1 /* Everything about breakpoints, for GDB. 2 3 Copyright (C) 1986-2020 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "arch-utils.h" 22 #include <ctype.h> 23 #include "hashtab.h" 24 #include "symtab.h" 25 #include "frame.h" 26 #include "breakpoint.h" 27 #include "tracepoint.h" 28 #include "gdbtypes.h" 29 #include "expression.h" 30 #include "gdbcore.h" 31 #include "gdbcmd.h" 32 #include "value.h" 33 #include "command.h" 34 #include "inferior.h" 35 #include "infrun.h" 36 #include "gdbthread.h" 37 #include "target.h" 38 #include "language.h" 39 #include "gdb-demangle.h" 40 #include "filenames.h" 41 #include "annotate.h" 42 #include "symfile.h" 43 #include "objfiles.h" 44 #include "source.h" 45 #include "linespec.h" 46 #include "completer.h" 47 #include "ui-out.h" 48 #include "cli/cli-script.h" 49 #include "block.h" 50 #include "solib.h" 51 #include "solist.h" 52 #include "observable.h" 53 #include "memattr.h" 54 #include "ada-lang.h" 55 #include "top.h" 56 #include "valprint.h" 57 #include "jit.h" 58 #include "parser-defs.h" 59 #include "gdb_regex.h" 60 #include "probe.h" 61 #include "cli/cli-utils.h" 62 #include "stack.h" 63 #include "ax-gdb.h" 64 #include "dummy-frame.h" 65 #include "interps.h" 66 #include "gdbsupport/format.h" 67 #include "thread-fsm.h" 68 #include "tid-parse.h" 69 #include "cli/cli-style.h" 70 71 /* readline include files */ 72 #include "readline/tilde.h" 73 74 /* readline defines this. */ 75 #undef savestring 76 77 #include "mi/mi-common.h" 78 #include "extension.h" 79 #include <algorithm> 80 #include "progspace-and-thread.h" 81 #include "gdbsupport/array-view.h" 82 #include "gdbsupport/gdb_optional.h" 83 84 /* Prototypes for local functions. */ 85 86 static void map_breakpoint_numbers (const char *, 87 gdb::function_view<void (breakpoint *)>); 88 89 static void breakpoint_re_set_default (struct breakpoint *); 90 91 static void 92 create_sals_from_location_default (struct event_location *location, 93 struct linespec_result *canonical, 94 enum bptype type_wanted); 95 96 static void create_breakpoints_sal_default (struct gdbarch *, 97 struct linespec_result *, 98 gdb::unique_xmalloc_ptr<char>, 99 gdb::unique_xmalloc_ptr<char>, 100 enum bptype, 101 enum bpdisp, int, int, 102 int, 103 const struct breakpoint_ops *, 104 int, int, int, unsigned); 105 106 static std::vector<symtab_and_line> decode_location_default 107 (struct breakpoint *b, struct event_location *location, 108 struct program_space *search_pspace); 109 110 static int can_use_hardware_watchpoint 111 (const std::vector<value_ref_ptr> &vals); 112 113 static void mention (struct breakpoint *); 114 115 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *, 116 enum bptype, 117 const struct breakpoint_ops *); 118 static struct bp_location *add_location_to_breakpoint (struct breakpoint *, 119 const struct symtab_and_line *); 120 121 /* This function is used in gdbtk sources and thus can not be made 122 static. */ 123 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch, 124 struct symtab_and_line, 125 enum bptype, 126 const struct breakpoint_ops *); 127 128 static struct breakpoint * 129 momentary_breakpoint_from_master (struct breakpoint *orig, 130 enum bptype type, 131 const struct breakpoint_ops *ops, 132 int loc_enabled); 133 134 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int); 135 136 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch, 137 CORE_ADDR bpaddr, 138 enum bptype bptype); 139 140 static void describe_other_breakpoints (struct gdbarch *, 141 struct program_space *, CORE_ADDR, 142 struct obj_section *, int); 143 144 static int watchpoint_locations_match (struct bp_location *loc1, 145 struct bp_location *loc2); 146 147 static int breakpoint_locations_match (struct bp_location *loc1, 148 struct bp_location *loc2, 149 bool sw_hw_bps_match = false); 150 151 static int breakpoint_location_address_match (struct bp_location *bl, 152 const struct address_space *aspace, 153 CORE_ADDR addr); 154 155 static int