492 { 4493 if (val == NULL) 4494 fprintf_unfiltered (stream, _("<unreadable>")); 4495 else 4496 { 4497 struct value_print_options opts; 4498 get_user_print_options (&opts); 4499 value_print (val, stream, &opts); 4500 } 4501 } 4502 4503 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if 4504 debugging multiple threads. */ 4505 4506 void 4507 maybe_print_thread_hit_breakpoint (struct ui_out *uiout) 4508 { 4509 if (uiout->is_mi_like_p ()) 4510 return; 4511 4512 uiout->text ("\n"); 4513 4514 if (show_thread_that_caused_stop ()) 4515 { 4516 const char *name; 4517 struct thread_info *thr = inferior_thread (); 4518 4519 uiout->text ("Thread "); 4520 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr)); 4521 4522 name = thr->name != NULL ? thr->name : target_thread_name (thr); 4523 if (name != NULL) 4524 { 4525 uiout->text (" \""); 4526 uiout->field_fmt ("name", "%s", name); 4527 uiout->text ("\""); 4528 } 4529 4530 uiout->text (" hit "); 4531 } 4532 } 4533 4534 /* Generic routine for printing messages indicating why we 4535 stopped. The behavior of this function depends on the value 4536 'print_it' in the bpstat structure. Under some circumstances we 4537 may decide not to print anything here and delegate the task to 4538 normal_stop(). */ 4539 4540 static enum print_stop_action 4541 print_bp_stop_message (bpstat bs) 4542 { 4543 switch (bs->print_it) 4544 { 4545 case print_it_noop: 4546 /* Nothing should be printed for this bpstat entry. */ 4547 return PRINT_UNKNOWN; 4548 break; 4549 4550 case print_it_done: 4551 /* We still want to print the frame, but we already printed the 4552 relevant messages. */ 4553 return PRINT_SRC_AND_LOC; 4554 break; 4555 4556 case print_it_normal: 4557 { 4558 struct breakpoint *b = bs->breakpoint_at; 4559 4560 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint 4561 which has since been deleted. */ 4562 if (b == NULL) 4563 return PRINT_UNKNOWN; 4564 4565 /* Normal case. Call the breakpoint's print_it method. */ 4566 return b->ops->print_it (bs); 4567 } 4568 break; 4569 4570 default: 4571 internal_error (__FILE__, __LINE__, 4572 _("print_bp_stop_message: unrecognized enum value")); 4573 break; 4574 } 4575 } 4576 4577 /* A helper function that prints a shared library stopped event. */ 4578 4579 static void 4580 print_solib_event (int is_catchpoint) 4581 { 4582 bool any_deleted = !current_program_space->deleted_solibs.empty (); 4583 bool any_added = !current_program_space->added_solibs.empty (); 4584 4585 if (!is_catchpoint) 4586 { 4587 if (any_added || any_deleted) 4588 current_uiout->text (_("Stopped due to shared library event:\n")); 4589 else 4590 current_uiout->text (_("Stopped due to shared library event (no " 4591 "libraries added or removed)\n")); 4592 } 4593 4594 if (current_uiout->is_mi_like_p ()) 4595 current_uiout->field_string ("reason", 4596 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT)); 4597 4598 if (any_deleted) 4599 { 4600 current_uiout->text (_(" Inferior unloaded ")); 4601 ui_out_emit_list list_emitter (current_uiout, "removed"); 4602 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++) 4603 { 4604 const std::string &name = current_program_space->deleted_solibs[ix]; 4605 4606 if (ix > 0) 4607 current_uiout->text (" "); 4608 current_uiout->field_string ("library", name); 4609 current_uiout->text ("\n"); 4610 } 4611 } 4612 4613 if (any_added) 4614 { 4615 current_uiout->text (_(" Inferior loaded ")); 4616 ui_out_emit_list list_emitter (current_uiout, "added"); 4617 bool first = true; 4618 for (so_list *iter : current_program_space->added_solibs) 4619 { 4620 if (!first) 4621 current_uiout->text (" "); 4622 first = false; 4623 current_uiout->field_string ("library", iter->so_name); 4624 current_uiout->text ("\n"); 4625 } 4626 } 4627 } 4628 4629 /* Print a message indicating what happened. This is called from 4630 normal_stop(). The input to this routine is the head of the bpstat 4631 list - a list of the eventpoints that caused this stop. KIND is 4632 the target_waitkind for the stopping event. This 4633 routine calls the generic print routine for printing a message 4634 about reasons for stopping. This will print (for example) the 4635 "Breakpoint n," part of the output. The return value of this 4636 routine is one of: 4637 4638 PRINT_UNKNOWN: Means we printed nothing. 4639 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent 4640 code to print the location. An example is 4641 "Breakpoint 1, " which should be followed by 4642 the location. 4643 PRINT_SRC_ONLY: Means we printed something, but there is no need 4644 to also print the location part of the message. 4645 An example is the catch/throw messages, which 4646 don't require a location appended to the end. 4647 PRINT_NOTHING: We have done some printing and we don't need any 4648 further info to be printed. */ 4649 4650 enum print_stop_action 4651 bpstat_print (bpstat bs, int kind) 4652 { 4653 enum print_stop_action val; 4654 4655 /* Maybe another breakpoint in the chain caused us to stop. 4656 (Currently all watchpoints go on the bpstat whether hit or not. 4657 That probably could (should) be changed, provided care is taken 4658 with respect to bpstat_explains_signal). */ 4659 for (; bs; bs = bs->next) 4660 { 4661 val = print_bp_stop_message (bs); 4662 if (val == PRINT_SRC_ONLY 4663 || val == PRINT_SRC_AND_LOC 4664 || val == PRINT_NOTHING) 4665 return val; 4666 } 4667 4668 /* If we had hit a shared library event breakpoint, 4669 print_bp_stop_message would print out this message. If we hit an 4670 OS-level shared library event, do the same thing. */ 4671 if (kind == TARGET_WAITKIND_LOADED) 4672 { 4673 print_solib_event (0); 4674 return PRINT_NOTHING; 4675 } 4676 4677 /* We reached the end of the chain, or we got a null BS to start 4678 with and nothing was printed. */ 4679 return PRINT_UNKNOWN; 4680 } 4681 4682 /* Evaluate the boolean expression EXP and return the result. */ 4683 4684 static bool 4685 breakpoint_cond_eval (expression *exp) 4686 { 4687 struct value *mark = value_mark (); 4688 bool res = value_true (evaluate_expression (exp)); 4689 4690 value_free_to_mark (mark); 4691 return res; 4692 } 4693 4694 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */ 4695 4696 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer) 4697 : next (NULL), 4698 bp_location_at (bl), 4699 breakpoint_at (bl->owner), 4700 commands (NULL), 4701 print (0), 4702 stop (0), 4703 print_it (print_it_normal) 4704 { 4705 incref_bp_location (bl); 4706 **bs_link_pointer = this; 4707 *bs_link_pointer = &next; 4708 } 4709 4710 bpstats::bpstats () 4711 : next (NULL), 4712 bp_location_at (NULL), 4713 breakpoint_at (NULL), 4714 commands (NULL), 4715 print (0), 4716 stop (0), 4717 print_it (print_it_normal) 4718 { 4719 } 4720 4721 /* The target has stopped with waitstatus WS. Check if any hardware 4722 watchpoints have triggered, according to the target. */ 4723 4724 int 4725 watchpoints_triggered (struct target_waitstatus *ws) 4726 { 4727 bool stopped_by_watchpoint = target_stopped_by_watchpoint (); 4728 CORE_ADDR addr; 4729 struct breakpoint *b; 4730 4731 if (!stopped_by_watchpoint) 4732 { 4733 /* We were not stopped by a watchpoint. Mark all watchpoints 4734 as not triggered. */ 4735 ALL_BREAKPOINTS (b) 4736 if (is_hardware_watchpoint (b)) 4737 { 4738 struct watchpoint *w = (struct watchpoint *) b; 4739 4740 w->watchpoint_triggered = watch_triggered_no; 4741 } 4742 4743 return 0; 4744 } 4745 4746 if (!target_stopped_data_address (current_top_target (), &addr)) 4747 { 4748 /* We were stopped by a watchpoint, but we don't know where. 4749 Mark all watchpoints as unknown. */ 4750 ALL_BREAKPOINTS (b) 4751 if (is_hardware_watchpoint (b)) 4752 { 4753 struct watchpoint *w = (struct watchpoint *) b; 4754 4755 w->watchpoint_triggered = watch_triggered_unknown; 4756 } 4757 4758 return 1; 4759 } 4760 4761 /* The target could report the data address. Mark watchpoints 4762 affected by this data address as triggered, and all others as not 4763 triggered. */ 4764 4765 ALL_BREAKPOINTS (b) 4766 if (is_hardware_watchpoint (b)) 4767 { 4768 struct watchpoint *w = (struct watchpoint *) b; 4769 struct bp_location *loc; 4770 4771 w->watchpoint_triggered = watch_triggered_no; 4772 for (loc = b->loc; loc; loc = loc->next) 4773 { 4774 if (is_masked_watchpoint (b)) 4775 { 4776 CORE_ADDR newaddr = addr & w->hw_wp_mask; 4777 CORE_ADDR start = loc->address & w->hw_wp_mask; 4778 4779 if (newaddr == start) 4780 { 4781 w->watchpoint_triggered = watch_triggered_yes; 4782 break; 4783 } 4784 } 4785 /* Exact match not required. Within range is sufficient. */ 4786 else if (target_watchpoint_addr_within_range (current_top_target (), 4787 addr, loc->address, 4788 loc->length)) 4789 { 4790 w->watchpoint_triggered = watch_triggered_yes; 4791 break; 4792 } 4793 } 4794 } 4795 4796 return 1; 4797 } 4798 4799 /* Possible return values for watchpoint_check. */ 4800 enum wp_check_result 4801 { 4802 /* The watchpoint has been deleted. */ 4803 WP_DELETED = 1, 4804 4805 /* The value has changed. */ 4806 WP_VALUE_CHANGED = 2, 4807 4808 /* The value has not changed. */ 4809 WP_VALUE_NOT_CHANGED = 3, 4810 4811 /* Ignore this watchpoint, no matter if the value changed or not. */ 4812 WP_IGNORE = 4, 4813 }; 4814 4815 #define BP_TEMPFLAG 1 4816 #define BP_HARDWAREFLAG 2 4817 4818 /* Evaluate watchpoint condition expression and check if its value 4819 changed. */ 4820 4821 static wp_check_result 4822 watchpoint_check (bpstat bs) 4823 { 4824 struct watchpoint *b; 4825 struct frame_info *fr; 4826 int within_current_scope; 4827 4828 /* BS is built from an existing struct breakpoint. */ 4829 gdb_assert (bs->breakpoint_at != NULL); 4830 b = (struct watchpoint *) bs->breakpoint_at; 4831 4832 /* If this is a local watchpoint, we only want to check if the 4833 watchpoint frame is in scope if the current thread is the thread 4834 that was used to create the watchpoint. */ 4835 if (!watchpoint_in_thread_scope (b)) 4836 return WP_IGNORE; 4837 4838 if (b->exp_valid_block == NULL) 4839 within_current_scope = 1; 4840 else 4841 { 4842 struct frame_info *frame = get_current_frame (); 4843 struct gdbarch *frame_arch = get_frame_arch (frame); 4844 CORE_ADDR frame_pc = get_frame_pc (frame); 4845 4846 /* stack_frame_destroyed_p() returns a non-zero value if we're 4847 still in the function but the stack frame has already been 4848 invalidated. Since we can't rely on the values of local 4849 variables after the stack has been destroyed, we are treating 4850 the watchpoint in that state as `not changed' without further 4851 checking. Don't mark watchpoints as changed if the current 4852 frame is in an epilogue - even if they are in some other 4853 frame, our view of the stack is likely to be wrong and 4854 frame_find_by_id could error out. */ 4855 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc)) 4856 return WP_IGNORE; 4857 4858 fr = frame_find_by_id (b->watchpoint_frame); 4859 within_current_scope = (fr != NULL); 4860 4861 /* If we've gotten confused in the unwinder, we might have 4862 returned a frame that can't describe this variable. */ 4863 if (within_current_scope) 4864 { 4865 struct symbol *function; 4866 4867 function = get_frame_function (fr); 4868 if (function == NULL 4869 || !contained_in (b->exp_valid_block, 4870 SYMBOL_BLOCK_VALUE (function))) 4871 within_current_scope = 0; 4872 } 4873 4874 if (within_current_scope) 4875 /* If we end up stopping, the current frame will get selected 4876 in normal_stop. So this call to select_frame won't affect 4877 the user. */ 4878 select_frame (fr); 4879 } 4880 4881 if (within_current_scope) 4882 { 4883 /* We use value_{,free_to_}mark because it could be a *long* 4884 time before we return to the command level and call 4885 free_all_values. We can't call free_all_values because we 4886 might be in the middle of evaluating a function call. */ 4887 4888 int pc = 0; 4889 struct value *mark; 4890 struct value *new_val; 4891 4892 if (is_masked_watchpoint (b)) 4893 /* Since we don't know the exact trigger address (from 4894 stopped_data_address), just tell the user we've triggered 4895 a mask watchpoint. */ 4896 return WP_VALUE_CHANGED; 4897 4898 mark = value_mark (); 4899 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0); 4900 4901 if (b->val_bitsize != 0) 4902 new_val = extract_bitfield_from_watchpoint_value (b, new_val); 4903 4904 /* We use value_equal_contents instead of value_equal because 4905 the latter coerces an array to a pointer, thus comparing just 4906 the address of the array instead of its contents. This is 4907 not what we want. */ 4908 if ((b->val != NULL) != (new_val != NULL) 4909 || (b->val != NULL && !value_equal_contents (b->val.get (), 4910 new_val))) 4911 { 4912 bs->old_val = b->val; 4913 b->val = release_value (new_val); 4914 b->val_valid = 1; 4915 if (new_val != NULL) 4916 value_free_to_mark (mark); 4917 return WP_VALUE_CHANGED; 4918 } 4919 else 4920 { 4921 /* Nothing changed. */ 4922 value_free_to_mark (mark); 4923 return WP_VALUE_NOT_CHANGED; 4924 } 4925 } 4926 else 4927 { 4928 /* This seems like the only logical thing to do because 4929 if we temporarily ignored the watchpoint, then when 4930 we reenter the block in which it is valid it contains 4931 garbage (in the case of a function, it may have two 4932 garbage values, one before and one after the prologue). 4933 So we can't even detect the first assignment to it and 4934 watch after that (since the garbage may or may not equal 4935 the first value assigned). */ 4936 /* We print all the stop information in 4937 breakpoint_ops->print_it, but in this case, by the time we 4938 call breakpoint_ops->print_it this bp will be deleted 4939 already. So we have no choice but print the information 4940 here. */ 4941 4942 SWITCH_THRU_ALL_UIS () 4943 { 4944 struct ui_out *uiout = current_uiout; 4945 4946 if (uiout->is_mi_like_p ()) 4947 uiout->field_string 4948 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE)); 4949 uiout->text ("\nWatchpoint "); 4950 uiout->field_int ("wpnum", b->number); 4951 uiout->text (" deleted because the program has left the block in\n" 4952 "which its expression is valid.\n"); 4953 } 4954 4955 /* Make sure the watchpoint's commands aren't executed. */ 4956 b->commands = NULL; 4957 watchpoint_del_at_next_stop (b); 4958 4959 return WP_DELETED; 4960 } 4961 } 4962 4963 /* Return true if it looks like target has stopped due to hitting 4964 breakpoint location BL. This function does not check if we should 4965 stop, only if BL explains the stop. */ 4966 4967 static int 4968 bpstat_check_location (const struct bp_location *bl, 4969 const address_space *aspace, CORE_ADDR bp_addr, 4970 const struct target_waitstatus *ws) 4971 { 4972 struct breakpoint *b = bl->owner; 4973 4974 /* BL is from an existing breakpoint. */ 4975 gdb_assert (b != NULL); 4976 4977 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws); 4978 } 4979 4980 /* Determine if the watched values have actually changed, and we 4981 should stop. If not, set BS->stop to 0. */ 4982 4983 static void 4984 bpstat_check_watchpoint (bpstat bs) 4985 { 4986 const struct bp_location *bl; 4987 struct watchpoint *b; 4988 4989 /* BS is built for existing struct breakpoint. */ 4990 bl = bs->bp_location_at; 4991 gdb_assert (bl != NULL); 4992 b = (struct watchpoint *) bs->breakpoint_at; 4993 gdb_assert (b != NULL); 4994 4995 { 4996 int must_check_value = 0; 4997 4998 if (b->type == bp_watchpoint) 4999 /* For a software watchpoint, we must always check the 5000 watched value. */ 5001 must_check_value = 1; 5002 else if (b->watchpoint_triggered == watch_triggered_yes) 5003 /* We have a hardware watchpoint (read, write, or access) 5004 and the target earlier reported an address watched by 5005 this watchpoint. */ 5006 must_check_value = 1; 5007 else if (b->watchpoint_triggered == watch_triggered_unknown 5008 && b->type == bp_hardware_watchpoint) 5009 /* We were stopped by a hardware watchpoint, but the target could 5010 not report the data address. We must check the watchpoint's 5011 value. Access and read watchpoints are out of luck; without 5012 a data address, we can't figure it out. */ 5013 must_check_value = 1; 5014 5015 if (must_check_value) 5016 { 5017 wp_check_result e; 5018 5019 TRY 5020 { 5021 e = watchpoint_check (bs); 5022 } 5023 CATCH (ex, RETURN_MASK_ALL) 5024 { 5025 exception_fprintf (gdb_stderr, ex, 5026 "Error evaluating expression " 5027 "for watchpoint %d\n", 5028 b->number); 5029 5030 SWITCH_THRU_ALL_UIS () 5031 { 5032 printf_filtered (_("Watchpoint %d deleted.\n"), 5033 b->number); 5034 } 5035 watchpoint_del_at_next_stop (b); 5036 e = WP_DELETED; 5037 } 5038 END_CATCH 5039 5040 switch (e) 5041 { 5042 case WP_DELETED: 5043 /* We've already printed what needs to be printed. */ 5044 bs->print_it = print_it_done; 5045 /* Stop. */ 5046 break; 5047 case WP_IGNORE: 5048 bs->print_it = print_it_noop; 5049 bs->stop = 0; 5050 break; 5051 case WP_VALUE_CHANGED: 5052 if (b->type == bp_read_watchpoint) 5053 { 5054 /* There are two cases to consider here: 5055 5056 1. We're watching the triggered memory for reads. 5057 In that case, trust the target, and always report 5058 the watchpoint hit to the user. Even though 5059 reads don't cause value changes, the value may 5060 have changed since the last time it was read, and 5061 since we're not trapping writes, we will not see 5062 those, and as such we should ignore our notion of 5063 old value. 5064 5065 2. We're watching the triggered memory for both 5066 reads and writes. There are two ways this may 5067 happen: 5068 5069 2.1. This is a target that can't break on data 5070 reads only, but can break on accesses (reads or 5071 writes), such as e.g., x86. We detect this case 5072 at the time we try to insert read watchpoints. 5073 5074 2.2. Otherwise, the target supports read 5075 watchpoints, but, the user set an access or write 5076 watchpoint watching the same memory as this read 5077 watchpoint. 5078 5079 If we're watching memory writes as well as reads, 5080 ignore watchpoint hits when we find that the 5081 value hasn't changed, as reads don't cause 5082 changes. This still gives false positives when 5083 the program writes the same value to memory as 5084 what there was already in memory (we will confuse 5085 it for a read), but it's much better than 5086 nothing. */ 5087 5088 int other_write_watchpoint = 0; 5089 5090 if (bl->watchpoint_type == hw_read) 5091 { 5092 struct breakpoint *other_b; 5093 5094 ALL_BREAKPOINTS (other_b) 5095 if (other_b->type == bp_hardware_watchpoint 5096 || other_b->type == bp_access_watchpoint) 5097 { 5098 struct watchpoint *other_w = 5099 (struct watchpoint *) other_b; 5100 5101 if (other_w->watchpoint_triggered 5102 == watch_triggered_yes) 5103 { 5104 other_write_watchpoint = 1; 5105 break; 5106 } 5107 } 5108 } 5109 5110 if (other_write_watchpoint 5111 || bl->watchpoint_type == hw_access) 5112 { 5113 /* We're watching the same memory for writes, 5114 and the value changed since the last time we 5115 updated it, so this trap must be for a write. 5116 Ignore it. */ 5117 bs->print_it = print_it_noop; 5118 bs->stop = 0; 5119 } 5120 } 5121 break; 5122 case WP_VALUE_NOT_CHANGED: 5123 if (b->type == bp_hardware_watchpoint 5124 || b->type == bp_watchpoint) 5125 { 5126 /* Don't stop: write watchpoints shouldn't fire if 5127 the value hasn't changed. */ 5128 bs->print_it = print_it_noop; 5129 bs->stop = 0; 5130 } 5131 /* Stop. */ 5132 break; 5133 default: 5134 /* Can't happen. */ 5135 break; 5136 } 5137 } 5138 else /* must_check_value == 0 */ 5139 { 5140 /* This is a case where some watchpoint(s) triggered, but 5141 not at the address of this watchpoint, or else no 5142 watchpoint triggered after all. So don't print 5143 anything for this watchpoint. */ 5144 bs->print_it = print_it_noop; 5145 bs->stop = 0; 5146 } 5147 } 5148 } 5149 5150 /* For breakpoints that are currently marked as telling gdb to stop, 5151 check conditions (condition proper, frame, thread and ignore count) 5152 of breakpoint referred to by BS. If we should not stop for this 5153 breakpoint, set BS->stop to 0. */ 5154 5155 static void 5156 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread) 5157 { 5158 const struct bp_location *bl; 5159 struct breakpoint *b; 5160 /* Assume stop. */ 5161 bool condition_result = true; 5162 struct expression *cond; 5163 5164 gdb_assert (bs->stop); 5165 5166 /* BS is built for existing struct breakpoint. */ 5167 bl = bs->bp_location_at; 5168 gdb_assert (bl != NULL); 5169 b = bs->breakpoint_at; 5170 gdb_assert (b != NULL); 5171 5172 /* Even if the target evaluated the condition on its end and notified GDB, we 5173 need to do so again since GDB does not know if we stopped due to a 5174 breakpoint or a single step breakpoint. */ 5175 5176 if (frame_id_p (b->frame_id) 5177 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ()))) 5178 { 5179 bs->stop = 0; 5180 return; 5181 } 5182 5183 /* If this is a thread/task-specific breakpoint, don't waste cpu 5184 evaluating the condition if this isn't the specified 5185 thread/task. */ 5186 if ((b->thread != -1 && b->thread != thread->global_num) 5187 || (b->task != 0 && b->task != ada_get_task_number (thread))) 5188 { 5189 bs->stop = 0; 5190 return; 5191 } 5192 5193 /* Evaluate extension language breakpoints that have a "stop" method 5194 implemented. */ 5195 bs->stop = breakpoint_ext_lang_cond_says_stop (b); 5196 5197 if (is_watchpoint (b)) 5198 { 5199 struct watchpoint *w = (struct watchpoint *) b; 5200 5201 cond = w->cond_exp.get (); 5202 } 5203 else 5204 cond = bl->cond.get (); 5205 5206 if (cond && b->disposition != disp_del_at_next_stop) 5207 { 5208 int within_current_scope = 1; 5209 struct watchpoint * w; 5210 5211 /* We use value_mark and value_free_to_mark because it could 5212 be a long time before we return to the command level and 5213 call free_all_values. We can't call free_all_values 5214 because we might be in the middle of evaluating a 5215 function call. */ 5216 struct value *mark = value_mark (); 5217 5218 if (is_watchpoint (b)) 5219 w = (struct watchpoint *) b; 5220 else 5221 w = NULL; 5222 5223 /* Need to select the frame, with all that implies so that 5224 the conditions will have the right context. Because we 5225 use the frame, we will not see an inlined function's 5226 variables when we arrive at a breakpoint at the start 5227 of the inlined function; the current frame will be the 5228 call site. */ 5229 if (w == NULL || w->cond_exp_valid_block == NULL) 5230 select_frame (get_current_frame ()); 5231 else 5232 { 5233 struct frame_info *frame; 5234 5235 /* For local watchpoint expressions, which particular 5236 instance of a local is being watched matters, so we 5237 keep track of the frame to evaluate the expression 5238 in. To evaluate the condition however, it doesn't 5239 really matter which instantiation of the function 5240 where the condition makes sense triggers the 5241 watchpoint. This allows an expression like "watch 5242 global if q > 10" set in `func', catch writes to 5243 global on all threads that call `func', or catch 5244 writes on all recursive calls of `func' by a single 5245 thread. We simply always evaluate the condition in 5246 the innermost frame that's executing where it makes 5247 sense to evaluate the condition. It seems 5248 intuitive. */ 5249 frame = block_innermost_frame (w->cond_exp_valid_block); 5250 if (frame != NULL) 5251 select_frame (frame); 5252 else 5253 within_current_scope = 0; 5254 } 5255 if (within_current_scope) 5256 { 5257 TRY 5258 { 5259 condition_result = breakpoint_cond_eval (cond); 5260 } 5261 CATCH (ex, RETURN_MASK_ALL) 5262 { 5263 exception_fprintf (gdb_stderr, ex, 5264 "Error in testing breakpoint condition:\n"); 5265 } 5266 END_CATCH 5267 } 5268 else 5269 { 5270 warning (_("Watchpoint condition cannot be tested " 5271 "in the current scope")); 5272 /* If we failed to set the right context for this 5273 watchpoint, unconditionally report it. */ 5274 } 5275 /* FIXME-someday, should give breakpoint #. */ 5276 value_free_to_mark (mark); 5277 } 5278 5279 if (cond && !condition_result) 5280 { 5281 bs->stop = 0; 5282 } 5283 else if (b->ignore_count > 0) 5284 { 5285 b->ignore_count--; 5286 bs->stop = 0; 5287 /* Increase the hit count even though we don't stop. */ 5288 ++(b->hit_count); 5289 gdb::observers::breakpoint_modified.notify (b); 5290 } 5291 } 5292 5293 /* Returns true if we need to track moribund locations of LOC's type 5294 on the current target. */ 5295 5296 static int 5297 need_moribund_for_location_type (struct bp_location *loc) 5298 { 5299 return ((loc->loc_type == bp_loc_software_breakpoint 5300 && !target_supports_stopped_by_sw_breakpoint ()) 5301 || (loc->loc_type == bp_loc_hardware_breakpoint 5302 && !target_supports_stopped_by_hw_breakpoint ())); 5303 } 5304 5305 /* See breakpoint.h. */ 5306 5307 bpstat 5308 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr, 5309 const struct target_waitstatus *ws) 5310 { 5311 struct breakpoint *b; 5312 bpstat bs_head = NULL, *bs_link = &bs_head; 5313 5314 ALL_BREAKPOINTS (b) 5315 { 5316 if (!breakpoint_enabled (b)) 5317 continue; 5318 5319 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next) 5320 { 5321 /* For hardware watchpoints, we look only at the first 5322 location. The watchpoint_check function will work on the 5323 entire expression, not the individual locations. For 5324 read watchpoints, the watchpoints_triggered function has 5325 checked all locations already. */ 5326 if (b->type == bp_hardware_watchpoint && bl != b->loc) 5327 break; 5328 5329 if (!bl->enabled || bl->shlib_disabled) 5330 continue; 5331 5332 if (!bpstat_check_location (bl, aspace, bp_addr, ws)) 5333 continue; 5334 5335 /* Come here if it's a watchpoint, or if the break address 5336 matches. */ 5337 5338 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to 5339 explain stop. */ 5340 5341 /* Assume we stop. Should we find a watchpoint that is not 5342 actually triggered, or if the condition of the breakpoint 5343 evaluates as false, we'll reset 'stop' to 0. */ 5344 bs->stop = 1; 5345 bs->print = 1; 5346 5347 /* If this is a scope breakpoint, mark the associated 5348 watchpoint as triggered so that we will handle the 5349 out-of-scope event. We'll get to the watchpoint next 5350 iteration. */ 5351 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b) 5352 { 5353 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint; 5354 5355 w->watchpoint_triggered = watch_triggered_yes; 5356 } 5357 } 5358 } 5359 5360 /* Check if a moribund breakpoint explains the stop. */ 5361 if (!target_supports_stopped_by_sw_breakpoint () 5362 || !target_supports_stopped_by_hw_breakpoint ()) 5363 { 5364 for (bp_location *loc : moribund_locations) 5365 { 5366 if (breakpoint_location_address_match (loc, aspace, bp_addr) 5367 && need_moribund_for_location_type (loc)) 5368 { 5369 bpstat bs = new bpstats (loc, &bs_link); 5370 /* For hits of moribund locations, we should just proceed. */ 5371 bs->stop = 0; 5372 bs->print = 0; 5373 bs->print_it = print_it_noop; 5374 } 5375 } 5376 } 5377 5378 return bs_head; 5379 } 5380 5381 /* See breakpoint.h. */ 5382 5383 bpstat 5384 bpstat_stop_status (const address_space *aspace, 5385 CORE_ADDR bp_addr, thread_info *thread, 5386 const struct target_waitstatus *ws, 5387 bpstat stop_chain) 5388 { 5389 struct breakpoint *b = NULL; 5390 /* First item of allocated bpstat's. */ 5391 bpstat bs_head = stop_chain; 5392 bpstat bs; 5393 int need_remove_insert; 5394 int removed_any; 5395 5396 /* First, build the bpstat chain with locations that explain a 5397 target stop, while being careful to not set the target running, 5398 as that may invalidate locations (in particular watchpoint 5399 locations are recreated). Resuming will happen here with 5400 breakpoint conditions or watchpoint expressions that include 5401 inferior function calls. */ 5402 if (bs_head == NULL) 5403 bs_head = build_bpstat_chain (aspace, bp_addr, ws); 5404 5405 /* A bit of special processing for shlib breakpoints. We need to 5406 process solib loading here, so that the lists of loaded and 5407 unloaded libraries are correct before we handle "catch load" and 5408 "catch unload". */ 5409 for (bs = bs_head; bs != NULL; bs = bs->next) 5410 { 5411 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event) 5412 { 5413 handle_solib_event (); 5414 break; 5415 } 5416 } 5417 5418 /* Now go through the locations that caused the target to stop, and 5419 check whether we're interested in reporting this stop to higher 5420 layers, or whether we should resume the target transparently. */ 5421 5422 removed_any = 0; 5423 5424 for (bs = bs_head; bs != NULL; bs = bs->next) 5425 { 5426 if (!bs->stop) 5427 continue; 5428 5429 b = bs->breakpoint_at; 5430 b->ops->check_status (bs); 5431 if (bs->stop) 5432 { 5433 bpstat_check_breakpoint_conditions (bs, thread); 5434 5435 if (bs->stop) 5436 { 5437 ++(b->hit_count); 5438 gdb::observers::breakpoint_modified.notify (b); 5439 5440 /* We will stop here. */ 5441 if (b->disposition == disp_disable) 5442 { 5443 --(b->enable_count); 5444 if (b->enable_count <= 0) 5445 b->enable_state = bp_disabled; 5446 removed_any = 1; 5447 } 5448 if (b->silent) 5449 bs->print = 0; 5450 bs->commands = b->commands; 5451 if (command_line_is_silent (bs->commands 5452 ? bs->commands.get () : NULL)) 5453 bs->print = 0; 5454 5455 b->ops->after_condition_true (bs); 5456 } 5457 5458 } 5459 5460 /* Print nothing for this entry if we don't stop or don't 5461 print. */ 5462 if (!bs->stop || !bs->print) 5463 bs->print_it = print_it_noop; 5464 } 5465 5466 /* If we aren't stopping, the value of some hardware watchpoint may 5467 not have changed, but the intermediate memory locations we are 5468 watching may have. Don't bother if we're stopping; this will get 5469 done later. */ 5470 need_remove_insert = 0; 5471 if (! bpstat_causes_stop (bs_head)) 5472 for (bs = bs_head; bs != NULL; bs = bs->next) 5473 if (!bs->stop 5474 && bs->breakpoint_at 5475 && is_hardware_watchpoint (bs->breakpoint_at)) 5476 { 5477 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at; 5478 5479 update_watchpoint (w, 0 /* don't reparse. */); 5480 need_remove_insert = 1; 5481 } 5482 5483 if (need_remove_insert) 5484 update_global_location_list (UGLL_MAY_INSERT); 5485 else if (removed_any) 5486 update_global_location_list (UGLL_DONT_INSERT); 5487 5488 return bs_head; 5489 } 5490 5491 static void 5492 handle_jit_event (void) 5493 { 5494 struct frame_info *frame; 5495 struct gdbarch *gdbarch; 5496 5497 if (debug_infrun) 5498 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n"); 5499 5500 /* Switch terminal for any messages produced by 5501 breakpoint_re_set. */ 5502 target_terminal::ours_for_output (); 5503 5504 frame = get_current_frame (); 5505 gdbarch = get_frame_arch (frame); 5506 5507 jit_event_handler (gdbarch); 5508 5509 target_terminal::inferior (); 5510 } 5511 5512 /* Prepare WHAT final decision for infrun. */ 5513 5514 /* Decide what infrun needs to do with this bpstat. */ 5515 5516 struct bpstat_what 5517 bpstat_what (bpstat bs_head) 5518 { 5519 struct bpstat_what retval; 5520 bpstat bs; 5521 5522 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING; 5523 retval.call_dummy = STOP_NONE; 5524 retval.is_longjmp = 0; 5525 5526 for (bs = bs_head; bs != NULL; bs = bs->next) 5527 { 5528 /* Extract this BS's action. After processing each BS, we check 5529 if its action overrides all we've seem so far. */ 5530 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING; 5531 enum bptype bptype; 5532 5533 if (bs->breakpoint_at == NULL) 5534 { 5535 /* I suspect this can happen if it was a momentary 5536 breakpoint which has since been deleted. */ 5537 bptype = bp_none; 5538 } 5539 else 5540 bptype = bs->breakpoint_at->type; 5541 5542 switch (bptype) 5543 { 5544 case bp_none: 5545 break; 5546 case bp_breakpoint: 5547 case bp_hardware_breakpoint: 5548 case bp_single_step: 5549 case bp_until: 5550 case bp_finish: 5551 case bp_shlib_event: 5552 if (bs->stop) 5553 { 5554 if (bs->print) 5555 this_action = BPSTAT_WHAT_STOP_NOISY; 5556 else 5557 this_action = BPSTAT_WHAT_STOP_SILENT; 5558 } 5559 else 5560 this_action = BPSTAT_WHAT_SINGLE; 5561 break; 5562 case bp_watchpoint: 5563 case bp_hardware_watchpoint: 5564 case bp_read_watchpoint: 5565 case bp_access_watchpoint: 5566 if (bs->stop) 5567 { 5568 if (bs->print) 5569 this_action = BPSTAT_WHAT_STOP_NOISY; 5570 else 5571 this_action = BPSTAT_WHAT_STOP_SILENT; 5572 } 5573 else 5574 { 5575 /* There was a watchpoint, but we're not stopping. 5576 This requires no further action. */ 5577 } 5578 break; 5579 case bp_longjmp: 5580 case bp_longjmp_call_dummy: 5581 case bp_exception: 5582 if (bs->stop) 5583 { 5584 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME; 5585 retval.is_longjmp = bptype != bp_exception; 5586 } 5587 else 5588 this_action = BPSTAT_WHAT_SINGLE; 5589 break; 5590 case bp_longjmp_resume: 5591 case bp_exception_resume: 5592 if (bs->stop) 5593 { 5594 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME; 5595 retval.is_longjmp = bptype == bp_longjmp_resume; 5596 } 5597 else 5598 this_action = BPSTAT_WHAT_SINGLE; 5599 break; 5600 case bp_step_resume: 5601 if (bs->stop) 5602 this_action = BPSTAT_WHAT_STEP_RESUME; 5603 else 5604 { 5605 /* It is for the wrong frame. */ 5606 this_action = BPSTAT_WHAT_SINGLE; 5607 } 5608 break; 5609 case bp_hp_step_resume: 5610 if (bs->stop) 5611 this_action = BPSTAT_WHAT_HP_STEP_RESUME; 5612 else 5613 { 5614 /* It is for the wrong frame. */ 5615 this_action = BPSTAT_WHAT_SINGLE; 5616 } 5617 break; 5618 case bp_watchpoint_scope: 5619 case bp_thread_event: 5620 case bp_overlay_event: 5621 case bp_longjmp_master: 5622 case bp_std_terminate_master: 5623 case bp_exception_master: 5624 this_action = BPSTAT_WHAT_SINGLE; 5625 break; 5626 case bp_catchpoint: 5627 if (bs->stop) 5628 { 5629 if (bs->print) 5630 this_action = BPSTAT_WHAT_STOP_NOISY; 5631 else 5632 this_action = BPSTAT_WHAT_STOP_SILENT; 5633 } 5634 else 5635 { 5636 /* There was a catchpoint, but we're not stopping. 5637 This requires no further action. */ 5638 } 5639 break; 5640 case bp_jit_event: 5641 this_action = BPSTAT_WHAT_SINGLE; 5642 break; 5643 case bp_call_dummy: 5644 /* Make sure the action is stop (silent or noisy), 5645 so infrun.c pops the dummy frame. */ 5646 retval.call_dummy = STOP_STACK_DUMMY; 5647 this_action = BPSTAT_WHAT_STOP_SILENT; 5648 break; 5649 case bp_std_terminate: 5650 /* Make sure the action is stop (silent or noisy), 5651 so infrun.c pops the dummy frame. */ 5652 retval.call_dummy = STOP_STD_TERMINATE; 5653 this_action = BPSTAT_WHAT_STOP_SILENT; 5654 break; 5655 case bp_tracepoint: 5656 case bp_fast_tracepoint: 5657 case bp_static_tracepoint: 5658 /* Tracepoint hits should not be reported back to GDB, and 5659 if one got through somehow, it should have been filtered 5660 out already. */ 5661 internal_error (__FILE__, __LINE__, 5662 _("bpstat_what: tracepoint encountered")); 5663 break; 5664 case bp_gnu_ifunc_resolver: 5665 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */ 5666 this_action = BPSTAT_WHAT_SINGLE; 5667 break; 5668 case bp_gnu_ifunc_resolver_return: 5669 /* The breakpoint will be removed, execution will restart from the 5670 PC of the former breakpoint. */ 5671 this_action = BPSTAT_WHAT_KEEP_CHECKING; 5672 break; 5673 5674 case bp_dprintf: 5675 if (bs->stop) 5676 this_action = BPSTAT_WHAT_STOP_SILENT; 5677 else 5678 this_action = BPSTAT_WHAT_SINGLE; 5679 break; 5680 5681 default: 5682 internal_error (__FILE__, __LINE__, 5683 _("bpstat_what: unhandled bptype %d"), (int) bptype); 5684 } 5685 5686 retval.main_action = std::max (retval.main_action, this_action); 5687 } 5688 5689 return retval; 5690 } 5691 5692 void 5693 bpstat_run_callbacks (bpstat bs_head) 5694 { 5695 bpstat bs; 5696 5697 for (bs = bs_head; bs != NULL; bs = bs->next) 5698 { 5699 struct breakpoint *b = bs->breakpoint_at; 5700 5701 if (b == NULL) 5702 continue; 5703 switch (b->type) 5704 { 5705 case bp_jit_event: 5706 handle_jit_event (); 5707 break; 5708 case bp_gnu_ifunc_resolver: 5709 gnu_ifunc_resolver_stop (b); 5710 break; 5711 case bp_gnu_ifunc_resolver_return: 5712 gnu_ifunc_resolver_return_stop (b); 5713 break; 5714 } 5715 } 5716 } 5717 5718 /* Nonzero if we should step constantly (e.g. watchpoints on machines 5719 without hardware support). This isn't related to a specific bpstat, 5720 just to things like whether watchpoints are set. */ 5721 5722 int 5723 bpstat_should_step (void) 5724 { 5725 struct breakpoint *b; 5726 5727 ALL_BREAKPOINTS (b) 5728 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL) 5729 return 1; 5730 return 0; 5731 } 5732 5733 int 5734 bpstat_causes_stop (bpstat bs) 5735 { 5736 for (; bs != NULL; bs = bs->next) 5737 if (bs->stop) 5738 return 1; 5739 5740 return 0; 5741 } 5742 5743 5744 5745 /* Compute a string of spaces suitable to indent the next line 5746 so it starts at the position corresponding to the table column 5747 named COL_NAME in the currently active table of UIOUT. */ 5748 5749 static char * 5750 wrap_indent_at_field (struct ui_out *uiout, const char *col_name) 5751 { 5752 static char wrap_indent[80]; 5753 int i, total_width, width, align; 5754 const char *text; 5755 5756 total_width = 0; 5757 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++) 5758 { 5759 if (strcmp (text, col_name) == 0) 5760 { 5761 gdb_assert (total_width < sizeof wrap_indent); 5762 memset (wrap_indent, ' ', total_width); 5763 wrap_indent[total_width] = 0; 5764 5765 return wrap_indent; 5766 } 5767 5768 total_width += width + 1; 5769 } 5770 5771 return NULL; 5772 } 5773 5774 /* Determine if the locations of this breakpoint will have their conditions 5775 evaluated by the target, host or a mix of both. Returns the following: 5776 5777 "host": Host evals condition. 5778 "host or target": Host or Target evals condition. 5779 "target": Target evals condition. 5780 */ 5781 5782 static const char * 5783 bp_condition_evaluator (struct breakpoint *b) 5784 { 5785 struct bp_location *bl; 5786 char host_evals = 0; 5787 char target_evals = 0; 5788 5789 if (!b) 5790 return NULL; 5791 5792 if (!is_breakpoint (b)) 5793 return NULL; 5794 5795 if (gdb_evaluates_breakpoint_condition_p () 5796 || !target_supports_evaluation_of_breakpoint_conditions ()) 5797 return condition_evaluation_host; 5798 5799 for (bl = b->loc; bl; bl = bl->next) 5800 { 5801 if (bl->cond_bytecode) 5802 target_evals++; 5803 else 5804 host_evals++; 5805 } 5806 5807 if (host_evals && target_evals) 5808 return condition_evaluation_both; 5809 else if (target_evals) 5810 return condition_evaluation_target; 5811 else 5812 return condition_evaluation_host; 5813 } 5814 5815 /* Determine the breakpoint location's condition evaluator. This is 5816 similar to bp_condition_evaluator, but for locations. */ 5817 5818 static const char * 5819 bp_location_condition_evaluator (struct bp_location *bl) 5820 { 5821 if (bl && !is_breakpoint (bl->owner)) 5822 return NULL; 5823 5824 if (gdb_evaluates_breakpoint_condition_p () 5825 || !target_supports_evaluation_of_breakpoint_conditions ()) 5826 return condition_evaluation_host; 5827 5828 if (bl && bl->cond_bytecode) 5829 return condition_evaluation_target; 5830 else 5831 return condition_evaluation_host; 5832 } 5833 5834 /* Print the LOC location out of the list of B->LOC locations. */ 5835 5836 static void 5837 print_breakpoint_location (struct breakpoint *b, 5838 struct bp_location *loc) 5839 { 5840 struct ui_out *uiout = current_uiout; 5841 5842 scoped_restore_current_program_space restore_pspace; 5843 5844 if (loc != NULL && loc->shlib_disabled) 5845 loc = NULL; 5846 5847 if (loc != NULL) 5848 set_current_program_space (loc->pspace); 5849 5850 if (b->display_canonical) 5851 uiout->field_string ("what", event_location_to_string (b->location.get ())); 5852 else if (loc && loc->symtab) 5853 { 5854 const struct symbol *sym = loc->symbol; 5855 5856 if (sym) 5857 { 5858 uiout->text ("in "); 5859 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym), 5860 ui_out_style_kind::FUNCTION); 5861 uiout->text (" "); 5862 uiout->wrap_hint (wrap_indent_at_field (uiout, "what")); 5863 uiout->text ("at "); 5864 } 5865 uiout->field_string ("file", 5866 symtab_to_filename_for_display (loc->symtab), 5867 ui_out_style_kind::FILE); 5868 uiout->text (":"); 5869 5870 if (uiout->is_mi_like_p ()) 5871 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab)); 5872 5873 uiout->field_int ("line", loc->line_number); 5874 } 5875 else if (loc) 5876 { 5877 string_file stb; 5878 5879 print_address_symbolic (loc->gdbarch, loc->address, &stb, 5880 demangle, ""); 5881 uiout->field_stream ("at", stb); 5882 } 5883 else 5884 { 5885 uiout->field_string ("pending", 5886 event_location_to_string (b->location.get ())); 5887 /* If extra_string is available, it could be holding a condition 5888 or dprintf arguments. In either case, make sure it is printed, 5889 too, but only for non-MI streams. */ 5890 if (!uiout->is_mi_like_p () && b->extra_string != NULL) 5891 { 5892 if (b->type == bp_dprintf) 5893 uiout->text (","); 5894 else 5895 uiout->text (" "); 5896 uiout->text (b->extra_string); 5897 } 5898 } 5899 5900 if (loc && is_breakpoint (b) 5901 && breakpoint_condition_evaluation_mode () == condition_evaluation_target 5902 && bp_condition_evaluator (b) == condition_evaluation_both) 5903 { 5904 uiout->text (" ("); 5905 uiout->field_string ("evaluated-by", 5906 bp_location_condition_evaluator (loc)); 5907 uiout->text (")"); 5908 } 5909 } 5910 5911 static const char * 5912 bptype_string (enum bptype type) 5913 { 5914 struct ep_type_description 5915 { 5916 enum bptype type; 5917 const char *description; 5918 }; 5919 static struct ep_type_description bptypes[] = 5920 { 5921 {bp_none, "?deleted?"}, 5922 {bp_breakpoint, "breakpoint"}, 5923 {bp_hardware_breakpoint, "hw breakpoint"}, 5924 {bp_single_step, "sw single-step"}, 5925 {bp_until, "until"}, 5926 {bp_finish, "finish"}, 5927 {bp_watchpoint, "watchpoint"}, 5928 {bp_hardware_watchpoint, "hw watchpoint"}, 5929 {bp_read_watchpoint, "read watchpoint"}, 5930 {bp_access_watchpoint, "acc watchpoint"}, 5931 {bp_longjmp, "longjmp"}, 5932 {bp_longjmp_resume, "longjmp resume"}, 5933 {bp_longjmp_call_dummy, "longjmp for call dummy"}, 5934 {bp_exception, "exception"}, 5935 {bp_exception_resume, "exception resume"}, 5936 {bp_step_resume, "step resume"}, 5937 {bp_hp_step_resume, "high-priority step resume"}, 5938 {bp_watchpoint_scope, "watchpoint scope"}, 5939 {bp_call_dummy, "call dummy"}, 5940 {bp_std_terminate, "std::terminate"}, 5941 {bp_shlib_event, "shlib events"}, 5942 {bp_thread_event, "thread events"}, 5943 {bp_overlay_event, "overlay events"}, 5944 {bp_longjmp_master, "longjmp master"}, 5945 {bp_std_terminate_master, "std::terminate master"}, 5946 {bp_exception_master, "exception master"}, 5947 {bp_catchpoint, "catchpoint"}, 5948 {bp_tracepoint, "tracepoint"}, 5949 {bp_fast_tracepoint, "fast tracepoint"}, 5950 {bp_static_tracepoint, "static tracepoint"}, 5951 {bp_dprintf, "dprintf"}, 5952 {bp_jit_event, "jit events"}, 5953 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"}, 5954 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"}, 5955 }; 5956 5957 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0]))) 5958 || ((int) type != bptypes[(int) type].type)) 5959 internal_error (__FILE__, __LINE__, 5960 _("bptypes table does not describe type #%d."), 5961 (int) type); 5962 5963 return bptypes[(int) type].description; 5964 } 5965 5966 /* For MI, output a field named 'thread-groups' with a list as the value. 5967 For CLI, prefix the list with the string 'inf'. */ 5968 5969 static void 5970 output_thread_groups (struct ui_out *uiout, 5971 const char *field_name, 5972 const std::vector<int> &inf_nums, 5973 int mi_only) 5974 { 5975 int is_mi = uiout->is_mi_like_p (); 5976 5977 /* For backward compatibility, don't display inferiors in CLI unless 5978 there are several. Always display them for MI. */ 5979 if (!is_mi && mi_only) 5980 return; 5981 5982 ui_out_emit_list list_emitter (uiout, field_name); 5983 5984 for (size_t i = 0; i < inf_nums.size (); i++) 5985 { 5986 if (is_mi) 5987 { 5988 char mi_group[10]; 5989 5990 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]); 5991 uiout->field_string (NULL, mi_group); 5992 } 5993 else 5994 { 5995 if (i == 0) 5996 uiout->text (" inf "); 5997 else 5998 uiout->text (", "); 5999 6000 uiout->text (plongest (inf_nums[i])); 6001 } 6002 } 6003 } 6004 6005 /* Print B to gdb_stdout. */ 6006 6007 static void 6008 print_one_breakpoint_location (struct breakpoint *b, 6009 struct bp_location *loc, 6010 int loc_number, 6011 struct bp_location **last_loc, 6012 int allflag) 6013 { 6014 struct command_line *l; 6015 static char bpenables[] = "nynny"; 6016 6017 struct ui_out *uiout = current_uiout; 6018 int header_of_multiple = 0; 6019 int part_of_multiple = (loc != NULL); 6020 struct value_print_options opts; 6021 6022 get_user_print_options (&opts); 6023 6024 gdb_assert (!loc || loc_number != 0); 6025 /* See comment in print_one_breakpoint concerning treatment of 6026 breakpoints with single disabled location. */ 6027 if (loc == NULL 6028 && (b->loc != NULL 6029 && (b->loc->next != NULL || !b->loc->enabled))) 6030 header_of_multiple = 1; 6031 if (loc == NULL) 6032 loc = b->loc; 6033 6034 annotate_record (); 6035 6036 /* 1 */ 6037 annotate_field (0); 6038 if (part_of_multiple) 6039 uiout->field_fmt ("number", "%d.