breakpoint_location_address_range_overlap (struct bp_location *, 156 const address_space *, 157 CORE_ADDR, int); 158 159 static int remove_breakpoint (struct bp_location *); 160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason); 161 162 static enum print_stop_action print_bp_stop_message (bpstat bs); 163 164 static int hw_breakpoint_used_count (void); 165 166 static int hw_watchpoint_use_count (struct breakpoint *); 167 168 static int hw_watchpoint_used_count_others (struct breakpoint *except, 169 enum bptype type, 170 int *other_type_used); 171 172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp, 173 int count); 174 175 static void free_bp_location (struct bp_location *loc); 176 static void incref_bp_location (struct bp_location *loc); 177 static void decref_bp_location (struct bp_location **loc); 178 179 static struct bp_location *allocate_bp_location (struct breakpoint *bpt); 180 181 /* update_global_location_list's modes of operation wrt to whether to 182 insert locations now. */ 183 enum ugll_insert_mode 184 { 185 /* Don't insert any breakpoint locations into the inferior, only 186 remove already-inserted locations that no longer should be 187 inserted. Functions that delete a breakpoint or breakpoints 188 should specify this mode, so that deleting a breakpoint doesn't 189 have the side effect of inserting the locations of other 190 breakpoints that are marked not-inserted, but should_be_inserted 191 returns true on them. 192 193 This behavior is useful is situations close to tear-down -- e.g., 194 after an exec, while the target still has execution, but 195 breakpoint shadows of the previous executable image should *NOT* 196 be restored to the new image; or before detaching, where the 197 target still has execution and wants to delete breakpoints from 198 GDB's lists, and all breakpoints had already been removed from 199 the inferior. */ 200 UGLL_DONT_INSERT, 201 202 /* May insert breakpoints iff breakpoints_should_be_inserted_now 203 claims breakpoints should be inserted now. */ 204 UGLL_MAY_INSERT, 205 206 /* Insert locations now, irrespective of 207 breakpoints_should_be_inserted_now. E.g., say all threads are 208 stopped right now, and the user did "continue". We need to 209 insert breakpoints _before_ resuming the target, but 210 UGLL_MAY_INSERT wouldn't insert them, because 211 breakpoints_should_be_inserted_now returns false at that point, 212 as no thread is running yet. */ 213 UGLL_INSERT 214 }; 215 216 static void update_global_location_list (enum ugll_insert_mode); 217 218 static void update_global_location_list_nothrow (enum ugll_insert_mode); 219 220 static void insert_breakpoint_locations (void); 221 222 static void trace_pass_command (const char *, int); 223 224 static void set_tracepoint_count (int num); 225 226 static bool is_masked_watchpoint (const struct breakpoint *b); 227 228 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address); 229 230 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero 231 otherwise. */ 232 233 static int strace_marker_p (struct breakpoint *b); 234 235 /* The breakpoint_ops structure to be inherited by all breakpoint_ops 236 that are implemented on top of software or hardware breakpoints 237 (user breakpoints, internal and momentary breakpoints, etc.). */ 238 static struct breakpoint_ops bkpt_base_breakpoint_ops; 239 240 /* Internal breakpoints class type. */ 241 static struct breakpoint_ops internal_breakpoint_ops; 242 243 /* Momentary breakpoints class type. */ 244 static struct breakpoint_ops momentary_breakpoint_ops; 245 246 /* The breakpoint_ops structure to be used in regular user created 247 breakpoints. */ 248 struct breakpoint_ops bkpt_breakpoint_ops; 249 250 /* Breakpoints set on probes. */ 251 static struct breakpoint_ops bkpt_probe_breakpoint_ops; 252 253 /* Tracepoints set on probes. */ 254 static struct breakpoint_ops tracepoint_probe_breakpoint_ops; 255 256 /* Dynamic printf class type. */ 257 struct breakpoint_ops dprintf_breakpoint_ops; 258 259 /* The style in which to perform a dynamic printf. This is a user 260 option because different output options have different tradeoffs; 261 if GDB does the printing, there is better error handling if there 262 is a problem with any of the arguments, but using an inferior 263 function lets you have special-purpose printers and sending of 264 output to the same place as compiled-in print functions. */ 265 266 static const char dprintf_style_gdb[] = "gdb"; 267 static const char dprintf_style_call[] = "call"; 268 static const char dprintf_style_agent[] = "agent"; 269 static const char *const dprintf_style_enums[] = { 270 dprintf_style_gdb, 271 dprintf_style_call, 272 dprintf_style_agent, 273 NULL 274 }; 275 static const char *dprintf_style = dprintf_style_gdb; 276 277 /* The function to use for dynamic printf if the preferred style is to 278 call into the inferior. The value is simply a string that is 279 copied into the command, so it can be anything that GDB can 280 evaluate to a callable address, not necessarily a function name. */ 281 282 static char *dprintf_function; 283 284 /* The channel to use for dynamic printf if the preferred style is to 285 call into the inferior; if a nonempty string, it will be passed to 286 the call as the first argument, with the format string as the 287 second. As with the dprintf function, this can be anything that 288 GDB knows how to evaluate, so in addition to common choices like 289 "stderr", this could be an app-specific expression like 290 "mystreams[curlogger]". */ 291 292 static char *dprintf_channel; 293 294 /* True if dprintf commands should continue to operate even if GDB 295 has disconnected. */ 296 static bool disconnected_dprintf = true; 297 298 struct command_line * 299 breakpoint_commands (struct breakpoint *b) 300 { 301 return b->commands ? b->commands.get () : NULL; 302 } 303 304 /* Flag indicating that a command has proceeded the inferior past the 305 current breakpoint. */ 306 307 static bool breakpoint_proceeded; 308 309 const char * 310 bpdisp_text (enum bpdisp disp) 311 { 312 /* NOTE: the following values are a part of MI protocol and 313 represent values of 'disp' field returned when inferior stops at 314 a breakpoint. */ 315 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"}; 316 317 return bpdisps[(int) disp]; 318 } 319 320 /* Prototypes for exported functions. */ 321 /* If FALSE, gdb will not use hardware support for watchpoints, even 322 if such is available. */ 323 static int can_use_hw_watchpoints; 324 325 static void 326 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty, 327 struct cmd_list_element *c, 328 const char *value) 329 { 330 fprintf_filtered (file, 331 _("Debugger's willingness to use " 332 "watchpoint hardware is %s.\n"), 333 value); 334 } 335 336 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints. 337 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints 338 for unrecognized breakpoint locations. 339 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */ 340 static enum auto_boolean pending_break_support; 341 static void 342 show_pending_break_support (struct ui_file *file, int from_tty, 343 struct cmd_list_element *c, 344 const char *value) 345 { 346 fprintf_filtered (file, 347 _("Debugger's behavior regarding " 348 "pending breakpoints is %s.\n"), 349 value); 350 } 351 352 /* If true, gdb will automatically use hardware breakpoints for breakpoints 353 set with "break" but falling in read-only memory. 354 If false, gdb will warn about such breakpoints, but won't automatically 355 use hardware breakpoints. */ 356 static bool automatic_hardware_breakpoints; 357 static void 358 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty, 359 struct cmd_list_element *c, 360 const char *value) 361 { 362 fprintf_filtered (file, 363 _("Automatic usage of hardware breakpoints is %s.