%d", b->number, loc_number); 6040 else 6041 uiout->field_int ("number", b->number); 6042 6043 /* 2 */ 6044 annotate_field (1); 6045 if (part_of_multiple) 6046 uiout->field_skip ("type"); 6047 else 6048 uiout->field_string ("type", bptype_string (b->type)); 6049 6050 /* 3 */ 6051 annotate_field (2); 6052 if (part_of_multiple) 6053 uiout->field_skip ("disp"); 6054 else 6055 uiout->field_string ("disp", bpdisp_text (b->disposition)); 6056 6057 /* 4 */ 6058 annotate_field (3); 6059 if (part_of_multiple) 6060 uiout->field_string ("enabled", loc->enabled ? "y" : "n"); 6061 else 6062 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]); 6063 6064 /* 5 and 6 */ 6065 if (b->ops != NULL && b->ops->print_one != NULL) 6066 { 6067 /* Although the print_one can possibly print all locations, 6068 calling it here is not likely to get any nice result. So, 6069 make sure there's just one location. */ 6070 gdb_assert (b->loc == NULL || b->loc->next == NULL); 6071 b->ops->print_one (b, last_loc); 6072 } 6073 else 6074 switch (b->type) 6075 { 6076 case bp_none: 6077 internal_error (__FILE__, __LINE__, 6078 _("print_one_breakpoint: bp_none encountered\n")); 6079 break; 6080 6081 case bp_watchpoint: 6082 case bp_hardware_watchpoint: 6083 case bp_read_watchpoint: 6084 case bp_access_watchpoint: 6085 { 6086 struct watchpoint *w = (struct watchpoint *) b; 6087 6088 /* Field 4, the address, is omitted (which makes the columns 6089 not line up too nicely with the headers, but the effect 6090 is relatively readable). */ 6091 if (opts.addressprint) 6092 uiout->field_skip ("addr"); 6093 annotate_field (5); 6094 uiout->field_string ("what", w->exp_string); 6095 } 6096 break; 6097 6098 case bp_breakpoint: 6099 case bp_hardware_breakpoint: 6100 case bp_single_step: 6101 case bp_until: 6102 case bp_finish: 6103 case bp_longjmp: 6104 case bp_longjmp_resume: 6105 case bp_longjmp_call_dummy: 6106 case bp_exception: 6107 case bp_exception_resume: 6108 case bp_step_resume: 6109 case bp_hp_step_resume: 6110 case bp_watchpoint_scope: 6111 case bp_call_dummy: 6112 case bp_std_terminate: 6113 case bp_shlib_event: 6114 case bp_thread_event: 6115 case bp_overlay_event: 6116 case bp_longjmp_master: 6117 case bp_std_terminate_master: 6118 case bp_exception_master: 6119 case bp_tracepoint: 6120 case bp_fast_tracepoint: 6121 case bp_static_tracepoint: 6122 case bp_dprintf: 6123 case bp_jit_event: 6124 case bp_gnu_ifunc_resolver: 6125 case bp_gnu_ifunc_resolver_return: 6126 if (opts.addressprint) 6127 { 6128 annotate_field (4); 6129 if (header_of_multiple) 6130 uiout->field_string ("addr", "<MULTIPLE>"); 6131 else if (b->loc == NULL || loc->shlib_disabled) 6132 uiout->field_string ("addr", "<PENDING>"); 6133 else 6134 uiout->field_core_addr ("addr", 6135 loc->gdbarch, loc->address); 6136 } 6137 annotate_field (5); 6138 if (!header_of_multiple) 6139 print_breakpoint_location (b, loc); 6140 if (b->loc) 6141 *last_loc = b->loc; 6142 break; 6143 } 6144 6145 6146 if (loc != NULL && !header_of_multiple) 6147 { 6148 std::vector<int> inf_nums; 6149 int mi_only = 1; 6150 6151 for (inferior *inf : all_inferiors ()) 6152 { 6153 if (inf->pspace == loc->pspace) 6154 inf_nums.push_back (inf->num); 6155 } 6156 6157 /* For backward compatibility, don't display inferiors in CLI unless 6158 there are several. Always display for MI. */ 6159 if (allflag 6160 || (!gdbarch_has_global_breakpoints (target_gdbarch ()) 6161 && (number_of_program_spaces () > 1 6162 || number_of_inferiors () > 1) 6163 /* LOC is for existing B, it cannot be in 6164 moribund_locations and thus having NULL OWNER. */ 6165 && loc->owner->type != bp_catchpoint)) 6166 mi_only = 0; 6167 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only); 6168 } 6169 6170 if (!part_of_multiple) 6171 { 6172 if (b->thread != -1) 6173 { 6174 /* FIXME: This seems to be redundant and lost here; see the 6175 "stop only in" line a little further down. */ 6176 uiout->text (" thread "); 6177 uiout->field_int ("thread", b->thread); 6178 } 6179 else if (b->task != 0) 6180 { 6181 uiout->text (" task "); 6182 uiout->field_int ("task", b->task); 6183 } 6184 } 6185 6186 uiout->text ("\n"); 6187 6188 if (!part_of_multiple) 6189 b->ops->print_one_detail (b, uiout); 6190 6191 if (part_of_multiple && frame_id_p (b->frame_id)) 6192 { 6193 annotate_field (6); 6194 uiout->text ("\tstop only in stack frame at "); 6195 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside 6196 the frame ID. */ 6197 uiout->field_core_addr ("frame", 6198 b->gdbarch, b->frame_id.stack_addr); 6199 uiout->text ("\n"); 6200 } 6201 6202 if (!part_of_multiple && b->cond_string) 6203 { 6204 annotate_field (7); 6205 if (is_tracepoint (b)) 6206 uiout->text ("\ttrace only if "); 6207 else 6208 uiout->text ("\tstop only if "); 6209 uiout->field_string ("cond", b->cond_string); 6210 6211 /* Print whether the target is doing the breakpoint's condition 6212 evaluation. If GDB is doing the evaluation, don't print anything. */ 6213 if (is_breakpoint (b) 6214 && breakpoint_condition_evaluation_mode () 6215 == condition_evaluation_target) 6216 { 6217 uiout->text (" ("); 6218 uiout->field_string ("evaluated-by", 6219 bp_condition_evaluator (b)); 6220 uiout->text (" evals)"); 6221 } 6222 uiout->text ("\n"); 6223 } 6224 6225 if (!part_of_multiple && b->thread != -1) 6226 { 6227 /* FIXME should make an annotation for this. */ 6228 uiout->text ("\tstop only in thread "); 6229 if (uiout->is_mi_like_p ()) 6230 uiout->field_int ("thread", b->thread); 6231 else 6232 { 6233 struct thread_info *thr = find_thread_global_id (b->thread); 6234 6235 uiout->field_string ("thread", print_thread_id (thr)); 6236 } 6237 uiout->text ("\n"); 6238 } 6239 6240 if (!part_of_multiple) 6241 { 6242 if (b->hit_count) 6243 { 6244 /* FIXME should make an annotation for this. */ 6245 if (is_catchpoint (b)) 6246 uiout->text ("\tcatchpoint"); 6247 else if (is_tracepoint (b)) 6248 uiout->text ("\ttracepoint"); 6249 else 6250 uiout->text ("\tbreakpoint"); 6251 uiout->text (" already hit "); 6252 uiout->field_int ("times", b->hit_count); 6253 if (b->hit_count == 1) 6254 uiout->text (" time\n"); 6255 else 6256 uiout->text (" times\n"); 6257 } 6258 else 6259 { 6260 /* Output the count also if it is zero, but only if this is mi. */ 6261 if (uiout->is_mi_like_p ()) 6262 uiout->field_int ("times", b->hit_count); 6263 } 6264 } 6265 6266 if (!part_of_multiple && b->ignore_count) 6267 { 6268 annotate_field (8); 6269 uiout->text ("\tignore next "); 6270 uiout->field_int ("ignore", b->ignore_count); 6271 uiout->text (" hits\n"); 6272 } 6273 6274 /* Note that an enable count of 1 corresponds to "enable once" 6275 behavior, which is reported by the combination of enablement and 6276 disposition, so we don't need to mention it here. */ 6277 if (!part_of_multiple && b->enable_count > 1) 6278 { 6279 annotate_field (8); 6280 uiout->text ("\tdisable after "); 6281 /* Tweak the wording to clarify that ignore and enable counts 6282 are distinct, and have additive effect. */ 6283 if (b->ignore_count) 6284 uiout->text ("additional "); 6285 else 6286 uiout->text ("next "); 6287 uiout->field_int ("enable", b->enable_count); 6288 uiout->text (" hits\n"); 6289 } 6290 6291 if (!part_of_multiple && is_tracepoint (b)) 6292 { 6293 struct tracepoint *tp = (struct tracepoint *) b; 6294 6295 if (tp->traceframe_usage) 6296 { 6297 uiout->text ("\ttrace buffer usage "); 6298 uiout->field_int ("traceframe-usage", tp->traceframe_usage); 6299 uiout->text (" bytes\n"); 6300 } 6301 } 6302 6303 l = b->commands ? b->commands.get () : NULL; 6304 if (!part_of_multiple && l) 6305 { 6306 annotate_field (9); 6307 ui_out_emit_tuple tuple_emitter (uiout, "script"); 6308 print_command_lines (uiout, l, 4); 6309 } 6310 6311 if (is_tracepoint (b)) 6312 { 6313 struct tracepoint *t = (struct tracepoint *) b; 6314 6315 if (!part_of_multiple && t->pass_count) 6316 { 6317 annotate_field (10); 6318 uiout->text ("\tpass count "); 6319 uiout->field_int ("pass", t->pass_count); 6320 uiout->text (" \n"); 6321 } 6322 6323 /* Don't display it when tracepoint or tracepoint location is 6324 pending. */ 6325 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled) 6326 { 6327 annotate_field (11); 6328 6329 if (uiout->is_mi_like_p ()) 6330 uiout->field_string ("installed", 6331 loc->inserted ? "y" : "n"); 6332 else 6333 { 6334 if (loc->inserted) 6335 uiout->text ("\t"); 6336 else 6337 uiout->text ("\tnot "); 6338 uiout->text ("installed on target\n"); 6339 } 6340 } 6341 } 6342 6343 if (uiout->is_mi_like_p () && !part_of_multiple) 6344 { 6345 if (is_watchpoint (b)) 6346 { 6347 struct watchpoint *w = (struct watchpoint *) b; 6348 6349 uiout->field_string ("original-location", w->exp_string); 6350 } 6351 else if (b->location != NULL 6352 && event_location_to_string (b->location.get ()) != NULL) 6353 uiout->field_string ("original-location", 6354 event_location_to_string (b->location.get ())); 6355 } 6356 } 6357 6358 static void 6359 print_one_breakpoint (struct breakpoint *b, 6360 struct bp_location **last_loc, 6361 int allflag) 6362 { 6363 struct ui_out *uiout = current_uiout; 6364 6365 { 6366 ui_out_emit_tuple tuple_emitter (uiout, "bkpt"); 6367 6368 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag); 6369 } 6370 6371 /* If this breakpoint has custom print function, 6372 it's already printed. Otherwise, print individual 6373 locations, if any. */ 6374 if (b->ops == NULL || b->ops->print_one == NULL) 6375 { 6376 /* If breakpoint has a single location that is disabled, we 6377 print it as if it had several locations, since otherwise it's 6378 hard to represent "breakpoint enabled, location disabled" 6379 situation. 6380 6381 Note that while hardware watchpoints have several locations 6382 internally, that's not a property exposed to user. */ 6383 if (b->loc 6384 && !is_hardware_watchpoint (b) 6385 && (b->loc->next || !b->loc->enabled)) 6386 { 6387 struct bp_location *loc; 6388 int n = 1; 6389 6390 for (loc = b->loc; loc; loc = loc->next, ++n) 6391 { 6392 ui_out_emit_tuple tuple_emitter (uiout, NULL); 6393 print_one_breakpoint_location (b, loc, n, last_loc, allflag); 6394 } 6395 } 6396 } 6397 } 6398 6399 static int 6400 breakpoint_address_bits (struct breakpoint *b) 6401 { 6402 int print_address_bits = 0; 6403 struct bp_location *loc; 6404 6405 /* Software watchpoints that aren't watching memory don't have an 6406 address to print. */ 6407 if (is_no_memory_software_watchpoint (b)) 6408 return 0; 6409 6410 for (loc = b->loc; loc; loc = loc->next) 6411 { 6412 int addr_bit; 6413 6414 addr_bit = gdbarch_addr_bit (loc->gdbarch); 6415 if (addr_bit > print_address_bits) 6416 print_address_bits = addr_bit; 6417 } 6418 6419 return print_address_bits; 6420 } 6421 6422 /* See breakpoint.h. */ 6423 6424 void 6425 print_breakpoint (breakpoint *b) 6426 { 6427 struct bp_location *dummy_loc = NULL; 6428 print_one_breakpoint (b, &dummy_loc, 0); 6429 } 6430 6431 /* Return true if this breakpoint was set by the user, false if it is 6432 internal or momentary. */ 6433 6434 int 6435 user_breakpoint_p (struct breakpoint *b) 6436 { 6437 return b->number > 0; 6438 } 6439 6440 /* See breakpoint.h. */ 6441 6442 int 6443 pending_breakpoint_p (struct breakpoint *b) 6444 { 6445 return b->loc == NULL; 6446 } 6447 6448 /* Print information on user settable breakpoint (watchpoint, etc) 6449 number BNUM. If BNUM is -1 print all user-settable breakpoints. 6450 If ALLFLAG is non-zero, include non-user-settable breakpoints. If 6451 FILTER is non-NULL, call it on each breakpoint and only include the 6452 ones for which it returns non-zero. Return the total number of 6453 breakpoints listed. */ 6454 6455 static int 6456 breakpoint_1 (const char *args, int allflag, 6457 int (*filter) (const struct breakpoint *)) 6458 { 6459 struct breakpoint *b; 6460 struct bp_location *last_loc = NULL; 6461 int nr_printable_breakpoints; 6462 struct value_print_options opts; 6463 int print_address_bits = 0; 6464 int print_type_col_width = 14; 6465 struct ui_out *uiout = current_uiout; 6466 6467 get_user_print_options (&opts); 6468 6469 /* Compute the number of rows in the table, as well as the size 6470 required for address fields. */ 6471 nr_printable_breakpoints = 0; 6472 ALL_BREAKPOINTS (b) 6473 { 6474 /* If we have a filter, only list the breakpoints it accepts. */ 6475 if (filter && !filter (b)) 6476 continue; 6477 6478 /* If we have an "args" string, it is a list of breakpoints to 6479 accept. Skip the others. */ 6480 if (args != NULL && *args != '\0') 6481 { 6482 if (allflag && parse_and_eval_long (args) != b->number) 6483 continue; 6484 if (!allflag && !number_is_in_list (args, b->number)) 6485 continue; 6486 } 6487 6488 if (allflag || user_breakpoint_p (b)) 6489 { 6490 int addr_bit, type_len; 6491 6492 addr_bit = breakpoint_address_bits (b); 6493 if (addr_bit > print_address_bits) 6494 print_address_bits = addr_bit; 6495 6496 type_len = strlen (bptype_string (b->type)); 6497 if (type_len > print_type_col_width) 6498 print_type_col_width = type_len; 6499 6500 nr_printable_breakpoints++; 6501 } 6502 } 6503 6504 { 6505 ui_out_emit_table table_emitter (uiout, 6506 opts.addressprint ? 6 : 5, 6507 nr_printable_breakpoints, 6508 "BreakpointTable"); 6509 6510 if (nr_printable_breakpoints > 0) 6511 annotate_breakpoints_headers (); 6512 if (nr_printable_breakpoints > 0) 6513 annotate_field (0); 6514 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */ 6515 if (nr_printable_breakpoints > 0) 6516 annotate_field (1); 6517 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */ 6518 if (nr_printable_breakpoints > 0) 6519 annotate_field (2); 6520 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */ 6521 if (nr_printable_breakpoints > 0) 6522 annotate_field (3); 6523 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */ 6524 if (opts.addressprint) 6525 { 6526 if (nr_printable_breakpoints > 0) 6527 annotate_field (4); 6528 if (print_address_bits <= 32) 6529 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */ 6530 else 6531 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */ 6532 } 6533 if (nr_printable_breakpoints > 0) 6534 annotate_field (5); 6535 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */ 6536 uiout->table_body (); 6537 if (nr_printable_breakpoints > 0) 6538 annotate_breakpoints_table (); 6539 6540 ALL_BREAKPOINTS (b) 6541 { 6542 QUIT; 6543 /* If we have a filter, only list the breakpoints it accepts. */ 6544 if (filter && !filter (b)) 6545 continue; 6546 6547 /* If we have an "args" string, it is a list of breakpoints to 6548 accept. Skip the others. */ 6549 6550 if (args != NULL && *args != '\0') 6551 { 6552 if (allflag) /* maintenance info breakpoint */ 6553 { 6554 if (parse_and_eval_long (args) != b->number) 6555 continue; 6556 } 6557 else /* all others */ 6558 { 6559 if (!number_is_in_list (args, b->number)) 6560 continue; 6561 } 6562 } 6563 /* We only print out user settable breakpoints unless the 6564 allflag is set. */ 6565 if (allflag || user_breakpoint_p (b)) 6566 print_one_breakpoint (b, &last_loc, allflag); 6567 } 6568 } 6569 6570 if (nr_printable_breakpoints == 0) 6571 { 6572 /* If there's a filter, let the caller decide how to report 6573 empty list. */ 6574 if (!filter) 6575 { 6576 if (args == NULL || *args == '\0') 6577 uiout->message ("No breakpoints or watchpoints.\n"); 6578 else 6579 uiout->message ("No breakpoint or watchpoint matching '%s'.\n", 6580 args); 6581 } 6582 } 6583 else 6584 { 6585 if (last_loc && !server_command) 6586 set_next_address (last_loc->gdbarch, last_loc->address); 6587 } 6588 6589 /* FIXME? Should this be moved up so that it is only called when 6590 there have been breakpoints? */ 6591 annotate_breakpoints_table_end (); 6592 6593 return nr_printable_breakpoints; 6594 } 6595 6596 /* Display the value of default-collect in a way that is generally 6597 compatible with the breakpoint list. */ 6598 6599 static void 6600 default_collect_info (void) 6601 { 6602 struct ui_out *uiout = current_uiout; 6603 6604 /* If it has no value (which is frequently the case), say nothing; a 6605 message like "No default-collect." gets in user's face when it's 6606 not wanted. */ 6607 if (!*default_collect) 6608 return; 6609 6610 /* The following phrase lines up nicely with per-tracepoint collect 6611 actions. */ 6612 uiout->text ("default collect "); 6613 uiout->field_string ("default-collect", default_collect); 6614 uiout->text (" \n"); 6615 } 6616 6617 static void 6618 info_breakpoints_command (const char *args, int from_tty) 6619 { 6620 breakpoint_1 (args, 0, NULL); 6621 6622 default_collect_info (); 6623 } 6624 6625 static void 6626 info_watchpoints_command (const char *args, int from_tty) 6627 { 6628 int num_printed = breakpoint_1 (args, 0, is_watchpoint); 6629 struct ui_out *uiout = current_uiout; 6630 6631 if (num_printed == 0) 6632 { 6633 if (args == NULL || *args == '\0') 6634 uiout->message ("No watchpoints.\n"); 6635 else 6636 uiout->message ("No watchpoint matching '%s'.\n", args); 6637 } 6638 } 6639 6640 static void 6641 maintenance_info_breakpoints (const char *args, int from_tty) 6642 { 6643 breakpoint_1 (args, 1, NULL); 6644 6645 default_collect_info (); 6646 } 6647 6648 static int 6649 breakpoint_has_pc (struct breakpoint *b, 6650 struct program_space *pspace, 6651 CORE_ADDR pc, struct obj_section *section) 6652 { 6653 struct bp_location *bl = b->loc; 6654 6655 for (; bl; bl = bl->next) 6656 { 6657 if (bl->pspace == pspace 6658 && bl->address == pc 6659 && (!overlay_debugging || bl->section == section)) 6660 return 1; 6661 } 6662 return 0; 6663 } 6664 6665 /* Print a message describing any user-breakpoints set at PC. This 6666 concerns with logical breakpoints, so we match program spaces, not 6667 address spaces. */ 6668 6669 static void 6670 describe_other_breakpoints (struct gdbarch *gdbarch, 6671 struct program_space *pspace, CORE_ADDR pc, 6672 struct obj_section *section, int thread) 6673 { 6674 int others = 0; 6675 struct breakpoint *b; 6676 6677 ALL_BREAKPOINTS (b) 6678 others += (user_breakpoint_p (b) 6679 && breakpoint_has_pc (b, pspace, pc, section)); 6680 if (others > 0) 6681 { 6682 if (others == 1) 6683 printf_filtered (_("Note: breakpoint ")); 6684 else /* if (others == ???) */ 6685 printf_filtered (_("Note: breakpoints ")); 6686 ALL_BREAKPOINTS (b) 6687 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section)) 6688 { 6689 others--; 6690 printf_filtered ("%d", b->number); 6691 if (b->thread == -1 && thread != -1) 6692 printf_filtered (" (all threads)"); 6693 else if (b->thread != -1) 6694 printf_filtered (" (thread %d)", b->thread); 6695 printf_filtered ("%s%s ", 6696 ((b->enable_state == bp_disabled 6697 || b->enable_state == bp_call_disabled) 6698 ? " (disabled)" 6699 : ""), 6700 (others > 1) ? "," 6701 : ((others == 1) ? " and" : "")); 6702 } 6703 printf_filtered (_("also set at pc ")); 6704 fputs_styled (paddress (gdbarch, pc), address_style.style (), gdb_stdout); 6705 printf_filtered (".\n"); 6706 } 6707 } 6708 6709 6710 /* Return true iff it is meaningful to use the address member of 6711 BPT locations. For some breakpoint types, the locations' address members 6712 are irrelevant and it makes no sense to attempt to compare them to other 6713 addresses (or use them for any other purpose either). 6714 6715 More specifically, each of the following breakpoint types will 6716 always have a zero valued location address and we don't want to mark 6717 breakpoints of any of these types to be a duplicate of an actual 6718 breakpoint location at address zero: 6719 6720 bp_watchpoint 6721 bp_catchpoint 6722 6723 */ 6724 6725 static int 6726 breakpoint_address_is_meaningful (struct breakpoint *bpt) 6727 { 6728 enum bptype type = bpt->type; 6729 6730 return (type != bp_watchpoint && type != bp_catchpoint); 6731 } 6732 6733 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns 6734 true if LOC1 and LOC2 represent the same watchpoint location. */ 6735 6736 static int 6737 watchpoint_locations_match (struct bp_location *loc1, 6738 struct bp_location *loc2) 6739 { 6740 struct watchpoint *w1 = (struct watchpoint *) loc1->owner; 6741 struct watchpoint *w2 = (struct watchpoint *) loc2->owner; 6742 6743 /* Both of them must exist. */ 6744 gdb_assert (w1 != NULL); 6745 gdb_assert (w2 != NULL); 6746 6747 /* If the target can evaluate the condition expression in hardware, 6748 then we we need to insert both watchpoints even if they are at 6749 the same place. Otherwise the watchpoint will only trigger when 6750 the condition of whichever watchpoint was inserted evaluates to 6751 true, not giving a chance for GDB to check the condition of the 6752 other watchpoint. */ 6753 if ((w1->cond_exp 6754 && target_can_accel_watchpoint_condition (loc1->address, 6755 loc1->length, 6756 loc1->watchpoint_type, 6757 w1->cond_exp.get ())) 6758 || (w2->cond_exp 6759 && target_can_accel_watchpoint_condition (loc2->address, 6760 loc2->length, 6761 loc2->watchpoint_type, 6762 w2->cond_exp.get ()))) 6763 return 0; 6764 6765 /* Note that this checks the owner's type, not the location's. In 6766 case the target does not support read watchpoints, but does 6767 support access watchpoints, we'll have bp_read_watchpoint 6768 watchpoints with hw_access locations. Those should be considered 6769 duplicates of hw_read locations. The hw_read locations will 6770 become hw_access locations later. */ 6771 return (loc1->owner->type == loc2->owner->type 6772 && loc1->pspace->aspace == loc2->pspace->aspace 6773 && loc1->address == loc2->address 6774 && loc1->length == loc2->length); 6775 } 6776 6777 /* See breakpoint.h. */ 6778 6779 int 6780 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1, 6781 const address_space *aspace2, CORE_ADDR addr2) 6782 { 6783 return ((gdbarch_has_global_breakpoints (target_gdbarch ()) 6784 || aspace1 == aspace2) 6785 && addr1 == addr2); 6786 } 6787 6788 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by 6789 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1 6790 matches ASPACE2. On targets that have global breakpoints, the address 6791 space doesn't really matter. */ 6792 6793 static int 6794 breakpoint_address_match_range (const address_space *aspace1, 6795 CORE_ADDR addr1, 6796 int len1, const address_space *aspace2, 6797 CORE_ADDR addr2) 6798 { 6799 return ((gdbarch_has_global_breakpoints (target_gdbarch ()) 6800 || aspace1 == aspace2) 6801 && addr2 >= addr1 && addr2 < addr1 + len1); 6802 } 6803 6804 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be 6805 a ranged breakpoint. In most targets, a match happens only if ASPACE 6806 matches the breakpoint's address space. On targets that have global 6807 breakpoints, the address space doesn't really matter. */ 6808 6809 static int 6810 breakpoint_location_address_match (struct bp_location *bl, 6811 const address_space *aspace, 6812 CORE_ADDR addr) 6813 { 6814 return (breakpoint_address_match (bl->pspace->aspace, bl->address, 6815 aspace, addr) 6816 || (bl->length 6817 && breakpoint_address_match_range (bl->pspace->aspace, 6818 bl->address, bl->length, 6819 aspace, addr))); 6820 } 6821 6822 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps 6823 breakpoint BL. BL may be a ranged breakpoint. In most targets, a 6824 match happens only if ASPACE matches the breakpoint's address 6825 space. On targets that have global breakpoints, the address space 6826 doesn't really matter. */ 6827 6828 static int 6829 breakpoint_location_address_range_overlap (struct bp_location *bl, 6830 const address_space *aspace, 6831 CORE_ADDR addr, int len) 6832 { 6833 if (gdbarch_has_global_breakpoints (target_gdbarch ()) 6834 || bl->pspace->aspace == aspace) 6835 { 6836 int bl_len = bl->length != 0 ? bl->length : 1; 6837 6838 if (mem_ranges_overlap (addr, len, bl->address, bl_len)) 6839 return 1; 6840 } 6841 return 0; 6842 } 6843 6844 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly. 6845 Then, if LOC1 and LOC2 represent the same tracepoint location, returns 6846 true, otherwise returns false. */ 6847 6848 static int 6849 tracepoint_locations_match (struct bp_location *loc1, 6850 struct bp_location *loc2) 6851 { 6852 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner)) 6853 /* Since tracepoint locations are never duplicated with others', tracepoint 6854 locations at the same address of different tracepoints are regarded as 6855 different locations. */ 6856 return (loc1->address == loc2->address && loc1->owner == loc2->owner); 6857 else 6858 return 0; 6859 } 6860 6861 /* Assuming LOC1 and LOC2's types' have meaningful target addresses 6862 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2 6863 represent the same location. */ 6864 6865 static int 6866 breakpoint_locations_match (struct bp_location *loc1, 6867 struct bp_location *loc2) 6868 { 6869 int hw_point1, hw_point2; 6870 6871 /* Both of them must not be in moribund_locations. */ 6872 gdb_assert (loc1->owner != NULL); 6873 gdb_assert (loc2->owner != NULL); 6874 6875 hw_point1 = is_hardware_watchpoint (loc1->owner); 6876 hw_point2 = is_hardware_watchpoint (loc2->owner); 6877 6878 if (hw_point1 != hw_point2) 6879 return 0; 6880 else if (hw_point1) 6881 return watchpoint_locations_match (loc1, loc2); 6882 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner)) 6883 return tracepoint_locations_match (loc1, loc2); 6884 else 6885 /* We compare bp_location.length in order to cover ranged breakpoints. */ 6886 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address, 6887 loc2->pspace->aspace, loc2->address) 6888 && loc1->length == loc2->length); 6889 } 6890 6891 static void 6892 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr, 6893 int bnum, int have_bnum) 6894 { 6895 /* The longest string possibly returned by hex_string_custom 6896 is 50 chars. These must be at least that big for safety. */ 6897 char astr1[64]; 6898 char astr2[64]; 6899 6900 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8)); 6901 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8)); 6902 if (have_bnum) 6903 warning (_("Breakpoint %d address previously adjusted from %s to %s."), 6904 bnum, astr1, astr2); 6905 else 6906 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2); 6907 } 6908 6909 /* Adjust a breakpoint's address to account for architectural 6910 constraints on breakpoint placement. Return the adjusted address. 6911 Note: Very few targets require this kind of adjustment. For most 6912 targets, this function is simply the identity function. */ 6913 6914 static CORE_ADDR 6915 adjust_breakpoint_address (struct gdbarch *gdbarch, 6916 CORE_ADDR bpaddr, enum bptype bptype) 6917 { 6918 if (bptype == bp_watchpoint 6919 || bptype == bp_hardware_watchpoint 6920 || bptype == bp_read_watchpoint 6921 || bptype == bp_access_watchpoint 6922 || bptype == bp_catchpoint) 6923 { 6924 /* Watchpoints and the various bp_catch_* eventpoints should not 6925 have their addresses modified. */ 6926 return bpaddr; 6927 } 6928 else if (bptype == bp_single_step) 6929 { 6930 /* Single-step breakpoints should not have their addresses 6931 modified. If there's any architectural constrain that 6932 applies to this address, then it should have already been 6933 taken into account when the breakpoint was created in the 6934 first place. If we didn't do this, stepping through e.g., 6935 Thumb-2 IT blocks would break. */ 6936 return bpaddr; 6937 } 6938 else 6939 { 6940 CORE_ADDR adjusted_bpaddr = bpaddr; 6941 6942 if (gdbarch_adjust_breakpoint_address_p (gdbarch)) 6943 { 6944 /* Some targets have architectural constraints on the placement 6945 of breakpoint instructions. Obtain the adjusted address. */ 6946 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr); 6947 } 6948 6949 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr); 6950 6951 /* An adjusted breakpoint address can significantly alter 6952 a user's expectations. Print a warning if an adjustment 6953 is required. */ 6954 if (adjusted_bpaddr != bpaddr) 6955 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0); 6956 6957 return adjusted_bpaddr; 6958 } 6959 } 6960 6961 bp_location::bp_location (breakpoint *owner) 6962 { 6963 bp_location *loc = this; 6964 6965 loc->owner = owner; 6966 loc->cond_bytecode = NULL; 6967 loc->shlib_disabled = 0; 6968 loc->enabled = 1; 6969 6970 switch (owner->type) 6971 { 6972 case bp_breakpoint: 6973 case bp_single_step: 6974 case bp_until: 6975 case bp_finish: 6976 case bp_longjmp: 6977 case bp_longjmp_resume: 6978 case bp_longjmp_call_dummy: 6979 case bp_exception: 6980 case bp_exception_resume: 6981 case bp_step_resume: 6982 case bp_hp_step_resume: 6983 case bp_watchpoint_scope: 6984 case bp_call_dummy: 6985 case bp_std_terminate: 6986 case bp_shlib_event: 6987 case bp_thread_event: 6988 case bp_overlay_event: 6989 case bp_jit_event: 6990 case bp_longjmp_master: 6991 case bp_std_terminate_master: 6992 case bp_exception_master: 6993 case bp_gnu_ifunc_resolver: 6994 case bp_gnu_ifunc_resolver_return: 6995 case bp_dprintf: 6996 loc->loc_type = bp_loc_software_breakpoint; 6997 mark_breakpoint_location_modified (loc); 6998 break; 6999 case bp_hardware_breakpoint: 7000 loc->loc_type = bp_loc_hardware_breakpoint; 7001 mark_breakpoint_location_modified (loc); 7002 break; 7003 case bp_hardware_watchpoint: 7004 case bp_read_watchpoint: 7005 case bp_access_watchpoint: 7006 loc->loc_type = bp_loc_hardware_watchpoint; 7007 break; 7008 case bp_watchpoint: 7009 case bp_catchpoint: 7010 case bp_tracepoint: 7011 case bp_fast_tracepoint: 7012 case bp_static_tracepoint: 7013 loc->loc_type = bp_loc_other; 7014 break; 7015 default: 7016 internal_error (__FILE__, __LINE__, _("unknown breakpoint type")); 7017 } 7018 7019 loc->refc = 1; 7020 } 7021 7022 /* Allocate a struct bp_location. */ 7023 7024 static struct bp_location * 7025 allocate_bp_location (struct breakpoint *bpt) 7026 { 7027 return bpt->ops->allocate_location (bpt); 7028 } 7029 7030 static void 7031 free_bp_location (struct bp_location *loc) 7032 { 7033 delete loc; 7034 } 7035 7036 /* Increment reference count. */ 7037 7038 static void 7039 incref_bp_location (struct bp_location *bl) 7040 { 7041 ++bl->refc; 7042 } 7043 7044 /* Decrement reference count. If the reference count reaches 0, 7045 destroy the bp_location. Sets *BLP to NULL. */ 7046 7047 static void 7048 decref_bp_location (struct bp_location **blp) 7049 { 7050 gdb_assert ((*blp)->refc > 0); 7051 7052 if (--(*blp)->refc == 0) 7053 free_bp_location (*blp); 7054 *blp = NULL; 7055 } 7056 7057 /* Add breakpoint B at the end of the global breakpoint chain. */ 7058 7059 static breakpoint * 7060 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b) 7061 { 7062 struct breakpoint *b1; 7063 struct breakpoint *result = b.get (); 7064 7065 /* Add this breakpoint to the end of the chain so that a list of 7066 breakpoints will come out in order of increasing numbers. */ 7067 7068 b1 = breakpoint_chain; 7069 if (b1 == 0) 7070 breakpoint_chain = b.release (); 7071 else 7072 { 7073 while (b1->next) 7074 b1 = b1->next; 7075 b1->next = b.release (); 7076 } 7077 7078 return result; 7079 } 7080 7081 /* Initializes breakpoint B with type BPTYPE and no locations yet. */ 7082 7083 static void 7084 init_raw_breakpoint_without_location (struct breakpoint *b, 7085 struct gdbarch *gdbarch, 7086 enum bptype bptype, 7087 const struct breakpoint_ops *ops) 7088 { 7089 gdb_assert (ops != NULL); 7090 7091 b->ops = ops; 7092 b->type = bptype; 7093 b->gdbarch = gdbarch; 7094 b->language = current_language->la_language; 7095 b->input_radix = input_radix; 7096 b->related_breakpoint = b; 7097 } 7098 7099 /* Helper to set_raw_breakpoint below. Creates a breakpoint 7100 that has type BPTYPE and has no locations as yet. */ 7101 7102 static struct breakpoint * 7103 set_raw_breakpoint_without_location (struct gdbarch *gdbarch, 7104 enum bptype bptype, 7105 const struct breakpoint_ops *ops) 7106 { 7107 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype); 7108 7109 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops); 7110 return add_to_breakpoint_chain (std::move (b)); 7111 } 7112 7113 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function 7114 resolutions should be made as the user specified the location explicitly 7115 enough. */ 7116 7117 static void 7118 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc) 7119 { 7120 gdb_assert (loc->owner != NULL); 7121 7122 if (loc->owner->type == bp_breakpoint 7123 || loc->owner->type == bp_hardware_breakpoint 7124 || is_tracepoint (loc->owner)) 7125 { 7126 const char *function_name; 7127 7128 if (loc->msymbol != NULL 7129 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc 7130 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc) 7131 && !explicit_loc) 7132 { 7133 struct breakpoint *b = loc->owner; 7134 7135 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol); 7136 7137 if (b->type == bp_breakpoint && b->loc == loc 7138 && loc->next == NULL && b->related_breakpoint == b) 7139 { 7140 /* Create only the whole new breakpoint of this type but do not 7141 mess more complicated breakpoints with multiple locations. */ 7142 b->type = bp_gnu_ifunc_resolver; 7143 /* Remember the resolver's address for use by the return 7144 breakpoint. */ 7145 loc->related_address = loc->address; 7146 } 7147 } 7148 else 7149 find_pc_partial_function (loc->address, &function_name, NULL, NULL); 7150 7151 if (function_name) 7152 loc->function_name = xstrdup (function_name); 7153 } 7154 } 7155 7156 /* Attempt to determine architecture of location identified by SAL. */ 7157 struct gdbarch * 7158 get_sal_arch (struct symtab_and_line sal) 7159 { 7160 if (sal.section) 7161 return get_objfile_arch (sal.section->objfile); 7162 if (sal.symtab) 7163 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab)); 7164 7165 return NULL; 7166 } 7167 7168 /* Low level routine for partially initializing a breakpoint of type 7169 BPTYPE. The newly created breakpoint's address, section, source 7170 file name, and line number are provided by SAL. 7171 7172 It is expected that the caller will complete the initialization of 7173 the newly created breakpoint struct as well as output any status 7174 information regarding the creation of a new breakpoint. */ 7175 7176 static void 7177 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch, 7178 struct symtab_and_line sal, enum bptype bptype, 7179 const struct breakpoint_ops *ops) 7180 { 7181 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops); 7182 7183 add_location_to_breakpoint (b, &sal); 7184 7185 if (bptype != bp_catchpoint) 7186 gdb_assert (sal.pspace != NULL); 7187 7188 /* Store the program space that was used to set the breakpoint, 7189 except for ordinary breakpoints, which are independent of the 7190 program space. */ 7191 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint) 7192 b->pspace = sal.pspace; 7193 } 7194 7195 /* set_raw_breakpoint is a low level routine for allocating and 7196 partially initializing a breakpoint of type BPTYPE. The newly 7197 created breakpoint's address, section, source file name, and line 7198 number are provided by SAL. The newly created and partially 7199 initialized breakpoint is added to the breakpoint chain and 7200 is also returned as the value of this function. 7201 7202 It is expected that the caller will complete the initialization of 7203 the newly created breakpoint struct as well as output any status 7204 information regarding the creation of a new breakpoint. In 7205 particular, set_raw_breakpoint does NOT set the breakpoint 7206 number! Care should be taken to not allow an error to occur 7207 prior to completing the initialization of the breakpoint. If this 7208 should happen, a bogus breakpoint will be left on the chain. */ 7209 7210 struct breakpoint * 7211 set_raw_breakpoint (struct gdbarch *gdbarch, 7212 struct symtab_and_line sal, enum bptype bptype, 7213 const struct breakpoint_ops *ops) 7214 { 7215 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype); 7216 7217 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops); 7218 return add_to_breakpoint_chain (std::move (b)); 7219 } 7220 7221 /* Call this routine when stepping and nexting to enable a breakpoint 7222 if we do a longjmp() or 'throw' in TP. FRAME is the frame which 7223 initiated the operation. */ 7224 7225 void 7226 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame) 7227 { 7228 struct breakpoint *b, *b_tmp; 7229 int thread = tp->global_num; 7230 7231 /* To avoid having to rescan all objfile symbols at every step, 7232 we maintain a list of continually-inserted but always disabled 7233 longjmp "master" breakpoints. Here, we simply create momentary 7234 clones of those and enable them for the requested thread. */ 7235 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7236 if (b->pspace == current_program_space 7237 && (b->type == bp_longjmp_master 7238 || b->type == bp_exception_master)) 7239 { 7240 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception; 7241 struct breakpoint *clone; 7242 7243 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again 7244 after their removal. */ 7245 clone = momentary_breakpoint_from_master (b, type, 7246 &momentary_breakpoint_ops, 1); 7247 clone->thread = thread; 7248 } 7249 7250 tp->initiating_frame = frame; 7251 } 7252 7253 /* Delete all longjmp breakpoints from THREAD. */ 7254 void 7255 delete_longjmp_breakpoint (int thread) 7256 { 7257 struct breakpoint *b, *b_tmp; 7258 7259 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7260 if (b->type == bp_longjmp || b->type == bp_exception) 7261 { 7262 if (b->thread == thread) 7263 delete_breakpoint (b); 7264 } 7265 } 7266 7267 void 7268 delete_longjmp_breakpoint_at_next_stop (int thread) 7269 { 7270 struct breakpoint *b, *b_tmp; 7271 7272 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7273 if (b->type == bp_longjmp || b->type == bp_exception) 7274 { 7275 if (b->thread == thread) 7276 b->disposition = disp_del_at_next_stop; 7277 } 7278 } 7279 7280 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for 7281 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return 7282 pointer to any of them. Return NULL if this system cannot place longjmp 7283 breakpoints. */ 7284 7285 struct breakpoint * 7286 set_longjmp_breakpoint_for_call_dummy (void) 7287 { 7288 struct breakpoint *b, *retval = NULL; 7289 7290 ALL_BREAKPOINTS (b) 7291 if (b->pspace == current_program_space && b->type == bp_longjmp_master) 7292 { 7293 struct breakpoint *new_b; 7294 7295 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy, 7296 &momentary_breakpoint_ops, 7297 1); 7298 new_b->thread = inferior_thread ()->global_num; 7299 7300 /* Link NEW_B into the chain of RETVAL breakpoints. */ 7301 7302 gdb_assert (new_b->related_breakpoint == new_b); 7303 if (retval == NULL) 7304 retval = new_b; 7305 new_b->related_breakpoint = retval; 7306 while (retval->related_breakpoint != new_b->related_breakpoint) 7307 retval = retval->related_breakpoint; 7308 retval->related_breakpoint = new_b; 7309 } 7310 7311 return retval; 7312 } 7313 7314 /* Verify all existing dummy frames and their associated breakpoints for 7315 TP. Remove those which can no longer be found in the current frame 7316 stack. 7317 7318 You should call this function only at places where it is safe to currently 7319 unwind the whole stack. Failed stack unwind would discard live dummy 7320 frames. */ 7321 7322 void 7323 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp) 7324 { 7325 struct breakpoint *b, *b_tmp; 7326 7327 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7328 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num) 7329 { 7330 struct breakpoint *dummy_b = b->related_breakpoint; 7331 7332 while (dummy_b != b && dummy_b->type != bp_call_dummy) 7333 dummy_b = dummy_b->related_breakpoint; 7334 if (dummy_b->type != bp_call_dummy 7335 || frame_find_by_id (dummy_b->frame_id) != NULL) 7336 continue; 7337 7338 dummy_frame_discard (dummy_b->frame_id, tp); 7339 7340 while (b->related_breakpoint != b) 7341 { 7342 if (b_tmp == b->related_breakpoint) 7343 b_tmp = b->related_breakpoint->next; 7344 delete_breakpoint (b->related_breakpoint); 7345 } 7346 delete_breakpoint (b); 7347 } 7348 } 7349 7350 void 7351 enable_overlay_breakpoints (void) 7352 { 7353 struct breakpoint *b; 7354 7355 ALL_BREAKPOINTS (b) 7356 if (b->type == bp_overlay_event) 7357 { 7358 b->enable_state = bp_enabled; 7359 update_global_location_list (UGLL_MAY_INSERT); 7360 overlay_events_enabled = 1; 7361 } 7362 } 7363 7364 void 7365 disable_overlay_breakpoints (void) 7366 { 7367 struct breakpoint *b; 7368 7369 ALL_BREAKPOINTS (b) 7370 if (b->type == bp_overlay_event) 7371 { 7372 b->enable_state = bp_disabled; 7373 update_global_location_list (UGLL_DONT_INSERT); 7374 overlay_events_enabled = 0; 7375 } 7376 } 7377 7378 /* Set an active std::terminate breakpoint for each std::terminate 7379 master breakpoint. */ 7380 void 7381 set_std_terminate_breakpoint (void) 7382 { 7383 struct breakpoint *b, *b_tmp; 7384 7385 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7386 if (b->pspace == current_program_space 7387 && b->type == bp_std_terminate_master) 7388 { 7389 momentary_breakpoint_from_master (b, bp_std_terminate, 7390 &momentary_breakpoint_ops, 1); 7391 } 7392 } 7393 7394 /* Delete all the std::terminate breakpoints. */ 7395 void 7396 delete_std_terminate_breakpoint (void) 7397 { 7398 struct breakpoint *b, *b_tmp; 7399 7400 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7401 if (b->type == bp_std_terminate) 7402 delete_breakpoint (b); 7403 } 7404 7405 struct breakpoint * 7406 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address) 7407 { 7408 struct breakpoint *b; 7409 7410 b = create_internal_breakpoint (gdbarch, address, bp_thread_event, 7411 &internal_breakpoint_ops); 7412 7413 b->enable_state = bp_enabled; 7414 /* location has to be used or breakpoint_re_set will delete me. */ 7415 b->location = new_address_location (b->loc->address, NULL, 0); 7416 7417 update_global_location_list_nothrow (UGLL_MAY_INSERT); 7418 7419 return b; 7420 } 7421 7422 struct lang_and_radix 7423 { 7424 enum language lang; 7425 int radix; 7426 }; 7427 7428 /* Create a breakpoint for JIT code registration and unregistration. */ 7429 7430 struct breakpoint * 7431 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address) 7432 { 7433 return create_internal_breakpoint (gdbarch, address, bp_jit_event, 7434 &internal_breakpoint_ops); 7435 } 7436 7437 /* Remove JIT code registration and unregistration breakpoint(s). */ 7438 7439 void 7440 remove_jit_event_breakpoints (void) 7441 { 7442 struct breakpoint *b, *b_tmp; 7443 7444 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7445 if (b->type == bp_jit_event 7446 && b->loc->pspace == current_program_space) 7447 delete_breakpoint (b); 7448 } 7449 7450 void 7451 remove_solib_event_breakpoints (void) 7452 { 7453 struct breakpoint *b, *b_tmp; 7454 7455 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7456 if (b->type == bp_shlib_event 7457 && b->loc->pspace == current_program_space) 7458 delete_breakpoint (b); 7459 } 7460 7461 /* See breakpoint.h. */ 7462 7463 void 7464 remove_solib_event_breakpoints_at_next_stop (void) 7465 { 7466 struct breakpoint *b, *b_tmp; 7467 7468 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7469 if (b->type == bp_shlib_event 7470 && b->loc->pspace == current_program_space) 7471 b->disposition = disp_del_at_next_stop; 7472 } 7473 7474 /* Helper for create_solib_event_breakpoint / 7475 create_and_insert_solib_event_breakpoint. Allows specifying which 7476 INSERT_MODE to pass through to update_global_location_list. */ 7477 7478 static struct breakpoint * 7479 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address, 7480 enum ugll_insert_mode insert_mode) 7481 { 7482 struct breakpoint *b; 7483 7484 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event, 7485 &internal_breakpoint_ops); 7486 update_global_location_list_nothrow (insert_mode); 7487 return b; 7488 } 7489 7490 struct breakpoint * 7491 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address) 7492 { 7493 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT); 7494 } 7495 7496 /* See breakpoint.h. */ 7497 7498 struct breakpoint * 7499 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address) 7500 { 7501 struct breakpoint *b; 7502 7503 /* Explicitly tell update_global_location_list to insert 7504 locations. */ 7505 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT); 7506 if (!b->loc->inserted) 7507 { 7508 delete_breakpoint (b); 7509 return NULL; 7510 } 7511 return b; 7512 } 7513 7514 /* Disable any breakpoints that are on code in shared libraries. Only 7515 apply to enabled breakpoints, disabled ones can just stay disabled. */ 7516 7517 void 7518 disable_breakpoints_in_shlibs (void) 7519 { 7520 struct bp_location *loc, **locp_tmp; 7521 7522 ALL_BP_LOCATIONS (loc, locp_tmp) 7523 { 7524 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */ 7525 struct breakpoint *b = loc->owner; 7526 7527 /* We apply the check to all breakpoints, including disabled for 7528 those with loc->duplicate set. This is so that when breakpoint 7529 becomes enabled, or the duplicate is removed, gdb will try to 7530 insert all breakpoints. If we don't set shlib_disabled here, 7531 we'll try to insert those breakpoints and fail. */ 7532 if (((b->type == bp_breakpoint) 7533 || (b->type == bp_jit_event) 7534 || (b->type == bp_hardware_breakpoint) 7535 || (is_tracepoint (b))) 7536 && loc->pspace == current_program_space 7537 && !loc->shlib_disabled 7538 && solib_name_from_address (loc->pspace, loc->address) 7539 ) 7540 { 7541 loc->shlib_disabled = 1; 7542 } 7543 } 7544 } 7545 7546 /* Disable any breakpoints and tracepoints that are in SOLIB upon 7547 notification of unloaded_shlib. Only apply to enabled breakpoints, 7548 disabled ones can just stay disabled. */ 7549 7550 static void 7551 disable_breakpoints_in_unloaded_shlib (struct so_list *solib) 7552 { 7553 struct bp_location *loc, **locp_tmp; 7554 int disabled_shlib_breaks = 0; 7555 7556 ALL_BP_LOCATIONS (loc, locp_tmp) 7557 { 7558 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */ 7559 struct breakpoint *b = loc->owner; 7560 7561 if (solib->pspace == loc->pspace 7562 && !loc->shlib_disabled 7563 && (((b->type == bp_breakpoint 7564 || b->type == bp_jit_event 7565 || b->type == bp_hardware_breakpoint) 7566 && (loc->loc_type == bp_loc_hardware_breakpoint 7567 || loc->loc_type == bp_loc_software_breakpoint)) 7568 || is_tracepoint (b)) 7569 && solib_contains_address_p (solib, loc->address)) 7570 { 7571 loc->shlib_disabled = 1; 7572 /* At this point, we cannot rely on remove_breakpoint 7573 succeeding so we must mark the breakpoint as not inserted 7574 to prevent future errors occurring in remove_breakpoints. */ 7575 loc->inserted = 0; 7576 7577 /* This may cause duplicate notifications for the same breakpoint. */ 7578 gdb::observers::breakpoint_modified.notify (b); 7579 7580 if (!disabled_shlib_breaks) 7581 { 7582 target_terminal::ours_for_output (); 7583 warning (_("Temporarily disabling breakpoints " 7584 "for unloaded shared library \"%s\""), 7585 solib->so_name); 7586 } 7587 disabled_shlib_breaks = 1; 7588 } 7589 } 7590 } 7591 7592 /* Disable any breakpoints and tracepoints in OBJFILE upon 7593 notification of free_objfile. Only apply to enabled breakpoints, 7594 disabled ones can just stay disabled. */ 7595 7596 static void 7597 disable_breakpoints_in_freed_objfile (struct objfile *objfile) 7598 { 7599 struct breakpoint *b; 7600 7601 if (objfile == NULL) 7602 return; 7603 7604 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually 7605 managed by the user with add-symbol-file/remove-symbol-file. 7606 Similarly to how breakpoints in shared libraries are handled in 7607 response to "nosharedlibrary", mark breakpoints in such modules 7608 shlib_disabled so they end up uninserted on the next global 7609 location list update. Shared libraries not loaded by the user 7610 aren't handled here -- they're already handled in 7611 disable_breakpoints_in_unloaded_shlib, called by solib.c's 7612 solib_unloaded observer. We skip objfiles that are not 7613 OBJF_SHARED as those aren't considered dynamic objects (e.g. the 7614 main objfile). */ 7615 if ((objfile->flags & OBJF_SHARED) == 0 7616 || (objfile->flags & OBJF_USERLOADED) == 0) 7617 return; 7618 7619 ALL_BREAKPOINTS (b) 7620 { 7621 struct bp_location *loc; 7622 int bp_modified = 0; 7623 7624 if (!is_breakpoint (b) && !is_tracepoint (b)) 7625 continue; 7626 7627 for (loc = b->loc; loc != NULL; loc = loc->next) 7628 { 7629 CORE_ADDR loc_addr = loc->address; 7630 7631 if (loc->loc_type != bp_loc_hardware_breakpoint 7632 && loc->loc_type != bp_loc_software_breakpoint) 7633 continue; 7634 7635 if (loc->shlib_disabled != 0) 7636 continue; 7637 7638 if (objfile->pspace != loc->pspace) 7639 continue; 7640 7641 if (loc->loc_type != bp_loc_hardware_breakpoint 7642 && loc->loc_type != bp_loc_software_breakpoint) 7643 continue; 7644 7645 if (is_addr_in_objfile (loc_addr, objfile)) 7646 { 7647 loc->shlib_disabled = 1; 7648 /* At this point, we don't know whether the object was 7649 unmapped from the inferior or not, so leave the 7650 inserted flag alone. We'll handle failure to 7651 uninsert quietly, in case the object was indeed 7652 unmapped. */ 7653 7654 mark_breakpoint_location_modified (loc); 7655 7656 bp_modified = 1; 7657 } 7658 } 7659 7660 if (bp_modified) 7661 gdb::observers::breakpoint_modified.notify (b); 7662 } 7663 } 7664 7665 /* FORK & VFORK catchpoints. */ 7666 7667 /* An instance of this type is used to represent a fork or vfork 7668 catchpoint. A breakpoint is really of this type iff its ops pointer points 7669 to CATCH_FORK_BREAKPOINT_OPS. */ 7670 7671 struct fork_catchpoint : public breakpoint 7672 { 7673 /* Process id of a child process whose forking triggered this 7674 catchpoint. This field is only valid immediately after this 7675 catchpoint has triggered. */ 7676 ptid_t forked_inferior_pid; 7677 }; 7678 7679 /* Implement the "insert" breakpoint_ops method for fork 7680 catchpoints. */ 7681 7682 static int 7683 insert_catch_fork (struct bp_location *bl) 7684 { 7685 return target_insert_fork_catchpoint (inferior_ptid.pid ()); 7686 } 7687 7688 /* Implement the "remove" breakpoint_ops method for fork 7689 catchpoints. */ 7690 7691 static int 7692 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason) 7693 { 7694 return target_remove_fork_catchpoint (inferior_ptid.pid ()); 7695 } 7696 7697 /* Implement the "breakpoint_hit" breakpoint_ops method for fork 7698 catchpoints. */ 7699 7700 static int 7701 breakpoint_hit_catch_fork (const struct bp_location *bl, 7702 const address_space *aspace, CORE_ADDR bp_addr, 7703 const struct target_waitstatus *ws) 7704 { 7705 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner; 7706 7707 if (ws->kind != TARGET_WAITKIND_FORKED) 7708 return 0; 7709 7710 c->forked_inferior_pid = ws->value.related_pid; 7711 return 1; 7712 } 7713 7714 /* Implement the "print_it" breakpoint_ops method for fork 7715 catchpoints. */ 7716 7717 static enum print_stop_action 7718 print_it_catch_fork (bpstat bs) 7719 { 7720 struct ui_out *uiout = current_uiout; 7721 struct breakpoint *b = bs->breakpoint_at; 7722 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at; 7723 7724 annotate_catchpoint (b->number); 7725 maybe_print_thread_hit_breakpoint (uiout); 7726 if (b->disposition == disp_del) 7727 uiout->text ("Temporary catchpoint "); 7728 else 7729 uiout->text ("Catchpoint "); 7730 if (uiout->is_mi_like_p ()) 7731 { 7732 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK)); 7733 uiout->field_string ("disp", bpdisp_text (b->disposition)); 7734 } 7735 uiout->field_int ("bkptno", b->number); 7736 uiout->text (" (forked process "); 7737 uiout->field_int ("newpid", c->forked_inferior_pid.pid ()); 7738 uiout->text ("), "); 7739 return PRINT_SRC_AND_LOC; 7740 } 7741 7742 /* Implement the "print_one" breakpoint_ops method for fork 7743 catchpoints. */ 7744 7745 static void 7746 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc) 7747 { 7748 struct fork_catchpoint *c = (struct fork_catchpoint *) b; 7749 struct value_print_options opts; 7750 struct ui_out *uiout = current_uiout; 7751 7752 get_user_print_options (&opts); 7753 7754 /* Field 4, the address, is omitted (which makes the columns not 7755 line up too nicely with the headers, but the effect is relatively 7756 readable). */ 7757 if (opts.addressprint) 7758 uiout->field_skip ("addr"); 7759 annotate_field (5); 7760 uiout->text ("fork"); 7761 if (c->forked_inferior_pid != null_ptid) 7762 { 7763 uiout->text (", process "); 7764 uiout->field_int ("what", c->forked_inferior_pid.pid ()); 7765 uiout->spaces (1); 7766 } 7767 7768 if (uiout->is_mi_like_p ()) 7769 uiout->field_string ("catch-type", "fork"); 7770 } 7771 7772 /* Implement the "print_mention" breakpoint_ops method for fork 7773 catchpoints. */ 7774 7775 static void 7776 print_mention_catch_fork (struct breakpoint *b) 7777 { 7778 printf_filtered (_("Catchpoint %d (fork)"), b->number); 7779 } 7780 7781 /* Implement the "print_recreate" breakpoint_ops method for fork 7782 catchpoints. */ 7783 7784 static void 7785 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp) 7786 { 7787 fprintf_unfiltered (fp, "catch fork"); 7788 print_recreate_thread (b, fp); 7789 } 7790 7791 /* The breakpoint_ops structure to be used in fork catchpoints. */ 7792 7793 static struct breakpoint_ops catch_fork_breakpoint_ops; 7794 7795 /* Implement the "insert" breakpoint_ops method for vfork 7796 catchpoints. */ 7797 7798 static int 7799 insert_catch_vfork (struct bp_location *bl) 7800 { 7801 return target_insert_vfork_catchpoint (inferior_ptid.pid ()); 7802 } 7803 7804 /* Implement the "remove" breakpoint_ops method for vfork 7805 catchpoints. */ 7806 7807 static int 7808 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason) 7809 { 7810 return target_remove_vfork_catchpoint (inferior_ptid.pid ()); 7811 } 7812 7813 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork 7814 catchpoints. */ 7815 7816 static int 7817 breakpoint_hit_catch_vfork (const struct bp_location *bl, 7818 const address_space *aspace, CORE_ADDR bp_addr, 7819 const struct target_waitstatus *ws) 7820 { 7821 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner; 7822 7823 if (ws->kind != TARGET_WAITKIND_VFORKED) 7824 return 0; 7825 7826 c->forked_inferior_pid = ws->value.related_pid; 7827 return 1; 7828 } 7829 7830 /* Implement the "print_it" breakpoint_ops method for vfork 7831 catchpoints. */ 7832 7833 static enum print_stop_action 7834 print_it_catch_vfork (bpstat bs) 7835 { 7836 struct ui_out *uiout = current_uiout; 7837 struct breakpoint *b = bs->breakpoint_at; 7838 struct fork_catchpoint *c = (struct fork_catchpoint *) b; 7839 7840 annotate_catchpoint (b->number); 7841 maybe_print_thread_hit_breakpoint (uiout); 7842 if (b->disposition == disp_del) 7843 uiout->text ("Temporary catchpoint "); 7844 else 7845 uiout->text ("Catchpoint "); 7846 if (uiout->is_mi_like_p ()) 7847 { 7848 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK)); 7849 uiout->field_string ("disp", bpdisp_text (b->disposition)); 7850 } 7851 uiout->field_int ("bkptno", b->number); 7852 uiout->text (" (vforked process "); 7853 uiout->field_int ("newpid", c->forked_inferior_pid.pid ()); 7854 uiout->text ("), "); 7855 return PRINT_SRC_AND_LOC; 7856 } 7857 7858 /* Implement the "print_one" breakpoint_ops method for vfork 7859 catchpoints. */ 7860 7861 static void 7862 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc) 7863 { 7864 struct fork_catchpoint *c = (struct fork_catchpoint *) b; 7865 struct value_print_options opts; 7866 struct ui_out *uiout = current_uiout; 7867 7868 get_user_print_options (&opts); 7869 /* Field 4, the address, is omitted (which makes the columns not 7870 line up too nicely with the headers, but the effect is relatively 7871 readable). */ 7872 if (opts.addressprint) 7873 uiout->field_skip ("addr"); 7874 annotate_field (5); 7875 uiout->text ("vfork"); 7876 if (c->forked_inferior_pid != null_ptid) 7877 { 7878 uiout->text (", process "); 7879 uiout->field_int ("what", c->forked_inferior_pid.pid ()); 7880 uiout->spaces (1); 7881 } 7882 7883 if (uiout->is_mi_like_p ()) 7884 uiout->field_string ("catch-type", "vfork"); 7885 } 7886 7887 /* Implement the "print_mention" breakpoint_ops method for vfork 7888 catchpoints. */ 7889 7890 static void 7891 print_mention_catch_vfork (struct breakpoint *b) 7892 { 7893 printf_filtered (_("Catchpoint %d (vfork)"), b->number); 7894 } 7895 7896 /* Implement the "print_recreate" breakpoint_ops method for vfork 7897 catchpoints. */ 7898 7899 static void 7900 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp) 7901 { 7902 fprintf_unfiltered (fp, "catch vfork"); 7903 print_recreate_thread (b, fp); 7904 } 7905 7906 /* The breakpoint_ops structure to be used in vfork catchpoints. */ 7907 7908 static struct breakpoint_ops catch_vfork_breakpoint_ops; 7909 7910 /* An instance of this type is used to represent an solib catchpoint. 7911 A breakpoint is really of this type iff its ops pointer points to 7912 CATCH_SOLIB_BREAKPOINT_OPS. */ 7913 7914 struct solib_catchpoint : public breakpoint 7915 { 7916 ~solib_catchpoint () override; 7917 7918 /* True for "catch load", false for "catch unload". */ 7919 unsigned char is_load; 7920 7921 /* Regular expression to match, if any. COMPILED is only valid when 7922 REGEX is non-NULL. */ 7923 char *regex; 7924 std::unique_ptr<compiled_regex> compiled; 7925 }; 7926 7927 solib_catchpoint::~solib_catchpoint () 7928 { 7929 xfree (this->regex); 7930 } 7931 7932 static int 7933 insert_catch_solib (struct bp_location *ignore) 7934 { 7935 return 0; 7936 } 7937 7938 static int 7939 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason) 7940 { 7941 return 0; 7942 } 7943 7944 static int 7945 breakpoint_hit_catch_solib (const struct bp_location *bl, 7946 const address_space *aspace, 7947 CORE_ADDR bp_addr, 7948 const struct target_waitstatus *ws) 7949 { 7950 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner; 7951 struct breakpoint *other; 7952 7953 if (ws->kind == TARGET_WAITKIND_LOADED) 7954 return 1; 7955 7956 ALL_BREAKPOINTS (other) 7957 { 7958 struct bp_location *other_bl; 7959 7960 if (other == bl->owner) 7961 continue; 7962 7963 if (other->type != bp_shlib_event) 7964 continue; 7965 7966 if (self->pspace != NULL && other->pspace != self->pspace) 7967 continue; 7968 7969 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next) 7970 { 7971 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws)) 7972 return 1; 7973 } 7974 } 7975 7976 return 0; 7977 } 7978 7979 static void 7980 check_status_catch_solib (struct bpstats *bs) 7981 { 7982 struct solib_catchpoint *self 7983 = (struct solib_catchpoint *) bs->breakpoint_at; 7984 7985 if (self->is_load) 7986 { 7987 for (so_list *iter : current_program_space->added_solibs) 7988 { 7989 if (!self->regex 7990 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0) 7991 return; 7992 } 7993 } 7994 else 7995 { 7996 for (const std::string &iter : current_program_space->deleted_solibs) 7997 { 7998 if (!self->regex 7999 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0) 8000 return; 8001 } 8002 } 8003 8004 bs->stop = 0; 8005 bs->print_it = print_it_noop; 8006 } 8007 8008 static enum print_stop_action 8009 print_it_catch_solib (bpstat bs) 8010 { 8011 struct breakpoint *b = bs->breakpoint_at; 8012 struct ui_out *uiout = current_uiout; 8013 8014 annotate_catchpoint (b->number); 8015 maybe_print_thread_hit_breakpoint (uiout); 8016 if (b->disposition == disp_del) 8017 uiout->text ("Temporary catchpoint "); 8018 else 8019 uiout->text ("Catchpoint "); 8020 uiout->field_int ("bkptno", b->number); 8021 uiout->text ("\n"); 8022 if (uiout->is_mi_like_p ()) 8023 uiout->field_string ("disp", bpdisp_text (b->disposition)); 8024 print_solib_event (1); 8025 return PRINT_SRC_AND_LOC; 8026 } 8027 8028 static void 8029 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs) 8030 { 8031 struct solib_catchpoint *self = (struct solib_catchpoint *) b; 8032 struct value_print_options opts; 8033 struct ui_out *uiout = current_uiout; 8034 8035 get_user_print_options (&opts); 8036 /* Field 4, the address, is omitted (which makes the columns not 8037 line up too nicely with the headers, but the effect is relatively 8038 readable). */ 8039 if (opts.addressprint) 8040 { 8041 annotate_field (4); 8042 uiout->field_skip ("addr"); 8043 } 8044 8045 std::string msg; 8046 annotate_field (5); 8047 if (self->is_load) 8048 { 8049 if (self->regex) 8050 msg = string_printf (_("load of library matching %s"), self->regex); 8051 else 8052 msg = _("load of library"); 8053 } 8054 else 8055 { 8056 if (self->regex) 8057 msg = string_printf (_("unload of library matching %s"), self->regex); 8058 else 8059 msg = _("unload of library"); 8060 } 8061 uiout->field_string ("what", msg); 8062 8063 if (uiout->is_mi_like_p ()) 8064 uiout->field_string ("catch-type", self->is_load ? "load" : "unload"); 8065 } 8066 8067 static void 8068 print_mention_catch_solib (struct breakpoint *b) 8069 { 8070 struct solib_catchpoint *self = (struct solib_catchpoint *) b; 8071 8072 printf_filtered (_("Catchpoint %d (%s)"), b->number, 8073 self->is_load ? "load" : "unload"); 8074 } 8075 8076 static void 8077 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp) 8078 { 8079 struct solib_catchpoint *self = (struct solib_catchpoint *) b; 8080 8081 fprintf_unfiltered (fp, "%s %s", 8082 b->disposition == disp_del ? "tcatch" : "catch", 8083 self->is_load ? "load" : "unload"); 8084 if (self->regex) 8085 fprintf_unfiltered (fp, " %s", self->regex); 8086 fprintf_unfiltered (fp, "\n"); 8087 } 8088 8089 static struct breakpoint_ops catch_solib_breakpoint_ops; 8090 8091 /* Shared helper function (MI and CLI) for creating and installing 8092 a shared object event catchpoint. If IS_LOAD is non-zero then 8093 the events to be caught are load events, otherwise they are 8094 unload events. If IS_TEMP is non-zero the catchpoint is a 8095 temporary one. If ENABLED is non-zero the catchpoint is 8096 created in an enabled state. */ 8097 8098 void 8099 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled) 8100 { 8101 struct gdbarch *gdbarch = get_current_arch (); 8102 8103 if (!arg) 8104 arg = ""; 8105 arg = skip_spaces (arg); 8106 8107 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ()); 8108 8109 if (*arg != '\0') 8110 { 8111 c->compiled.reset (new compiled_regex (arg, REG_NOSUB, 8112 _("Invalid regexp"))); 8113 c->regex = xstrdup (arg); 8114 } 8115 8116 c->is_load = is_load; 8117 init_catchpoint (c.get (), gdbarch, is_temp, NULL, 8118 &catch_solib_breakpoint_ops); 8119 8120 c->enable_state = enabled ? bp_enabled : bp_disabled; 8121 8122 install_breakpoint (0, std::move (c), 1); 8123 } 8124 8125 /* A helper function that does all the work for "catch load" and 8126 "catch unload". */ 8127 8128 static void 8129 catch_load_or_unload (const char *arg, int from_tty, int is_load, 8130 struct cmd_list_element *command) 8131 { 8132 int tempflag; 8133 const int enabled = 1; 8134 8135 tempflag = get_cmd_context (command) == CATCH_TEMPORARY; 8136 8137 add_solib_catchpoint (arg, is_load, tempflag, enabled); 8138 } 8139 8140 static void 8141 catch_load_command_1 (const char *arg, int from_tty, 8142 struct cmd_list_element *command) 8143 { 8144 catch_load_or_unload (arg, from_tty, 1, command); 8145 } 8146 8147 static void 8148 catch_unload_command_1 (const char *arg, int from_tty, 8149 struct cmd_list_element *command) 8150 { 8151 catch_load_or_unload (arg, from_tty, 0, command); 8152 } 8153 8154 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG 8155 is non-zero, then make the breakpoint temporary. If COND_STRING is 8156 not NULL, then store it in the breakpoint. OPS, if not NULL, is 8157 the breakpoint_ops structure associated to the catchpoint. */ 8158 8159 void 8160 init_catchpoint (struct breakpoint *b, 8161 struct gdbarch *gdbarch, int tempflag, 8162 const char *cond_string, 8163 const struct breakpoint_ops *ops) 8164 { 8165 symtab_and_line sal; 8166 sal.pspace = current_program_space; 8167 8168 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops); 8169 8170 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string); 8171 b->disposition = tempflag ? disp_del : disp_donttouch; 8172 } 8173 8174 void 8175 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll) 8176 { 8177 breakpoint *b = add_to_breakpoint_chain (std::move (arg)); 8178 set_breakpoint_number (internal, b); 8179 if (is_tracepoint (b)) 8180 set_tracepoint_count (breakpoint_count); 8181 if (!internal) 8182 mention (b); 8183 gdb::observers::breakpoint_created.notify (b); 8184 8185 if (update_gll) 8186 update_global_location_list (UGLL_MAY_INSERT); 8187 } 8188 8189 static void 8190 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch, 8191 int tempflag, const char *cond_string, 8192 const struct breakpoint_ops *ops) 8193 { 8194 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ()); 8195 8196 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops); 8197 8198 c->forked_inferior_pid = null_ptid; 8199 8200 install_breakpoint (0, std::move (c), 1); 8201 } 8202 8203 /* Exec catchpoints. */ 8204 8205 /* An instance of this type is used to represent an exec catchpoint. 8206 A breakpoint is really of this type iff its ops pointer points to 8207 CATCH_EXEC_BREAKPOINT_OPS. */ 8208 8209 struct exec_catchpoint : public breakpoint 8210 { 8211 ~exec_catchpoint () override; 8212 8213 /* Filename of a program whose exec triggered this catchpoint. 8214 This field is only valid immediately after this catchpoint has 8215 triggered. */ 8216 char *exec_pathname; 8217 }; 8218 8219 /* Exec catchpoint destructor. */ 8220 8221 exec_catchpoint::~exec_catchpoint () 8222 { 8223 xfree (this->exec_pathname); 8224 } 8225 8226 static int 8227 insert_catch_exec (struct bp_location *bl) 8228 { 8229 return target_insert_exec_catchpoint (inferior_ptid.pid ()); 8230 } 8231 8232 static int 8233 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason) 8234 { 8235 return target_remove_exec_catchpoint (inferior_ptid.pid ()); 8236 } 8237 8238 static int 8239 breakpoint_hit_catch_exec (const struct bp_location *bl, 8240 const address_space *aspace, CORE_ADDR bp_addr, 8241 const struct target_waitstatus *ws) 8242 { 8243 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner; 8244 8245 if (ws->kind != TARGET_WAITKIND_EXECD) 8246 return 0; 8247 8248 c->exec_pathname = xstrdup (ws->value.execd_pathname); 8249 return 1; 8250 } 8251 8252 static enum print_stop_action 8253 print_it_catch_exec (bpstat bs) 8254 { 8255 struct ui_out *uiout = current_uiout; 8256 struct breakpoint *b = bs->breakpoint_at; 8257 struct exec_catchpoint *c = (struct exec_catchpoint *) b; 8258 8259 annotate_catchpoint (b->number); 8260 maybe_print_thread_hit_breakpoint (uiout); 8261 if (b->disposition == disp_del) 8262 uiout->text ("Temporary catchpoint "); 8263 else 8264 uiout->text ("Catchpoint "); 8265 if (uiout->is_mi_like_p ()) 8266 { 8267 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC)); 8268 uiout->field_string ("disp", bpdisp_text (b->disposition)); 8269 } 8270 uiout->field_int ("bkptno", b->number); 8271 uiout->text (" (exec'd "); 8272 uiout->field_string ("new-exec", c->exec_pathname); 8273 uiout->text ("), "); 8274 8275 return PRINT_SRC_AND_LOC; 8276 } 8277 8278 static void 8279 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc) 8280 { 8281 struct exec_catchpoint *c = (struct exec_catchpoint *) b; 8282 struct value_print_options opts; 8283 struct ui_out *uiout = current_uiout; 8284 8285 get_user_print_options (&opts); 8286 8287 /* Field 4, the address, is omitted (which makes the columns 8288 not line up too nicely with the headers, but the effect 8289 is relatively readable). */ 8290 if (opts.addressprint) 8291 uiout->field_skip ("addr"); 8292 annotate_field (5); 8293 uiout->text ("exec"); 8294 if (c->exec_pathname != NULL) 8295 { 8296 uiout->text (", program \""); 8297 uiout->field_string ("what", c->exec_pathname); 8298 uiout->text ("\" "); 8299 } 8300 8301 if (uiout->is_mi_like_p ()) 8302 uiout->field_string ("catch-type", "exec"); 8303 } 8304 8305 static void 8306 print_mention_catch_exec (struct breakpoint *b) 8307 { 8308 printf_filtered (_("Catchpoint %d (exec)"), b->number); 8309 } 8310 8311 /* Implement the "print_recreate" breakpoint_ops method for exec 8312 catchpoints. */ 8313 8314 static void 8315 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp) 8316 { 8317 fprintf_unfiltered (fp, "catch exec"); 8318 print_recreate_thread (b, fp); 8319 } 8320 8321 static struct breakpoint_ops catch_exec_breakpoint_ops; 8322 8323 static int 8324 hw_breakpoint_used_count (void) 8325 { 8326 int i = 0; 8327 struct breakpoint *b; 8328 struct bp_location *bl; 8329 8330 ALL_BREAKPOINTS (b) 8331 { 8332 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b)) 8333 for (bl = b->loc; bl; bl = bl->next) 8334 { 8335 /* Special types of hardware breakpoints may use more than 8336 one register. */ 8337 i += b->ops->resources_needed (bl); 8338 } 8339 } 8340 8341 return i; 8342 } 8343 8344 /* Returns the resources B would use if it were a hardware 8345 watchpoint. */ 8346 8347 static int 8348 hw_watchpoint_use_count (struct breakpoint *b) 8349 { 8350 int i = 0; 8351 struct bp_location *bl; 8352 8353 if (!breakpoint_enabled (b)) 8354 return 0; 8355 8356 for (bl = b->loc; bl; bl = bl->next) 8357 { 8358 /* Special types of hardware watchpoints may use more than 8359 one register. */ 8360 i += b->ops->resources_needed (bl); 8361 } 8362 8363 return i; 8364 } 8365 8366 /* Returns the sum the used resources of all hardware watchpoints of 8367 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED 8368 the sum of the used resources of all hardware watchpoints of other 8369 types _not_ TYPE. */ 8370 8371 static int 8372 hw_watchpoint_used_count_others (struct breakpoint *except, 8373 enum bptype type, int *other_type_used) 8374 { 8375 int i = 0; 8376 struct breakpoint *b; 8377 8378 *other_type_used = 0; 8379 ALL_BREAKPOINTS (b) 8380 { 8381 if (b == except) 8382 continue; 8383 if (!breakpoint_enabled (b)) 8384 continue; 8385 8386 if (b->type == type) 8387 i += hw_watchpoint_use_count (b); 8388 else if (is_hardware_watchpoint (b)) 8389 *other_type_used = 1; 8390 } 8391 8392 return i; 8393 } 8394 8395 void 8396 disable_watchpoints_before_interactive_call_start (void) 8397 { 8398 struct breakpoint *b; 8399 8400 ALL_BREAKPOINTS (b) 8401 { 8402 if (is_watchpoint (b) && breakpoint_enabled (b)) 8403 { 8404 b->enable_state = bp_call_disabled; 8405 update_global_location_list (UGLL_DONT_INSERT); 8406 } 8407 } 8408 } 8409 8410 void 8411 enable_watchpoints_after_interactive_call_stop (void) 8412 { 8413 struct breakpoint *b; 8414 8415 ALL_BREAKPOINTS (b) 8416 { 8417 if (is_watchpoint (b) && b->enable_state == bp_call_disabled) 8418 { 8419 b->enable_state = bp_enabled; 8420 update_global_location_list (UGLL_MAY_INSERT); 8421 } 8422 } 8423 } 8424 8425 void 8426 disable_breakpoints_before_startup (void) 8427 { 8428 current_program_space->executing_startup = 1; 8429 update_global_location_list (UGLL_DONT_INSERT); 8430 } 8431 8432 void 8433 enable_breakpoints_after_startup (void) 8434 { 8435 current_program_space->executing_startup = 0; 8436 breakpoint_re_set (); 8437 } 8438 8439 /* Create a new single-step breakpoint for thread THREAD, with no 8440 locations. */ 8441 8442 static struct breakpoint * 8443 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch) 8444 { 8445 std::unique_ptr<breakpoint> b (new breakpoint ()); 8446 8447 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step, 8448 &momentary_breakpoint_ops); 8449 8450 b->disposition = disp_donttouch; 8451 b->frame_id = null_frame_id; 8452 8453 b->thread = thread; 8454 gdb_assert (b->thread != 0); 8455 8456 return add_to_breakpoint_chain (std::move (b)); 8457 } 8458 8459 /* Set a momentary breakpoint of type TYPE at address specified by 8460 SAL. If FRAME_ID is valid, the breakpoint is restricted to that 8461 frame. */ 8462 8463 breakpoint_up 8464 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal, 8465 struct frame_id frame_id, enum bptype type) 8466 { 8467 struct breakpoint *b; 8468 8469 /* If FRAME_ID is valid, it should be a real frame, not an inlined or 8470 tail-called one. */ 8471 gdb_assert (!frame_id_artificial_p (frame_id)); 8472 8473 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops); 8474 b->enable_state = bp_enabled; 8475 b->disposition = disp_donttouch; 8476 b->frame_id = frame_id; 8477 8478 b->thread = inferior_thread ()->global_num; 8479 8480 update_global_location_list_nothrow (UGLL_MAY_INSERT); 8481 8482 return breakpoint_up (b); 8483 } 8484 8485 /* Make a momentary breakpoint based on the master breakpoint ORIG. 8486 The new breakpoint will have type TYPE, use OPS as its 8487 breakpoint_ops, and will set enabled to LOC_ENABLED. */ 8488 8489 static struct breakpoint * 8490 momentary_breakpoint_from_master (struct breakpoint *orig, 8491 enum bptype type, 8492 const struct breakpoint_ops *ops, 8493 int loc_enabled) 8494 { 8495 struct breakpoint *copy; 8496 8497 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops); 8498 copy->loc = allocate_bp_location (copy); 8499 set_breakpoint_location_function (copy->loc, 1); 8500 8501 copy->loc->gdbarch = orig->loc->gdbarch; 8502 copy->loc->requested_address = orig->loc->requested_address; 8503 copy->loc->address = orig->loc->address; 8504 copy->loc->section = orig->loc->section; 8505 copy->loc->pspace = orig->loc->pspace; 8506 copy->loc->probe = orig->loc->probe; 8507 copy->loc->line_number = orig->loc->line_number; 8508 copy->loc->symtab = orig->loc->symtab; 8509 copy->loc->enabled = loc_enabled; 8510 copy->frame_id = orig->frame_id; 8511 copy->thread = orig->thread; 8512 copy->pspace = orig->pspace; 8513 8514 copy->enable_state = bp_enabled; 8515 copy->disposition = disp_donttouch; 8516 copy->number = internal_breakpoint_number--; 8517 8518 update_global_location_list_nothrow (UGLL_DONT_INSERT); 8519 return copy; 8520 } 8521 8522 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if 8523 ORIG is NULL. */ 8524 8525 struct breakpoint * 8526 clone_momentary_breakpoint (struct breakpoint *orig) 8527 { 8528 /* If there's nothing to clone, then return nothing. */ 8529 if (orig == NULL) 8530 return NULL; 8531 8532 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0); 8533 } 8534 8535 breakpoint_up 8536 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc, 8537 enum bptype type) 8538 { 8539 struct symtab_and_line sal; 8540 8541 sal = find_pc_line (pc, 0); 8542 sal.pc = pc; 8543 sal.section = find_pc_overlay (pc); 8544 sal.explicit_pc = 1; 8545 8546 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type); 8547 } 8548 8549 8550 /* Tell the user we have just set a breakpoint B. */ 8551 8552 static void 8553 mention (struct breakpoint *b) 8554 { 8555 b->ops->print_mention (b); 8556 current_uiout->text ("\n"); 8557 } 8558 8559 8560 static int bp_loc_is_permanent (struct bp_location *loc); 8561 8562 static struct bp_location * 8563 add_location_to_breakpoint (struct breakpoint *b, 8564 const struct symtab_and_line *sal) 8565 { 8566 struct bp_location *loc, **tmp; 8567 CORE_ADDR adjusted_address; 8568 struct gdbarch *loc_gdbarch = get_sal_arch (*sal); 8569 8570 if (loc_gdbarch == NULL) 8571 loc_gdbarch = b->gdbarch; 8572 8573 /* Adjust the breakpoint's address prior to allocating a location. 8574 Once we call allocate_bp_location(), that mostly uninitialized 8575 location will be placed on the location chain. Adjustment of the 8576 breakpoint may cause target_read_memory() to be called and we do 8577 not want its scan of the location chain to find a breakpoint and 8578 location that's only been partially initialized. */ 8579 adjusted_address = adjust_breakpoint_address (loc_gdbarch, 8580 sal->pc, b->type); 8581 8582 /* Sort the locations by their ADDRESS. */ 8583 loc = allocate_bp_location (b); 8584 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address; 8585 tmp = &((*tmp)->next)) 8586 ; 8587 loc->next = *tmp; 8588 *tmp = loc; 8589 8590 loc->requested_address = sal->pc; 8591 loc->address = adjusted_address; 8592 loc->pspace = sal->pspace; 8593 loc->probe.prob = sal->prob; 8594 loc->probe.objfile = sal->objfile; 8595 gdb_assert (loc->pspace != NULL); 8596 loc->section = sal->section; 8597 loc->gdbarch = loc_gdbarch; 8598 loc->line_number = sal->line; 8599 loc->symtab = sal->symtab; 8600 loc->symbol = sal->symbol; 8601 loc->msymbol = sal->msymbol; 8602 loc->objfile = sal->objfile; 8603 8604 set_breakpoint_location_function (loc, 8605 sal->explicit_pc || sal->explicit_line); 8606 8607 /* While by definition, permanent breakpoints are already present in the 8608 code, we don't mark the location as inserted. Normally one would expect 8609 that GDB could rely on that breakpoint instruction to stop the program, 8610 thus removing the need to insert its own breakpoint, except that executing 8611 the breakpoint instruction can kill the target instead of reporting a 8612 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the 8613 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies 8614 with "Trap 0x02 while interrupts disabled, Error state". Letting the 8615 breakpoint be inserted normally results in QEMU knowing about the GDB 8616 breakpoint, and thus trap before the breakpoint instruction is executed. 8617 (If GDB later needs to continue execution past the permanent breakpoint, 8618 it manually increments the PC, thus avoiding executing the breakpoint 8619 instruction.) */ 8620 if (bp_loc_is_permanent (loc)) 8621 loc->permanent = 1; 8622 8623 return loc; 8624 } 8625 8626 8627 /* See breakpoint.h. */ 8628 8629 int 8630 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address) 8631 { 8632 int len; 8633 CORE_ADDR addr; 8634 const gdb_byte *bpoint; 8635 gdb_byte *target_mem; 8636 8637 addr = address; 8638 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len); 8639 8640 /* Software breakpoints unsupported? */ 8641 if (bpoint == NULL) 8642 return 0; 8643 8644 target_mem = (gdb_byte *) alloca (len); 8645 8646 /* Enable the automatic memory restoration from breakpoints while 8647 we read the memory. Otherwise we could say about our temporary 8648 breakpoints they are permanent. */ 8649 scoped_restore restore_memory 8650 = make_scoped_restore_show_memory_breakpoints (0); 8651 8652 if (target_read_memory (address, target_mem, len) == 0 8653 && memcmp (target_mem, bpoint, len) == 0) 8654 return 1; 8655 8656 return 0; 8657 } 8658 8659 /* Return 1 if LOC is pointing to a permanent breakpoint, 8660 return 0 otherwise. */ 8661 8662 static int 8663 bp_loc_is_permanent (struct bp_location *loc) 8664 { 8665 gdb_assert (loc != NULL); 8666 8667 /* If we have a catchpoint or a watchpoint, just return 0. We should not 8668 attempt to read from the addresses the locations of these breakpoint types 8669 point to. program_breakpoint_here_p, below, will attempt to read 8670 memory. */ 8671 if (!breakpoint_address_is_meaningful (loc->owner)) 8672 return 0; 8673 8674 scoped_restore_current_pspace_and_thread restore_pspace_thread; 8675 switch_to_program_space_and_thread (loc->pspace); 8676 return program_breakpoint_here_p (loc->gdbarch, loc->address); 8677 } 8678 8679 /* Build a command list for the dprintf corresponding to the current 8680 settings of the dprintf style options. */ 8681 8682 static void 8683 update_dprintf_command_list (struct breakpoint *b) 8684 { 8685 char *dprintf_args = b->extra_string; 8686 char *printf_line = NULL; 8687 8688 if (!dprintf_args) 8689 return; 8690 8691 dprintf_args = skip_spaces (dprintf_args); 8692 8693 /* Allow a comma, as it may have terminated a location, but don't 8694 insist on it. */ 8695 if (*dprintf_args == ',') 8696 ++dprintf_args; 8697 dprintf_args = skip_spaces (dprintf_args); 8698 8699 if (*dprintf_args != '"') 8700 error (_("Bad format string, missing '\"'.")); 8701 8702 if (strcmp (dprintf_style, dprintf_style_gdb) == 0) 8703 printf_line = xstrprintf ("printf %s", dprintf_args); 8704 else if (strcmp (dprintf_style, dprintf_style_call) == 0) 8705 { 8706 if (!dprintf_function) 8707 error (_("No function supplied for dprintf call")); 8708 8709 if (dprintf_channel && strlen (dprintf_channel) > 0) 8710 printf_line = xstrprintf ("call (void) %s (%s,%s)", 8711 dprintf_function, 8712 dprintf_channel, 8713 dprintf_args); 8714 else 8715 printf_line = xstrprintf ("call (void) %s (%s)", 8716 dprintf_function, 8717 dprintf_args); 8718 } 8719 else if (strcmp (dprintf_style, dprintf_style_agent) == 0) 8720 { 8721 if (target_can_run_breakpoint_commands ()) 8722 printf_line = xstrprintf ("agent-printf %s", dprintf_args); 8723 else 8724 { 8725 warning (_("Target cannot run dprintf commands, falling back to GDB printf")); 8726 printf_line = xstrprintf ("printf %s", dprintf_args); 8727 } 8728 } 8729 else 8730 internal_error (__FILE__, __LINE__, 8731 _("Invalid dprintf style.")); 8732 8733 gdb_assert (printf_line != NULL); 8734 8735 /* Manufacture a printf sequence. */ 8736 struct command_line *printf_cmd_line 8737 = new struct command_line (simple_control, printf_line); 8738 breakpoint_set_commands (b, counted_command_line (printf_cmd_line, 8739 command_lines_deleter ())); 8740 } 8741 8742 /* Update all dprintf commands, making their command lists reflect 8743 current style settings. */ 8744 8745 static void 8746 update_dprintf_commands (const char *args, int from_tty, 8747 struct cmd_list_element *c) 8748 { 8749 struct breakpoint *b; 8750 8751 ALL_BREAKPOINTS (b) 8752 { 8753 if (b->type == bp_dprintf) 8754 update_dprintf_command_list (b); 8755 } 8756 } 8757 8758 /* Create a breakpoint with SAL as location. Use LOCATION 8759 as a description of the location, and COND_STRING 8760 as condition expression. If LOCATION is NULL then create an 8761 "address location" from the address in the SAL. */ 8762 8763 static void 8764 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch, 8765 gdb::array_view<const symtab_and_line> sals, 8766 event_location_up &&location, 8767 gdb::unique_xmalloc_ptr<char> filter, 8768 gdb::unique_xmalloc_ptr<char> cond_string, 8769 gdb::unique_xmalloc_ptr<char> extra_string, 8770 enum bptype type, enum bpdisp disposition, 8771 int thread, int task, int ignore_count, 8772 const struct breakpoint_ops *ops, int from_tty, 8773 int enabled, int internal, unsigned flags, 8774 int display_canonical) 8775 { 8776 int i; 8777 8778 if (type == bp_hardware_breakpoint) 8779 { 8780 int target_resources_ok; 8781 8782 i = hw_breakpoint_used_count (); 8783 target_resources_ok = 8784 target_can_use_hardware_watchpoint (bp_hardware_breakpoint, 8785 i + 1, 0); 8786 if (target_resources_ok == 0) 8787 error (_("No hardware breakpoint support in the target.")); 8788 else if (target_resources_ok < 0) 8789 error (_("Hardware breakpoints used exceeds limit.")); 8790 } 8791 8792 gdb_assert (!sals.empty ()); 8793 8794 for (const auto &sal : sals) 8795 { 8796 struct bp_location *loc; 8797 8798 if (from_tty) 8799 { 8800 struct gdbarch *loc_gdbarch = get_sal_arch (sal); 8801 if (!loc_gdbarch) 8802 loc_gdbarch = gdbarch; 8803 8804 describe_other_breakpoints (loc_gdbarch, 8805 sal.pspace, sal.pc, sal.section, thread); 8806 } 8807 8808 if (&sal == &sals[0]) 8809 { 8810 init_raw_breakpoint (b, gdbarch, sal, type, ops); 8811 b->thread = thread; 8812 b->task = task; 8813 8814 b->cond_string = cond_string.release (); 8815 b->extra_string = extra_string.release (); 8816 b->ignore_count = ignore_count; 8817 b->enable_state = enabled ? bp_enabled : bp_disabled; 8818 b->disposition = disposition; 8819 8820 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0) 8821 b->loc->inserted = 1; 8822 8823 if (type == bp_static_tracepoint) 8824 { 8825 struct tracepoint *t = (struct tracepoint *) b; 8826 struct static_tracepoint_marker marker; 8827 8828 if (strace_marker_p (b)) 8829 { 8830 /* We already know the marker exists, otherwise, we 8831 wouldn't see a sal for it. */ 8832 const char *p 8833 = &event_location_to_string (b->location.get ())[3]; 8834 const char *endp; 8835 8836 p = skip_spaces (p); 8837 8838 endp = skip_to_space (p); 8839 8840 t->static_trace_marker_id.assign (p, endp - p); 8841 8842 printf_filtered (_("Probed static tracepoint " 8843 "marker \"%s\"\n"), 8844 t->static_trace_marker_id.c_str ()); 8845 } 8846 else if (target_static_tracepoint_marker_at (sal.pc, &marker)) 8847 { 8848 t->static_trace_marker_id = std::move (marker.str_id); 8849 8850 printf_filtered (_("Probed static tracepoint " 8851 "marker \"%s\"\n"), 8852 t->static_trace_marker_id.c_str ()); 8853 } 8854 else 8855 warning (_("Couldn't determine the static " 8856 "tracepoint marker to probe")); 8857 } 8858 8859 loc = b->loc; 8860 } 8861 else 8862 { 8863 loc = add_location_to_breakpoint (b, &sal); 8864 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0) 8865 loc->inserted = 1; 8866 } 8867 8868 if (b->cond_string) 8869 { 8870 const char *arg = b->cond_string; 8871 8872 loc->cond = parse_exp_1 (&arg, loc->address, 8873 block_for_pc (loc->address), 0); 8874 if (*arg) 8875 error (_("Garbage '%s' follows condition"), arg); 8876 } 8877 8878 /* Dynamic printf requires and uses additional arguments on the 8879 command line, otherwise it's an error. */ 8880 if (type == bp_dprintf) 8881 { 8882 if (b->extra_string) 8883 update_dprintf_command_list (b); 8884 else 8885 error (_("Format string required")); 8886 } 8887 else if (b->extra_string) 8888 error (_("Garbage '%s' at end of command"), b->extra_string); 8889 } 8890 8891 b->display_canonical = display_canonical; 8892 if (location != NULL) 8893 b->location = std::move (location); 8894 else 8895 b->location = new_address_location (b->loc->address, NULL, 0); 8896 b->filter = filter.release (); 8897 } 8898 8899 static void 8900 create_breakpoint_sal (struct gdbarch *gdbarch, 8901 gdb::array_view<const symtab_and_line> sals, 8902 event_location_up &&location, 8903 gdb::unique_xmalloc_ptr<char> filter, 8904 gdb::unique_xmalloc_ptr<char> cond_string, 8905 gdb::unique_xmalloc_ptr<char> extra_string, 8906 enum bptype type, enum bpdisp disposition, 8907 int thread, int task, int ignore_count, 8908 const struct breakpoint_ops *ops, int from_tty, 8909 int enabled, int internal, unsigned flags, 8910 int display_canonical) 8911 { 8912 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type); 8913 8914 init_breakpoint_sal (b.get (), gdbarch, 8915 sals, std::move (location), 8916 std::move (filter), 8917 std::move (cond_string), 8918 std::move (extra_string), 8919 type, disposition, 8920 thread, task, ignore_count, 8921 ops, from_tty, 8922 enabled, internal, flags, 8923 display_canonical); 8924 8925 install_breakpoint (internal, std::move (b), 0); 8926 } 8927 8928 /* Add SALS.nelts breakpoints to the breakpoint table. For each 8929 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i] 8930 value. COND_STRING, if not NULL, specified the condition to be 8931 used for all breakpoints. Essentially the only case where 8932 SALS.nelts is not 1 is when we set a breakpoint on an overloaded 8933 function. In that case, it's still not possible to specify 8934 separate conditions for different overloaded functions, so 8935 we take just a single condition string. 8936 8937 NOTE: If the function succeeds, the caller is expected to cleanup 8938 the arrays ADDR_STRING, COND_STRING, and SALS (but not the 8939 array contents). If the function fails (error() is called), the 8940 caller is expected to cleanups both the ADDR_STRING, COND_STRING, 8941 COND and SALS arrays and each of those arrays contents. */ 8942 8943 static void 8944 create_breakpoints_sal (struct gdbarch *gdbarch, 8945 struct linespec_result *canonical, 8946 gdb::unique_xmalloc_ptr<char> cond_string, 8947 gdb::unique_xmalloc_ptr<char> extra_string, 8948 enum bptype type, enum bpdisp disposition, 8949 int thread, int task, int ignore_count, 8950 const struct breakpoint_ops *ops, int from_tty, 8951 int enabled, int internal, unsigned flags) 8952 { 8953 if (canonical->pre_expanded) 8954 gdb_assert (canonical->lsals.size () == 1); 8955 8956 for (const auto &lsal : canonical->lsals) 8957 { 8958 /* Note that 'location' can be NULL in the case of a plain 8959 'break', without arguments. */ 8960 event_location_up location 8961 = (canonical->location != NULL 8962 ? copy_event_location (canonical->location.get ()) : NULL); 8963 gdb::unique_xmalloc_ptr<char> filter_string 8964 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL); 8965 8966 create_breakpoint_sal (gdbarch, lsal.sals, 8967 std::move (location), 8968 std::move (filter_string), 8969 std::move (cond_string), 8970 std::move (extra_string), 8971 type, disposition, 8972 thread, task, ignore_count, ops, 8973 from_tty, enabled, internal, flags, 8974 canonical->special_display); 8975 } 8976 } 8977 8978 /* Parse LOCATION which is assumed to be a SAL specification possibly 8979 followed by conditionals. On return, SALS contains an array of SAL 8980 addresses found. LOCATION points to the end of the SAL (for 8981 linespec locations). 8982 8983 The array and the line spec strings are allocated on the heap, it is 8984 the caller's responsibility to free them. */ 8985 8986 static void 8987 parse_breakpoint_sals (const struct event_location *location, 8988 struct linespec_result *canonical) 8989 { 8990 struct symtab_and_line cursal; 8991 8992 if (event_location_type (location) == LINESPEC_LOCATION) 8993 { 8994 const char *spec = get_linespec_location (location)->spec_string; 8995 8996 if (spec == NULL) 8997 { 8998 /* The last displayed codepoint, if it's valid, is our default 8999 breakpoint address. */ 9000 if (last_displayed_sal_is_valid ()) 9001 { 9002 /* Set sal's pspace, pc, symtab, and line to the values 9003 corresponding to the last call to print_frame_info. 9004 Be sure to reinitialize LINE with NOTCURRENT == 0 9005 as the breakpoint line number is inappropriate otherwise. 9006 find_pc_line would adjust PC, re-set it back. */ 9007 symtab_and_line sal = get_last_displayed_sal (); 9008 CORE_ADDR pc = sal.pc; 9009 9010 sal = find_pc_line (pc, 0); 9011 9012 /* "break" without arguments is equivalent to "break *PC" 9013 where PC is the last displayed codepoint's address. So 9014 make sure to set sal.explicit_pc to prevent GDB from 9015 trying to expand the list of sals to include all other 9016 instances with the same symtab and line. */ 9017 sal.pc = pc; 9018 sal.explicit_pc = 1; 9019 9020 struct linespec_sals lsal; 9021 lsal.sals = {sal}; 9022 lsal.canonical = NULL; 9023 9024 canonical->lsals.push_back (std::move (lsal)); 9025 return; 9026 } 9027 else 9028 error (_("No default breakpoint address now.")); 9029 } 9030 } 9031 9032 /* Force almost all breakpoints to be in terms of the 9033 current_source_symtab (which is decode_line_1's default). 9034 This should produce the results we want almost all of the 9035 time while leaving default_breakpoint_* alone. 