\n"), 364 value); 365 } 366 367 /* If on, GDB keeps breakpoints inserted even if the inferior is 368 stopped, and immediately inserts any new breakpoints as soon as 369 they're created. If off (default), GDB keeps breakpoints off of 370 the target as long as possible. That is, it delays inserting 371 breakpoints until the next resume, and removes them again when the 372 target fully stops. This is a bit safer in case GDB crashes while 373 processing user input. */ 374 static bool always_inserted_mode = false; 375 376 static void 377 show_always_inserted_mode (struct ui_file *file, int from_tty, 378 struct cmd_list_element *c, const char *value) 379 { 380 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"), 381 value); 382 } 383 384 /* See breakpoint.h. */ 385 386 int 387 breakpoints_should_be_inserted_now (void) 388 { 389 if (gdbarch_has_global_breakpoints (target_gdbarch ())) 390 { 391 /* If breakpoints are global, they should be inserted even if no 392 thread under gdb's control is running, or even if there are 393 no threads under GDB's control yet. */ 394 return 1; 395 } 396 else 397 { 398 if (always_inserted_mode) 399 { 400 /* The user wants breakpoints inserted even if all threads 401 are stopped. */ 402 return 1; 403 } 404 405 for (inferior *inf : all_inferiors ()) 406 if (inf->has_execution () 407 && threads_are_executing (inf->process_target ())) 408 return 1; 409 410 /* Don't remove breakpoints yet if, even though all threads are 411 stopped, we still have events to process. */ 412 for (thread_info *tp : all_non_exited_threads ()) 413 if (tp->resumed 414 && tp->suspend.waitstatus_pending_p) 415 return 1; 416 } 417 return 0; 418 } 419 420 static const char condition_evaluation_both[] = "host or target"; 421 422 /* Modes for breakpoint condition evaluation. */ 423 static const char condition_evaluation_auto[] = "auto"; 424 static const char condition_evaluation_host[] = "host"; 425 static const char condition_evaluation_target[] = "target"; 426 static const char *const condition_evaluation_enums[] = { 427 condition_evaluation_auto, 428 condition_evaluation_host, 429 condition_evaluation_target, 430 NULL 431 }; 432 433 /* Global that holds the current mode for breakpoint condition evaluation. */ 434 static const char *condition_evaluation_mode_1 = condition_evaluation_auto; 435 436 /* Global that we use to display information to the user (gets its value from 437 condition_evaluation_mode_1. */ 438 static const char *condition_evaluation_mode = condition_evaluation_auto; 439 440 /* Translate a condition evaluation mode MODE into either "host" 441 or "target". This is used mostly to translate from "auto" to the 442 real setting that is being used. It returns the translated 443 evaluation mode. */ 444 445 static const char * 446 translate_condition_evaluation_mode (const char *mode) 447 { 448 if (mode == condition_evaluation_auto) 449 { 450 if (target_supports_evaluation_of_breakpoint_conditions ()) 451 return condition_evaluation_target; 452 else 453 return condition_evaluation_host; 454 } 455 else 456 return mode; 457 } 458 459 /* Discovers what condition_evaluation_auto translates to. */ 460 461 static const char * 462 breakpoint_condition_evaluation_mode (void) 463 { 464 return translate_condition_evaluation_mode (condition_evaluation_mode); 465 } 466 467 /* Return true if GDB should evaluate breakpoint conditions or false 468 otherwise. */ 469 470 static int 471 gdb_evaluates_breakpoint_condition_p (void) 472 { 473 const char *mode = breakpoint_condition_evaluation_mode (); 474 475 return (mode == condition_evaluation_host); 476 } 477 478 /* Are we executing breakpoint commands? */ 479 static int executing_breakpoint_commands; 480 481 /* Are overlay event breakpoints enabled? */ 482 static int overlay_events_enabled; 483 484 /* See description in breakpoint.h. */ 485 bool target_exact_watchpoints = false; 486 487 /* Walk the following statement or block through all breakpoints. 