9036 9037 ObjC: However, don't match an Objective-C method name which 9038 may have a '+' or '-' succeeded by a '['. */ 9039 cursal = get_current_source_symtab_and_line (); 9040 if (last_displayed_sal_is_valid ()) 9041 { 9042 const char *spec = NULL; 9043 9044 if (event_location_type (location) == LINESPEC_LOCATION) 9045 spec = get_linespec_location (location)->spec_string; 9046 9047 if (!cursal.symtab 9048 || (spec != NULL 9049 && strchr ("+-", spec[0]) != NULL 9050 && spec[1] != '[')) 9051 { 9052 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL, 9053 get_last_displayed_symtab (), 9054 get_last_displayed_line (), 9055 canonical, NULL, NULL); 9056 return; 9057 } 9058 } 9059 9060 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL, 9061 cursal.symtab, cursal.line, canonical, NULL, NULL); 9062 } 9063 9064 9065 /* Convert each SAL into a real PC. Verify that the PC can be 9066 inserted as a breakpoint. If it can't throw an error. */ 9067 9068 static void 9069 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals) 9070 { 9071 for (auto &sal : sals) 9072 resolve_sal_pc (&sal); 9073 } 9074 9075 /* Fast tracepoints may have restrictions on valid locations. For 9076 instance, a fast tracepoint using a jump instead of a trap will 9077 likely have to overwrite more bytes than a trap would, and so can 9078 only be placed where the instruction is longer than the jump, or a 9079 multi-instruction sequence does not have a jump into the middle of 9080 it, etc. */ 9081 9082 static void 9083 check_fast_tracepoint_sals (struct gdbarch *gdbarch, 9084 gdb::array_view<const symtab_and_line> sals) 9085 { 9086 for (const auto &sal : sals) 9087 { 9088 struct gdbarch *sarch; 9089 9090 sarch = get_sal_arch (sal); 9091 /* We fall back to GDBARCH if there is no architecture 9092 associated with SAL. */ 9093 if (sarch == NULL) 9094 sarch = gdbarch; 9095 std::string msg; 9096 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg)) 9097 error (_("May not have a fast tracepoint at %s%s"), 9098 paddress (sarch, sal.pc), msg.c_str ()); 9099 } 9100 } 9101 9102 /* Given TOK, a string specification of condition and thread, as 9103 accepted by the 'break' command, extract the condition 9104 string and thread number and set *COND_STRING and *THREAD. 9105 PC identifies the context at which the condition should be parsed. 9106 If no condition is found, *COND_STRING is set to NULL. 9107 If no thread is found, *THREAD is set to -1. */ 9108 9109 static void 9110 find_condition_and_thread (const char *tok, CORE_ADDR pc, 9111 char **cond_string, int *thread, int *task, 9112 char **rest) 9113 { 9114 *cond_string = NULL; 9115 *thread = -1; 9116 *task = 0; 9117 *rest = NULL; 9118 9119 while (tok && *tok) 9120 { 9121 const char *end_tok; 9122 int toklen; 9123 const char *cond_start = NULL; 9124 const char *cond_end = NULL; 9125 9126 tok = skip_spaces (tok); 9127 9128 if ((*tok == '"' || *tok == ',') && rest) 9129 { 9130 *rest = savestring (tok, strlen (tok)); 9131 return; 9132 } 9133 9134 end_tok = skip_to_space (tok); 9135 9136 toklen = end_tok - tok; 9137 9138 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0) 9139 { 9140 tok = cond_start = end_tok + 1; 9141 parse_exp_1 (&tok, pc, block_for_pc (pc), 0); 9142 cond_end = tok; 9143 *cond_string = savestring (cond_start, cond_end - cond_start); 9144 } 9145 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0) 9146 { 9147 const char *tmptok; 9148 struct thread_info *thr; 9149 9150 tok = end_tok + 1; 9151 thr = parse_thread_id (tok, &tmptok); 9152 if (tok == tmptok) 9153 error (_("Junk after thread keyword.")); 9154 *thread = thr->global_num; 9155 tok = tmptok; 9156 } 9157 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0) 9158 { 9159 char *tmptok; 9160 9161 tok = end_tok + 1; 9162 *task = strtol (tok, &tmptok, 0); 9163 if (tok == tmptok) 9164 error (_("Junk after task keyword.")); 9165 if (!valid_task_id (*task)) 9166 error (_("Unknown task %d."), *task); 9167 tok = tmptok; 9168 } 9169 else if (rest) 9170 { 9171 *rest = savestring (tok, strlen (tok)); 9172 return; 9173 } 9174 else 9175 error (_("Junk at end of arguments.")); 9176 } 9177 } 9178 9179 /* Decode a static tracepoint marker spec. */ 9180 9181 static std::vector<symtab_and_line> 9182 decode_static_tracepoint_spec (const char **arg_p) 9183 { 9184 const char *p = &(*arg_p)[3]; 9185 const char *endp; 9186 9187 p = skip_spaces (p); 9188 9189 endp = skip_to_space (p); 9190 9191 std::string marker_str (p, endp - p); 9192 9193 std::vector<static_tracepoint_marker> markers 9194 = target_static_tracepoint_markers_by_strid (marker_str.c_str ()); 9195 if (markers.empty ()) 9196 error (_("No known static tracepoint marker named %s"), 9197 marker_str.c_str ()); 9198 9199 std::vector<symtab_and_line> sals; 9200 sals.reserve (markers.size ()); 9201 9202 for (const static_tracepoint_marker &marker : markers) 9203 { 9204 symtab_and_line sal = find_pc_line (marker.address, 0); 9205 sal.pc = marker.address; 9206 sals.push_back (sal); 9207 } 9208 9209 *arg_p = endp; 9210 return sals; 9211 } 9212 9213 /* See breakpoint.h. */ 9214 9215 int 9216 create_breakpoint (struct gdbarch *gdbarch, 9217 const struct event_location *location, 9218 const char *cond_string, 9219 int thread, const char *extra_string, 9220 int parse_extra, 9221 int tempflag, enum bptype type_wanted, 9222 int ignore_count, 9223 enum auto_boolean pending_break_support, 9224 const struct breakpoint_ops *ops, 9225 int from_tty, int enabled, int internal, 9226 unsigned flags) 9227 { 9228 struct linespec_result canonical; 9229 int pending = 0; 9230 int task = 0; 9231 int prev_bkpt_count = breakpoint_count; 9232 9233 gdb_assert (ops != NULL); 9234 9235 /* If extra_string isn't useful, set it to NULL. */ 9236 if (extra_string != NULL && *extra_string == '\0') 9237 extra_string = NULL; 9238 9239 TRY 9240 { 9241 ops->create_sals_from_location (location, &canonical, type_wanted); 9242 } 9243 CATCH (e, RETURN_MASK_ERROR) 9244 { 9245 /* If caller is interested in rc value from parse, set 9246 value. */ 9247 if (e.error == NOT_FOUND_ERROR) 9248 { 9249 /* If pending breakpoint support is turned off, throw 9250 error. */ 9251 9252 if (pending_break_support == AUTO_BOOLEAN_FALSE) 9253 throw_exception (e); 9254 9255 exception_print (gdb_stderr, e); 9256 9257 /* If pending breakpoint support is auto query and the user 9258 selects no, then simply return the error code. */ 9259 if (pending_break_support == AUTO_BOOLEAN_AUTO 9260 && !nquery (_("Make %s pending on future shared library load? "), 9261 bptype_string (type_wanted))) 9262 return 0; 9263 9264 /* At this point, either the user was queried about setting 9265 a pending breakpoint and selected yes, or pending 9266 breakpoint behavior is on and thus a pending breakpoint 9267 is defaulted on behalf of the user. */ 9268 pending = 1; 9269 } 9270 else 9271 throw_exception (e); 9272 } 9273 END_CATCH 9274 9275 if (!pending && canonical.lsals.empty ()) 9276 return 0; 9277 9278 /* Resolve all line numbers to PC's and verify that the addresses 9279 are ok for the target. */ 9280 if (!pending) 9281 { 9282 for (auto &lsal : canonical.lsals) 9283 breakpoint_sals_to_pc (lsal.sals); 9284 } 9285 9286 /* Fast tracepoints may have additional restrictions on location. */ 9287 if (!pending && type_wanted == bp_fast_tracepoint) 9288 { 9289 for (const auto &lsal : canonical.lsals) 9290 check_fast_tracepoint_sals (gdbarch, lsal.sals); 9291 } 9292 9293 /* Verify that condition can be parsed, before setting any 9294 breakpoints. Allocate a separate condition expression for each 9295 breakpoint. */ 9296 if (!pending) 9297 { 9298 gdb::unique_xmalloc_ptr<char> cond_string_copy; 9299 gdb::unique_xmalloc_ptr<char> extra_string_copy; 9300 9301 if (parse_extra) 9302 { 9303 char *rest; 9304 char *cond; 9305 9306 const linespec_sals &lsal = canonical.lsals[0]; 9307 9308 /* Here we only parse 'arg' to separate condition 9309 from thread number, so parsing in context of first 9310 sal is OK. When setting the breakpoint we'll 9311 re-parse it in context of each sal. */ 9312 9313 find_condition_and_thread (extra_string, lsal.sals[0].pc, 9314 &cond, &thread, &task, &rest); 9315 cond_string_copy.reset (cond); 9316 extra_string_copy.reset (rest); 9317 } 9318 else 9319 { 9320 if (type_wanted != bp_dprintf 9321 && extra_string != NULL && *extra_string != '\0') 9322 error (_("Garbage '%s' at end of location"), extra_string); 9323 9324 /* Create a private copy of condition string. */ 9325 if (cond_string) 9326 cond_string_copy.reset (xstrdup (cond_string)); 9327 /* Create a private copy of any extra string. */ 9328 if (extra_string) 9329 extra_string_copy.reset (xstrdup (extra_string)); 9330 } 9331 9332 ops->create_breakpoints_sal (gdbarch, &canonical, 9333 std::move (cond_string_copy), 9334 std::move (extra_string_copy), 9335 type_wanted, 9336 tempflag ? disp_del : disp_donttouch, 9337 thread, task, ignore_count, ops, 9338 from_tty, enabled, internal, flags); 9339 } 9340 else 9341 { 9342 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted); 9343 9344 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops); 9345 b->location = copy_event_location (location); 9346 9347 if (parse_extra) 9348 b->cond_string = NULL; 9349 else 9350 { 9351 /* Create a private copy of condition string. */ 9352 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL; 9353 b->thread = thread; 9354 } 9355 9356 /* Create a private copy of any extra string. */ 9357 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL; 9358 b->ignore_count = ignore_count; 9359 b->disposition = tempflag ? disp_del : disp_donttouch; 9360 b->condition_not_parsed = 1; 9361 b->enable_state = enabled ? bp_enabled : bp_disabled; 9362 if ((type_wanted != bp_breakpoint 9363 && type_wanted != bp_hardware_breakpoint) || thread != -1) 9364 b->pspace = current_program_space; 9365 9366 install_breakpoint (internal, std::move (b), 0); 9367 } 9368 9369 if (canonical.lsals.size () > 1) 9370 { 9371 warning (_("Multiple breakpoints were set.\nUse the " 9372 "\"delete\" command to delete unwanted breakpoints.")); 9373 prev_breakpoint_count = prev_bkpt_count; 9374 } 9375 9376 update_global_location_list (UGLL_MAY_INSERT); 9377 9378 return 1; 9379 } 9380 9381 /* Set a breakpoint. 9382 ARG is a string describing breakpoint address, 9383 condition, and thread. 9384 FLAG specifies if a breakpoint is hardware on, 9385 and if breakpoint is temporary, using BP_HARDWARE_FLAG 9386 and BP_TEMPFLAG. */ 9387 9388 static void 9389 break_command_1 (const char *arg, int flag, int from_tty) 9390 { 9391 int tempflag = flag & BP_TEMPFLAG; 9392 enum bptype type_wanted = (flag & BP_HARDWAREFLAG 9393 ? bp_hardware_breakpoint 9394 : bp_breakpoint); 9395 struct breakpoint_ops *ops; 9396 9397 event_location_up location = string_to_event_location (&arg, current_language); 9398 9399 /* Matching breakpoints on probes. */ 9400 if (location != NULL 9401 && event_location_type (location.get ()) == PROBE_LOCATION) 9402 ops = &bkpt_probe_breakpoint_ops; 9403 else 9404 ops = &bkpt_breakpoint_ops; 9405 9406 create_breakpoint (get_current_arch (), 9407 location.get (), 9408 NULL, 0, arg, 1 /* parse arg */, 9409 tempflag, type_wanted, 9410 0 /* Ignore count */, 9411 pending_break_support, 9412 ops, 9413 from_tty, 9414 1 /* enabled */, 9415 0 /* internal */, 9416 0); 9417 } 9418 9419 /* Helper function for break_command_1 and disassemble_command. */ 9420 9421 void 9422 resolve_sal_pc (struct symtab_and_line *sal) 9423 { 9424 CORE_ADDR pc; 9425 9426 if (sal->pc == 0 && sal->symtab != NULL) 9427 { 9428 if (!find_line_pc (sal->symtab, sal->line, &pc)) 9429 error (_("No line %d in file \"%s\"."), 9430 sal->line, symtab_to_filename_for_display (sal->symtab)); 9431 sal->pc = pc; 9432 9433 /* If this SAL corresponds to a breakpoint inserted using a line 9434 number, then skip the function prologue if necessary. */ 9435 if (sal->explicit_line) 9436 skip_prologue_sal (sal); 9437 } 9438 9439 if (sal->section == 0 && sal->symtab != NULL) 9440 { 9441 const struct blockvector *bv; 9442 const struct block *b; 9443 struct symbol *sym; 9444 9445 bv = blockvector_for_pc_sect (sal->pc, 0, &b, 9446 SYMTAB_COMPUNIT (sal->symtab)); 9447 if (bv != NULL) 9448 { 9449 sym = block_linkage_function (b); 9450 if (sym != NULL) 9451 { 9452 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab)); 9453 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab), 9454 sym); 9455 } 9456 else 9457 { 9458 /* It really is worthwhile to have the section, so we'll 9459 just have to look harder. This case can be executed 9460 if we have line numbers but no functions (as can 9461 happen in assembly source). */ 9462 9463 scoped_restore_current_pspace_and_thread restore_pspace_thread; 9464 switch_to_program_space_and_thread (sal->pspace); 9465 9466 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc); 9467 if (msym.minsym) 9468 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym); 9469 } 9470 } 9471 } 9472 } 9473 9474 void 9475 break_command (const char *arg, int from_tty) 9476 { 9477 break_command_1 (arg, 0, from_tty); 9478 } 9479 9480 void 9481 tbreak_command (const char *arg, int from_tty) 9482 { 9483 break_command_1 (arg, BP_TEMPFLAG, from_tty); 9484 } 9485 9486 static void 9487 hbreak_command (const char *arg, int from_tty) 9488 { 9489 break_command_1 (arg, BP_HARDWAREFLAG, from_tty); 9490 } 9491 9492 static void 9493 thbreak_command (const char *arg, int from_tty) 9494 { 9495 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty); 9496 } 9497 9498 static void 9499 stop_command (const char *arg, int from_tty) 9500 { 9501 printf_filtered (_("Specify the type of breakpoint to set.\n\ 9502 Usage: stop in <function | address>\n\ 9503 stop at <line>\n")); 9504 } 9505 9506 static void 9507 stopin_command (const char *arg, int from_tty) 9508 { 9509 int badInput = 0; 9510 9511 if (arg == (char *) NULL) 9512 badInput = 1; 9513 else if (*arg != '*') 9514 { 9515 const char *argptr = arg; 9516 int hasColon = 0; 9517 9518 /* Look for a ':'. If this is a line number specification, then 9519 say it is bad, otherwise, it should be an address or 9520 function/method name. */ 9521 while (*argptr && !hasColon) 9522 { 9523 hasColon = (*argptr == ':'); 9524 argptr++; 9525 } 9526 9527 if (hasColon) 9528 badInput = (*argptr != ':'); /* Not a class::method */ 9529 else 9530 badInput = isdigit (*arg); /* a simple line number */ 9531 } 9532 9533 if (badInput) 9534 printf_filtered (_("Usage: stop in <function | address>\n")); 9535 else 9536 break_command_1 (arg, 0, from_tty); 9537 } 9538 9539 static void 9540 stopat_command (const char *arg, int from_tty) 9541 { 9542 int badInput = 0; 9543 9544 if (arg == (char *) NULL || *arg == '*') /* no line number */ 9545 badInput = 1; 9546 else 9547 { 9548 const char *argptr = arg; 9549 int hasColon = 0; 9550 9551 /* Look for a ':'. If there is a '::' then get out, otherwise 9552 it is probably a line number. */ 9553 while (*argptr && !hasColon) 9554 { 9555 hasColon = (*argptr == ':'); 9556 argptr++; 9557 } 9558 9559 if (hasColon) 9560 badInput = (*argptr == ':'); /* we have class::method */ 9561 else 9562 badInput = !isdigit (*arg); /* not a line number */ 9563 } 9564 9565 if (badInput) 9566 printf_filtered (_("Usage: stop at LINE\n")); 9567 else 9568 break_command_1 (arg, 0, from_tty); 9569 } 9570 9571 /* The dynamic printf command is mostly like a regular breakpoint, but 9572 with a prewired command list consisting of a single output command, 9573 built from extra arguments supplied on the dprintf command 9574 line. */ 9575 9576 static void 9577 dprintf_command (const char *arg, int from_tty) 9578 { 9579 event_location_up location = string_to_event_location (&arg, current_language); 9580 9581 /* If non-NULL, ARG should have been advanced past the location; 9582 the next character must be ','. */ 9583 if (arg != NULL) 9584 { 9585 if (arg[0] != ',' || arg[1] == '\0') 9586 error (_("Format string required")); 9587 else 9588 { 9589 /* Skip the comma. */ 9590 ++arg; 9591 } 9592 } 9593 9594 create_breakpoint (get_current_arch (), 9595 location.get (), 9596 NULL, 0, arg, 1 /* parse arg */, 9597 0, bp_dprintf, 9598 0 /* Ignore count */, 9599 pending_break_support, 9600 &dprintf_breakpoint_ops, 9601 from_tty, 9602 1 /* enabled */, 9603 0 /* internal */, 9604 0); 9605 } 9606 9607 static void 9608 agent_printf_command (const char *arg, int from_tty) 9609 { 9610 error (_("May only run agent-printf on the target")); 9611 } 9612 9613 /* Implement the "breakpoint_hit" breakpoint_ops method for 9614 ranged breakpoints. */ 9615 9616 static int 9617 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl, 9618 const address_space *aspace, 9619 CORE_ADDR bp_addr, 9620 const struct target_waitstatus *ws) 9621 { 9622 if (ws->kind != TARGET_WAITKIND_STOPPED 9623 || ws->value.sig != GDB_SIGNAL_TRAP) 9624 return 0; 9625 9626 return breakpoint_address_match_range (bl->pspace->aspace, bl->address, 9627 bl->length, aspace, bp_addr); 9628 } 9629 9630 /* Implement the "resources_needed" breakpoint_ops method for 9631 ranged breakpoints. */ 9632 9633 static int 9634 resources_needed_ranged_breakpoint (const struct bp_location *bl) 9635 { 9636 return target_ranged_break_num_registers (); 9637 } 9638 9639 /* Implement the "print_it" breakpoint_ops method for 9640 ranged breakpoints. */ 9641 9642 static enum print_stop_action 9643 print_it_ranged_breakpoint (bpstat bs) 9644 { 9645 struct breakpoint *b = bs->breakpoint_at; 9646 struct bp_location *bl = b->loc; 9647 struct ui_out *uiout = current_uiout; 9648 9649 gdb_assert (b->type == bp_hardware_breakpoint); 9650 9651 /* Ranged breakpoints have only one location. */ 9652 gdb_assert (bl && bl->next == NULL); 9653 9654 annotate_breakpoint (b->number); 9655 9656 maybe_print_thread_hit_breakpoint (uiout); 9657 9658 if (b->disposition == disp_del) 9659 uiout->text ("Temporary ranged breakpoint "); 9660 else 9661 uiout->text ("Ranged breakpoint "); 9662 if (uiout->is_mi_like_p ()) 9663 { 9664 uiout->field_string ("reason", 9665 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); 9666 uiout->field_string ("disp", bpdisp_text (b->disposition)); 9667 } 9668 uiout->field_int ("bkptno", b->number); 9669 uiout->text (", "); 9670 9671 return PRINT_SRC_AND_LOC; 9672 } 9673 9674 /* Implement the "print_one" breakpoint_ops method for 9675 ranged breakpoints. */ 9676 9677 static void 9678 print_one_ranged_breakpoint (struct breakpoint *b, 9679 struct bp_location **last_loc) 9680 { 9681 struct bp_location *bl = b->loc; 9682 struct value_print_options opts; 9683 struct ui_out *uiout = current_uiout; 9684 9685 /* Ranged breakpoints have only one location. */ 9686 gdb_assert (bl && bl->next == NULL); 9687 9688 get_user_print_options (&opts); 9689 9690 if (opts.addressprint) 9691 /* We don't print the address range here, it will be printed later 9692 by print_one_detail_ranged_breakpoint. */ 9693 uiout->field_skip ("addr"); 9694 annotate_field (5); 9695 print_breakpoint_location (b, bl); 9696 *last_loc = bl; 9697 } 9698 9699 /* Implement the "print_one_detail" breakpoint_ops method for 9700 ranged breakpoints. */ 9701 9702 static void 9703 print_one_detail_ranged_breakpoint (const struct breakpoint *b, 9704 struct ui_out *uiout) 9705 { 9706 CORE_ADDR address_start, address_end; 9707 struct bp_location *bl = b->loc; 9708 string_file stb; 9709 9710 gdb_assert (bl); 9711 9712 address_start = bl->address; 9713 address_end = address_start + bl->length - 1; 9714 9715 uiout->text ("\taddress range: "); 9716 stb.printf ("[%s, %s]", 9717 print_core_address (bl->gdbarch, address_start), 9718 print_core_address (bl->gdbarch, address_end)); 9719 uiout->field_stream ("addr", stb); 9720 uiout->text ("\n"); 9721 } 9722 9723 /* Implement the "print_mention" breakpoint_ops method for 9724 ranged breakpoints. */ 9725 9726 static void 9727 print_mention_ranged_breakpoint (struct breakpoint *b) 9728 { 9729 struct bp_location *bl = b->loc; 9730 struct ui_out *uiout = current_uiout; 9731 9732 gdb_assert (bl); 9733 gdb_assert (b->type == bp_hardware_breakpoint); 9734 9735 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."), 9736 b->number, paddress (bl->gdbarch, bl->address), 9737 paddress (bl->gdbarch, bl->address + bl->length - 1)); 9738 } 9739 9740 /* Implement the "print_recreate" breakpoint_ops method for 9741 ranged breakpoints. */ 9742 9743 static void 9744 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp) 9745 { 9746 fprintf_unfiltered (fp, "break-range %s, %s", 9747 event_location_to_string (b->location.get ()), 9748 event_location_to_string (b->location_range_end.get ())); 9749 print_recreate_thread (b, fp); 9750 } 9751 9752 /* The breakpoint_ops structure to be used in ranged breakpoints. */ 9753 9754 static struct breakpoint_ops ranged_breakpoint_ops; 9755 9756 /* Find the address where the end of the breakpoint range should be 9757 placed, given the SAL of the end of the range. This is so that if 9758 the user provides a line number, the end of the range is set to the 9759 last instruction of the given line. */ 9760 9761 static CORE_ADDR 9762 find_breakpoint_range_end (struct symtab_and_line sal) 9763 { 9764 CORE_ADDR end; 9765 9766 /* If the user provided a PC value, use it. Otherwise, 9767 find the address of the end of the given location. */ 9768 if (sal.explicit_pc) 9769 end = sal.pc; 9770 else 9771 { 9772 int ret; 9773 CORE_ADDR start; 9774 9775 ret = find_line_pc_range (sal, &start, &end); 9776 if (!ret) 9777 error (_("Could not find location of the end of the range.")); 9778 9779 /* find_line_pc_range returns the start of the next line. */ 9780 end--; 9781 } 9782 9783 return end; 9784 } 9785 9786 /* Implement the "break-range" CLI command. */ 9787 9788 static void 9789 break_range_command (const char *arg, int from_tty) 9790 { 9791 const char *arg_start; 9792 struct linespec_result canonical_start, canonical_end; 9793 int bp_count, can_use_bp, length; 9794 CORE_ADDR end; 9795 struct breakpoint *b; 9796 9797 /* We don't support software ranged breakpoints. */ 9798 if (target_ranged_break_num_registers () < 0) 9799 error (_("This target does not support hardware ranged breakpoints.")); 9800 9801 bp_count = hw_breakpoint_used_count (); 9802 bp_count += target_ranged_break_num_registers (); 9803 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint, 9804 bp_count, 0); 9805 if (can_use_bp < 0) 9806 error (_("Hardware breakpoints used exceeds limit.")); 9807 9808 arg = skip_spaces (arg); 9809 if (arg == NULL || arg[0] == '\0') 9810 error(_("No address range specified.")); 9811 9812 arg_start = arg; 9813 event_location_up start_location = string_to_event_location (&arg, 9814 current_language); 9815 parse_breakpoint_sals (start_location.get (), &canonical_start); 9816 9817 if (arg[0] != ',') 9818 error (_("Too few arguments.")); 9819 else if (canonical_start.lsals.empty ()) 9820 error (_("Could not find location of the beginning of the range.")); 9821 9822 const linespec_sals &lsal_start = canonical_start.lsals[0]; 9823 9824 if (canonical_start.lsals.size () > 1 9825 || lsal_start.sals.size () != 1) 9826 error (_("Cannot create a ranged breakpoint with multiple locations.")); 9827 9828 const symtab_and_line &sal_start = lsal_start.sals[0]; 9829 std::string addr_string_start (arg_start, arg - arg_start); 9830 9831 arg++; /* Skip the comma. */ 9832 arg = skip_spaces (arg); 9833 9834 /* Parse the end location. */ 9835 9836 arg_start = arg; 9837 9838 /* We call decode_line_full directly here instead of using 9839 parse_breakpoint_sals because we need to specify the start location's 9840 symtab and line as the default symtab and line for the end of the 9841 range. This makes it possible to have ranges like "foo.c:27, +14", 9842 where +14 means 14 lines from the start location. */ 9843 event_location_up end_location = string_to_event_location (&arg, 9844 current_language); 9845 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL, 9846 sal_start.symtab, sal_start.line, 9847 &canonical_end, NULL, NULL); 9848 9849 if (canonical_end.lsals.empty ()) 9850 error (_("Could not find location of the end of the range.")); 9851 9852 const linespec_sals &lsal_end = canonical_end.lsals[0]; 9853 if (canonical_end.lsals.size () > 1 9854 || lsal_end.sals.size () != 1) 9855 error (_("Cannot create a ranged breakpoint with multiple locations.")); 9856 9857 const symtab_and_line &sal_end = lsal_end.sals[0]; 9858 9859 end = find_breakpoint_range_end (sal_end); 9860 if (sal_start.pc > end) 9861 error (_("Invalid address range, end precedes start.")); 9862 9863 length = end - sal_start.pc + 1; 9864 if (length < 0) 9865 /* Length overflowed. */ 9866 error (_("Address range too large.")); 9867 else if (length == 1) 9868 { 9869 /* This range is simple enough to be handled by 9870 the `hbreak' command. */ 9871 hbreak_command (&addr_string_start[0], 1); 9872 9873 return; 9874 } 9875 9876 /* Now set up the breakpoint. */ 9877 b = set_raw_breakpoint (get_current_arch (), sal_start, 9878 bp_hardware_breakpoint, &ranged_breakpoint_ops); 9879 set_breakpoint_count (breakpoint_count + 1); 9880 b->number = breakpoint_count; 9881 b->disposition = disp_donttouch; 9882 b->location = std::move (start_location); 9883 b->location_range_end = std::move (end_location); 9884 b->loc->length = length; 9885 9886 mention (b); 9887 gdb::observers::breakpoint_created.notify (b); 9888 update_global_location_list (UGLL_MAY_INSERT); 9889 } 9890 9891 /* Return non-zero if EXP is verified as constant. Returned zero 9892 means EXP is variable. Also the constant detection may fail for 9893 some constant expressions and in such case still falsely return 9894 zero. */ 9895 9896 static int 9897 watchpoint_exp_is_const (const struct expression *exp) 9898 { 9899 int i = exp->nelts; 9900 9901 while (i > 0) 9902 { 9903 int oplenp, argsp; 9904 9905 /* We are only interested in the descriptor of each element. */ 9906 operator_length (exp, i, &oplenp, &argsp); 9907 i -= oplenp; 9908 9909 switch (exp->elts[i].opcode) 9910 { 9911 case BINOP_ADD: 9912 case BINOP_SUB: 9913 case BINOP_MUL: 9914 case BINOP_DIV: 9915 case BINOP_REM: 9916 case BINOP_MOD: 9917 case BINOP_LSH: 9918 case BINOP_RSH: 9919 case BINOP_LOGICAL_AND: 9920 case BINOP_LOGICAL_OR: 9921 case BINOP_BITWISE_AND: 9922 case BINOP_BITWISE_IOR: 9923 case BINOP_BITWISE_XOR: 9924 case BINOP_EQUAL: 9925 case BINOP_NOTEQUAL: 9926 case BINOP_LESS: 9927 case BINOP_GTR: 9928 case BINOP_LEQ: 9929 case BINOP_GEQ: 9930 case BINOP_REPEAT: 9931 case BINOP_COMMA: 9932 case BINOP_EXP: 9933 case BINOP_MIN: 9934 case BINOP_MAX: 9935 case BINOP_INTDIV: 9936 case BINOP_CONCAT: 9937 case TERNOP_COND: 9938 case TERNOP_SLICE: 9939 9940 case OP_LONG: 9941 case OP_FLOAT: 9942 case OP_LAST: 9943 case OP_COMPLEX: 9944 case OP_STRING: 9945 case OP_ARRAY: 9946 case OP_TYPE: 9947 case OP_TYPEOF: 9948 case OP_DECLTYPE: 9949 case OP_TYPEID: 9950 case OP_NAME: 9951 case OP_OBJC_NSSTRING: 9952 9953 case UNOP_NEG: 9954 case UNOP_LOGICAL_NOT: 9955 case UNOP_COMPLEMENT: 9956 case UNOP_ADDR: 9957 case UNOP_HIGH: 9958 case UNOP_CAST: 9959 9960 case UNOP_CAST_TYPE: 9961 case UNOP_REINTERPRET_CAST: 9962 case UNOP_DYNAMIC_CAST: 9963 /* Unary, binary and ternary operators: We have to check 9964 their operands. If they are constant, then so is the 9965 result of that operation. For instance, if A and B are 9966 determined to be constants, then so is "A + B". 9967 9968 UNOP_IND is one exception to the rule above, because the 9969 value of *ADDR is not necessarily a constant, even when 9970 ADDR is. */ 9971 break; 9972 9973 case OP_VAR_VALUE: 9974 /* Check whether the associated symbol is a constant. 9975 9976 We use SYMBOL_CLASS rather than TYPE_CONST because it's 9977 possible that a buggy compiler could mark a variable as 9978 constant even when it is not, and TYPE_CONST would return 9979 true in this case, while SYMBOL_CLASS wouldn't. 9980 9981 We also have to check for function symbols because they 9982 are always constant. */ 9983 { 9984 struct symbol *s = exp->elts[i + 2].symbol; 9985 9986 if (SYMBOL_CLASS (s) != LOC_BLOCK 9987 && SYMBOL_CLASS (s) != LOC_CONST 9988 && SYMBOL_CLASS (s) != LOC_CONST_BYTES) 9989 return 0; 9990 break; 9991 } 9992 9993 /* The default action is to return 0 because we are using 9994 the optimistic approach here: If we don't know something, 9995 then it is not a constant. */ 9996 default: 9997 return 0; 9998 } 9999 } 10000 10001 return 1; 10002 } 10003 10004 /* Watchpoint destructor. */ 10005 10006 watchpoint::~watchpoint () 10007 { 10008 xfree (this->exp_string); 10009 xfree (this->exp_string_reparse); 10010 } 10011 10012 /* Implement the "re_set" breakpoint_ops method for watchpoints. */ 10013 10014 static void 10015 re_set_watchpoint (struct breakpoint *b) 10016 { 10017 struct watchpoint *w = (struct watchpoint *) b; 10018 10019 /* Watchpoint can be either on expression using entirely global 10020 variables, or it can be on local variables. 10021 10022 Watchpoints of the first kind are never auto-deleted, and even 10023 persist across program restarts. Since they can use variables 10024 from shared libraries, we need to reparse expression as libraries 10025 are loaded and unloaded. 10026 10027 Watchpoints on local variables can also change meaning as result 10028 of solib event. For example, if a watchpoint uses both a local 10029 and a global variables in expression, it's a local watchpoint, 10030 but unloading of a shared library will make the expression 10031 invalid. This is not a very common use case, but we still 10032 re-evaluate expression, to avoid surprises to the user. 10033 10034 Note that for local watchpoints, we re-evaluate it only if 10035 watchpoints frame id is still valid. If it's not, it means the 10036 watchpoint is out of scope and will be deleted soon. In fact, 10037 I'm not sure we'll ever be called in this case. 10038 10039 If a local watchpoint's frame id is still valid, then 10040 w->exp_valid_block is likewise valid, and we can safely use it. 10041 10042 Don't do anything about disabled watchpoints, since they will be 10043 reevaluated again when enabled. */ 10044 update_watchpoint (w, 1 /* reparse */); 10045 } 10046 10047 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */ 10048 10049 static int 10050 insert_watchpoint (struct bp_location *bl) 10051 { 10052 struct watchpoint *w = (struct watchpoint *) bl->owner; 10053 int length = w->exact ? 1 : bl->length; 10054 10055 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type, 10056 w->cond_exp.get ()); 10057 } 10058 10059 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */ 10060 10061 static int 10062 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason) 10063 { 10064 struct watchpoint *w = (struct watchpoint *) bl->owner; 10065 int length = w->exact ? 1 : bl->length; 10066 10067 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type, 10068 w->cond_exp.get ()); 10069 } 10070 10071 static int 10072 breakpoint_hit_watchpoint (const struct bp_location *bl, 10073 const address_space *aspace, CORE_ADDR bp_addr, 10074 const struct target_waitstatus *ws) 10075 { 10076 struct breakpoint *b = bl->owner; 10077 struct watchpoint *w = (struct watchpoint *) b; 10078 10079 /* Continuable hardware watchpoints are treated as non-existent if the 10080 reason we stopped wasn't a hardware watchpoint (we didn't stop on 10081 some data address). Otherwise gdb won't stop on a break instruction 10082 in the code (not from a breakpoint) when a hardware watchpoint has 10083 been defined. Also skip watchpoints which we know did not trigger 10084 (did not match the data address). */ 10085 if (is_hardware_watchpoint (b) 10086 && w->watchpoint_triggered == watch_triggered_no) 10087 return 0; 10088 10089 return 1; 10090 } 10091 10092 static void 10093 check_status_watchpoint (bpstat bs) 10094 { 10095 gdb_assert (is_watchpoint (bs->breakpoint_at)); 10096 10097 bpstat_check_watchpoint (bs); 10098 } 10099 10100 /* Implement the "resources_needed" breakpoint_ops method for 10101 hardware watchpoints. */ 10102 10103 static int 10104 resources_needed_watchpoint (const struct bp_location *bl) 10105 { 10106 struct watchpoint *w = (struct watchpoint *) bl->owner; 10107 int length = w->exact? 1 : bl->length; 10108 10109 return target_region_ok_for_hw_watchpoint (bl->address, length); 10110 } 10111 10112 /* Implement the "works_in_software_mode" breakpoint_ops method for 10113 hardware watchpoints. */ 10114 10115 static int 10116 works_in_software_mode_watchpoint (const struct breakpoint *b) 10117 { 10118 /* Read and access watchpoints only work with hardware support. */ 10119 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint; 10120 } 10121 10122 static enum print_stop_action 10123 print_it_watchpoint (bpstat bs) 10124 { 10125 struct breakpoint *b; 10126 enum print_stop_action result; 10127 struct watchpoint *w; 10128 struct ui_out *uiout = current_uiout; 10129 10130 gdb_assert (bs->bp_location_at != NULL); 10131 10132 b = bs->breakpoint_at; 10133 w = (struct watchpoint *) b; 10134 10135 annotate_watchpoint (b->number); 10136 maybe_print_thread_hit_breakpoint (uiout); 10137 10138 string_file stb; 10139 10140 gdb::optional<ui_out_emit_tuple> tuple_emitter; 10141 switch (b->type) 10142 { 10143 case bp_watchpoint: 10144 case bp_hardware_watchpoint: 10145 if (uiout->is_mi_like_p ()) 10146 uiout->field_string 10147 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER)); 10148 mention (b); 10149 tuple_emitter.emplace (uiout, "value"); 10150 uiout->text ("\nOld value = "); 10151 watchpoint_value_print (bs->old_val.get (), &stb); 10152 uiout->field_stream ("old", stb); 10153 uiout->text ("\nNew value = "); 10154 watchpoint_value_print (w->val.get (), &stb); 10155 uiout->field_stream ("new", stb); 10156 uiout->text ("\n"); 10157 /* More than one watchpoint may have been triggered. */ 10158 result = PRINT_UNKNOWN; 10159 break; 10160 10161 case bp_read_watchpoint: 10162 if (uiout->is_mi_like_p ()) 10163 uiout->field_string 10164 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER)); 10165 mention (b); 10166 tuple_emitter.emplace (uiout, "value"); 10167 uiout->text ("\nValue = "); 10168 watchpoint_value_print (w->val.get (), &stb); 10169 uiout->field_stream ("value", stb); 10170 uiout->text ("\n"); 10171 result = PRINT_UNKNOWN; 10172 break; 10173 10174 case bp_access_watchpoint: 10175 if (bs->old_val != NULL) 10176 { 10177 if (uiout->is_mi_like_p ()) 10178 uiout->field_string 10179 ("reason", 10180 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER)); 10181 mention (b); 10182 tuple_emitter.emplace (uiout, "value"); 10183 uiout->text ("\nOld value = "); 10184 watchpoint_value_print (bs->old_val.get (), &stb); 10185 uiout->field_stream ("old", stb); 10186 uiout->text ("\nNew value = "); 10187 } 10188 else 10189 { 10190 mention (b); 10191 if (uiout->is_mi_like_p ()) 10192 uiout->field_string 10193 ("reason", 10194 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER)); 10195 tuple_emitter.emplace (uiout, "value"); 10196 uiout->text ("\nValue = "); 10197 } 10198 watchpoint_value_print (w->val.get (), &stb); 10199 uiout->field_stream ("new", stb); 10200 uiout->text ("\n"); 10201 result = PRINT_UNKNOWN; 10202 break; 10203 default: 10204 result = PRINT_UNKNOWN; 10205 } 10206 10207 return result; 10208 } 10209 10210 /* Implement the "print_mention" breakpoint_ops method for hardware 10211 watchpoints. */ 10212 10213 static void 10214 print_mention_watchpoint (struct breakpoint *b) 10215 { 10216 struct watchpoint *w = (struct watchpoint *) b; 10217 struct ui_out *uiout = current_uiout; 10218 const char *tuple_name; 10219 10220 switch (b->type) 10221 { 10222 case bp_watchpoint: 10223 uiout->text ("Watchpoint "); 10224 tuple_name = "wpt"; 10225 break; 10226 case bp_hardware_watchpoint: 10227 uiout->text ("Hardware watchpoint "); 10228 tuple_name = "wpt"; 10229 break; 10230 case bp_read_watchpoint: 10231 uiout->text ("Hardware read watchpoint "); 10232 tuple_name = "hw-rwpt"; 10233 break; 10234 case bp_access_watchpoint: 10235 uiout->text ("Hardware access (read/write) watchpoint "); 10236 tuple_name = "hw-awpt"; 10237 break; 10238 default: 10239 internal_error (__FILE__, __LINE__, 10240 _("Invalid hardware watchpoint type.")); 10241 } 10242 10243 ui_out_emit_tuple tuple_emitter (uiout, tuple_name); 10244 uiout->field_int ("number", b->number); 10245 uiout->text (": "); 10246 uiout->field_string ("exp", w->exp_string); 10247 } 10248 10249 /* Implement the "print_recreate" breakpoint_ops method for 10250 watchpoints. */ 10251 10252 static void 10253 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp) 10254 { 10255 struct watchpoint *w = (struct watchpoint *) b; 10256 10257 switch (b->type) 10258 { 10259 case bp_watchpoint: 10260 case bp_hardware_watchpoint: 10261 fprintf_unfiltered (fp, "watch"); 10262 break; 10263 case bp_read_watchpoint: 10264 fprintf_unfiltered (fp, "rwatch"); 10265 break; 10266 case bp_access_watchpoint: 10267 fprintf_unfiltered (fp, "awatch"); 10268 break; 10269 default: 10270 internal_error (__FILE__, __LINE__, 10271 _("Invalid watchpoint type.")); 10272 } 10273 10274 fprintf_unfiltered (fp, " %s", w->exp_string); 10275 print_recreate_thread (b, fp); 10276 } 10277 10278 /* Implement the "explains_signal" breakpoint_ops method for 10279 watchpoints. */ 10280 10281 static int 10282 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig) 10283 { 10284 /* A software watchpoint cannot cause a signal other than 10285 GDB_SIGNAL_TRAP. */ 10286 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP) 10287 return 0; 10288 10289 return 1; 10290 } 10291 10292 /* The breakpoint_ops structure to be used in hardware watchpoints. */ 10293 10294 static struct breakpoint_ops watchpoint_breakpoint_ops; 10295 10296 /* Implement the "insert" breakpoint_ops method for 10297 masked hardware watchpoints. */ 10298 10299 static int 10300 insert_masked_watchpoint (struct bp_location *bl) 10301 { 10302 struct watchpoint *w = (struct watchpoint *) bl->owner; 10303 10304 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask, 10305 bl->watchpoint_type); 10306 } 10307 10308 /* Implement the "remove" breakpoint_ops method for 10309 masked hardware watchpoints. */ 10310 10311 static int 10312 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason) 10313 { 10314 struct watchpoint *w = (struct watchpoint *) bl->owner; 10315 10316 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask, 10317 bl->watchpoint_type); 10318 } 10319 10320 /* Implement the "resources_needed" breakpoint_ops method for 10321 masked hardware watchpoints. */ 10322 10323 static int 10324 resources_needed_masked_watchpoint (const struct bp_location *bl) 10325 { 10326 struct watchpoint *w = (struct watchpoint *) bl->owner; 10327 10328 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask); 10329 } 10330 10331 /* Implement the "works_in_software_mode" breakpoint_ops method for 10332 masked hardware watchpoints. */ 10333 10334 static int 10335 works_in_software_mode_masked_watchpoint (const struct breakpoint *b) 10336 { 10337 return 0; 10338 } 10339 10340 /* Implement the "print_it" breakpoint_ops method for 10341 masked hardware watchpoints. */ 10342 10343 static enum print_stop_action 10344 print_it_masked_watchpoint (bpstat bs) 10345 { 10346 struct breakpoint *b = bs->breakpoint_at; 10347 struct ui_out *uiout = current_uiout; 10348 10349 /* Masked watchpoints have only one location. */ 10350 gdb_assert (b->loc && b->loc->next == NULL); 10351 10352 annotate_watchpoint (b->number); 10353 maybe_print_thread_hit_breakpoint (uiout); 10354 10355 switch (b->type) 10356 { 10357 case bp_hardware_watchpoint: 10358 if (uiout->is_mi_like_p ()) 10359 uiout->field_string 10360 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER)); 10361 break; 10362 10363 case bp_read_watchpoint: 10364 if (uiout->is_mi_like_p ()) 10365 uiout->field_string 10366 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER)); 10367 break; 10368 10369 case bp_access_watchpoint: 10370 if (uiout->is_mi_like_p ()) 10371 uiout->field_string 10372 ("reason", 10373 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER)); 10374 break; 10375 default: 10376 internal_error (__FILE__, __LINE__, 10377 _("Invalid hardware watchpoint type.")); 10378 } 10379 10380 mention (b); 10381 uiout->text (_("\n\ 10382 Check the underlying instruction at PC for the memory\n\ 10383 address and value which triggered this watchpoint.\n")); 10384 uiout->text ("\n"); 10385 10386 /* More than one watchpoint may have been triggered. */ 10387 return PRINT_UNKNOWN; 10388 } 10389 10390 /* Implement the "print_one_detail" breakpoint_ops method for 10391 masked hardware watchpoints. */ 10392 10393 static void 10394 print_one_detail_masked_watchpoint (const struct breakpoint *b, 10395 struct ui_out *uiout) 10396 { 10397 struct watchpoint *w = (struct watchpoint *) b; 10398 10399 /* Masked watchpoints have only one location. */ 10400 gdb_assert (b->loc && b->loc->next == NULL); 10401 10402 uiout->text ("\tmask "); 10403 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask); 10404 uiout->text ("\n"); 10405 } 10406 10407 /* Implement the "print_mention" breakpoint_ops method for 10408 masked hardware watchpoints. */ 10409 10410 static void 10411 print_mention_masked_watchpoint (struct breakpoint *b) 10412 { 10413 struct watchpoint *w = (struct watchpoint *) b; 10414 struct ui_out *uiout = current_uiout; 10415 const char *tuple_name; 10416 10417 switch (b->type) 10418 { 10419 case bp_hardware_watchpoint: 10420 uiout->text ("Masked hardware watchpoint "); 10421 tuple_name = "wpt"; 10422 break; 10423 case bp_read_watchpoint: 10424 uiout->text ("Masked hardware read watchpoint "); 10425 tuple_name = "hw-rwpt"; 10426 break; 10427 case bp_access_watchpoint: 10428 uiout->text ("Masked hardware access (read/write) watchpoint "); 10429 tuple_name = "hw-awpt"; 10430 break; 10431 default: 10432 internal_error (__FILE__, __LINE__, 10433 _("Invalid hardware watchpoint type.")); 10434 } 10435 10436 ui_out_emit_tuple tuple_emitter (uiout, tuple_name); 10437 uiout->field_int ("number", b->number); 10438 uiout->text (": "); 10439 uiout->field_string ("exp", w->exp_string); 10440 } 10441 10442 /* Implement the "print_recreate" breakpoint_ops method for 10443 masked hardware watchpoints. */ 10444 10445 static void 10446 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp) 10447 { 10448 struct watchpoint *w = (struct watchpoint *) b; 10449 char tmp[40]; 10450 10451 switch (b->type) 10452 { 10453 case bp_hardware_watchpoint: 10454 fprintf_unfiltered (fp, "watch"); 10455 break; 10456 case bp_read_watchpoint: 10457 fprintf_unfiltered (fp, "rwatch"); 10458 break; 10459 case bp_access_watchpoint: 10460 fprintf_unfiltered (fp, "awatch"); 10461 break; 10462 default: 10463 internal_error (__FILE__, __LINE__, 10464 _("Invalid hardware watchpoint type.")); 10465 } 10466 10467 sprintf_vma (tmp, w->hw_wp_mask); 10468 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp); 10469 print_recreate_thread (b, fp); 10470 } 10471 10472 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */ 10473 10474 static struct breakpoint_ops masked_watchpoint_breakpoint_ops; 10475 10476 /* Tell whether the given watchpoint is a masked hardware watchpoint. */ 10477 10478 static int 10479 is_masked_watchpoint (const struct breakpoint *b) 10480 { 10481 return b->ops == &masked_watchpoint_breakpoint_ops; 10482 } 10483 10484 /* accessflag: hw_write: watch write, 10485 hw_read: watch read, 10486 hw_access: watch access (read or write) */ 10487 static void 10488 watch_command_1 (const char *arg, int accessflag, int from_tty, 10489 int just_location, int internal) 10490 { 10491 struct breakpoint *scope_breakpoint = NULL; 10492 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL; 10493 struct value *result; 10494 int saved_bitpos = 0, saved_bitsize = 0; 10495 const char *exp_start = NULL; 10496 const char *exp_end = NULL; 10497 const char *tok, *end_tok; 10498 int toklen = -1; 10499 const char *cond_start = NULL; 10500 const char *cond_end = NULL; 10501 enum bptype bp_type; 10502 int thread = -1; 10503 int pc = 0; 10504 /* Flag to indicate whether we are going to use masks for 10505 the hardware watchpoint. */ 10506 int use_mask = 0; 10507 CORE_ADDR mask = 0; 10508 10509 /* Make sure that we actually have parameters to parse. */ 10510 if (arg != NULL && arg[0] != '\0') 10511 { 10512 const char *value_start; 10513 10514 exp_end = arg + strlen (arg); 10515 10516 /* Look for "parameter value" pairs at the end 10517 of the arguments string. */ 10518 for (tok = exp_end - 1; tok > arg; tok--) 10519 { 10520 /* Skip whitespace at the end of the argument list. */ 10521 while (tok > arg && (*tok == ' ' || *tok == '\t')) 10522 tok--; 10523 10524 /* Find the beginning of the last token. 10525 This is the value of the parameter. */ 10526 while (tok > arg && (*tok != ' ' && *tok != '\t')) 10527 tok--; 10528 value_start = tok + 1; 10529 10530 /* Skip whitespace. */ 10531 while (tok > arg && (*tok == ' ' || *tok == '\t')) 10532 tok--; 10533 10534 end_tok = tok; 10535 10536 /* Find the beginning of the second to last token. 10537 This is the parameter itself. */ 10538 while (tok > arg && (*tok != ' ' && *tok != '\t')) 10539 tok--; 10540 tok++; 10541 toklen = end_tok - tok + 1; 10542 10543 if (toklen == 6 && startswith (tok, "thread")) 10544 { 10545 struct thread_info *thr; 10546 /* At this point we've found a "thread" token, which means 10547 the user is trying to set a watchpoint that triggers 10548 only in a specific thread. */ 10549 const char *endp; 10550 10551 if (thread != -1) 10552 error(_("You can specify only one thread.")); 10553 10554 /* Extract the thread ID from the next token. */ 10555 thr = parse_thread_id (value_start, &endp); 10556 10557 /* Check if the user provided a valid thread ID. */ 10558 if (*endp != ' ' && *endp != '\t' && *endp != '\0') 10559 invalid_thread_id_error (value_start); 10560 10561 thread = thr->global_num; 10562 } 10563 else if (toklen == 4 && startswith (tok, "mask")) 10564 { 10565 /* We've found a "mask" token, which means the user wants to 10566 create a hardware watchpoint that is going to have the mask 10567 facility. */ 10568 struct value *mask_value, *mark; 10569 10570 if (use_mask) 10571 error(_("You can specify only one mask.")); 10572 10573 use_mask = just_location = 1; 10574 10575 mark = value_mark (); 10576 mask_value = parse_to_comma_and_eval (&value_start); 10577 mask = value_as_address (mask_value); 10578 value_free_to_mark (mark); 10579 } 10580 else 10581 /* We didn't recognize what we found. We should stop here. */ 10582 break; 10583 10584 /* Truncate the string and get rid of the "parameter value" pair before 10585 the arguments string is parsed by the parse_exp_1 function. */ 10586 exp_end = tok; 10587 } 10588 } 10589 else 10590 exp_end = arg; 10591 10592 /* Parse the rest of the arguments. From here on out, everything 10593 is in terms of a newly allocated string instead of the original 10594 ARG. */ 10595 innermost_block.reset (); 10596 std::string expression (arg, exp_end - arg); 10597 exp_start = arg = expression.c_str (); 10598 expression_up exp = parse_exp_1 (&arg, 0, 0, 0); 10599 exp_end = arg; 10600 /* Remove trailing whitespace from the expression before saving it. 10601 This makes the eventual display of the expression string a bit 10602 prettier. */ 10603 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t')) 10604 --exp_end; 10605 10606 /* Checking if the expression is not constant. */ 10607 if (watchpoint_exp_is_const (exp.get ())) 10608 { 10609 int len; 10610 10611 len = exp_end - exp_start; 10612 while (len > 0 && isspace (exp_start[len - 1])) 10613 len--; 10614 error (_("Cannot watch constant value `%.*s'."), len, exp_start); 10615 } 10616 10617 exp_valid_block = innermost_block.block (); 10618 struct value *mark = value_mark (); 10619 struct value *val_as_value = nullptr; 10620 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL, 10621 just_location); 10622 10623 if (val_as_value != NULL && just_location) 10624 { 10625 saved_bitpos = value_bitpos (val_as_value); 10626 saved_bitsize = value_bitsize (val_as_value); 10627 } 10628 10629 value_ref_ptr val; 10630 if (just_location) 10631 { 10632 int ret; 10633 10634 exp_valid_block = NULL; 10635 val = release_value (value_addr (result)); 10636 value_free_to_mark (mark); 10637 10638 if (use_mask) 10639 { 10640 ret = target_masked_watch_num_registers (value_as_address (val.get ()), 10641 mask); 10642 if (ret == -1) 10643 error (_("This target does not support masked watchpoints.")); 10644 else if (ret == -2) 10645 error (_("Invalid mask or memory region.")); 10646 } 10647 } 10648 else if (val_as_value != NULL) 10649 val = release_value (val_as_value); 10650 10651 tok = skip_spaces (arg); 10652 end_tok = skip_to_space (tok); 10653 10654 toklen = end_tok - tok; 10655 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0) 10656 { 10657 innermost_block.reset (); 10658 tok = cond_start = end_tok + 1; 10659 parse_exp_1 (&tok, 0, 0, 0); 10660 10661 /* The watchpoint expression may not be local, but the condition 10662 may still be. E.g.: `watch global if local > 0'. */ 10663 cond_exp_valid_block = innermost_block.block (); 10664 10665 cond_end = tok; 10666 } 10667 if (*tok) 10668 error (_("Junk at end of command.")); 10669 10670 frame_info *wp_frame = block_innermost_frame (exp_valid_block); 10671 10672 /* Save this because create_internal_breakpoint below invalidates 10673 'wp_frame'. */ 10674 frame_id watchpoint_frame = get_frame_id (wp_frame); 10675 10676 /* If the expression is "local", then set up a "watchpoint scope" 10677 breakpoint at the point where we've left the scope of the watchpoint 10678 expression. Create the scope breakpoint before the watchpoint, so 10679 that we will encounter it first in bpstat_stop_status. */ 10680 if (exp_valid_block != NULL && wp_frame != NULL) 10681 { 10682 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame); 10683 10684 if (frame_id_p (caller_frame_id)) 10685 { 10686 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame); 10687 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame); 10688 10689 scope_breakpoint 10690 = create_internal_breakpoint (caller_arch, caller_pc, 10691 bp_watchpoint_scope, 10692 &momentary_breakpoint_ops); 10693 10694 /* create_internal_breakpoint could invalidate WP_FRAME. */ 10695 wp_frame = NULL; 10696 10697 scope_breakpoint->enable_state = bp_enabled; 10698 10699 /* Automatically delete the breakpoint when it hits. */ 10700 scope_breakpoint->disposition = disp_del; 10701 10702 /* Only break in the proper frame (help with recursion). */ 10703 scope_breakpoint->frame_id = caller_frame_id; 10704 10705 /* Set the address at which we will stop. */ 10706 scope_breakpoint->loc->gdbarch = caller_arch; 10707 scope_breakpoint->loc->requested_address = caller_pc; 10708 scope_breakpoint->loc->address 10709 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch, 10710 scope_breakpoint->loc->requested_address, 10711 scope_breakpoint->type); 10712 } 10713 } 10714 10715 /* Now set up the breakpoint. We create all watchpoints as hardware 10716 watchpoints here even if hardware watchpoints are turned off, a call 10717 to update_watchpoint later in this function will cause the type to 10718 drop back to bp_watchpoint (software watchpoint) if required. */ 10719 10720 if (accessflag == hw_read) 10721 bp_type = bp_read_watchpoint; 10722 else if (accessflag == hw_access) 10723 bp_type = bp_access_watchpoint; 10724 else 10725 bp_type = bp_hardware_watchpoint; 10726 10727 std::unique_ptr<watchpoint> w (new watchpoint ()); 10728 10729 if (use_mask) 10730 init_raw_breakpoint_without_location (w.get (), NULL, bp_type, 10731 &masked_watchpoint_breakpoint_ops); 10732 else 10733 init_raw_breakpoint_without_location (w.get (), NULL, bp_type, 10734 &watchpoint_breakpoint_ops); 10735 w->thread = thread; 10736 w->disposition = disp_donttouch; 10737 w->pspace = current_program_space; 10738 w->exp = std::move (exp); 10739 w->exp_valid_block = exp_valid_block; 10740 w->cond_exp_valid_block = cond_exp_valid_block; 10741 if (just_location) 10742 { 10743 struct type *t = value_type (val.get ()); 10744 CORE_ADDR addr = value_as_address (val.get ()); 10745 10746 w->exp_string_reparse 10747 = current_language->la_watch_location_expression (t, addr).release (); 10748 10749 w->exp_string = xstrprintf ("-location %.*s", 10750 (int) (exp_end - exp_start), exp_start); 10751 } 10752 else 10753 w->exp_string = savestring (exp_start, exp_end - exp_start); 10754 10755 if (use_mask) 10756 { 10757 w->hw_wp_mask = mask; 10758 } 10759 else 10760 { 10761 w->val = val; 10762 w->val_bitpos = saved_bitpos; 10763 w->val_bitsize = saved_bitsize; 10764 w->val_valid = 1; 10765 } 10766 10767 if (cond_start) 10768 w->cond_string = savestring (cond_start, cond_end - cond_start); 10769 else 10770 w->cond_string = 0; 10771 10772 if (frame_id_p (watchpoint_frame)) 10773 { 10774 w->watchpoint_frame = watchpoint_frame; 10775 w->watchpoint_thread = inferior_ptid; 10776 } 10777 else 10778 { 10779 w->watchpoint_frame = null_frame_id; 10780 w->watchpoint_thread = null_ptid; 10781 } 10782 10783 if (scope_breakpoint != NULL) 10784 { 10785 /* The scope breakpoint is related to the watchpoint. We will 10786 need to act on them together. */ 10787 w->related_breakpoint = scope_breakpoint; 10788 scope_breakpoint->related_breakpoint = w.get (); 10789 } 10790 10791 if (!just_location) 10792 value_free_to_mark (mark); 10793 10794 /* Finally update the new watchpoint. This creates the locations 10795 that should be inserted. */ 10796 update_watchpoint (w.get (), 1); 10797 10798 install_breakpoint (internal, std::move (w), 1); 10799 } 10800 10801 /* Return count of debug registers needed to watch the given expression. 10802 If the watchpoint cannot be handled in hardware return zero. */ 10803 10804 static int 10805 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals) 10806 { 10807 int found_memory_cnt = 0; 10808 10809 /* Did the user specifically forbid us to use hardware watchpoints? */ 10810 if (!can_use_hw_watchpoints) 10811 return 0; 10812 10813 gdb_assert (!vals.empty ()); 10814 struct value *head = vals[0].get (); 10815 10816 /* Make sure that the value of the expression depends only upon 10817 memory contents, and values computed from them within GDB. If we 10818 find any register references or function calls, we can't use a 10819 hardware watchpoint. 10820 10821 The idea here is that evaluating an expression generates a series 10822 of values, one holding the value of every subexpression. (The 10823 expression a*b+c has five subexpressions: a, b, a*b, c, and 10824 a*b+c.) GDB's values hold almost enough information to establish 10825 the criteria given above --- they identify memory lvalues, 10826 register lvalues, computed values, etcetera. So we can evaluate 10827 the expression, and then scan the chain of values that leaves 10828 behind to decide whether we can detect any possible change to the 10829 expression's final value using only hardware watchpoints. 10830 10831 However, I don't think that the values returned by inferior 10832 function calls are special in any way. So this function may not 10833 notice that an expression involving an inferior function call 10834 can't be watched with hardware watchpoints. FIXME. */ 10835 for (const value_ref_ptr &iter : vals) 10836 { 10837 struct value *v = iter.get (); 10838 10839 if (VALUE_LVAL (v) == lval_memory) 10840 { 10841 if (v != head && value_lazy (v)) 10842 /* A lazy memory lvalue in the chain is one that GDB never 10843 needed to fetch; we either just used its address (e.g., 10844 `a' in `a.b') or we never needed it at all (e.g., `a' 10845 in `a,b'). This doesn't apply to HEAD; if that is 10846 lazy then it was not readable, but watch it anyway. */ 10847 ; 10848 else 10849 { 10850 /* Ahh, memory we actually used! Check if we can cover 10851 it with hardware watchpoints. */ 10852 struct type *vtype = check_typedef (value_type (v)); 10853 10854 /* We only watch structs and arrays if user asked for it 10855 explicitly, never if they just happen to appear in a 10856 middle of some value chain. */ 10857 if (v == head 10858 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT 10859 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY)) 10860 { 10861 CORE_ADDR vaddr = value_address (v); 10862 int len; 10863 int num_regs; 10864 10865 len = (target_exact_watchpoints 10866 && is_scalar_type_recursive (vtype))? 10867 1 : TYPE_LENGTH (value_type (v)); 10868 10869 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len); 10870 if (!num_regs) 10871 return 0; 10872 else 10873 found_memory_cnt += num_regs; 10874 } 10875 } 10876 } 10877 else if (VALUE_LVAL (v) != not_lval 10878 && deprecated_value_modifiable (v) == 0) 10879 return 0; /* These are values from the history (e.g., $1). */ 10880 else if (VALUE_LVAL (v) == lval_register) 10881 return 0; /* Cannot watch a register with a HW watchpoint. */ 10882 } 10883 10884 /* The expression itself looks suitable for using a hardware 10885 watchpoint, but give the target machine a chance to reject it. */ 10886 return found_memory_cnt; 10887 } 10888 10889 void 10890 watch_command_wrapper (const char *arg, int from_tty, int internal) 10891 { 10892 watch_command_1 (arg, hw_write, from_tty, 0, internal); 10893 } 10894 10895 /* A helper function that looks for the "-location" argument and then 10896 calls watch_command_1. */ 10897 10898 static void 10899 watch_maybe_just_location (const char *arg, int accessflag, int from_tty) 10900 { 10901 int just_location = 0; 10902 10903 if (arg 10904 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1) 10905 || check_for_argument (&arg, "-l", sizeof ("-l") - 1))) 10906 { 10907 arg = skip_spaces (arg); 10908 just_location = 1; 10909 } 10910 10911 watch_command_1 (arg, accessflag, from_tty, just_location, 0); 10912 } 10913 10914 static void 10915 watch_command (const char *arg, int from_tty) 10916 { 10917 watch_maybe_just_location (arg, hw_write, from_tty); 10918 } 10919 10920 void 10921 rwatch_command_wrapper (const char *arg, int from_tty, int internal) 10922 { 10923 watch_command_1 (arg, hw_read, from_tty, 0, internal); 10924 } 10925 10926 static void 10927 rwatch_command (const char *arg, int from_tty) 10928 { 10929 watch_maybe_just_location (arg, hw_read, from_tty); 10930 } 10931 10932 void 10933 awatch_command_wrapper (const char *arg, int from_tty, int internal) 10934 { 10935 watch_command_1 (arg, hw_access, from_tty, 0, internal); 10936 } 10937 10938 static void 10939 awatch_command (const char *arg, int from_tty) 10940 { 10941 watch_maybe_just_location (arg, hw_access, from_tty); 10942 } 10943 10944 10945 /* Data for the FSM that manages the until(location)/advance commands 10946 in infcmd.c. Here because it uses the mechanisms of 10947 breakpoints. */ 10948 10949 struct until_break_fsm : public thread_fsm 10950 { 10951 /* The thread that was current when the command was executed. */ 10952 int thread; 10953 10954 /* The breakpoint set at the destination location. */ 10955 breakpoint_up location_breakpoint; 10956 10957 /* Breakpoint set at the return address in the caller frame. May be 10958 NULL. */ 10959 breakpoint_up caller_breakpoint; 10960 10961 until_break_fsm (struct interp *cmd_interp, int thread, 10962 breakpoint_up &&location_breakpoint, 10963 breakpoint_up &&caller_breakpoint) 10964 : thread_fsm (cmd_interp), 10965 thread (thread), 10966 location_breakpoint (std::move (location_breakpoint)), 10967 caller_breakpoint (std::move (caller_breakpoint)) 10968 { 10969 } 10970 10971 void clean_up (struct thread_info *thread) override; 10972 bool should_stop (struct thread_info *thread) override; 10973 enum async_reply_reason do_async_reply_reason () override; 10974 }; 10975 10976 /* Implementation of the 'should_stop' FSM method for the 10977 until(location)/advance commands. */ 10978 10979 bool 10980 until_break_fsm::should_stop (struct thread_info *tp) 10981 { 10982 if (bpstat_find_breakpoint (tp->control.stop_bpstat, 10983 location_breakpoint.get ()) != NULL 10984 || (caller_breakpoint != NULL 10985 && bpstat_find_breakpoint (tp->control.stop_bpstat, 10986 caller_breakpoint.get ()) != NULL)) 10987 set_finished (); 10988 10989 return true; 10990 } 10991 10992 /* Implementation of the 'clean_up' FSM method for the 10993 until(location)/advance commands. */ 10994 10995 void 10996 until_break_fsm::clean_up (struct thread_info *) 10997 { 10998 /* Clean up our temporary breakpoints. */ 10999 location_breakpoint.reset (); 11000 caller_breakpoint.reset (); 11001 delete_longjmp_breakpoint (thread); 11002 } 11003 11004 /* Implementation of the 'async_reply_reason' FSM method for the 11005 until(location)/advance commands. */ 11006 11007 enum async_reply_reason 11008 until_break_fsm::do_async_reply_reason () 11009 { 11010 return EXEC_ASYNC_LOCATION_REACHED; 11011 } 11012 11013 void 11014 until_break_command (const char *arg, int from_tty, int anywhere) 11015 { 11016 struct frame_info *frame; 11017 struct gdbarch *frame_gdbarch; 11018 struct frame_id stack_frame_id; 11019 struct frame_id caller_frame_id; 11020 int thread; 11021 struct thread_info *tp; 11022 11023 clear_proceed_status (0); 11024 11025 /* Set a breakpoint where the user wants it and at return from 11026 this function. */ 11027 11028 event_location_up location = string_to_event_location (&arg, current_language); 11029 11030 std::vector<symtab_and_line> sals 11031 = (last_displayed_sal_is_valid () 11032 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL, 11033 get_last_displayed_symtab (), 11034 get_last_displayed_line ()) 11035 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, 11036 NULL, (struct symtab *) NULL, 0)); 11037 11038 if (sals.size () != 1) 11039 error (_("Couldn't get information on specified line.")); 11040 11041 symtab_and_line &sal = sals[0]; 11042 11043 if (*arg) 11044 error (_("Junk at end of arguments.")); 11045 11046 resolve_sal_pc (&sal); 11047 11048 tp = inferior_thread (); 11049 thread = tp->global_num; 11050 11051 /* Note linespec handling above invalidates the frame chain. 11052 Installing a breakpoint also invalidates the frame chain (as it 11053 may need to switch threads), so do any frame handling before 11054 that. */ 11055 11056 frame = get_selected_frame (NULL); 11057 frame_gdbarch = get_frame_arch (frame); 11058 stack_frame_id = get_stack_frame_id (frame); 11059 caller_frame_id = frame_unwind_caller_id (frame); 11060 11061 /* Keep within the current frame, or in frames called by the current 11062 one. */ 11063 11064 breakpoint_up caller_breakpoint; 11065 11066 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter; 11067 11068 if (frame_id_p (caller_frame_id)) 11069 { 11070 struct symtab_and_line sal2; 11071 struct gdbarch *caller_gdbarch; 11072 11073 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0); 11074 sal2.pc = frame_unwind_caller_pc (frame); 11075 caller_gdbarch = frame_unwind_caller_arch (frame); 11076 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch, 11077 sal2, 11078 caller_frame_id, 11079 bp_until); 11080 11081 set_longjmp_breakpoint (tp, caller_frame_id); 11082 lj_deleter.emplace (thread); 11083 } 11084 11085 /* set_momentary_breakpoint could invalidate FRAME. */ 11086 frame = NULL; 11087 11088 breakpoint_up location_breakpoint; 11089 if (anywhere) 11090 /* If the user told us to continue until a specified location, 11091 we don't specify a frame at which we need to stop. */ 11092 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal, 11093 null_frame_id, bp_until); 11094 else 11095 /* Otherwise, specify the selected frame, because we want to stop 11096 only at the very same frame. */ 11097 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal, 11098 stack_frame_id, bp_until); 11099 11100 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num, 11101 std::move (location_breakpoint), 11102 std::move (caller_breakpoint)); 11103 11104 if (lj_deleter) 11105 lj_deleter->release (); 11106 11107 proceed (-1, GDB_SIGNAL_DEFAULT); 11108 } 11109 11110 /* This function attempts to parse an optional "if <cond>" clause 11111 from the arg string. If one is not found, it returns NULL. 11112 11113 Else, it returns a pointer to the condition string. (It does not 11114 attempt to evaluate the string against a particular block.) And, 11115 it updates arg to point to the first character following the parsed 11116 if clause in the arg string. */ 11117 11118 const char * 11119 ep_parse_optional_if_clause (const char **arg) 11120 { 11121 const char *cond_string; 11122 11123 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2])) 11124 return NULL; 11125 11126 /* Skip the "if" keyword. */ 11127 (*arg) += 2; 11128 11129 /* Skip any extra leading whitespace, and record the start of the 11130 condition string. */ 11131 *arg = skip_spaces (*arg); 11132 cond_string = *arg; 11133 11134 /* Assume that the condition occupies the remainder of the arg 11135 string. */ 11136 (*arg) += strlen (cond_string); 11137 11138 return cond_string; 11139 } 11140 11141 /* Commands to deal with catching events, such as signals, exceptions, 11142 process start/exit, etc. */ 11143 11144 typedef enum 11145 { 11146 catch_fork_temporary, catch_vfork_temporary, 11147 catch_fork_permanent, catch_vfork_permanent 11148 } 11149 catch_fork_kind; 11150 11151 static void 11152 catch_fork_command_1 (const char *arg, int from_tty, 11153 struct cmd_list_element *command) 11154 { 11155 struct gdbarch *gdbarch = get_current_arch (); 11156 const char *cond_string = NULL; 11157 catch_fork_kind fork_kind; 11158 int tempflag; 11159 11160 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command); 11161 tempflag = (fork_kind == catch_fork_temporary 11162 || fork_kind == catch_vfork_temporary); 11163 11164 if (!arg) 11165 arg = ""; 11166 arg = skip_spaces (arg); 11167 11168 /* The allowed syntax is: 11169 catch [v]fork 11170 catch [v]fork if <cond> 11171 11172 First, check if there's an if clause. */ 11173 cond_string = ep_parse_optional_if_clause (&arg); 11174 11175 if ((*arg != '\0') && !isspace (*arg)) 11176 error (_("Junk at end of arguments.")); 11177 11178 /* If this target supports it, create a fork or vfork catchpoint 11179 and enable reporting of such events. */ 11180 switch (fork_kind) 11181 { 11182 case catch_fork_temporary: 11183 case catch_fork_permanent: 11184 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string, 11185 &catch_fork_breakpoint_ops); 11186 break; 11187 case catch_vfork_temporary: 11188 case catch_vfork_permanent: 11189 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string, 11190 &catch_vfork_breakpoint_ops); 11191 break; 11192 default: 11193 error (_("unsupported or unknown fork kind; cannot catch it")); 11194 break; 11195 } 11196 } 11197 11198 static void 11199 catch_exec_command_1 (const char *arg, int from_tty, 11200 struct cmd_list_element *command) 11201 { 11202 struct gdbarch *gdbarch = get_current_arch (); 11203 int tempflag; 11204 const char *cond_string = NULL; 11205 11206 tempflag = get_cmd_context (command) == CATCH_TEMPORARY; 11207 11208 if (!arg) 11209 arg = ""; 11210 arg = skip_spaces (arg); 11211 11212 /* The allowed syntax is: 11213 catch exec 11214 catch exec if <cond> 11215 11216 First, check if there's an if clause. */ 11217 cond_string = ep_parse_optional_if_clause (&arg); 11218 11219 if ((*arg != '\0') && !isspace (*arg)) 11220 error (_("Junk at end of arguments.")); 11221 11222 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ()); 11223 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, 11224 &catch_exec_breakpoint_ops); 11225 c->exec_pathname = NULL; 11226 11227 install_breakpoint (0, std::move (c), 1); 11228 } 11229 11230 void 11231 init_ada_exception_breakpoint (struct breakpoint *b, 11232 struct gdbarch *gdbarch, 11233 struct symtab_and_line sal, 11234 const char *addr_string, 11235 const struct breakpoint_ops *ops, 11236 int tempflag, 11237 int enabled, 11238 int from_tty) 11239 { 11240 if (from_tty) 11241 { 11242 struct gdbarch *loc_gdbarch = get_sal_arch (sal); 11243 if (!loc_gdbarch) 11244 loc_gdbarch = gdbarch; 11245 11246 describe_other_breakpoints (loc_gdbarch, 11247 sal.pspace, sal.pc, sal.section, -1); 11248 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special 11249 version for exception catchpoints, because two catchpoints 11250 used for different exception names will use the same address. 11251 In this case, a "breakpoint ... also set at..." warning is 11252 unproductive. Besides, the warning phrasing is also a bit 11253 inappropriate, we should use the word catchpoint, and tell 11254 the user what type of catchpoint it is. The above is good 11255 enough for now, though. */ 11256 } 11257 11258 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops); 11259 11260 b->enable_state = enabled ? bp_enabled : bp_disabled; 11261 b->disposition = tempflag ? disp_del : disp_donttouch; 11262 b->location = string_to_event_location (&addr_string, 11263 language_def (language_ada)); 11264 b->language = language_ada; 11265 } 11266 11267 static void 11268 catch_command (const char *arg, int from_tty) 11269 { 11270 error (_("Catch requires an event name.")); 11271 } 11272 11273 11274 static void 11275 tcatch_command (const char *arg, int from_tty) 11276 { 11277 error (_("Catch requires an event name.")); 11278 } 11279 11280 /* Compare two breakpoints and return a strcmp-like result. */ 11281 11282 static int 11283 compare_breakpoints (const breakpoint *a, const breakpoint *b) 11284 { 11285 uintptr_t ua = (uintptr_t) a; 11286 uintptr_t ub = (uintptr_t) b; 11287 11288 if (a->number < b->number) 11289 return -1; 11290 else if (a->number > b->number) 11291 return 1; 11292 11293 /* Now sort by address, in case we see, e..g, two breakpoints with 11294 the number 0. */ 11295 if (ua < ub) 11296 return -1; 11297 return ua > ub ? 1 : 0; 11298 } 11299 11300 /* Delete breakpoints by address or line. */ 11301 11302 static void 11303 clear_command (const char *arg, int from_tty) 11304 { 11305 struct breakpoint *b; 11306 int default_match; 11307 11308 std::vector<symtab_and_line> decoded_sals; 11309 symtab_and_line last_sal; 11310 gdb::array_view<symtab_and_line> sals; 11311 if (arg) 11312 { 11313 decoded_sals 11314 = decode_line_with_current_source (arg, 11315 (DECODE_LINE_FUNFIRSTLINE 11316 | DECODE_LINE_LIST_MODE)); 11317 default_match = 0; 11318 sals = decoded_sals; 11319 } 11320 else 11321 { 11322 /* Set sal's line, symtab, pc, and pspace to the values 11323 corresponding to the last call to print_frame_info. If the 11324 codepoint is not valid, this will set all the fields to 0. */ 11325 last_sal = get_last_displayed_sal (); 11326 if (last_sal.symtab == 0) 11327 error (_("No source file specified.")); 11328 11329 default_match = 1; 11330 sals = last_sal; 11331 } 11332 11333 /* We don't call resolve_sal_pc here. That's not as bad as it 11334 seems, because all existing breakpoints typically have both 11335 file/line and pc set. So, if clear is given file/line, we can 11336 match this to existing breakpoint without obtaining pc at all. 11337 11338 We only support clearing given the address explicitly 11339 present in breakpoint table. Say, we've set breakpoint 11340 at file:line. There were several PC values for that file:line, 11341 due to optimization, all in one block. 11342 11343 We've picked one PC value. If "clear" is issued with another 11344 PC corresponding to the same file:line, the breakpoint won't 11345 be cleared. We probably can still clear the breakpoint, but 11346 since the other PC value is never presented to user, user 11347 can only find it by guessing, and it does not seem important 11348 to support that. */ 11349 11350 /* For each line spec given, delete bps which correspond to it. Do 11351 it in two passes, solely to preserve the current behavior that 11352 from_tty is forced true if we delete more than one 11353 breakpoint. */ 11354 11355 std::vector<struct breakpoint *> found; 11356 for (const auto &sal : sals) 11357 { 11358 const char *sal_fullname; 11359 11360 /* If exact pc given, clear bpts at that pc. 11361 If line given (pc == 0), clear all bpts on specified line. 11362 If defaulting, clear all bpts on default line 11363 or at default pc. 11364 11365 defaulting sal.pc != 0 tests to do 11366 11367 0 1 pc 11368 1 1 pc _and_ line 11369 0 0 line 11370 1 0 <can't happen> */ 11371 11372 sal_fullname = (sal.symtab == NULL 11373 ? NULL : symtab_to_fullname (sal.symtab)); 11374 11375 /* Find all matching breakpoints and add them to 'found'. */ 11376 ALL_BREAKPOINTS (b) 11377 { 11378 int match = 0; 11379 /* Are we going to delete b? */ 11380 if (b->type != bp_none && !is_watchpoint (b)) 11381 { 11382 struct bp_location *loc = b->loc; 11383 for (; loc; loc = loc->next) 11384 { 11385 /* If the user specified file:line, don't allow a PC 11386 match. This matches historical gdb behavior. */ 11387 int pc_match = (!sal.explicit_line 11388 && sal.pc 11389 && (loc->pspace == sal.pspace) 11390 && (loc->address == sal.pc) 11391 && (!section_is_overlay (loc->section) 11392 || loc->section == sal.section)); 11393 int line_match = 0; 11394 11395 if ((default_match || sal.explicit_line) 11396 && loc->symtab != NULL 11397 && sal_fullname != NULL 11398 && sal.pspace == loc->pspace 11399 && loc->line_number == sal.line 11400 && filename_cmp (symtab_to_fullname (loc->symtab), 11401 sal_fullname) == 0) 11402 line_match = 1; 11403 11404 if (pc_match || line_match) 11405 { 11406 match = 1; 11407 break; 11408 } 11409 } 11410 } 11411 11412 if (match) 11413 found.push_back (b); 11414 } 11415 } 11416 11417 /* Now go thru the 'found' chain and delete them. */ 11418 if (found.empty ()) 11419 { 11420 if (arg) 11421 error (_("No breakpoint at %s."), arg); 11422 else 11423 error (_("No breakpoint at this line.")); 11424 } 11425 11426 /* Remove duplicates from the vec. */ 11427 std::sort (found.begin (), found.end (), 11428 [] (const breakpoint *bp_a, const breakpoint *bp_b) 11429 { 11430 return compare_breakpoints (bp_a, bp_b) < 0; 11431 }); 11432 found.erase (std::unique (found.begin (), found.end (), 11433 [] (const breakpoint *bp_a, const breakpoint *bp_b) 11434 { 11435 return compare_breakpoints (bp_a, bp_b) == 0; 11436 }), 11437 found.end ()); 11438 11439 if (found.size () > 1) 11440 from_tty = 1; /* Always report if deleted more than one. */ 11441 if (from_tty) 11442 { 11443 if (found.size () == 1) 11444 printf_unfiltered (_("Deleted breakpoint ")); 11445 else 11446 printf_unfiltered (_("Deleted breakpoints ")); 11447 } 11448 11449 for (breakpoint *iter : found) 11450 { 11451 if (from_tty) 11452 printf_unfiltered ("%d ", iter->number); 11453 delete_breakpoint (iter); 11454 } 11455 if (from_tty) 11456 putchar_unfiltered ('\n'); 11457 } 11458 11459 /* Delete breakpoint in BS if they are `delete' breakpoints and 11460 all breakpoints that are marked for deletion, whether hit or not. 11461 This is called after any breakpoint is hit, or after errors. */ 11462 11463 void 11464 breakpoint_auto_delete (bpstat bs) 11465 { 11466 struct breakpoint *b, *b_tmp; 11467 11468 for (; bs; bs = bs->next) 11469 if (bs->breakpoint_at 11470 && bs->breakpoint_at->disposition == disp_del 11471 && bs->stop) 11472 delete_breakpoint (bs->breakpoint_at); 11473 11474 ALL_BREAKPOINTS_SAFE (b, b_tmp) 11475 { 11476 if (b->disposition == disp_del_at_next_stop) 11477 delete_breakpoint (b); 11478 } 11479 } 11480 11481 /* A comparison function for bp_location AP and BP being interfaced to 11482 qsort. Sort elements primarily by their ADDRESS (no matter what 11483 does breakpoint_address_is_meaningful say for its OWNER), 11484 secondarily by ordering first permanent elements and 11485 terciarily just ensuring the array is sorted stable way despite 11486 qsort being an unstable algorithm. */ 11487 11488 static int 11489 bp_locations_compare (const void *ap, const void *bp) 11490 { 11491 const struct bp_location *a = *(const struct bp_location **) ap; 11492 const struct bp_location *b = *(const struct bp_location **) bp; 11493 11494 if (a->address != b->address) 11495 return (a->address > b->address) - (a->address < b->address); 11496 11497 /* Sort locations at the same address by their pspace number, keeping 11498 locations of the same inferior (in a multi-inferior environment) 11499 grouped. */ 11500 11501 if (a->pspace->num != b->pspace->num) 11502 return ((a->pspace->num > b->pspace->num) 11503 - (a->pspace->num < b->pspace->num)); 11504 11505 /* Sort permanent breakpoints first. */ 11506 if (a->permanent != b->permanent) 11507 return (a->permanent < b->permanent) - (a->permanent > b->permanent); 11508 11509 /* Make the internal GDB representation stable across GDB runs 11510 where A and B memory inside GDB can differ. Breakpoint locations of 11511 the same type at the same address can be sorted in arbitrary order. */ 11512 11513 if (a->owner->number != b->owner->number) 11514 return ((a->owner->number > b->owner->number) 11515 - (a->owner->number < b->owner->number)); 11516 11517 return (a > b) - (a < b); 11518 } 11519 11520 /* Set bp_locations_placed_address_before_address_max and 11521 bp_locations_shadow_len_after_address_max according to the current 11522 content of the bp_locations array. */ 11523 11524 static void 11525 bp_locations_target_extensions_update (void) 11526 { 11527 struct bp_location *bl, **blp_tmp; 11528 11529 bp_locations_placed_address_before_address_max = 0; 11530 bp_locations_shadow_len_after_address_max = 0; 11531 11532 ALL_BP_LOCATIONS (bl, blp_tmp) 11533 { 11534 CORE_ADDR start, end, addr; 11535 11536 if (!bp_location_has_shadow (bl)) 11537 continue; 11538 11539 start = bl->target_info.placed_address; 11540 end = start + bl->target_info.shadow_len; 11541 11542 gdb_assert (bl->address >= start); 11543 addr = bl->address - start; 11544 if (addr > bp_locations_placed_address_before_address_max) 11545 bp_locations_placed_address_before_address_max = addr; 11546 11547 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */ 11548 11549 gdb_assert (bl->address < end); 11550 addr = end - bl->address; 11551 if (addr > bp_locations_shadow_len_after_address_max) 11552 bp_locations_shadow_len_after_address_max = addr; 11553 } 11554 } 11555 11556 /* Download tracepoint locations if they haven't been. */ 11557 11558 static void 11559 download_tracepoint_locations (void) 11560 { 11561 struct breakpoint *b; 11562 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN; 11563 11564 scoped_restore_current_pspace_and_thread restore_pspace_thread; 11565 11566 ALL_TRACEPOINTS (b) 11567 { 11568 struct bp_location *bl; 11569 struct tracepoint *t; 11570 int bp_location_downloaded = 0; 11571 11572 if ((b->type == bp_fast_tracepoint 11573 ? !may_insert_fast_tracepoints 11574 : !may_insert_tracepoints)) 11575 continue; 11576 11577 if (can_download_tracepoint == TRIBOOL_UNKNOWN) 11578 { 11579 if (target_can_download_tracepoint ()) 11580 can_download_tracepoint = TRIBOOL_TRUE; 11581 else 11582 can_download_tracepoint = TRIBOOL_FALSE; 11583 } 11584 11585 if (can_download_tracepoint == TRIBOOL_FALSE) 11586 break; 11587 11588 for (bl = b->loc; bl; bl = bl->next) 11589 { 11590 /* In tracepoint, locations are _never_ duplicated, so 11591 should_be_inserted is equivalent to 11592 unduplicated_should_be_inserted. */ 11593 if (!should_be_inserted (bl) || bl->inserted) 11594 continue; 11595 11596 switch_to_program_space_and_thread (bl->pspace); 11597 11598 target_download_tracepoint (bl); 11599 11600 bl->inserted = 1; 11601 bp_location_downloaded = 1; 11602 } 11603 t = (struct tracepoint *) b; 11604 t->number_on_target = b->number; 11605 if (bp_location_downloaded) 11606 gdb::observers::breakpoint_modified.notify (b); 11607 } 11608 } 11609 11610 /* Swap the insertion/duplication state between two locations. */ 11611 11612 static void 11613 swap_insertion (struct bp_location *left, struct bp_location *right) 11614 { 11615 const int left_inserted = left->inserted; 11616 const int left_duplicate = left->duplicate; 11617 const int left_needs_update = left->needs_update; 11618 const struct bp_target_info left_target_info = left->target_info; 11619 11620 /* Locations of tracepoints can never be duplicated. */ 11621 if (is_tracepoint (left->owner)) 11622 gdb_assert (!left->duplicate); 11623 if (is_tracepoint (right->owner)) 11624 gdb_assert (!right->duplicate); 11625 11626 left->inserted = right->inserted; 11627 left->duplicate = right->duplicate; 11628 left->needs_update = right->needs_update; 11629 left->target_info = right->target_info; 11630 right->inserted = left_inserted; 11631 right->duplicate = left_duplicate; 11632 right->needs_update = left_needs_update; 11633 right->target_info = left_target_info; 11634 } 11635 11636 /* Force the re-insertion of the locations at ADDRESS. This is called 11637 once a new/deleted/modified duplicate location is found and we are evaluating 11638 conditions on the target's side. Such conditions need to be updated on 11639 the target. */ 11640 11641 static void 11642 force_breakpoint_reinsertion (struct bp_location *bl) 11643 { 11644 struct bp_location **locp = NULL, **loc2p; 11645 struct bp_location *loc; 11646 CORE_ADDR address = 0; 11647 int pspace_num; 11648 11649 address = bl->address; 11650 pspace_num = bl->pspace->num; 11651 11652 /* This is only meaningful if the target is 11653 evaluating conditions and if the user has 11654 opted for condition evaluation on the target's 11655 side. */ 11656 if (gdb_evaluates_breakpoint_condition_p () 11657 || !target_supports_evaluation_of_breakpoint_conditions ()) 11658 return; 11659 11660 /* Flag all breakpoint locations with this address and 11661 the same program space as the location 11662 as "its condition has changed". We need to 11663 update the conditions on the target's side. */ 11664 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address) 11665 { 11666 loc = *loc2p; 11667 11668 if (!is_breakpoint (loc->owner) 11669 || pspace_num != loc->pspace->num) 11670 continue; 11671 11672 /* Flag the location appropriately. We use a different state to 11673 let everyone know that we already updated the set of locations 11674 with addr bl->address and program space bl->pspace. This is so 11675 we don't have to keep calling these functions just to mark locations 11676 that have already been marked. */ 11677 loc->condition_changed = condition_updated; 11678 11679 /* Free the agent expression bytecode as well. We will compute 11680 it later on. */ 11681 loc->cond_bytecode.reset (); 11682 } 11683 } 11684 /* Called whether new breakpoints are created, or existing breakpoints 11685 deleted, to update the global location list and recompute which 11686 locations are duplicate of which. 11687 11688 The INSERT_MODE flag determines whether locations may not, may, or 11689 shall be inserted now. See 'enum ugll_insert_mode' for more 11690 info. */ 11691 11692 static void 11693 update_global_location_list (enum ugll_insert_mode insert_mode) 11694 { 11695 struct breakpoint *b; 11696 struct bp_location **locp, *loc; 11697 /* Last breakpoint location address that was marked for update. */ 11698 CORE_ADDR last_addr = 0; 11699 /* Last breakpoint location program space that was marked for update. */ 11700 int last_pspace_num = -1; 11701 11702 /* Used in the duplicates detection below. When iterating over all 11703 bp_locations, points to the first bp_location of a given address. 11704 Breakpoints and watchpoints of different types are never 11705 duplicates of each other. Keep one pointer for each type of 11706 breakpoint/watchpoint, so we only need to loop over all locations 11707 once. */ 11708 struct bp_location *bp_loc_first; /* breakpoint */ 11709 struct bp_location *wp_loc_first; /* hardware watchpoint */ 11710 struct bp_location *awp_loc_first; /* access watchpoint */ 11711 struct bp_location *rwp_loc_first; /* read watchpoint */ 11712 11713 /* Saved former bp_locations array which we compare against the newly 11714 built bp_locations from the current state of ALL_BREAKPOINTS. */ 11715 struct bp_location **old_locp; 11716 unsigned old_locations_count; 11717 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations); 11718 11719 old_locations_count = bp_locations_count; 11720 bp_locations = NULL; 11721 bp_locations_count = 0; 11722 11723 ALL_BREAKPOINTS (b) 11724 for (loc = b->loc; loc; loc = loc->next) 11725 bp_locations_count++; 11726 11727 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count); 11728 locp = bp_locations; 11729 ALL_BREAKPOINTS (b) 11730 for (loc = b->loc; loc; loc = loc->next) 11731 *locp++ = loc; 11732 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations), 11733 bp_locations_compare); 11734 11735 bp_locations_target_extensions_update (); 11736 11737 /* Identify bp_location instances that are no longer present in the 11738 new list, and therefore should be freed. Note that it's not 11739 necessary that those locations should be removed from inferior -- 11740 if there's another location at the same address (previously 11741 marked as duplicate), we don't need to remove/insert the 11742 location. 11743 11744 LOCP is kept in sync with OLD_LOCP, each pointing to the current 11745 and former bp_location array state respectively. */ 11746 11747 locp = bp_locations; 11748 for (old_locp = old_locations.get (); 11749 old_locp < old_locations.get () + old_locations_count; 11750 old_locp++) 11751 { 11752 struct bp_location *old_loc = *old_locp; 11753 struct bp_location **loc2p; 11754 11755 /* Tells if 'old_loc' is found among the new locations. If 11756 not, we have to free it. */ 11757 int found_object = 0; 11758 /* Tells if the location should remain inserted in the target. */ 11759 int keep_in_target = 0; 11760 int removed = 0; 11761 11762 /* Skip LOCP entries which will definitely never be needed. 11763 Stop either at or being the one matching OLD_LOC. */ 11764 while (locp < bp_locations + bp_locations_count 11765 && (*locp)->address < old_loc->address) 11766 locp++; 11767 11768 for (loc2p = locp; 11769 (loc2p < bp_locations + bp_locations_count 11770 && (*loc2p)->address == old_loc->address); 11771 loc2p++) 11772 { 11773 /* Check if this is a new/duplicated location or a duplicated 11774 location that had its condition modified. If so, we want to send 11775 its condition to the target if evaluation of conditions is taking 11776 place there. */ 11777 if ((*loc2p)->condition_changed == condition_modified 11778 && (last_addr != old_loc->address 11779 || last_pspace_num != old_loc->pspace->num)) 11780 { 11781 force_breakpoint_reinsertion (*loc2p); 11782 last_pspace_num = old_loc->pspace->num; 11783 } 11784 11785 if (*loc2p == old_loc) 11786 found_object = 1; 11787 } 11788 11789 /* We have already handled this address, update it so that we don't 11790 have to go through updates again. */ 11791 last_addr = old_loc->address; 11792 11793 /* Target-side condition evaluation: Handle deleted locations. */ 11794 if (!found_object) 11795 force_breakpoint_reinsertion (old_loc); 11796 11797 /* If this location is no longer present, and inserted, look if 11798 there's maybe a new location at the same address. If so, 11799 mark that one inserted, and don't remove this one. This is 11800 needed so that we don't have a time window where a breakpoint 11801 at certain location is not inserted. */ 11802 11803 if (old_loc->inserted) 11804 { 11805 /* If the location is inserted now, we might have to remove 11806 it. */ 11807 11808 if (found_object && should_be_inserted (old_loc)) 11809 { 11810 /* The location is still present in the location list, 11811 and still should be inserted. Don't do anything. */ 11812 keep_in_target = 1; 11813 } 11814 else 11815 { 11816 /* This location still exists, but it won't be kept in the 11817 target since it may have been disabled. We proceed to 11818 remove its target-side condition. */ 11819 11820 /* The location is either no longer present, or got 11821 disabled. See if there's another location at the 11822 same address, in which case we don't need to remove 11823 this one from the target. */ 11824 11825 /* OLD_LOC comes from existing struct breakpoint. */ 11826 if (breakpoint_address_is_meaningful (old_loc->owner)) 11827 { 11828 for (loc2p = locp; 11829 (loc2p < bp_locations + bp_locations_count 11830 && (*loc2p)->address == old_loc->address); 11831 loc2p++) 11832 { 11833 struct bp_location *loc2 = *loc2p; 11834 11835 if (breakpoint_locations_match (loc2, old_loc)) 11836 { 11837 /* Read watchpoint locations are switched to 11838 access watchpoints, if the former are not 11839 supported, but the latter are. */ 11840 if (is_hardware_watchpoint (old_loc->owner)) 11841 { 11842 gdb_assert (is_hardware_watchpoint (loc2->owner)); 11843 loc2->watchpoint_type = old_loc->watchpoint_type; 11844 } 11845 11846 /* loc2 is a duplicated location. We need to check 11847 if it should be inserted in case it will be 11848 unduplicated. */ 11849 if (loc2 != old_loc 11850 && unduplicated_should_be_inserted (loc2)) 11851 { 11852 swap_insertion (old_loc, loc2); 11853 keep_in_target = 1; 11854 break; 11855 } 11856 } 11857 } 11858 } 11859 } 11860 11861 if (!keep_in_target) 11862 { 11863 if (remove_breakpoint (old_loc)) 11864 { 11865 /* This is just about all we can do. We could keep 11866 this location on the global list, and try to 11867 remove it next time, but there's no particular 11868 reason why we will succeed next time. 11869 11870 Note that at this point, old_loc->owner is still 11871 valid, as delete_breakpoint frees the breakpoint 11872 only after calling us. */ 11873 printf_filtered (_("warning: Error removing " 11874 "breakpoint %d\n"), 11875 old_loc->owner->number); 11876 } 11877 removed = 1; 11878 } 11879 } 11880 11881 if (!found_object) 11882 { 11883 if (removed && target_is_non_stop_p () 11884 && need_moribund_for_location_type (old_loc)) 11885 { 11886 /* This location was removed from the target. In 11887 non-stop mode, a race condition is possible where 11888 we've removed a breakpoint, but stop events for that 11889 breakpoint are already queued and will arrive later. 11890 We apply an heuristic to be able to distinguish such 11891 SIGTRAPs from other random SIGTRAPs: we keep this 11892 breakpoint location for a bit, and will retire it 11893 after we see some number of events. The theory here 11894 is that reporting of events should, "on the average", 11895 be fair, so after a while we'll see events from all 11896 threads that have anything of interest, and no longer 11897 need to keep this breakpoint location around. We 11898 don't hold locations forever so to reduce chances of 11899 mistaking a non-breakpoint SIGTRAP for a breakpoint 11900 SIGTRAP. 11901 11902 The heuristic failing can be disastrous on 11903 decr_pc_after_break targets. 