488 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the 489 current breakpoint. */ 490 491 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next) 492 493 #define ALL_BREAKPOINTS_SAFE(B,TMP) \ 494 for (B = breakpoint_chain; \ 495 B ? (TMP=B->next, 1): 0; \ 496 B = TMP) 497 498 /* Similar iterator for the low-level breakpoints. SAFE variant is 499 not provided so update_global_location_list must not be called 500 while executing the block of ALL_BP_LOCATIONS. */ 501 502 #define ALL_BP_LOCATIONS(B,BP_TMP) \ 503 for (BP_TMP = bp_locations; \ 504 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\ 505 BP_TMP++) 506 507 /* Iterates through locations with address ADDRESS for the currently selected 508 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points 509 to where the loop should start from. 510 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the 511 appropriate location to start with. */ 512 513 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \ 514 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \ 515 BP_LOCP_TMP = BP_LOCP_START; \ 516 BP_LOCP_START \ 517 && (BP_LOCP_TMP < bp_locations + bp_locations_count \ 518 && (*BP_LOCP_TMP)->address == ADDRESS); \ 519 BP_LOCP_TMP++) 520 521 /* Iterator for tracepoints only. */ 522 523 #define ALL_TRACEPOINTS(B) \ 524 for (B = breakpoint_chain; B; B = B->next) \ 525 if (is_tracepoint (B)) 526 527 /* Chains of all breakpoints defined. */ 528 529 static struct breakpoint *breakpoint_chain; 530 531 /* Array is sorted by bp_location_is_less_than - primarily by the ADDRESS. */ 532 533 static struct bp_location **bp_locations; 534 535 /* Number of elements of BP_LOCATIONS. */ 536 537 static unsigned bp_locations_count; 538 539 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and 540 ADDRESS for the current elements of BP_LOCATIONS which get a valid 541 result from bp_location_has_shadow. You can use it for roughly 542 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for 543 an address you need to read. */ 544 545 static CORE_ADDR bp_locations_placed_address_before_address_max; 546 547 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS 548 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of 549 BP_LOCATIONS which get a valid result from bp_location_has_shadow. 550 You can use it for roughly limiting the subrange of BP_LOCATIONS to 551 scan for shadow bytes for an address you need to read. */ 552 553 static CORE_ADDR bp_locations_shadow_len_after_address_max; 554 555 /* The locations that no longer correspond to any breakpoint, unlinked 556 from the bp_locations array, but for which a hit may still be 557 reported by a target. */ 558 static std::vector<bp_location *> moribund_locations; 559 560 /* Number of last breakpoint made. */ 561 562 static int breakpoint_count; 563 564 /* The value of `breakpoint_count' before the last command that 565 created breakpoints. If the last (break-like) command created more 566 than one breakpoint, then the difference between BREAKPOINT_COUNT 567 and PREV_BREAKPOINT_COUNT is more than one. */ 568 static int prev_breakpoint_count; 569 570 /* Number of last tracepoint made. */ 571 572 static int tracepoint_count; 573 574 static struct cmd_list_element *breakpoint_set_cmdlist; 575 static struct cmd_list_element *breakpoint_show_cmdlist; 576 struct cmd_list_element *save_cmdlist; 577 578 /* See declaration at breakpoint.h. */ 579 580 struct breakpoint * 581 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d), 582 void *user_data) 583 { 584 struct breakpoint *b = NULL; 585 586 ALL_BREAKPOINTS (b) 587 { 588 if (func (b, user_data) != 0) 589 break; 590 } 591 592 return b; 593 } 594 595 /* Return whether a breakpoint is an active enabled breakpoint. */ 596 static int 597 breakpoint_enabled (struct breakpoint *b) 598 { 599 return (b->enable_state == bp_enabled); 600 } 601 602 /* Set breakpoint count to NUM. */ 603 604 static void 605 set_breakpoint_count (int num) 606 { 607 prev_breakpoint_count = breakpoint_count; 608 breakpoint_count = num; 609 set_internalvar_integer (lookup_internalvar ("bpnum"), num); 610 } 611 612 /* Used by `start_rbreak_breakpoints' below, to