11904 11905 On decr_pc_after_break targets, like e.g., x86-linux, 11906 if we fail to recognize a late breakpoint SIGTRAP, 11907 because events_till_retirement has reached 0 too 11908 soon, we'll fail to do the PC adjustment, and report 11909 a random SIGTRAP to the user. When the user resumes 11910 the inferior, it will most likely immediately crash 11911 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently 11912 corrupted, because of being resumed e.g., in the 11913 middle of a multi-byte instruction, or skipped a 11914 one-byte instruction. This was actually seen happen 11915 on native x86-linux, and should be less rare on 11916 targets that do not support new thread events, like 11917 remote, due to the heuristic depending on 11918 thread_count. 11919 11920 Mistaking a random SIGTRAP for a breakpoint trap 11921 causes similar symptoms (PC adjustment applied when 11922 it shouldn't), but then again, playing with SIGTRAPs 11923 behind the debugger's back is asking for trouble. 11924 11925 Since hardware watchpoint traps are always 11926 distinguishable from other traps, so we don't need to 11927 apply keep hardware watchpoint moribund locations 11928 around. We simply always ignore hardware watchpoint 11929 traps we can no longer explain. */ 11930 11931 old_loc->events_till_retirement = 3 * (thread_count () + 1); 11932 old_loc->owner = NULL; 11933 11934 moribund_locations.push_back (old_loc); 11935 } 11936 else 11937 { 11938 old_loc->owner = NULL; 11939 decref_bp_location (&old_loc); 11940 } 11941 } 11942 } 11943 11944 /* Rescan breakpoints at the same address and section, marking the 11945 first one as "first" and any others as "duplicates". This is so 11946 that the bpt instruction is only inserted once. If we have a 11947 permanent breakpoint at the same place as BPT, make that one the 11948 official one, and the rest as duplicates. Permanent breakpoints 11949 are sorted first for the same address. 11950 11951 Do the same for hardware watchpoints, but also considering the 11952 watchpoint's type (regular/access/read) and length. */ 11953 11954 bp_loc_first = NULL; 11955 wp_loc_first = NULL; 11956 awp_loc_first = NULL; 11957 rwp_loc_first = NULL; 11958 ALL_BP_LOCATIONS (loc, locp) 11959 { 11960 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always 11961 non-NULL. */ 11962 struct bp_location **loc_first_p; 11963 b = loc->owner; 11964 11965 if (!unduplicated_should_be_inserted (loc) 11966 || !breakpoint_address_is_meaningful (b) 11967 /* Don't detect duplicate for tracepoint locations because they are 11968 never duplicated. See the comments in field `duplicate' of 11969 `struct bp_location'. */ 11970 || is_tracepoint (b)) 11971 { 11972 /* Clear the condition modification flag. */ 11973 loc->condition_changed = condition_unchanged; 11974 continue; 11975 } 11976 11977 if (b->type == bp_hardware_watchpoint) 11978 loc_first_p = &wp_loc_first; 11979 else if (b->type == bp_read_watchpoint) 11980 loc_first_p = &rwp_loc_first; 11981 else if (b->type == bp_access_watchpoint) 11982 loc_first_p = &awp_loc_first; 11983 else 11984 loc_first_p = &bp_loc_first; 11985 11986 if (*loc_first_p == NULL 11987 || (overlay_debugging && loc->section != (*loc_first_p)->section) 11988 || !breakpoint_locations_match (loc, *loc_first_p)) 11989 { 11990 *loc_first_p = loc; 11991 loc->duplicate = 0; 11992 11993 if (is_breakpoint (loc->owner) && loc->condition_changed) 11994 { 11995 loc->needs_update = 1; 11996 /* Clear the condition modification flag. */ 11997 loc->condition_changed = condition_unchanged; 11998 } 11999 continue; 12000 } 12001 12002 12003 /* This and the above ensure the invariant that the first location 12004 is not duplicated, and is the inserted one. 12005 All following are marked as duplicated, and are not inserted. */ 12006 if (loc->inserted) 12007 swap_insertion (loc, *loc_first_p); 12008 loc->duplicate = 1; 12009 12010 /* Clear the condition modification flag. */ 12011 loc->condition_changed = condition_unchanged; 12012 } 12013 12014 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ()) 12015 { 12016 if (insert_mode != UGLL_DONT_INSERT) 12017 insert_breakpoint_locations (); 12018 else 12019 { 12020 /* Even though the caller told us to not insert new 12021 locations, we may still need to update conditions on the 12022 target's side of breakpoints that were already inserted 12023 if the target is evaluating breakpoint conditions. We 12024 only update conditions for locations that are marked 12025 "needs_update". */ 12026 update_inserted_breakpoint_locations (); 12027 } 12028 } 12029 12030 if (insert_mode != UGLL_DONT_INSERT) 12031 download_tracepoint_locations (); 12032 } 12033 12034 void 12035 breakpoint_retire_moribund (void) 12036 { 12037 for (int ix = 0; ix < moribund_locations.size (); ++ix) 12038 { 12039 struct bp_location *loc = moribund_locations[ix]; 12040 if (--(loc->events_till_retirement) == 0) 12041 { 12042 decref_bp_location (&loc); 12043 unordered_remove (moribund_locations, ix); 12044 --ix; 12045 } 12046 } 12047 } 12048 12049 static void 12050 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode) 12051 { 12052 12053 TRY 12054 { 12055 update_global_location_list (insert_mode); 12056 } 12057 CATCH (e, RETURN_MASK_ERROR) 12058 { 12059 } 12060 END_CATCH 12061 } 12062 12063 /* Clear BKP from a BPS. */ 12064 12065 static void 12066 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt) 12067 { 12068 bpstat bs; 12069 12070 for (bs = bps; bs; bs = bs->next) 12071 if (bs->breakpoint_at == bpt) 12072 { 12073 bs->breakpoint_at = NULL; 12074 bs->old_val = NULL; 12075 /* bs->commands will be freed later. */ 12076 } 12077 } 12078 12079 /* Callback for iterate_over_threads. */ 12080 static int 12081 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data) 12082 { 12083 struct breakpoint *bpt = (struct breakpoint *) data; 12084 12085 bpstat_remove_bp_location (th->control.stop_bpstat, bpt); 12086 return 0; 12087 } 12088 12089 /* Helper for breakpoint and tracepoint breakpoint_ops->mention 12090 callbacks. */ 12091 12092 static void 12093 say_where (struct breakpoint *b) 12094 { 12095 struct value_print_options opts; 12096 12097 get_user_print_options (&opts); 12098 12099 /* i18n: cagney/2005-02-11: Below needs to be merged into a 12100 single string. */ 12101 if (b->loc == NULL) 12102 { 12103 /* For pending locations, the output differs slightly based 12104 on b->extra_string. If this is non-NULL, it contains either 12105 a condition or dprintf arguments. */ 12106 if (b->extra_string == NULL) 12107 { 12108 printf_filtered (_(" (%s) pending."), 12109 event_location_to_string (b->location.get ())); 12110 } 12111 else if (b->type == bp_dprintf) 12112 { 12113 printf_filtered (_(" (%s,%s) pending."), 12114 event_location_to_string (b->location.get ()), 12115 b->extra_string); 12116 } 12117 else 12118 { 12119 printf_filtered (_(" (%s %s) pending."), 12120 event_location_to_string (b->location.get ()), 12121 b->extra_string); 12122 } 12123 } 12124 else 12125 { 12126 if (opts.addressprint || b->loc->symtab == NULL) 12127 { 12128 printf_filtered (" at "); 12129 fputs_styled (paddress (b->loc->gdbarch, b->loc->address), 12130 address_style.style (), 12131 gdb_stdout); 12132 } 12133 if (b->loc->symtab != NULL) 12134 { 12135 /* If there is a single location, we can print the location 12136 more nicely. */ 12137 if (b->loc->next == NULL) 12138 { 12139 puts_filtered (": file "); 12140 fputs_styled (symtab_to_filename_for_display (b->loc->symtab), 12141 file_name_style.style (), 12142 gdb_stdout); 12143 printf_filtered (", line %d.", 12144 b->loc->line_number); 12145 } 12146 else 12147 /* This is not ideal, but each location may have a 12148 different file name, and this at least reflects the 12149 real situation somewhat. */ 12150 printf_filtered (": %s.", 12151 event_location_to_string (b->location.get ())); 12152 } 12153 12154 if (b->loc->next) 12155 { 12156 struct bp_location *loc = b->loc; 12157 int n = 0; 12158 for (; loc; loc = loc->next) 12159 ++n; 12160 printf_filtered (" (%d locations)", n); 12161 } 12162 } 12163 } 12164 12165 bp_location::~bp_location () 12166 { 12167 xfree (function_name); 12168 } 12169 12170 /* Destructor for the breakpoint base class. */ 12171 12172 breakpoint::~breakpoint () 12173 { 12174 xfree (this->cond_string); 12175 xfree (this->extra_string); 12176 xfree (this->filter); 12177 } 12178 12179 static struct bp_location * 12180 base_breakpoint_allocate_location (struct breakpoint *self) 12181 { 12182 return new bp_location (self); 12183 } 12184 12185 static void 12186 base_breakpoint_re_set (struct breakpoint *b) 12187 { 12188 /* Nothing to re-set. */ 12189 } 12190 12191 #define internal_error_pure_virtual_called() \ 12192 gdb_assert_not_reached ("pure virtual function called") 12193 12194 static int 12195 base_breakpoint_insert_location (struct bp_location *bl) 12196 { 12197 internal_error_pure_virtual_called (); 12198 } 12199 12200 static int 12201 base_breakpoint_remove_location (struct bp_location *bl, 12202 enum remove_bp_reason reason) 12203 { 12204 internal_error_pure_virtual_called (); 12205 } 12206 12207 static int 12208 base_breakpoint_breakpoint_hit (const struct bp_location *bl, 12209 const address_space *aspace, 12210 CORE_ADDR bp_addr, 12211 const struct target_waitstatus *ws) 12212 { 12213 internal_error_pure_virtual_called (); 12214 } 12215 12216 static void 12217 base_breakpoint_check_status (bpstat bs) 12218 { 12219 /* Always stop. */ 12220 } 12221 12222 /* A "works_in_software_mode" breakpoint_ops method that just internal 12223 errors. */ 12224 12225 static int 12226 base_breakpoint_works_in_software_mode (const struct breakpoint *b) 12227 { 12228 internal_error_pure_virtual_called (); 12229 } 12230 12231 /* A "resources_needed" breakpoint_ops method that just internal 12232 errors. */ 12233 12234 static int 12235 base_breakpoint_resources_needed (const struct bp_location *bl) 12236 { 12237 internal_error_pure_virtual_called (); 12238 } 12239 12240 static enum print_stop_action 12241 base_breakpoint_print_it (bpstat bs) 12242 { 12243 internal_error_pure_virtual_called (); 12244 } 12245 12246 static void 12247 base_breakpoint_print_one_detail (const struct breakpoint *self, 12248 struct ui_out *uiout) 12249 { 12250 /* nothing */ 12251 } 12252 12253 static void 12254 base_breakpoint_print_mention (struct breakpoint *b) 12255 { 12256 internal_error_pure_virtual_called (); 12257 } 12258 12259 static void 12260 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp) 12261 { 12262 internal_error_pure_virtual_called (); 12263 } 12264 12265 static void 12266 base_breakpoint_create_sals_from_location 12267 (const struct event_location *location, 12268 struct linespec_result *canonical, 12269 enum bptype type_wanted) 12270 { 12271 internal_error_pure_virtual_called (); 12272 } 12273 12274 static void 12275 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch, 12276 struct linespec_result *c, 12277 gdb::unique_xmalloc_ptr<char> cond_string, 12278 gdb::unique_xmalloc_ptr<char> extra_string, 12279 enum bptype type_wanted, 12280 enum bpdisp disposition, 12281 int thread, 12282 int task, int ignore_count, 12283 const struct breakpoint_ops *o, 12284 int from_tty, int enabled, 12285 int internal, unsigned flags) 12286 { 12287 internal_error_pure_virtual_called (); 12288 } 12289 12290 static std::vector<symtab_and_line> 12291 base_breakpoint_decode_location (struct breakpoint *b, 12292 const struct event_location *location, 12293 struct program_space *search_pspace) 12294 { 12295 internal_error_pure_virtual_called (); 12296 } 12297 12298 /* The default 'explains_signal' method. */ 12299 12300 static int 12301 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig) 12302 { 12303 return 1; 12304 } 12305 12306 /* The default "after_condition_true" method. */ 12307 12308 static void 12309 base_breakpoint_after_condition_true (struct bpstats *bs) 12310 { 12311 /* Nothing to do. */ 12312 } 12313 12314 struct breakpoint_ops base_breakpoint_ops = 12315 { 12316 base_breakpoint_allocate_location, 12317 base_breakpoint_re_set, 12318 base_breakpoint_insert_location, 12319 base_breakpoint_remove_location, 12320 base_breakpoint_breakpoint_hit, 12321 base_breakpoint_check_status, 12322 base_breakpoint_resources_needed, 12323 base_breakpoint_works_in_software_mode, 12324 base_breakpoint_print_it, 12325 NULL, 12326 base_breakpoint_print_one_detail, 12327 base_breakpoint_print_mention, 12328 base_breakpoint_print_recreate, 12329 base_breakpoint_create_sals_from_location, 12330 base_breakpoint_create_breakpoints_sal, 12331 base_breakpoint_decode_location, 12332 base_breakpoint_explains_signal, 12333 base_breakpoint_after_condition_true, 12334 }; 12335 12336 /* Default breakpoint_ops methods. */ 12337 12338 static void 12339 bkpt_re_set (struct breakpoint *b) 12340 { 12341 /* FIXME: is this still reachable? */ 12342 if (breakpoint_event_location_empty_p (b)) 12343 { 12344 /* Anything without a location can't be re-set. */ 12345 delete_breakpoint (b); 12346 return; 12347 } 12348 12349 breakpoint_re_set_default (b); 12350 } 12351 12352 static int 12353 bkpt_insert_location (struct bp_location *bl) 12354 { 12355 CORE_ADDR addr = bl->target_info.reqstd_address; 12356 12357 bl->target_info.kind = breakpoint_kind (bl, &addr); 12358 bl->target_info.placed_address = addr; 12359 12360 if (bl->loc_type == bp_loc_hardware_breakpoint) 12361 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info); 12362 else 12363 return target_insert_breakpoint (bl->gdbarch, &bl->target_info); 12364 } 12365 12366 static int 12367 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason) 12368 { 12369 if (bl->loc_type == bp_loc_hardware_breakpoint) 12370 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info); 12371 else 12372 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason); 12373 } 12374 12375 static int 12376 bkpt_breakpoint_hit (const struct bp_location *bl, 12377 const address_space *aspace, CORE_ADDR bp_addr, 12378 const struct target_waitstatus *ws) 12379 { 12380 if (ws->kind != TARGET_WAITKIND_STOPPED 12381 || ws->value.sig != GDB_SIGNAL_TRAP) 12382 return 0; 12383 12384 if (!breakpoint_address_match (bl->pspace->aspace, bl->address, 12385 aspace, bp_addr)) 12386 return 0; 12387 12388 if (overlay_debugging /* unmapped overlay section */ 12389 && section_is_overlay (bl->section) 12390 && !section_is_mapped (bl->section)) 12391 return 0; 12392 12393 return 1; 12394 } 12395 12396 static int 12397 dprintf_breakpoint_hit (const struct bp_location *bl, 12398 const address_space *aspace, CORE_ADDR bp_addr, 12399 const struct target_waitstatus *ws) 12400 { 12401 if (dprintf_style == dprintf_style_agent 12402 && target_can_run_breakpoint_commands ()) 12403 { 12404 /* An agent-style dprintf never causes a stop. If we see a trap 12405 for this address it must be for a breakpoint that happens to 12406 be set at the same address. */ 12407 return 0; 12408 } 12409 12410 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws); 12411 } 12412 12413 static int 12414 bkpt_resources_needed (const struct bp_location *bl) 12415 { 12416 gdb_assert (bl->owner->type == bp_hardware_breakpoint); 12417 12418 return 1; 12419 } 12420 12421 static enum print_stop_action 12422 bkpt_print_it (bpstat bs) 12423 { 12424 struct breakpoint *b; 12425 const struct bp_location *bl; 12426 int bp_temp; 12427 struct ui_out *uiout = current_uiout; 12428 12429 gdb_assert (bs->bp_location_at != NULL); 12430 12431 bl = bs->bp_location_at; 12432 b = bs->breakpoint_at; 12433 12434 bp_temp = b->disposition == disp_del; 12435 if (bl->address != bl->requested_address) 12436 breakpoint_adjustment_warning (bl->requested_address, 12437 bl->address, 12438 b->number, 1); 12439 annotate_breakpoint (b->number); 12440 maybe_print_thread_hit_breakpoint (uiout); 12441 12442 if (bp_temp) 12443 uiout->text ("Temporary breakpoint "); 12444 else 12445 uiout->text ("Breakpoint "); 12446 if (uiout->is_mi_like_p ()) 12447 { 12448 uiout->field_string ("reason", 12449 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); 12450 uiout->field_string ("disp", bpdisp_text (b->disposition)); 12451 } 12452 uiout->field_int ("bkptno", b->number); 12453 uiout->text (", "); 12454 12455 return PRINT_SRC_AND_LOC; 12456 } 12457 12458 static void 12459 bkpt_print_mention (struct breakpoint *b) 12460 { 12461 if (current_uiout->is_mi_like_p ()) 12462 return; 12463 12464 switch (b->type) 12465 { 12466 case bp_breakpoint: 12467 case bp_gnu_ifunc_resolver: 12468 if (b->disposition == disp_del) 12469 printf_filtered (_("Temporary breakpoint")); 12470 else 12471 printf_filtered (_("Breakpoint")); 12472 printf_filtered (_(" %d"), b->number); 12473 if (b->type == bp_gnu_ifunc_resolver) 12474 printf_filtered (_(" at gnu-indirect-function resolver")); 12475 break; 12476 case bp_hardware_breakpoint: 12477 printf_filtered (_("Hardware assisted breakpoint %d"), b->number); 12478 break; 12479 case bp_dprintf: 12480 printf_filtered (_("Dprintf %d"), b->number); 12481 break; 12482 } 12483 12484 say_where (b); 12485 } 12486 12487 static void 12488 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp) 12489 { 12490 if (tp->type == bp_breakpoint && tp->disposition == disp_del) 12491 fprintf_unfiltered (fp, "tbreak"); 12492 else if (tp->type == bp_breakpoint) 12493 fprintf_unfiltered (fp, "break"); 12494 else if (tp->type == bp_hardware_breakpoint 12495 && tp->disposition == disp_del) 12496 fprintf_unfiltered (fp, "thbreak"); 12497 else if (tp->type == bp_hardware_breakpoint) 12498 fprintf_unfiltered (fp, "hbreak"); 12499 else 12500 internal_error (__FILE__, __LINE__, 12501 _("unhandled breakpoint type %d"), (int) tp->type); 12502 12503 fprintf_unfiltered (fp, " %s", 12504 event_location_to_string (tp->location.get ())); 12505 12506 /* Print out extra_string if this breakpoint is pending. It might 12507 contain, for example, conditions that were set by the user. */ 12508 if (tp->loc == NULL && tp->extra_string != NULL) 12509 fprintf_unfiltered (fp, " %s", tp->extra_string); 12510 12511 print_recreate_thread (tp, fp); 12512 } 12513 12514 static void 12515 bkpt_create_sals_from_location (const struct event_location *location, 12516 struct linespec_result *canonical, 12517 enum bptype type_wanted) 12518 { 12519 create_sals_from_location_default (location, canonical, type_wanted); 12520 } 12521 12522 static void 12523 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch, 12524 struct linespec_result *canonical, 12525 gdb::unique_xmalloc_ptr<char> cond_string, 12526 gdb::unique_xmalloc_ptr<char> extra_string, 12527 enum bptype type_wanted, 12528 enum bpdisp disposition, 12529 int thread, 12530 int task, int ignore_count, 12531 const struct breakpoint_ops *ops, 12532 int from_tty, int enabled, 12533 int internal, unsigned flags) 12534 { 12535 create_breakpoints_sal_default (gdbarch, canonical, 12536 std::move (cond_string), 12537 std::move (extra_string), 12538 type_wanted, 12539 disposition, thread, task, 12540 ignore_count, ops, from_tty, 12541 enabled, internal, flags); 12542 } 12543 12544 static std::vector<symtab_and_line> 12545 bkpt_decode_location (struct breakpoint *b, 12546 const struct event_location *location, 12547 struct program_space *search_pspace) 12548 { 12549 return decode_location_default (b, location, search_pspace); 12550 } 12551 12552 /* Virtual table for internal breakpoints. */ 12553 12554 static void 12555 internal_bkpt_re_set (struct breakpoint *b) 12556 { 12557 switch (b->type) 12558 { 12559 /* Delete overlay event and longjmp master breakpoints; they 12560 will be reset later by breakpoint_re_set. */ 12561 case bp_overlay_event: 12562 case bp_longjmp_master: 12563 case bp_std_terminate_master: 12564 case bp_exception_master: 12565 delete_breakpoint (b); 12566 break; 12567 12568 /* This breakpoint is special, it's set up when the inferior 12569 starts and we really don't want to touch it. */ 12570 case bp_shlib_event: 12571 12572 /* Like bp_shlib_event, this breakpoint type is special. Once 12573 it is set up, we do not want to touch it. */ 12574 case bp_thread_event: 12575 break; 12576 } 12577 } 12578 12579 static void 12580 internal_bkpt_check_status (bpstat bs) 12581 { 12582 if (bs->breakpoint_at->type == bp_shlib_event) 12583 { 12584 /* If requested, stop when the dynamic linker notifies GDB of 12585 events. This allows the user to get control and place 12586 breakpoints in initializer routines for dynamically loaded 12587 objects (among other things). */ 12588 bs->stop = stop_on_solib_events; 12589 bs->print = stop_on_solib_events; 12590 } 12591 else 12592 bs->stop = 0; 12593 } 12594 12595 static enum print_stop_action 12596 internal_bkpt_print_it (bpstat bs) 12597 { 12598 struct breakpoint *b; 12599 12600 b = bs->breakpoint_at; 12601 12602 switch (b->type) 12603 { 12604 case bp_shlib_event: 12605 /* Did we stop because the user set the stop_on_solib_events 12606 variable? (If so, we report this as a generic, "Stopped due 12607 to shlib event" message.) */ 12608 print_solib_event (0); 12609 break; 12610 12611 case bp_thread_event: 12612 /* Not sure how we will get here. 12613 GDB should not stop for these breakpoints. */ 12614 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n")); 12615 break; 12616 12617 case bp_overlay_event: 12618 /* By analogy with the thread event, GDB should not stop for these. */ 12619 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n")); 12620 break; 12621 12622 case bp_longjmp_master: 12623 /* These should never be enabled. */ 12624 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n")); 12625 break; 12626 12627 case bp_std_terminate_master: 12628 /* These should never be enabled. */ 12629 printf_filtered (_("std::terminate Master Breakpoint: " 12630 "gdb should not stop!\n")); 12631 break; 12632 12633 case bp_exception_master: 12634 /* These should never be enabled. */ 12635 printf_filtered (_("Exception Master Breakpoint: " 12636 "gdb should not stop!\n")); 12637 break; 12638 } 12639 12640 return PRINT_NOTHING; 12641 } 12642 12643 static void 12644 internal_bkpt_print_mention (struct breakpoint *b) 12645 { 12646 /* Nothing to mention. These breakpoints are internal. */ 12647 } 12648 12649 /* Virtual table for momentary breakpoints */ 12650 12651 static void 12652 momentary_bkpt_re_set (struct breakpoint *b) 12653 { 12654 /* Keep temporary breakpoints, which can be encountered when we step 12655 over a dlopen call and solib_add is resetting the breakpoints. 12656 Otherwise these should have been blown away via the cleanup chain 12657 or by breakpoint_init_inferior when we rerun the executable. */ 12658 } 12659 12660 static void 12661 momentary_bkpt_check_status (bpstat bs) 12662 { 12663 /* Nothing. The point of these breakpoints is causing a stop. */ 12664 } 12665 12666 static enum print_stop_action 12667 momentary_bkpt_print_it (bpstat bs) 12668 { 12669 return PRINT_UNKNOWN; 12670 } 12671 12672 static void 12673 momentary_bkpt_print_mention (struct breakpoint *b) 12674 { 12675 /* Nothing to mention. These breakpoints are internal. */ 12676 } 12677 12678 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists. 12679 12680 It gets cleared already on the removal of the first one of such placed 12681 breakpoints. This is OK as they get all removed altogether. */ 12682 12683 longjmp_breakpoint::~longjmp_breakpoint () 12684 { 12685 thread_info *tp = find_thread_global_id (this->thread); 12686 12687 if (tp != NULL) 12688 tp->initiating_frame = null_frame_id; 12689 } 12690 12691 /* Specific methods for probe breakpoints. */ 12692 12693 static int 12694 bkpt_probe_insert_location (struct bp_location *bl) 12695 { 12696 int v = bkpt_insert_location (bl); 12697 12698 if (v == 0) 12699 { 12700 /* The insertion was successful, now let's set the probe's semaphore 12701 if needed. */ 12702 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch); 12703 } 12704 12705 return v; 12706 } 12707 12708 static int 12709 bkpt_probe_remove_location (struct bp_location *bl, 12710 enum remove_bp_reason reason) 12711 { 12712 /* Let's clear the semaphore before removing the location. */ 12713 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch); 12714 12715 return bkpt_remove_location (bl, reason); 12716 } 12717 12718 static void 12719 bkpt_probe_create_sals_from_location (const struct event_location *location, 12720 struct linespec_result *canonical, 12721 enum bptype type_wanted) 12722 { 12723 struct linespec_sals lsal; 12724 12725 lsal.sals = parse_probes (location, NULL, canonical); 12726 lsal.canonical 12727 = xstrdup (event_location_to_string (canonical->location.get ())); 12728 canonical->lsals.push_back (std::move (lsal)); 12729 } 12730 12731 static std::vector<symtab_and_line> 12732 bkpt_probe_decode_location (struct breakpoint *b, 12733 const struct event_location *location, 12734 struct program_space *search_pspace) 12735 { 12736 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL); 12737 if (sals.empty ()) 12738 error (_("probe not found")); 12739 return sals; 12740 } 12741 12742 /* The breakpoint_ops structure to be used in tracepoints. */ 12743 12744 static void 12745 tracepoint_re_set (struct breakpoint *b) 12746 { 12747 breakpoint_re_set_default (b); 12748 } 12749 12750 static int 12751 tracepoint_breakpoint_hit (const struct bp_location *bl, 12752 const address_space *aspace, CORE_ADDR bp_addr, 12753 const struct target_waitstatus *ws) 12754 { 12755 /* By definition, the inferior does not report stops at 12756 tracepoints. */ 12757 return 0; 12758 } 12759 12760 static void 12761 tracepoint_print_one_detail (const struct breakpoint *self, 12762 struct ui_out *uiout) 12763 { 12764 struct tracepoint *tp = (struct tracepoint *) self; 12765 if (!tp->static_trace_marker_id.empty ()) 12766 { 12767 gdb_assert (self->type == bp_static_tracepoint); 12768 12769 uiout->text ("\tmarker id is "); 12770 uiout->field_string ("static-tracepoint-marker-string-id", 12771 tp->static_trace_marker_id); 12772 uiout->text ("\n"); 12773 } 12774 } 12775 12776 static void 12777 tracepoint_print_mention (struct breakpoint *b) 12778 { 12779 if (current_uiout->is_mi_like_p ()) 12780 return; 12781 12782 switch (b->type) 12783 { 12784 case bp_tracepoint: 12785 printf_filtered (_("Tracepoint")); 12786 printf_filtered (_(" %d"), b->number); 12787 break; 12788 case bp_fast_tracepoint: 12789 printf_filtered (_("Fast tracepoint")); 12790 printf_filtered (_(" %d"), b->number); 12791 break; 12792 case bp_static_tracepoint: 12793 printf_filtered (_("Static tracepoint")); 12794 printf_filtered (_(" %d"), b->number); 12795 break; 12796 default: 12797 internal_error (__FILE__, __LINE__, 12798 _("unhandled tracepoint type %d"), (int) b->type); 12799 } 12800 12801 say_where (b); 12802 } 12803 12804 static void 12805 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp) 12806 { 12807 struct tracepoint *tp = (struct tracepoint *) self; 12808 12809 if (self->type == bp_fast_tracepoint) 12810 fprintf_unfiltered (fp, "ftrace"); 12811 else if (self->type == bp_static_tracepoint) 12812 fprintf_unfiltered (fp, "strace"); 12813 else if (self->type == bp_tracepoint) 12814 fprintf_unfiltered (fp, "trace"); 12815 else 12816 internal_error (__FILE__, __LINE__, 12817 _("unhandled tracepoint type %d"), (int) self->type); 12818 12819 fprintf_unfiltered (fp, " %s", 12820 event_location_to_string (self->location.get ())); 12821 print_recreate_thread (self, fp); 12822 12823 if (tp->pass_count) 12824 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count); 12825 } 12826 12827 static void 12828 tracepoint_create_sals_from_location (const struct event_location *location, 12829 struct linespec_result *canonical, 12830 enum bptype type_wanted) 12831 { 12832 create_sals_from_location_default (location, canonical, type_wanted); 12833 } 12834 12835 static void 12836 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch, 12837 struct linespec_result *canonical, 12838 gdb::unique_xmalloc_ptr<char> cond_string, 12839 gdb::unique_xmalloc_ptr<char> extra_string, 12840 enum bptype type_wanted, 12841 enum bpdisp disposition, 12842 int thread, 12843 int task, int ignore_count, 12844 const struct breakpoint_ops *ops, 12845 int from_tty, int enabled, 12846 int internal, unsigned flags) 12847 { 12848 create_breakpoints_sal_default (gdbarch, canonical, 12849 std::move (cond_string), 12850 std::move (extra_string), 12851 type_wanted, 12852 disposition, thread, task, 12853 ignore_count, ops, from_tty, 12854 enabled, internal, flags); 12855 } 12856 12857 static std::vector<symtab_and_line> 12858 tracepoint_decode_location (struct breakpoint *b, 12859 const struct event_location *location, 12860 struct program_space *search_pspace) 12861 { 12862 return decode_location_default (b, location, search_pspace); 12863 } 12864 12865 struct breakpoint_ops tracepoint_breakpoint_ops; 12866 12867 /* The breakpoint_ops structure to be use on tracepoints placed in a 12868 static probe. */ 12869 12870 static void 12871 tracepoint_probe_create_sals_from_location 12872 (const struct event_location *location, 12873 struct linespec_result *canonical, 12874 enum bptype type_wanted) 12875 { 12876 /* We use the same method for breakpoint on probes. */ 12877 bkpt_probe_create_sals_from_location (location, canonical, type_wanted); 12878 } 12879 12880 static std::vector<symtab_and_line> 12881 tracepoint_probe_decode_location (struct breakpoint *b, 12882 const struct event_location *location, 12883 struct program_space *search_pspace) 12884 { 12885 /* We use the same method for breakpoint on probes. */ 12886 return bkpt_probe_decode_location (b, location, search_pspace); 12887 } 12888 12889 static struct breakpoint_ops tracepoint_probe_breakpoint_ops; 12890 12891 /* Dprintf breakpoint_ops methods. */ 12892 12893 static void 12894 dprintf_re_set (struct breakpoint *b) 12895 { 12896 breakpoint_re_set_default (b); 12897 12898 /* extra_string should never be non-NULL for dprintf. */ 12899 gdb_assert (b->extra_string != NULL); 12900 12901 /* 1 - connect to target 1, that can run breakpoint commands. 12902 2 - create a dprintf, which resolves fine. 12903 3 - disconnect from target 1 12904 4 - connect to target 2, that can NOT run breakpoint commands. 12905 12906 After steps #3/#4, you'll want the dprintf command list to 12907 be updated, because target 1 and 2 may well return different 12908 answers for target_can_run_breakpoint_commands(). 12909 Given absence of finer grained resetting, we get to do 12910 it all the time. */ 12911 if (b->extra_string != NULL) 12912 update_dprintf_command_list (b); 12913 } 12914 12915 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */ 12916 12917 static void 12918 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp) 12919 { 12920 fprintf_unfiltered (fp, "dprintf %s,%s", 12921 event_location_to_string (tp->location.get ()), 12922 tp->extra_string); 12923 print_recreate_thread (tp, fp); 12924 } 12925 12926 /* Implement the "after_condition_true" breakpoint_ops method for 12927 dprintf. 12928 12929 dprintf's are implemented with regular commands in their command 12930 list, but we run the commands here instead of before presenting the 12931 stop to the user, as dprintf's don't actually cause a stop. This 12932 also makes it so that the commands of multiple dprintfs at the same 12933 address are all handled. */ 12934 12935 static void 12936 dprintf_after_condition_true (struct bpstats *bs) 12937 { 12938 struct bpstats tmp_bs; 12939 struct bpstats *tmp_bs_p = &tmp_bs; 12940 12941 /* dprintf's never cause a stop. This wasn't set in the 12942 check_status hook instead because that would make the dprintf's 12943 condition not be evaluated. */ 12944 bs->stop = 0; 12945 12946 /* Run the command list here. Take ownership of it instead of 12947 copying. We never want these commands to run later in 12948 bpstat_do_actions, if a breakpoint that causes a stop happens to 12949 be set at same address as this dprintf, or even if running the 12950 commands here throws. */ 12951 tmp_bs.commands = bs->commands; 12952 bs->commands = NULL; 12953 12954 bpstat_do_actions_1 (&tmp_bs_p); 12955 12956 /* 'tmp_bs.commands' will usually be NULL by now, but 12957 bpstat_do_actions_1 may return early without processing the whole 12958 list. */ 12959 } 12960 12961 /* The breakpoint_ops structure to be used on static tracepoints with 12962 markers (`-m'). */ 12963 12964 static void 12965 strace_marker_create_sals_from_location (const struct event_location *location, 12966 struct linespec_result *canonical, 12967 enum bptype type_wanted) 12968 { 12969 struct linespec_sals lsal; 12970 const char *arg_start, *arg; 12971 12972 arg = arg_start = get_linespec_location (location)->spec_string; 12973 lsal.sals = decode_static_tracepoint_spec (&arg); 12974 12975 std::string str (arg_start, arg - arg_start); 12976 const char *ptr = str.c_str (); 12977 canonical->location 12978 = new_linespec_location (&ptr, symbol_name_match_type::FULL); 12979 12980 lsal.canonical 12981 = xstrdup (event_location_to_string (canonical->location.get ())); 12982 canonical->lsals.push_back (std::move (lsal)); 12983 } 12984 12985 static void 12986 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch, 12987 struct linespec_result *canonical, 12988 gdb::unique_xmalloc_ptr<char> cond_string, 12989 gdb::unique_xmalloc_ptr<char> extra_string, 12990 enum bptype type_wanted, 12991 enum bpdisp disposition, 12992 int thread, 12993 int task, int ignore_count, 12994 const struct breakpoint_ops *ops, 12995 int from_tty, int enabled, 12996 int internal, unsigned flags) 12997 { 12998 const linespec_sals &lsal = canonical->lsals[0]; 12999 13000 /* If the user is creating a static tracepoint by marker id 13001 (strace -m MARKER_ID), then store the sals index, so that 13002 breakpoint_re_set can try to match up which of the newly 13003 found markers corresponds to this one, and, don't try to 13004 expand multiple locations for each sal, given than SALS 13005 already should contain all sals for MARKER_ID. */ 13006 13007 for (size_t i = 0; i < lsal.sals.size (); i++) 13008 { 13009 event_location_up location 13010 = copy_event_location (canonical->location.get ()); 13011 13012 std::unique_ptr<tracepoint> tp (new tracepoint ()); 13013 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i], 13014 std::move (location), NULL, 13015 std::move (cond_string), 13016 std::move (extra_string), 13017 type_wanted, disposition, 13018 thread, task, ignore_count, ops, 13019 from_tty, enabled, internal, flags, 13020 canonical->special_display); 13021 /* Given that its possible to have multiple markers with 13022 the same string id, if the user is creating a static 13023 tracepoint by marker id ("strace -m MARKER_ID"), then 13024 store the sals index, so that breakpoint_re_set can 13025 try to match up which of the newly found markers 13026 corresponds to this one */ 13027 tp->static_trace_marker_id_idx = i; 13028 13029 install_breakpoint (internal, std::move (tp), 0); 13030 } 13031 } 13032 13033 static std::vector<symtab_and_line> 13034 strace_marker_decode_location (struct breakpoint *b, 13035 const struct event_location *location, 13036 struct program_space *search_pspace) 13037 { 13038 struct tracepoint *tp = (struct tracepoint *) b; 13039 const char *s = get_linespec_location (location)->spec_string; 13040 13041 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s); 13042 if (sals.size () > tp->static_trace_marker_id_idx) 13043 { 13044 sals[0] = sals[tp->static_trace_marker_id_idx]; 13045 sals.resize (1); 13046 return sals; 13047 } 13048 else 13049 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ()); 13050 } 13051 13052 static struct breakpoint_ops strace_marker_breakpoint_ops; 13053 13054 static int 13055 strace_marker_p (struct breakpoint *b) 13056 { 13057 return b->ops == &strace_marker_breakpoint_ops; 13058 } 13059 13060 /* Delete a breakpoint and clean up all traces of it in the data 13061 structures. */ 13062 13063 void 13064 delete_breakpoint (struct breakpoint *bpt) 13065 { 13066 struct breakpoint *b; 13067 13068 gdb_assert (bpt != NULL); 13069 13070 /* Has this bp already been deleted? This can happen because 13071 multiple lists can hold pointers to bp's. bpstat lists are 13072 especial culprits. 13073 13074 One example of this happening is a watchpoint's scope bp. When 13075 the scope bp triggers, we notice that the watchpoint is out of 13076 scope, and delete it. We also delete its scope bp. But the 13077 scope bp is marked "auto-deleting", and is already on a bpstat. 13078 That bpstat is then checked for auto-deleting bp's, which are 13079 deleted. 13080 13081 A real solution to this problem might involve reference counts in 13082 bp's, and/or giving them pointers back to their referencing 13083 bpstat's, and teaching delete_breakpoint to only free a bp's 13084 storage when no more references were extent. A cheaper bandaid 13085 was chosen. */ 13086 if (bpt->type == bp_none) 13087 return; 13088 13089 /* At least avoid this stale reference until the reference counting 13090 of breakpoints gets resolved. */ 13091 if (bpt->related_breakpoint != bpt) 13092 { 13093 struct breakpoint *related; 13094 struct watchpoint *w; 13095 13096 if (bpt->type == bp_watchpoint_scope) 13097 w = (struct watchpoint *) bpt->related_breakpoint; 13098 else if (bpt->related_breakpoint->type == bp_watchpoint_scope) 13099 w = (struct watchpoint *) bpt; 13100 else 13101 w = NULL; 13102 if (w != NULL) 13103 watchpoint_del_at_next_stop (w); 13104 13105 /* Unlink bpt from the bpt->related_breakpoint ring. */ 13106 for (related = bpt; related->related_breakpoint != bpt; 13107 related = related->related_breakpoint); 13108 related->related_breakpoint = bpt->related_breakpoint; 13109 bpt->related_breakpoint = bpt; 13110 } 13111 13112 /* watch_command_1 creates a watchpoint but only sets its number if 13113 update_watchpoint succeeds in creating its bp_locations. If there's 13114 a problem in that process, we'll be asked to delete the half-created 13115 watchpoint. In that case, don't announce the deletion. */ 13116 if (bpt->number) 13117 gdb::observers::breakpoint_deleted.notify (bpt); 13118 13119 if (breakpoint_chain == bpt) 13120 breakpoint_chain = bpt->next; 13121 13122 ALL_BREAKPOINTS (b) 13123 if (b->next == bpt) 13124 { 13125 b->next = bpt->next; 13126 break; 13127 } 13128 13129 /* Be sure no bpstat's are pointing at the breakpoint after it's 13130 been freed. */ 13131 /* FIXME, how can we find all bpstat's? We just check stop_bpstat 13132 in all threads for now. Note that we cannot just remove bpstats 13133 pointing at bpt from the stop_bpstat list entirely, as breakpoint 13134 commands are associated with the bpstat; if we remove it here, 13135 then the later call to bpstat_do_actions (&stop_bpstat); in 13136 event-top.c won't do anything, and temporary breakpoints with 13137 commands won't work. */ 13138 13139 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt); 13140 13141 /* Now that breakpoint is removed from breakpoint list, update the 13142 global location list. This will remove locations that used to 13143 belong to this breakpoint. Do this before freeing the breakpoint 13144 itself, since remove_breakpoint looks at location's owner. It 13145 might be better design to have location completely 13146 self-contained, but it's not the case now. */ 13147 update_global_location_list (UGLL_DONT_INSERT); 13148 13149 /* On the chance that someone will soon try again to delete this 13150 same bp, we mark it as deleted before freeing its storage. */ 13151 bpt->type = bp_none; 13152 delete bpt; 13153 } 13154 13155 /* Iterator function to call a user-provided callback function once 13156 for each of B and its related breakpoints. */ 13157 13158 static void 13159 iterate_over_related_breakpoints (struct breakpoint *b, 13160 gdb::function_view<void (breakpoint *)> function) 13161 { 13162 struct breakpoint *related; 13163 13164 related = b; 13165 do 13166 { 13167 struct breakpoint *next; 13168 13169 /* FUNCTION may delete RELATED. */ 13170 next = related->related_breakpoint; 13171 13172 if (next == related) 13173 { 13174 /* RELATED is the last ring entry. */ 13175 function (related); 13176 13177 /* FUNCTION may have deleted it, so we'd never reach back to 13178 B. There's nothing left to do anyway, so just break 13179 out. */ 13180 break; 13181 } 13182 else 13183 function (related); 13184 13185 related = next; 13186 } 13187 while (related != b); 13188 } 13189 13190 static void 13191 delete_command (const char *arg, int from_tty) 13192 { 13193 struct breakpoint *b, *b_tmp; 13194 13195 dont_repeat (); 13196 13197 if (arg == 0) 13198 { 13199 int breaks_to_delete = 0; 13200 13201 /* Delete all breakpoints if no argument. Do not delete 13202 internal breakpoints, these have to be deleted with an 13203 explicit breakpoint number argument. */ 13204 ALL_BREAKPOINTS (b) 13205 if (user_breakpoint_p (b)) 13206 { 13207 breaks_to_delete = 1; 13208 break; 13209 } 13210 13211 /* Ask user only if there are some breakpoints to delete. */ 13212 if (!from_tty 13213 || (breaks_to_delete && query (_("Delete all breakpoints? ")))) 13214 { 13215 ALL_BREAKPOINTS_SAFE (b, b_tmp) 13216 if (user_breakpoint_p (b)) 13217 delete_breakpoint (b); 13218 } 13219 } 13220 else 13221 map_breakpoint_numbers 13222 (arg, [&] (breakpoint *br) 13223 { 13224 iterate_over_related_breakpoints (br, delete_breakpoint); 13225 }); 13226 } 13227 13228 /* Return true if all locations of B bound to PSPACE are pending. If 13229 PSPACE is NULL, all locations of all program spaces are 13230 considered. */ 13231 13232 static int 13233 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace) 13234 { 13235 struct bp_location *loc; 13236 13237 for (loc = b->loc; loc != NULL; loc = loc->next) 13238 if ((pspace == NULL 13239 || loc->pspace == pspace) 13240 && !loc->shlib_disabled 13241 && !loc->pspace->executing_startup) 13242 return 0; 13243 return 1; 13244 } 13245 13246 /* Subroutine of update_breakpoint_locations to simplify it. 13247 Return non-zero if multiple fns in list LOC have the same name. 13248 Null names are ignored. */ 13249 13250 static int 13251 ambiguous_names_p (struct bp_location *loc) 13252 { 13253 struct bp_location *l; 13254 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL, 13255 xcalloc, xfree); 13256 13257 for (l = loc; l != NULL; l = l->next) 13258 { 13259 const char **slot; 13260 const char *name = l->function_name; 13261 13262 /* Allow for some names to be NULL, ignore them. */ 13263 if (name == NULL) 13264 continue; 13265 13266 slot = (const char **) htab_find_slot (htab, (const void *) name, 13267 INSERT); 13268 /* NOTE: We can assume slot != NULL here because xcalloc never 13269 returns NULL. */ 13270 if (*slot != NULL) 13271 { 13272 htab_delete (htab); 13273 return 1; 13274 } 13275 *slot = name; 13276 } 13277 13278 htab_delete (htab); 13279 return 0; 13280 } 13281 13282 /* When symbols change, it probably means the sources changed as well, 13283 and it might mean the static tracepoint markers are no longer at 13284 the same address or line numbers they used to be at last we 13285 checked. Losing your static tracepoints whenever you rebuild is 13286 undesirable. This function tries to resync/rematch gdb static 13287 tracepoints with the markers on the target, for static tracepoints 13288 that have not been set by marker id. Static tracepoint that have 13289 been set by marker id are reset by marker id in breakpoint_re_set. 13290 The heuristic is: 13291 13292 1) For a tracepoint set at a specific address, look for a marker at 13293 the old PC. If one is found there, assume to be the same marker. 13294 If the name / string id of the marker found is different from the 13295 previous known name, assume that means the user renamed the marker 13296 in the sources, and output a warning. 13297 13298 2) For a tracepoint set at a given line number, look for a marker 13299 at the new address of the old line number. If one is found there, 13300 assume to be the same marker. If the name / string id of the 13301 marker found is different from the previous known name, assume that 13302 means the user renamed the marker in the sources, and output a 13303 warning. 