record the current 613 breakpoint count before "rbreak" creates any breakpoint. */ 614 static int rbreak_start_breakpoint_count; 615 616 /* Called at the start an "rbreak" command to record the first 617 breakpoint made. */ 618 619 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints () 620 { 621 rbreak_start_breakpoint_count = breakpoint_count; 622 } 623 624 /* Called at the end of an "rbreak" command to record the last 625 breakpoint made. */ 626 627 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints () 628 { 629 prev_breakpoint_count = rbreak_start_breakpoint_count; 630 } 631 632 /* Used in run_command to zero the hit count when a new run starts. */ 633 634 void 635 clear_breakpoint_hit_counts (void) 636 { 637 struct breakpoint *b; 638 639 ALL_BREAKPOINTS (b) 640 b->hit_count = 0; 641 } 642 643 644 /* Return the breakpoint with the specified number, or NULL 645 if the number does not refer to an existing breakpoint. */ 646 647 struct breakpoint * 648 get_breakpoint (int num) 649 { 650 struct breakpoint *b; 651 652 ALL_BREAKPOINTS (b) 653 if (b->number == num) 654 return b; 655 656 return NULL; 657 } 658 659 660 661 /* Mark locations as "conditions have changed" in case the target supports 662 evaluating conditions on its side. */ 663 664 static void 665 mark_breakpoint_modified (struct breakpoint *b) 666 { 667 struct bp_location *loc; 668 669 /* This is only meaningful if the target is 670 evaluating conditions and if the user has 671 opted for condition evaluation on the target's 672 side. */ 673 if (gdb_evaluates_breakpoint_condition_p () 674 || !target_supports_evaluation_of_breakpoint_conditions ()) 675 return; 676 677 if (!is_breakpoint (b)) 678 return; 679 680 for (loc = b->loc; loc; loc = loc->next) 681 loc->condition_changed = condition_modified; 682 } 683 684 /* Mark location as "conditions have changed" in case the target supports 685 evaluating conditions on its side. */ 686 687 static void 688 mark_breakpoint_location_modified (struct bp_location *loc) 689 { 690 /* This is only meaningful if the target is 691 evaluating conditions and if the user has 692 opted for condition evaluation on the target's 693 side. */ 694 if (gdb_evaluates_breakpoint_condition_p () 695 || !target_supports_evaluation_of_breakpoint_conditions ()) 696 697 return; 698 699 if (!is_breakpoint (loc->owner)) 700 return; 701 702 loc->condition_changed = condition_modified; 703 } 704 705 /* Sets the condition-evaluation mode using the static global 706 condition_evaluation_mode. */ 707 708 static void 709 set_condition_evaluation_mode (const char *args, int from_tty, 710 struct cmd_list_element *c) 711 { 712 const char *old_mode, *new_mode; 713 714 if ((condition_evaluation_mode_1 == condition_evaluation_target) 715 && !target_supports_evaluation_of_breakpoint_conditions ()) 716 { 717 condition_evaluation_mode_1 = condition_evaluation_mode; 718 warning (_("Target does not support breakpoint condition evaluation.\n" 719 "Using host evaluation mode instead.")); 720 return; 721 } 722 723 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1); 724 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode); 725 726 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the 727 settings was "auto". */ 728 condition_evaluation_mode = condition_evaluation_mode_1; 729 730 /* Only update the mode if the user picked a different one. */ 731 if (new_mode != old_mode) 732 { 733 struct bp_location *loc, **loc_tmp; 734 /* If the user switched to a different evaluation mode, we 735 need to synch the changes with the target as follows: 736 737 "host" -> "target": Send all (valid) conditions to the target. 738 "target" -> "host": Remove all the conditions from the target. 