13304 13305 3) If a marker is no longer found at the same address or line, it 13306 may mean the marker no longer exists. But it may also just mean 13307 the code changed a bit. Maybe the user added a few lines of code 13308 that made the marker move up or down (in line number terms). Ask 13309 the target for info about the marker with the string id as we knew 13310 it. If found, update line number and address in the matching 13311 static tracepoint. This will get confused if there's more than one 13312 marker with the same ID (possible in UST, although unadvised 13313 precisely because it confuses tools). */ 13314 13315 static struct symtab_and_line 13316 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal) 13317 { 13318 struct tracepoint *tp = (struct tracepoint *) b; 13319 struct static_tracepoint_marker marker; 13320 CORE_ADDR pc; 13321 13322 pc = sal.pc; 13323 if (sal.line) 13324 find_line_pc (sal.symtab, sal.line, &pc); 13325 13326 if (target_static_tracepoint_marker_at (pc, &marker)) 13327 { 13328 if (tp->static_trace_marker_id != marker.str_id) 13329 warning (_("static tracepoint %d changed probed marker from %s to %s"), 13330 b->number, tp->static_trace_marker_id.c_str (), 13331 marker.str_id.c_str ()); 13332 13333 tp->static_trace_marker_id = std::move (marker.str_id); 13334 13335 return sal; 13336 } 13337 13338 /* Old marker wasn't found on target at lineno. Try looking it up 13339 by string ID. */ 13340 if (!sal.explicit_pc 13341 && sal.line != 0 13342 && sal.symtab != NULL 13343 && !tp->static_trace_marker_id.empty ()) 13344 { 13345 std::vector<static_tracepoint_marker> markers 13346 = target_static_tracepoint_markers_by_strid 13347 (tp->static_trace_marker_id.c_str ()); 13348 13349 if (!markers.empty ()) 13350 { 13351 struct symbol *sym; 13352 struct static_tracepoint_marker *tpmarker; 13353 struct ui_out *uiout = current_uiout; 13354 struct explicit_location explicit_loc; 13355 13356 tpmarker = &markers[0]; 13357 13358 tp->static_trace_marker_id = std::move (tpmarker->str_id); 13359 13360 warning (_("marker for static tracepoint %d (%s) not " 13361 "found at previous line number"), 13362 b->number, tp->static_trace_marker_id.c_str ()); 13363 13364 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0); 13365 sym = find_pc_sect_function (tpmarker->address, NULL); 13366 uiout->text ("Now in "); 13367 if (sym) 13368 { 13369 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym), 13370 ui_out_style_kind::FUNCTION); 13371 uiout->text (" at "); 13372 } 13373 uiout->field_string ("file", 13374 symtab_to_filename_for_display (sal2.symtab), 13375 ui_out_style_kind::FILE); 13376 uiout->text (":"); 13377 13378 if (uiout->is_mi_like_p ()) 13379 { 13380 const char *fullname = symtab_to_fullname (sal2.symtab); 13381 13382 uiout->field_string ("fullname", fullname); 13383 } 13384 13385 uiout->field_int ("line", sal2.line); 13386 uiout->text ("\n"); 13387 13388 b->loc->line_number = sal2.line; 13389 b->loc->symtab = sym != NULL ? sal2.symtab : NULL; 13390 13391 b->location.reset (NULL); 13392 initialize_explicit_location (&explicit_loc); 13393 explicit_loc.source_filename 13394 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab)); 13395 explicit_loc.line_offset.offset = b->loc->line_number; 13396 explicit_loc.line_offset.sign = LINE_OFFSET_NONE; 13397 b->location = new_explicit_location (&explicit_loc); 13398 13399 /* Might be nice to check if function changed, and warn if 13400 so. */ 13401 } 13402 } 13403 return sal; 13404 } 13405 13406 /* Returns 1 iff locations A and B are sufficiently same that 13407 we don't need to report breakpoint as changed. */ 13408 13409 static int 13410 locations_are_equal (struct bp_location *a, struct bp_location *b) 13411 { 13412 while (a && b) 13413 { 13414 if (a->address != b->address) 13415 return 0; 13416 13417 if (a->shlib_disabled != b->shlib_disabled) 13418 return 0; 13419 13420 if (a->enabled != b->enabled) 13421 return 0; 13422 13423 a = a->next; 13424 b = b->next; 13425 } 13426 13427 if ((a == NULL) != (b == NULL)) 13428 return 0; 13429 13430 return 1; 13431 } 13432 13433 /* Split all locations of B that are bound to PSPACE out of B's 13434 location list to a separate list and return that list's head. If 13435 PSPACE is NULL, hoist out all locations of B. */ 13436 13437 static struct bp_location * 13438 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace) 13439 { 13440 struct bp_location head; 13441 struct bp_location *i = b->loc; 13442 struct bp_location **i_link = &b->loc; 13443 struct bp_location *hoisted = &head; 13444 13445 if (pspace == NULL) 13446 { 13447 i = b->loc; 13448 b->loc = NULL; 13449 return i; 13450 } 13451 13452 head.next = NULL; 13453 13454 while (i != NULL) 13455 { 13456 if (i->pspace == pspace) 13457 { 13458 *i_link = i->next; 13459 i->next = NULL; 13460 hoisted->next = i; 13461 hoisted = i; 13462 } 13463 else 13464 i_link = &i->next; 13465 i = *i_link; 13466 } 13467 13468 return head.next; 13469 } 13470 13471 /* Create new breakpoint locations for B (a hardware or software 13472 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not 13473 zero, then B is a ranged breakpoint. Only recreates locations for 13474 FILTER_PSPACE. Locations of other program spaces are left 13475 untouched. */ 13476 13477 void 13478 update_breakpoint_locations (struct breakpoint *b, 13479 struct program_space *filter_pspace, 13480 gdb::array_view<const symtab_and_line> sals, 13481 gdb::array_view<const symtab_and_line> sals_end) 13482 { 13483 struct bp_location *existing_locations; 13484 13485 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1)) 13486 { 13487 /* Ranged breakpoints have only one start location and one end 13488 location. */ 13489 b->enable_state = bp_disabled; 13490 printf_unfiltered (_("Could not reset ranged breakpoint %d: " 13491 "multiple locations found\n"), 13492 b->number); 13493 return; 13494 } 13495 13496 /* If there's no new locations, and all existing locations are 13497 pending, don't do anything. This optimizes the common case where 13498 all locations are in the same shared library, that was unloaded. 13499 We'd like to retain the location, so that when the library is 13500 loaded again, we don't loose the enabled/disabled status of the 13501 individual locations. */ 13502 if (all_locations_are_pending (b, filter_pspace) && sals.empty ()) 13503 return; 13504 13505 existing_locations = hoist_existing_locations (b, filter_pspace); 13506 13507 for (const auto &sal : sals) 13508 { 13509 struct bp_location *new_loc; 13510 13511 switch_to_program_space_and_thread (sal.pspace); 13512 13513 new_loc = add_location_to_breakpoint (b, &sal); 13514 13515 /* Reparse conditions, they might contain references to the 13516 old symtab. */ 13517 if (b->cond_string != NULL) 13518 { 13519 const char *s; 13520 13521 s = b->cond_string; 13522 TRY 13523 { 13524 new_loc->cond = parse_exp_1 (&s, sal.pc, 13525 block_for_pc (sal.pc), 13526 0); 13527 } 13528 CATCH (e, RETURN_MASK_ERROR) 13529 { 13530 warning (_("failed to reevaluate condition " 13531 "for breakpoint %d: %s"), 13532 b->number, e.message); 13533 new_loc->enabled = 0; 13534 } 13535 END_CATCH 13536 } 13537 13538 if (!sals_end.empty ()) 13539 { 13540 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]); 13541 13542 new_loc->length = end - sals[0].pc + 1; 13543 } 13544 } 13545 13546 /* If possible, carry over 'disable' status from existing 13547 breakpoints. */ 13548 { 13549 struct bp_location *e = existing_locations; 13550 /* If there are multiple breakpoints with the same function name, 13551 e.g. for inline functions, comparing function names won't work. 13552 Instead compare pc addresses; this is just a heuristic as things 13553 may have moved, but in practice it gives the correct answer 13554 often enough until a better solution is found. */ 13555 int have_ambiguous_names = ambiguous_names_p (b->loc); 13556 13557 for (; e; e = e->next) 13558 { 13559 if (!e->enabled && e->function_name) 13560 { 13561 struct bp_location *l = b->loc; 13562 if (have_ambiguous_names) 13563 { 13564 for (; l; l = l->next) 13565 if (breakpoint_locations_match (e, l)) 13566 { 13567 l->enabled = 0; 13568 break; 13569 } 13570 } 13571 else 13572 { 13573 for (; l; l = l->next) 13574 if (l->function_name 13575 && strcmp (e->function_name, l->function_name) == 0) 13576 { 13577 l->enabled = 0; 13578 break; 13579 } 13580 } 13581 } 13582 } 13583 } 13584 13585 if (!locations_are_equal (existing_locations, b->loc)) 13586 gdb::observers::breakpoint_modified.notify (b); 13587 } 13588 13589 /* Find the SaL locations corresponding to the given LOCATION. 13590 On return, FOUND will be 1 if any SaL was found, zero otherwise. */ 13591 13592 static std::vector<symtab_and_line> 13593 location_to_sals (struct breakpoint *b, struct event_location *location, 13594 struct program_space *search_pspace, int *found) 13595 { 13596 struct gdb_exception exception = exception_none; 13597 13598 gdb_assert (b->ops != NULL); 13599 13600 std::vector<symtab_and_line> sals; 13601 13602 TRY 13603 { 13604 sals = b->ops->decode_location (b, location, search_pspace); 13605 } 13606 CATCH (e, RETURN_MASK_ERROR) 13607 { 13608 int not_found_and_ok = 0; 13609 13610 exception = e; 13611 13612 /* For pending breakpoints, it's expected that parsing will 13613 fail until the right shared library is loaded. User has 13614 already told to create pending breakpoints and don't need 13615 extra messages. If breakpoint is in bp_shlib_disabled 13616 state, then user already saw the message about that 13617 breakpoint being disabled, and don't want to see more 13618 errors. */ 13619 if (e.error == NOT_FOUND_ERROR 13620 && (b->condition_not_parsed 13621 || (b->loc != NULL 13622 && search_pspace != NULL 13623 && b->loc->pspace != search_pspace) 13624 || (b->loc && b->loc->shlib_disabled) 13625 || (b->loc && b->loc->pspace->executing_startup) 13626 || b->enable_state == bp_disabled)) 13627 not_found_and_ok = 1; 13628 13629 if (!not_found_and_ok) 13630 { 13631 /* We surely don't want to warn about the same breakpoint 13632 10 times. One solution, implemented here, is disable 13633 the breakpoint on error. Another solution would be to 13634 have separate 'warning emitted' flag. Since this 13635 happens only when a binary has changed, I don't know 13636 which approach is better. */ 13637 b->enable_state = bp_disabled; 13638 throw_exception (e); 13639 } 13640 } 13641 END_CATCH 13642 13643 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR) 13644 { 13645 for (auto &sal : sals) 13646 resolve_sal_pc (&sal); 13647 if (b->condition_not_parsed && b->extra_string != NULL) 13648 { 13649 char *cond_string, *extra_string; 13650 int thread, task; 13651 13652 find_condition_and_thread (b->extra_string, sals[0].pc, 13653 &cond_string, &thread, &task, 13654 &extra_string); 13655 gdb_assert (b->cond_string == NULL); 13656 if (cond_string) 13657 b->cond_string = cond_string; 13658 b->thread = thread; 13659 b->task = task; 13660 if (extra_string) 13661 { 13662 xfree (b->extra_string); 13663 b->extra_string = extra_string; 13664 } 13665 b->condition_not_parsed = 0; 13666 } 13667 13668 if (b->type == bp_static_tracepoint && !strace_marker_p (b)) 13669 sals[0] = update_static_tracepoint (b, sals[0]); 13670 13671 *found = 1; 13672 } 13673 else 13674 *found = 0; 13675 13676 return sals; 13677 } 13678 13679 /* The default re_set method, for typical hardware or software 13680 breakpoints. Reevaluate the breakpoint and recreate its 13681 locations. */ 13682 13683 static void 13684 breakpoint_re_set_default (struct breakpoint *b) 13685 { 13686 struct program_space *filter_pspace = current_program_space; 13687 std::vector<symtab_and_line> expanded, expanded_end; 13688 13689 int found; 13690 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (), 13691 filter_pspace, &found); 13692 if (found) 13693 expanded = std::move (sals); 13694 13695 if (b->location_range_end != NULL) 13696 { 13697 std::vector<symtab_and_line> sals_end 13698 = location_to_sals (b, b->location_range_end.get (), 13699 filter_pspace, &found); 13700 if (found) 13701 expanded_end = std::move (sals_end); 13702 } 13703 13704 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end); 13705 } 13706 13707 /* Default method for creating SALs from an address string. It basically 13708 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */ 13709 13710 static void 13711 create_sals_from_location_default (const struct event_location *location, 13712 struct linespec_result *canonical, 13713 enum bptype type_wanted) 13714 { 13715 parse_breakpoint_sals (location, canonical); 13716 } 13717 13718 /* Call create_breakpoints_sal for the given arguments. This is the default 13719 function for the `create_breakpoints_sal' method of 13720 breakpoint_ops. */ 13721 13722 static void 13723 create_breakpoints_sal_default (struct gdbarch *gdbarch, 13724 struct linespec_result *canonical, 13725 gdb::unique_xmalloc_ptr<char> cond_string, 13726 gdb::unique_xmalloc_ptr<char> extra_string, 13727 enum bptype type_wanted, 13728 enum bpdisp disposition, 13729 int thread, 13730 int task, int ignore_count, 13731 const struct breakpoint_ops *ops, 13732 int from_tty, int enabled, 13733 int internal, unsigned flags) 13734 { 13735 create_breakpoints_sal (gdbarch, canonical, 13736 std::move (cond_string), 13737 std::move (extra_string), 13738 type_wanted, disposition, 13739 thread, task, ignore_count, ops, from_tty, 13740 enabled, internal, flags); 13741 } 13742 13743 /* Decode the line represented by S by calling decode_line_full. This is the 13744 default function for the `decode_location' method of breakpoint_ops. */ 13745 13746 static std::vector<symtab_and_line> 13747 decode_location_default (struct breakpoint *b, 13748 const struct event_location *location, 13749 struct program_space *search_pspace) 13750 { 13751 struct linespec_result canonical; 13752 13753 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace, 13754 (struct symtab *) NULL, 0, 13755 &canonical, multiple_symbols_all, 13756 b->filter); 13757 13758 /* We should get 0 or 1 resulting SALs. */ 13759 gdb_assert (canonical.lsals.size () < 2); 13760 13761 if (!canonical.lsals.empty ()) 13762 { 13763 const linespec_sals &lsal = canonical.lsals[0]; 13764 return std::move (lsal.sals); 13765 } 13766 return {}; 13767 } 13768 13769 /* Reset a breakpoint. */ 13770 13771 static void 13772 breakpoint_re_set_one (breakpoint *b) 13773 { 13774 input_radix = b->input_radix; 13775 set_language (b->language); 13776 13777 b->ops->re_set (b); 13778 } 13779 13780 /* Re-set breakpoint locations for the current program space. 13781 Locations bound to other program spaces are left untouched. */ 13782 13783 void 13784 breakpoint_re_set (void) 13785 { 13786 struct breakpoint *b, *b_tmp; 13787 13788 { 13789 scoped_restore_current_language save_language; 13790 scoped_restore save_input_radix = make_scoped_restore (&input_radix); 13791 scoped_restore_current_pspace_and_thread restore_pspace_thread; 13792 13793 /* breakpoint_re_set_one sets the current_language to the language 13794 of the breakpoint it is resetting (see prepare_re_set_context) 13795 before re-evaluating the breakpoint's location. This change can 13796 unfortunately get undone by accident if the language_mode is set 13797 to auto, and we either switch frames, or more likely in this context, 13798 we select the current frame. 13799 13800 We prevent this by temporarily turning the language_mode to 13801 language_mode_manual. We restore it once all breakpoints 13802 have been reset. */ 13803 scoped_restore save_language_mode = make_scoped_restore (&language_mode); 13804 language_mode = language_mode_manual; 13805 13806 /* Note: we must not try to insert locations until after all 13807 breakpoints have been re-set. Otherwise, e.g., when re-setting 13808 breakpoint 1, we'd insert the locations of breakpoint 2, which 13809 hadn't been re-set yet, and thus may have stale locations. */ 13810 13811 ALL_BREAKPOINTS_SAFE (b, b_tmp) 13812 { 13813 TRY 13814 { 13815 breakpoint_re_set_one (b); 13816 } 13817 CATCH (ex, RETURN_MASK_ALL) 13818 { 13819 exception_fprintf (gdb_stderr, ex, 13820 "Error in re-setting breakpoint %d: ", 13821 b->number); 13822 } 13823 END_CATCH 13824 } 13825 13826 jit_breakpoint_re_set (); 13827 } 13828 13829 create_overlay_event_breakpoint (); 13830 create_longjmp_master_breakpoint (); 13831 create_std_terminate_master_breakpoint (); 13832 create_exception_master_breakpoint (); 13833 13834 /* Now we can insert. */ 13835 update_global_location_list (UGLL_MAY_INSERT); 13836 } 13837 13838 /* Reset the thread number of this breakpoint: 13839 13840 - If the breakpoint is for all threads, leave it as-is. 13841 - Else, reset it to the current thread for inferior_ptid. */ 13842 void 13843 breakpoint_re_set_thread (struct breakpoint *b) 13844 { 13845 if (b->thread != -1) 13846 { 13847 b->thread = inferior_thread ()->global_num; 13848 13849 /* We're being called after following a fork. The new fork is 13850 selected as current, and unless this was a vfork will have a 13851 different program space from the original thread. Reset that 13852 as well. */ 13853 b->loc->pspace = current_program_space; 13854 } 13855 } 13856 13857 /* Set ignore-count of breakpoint number BPTNUM to COUNT. 13858 If from_tty is nonzero, it prints a message to that effect, 13859 which ends with a period (no newline). */ 13860 13861 void 13862 set_ignore_count (int bptnum, int count, int from_tty) 13863 { 13864 struct breakpoint *b; 13865 13866 if (count < 0) 13867 count = 0; 13868 13869 ALL_BREAKPOINTS (b) 13870 if (b->number == bptnum) 13871 { 13872 if (is_tracepoint (b)) 13873 { 13874 if (from_tty && count != 0) 13875 printf_filtered (_("Ignore count ignored for tracepoint %d."), 13876 bptnum); 13877 return; 13878 } 13879 13880 b->ignore_count = count; 13881 if (from_tty) 13882 { 13883 if (count == 0) 13884 printf_filtered (_("Will stop next time " 13885 "breakpoint %d is reached."), 13886 bptnum); 13887 else if (count == 1) 13888 printf_filtered (_("Will ignore next crossing of breakpoint %d."), 13889 bptnum); 13890 else 13891 printf_filtered (_("Will ignore next %d " 13892 "crossings of breakpoint %d."), 13893 count, bptnum); 13894 } 13895 gdb::observers::breakpoint_modified.notify (b); 13896 return; 13897 } 13898 13899 error (_("No breakpoint number %d."), bptnum); 13900 } 13901 13902 /* Command to set ignore-count of breakpoint N to COUNT. */ 13903 13904 static void 13905 ignore_command (const char *args, int from_tty) 13906 { 13907 const char *p = args; 13908 int num; 13909 13910 if (p == 0) 13911 error_no_arg (_("a breakpoint number")); 13912 13913 num = get_number (&p); 13914 if (num == 0) 13915 error (_("bad breakpoint number: '%s'"), args); 13916 if (*p == 0) 13917 error (_("Second argument (specified ignore-count) is missing.")); 13918 13919 set_ignore_count (num, 13920 longest_to_int (value_as_long (parse_and_eval (p))), 13921 from_tty); 13922 if (from_tty) 13923 printf_filtered ("\n"); 13924 } 13925 13926 13927 /* Call FUNCTION on each of the breakpoints with numbers in the range 13928 defined by BP_NUM_RANGE (an inclusive range). */ 13929 13930 static void 13931 map_breakpoint_number_range (std::pair<int, int> bp_num_range, 13932 gdb::function_view<void (breakpoint *)> function) 13933 { 13934 if (bp_num_range.first == 0) 13935 { 13936 warning (_("bad breakpoint number at or near '%d'"), 13937 bp_num_range.first); 13938 } 13939 else 13940 { 13941 struct breakpoint *b, *tmp; 13942 13943 for (int i = bp_num_range.first; i <= bp_num_range.second; i++) 13944 { 13945 bool match = false; 13946 13947 ALL_BREAKPOINTS_SAFE (b, tmp) 13948 if (b->number == i) 13949 { 13950 match = true; 13951 function (b); 13952 break; 13953 } 13954 if (!match) 13955 printf_unfiltered (_("No breakpoint number %d.\n"), i); 13956 } 13957 } 13958 } 13959 13960 /* Call FUNCTION on each of the breakpoints whose numbers are given in 13961 ARGS. */ 13962 13963 static void 13964 map_breakpoint_numbers (const char *args, 13965 gdb::function_view<void (breakpoint *)> function) 13966 { 13967 if (args == NULL || *args == '\0') 13968 error_no_arg (_("one or more breakpoint numbers")); 13969 13970 number_or_range_parser parser (args); 13971 13972 while (!parser.finished ()) 13973 { 13974 int num = parser.get_number (); 13975 map_breakpoint_number_range (std::make_pair (num, num), function); 13976 } 13977 } 13978 13979 /* Return the breakpoint location structure corresponding to the 13980 BP_NUM and LOC_NUM values. */ 13981 13982 static struct bp_location * 13983 find_location_by_number (int bp_num, int loc_num) 13984 { 13985 struct breakpoint *b; 13986 13987 ALL_BREAKPOINTS (b) 13988 if (b->number == bp_num) 13989 { 13990 break; 13991 } 13992 13993 if (!b || b->number != bp_num) 13994 error (_("Bad breakpoint number '%d'"), bp_num); 13995 13996 if (loc_num == 0) 13997 error (_("Bad breakpoint location number '%d'"), loc_num); 13998 13999 int n = 0; 14000 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next) 14001 if (++n == loc_num) 14002 return loc; 14003 14004 error (_("Bad breakpoint location number '%d'"), loc_num); 14005 } 14006 14007 /* Modes of operation for extract_bp_num. */ 14008 enum class extract_bp_kind 14009 { 14010 /* Extracting a breakpoint number. */ 14011 bp, 14012 14013 /* Extracting a location number. */ 14014 loc, 14015 }; 14016 14017 /* Extract a breakpoint or location number (as determined by KIND) 14018 from the string starting at START. TRAILER is a character which 14019 can be found after the number. If you don't want a trailer, use 14020 '\0'. If END_OUT is not NULL, it is set to point after the parsed 14021 string. This always returns a positive integer. */ 14022 14023 static int 14024 extract_bp_num (extract_bp_kind kind, const char *start, 14025 int trailer, const char **end_out = NULL) 14026 { 14027 const char *end = start; 14028 int num = get_number_trailer (&end, trailer); 14029 if (num < 0) 14030 error (kind == extract_bp_kind::bp 14031 ? _("Negative breakpoint number '%.*s'") 14032 : _("Negative breakpoint location number '%.*s'"), 14033 int (end - start), start); 14034 if (num == 0) 14035 error (kind == extract_bp_kind::bp 14036 ? _("Bad breakpoint number '%.*s'") 14037 : _("Bad breakpoint location number '%.*s'"), 14038 int (end - start), start); 14039 14040 if (end_out != NULL) 14041 *end_out = end; 14042 return num; 14043 } 14044 14045 /* Extract a breakpoint or location range (as determined by KIND) in 14046 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair 14047 representing the (inclusive) range. The returned pair's elements 14048 are always positive integers. */ 14049 14050 static std::pair<int, int> 14051 extract_bp_or_bp_range (extract_bp_kind kind, 14052 const std::string &arg, 14053 std::string::size_type arg_offset) 14054 { 14055 std::pair<int, int> range; 14056 const char *bp_loc = &arg[arg_offset]; 14057 std::string::size_type dash = arg.find ('-', arg_offset); 14058 if (dash != std::string::npos) 14059 { 14060 /* bp_loc is a range (x-z). */ 14061 if (arg.length () == dash + 1) 14062 error (kind == extract_bp_kind::bp 14063 ? _("Bad breakpoint number at or near: '%s'") 14064 : _("Bad breakpoint location number at or near: '%s'"), 14065 bp_loc); 14066 14067 const char *end; 14068 const char *start_first = bp_loc; 14069 const char *start_second = &arg[dash + 1]; 14070 range.first = extract_bp_num (kind, start_first, '-'); 14071 range.second = extract_bp_num (kind, start_second, '\0', &end); 14072 14073 if (range.first > range.second) 14074 error (kind == extract_bp_kind::bp 14075 ? _("Inverted breakpoint range at '%.*s'") 14076 : _("Inverted breakpoint location range at '%.*s'"), 14077 int (end - start_first), start_first); 14078 } 14079 else 14080 { 14081 /* bp_loc is a single value. */ 14082 range.first = extract_bp_num (kind, bp_loc, '\0'); 14083 range.second = range.first; 14084 } 14085 return range; 14086 } 14087 14088 /* Extract the breakpoint/location range specified by ARG. Returns 14089 the breakpoint range in BP_NUM_RANGE, and the location range in 14090 BP_LOC_RANGE. 14091 14092 ARG may be in any of the following forms: 14093 14094 x where 'x' is a breakpoint number. 14095 x-y where 'x' and 'y' specify a breakpoint numbers range. 14096 x.y where 'x' is a breakpoint number and 'y' a location number. 14097 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a 14098 location number range. 14099 */ 14100 14101 static void 14102 extract_bp_number_and_location (const std::string &arg, 14103 std::pair<int, int> &bp_num_range, 14104 std::pair<int, int> &bp_loc_range) 14105 { 14106 std::string::size_type dot = arg.find ('.'); 14107 14108 if (dot != std::string::npos) 14109 { 14110 /* Handle 'x.y' and 'x.y-z' cases. */ 14111 14112 if (arg.length () == dot + 1 || dot == 0) 14113 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ()); 14114 14115 bp_num_range.first 14116 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.'); 14117 bp_num_range.second = bp_num_range.first; 14118 14119 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc, 14120 arg, dot + 1); 14121 } 14122 else 14123 { 14124 /* Handle x and x-y cases. */ 14125 14126 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0); 14127 bp_loc_range.first = 0; 14128 bp_loc_range.second = 0; 14129 } 14130 } 14131 14132 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE 14133 specifies whether to enable or disable. */ 14134 14135 static void 14136 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable) 14137 { 14138 struct bp_location *loc = find_location_by_number (bp_num, loc_num); 14139 if (loc != NULL) 14140 { 14141 if (loc->enabled != enable) 14142 { 14143 loc->enabled = enable; 14144 mark_breakpoint_location_modified (loc); 14145 } 14146 if (target_supports_enable_disable_tracepoint () 14147 && current_trace_status ()->running && loc->owner 14148 && is_tracepoint (loc->owner)) 14149 target_disable_tracepoint (loc); 14150 } 14151 update_global_location_list (UGLL_DONT_INSERT); 14152 14153 gdb::observers::breakpoint_modified.notify (loc->owner); 14154 } 14155 14156 /* Enable or disable a range of breakpoint locations. BP_NUM is the 14157 number of the breakpoint, and BP_LOC_RANGE specifies the 14158 (inclusive) range of location numbers of that breakpoint to 14159 enable/disable. ENABLE specifies whether to enable or disable the 14160 location. */ 14161 14162 static void 14163 enable_disable_breakpoint_location_range (int bp_num, 14164 std::pair<int, int> &bp_loc_range, 14165 bool enable) 14166 { 14167 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++) 14168 enable_disable_bp_num_loc (bp_num, i, enable); 14169 } 14170 14171 /* Set ignore-count of breakpoint number BPTNUM to COUNT. 14172 If from_tty is nonzero, it prints a message to that effect, 14173 which ends with a period (no newline). */ 14174 14175 void 14176 disable_breakpoint (struct breakpoint *bpt) 14177 { 14178 /* Never disable a watchpoint scope breakpoint; we want to 14179 hit them when we leave scope so we can delete both the 14180 watchpoint and its scope breakpoint at that time. */ 14181 if (bpt->type == bp_watchpoint_scope) 14182 return; 14183 14184 bpt->enable_state = bp_disabled; 14185 14186 /* Mark breakpoint locations modified. */ 14187 mark_breakpoint_modified (bpt); 14188 14189 if (target_supports_enable_disable_tracepoint () 14190 && current_trace_status ()->running && is_tracepoint (bpt)) 14191 { 14192 struct bp_location *location; 14193 14194 for (location = bpt->loc; location; location = location->next) 14195 target_disable_tracepoint (location); 14196 } 14197 14198 update_global_location_list (UGLL_DONT_INSERT); 14199 14200 gdb::observers::breakpoint_modified.notify (bpt); 14201 } 14202 14203 /* Enable or disable the breakpoint(s) or breakpoint location(s) 14204 specified in ARGS. ARGS may be in any of the formats handled by 14205 extract_bp_number_and_location. ENABLE specifies whether to enable 14206 or disable the breakpoints/locations. */ 14207 14208 static void 14209 enable_disable_command (const char *args, int from_tty, bool enable) 14210 { 14211 if (args == 0) 14212 { 14213 struct breakpoint *bpt; 14214 14215 ALL_BREAKPOINTS (bpt) 14216 if (user_breakpoint_p (bpt)) 14217 { 14218 if (enable) 14219 enable_breakpoint (bpt); 14220 else 14221 disable_breakpoint (bpt); 14222 } 14223 } 14224 else 14225 { 14226 std::string num = extract_arg (&args); 14227 14228 while (!num.empty ()) 14229 { 14230 std::pair<int, int> bp_num_range, bp_loc_range; 14231 14232 extract_bp_number_and_location (num, bp_num_range, bp_loc_range); 14233 14234 if (bp_loc_range.first == bp_loc_range.second 14235 && bp_loc_range.first == 0) 14236 { 14237 /* Handle breakpoint ids with formats 'x' or 'x-z'. */ 14238 map_breakpoint_number_range (bp_num_range, 14239 enable 14240 ? enable_breakpoint 14241 : disable_breakpoint); 14242 } 14243 else 14244 { 14245 /* Handle breakpoint ids with formats 'x.y' or 14246 'x.y-z'. */ 14247 enable_disable_breakpoint_location_range 14248 (bp_num_range.first, bp_loc_range, enable); 14249 } 14250 num = extract_arg (&args); 14251 } 14252 } 14253 } 14254 14255 /* The disable command disables the specified breakpoints/locations 14256 (or all defined breakpoints) so they're no longer effective in 14257 stopping the inferior. ARGS may be in any of the forms defined in 14258 extract_bp_number_and_location. */ 14259 14260 static void 14261 disable_command (const char *args, int from_tty) 14262 { 14263 enable_disable_command (args, from_tty, false); 14264 } 14265 14266 static void 14267 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition, 14268 int count) 14269 { 14270 int target_resources_ok; 14271 14272 if (bpt->type == bp_hardware_breakpoint) 14273 { 14274 int i; 14275 i = hw_breakpoint_used_count (); 14276 target_resources_ok = 14277 target_can_use_hardware_watchpoint (bp_hardware_breakpoint, 14278 i + 1, 0); 14279 if (target_resources_ok == 0) 14280 error (_("No hardware breakpoint support in the target.")); 14281 else if (target_resources_ok < 0) 14282 error (_("Hardware breakpoints used exceeds limit.")); 14283 } 14284 14285 if (is_watchpoint (bpt)) 14286 { 14287 /* Initialize it just to avoid a GCC false warning. */ 14288 enum enable_state orig_enable_state = bp_disabled; 14289 14290 TRY 14291 { 14292 struct watchpoint *w = (struct watchpoint *) bpt; 14293 14294 orig_enable_state = bpt->enable_state; 14295 bpt->enable_state = bp_enabled; 14296 update_watchpoint (w, 1 /* reparse */); 14297 } 14298 CATCH (e, RETURN_MASK_ALL) 14299 { 14300 bpt->enable_state = orig_enable_state; 14301 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "), 14302 bpt->number); 14303 return; 14304 } 14305 END_CATCH 14306 } 14307 14308 bpt->enable_state = bp_enabled; 14309 14310 /* Mark breakpoint locations modified. */ 14311 mark_breakpoint_modified (bpt); 14312 14313 if (target_supports_enable_disable_tracepoint () 14314 && current_trace_status ()->running && is_tracepoint (bpt)) 14315 { 14316 struct bp_location *location; 14317 14318 for (location = bpt->loc; location; location = location->next) 14319 target_enable_tracepoint (location); 14320 } 14321 14322 bpt->disposition = disposition; 14323 bpt->enable_count = count; 14324 update_global_location_list (UGLL_MAY_INSERT); 14325 14326 gdb::observers::breakpoint_modified.notify (bpt); 14327 } 14328 14329 14330 void 14331 enable_breakpoint (struct breakpoint *bpt) 14332 { 14333 enable_breakpoint_disp (bpt, bpt->disposition, 0); 14334 } 14335 14336 /* The enable command enables the specified breakpoints/locations (or 14337 all defined breakpoints) so they once again become (or continue to 14338 be) effective in stopping the inferior. ARGS may be in any of the 14339 forms defined in extract_bp_number_and_location. */ 14340 14341 static void 14342 enable_command (const char *args, int from_tty) 14343 { 14344 enable_disable_command (args, from_tty, true); 14345 } 14346 14347 static void 14348 enable_once_command (const char *args, int from_tty) 14349 { 14350 map_breakpoint_numbers 14351 (args, [&] (breakpoint *b) 14352 { 14353 iterate_over_related_breakpoints 14354 (b, [&] (breakpoint *bpt) 14355 { 14356 enable_breakpoint_disp (bpt, disp_disable, 1); 14357 }); 14358 }); 14359 } 14360 14361 static void 14362 enable_count_command (const char *args, int from_tty) 14363 { 14364 int count; 14365 14366 if (args == NULL) 14367 error_no_arg (_("hit count")); 14368 14369 count = get_number (&args); 14370 14371 map_breakpoint_numbers 14372 (args, [&] (breakpoint *b) 14373 { 14374 iterate_over_related_breakpoints 14375 (b, [&] (breakpoint *bpt) 14376 { 14377 enable_breakpoint_disp (bpt, disp_disable, count); 14378 }); 14379 }); 14380 } 14381 14382 static void 14383 enable_delete_command (const char *args, int from_tty) 14384 { 14385 map_breakpoint_numbers 14386 (args, [&] (breakpoint *b) 14387 { 14388 iterate_over_related_breakpoints 14389 (b, [&] (breakpoint *bpt) 14390 { 14391 enable_breakpoint_disp (bpt, disp_del, 1); 14392 }); 14393 }); 14394 } 14395 14396 static void 14397 set_breakpoint_cmd (const char *args, int from_tty) 14398 { 14399 } 14400 14401 static void 14402 show_breakpoint_cmd (const char *args, int from_tty) 14403 { 14404 } 14405 14406 /* Invalidate last known value of any hardware watchpoint if 14407 the memory which that value represents has been written to by 14408 GDB itself. */ 14409 14410 static void 14411 invalidate_bp_value_on_memory_change (struct inferior *inferior, 14412 CORE_ADDR addr, ssize_t len, 14413 const bfd_byte *data) 14414 { 14415 struct breakpoint *bp; 14416 14417 ALL_BREAKPOINTS (bp) 14418 if (bp->enable_state == bp_enabled 14419 && bp->type == bp_hardware_watchpoint) 14420 { 14421 struct watchpoint *wp = (struct watchpoint *) bp; 14422 14423 if (wp->val_valid && wp->val != nullptr) 14424 { 14425 struct bp_location *loc; 14426 14427 for (loc = bp->loc; loc != NULL; loc = loc->next) 14428 if (loc->loc_type == bp_loc_hardware_watchpoint 14429 && loc->address + loc->length > addr 14430 && addr + len > loc->address) 14431 { 14432 wp->val = NULL; 14433 wp->val_valid = 0; 14434 } 14435 } 14436 } 14437 } 14438 14439 /* Create and insert a breakpoint for software single step. */ 14440 14441 void 14442 insert_single_step_breakpoint (struct gdbarch *gdbarch, 14443 const address_space *aspace, 14444 CORE_ADDR next_pc) 14445 { 14446 struct thread_info *tp = inferior_thread (); 14447 struct symtab_and_line sal; 14448 CORE_ADDR pc = next_pc; 14449 14450 if (tp->control.single_step_breakpoints == NULL) 14451 { 14452 tp->control.single_step_breakpoints 14453 = new_single_step_breakpoint (tp->global_num, gdbarch); 14454 } 14455 14456 sal = find_pc_line (pc, 0); 14457 sal.pc = pc; 14458 sal.section = find_pc_overlay (pc); 14459 sal.explicit_pc = 1; 14460 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal); 14461 14462 update_global_location_list (UGLL_INSERT); 14463 } 14464 14465 /* Insert single step breakpoints according to the current state. */ 14466 14467 int 14468 insert_single_step_breakpoints (struct gdbarch *gdbarch) 14469 { 14470 struct regcache *regcache = get_current_regcache (); 14471 std::vector<CORE_ADDR> next_pcs; 14472 14473 next_pcs = gdbarch_software_single_step (gdbarch, regcache); 14474 14475 if (!next_pcs.empty ()) 14476 { 14477 struct frame_info *frame = get_current_frame (); 14478 const address_space *aspace = get_frame_address_space (frame); 14479 14480 for (CORE_ADDR pc : next_pcs) 14481 insert_single_step_breakpoint (gdbarch, aspace, pc); 14482 14483 return 1; 14484 } 14485 else 14486 return 0; 14487 } 14488 14489 /* See breakpoint.h. */ 14490 14491 int 14492 breakpoint_has_location_inserted_here (struct breakpoint *bp, 14493 const address_space *aspace, 14494 CORE_ADDR pc) 14495 { 14496 struct bp_location *loc; 14497 14498 for (loc = bp->loc; loc != NULL; loc = loc->next) 14499 if (loc->inserted 14500 && breakpoint_location_address_match (loc, aspace, pc)) 14501 return 1; 14502 14503 return 0; 14504 } 14505 14506 /* Check whether a software single-step breakpoint is inserted at 14507 PC. */ 14508 14509 int 14510 single_step_breakpoint_inserted_here_p (const address_space *aspace, 14511 CORE_ADDR pc) 14512 { 14513 struct breakpoint *bpt; 14514 14515 ALL_BREAKPOINTS (bpt) 14516 { 14517 if (bpt->type == bp_single_step 14518 && breakpoint_has_location_inserted_here (bpt, aspace, pc)) 14519 return 1; 14520 } 14521 return 0; 14522 } 14523 14524 /* Tracepoint-specific operations. */ 14525 14526 /* Set tracepoint count to NUM. */ 14527 static void 14528 set_tracepoint_count (int num) 14529 { 14530 tracepoint_count = num; 14531 set_internalvar_integer (lookup_internalvar ("tpnum"), num); 14532 } 14533 14534 static void 14535 trace_command (const char *arg, int from_tty) 14536 { 14537 struct breakpoint_ops *ops; 14538 14539 event_location_up location = string_to_event_location (&arg, 14540 current_language); 14541 if (location != NULL 14542 && event_location_type (location.get ()) == PROBE_LOCATION) 14543 ops = &tracepoint_probe_breakpoint_ops; 14544 else 14545 ops = &tracepoint_breakpoint_ops; 14546 14547 create_breakpoint (get_current_arch (), 14548 location.get (), 14549 NULL, 0, arg, 1 /* parse arg */, 14550 0 /* tempflag */, 14551 bp_tracepoint /* type_wanted */, 14552 0 /* Ignore count */, 14553 pending_break_support, 14554 ops, 14555 from_tty, 14556 1 /* enabled */, 14557 0 /* internal */, 0); 14558 } 14559 14560 static void 14561 ftrace_command (const char *arg, int from_tty) 14562 { 14563 event_location_up location = string_to_event_location (&arg, 14564 current_language); 14565 create_breakpoint (get_current_arch (), 14566 location.get (), 14567 NULL, 0, arg, 1 /* parse arg */, 14568 0 /* tempflag */, 14569 bp_fast_tracepoint /* type_wanted */, 14570 0 /* Ignore count */, 14571 pending_break_support, 14572 &tracepoint_breakpoint_ops, 14573 from_tty, 14574 1 /* enabled */, 14575 0 /* internal */, 0); 14576 } 14577 14578 /* strace command implementation. Creates a static tracepoint. */ 14579 14580 static void 14581 strace_command (const char *arg, int from_tty) 14582 { 14583 struct breakpoint_ops *ops; 14584 event_location_up location; 14585 14586 /* Decide if we are dealing with a static tracepoint marker (`-m'), 14587 or with a normal static tracepoint. */ 14588 if (arg && startswith (arg, "-m") && isspace (arg[2])) 14589 { 14590 ops = &strace_marker_breakpoint_ops; 14591 location = new_linespec_location (&arg, symbol_name_match_type::FULL); 14592 } 14593 else 14594 { 14595 ops = &tracepoint_breakpoint_ops; 14596 location = string_to_event_location (&arg, current_language); 14597 } 14598 14599 create_breakpoint (get_current_arch (), 14600 location.get (), 14601 NULL, 0, arg, 1 /* parse arg */, 14602 0 /* tempflag */, 14603 bp_static_tracepoint /* type_wanted */, 14604 0 /* Ignore count */, 14605 pending_break_support, 14606 ops, 14607 from_tty, 14608 1 /* enabled */, 14609 0 /* internal */, 0); 14610 } 14611 14612 /* Set up a fake reader function that gets command lines from a linked 14613 list that was acquired during tracepoint uploading. */ 14614 14615 static struct uploaded_tp *this_utp; 14616 static int next_cmd; 14617 14618 static char * 14619 read_uploaded_action (void) 14620 { 14621 char *rslt = nullptr; 14622 14623 if (next_cmd < this_utp->cmd_strings.size ()) 14624 { 14625 rslt = this_utp->cmd_strings[next_cmd].get (); 14626 next_cmd++; 14627 } 14628 14629 return rslt; 14630 } 14631 14632 /* Given information about a tracepoint as recorded on a target (which 14633 can be either a live system or a trace file), attempt to create an 14634 equivalent GDB tracepoint. This is not a reliable process, since 14635 the target does not necessarily have all the information used when 14636 the tracepoint was originally defined. */ 14637 14638 struct tracepoint * 14639 create_tracepoint_from_upload (struct uploaded_tp *utp) 14640 { 14641 const char *addr_str; 14642 char small_buf[100]; 14643 struct tracepoint *tp; 14644 14645 if (utp->at_string) 14646 addr_str = utp->at_string.get (); 14647 else 14648 { 14649 /* In the absence of a source location, fall back to raw 14650 address. Since there is no way to confirm that the address 14651 means the same thing as when the trace was started, warn the 14652 user. */ 14653 warning (_("Uploaded tracepoint %d has no " 14654 "source location, using raw address"), 14655 utp->number); 14656 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr)); 14657 addr_str = small_buf; 14658 } 14659 14660 /* There's not much we can do with a sequence of bytecodes. */ 14661 if (utp->cond && !utp->cond_string) 14662 warning (_("Uploaded tracepoint %d condition " 14663 "has no source form, ignoring it"), 14664 utp->number); 14665 14666 event_location_up location = string_to_event_location (&addr_str, 14667 current_language); 14668 if (!create_breakpoint (get_current_arch (), 14669 location.get (), 14670 utp->cond_string.get (), -1, addr_str, 14671 0 /* parse cond/thread */, 14672 0 /* tempflag */, 14673 utp->type /* type_wanted */, 14674 0 /* Ignore count */, 14675 pending_break_support, 14676 &tracepoint_breakpoint_ops, 14677 0 /* from_tty */, 14678 utp->enabled /* enabled */, 14679 0 /* internal */, 14680 CREATE_BREAKPOINT_FLAGS_INSERTED)) 14681 return NULL; 14682 14683 /* Get the tracepoint we just created. */ 14684 tp = get_tracepoint (tracepoint_count); 14685 gdb_assert (tp != NULL); 14686 14687 if (utp->pass > 0) 14688 { 14689 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass, 14690 tp->number); 14691 14692 trace_pass_command (small_buf, 0); 14693 } 14694 14695 /* If we have uploaded versions of the original commands, set up a 14696 special-purpose "reader" function and call the usual command line 14697 reader, then pass the result to the breakpoint command-setting 14698 function. */ 14699 if (!utp->cmd_strings.empty ()) 14700 { 14701 counted_command_line cmd_list; 14702 14703 this_utp = utp; 14704 next_cmd = 0; 14705 14706 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL); 14707 14708 breakpoint_set_commands (tp, std::move (cmd_list)); 14709 } 14710 else if (!utp->actions.empty () 14711 || !utp->step_actions.empty ()) 14712 warning (_("Uploaded tracepoint %d actions " 14713 "have no source form, ignoring them"), 14714 utp->number); 14715 14716 /* Copy any status information that might be available. */ 14717 tp->hit_count = utp->hit_count; 14718 tp->traceframe_usage = utp->traceframe_usage; 14719 14720 return tp; 14721 } 14722 14723 /* Print information on tracepoint number TPNUM_EXP, or all if 14724 omitted. */ 14725 14726 static void 14727 info_tracepoints_command (const char *args, int from_tty) 14728 { 14729 struct ui_out *uiout = current_uiout; 14730 int num_printed; 14731 14732 num_printed = breakpoint_1 (args, 0, is_tracepoint); 14733 14734 if (num_printed == 0) 14735 { 14736 if (args == NULL || *args == '\0') 14737 uiout->message ("No tracepoints.\n"); 14738 else 14739 uiout->message ("No tracepoint matching '%s'.\n", args); 14740 } 14741 14742 default_collect_info (); 14743 } 14744 14745 /* The 'enable trace' command enables tracepoints. 14746 Not supported by all targets. */ 14747 static void 14748 enable_trace_command (const char *args, int from_tty) 14749 { 14750 enable_command (args, from_tty); 14751 } 14752 14753 /* The 'disable trace' command disables tracepoints. 14754 Not supported by all targets. */ 14755 static void 14756 disable_trace_command (const char *args, int from_tty) 14757 { 14758 disable_command (args, from_tty); 14759 } 14760 14761 /* Remove a tracepoint (or all if no argument). */ 14762 static void 14763 delete_trace_command (const char *arg, int from_tty) 14764 { 14765 struct breakpoint *b, *b_tmp; 14766 14767 dont_repeat (); 14768 14769 if (arg == 0) 14770 { 14771 int breaks_to_delete = 0; 14772 14773 /* Delete all breakpoints if no argument. 14774 Do not delete internal or call-dummy breakpoints, these 14775 have to be deleted with an explicit breakpoint number 14776 argument. */ 14777 ALL_TRACEPOINTS (b) 14778 if (is_tracepoint (b) && user_breakpoint_p (b)) 14779 { 14780 breaks_to_delete = 1; 14781 break; 14782 } 14783 14784 /* Ask user only if there are some breakpoints to delete. */ 14785 if (!from_tty 14786 || (breaks_to_delete && query (_("Delete all tracepoints? ")))) 14787 { 14788 ALL_BREAKPOINTS_SAFE (b, b_tmp) 14789 if (is_tracepoint (b) && user_breakpoint_p (b)) 14790 delete_breakpoint (b); 14791 } 14792 } 14793 else 14794 map_breakpoint_numbers 14795 (arg, [&] (breakpoint *br) 14796 { 14797 iterate_over_related_breakpoints (br, delete_breakpoint); 14798 }); 14799 } 14800 14801 /* Helper function for trace_pass_command. */ 14802 14803 static void 14804 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty) 14805 { 14806 tp->pass_count = count; 14807 gdb::observers::breakpoint_modified.notify (tp); 14808 if (from_tty) 14809 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"), 14810 tp->number, count); 14811 } 14812 14813 /* Set passcount for tracepoint. 14814 14815 First command argument is passcount, second is tracepoint number. 14816 If tracepoint number omitted, apply to most recently defined. 14817 Also accepts special argument "all". */ 14818 14819 static void 14820 trace_pass_command (const char *args, int from_tty) 14821 { 14822 struct tracepoint *t1; 14823 ULONGEST count; 14824 14825 if (args == 0 || *args == 0) 14826 error (_("passcount command requires an " 14827 "argument (count + optional TP num)")); 14828 14829 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */ 14830 14831 args = skip_spaces (args); 14832 if (*args && strncasecmp (args, "all", 3) == 0) 14833 { 14834 struct breakpoint *b; 14835 14836 args += 3; /* Skip special argument "all". */ 14837 if (*args) 14838 error (_("Junk at end of arguments.")); 14839 14840 ALL_TRACEPOINTS (b) 14841 { 14842 t1 = (struct tracepoint *) b; 14843 trace_pass_set_count (t1, count, from_tty); 14844 } 14845 } 14846 else if (*args == '\0') 14847 { 14848 t1 = get_tracepoint_by_number (&args, NULL); 14849 if (t1) 14850 trace_pass_set_count (t1, count, from_tty); 14851 } 14852 else 14853 { 14854 number_or_range_parser parser (args); 14855 while (!parser.finished ()) 14856 { 14857 t1 = get_tracepoint_by_number (&args, &parser); 14858 if (t1) 14859 trace_pass_set_count (t1, count, from_tty); 14860 } 14861 } 14862 } 14863 14864 struct tracepoint * 14865 get_tracepoint (int num) 14866 { 14867 struct breakpoint *t; 14868 14869 ALL_TRACEPOINTS (t) 14870 if (t->number == num) 14871 return (struct tracepoint *) t; 14872 14873 return NULL; 14874 } 14875 14876 /* Find the tracepoint with the given target-side number (which may be 14877 different from the tracepoint number after disconnecting and 14878 reconnecting). */ 14879 14880 struct tracepoint * 14881 get_tracepoint_by_number_on_target (int num) 14882 { 14883 struct breakpoint *b; 14884 14885 ALL_TRACEPOINTS (b) 14886 { 14887 struct tracepoint *t = (struct tracepoint *) b; 14888 14889 if (t->number_on_target == num) 14890 return t; 14891 } 14892 14893 return NULL; 14894 } 14895 14896 /* Utility: parse a tracepoint number and look it up in the list. 14897 If STATE is not NULL, use, get_number_or_range_state and ignore ARG. 14898 If the argument is missing, the most recent tracepoint 14899 (tracepoint_count) is returned. */ 14900 14901 struct tracepoint * 14902 get_tracepoint_by_number (const char **arg, 14903 number_or_range_parser *parser) 14904 { 14905 struct breakpoint *t; 14906 int tpnum; 14907 const char *instring = arg == NULL ? NULL : *arg; 14908 14909 if (parser != NULL) 14910 { 14911 gdb_assert (!parser->finished ()); 14912 tpnum = parser->get_number (); 14913 } 14914 else if (arg == NULL || *arg == NULL || ! **arg) 14915 tpnum = tracepoint_count; 14916 else 14917 tpnum = get_number (arg); 14918 14919 if (tpnum <= 0) 14920 { 14921 if (instring && *instring) 14922 printf_filtered (_("bad tracepoint number at or near '%s'\n"), 14923 instring); 14924 else 14925 printf_filtered (_("No previous tracepoint\n")); 14926 return NULL; 14927 } 14928 14929 ALL_TRACEPOINTS (t) 14930 if (t->number == tpnum) 14931 { 14932 return (struct tracepoint *) t; 14933 } 14934 14935 printf_unfiltered ("No tracepoint number %d.\n", tpnum); 14936 return NULL; 14937 } 14938 14939 void 14940 print_recreate_thread (struct breakpoint *b, struct ui_file *fp) 14941 { 14942 if (b->thread != -1) 14943 fprintf_unfiltered (fp, " thread %d", b->thread); 14944 14945 if (b->task != 0) 14946 fprintf_unfiltered (fp, " task %d", b->task); 14947 14948 fprintf_unfiltered (fp, "\n"); 14949 } 14950 14951 /* Save information on user settable breakpoints (watchpoints, etc) to 14952 a new script file named FILENAME. If FILTER is non-NULL, call it 14953 on each breakpoint and only include the ones for which it returns 14954 non-zero. */ 14955 14956 static void 14957 save_breakpoints (const char *filename, int from_tty, 14958 int (*filter) (const struct breakpoint *)) 14959 { 14960 struct breakpoint *tp; 14961 int any = 0; 14962 int extra_trace_bits = 0; 14963 14964 if (filename == 0 || *filename == 0) 14965 error (_("Argument required (file name in which to save)")); 14966 14967 /* See if we have anything to save. */ 14968 ALL_BREAKPOINTS (tp) 14969 { 14970 /* Skip internal and momentary breakpoints. */ 14971 if (!user_breakpoint_p (tp)) 14972 continue; 14973 14974 /* If we have a filter, only save the breakpoints it accepts. */ 14975 if (filter && !filter (tp)) 14976 continue; 14977 14978 any = 1; 14979 14980 if (is_tracepoint (tp)) 14981 { 14982 extra_trace_bits = 1; 14983 14984 /* We can stop searching. */ 14985 break; 14986 } 14987 } 14988 14989 if (!any) 14990 { 14991 warning (_("Nothing to save.")); 14992 return; 14993 } 14994 14995 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename)); 14996 14997 stdio_file fp; 14998 14999 if (!fp.open (expanded_filename.get (), "w")) 15000 error (_("Unable to open file '%s' for saving (%s)"), 15001 expanded_filename.get (), safe_strerror (errno)); 15002 15003 if (extra_trace_bits) 15004 save_trace_state_variables (&fp); 15005 15006 ALL_BREAKPOINTS (tp) 15007 { 15008 /* Skip internal and momentary breakpoints. */ 15009 if (!user_breakpoint_p (tp)) 15010 continue; 15011 15012 /* If we have a filter, only save the breakpoints it accepts. */ 15013 if (filter && !filter (tp)) 15014 continue; 15015 15016 tp->ops->print_recreate (tp, &fp); 15017 15018 /* Note, we can't rely on tp->number for anything, as we can't 15019 assume the recreated breakpoint numbers will match. Use $bpnum 15020 instead. */ 15021 15022 if (tp->cond_string) 15023 fp.printf (" condition $bpnum %s\n", tp->cond_string); 15024 15025 if (tp->ignore_count) 15026 fp.printf (" ignore $bpnum %d\n", tp->ignore_count); 15027 15028 if (tp->type != bp_dprintf && tp->commands) 15029 { 15030 fp.puts (" commands\n"); 15031 15032 current_uiout->redirect (&fp); 15033 TRY 15034 { 15035 print_command_lines (current_uiout, tp->commands.get (), 2); 15036 } 15037 CATCH (ex, RETURN_MASK_ALL) 15038 { 15039 current_uiout->redirect (NULL); 15040 throw_exception (ex); 15041 } 15042 END_CATCH 15043 15044 current_uiout->redirect (NULL); 15045 fp.puts (" end\n"); 15046 } 15047 15048 if (tp->enable_state == bp_disabled) 15049 fp.puts ("disable $bpnum\n"); 15050 15051 /* If this is a multi-location breakpoint, check if the locations 15052 should be individually disabled. Watchpoint locations are 15053 special, and not user visible. */ 15054 if (!is_watchpoint (tp) && tp->loc && tp->loc->next) 15055 { 15056 struct bp_location *loc; 15057 int n = 1; 15058 15059 for (loc = tp->loc; loc != NULL; loc = loc->next, n++) 15060 if (!loc->enabled) 15061 fp.printf ("disable $bpnum.%d\n", n); 15062 } 15063 } 15064 15065 if (extra_trace_bits && *default_collect) 15066 fp.printf ("set default-collect %s\n", default_collect); 15067 15068 if (from_tty) 15069 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ()); 15070 } 15071 15072 /* The `save breakpoints' command. */ 15073 15074 static void 15075 save_breakpoints_command (const char *args, int from_tty) 15076 { 15077 save_breakpoints (args, from_tty, NULL); 15078 } 15079 15080 /* The `save tracepoints' command. */ 15081 15082 static void 15083 save_tracepoints_command (const char *args, int from_tty) 15084 { 15085 save_breakpoints (args, from_tty, is_tracepoint); 15086 } 15087 15088 /* Create a vector of all tracepoints. */ 15089 15090 std::vector<breakpoint *> 15091 all_tracepoints (void) 15092 { 15093 std::vector<breakpoint *> tp_vec; 15094 struct breakpoint *tp; 15095 15096 ALL_TRACEPOINTS (tp) 15097 { 15098 tp_vec.push_back (tp); 15099 } 15100 15101 return tp_vec; 15102 } 15103 15104 15105 /* This help string is used to consolidate all the help string for specifying 15106 locations used by several commands. */ 15107 15108 #define LOCATION_HELP_STRING \ 15109 "Linespecs are colon-separated lists of location parameters, such as\n\ 15110 source filename, function name, label name, and line number.\n\ 15111 Example: To specify the start of a label named \"the_top\" in the\n\ 15112 function \"fact\" in the file \"factorial.c\", use\n\ 15113 \"factorial.c:fact:the_top\".\n\ 15114 \n\ 15115 Address locations begin with \"*\" and specify an exact address in the\n\ 15116 program. Example: To specify the fourth byte past the start function\n\ 15117 \"main\", use \"*main + 4\".\n\ 15118 \n\ 15119 Explicit locations are similar to linespecs but use an option/argument\n\ 15120 syntax to specify location parameters.\n\ 15121 Example: To specify the start of the label named \"the_top\" in the\n\ 15122 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\ 15123 -function fact -label the_top\".\n\ 15124 \n\ 15125 By default, a specified function is matched against the program's\n\ 15126 functions in all scopes. For C++, this means in all namespaces and\n\ 15127 classes. For Ada, this means in all packages. E.g., in C++,\n\ 15128 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\ 15129 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\ 15130 specified name as a complete fully-qualified name instead.\n" 15131 15132 /* This help string is used for the break, hbreak, tbreak and thbreak 15133 commands. It is defined as a macro to prevent duplication. 15134 COMMAND should be a string constant containing the name of the 15135 command. */ 15136 15137 #define BREAK_ARGS_HELP(command) \ 15138 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\ 15139 PROBE_MODIFIER shall be present if the command is to be placed in a\n\ 15140 probe point. Accepted values are `-probe' (for a generic, automatically\n\ 15141 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\ 15142 `-probe-dtrace' (for a DTrace probe).\n\ 15143 LOCATION may be a linespec, address, or explicit location as described\n\ 15144 below.\n\ 15145 \n\ 15146 With no LOCATION, uses current execution address of the selected\n\ 15147 stack frame. This is useful for breaking on return to a stack frame.\n\ 15148 \n\ 15149 THREADNUM is the number from \"info threads\".\n\ 15150 CONDITION is a boolean expression.\n\ 15151 \n" LOCATION_HELP_STRING "\n\ 15152 Multiple breakpoints at one place are permitted, and useful if their\n\ 15153 conditions are different.\n\ 15154 \n\ 15155 Do \"help breakpoints\" for info on other commands dealing with breakpoints." 15156 15157 /* List of subcommands for "catch". */ 15158 static struct cmd_list_element *catch_cmdlist; 15159 15160 /* List of subcommands for "tcatch". */ 15161 static struct cmd_list_element *tcatch_cmdlist; 15162 15163 void 15164 add_catch_command (const char *name, const char *docstring, 15165 cmd_const_sfunc_ftype *sfunc, 15166 completer_ftype *completer, 15167 void *user_data_catch, 15168 void *user_data_tcatch) 15169 { 15170 struct cmd_list_element *command; 15171 15172 command = add_cmd (name, class_breakpoint, docstring, 15173 &catch_cmdlist); 15174 set_cmd_sfunc (command, sfunc); 15175 set_cmd_context (command, user_data_catch); 15176 set_cmd_completer (command, completer); 15177 15178 command = add_cmd (name, class_breakpoint, docstring, 15179 &tcatch_cmdlist); 15180 set_cmd_sfunc (command, sfunc); 15181 set_cmd_context (command, user_data_tcatch); 15182 set_cmd_completer (command, completer); 15183 } 15184 15185 static void 15186 save_command (const char *arg, int from_tty) 15187 { 15188 printf_unfiltered (_("\"save\" must be followed by " 15189 "the name of a save subcommand.\n")); 15190 help_list (save_cmdlist, "save ", all_commands, gdb_stdout); 15191 } 15192 15193 struct breakpoint * 15194 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *), 15195 void *data) 15196 { 15197 struct breakpoint *b, *b_tmp; 15198 15199 ALL_BREAKPOINTS_SAFE (b, b_tmp) 15200 { 15201 if ((*callback) (b, data)) 15202 return b; 15203 } 15204 15205 return NULL; 15206 } 15207 15208 /* Zero if any of the breakpoint's locations could be a location where 15209 functions have been inlined, nonzero otherwise. */ 15210 15211 static int 15212 is_non_inline_function (struct breakpoint *b) 15213 { 15214 /* The shared library event breakpoint is set on the address of a 15215 non-inline function. */ 15216 if (b->type == bp_shlib_event) 15217 return 1; 15218 15219 return 0; 15220 } 15221 15222 /* Nonzero if the specified PC cannot be a location where functions 15223 have been inlined. */ 15224 15225 int 15226 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc, 15227 const struct target_waitstatus *ws) 15228 { 15229 struct breakpoint *b; 15230 struct bp_location *bl; 15231 15232 ALL_BREAKPOINTS (b) 15233 { 15234 if (!is_non_inline_function (b)) 15235 continue; 15236 15237 for (bl = b->loc; bl != NULL; bl = bl->next) 15238 { 15239 if (!bl->shlib_disabled 15240 && bpstat_check_location (bl, aspace, pc, ws)) 15241 return 1; 15242 } 15243 } 15244 15245 return 0; 15246 } 15247 15248 /* Remove any references to OBJFILE which is going to be freed. */ 15249 15250 void 15251 breakpoint_free_objfile (struct objfile *objfile) 15252 { 15253 struct bp_location **locp, *loc; 15254 15255 ALL_BP_LOCATIONS (loc, locp) 15256 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile) 15257 loc->symtab = NULL; 15258 } 15259 15260 void 15261 initialize_breakpoint_ops (void) 15262 { 15263 static int initialized = 0; 15264 15265 struct breakpoint_ops *ops; 15266 15267 if (initialized) 15268 return; 15269 initialized = 1; 15270 15271 /* The breakpoint_ops structure to be inherit by all kinds of 15272 breakpoints (real breakpoints, i.e., user "break" breakpoints, 15273 internal and momentary breakpoints, etc.). */ 15274 ops = &bkpt_base_breakpoint_ops; 15275 *ops = base_breakpoint_ops; 15276 ops->re_set = bkpt_re_set; 15277 ops->insert_location = bkpt_insert_location; 15278 ops->remove_location = bkpt_remove_location; 15279 ops->breakpoint_hit = bkpt_breakpoint_hit; 15280 ops->create_sals_from_location = bkpt_create_sals_from_location; 15281 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal; 15282 ops->decode_location = bkpt_decode_location; 15283 15284 /* The breakpoint_ops structure to be used in regular breakpoints. */ 15285 ops = &bkpt_breakpoint_ops; 15286 *ops = bkpt_base_breakpoint_ops; 15287 ops->re_set = bkpt_re_set; 15288 ops->resources_needed = bkpt_resources_needed; 15289 ops->print_it = bkpt_print_it; 15290 ops->print_mention = bkpt_print_mention; 15291 ops->print_recreate = bkpt_print_recreate; 15292 15293 /* Ranged breakpoints. */ 15294 ops = &ranged_breakpoint_ops; 15295 *ops = bkpt_breakpoint_ops; 15296 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint; 15297 ops->resources_needed = resources_needed_ranged_breakpoint; 15298 ops->print_it = print_it_ranged_breakpoint; 15299 ops->print_one = print_one_ranged_breakpoint; 15300 ops->print_one_detail = print_one_detail_ranged_breakpoint; 15301 ops->print_mention = print_mention_ranged_breakpoint; 15302 ops->print_recreate = print_recreate_ranged_breakpoint; 15303 15304 /* Internal breakpoints. */ 15305 ops = &internal_breakpoint_ops; 15306 *ops = bkpt_base_breakpoint_ops; 15307 ops->re_set = internal_bkpt_re_set; 15308 ops->check_status = internal_bkpt_check_status; 15309 ops->print_it = internal_bkpt_print_it; 15310 ops->print_mention = internal_bkpt_print_mention; 15311 15312 /* Momentary breakpoints. */ 15313 ops = &momentary_breakpoint_ops; 15314 *ops = bkpt_base_breakpoint_ops; 15315 ops->re_set = momentary_bkpt_re_set; 15316 ops->check_status = momentary_bkpt_check_status; 15317 ops->print_it = momentary_bkpt_print_it; 15318 ops->print_mention = momentary_bkpt_print_mention; 15319 15320 /* Probe breakpoints. */ 15321 ops = &bkpt_probe_breakpoint_ops; 15322 *ops = bkpt_breakpoint_ops; 15323 ops->insert_location = bkpt_probe_insert_location; 15324 ops->remove_location = bkpt_probe_remove_location; 15325 ops->create_sals_from_location = bkpt_probe_create_sals_from_location; 15326 ops->decode_location = bkpt_probe_decode_location; 15327 15328 /* Watchpoints. */ 15329 ops = &watchpoint_breakpoint_ops; 15330 *ops = base_breakpoint_ops; 15331 ops->re_set = re_set_watchpoint; 15332 ops->insert_location = insert_watchpoint; 15333 ops->remove_location = remove_watchpoint; 15334 ops->breakpoint_hit = breakpoint_hit_watchpoint; 15335 ops->check_status = check_status_watchpoint; 15336 ops->resources_needed = resources_needed_watchpoint; 15337 ops->works_in_software_mode = works_in_software_mode_watchpoint; 15338 ops->print_it = print_it_watchpoint; 15339 ops->print_mention = print_mention_watchpoint; 15340 ops->print_recreate = print_recreate_watchpoint; 15341 ops->explains_signal = explains_signal_watchpoint; 15342 15343 /* Masked watchpoints. */ 15344 ops = &masked_watchpoint_breakpoint_ops; 15345 *ops = watchpoint_breakpoint_ops; 15346 ops->insert_location = insert_masked_watchpoint; 15347 ops->remove_location = remove_masked_watchpoint; 15348 ops->resources_needed = resources_needed_masked_watchpoint; 15349 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint; 15350 ops->print_it = print_it_masked_watchpoint; 15351 ops->print_one_detail = print_one_detail_masked_watchpoint; 15352 ops->print_mention = print_mention_masked_watchpoint; 15353 ops->print_recreate = print_recreate_masked_watchpoint; 15354 15355 /* Tracepoints. */ 15356 ops = &tracepoint_breakpoint_ops; 15357 *ops = base_breakpoint_ops; 15358 ops->re_set = tracepoint_re_set; 15359 ops->breakpoint_hit = tracepoint_breakpoint_hit; 15360 ops->print_one_detail = tracepoint_print_one_detail; 15361 ops->print_mention = tracepoint_print_mention; 15362 ops->print_recreate = tracepoint_print_recreate; 15363 ops->create_sals_from_location = tracepoint_create_sals_from_location; 15364 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal; 15365 ops->decode_location = tracepoint_decode_location; 15366 15367 /* Probe tracepoints. */ 15368 ops = &tracepoint_probe_breakpoint_ops; 15369 *ops = tracepoint_breakpoint_ops; 15370 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location; 15371 ops->decode_location = tracepoint_probe_decode_location; 15372 15373 /* Static tracepoints with marker (`-m'). */ 15374 ops = &strace_marker_breakpoint_ops; 15375 *ops = tracepoint_breakpoint_ops; 15376 ops->create_sals_from_location = strace_marker_create_sals_from_location; 15377 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal; 15378 ops->decode_location = strace_marker_decode_location; 15379 15380 /* Fork catchpoints. */ 15381 ops = &catch_fork_breakpoint_ops; 15382 *ops = base_breakpoint_ops; 15383 ops->insert_location = insert_catch_fork; 15384 ops->remove_location = remove_catch_fork; 15385 ops->breakpoint_hit = breakpoint_hit_catch_fork; 15386 ops->print_it = print_it_catch_fork; 15387 ops->print_one = print_one_catch_fork; 15388 ops->print_mention = print_mention_catch_fork; 15389 ops->print_recreate = print_recreate_catch_fork; 15390 15391 /* Vfork catchpoints. */ 15392 ops = &catch_vfork_breakpoint_ops; 15393 *ops = base_breakpoint_ops; 15394 ops->insert_location = insert_catch_vfork; 15395 ops->remove_location = remove_catch_vfork; 15396 ops->breakpoint_hit = breakpoint_hit_catch_vfork; 15397 ops->print_it = print_it_catch_vfork; 15398 ops->print_one = print_one_catch_vfork; 15399 ops->print_mention = print_mention_catch_vfork; 15400 ops->print_recreate = print_recreate_catch_vfork; 15401 15402 /* Exec catchpoints. */ 15403 ops = &catch_exec_breakpoint_ops; 15404 *ops = base_breakpoint_ops; 15405 ops->insert_location = insert_catch_exec; 15406 ops->remove_location = remove_catch_exec; 15407 ops->breakpoint_hit = breakpoint_hit_catch_exec; 15408 ops->print_it = print_it_catch_exec; 15409 ops->print_one = print_one_catch_exec; 15410 ops->print_mention = print_mention_catch_exec; 15411 ops->print_recreate = print_recreate_catch_exec; 15412 15413 /* Solib-related catchpoints. */ 15414 ops = &catch_solib_breakpoint_ops; 15415 *ops = base_breakpoint_ops; 15416 ops->insert_location = insert_catch_solib; 15417 ops->remove_location = remove_catch_solib; 15418 ops->breakpoint_hit = breakpoint_hit_catch_solib; 15419 ops->check_status = check_status_catch_solib; 15420 ops->print_it = print_it_catch_solib; 15421 ops->print_one = print_one_catch_solib; 15422 ops->print_mention = print_mention_catch_solib; 15423 ops->print_recreate = print_recreate_catch_solib; 15424 15425 ops = &dprintf_breakpoint_ops; 15426 *ops = bkpt_base_breakpoint_ops; 15427 ops->re_set = dprintf_re_set; 15428 ops->resources_needed = bkpt_resources_needed; 15429 ops->print_it = bkpt_print_it; 15430 ops->print_mention = bkpt_print_mention; 15431 ops->print_recreate = dprintf_print_recreate; 15432 ops->after_condition_true = dprintf_after_condition_true; 15433 ops->breakpoint_hit = dprintf_breakpoint_hit; 15434 } 15435 15436 /* Chain containing all defined "enable breakpoint" subcommands. */ 15437 15438 static struct cmd_list_element *enablebreaklist = NULL; 15439 15440 /* See breakpoint.h. */ 15441 15442 cmd_list_element *commands_cmd_element = nullptr; 15443 15444 void 15445 _initialize_breakpoint (void) 15446 { 15447 struct cmd_list_element *c; 15448 15449 initialize_breakpoint_ops (); 15450 15451 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib); 15452 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile); 15453 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change); 15454 15455 breakpoint_objfile_key 15456 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data); 15457 15458 breakpoint_chain = 0; 15459 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful 15460 before a breakpoint is set. */ 15461 breakpoint_count = 0; 15462 15463 tracepoint_count = 0; 15464 15465 add_com ("ignore", class_breakpoint, ignore_command, _("\ 15466 Set ignore-count of breakpoint number N to COUNT.\n\ 15467 Usage is `ignore N COUNT'.")); 15468 15469 commands_cmd_element = add_com ("commands", class_breakpoint, 15470 commands_command, _("\ 15471 Set commands to be executed when the given breakpoints are hit.\n\ 15472 Give a space-separated breakpoint list as argument after \"commands\".\n\ 15473 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\ 15474 (e.g. `5-7').\n\ 15475 With no argument, the targeted breakpoint is the last one set.\n\ 15476 The commands themselves follow starting on the next line.\n\ 15477 Type a line containing \"end\" to indicate the end of them.\n\ 15478 Give \"silent\" as the first line to make the breakpoint silent;\n\ 15479 then no output is printed when it is hit, except what the commands print.")); 15480 15481 c = add_com ("condition", class_breakpoint, condition_command, _("\ 15482 Specify breakpoint number N to break only if COND is true.\n\ 15483 Usage is `condition N COND', where N is an integer and COND is an\n\ 15484 expression to be evaluated whenever breakpoint N is reached.")); 15485 set_cmd_completer (c, condition_completer); 15486 15487 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\ 15488 Set a temporary breakpoint.\n\ 15489 Like \"break\" except the breakpoint is only temporary,\n\ 15490 so it will be deleted when hit. Equivalent to \"break\" followed\n\ 15491 by using \"enable delete\" on the breakpoint number.\n\ 15492 \n" 15493 BREAK_ARGS_HELP ("tbreak"))); 15494 set_cmd_completer (c, location_completer); 15495 15496 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\ 15497 Set a hardware assisted breakpoint.\n\ 15498 Like \"break\" except the breakpoint requires hardware support,\n\ 15499 some target hardware may not have this support.\n\ 15500 \n" 15501 BREAK_ARGS_HELP ("hbreak"))); 15502 set_cmd_completer (c, location_completer); 15503 15504 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\ 15505 Set a temporary hardware assisted breakpoint.\n\ 15506 Like \"hbreak\" except the breakpoint is only temporary,\n\ 15507 so it will be deleted when hit.\n\ 15508 \n" 15509 BREAK_ARGS_HELP ("thbreak"))); 15510 set_cmd_completer (c, location_completer); 15511 15512 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\ 15513 Enable some breakpoints.\n\ 15514 Give breakpoint numbers (separated by spaces) as arguments.\n\ 15515 With no subcommand, breakpoints are enabled until you command otherwise.\n\ 15516 This is used to cancel the effect of the \"disable\" command.\n\ 15517 With a subcommand you can enable temporarily."), 15518 &enablelist, "enable ", 1, &cmdlist); 15519 15520 add_com_alias ("en", "enable", class_breakpoint, 1); 15521 15522 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\ 15523 Enable some breakpoints.\n\ 15524 Give breakpoint numbers (separated by spaces) as arguments.\n\ 15525 This is used to cancel the effect of the \"disable\" command.\n\ 15526 May be abbreviated to simply \"enable\".\n"), 15527 &enablebreaklist, "enable breakpoints ", 1, &enablelist); 15528 15529 add_cmd ("once", no_class, enable_once_command, _("\ 15530 Enable breakpoints for one hit. Give breakpoint numbers.\n\ 15531 If a breakpoint is hit while enabled in this fashion, it becomes disabled."), 15532 &enablebreaklist); 15533 15534 add_cmd ("delete", no_class, enable_delete_command, _("\ 15535 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\ 15536 If a breakpoint is hit while enabled in this fashion, it is deleted."), 15537 &enablebreaklist); 15538 15539 add_cmd ("count", no_class, enable_count_command, _("\ 15540 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\ 15541 If a breakpoint is hit while enabled in this fashion,\n\ 15542 the count is decremented; when it reaches zero, the breakpoint is disabled."), 15543 &enablebreaklist); 15544 15545 add_cmd ("delete", no_class, enable_delete_command, _("\ 15546 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\ 15547 If a breakpoint is hit while enabled in this fashion, it is deleted."), 15548 &enablelist); 15549 15550 add_cmd ("once", no_class, enable_once_command, _("\ 15551 Enable breakpoints for one hit. Give breakpoint numbers.\n\ 15552 If a breakpoint is hit while enabled in this fashion, it becomes disabled."), 15553 &enablelist); 15554 15555 add_cmd ("count", no_class, enable_count_command, _("\ 15556 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\ 15557 If a breakpoint is hit while enabled in this fashion,\n\ 15558 the count is decremented; when it reaches zero, the breakpoint is disabled."), 15559 &enablelist); 15560 15561 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\ 15562 Disable some breakpoints.\n\ 15563 Arguments are breakpoint numbers with spaces in between.\n\ 15564 To disable all breakpoints, give no argument.\n\ 15565 A disabled breakpoint is not forgotten, but has no effect until re-enabled."), 15566 &disablelist, "disable ", 1, &cmdlist); 15567 add_com_alias ("dis", "disable", class_breakpoint, 1); 15568 add_com_alias ("disa", "disable", class_breakpoint, 1); 15569 15570 add_cmd ("breakpoints", class_alias, disable_command, _("\ 15571 Disable some breakpoints.\n\ 15572 Arguments are breakpoint numbers with spaces in between.\n\ 15573 To disable all breakpoints, give no argument.\n\ 15574 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\ 15575 This command may be abbreviated \"disable\"."), 15576 &disablelist); 15577 15578 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\ 15579 Delete some breakpoints or auto-display expressions.\n\ 15580 Arguments are breakpoint numbers with spaces in between.\n\ 15581 To delete all breakpoints, give no argument.\n\ 15582 \n\ 15583 Also a prefix command for deletion of other GDB objects.\n\ 15584 The \"unset\" command is also an alias for \"delete\"."), 15585 &deletelist, "delete ", 1, &cmdlist); 15586 add_com_alias ("d", "delete", class_breakpoint, 1); 15587 add_com_alias ("del", "delete", class_breakpoint, 1); 15588 15589 add_cmd ("breakpoints", class_alias, delete_command, _("\ 15590 Delete some breakpoints or auto-display expressions.\n\ 15591 Arguments are breakpoint numbers with spaces in between.\n\ 15592 To delete all breakpoints, give no argument.\n\ 15593 This command may be abbreviated \"delete\"."), 15594 &deletelist); 15595 15596 add_com ("clear", class_breakpoint, clear_command, _("\ 15597 Clear breakpoint at specified location.\n\ 15598 Argument may be a linespec, explicit, or address location as described below.\n\ 15599 \n\ 15600 With no argument, clears all breakpoints in the line that the selected frame\n\ 15601 is executing in.\n" 15602 "\n" LOCATION_HELP_STRING "\n\ 15603 See also the \"delete\" command which clears breakpoints by number.")); 15604 add_com_alias ("cl", "clear", class_breakpoint, 1); 15605 15606 c = add_com ("break", class_breakpoint, break_command, _("\ 15607 Set breakpoint at specified location.\n" 15608 BREAK_ARGS_HELP ("break"))); 15609 set_cmd_completer (c, location_completer); 15610 15611 add_com_alias ("b", "break", class_run, 1); 15612 add_com_alias ("br", "break", class_run, 1); 15613 add_com_alias ("bre", "break", class_run, 1); 15614 add_com_alias ("brea", "break", class_run, 1); 15615 15616 if (dbx_commands) 15617 { 15618 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\ 15619 Break in function/address or break at a line in the current file."), 15620 &stoplist, "stop ", 1, &cmdlist); 15621 add_cmd ("in", class_breakpoint, stopin_command, 15622 _("Break in function or address."), &stoplist); 15623 add_cmd ("at", class_breakpoint, stopat_command, 15624 _("Break at a line in the current file."), &stoplist); 15625 add_com ("status", class_info, info_breakpoints_command, _("\ 15626 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\ 15627 The \"Type\" column indicates one of:\n\ 15628 \tbreakpoint - normal breakpoint\n\ 15629 \twatchpoint - watchpoint\n\ 15630 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\ 15631 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\ 15632 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\ 15633 address and file/line number respectively.\n\ 15634 \n\ 15635 Convenience variable \"$_\" and default examine address for \"x\"\n\ 15636 are set to the address of the last breakpoint listed unless the command\n\ 15637 is prefixed with \"server \".\n\n\ 15638 Convenience variable \"$bpnum\" contains the number of the last\n\ 15639 breakpoint set.")); 15640 } 15641 15642 add_info ("breakpoints", info_breakpoints_command, _("\ 15643 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\ 15644 The \"Type\" column indicates one of:\n\ 15645 \tbreakpoint - normal breakpoint\n\ 15646 \twatchpoint - watchpoint\n\ 15647 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\ 15648 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\ 15649 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\ 15650 address and file/line number respectively.\n\ 15651 \n\ 15652 Convenience variable \"$_\" and default examine address for \"x\"\n\ 15653 are set to the address of the last breakpoint listed unless the command\n\ 15654 is prefixed with \"server \".\n\n\ 15655 Convenience variable \"$bpnum\" contains the number of the last\n\ 15656 breakpoint set.")); 15657 15658 add_info_alias ("b", "breakpoints", 1); 15659 15660 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\ 15661 Status of all breakpoints, or breakpoint number NUMBER.\n\ 15662 The \"Type\" column indicates one of:\n\ 15663 \tbreakpoint - normal breakpoint\n\ 15664 \twatchpoint - watchpoint\n\ 15665 \tlongjmp - internal breakpoint used to step through longjmp()\n\ 15666 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\ 15667 \tuntil - internal breakpoint used by the \"until\" command\n\ 15668 \tfinish - internal breakpoint used by the \"finish\" command\n\ 15669 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\ 15670 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\ 15671 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\ 15672 address and file/line number respectively.\n\ 15673 \n\ 15674 Convenience variable \"$_\" and default examine address for \"x\"\n\ 15675 are set to the address of the last breakpoint listed unless the command\n\ 15676 is prefixed with \"server \".\n\n\ 15677 Convenience variable \"$bpnum\" contains the number of the last\n\ 15678 breakpoint set."), 15679 &maintenanceinfolist); 15680 15681 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\ 15682 Set catchpoints to catch events."), 15683 &catch_cmdlist, "catch ", 15684 0/*allow-unknown*/, &cmdlist); 15685 15686 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\ 15687 Set temporary catchpoints to catch events."), 15688 &tcatch_cmdlist, "tcatch ", 15689 0/*allow-unknown*/, &cmdlist); 15690 15691 add_catch_command ("fork", _("Catch calls to fork."), 15692 catch_fork_command_1, 15693 NULL, 15694 (void *) (uintptr_t) catch_fork_permanent, 15695 (void *) (uintptr_t) catch_fork_temporary); 15696 add_catch_command ("vfork", _("Catch calls to vfork."), 15697 catch_fork_command_1, 15698 NULL, 15699 (void *) (uintptr_t) catch_vfork_permanent, 15700 (void *) (uintptr_t) catch_vfork_temporary); 15701 add_catch_command ("exec", _("Catch calls to exec."), 15702 catch_exec_command_1, 15703 NULL, 15704 CATCH_PERMANENT, 15705 CATCH_TEMPORARY); 15706 add_catch_command ("load", _("Catch loads of shared libraries.\n\ 15707 Usage: catch load [REGEX]\n\ 15708 If REGEX is given, only stop for libraries matching the regular expression."), 15709 catch_load_command_1, 15710 NULL, 15711 CATCH_PERMANENT, 15712 CATCH_TEMPORARY); 15713 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\ 15714 Usage: catch unload [REGEX]\n\ 15715 If REGEX is given, only stop for libraries matching the regular expression."), 15716 catch_unload_command_1, 15717 NULL, 15718 CATCH_PERMANENT, 15719 CATCH_TEMPORARY); 15720 15721 c = add_com ("watch", class_breakpoint, watch_command, _("\ 15722 Set a watchpoint for an expression.\n\ 15723 Usage: watch [-l|-location] EXPRESSION\n\ 15724 A watchpoint stops execution of your program whenever the value of\n\ 15725 an expression changes.\n\ 15726 If -l or -location is given, this evaluates EXPRESSION and watches\n\ 15727 the memory to which it refers.")); 15728 set_cmd_completer (c, expression_completer); 15729 15730 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\ 15731 Set a read watchpoint for an expression.\n\ 15732 Usage: rwatch [-l|-location] EXPRESSION\n\ 15733 A watchpoint stops execution of your program whenever the value of\n\ 15734 an expression is read.\n\ 15735 If -l or -location is given, this evaluates EXPRESSION and watches\n\ 15736 the memory to which it refers.")); 15737 set_cmd_completer (c, expression_completer); 15738 15739 c = add_com ("awatch", class_breakpoint, awatch_command, _("\ 15740 Set a watchpoint for an expression.\n\ 15741 Usage: awatch [-l|-location] EXPRESSION\n\ 15742 A watchpoint stops execution of your program whenever the value of\n\ 15743 an expression is either read or written.\n\ 15744 If -l or -location is given, this evaluates EXPRESSION and watches\n\ 15745 the memory to which it refers.")); 15746 set_cmd_completer (c, expression_completer); 15747 15748 add_info ("watchpoints", info_watchpoints_command, _("\ 15749 Status of specified watchpoints (all watchpoints if no argument).")); 15750 15751 /* XXX: cagney/2005-02-23: This should be a boolean, and should 15752 respond to changes - contrary to the description. */ 15753 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support, 15754 &can_use_hw_watchpoints, _("\ 15755 Set debugger's willingness to use watchpoint hardware."), _("\ 15756 Show debugger's willingness to use watchpoint hardware."), _("\ 15757 If zero, gdb will not use hardware for new watchpoints, even if\n\ 15758 such is available. (However, any hardware watchpoints that were\n\ 15759 created before setting this to nonzero, will continue to use watchpoint\n\ 15760 hardware.)"), 15761 NULL, 15762 show_can_use_hw_watchpoints, 15763 &setlist, &showlist); 15764 15765 can_use_hw_watchpoints = 1; 15766 15767 /* Tracepoint manipulation commands. */ 15768 15769 c = add_com ("trace", class_breakpoint, trace_command, _("\ 15770 Set a tracepoint at specified location.\n\ 15771 \n" 15772 BREAK_ARGS_HELP ("trace") "\n\ 15773 Do \"help tracepoints\" for info on other tracepoint commands.")); 15774 set_cmd_completer (c, location_completer); 15775 15776 add_com_alias ("tp", "trace", class_alias, 0); 15777 add_com_alias ("tr", "trace", class_alias, 1); 15778 add_com_alias ("tra", "trace", class_alias, 1); 15779 add_com_alias ("trac", "trace", class_alias, 1); 15780 15781 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\ 15782 Set a fast tracepoint at specified location.\n\ 15783 \n" 15784 BREAK_ARGS_HELP ("ftrace") "\n\ 15785 Do \"help tracepoints\" for info on other tracepoint commands.")); 15786 set_cmd_completer (c, location_completer); 15787 15788 c = add_com ("strace", class_breakpoint, strace_command, _("\ 15789 Set a static tracepoint at location or marker.\n\ 15790 \n\ 15791 strace [LOCATION] [if CONDITION]\n\ 15792 LOCATION may be a linespec, explicit, or address location (described below) \n\ 15793 or -m MARKER_ID.\n\n\ 15794 If a marker id is specified, probe the marker with that name. With\n\ 15795 no LOCATION, uses current execution address of the selected stack frame.\n\ 15796 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\ 15797 This collects arbitrary user data passed in the probe point call to the\n\ 15798 tracing library. You can inspect it when analyzing the trace buffer,\n\ 15799 by printing the $_sdata variable like any other convenience variable.\n\ 15800 \n\ 15801 CONDITION is a boolean expression.\n\ 15802 \n" LOCATION_HELP_STRING "\n\ 15803 Multiple tracepoints at one place are permitted, and useful if their\n\ 15804 conditions are different.\n\ 15805 \n\ 15806 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\ 15807 Do \"help tracepoints\" for info on other tracepoint commands.")); 15808 set_cmd_completer (c, location_completer); 15809 15810 add_info ("tracepoints", info_tracepoints_command, _("\ 15811 Status of specified tracepoints (all tracepoints if no argument).\n\ 15812 Convenience variable \"$tpnum\" contains the number of the\n\ 15813 last tracepoint set.")); 15814 15815 add_info_alias ("tp", "tracepoints", 1); 15816 15817 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\ 15818 Delete specified tracepoints.\n\ 15819 Arguments are tracepoint numbers, separated by spaces.\n\ 15820 No argument means delete all tracepoints."), 15821 &deletelist); 15822 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist); 15823 15824 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\ 15825 Disable specified tracepoints.\n\ 15826 Arguments are tracepoint numbers, separated by spaces.\n\ 15827 No argument means disable all tracepoints."), 15828 &disablelist); 15829 deprecate_cmd (c, "disable"); 15830 15831 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\ 15832 Enable specified tracepoints.\n\ 15833 Arguments are tracepoint numbers, separated by spaces.\n\ 15834 No argument means enable all tracepoints."), 15835 &enablelist); 15836 deprecate_cmd (c, "enable"); 15837 15838 add_com ("passcount", class_trace, trace_pass_command, _("\ 15839 Set the passcount for a tracepoint.\n\ 15840 The trace will end when the tracepoint has been passed 'count' times.\n\ 15841 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\ 15842 if TPNUM is omitted, passcount refers to the last tracepoint defined.")); 15843 15844 add_prefix_cmd ("save", class_breakpoint, save_command, 15845 _("Save breakpoint definitions as a script."), 15846 &save_cmdlist, "save ", 15847 0/*allow-unknown*/, &cmdlist); 15848 15849 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\ 15850 Save current breakpoint definitions as a script.\n\ 15851 This includes all types of breakpoints (breakpoints, watchpoints,\n\ 15852 catchpoints, tracepoints). Use the 'source' command in another debug\n\ 15853 session to restore them."), 15854 &save_cmdlist); 15855 set_cmd_completer (c, filename_completer); 15856 15857 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\ 15858 Save current tracepoint definitions as a script.\n\ 15859 Use the 'source' command in another debug session to restore them."), 15860 &save_cmdlist); 15861 set_cmd_completer (c, filename_completer); 15862 15863 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0); 15864 deprecate_cmd (c, "save tracepoints"); 15865 15866 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\ 15867 Breakpoint specific settings\n\ 15868 Configure various breakpoint-specific variables such as\n\ 15869 pending breakpoint behavior"), 15870 &breakpoint_set_cmdlist, "set breakpoint ", 15871 0/*allow-unknown*/, &setlist); 15872 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\ 15873 Breakpoint specific settings\n\ 15874 Configure various breakpoint-specific variables such as\n\ 15875 pending breakpoint behavior"), 15876 &breakpoint_show_cmdlist, "show breakpoint ", 15877 0/*allow-unknown*/, &showlist); 15878 15879 add_setshow_auto_boolean_cmd ("pending", no_class, 15880 &pending_break_support, _("\ 15881 Set debugger's behavior regarding pending breakpoints."), _("\ 15882 Show debugger's behavior regarding pending breakpoints."), _("\ 15883 If on, an unrecognized breakpoint location will cause gdb to create a\n\ 15884 pending breakpoint. If off, an unrecognized breakpoint location results in\n\ 15885 an error. If auto, an unrecognized breakpoint location results in a\n\ 15886 user-query to see if a pending breakpoint should be created."), 15887 NULL, 15888 show_pending_break_support, 15889 &breakpoint_set_cmdlist, 15890 &breakpoint_show_cmdlist); 15891 15892 pending_break_support = AUTO_BOOLEAN_AUTO; 15893 15894 add_setshow_boolean_cmd ("auto-hw", no_class, 15895 &automatic_hardware_breakpoints, _("\ 15896 Set automatic usage of hardware breakpoints."), _("\ 15897 Show automatic usage of hardware breakpoints."), _("\ 15898 If set, the debugger will automatically use hardware breakpoints for\n\ 15899 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\ 15900 a warning will be emitted for such breakpoints."), 15901 NULL, 15902 show_automatic_hardware_breakpoints, 15903 &breakpoint_set_cmdlist, 15904 &breakpoint_show_cmdlist); 15905 15906 add_setshow_boolean_cmd ("always-inserted", class_support, 15907 &always_inserted_mode, _("\ 15908 Set mode for inserting breakpoints."), _("\ 15909 Show mode for inserting breakpoints."), _("\ 15910 When this mode is on, breakpoints are inserted immediately as soon as\n\ 15911 they're created, kept inserted even when execution stops, and removed\n\ 15912 only when the user deletes them. When this mode is off (the default),\n\ 15913 breakpoints are inserted only when execution continues, and removed\n\ 15914 when execution stops."), 15915 NULL, 15916 &show_always_inserted_mode, 15917 &breakpoint_set_cmdlist, 15918 &breakpoint_show_cmdlist); 15919 15920 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint, 15921 condition_evaluation_enums, 15922 &condition_evaluation_mode_1, _("\ 15923 Set mode of breakpoint condition evaluation."), _("\ 15924 Show mode of breakpoint condition evaluation."), _("\ 15925 When this is set to \"host\", breakpoint conditions will be\n\ 15926 evaluated on the host's side by GDB. When it is set to \"target\",\n\ 15927 breakpoint conditions will be downloaded to the target (if the target\n\ 15928 supports such feature) and conditions will be evaluated on the target's side.\n\ 15929 If this is set to \"auto\" (default), this will be automatically set to\n\ 15930 \"target\" if it supports condition evaluation, otherwise it will\n\ 15931 be set to \"gdb\""), 15932 &set_condition_evaluation_mode, 15933 &show_condition_evaluation_mode, 15934 &breakpoint_set_cmdlist, 15935 &breakpoint_show_cmdlist); 15936 15937 add_com ("break-range", class_breakpoint, break_range_command, _("\ 15938 Set a breakpoint for an address range.\n\ 15939 break-range START-LOCATION, END-LOCATION\n\ 15940 where START-LOCATION and END-LOCATION can be one of the following:\n\ 15941 LINENUM, for that line in the current file,\n\ 15942 FILE:LINENUM, for that line in that file,\n\ 15943 +OFFSET, for that number of lines after the current line\n\ 15944 or the start of the range\n\ 15945 FUNCTION, for the first line in that function,\n\ 15946 FILE:FUNCTION, to distinguish among like-named static functions.\n\ 15947 *ADDRESS, for the instruction at that address.\n\ 15948 \n\ 15949 The breakpoint will stop execution of the inferior whenever it executes\n\ 15950 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\ 15951 range (including START-LOCATION and END-LOCATION).")); 15952 15953 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\ 15954 Set a dynamic printf at specified location.\n\ 15955 dprintf location,format string,arg1,arg2,...\n\ 15956 location may be a linespec, explicit, or address location.\n" 15957 "\n" LOCATION_HELP_STRING)); 15958 set_cmd_completer (c, location_completer); 15959 15960 add_setshow_enum_cmd ("dprintf-style", class_support, 15961 dprintf_style_enums, &dprintf_style, _("\ 15962 Set the style of usage for dynamic printf."), _("\ 15963 Show the style of usage for dynamic printf."), _("\ 15964 This setting chooses how GDB will do a dynamic printf.\n\ 15965 If the value is \"gdb\", then the printing is done by GDB to its own\n\ 15966 console, as with the \"printf\" command.\n\ 15967 If the value is \"call\", the print is done by calling a function in your\n\ 15968 program; by default printf(), but you can choose a different function or\n\ 15969 output stream by setting dprintf-function and dprintf-channel."), 15970 update_dprintf_commands, NULL, 15971 &setlist, &showlist); 15972 15973 dprintf_function = xstrdup ("printf"); 15974 add_setshow_string_cmd ("dprintf-function", class_support, 15975 &dprintf_function, _("\ 15976 Set the function to use for dynamic printf"), _("\ 15977 Show the function to use for dynamic printf"), NULL, 15978 update_dprintf_commands, NULL, 15979 &setlist, &showlist); 15980 15981 dprintf_channel = xstrdup (""); 15982 add_setshow_string_cmd ("dprintf-channel", class_support, 15983 &dprintf_channel, _("\ 15984 Set the channel to use for dynamic printf"), _("\ 15985 Show the channel to use for dynamic printf"), NULL, 15986 update_dprintf_commands, NULL, 15987 &setlist, &showlist); 15988 15989 add_setshow_boolean_cmd ("disconnected-dprintf", no_class, 15990 &disconnected_dprintf, _("\ 15991 Set whether dprintf continues after GDB disconnects."), _("\ 15992 Show whether dprintf continues after GDB disconnects."), _("\ 15993 Use this to let dprintf commands continue to hit and produce output\n\ 15994 even if GDB disconnects or detaches from the target."), 15995 NULL, 15996 NULL, 15997 &setlist, &showlist); 15998 15999 add_com ("agent-printf", class_vars, agent_printf_command, _("\ 16000 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\ 16001 (target agent only) This is useful for formatted output in user-defined commands.")); 16002 16003 automatic_hardware_breakpoints = 1; 16004 16005 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed); 16006 gdb::observers::thread_exit.attach (remove_threaded_breakpoints); 16007 } 16008