739 */ 740 741 if (new_mode == condition_evaluation_target) 742 { 743 /* Mark everything modified and synch conditions with the 744 target. */ 745 ALL_BP_LOCATIONS (loc, loc_tmp) 746 mark_breakpoint_location_modified (loc); 747 } 748 else 749 { 750 /* Manually mark non-duplicate locations to synch conditions 751 with the target. We do this to remove all the conditions the 752 target knows about. */ 753 ALL_BP_LOCATIONS (loc, loc_tmp) 754 if (is_breakpoint (loc->owner) && loc->inserted) 755 loc->needs_update = 1; 756 } 757 758 /* Do the update. */ 759 update_global_location_list (UGLL_MAY_INSERT); 760 } 761 762 return; 763 } 764 765 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows 766 what "auto" is translating to. */ 767 768 static void 769 show_condition_evaluation_mode (struct ui_file *file, int from_tty, 770 struct cmd_list_element *c, const char *value) 771 { 772 if (condition_evaluation_mode == condition_evaluation_auto) 773 fprintf_filtered (file, 774 _("Breakpoint condition evaluation " 775 "mode is %s (currently %s).\n"), 776 value, 777 breakpoint_condition_evaluation_mode ()); 778 else 779 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"), 780 value); 781 } 782 783 /* A comparison function for bp_location AP and BP that is used by 784 bsearch. This comparison function only cares about addresses, unlike 785 the more general bp_location_is_less_than function. */ 786 787 static int 788 bp_locations_compare_addrs (const void *ap, const void *bp) 789 { 790 const struct bp_location *a = *(const struct bp_location **) ap; 791 const struct bp_location *b = *(const struct bp_location **) bp; 792 793 if (a->address == b->address) 794 return 0; 795 else 796 return ((a->address > b->address) - (a->address < b->address)); 797 } 798 799 /* Helper function to skip all bp_locations with addresses 800 less than ADDRESS. It returns the first bp_location that 801 is greater than or equal to ADDRESS. If none is found, just 802 return NULL. */ 803 804 static struct bp_location ** 805 get_first_locp_gte_addr (CORE_ADDR address) 806 { 807 struct bp_location dummy_loc; 808 struct bp_location *dummy_locp = &dummy_loc; 809 struct bp_location **locp_found = NULL; 810 811 /* Initialize the dummy location's address field. */ 812 dummy_loc.address = address; 813 814 /* Find a close match to the first location at ADDRESS. */ 815 locp_found = ((struct bp_location **) 816 bsearch (&dummy_locp, bp_locations, bp_locations_count, 817 sizeof (struct bp_location **), 818 bp_locations_compare_addrs)); 819 820 /* Nothing was found, nothing left to do. */ 821 if (locp_found == NULL) 822 return NULL; 823 824 /* We may have found a location that is at ADDRESS but is not the first in the 825 location's list. Go backwards (if possible) and locate the first one. */ 826 while ((locp_found - 1) >= bp_locations 827 && (*(locp_found - 1))->address == address) 828 locp_found--; 829 830 return locp_found; 831 } 832 833 void 834 set_breakpoint_condition (struct breakpoint *b, const char *exp, 835 int from_tty) 836 { 837 if (*exp == 0) 838 { 839 xfree (b->cond_string); 840 b->cond_string = nullptr; 841 842 if (is_watchpoint (b)) 843 static_cast<watchpoint *> (b)->cond_exp.reset (); 844 else 845 { 846 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next) 847 { 848 loc->cond.reset (); 849 850 /* No need to free the condition agent expression 851 bytecode (if we have one). We will handle this 852 when we go through update_global_location_list. */ 853 } 854 } 855 856 if (from_tty) 857 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number); 858 } 859 else 860 { 861 if (is_watchpoint (b)) 862 { 863 innermost_block_tracker tracker; 864 const char *arg = exp; 865 expression_up new_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker); 866 if (*arg != 0) 867 error (_("Junk at end of expression")); 868 watchpoint *w = static_cast<watchpoint *> (b); 869 w->cond_exp = std::move (new_exp); 870 w->cond_exp_valid_block = tracker.block (); 871 } 872 else 873 { 874 /* Parse and set condition expressions. We make two passes. 875 In the first, we parse the condition string to see if it 876 is valid in all locations. If so, the condition would be 877 accepted. So we go ahead and set the locations' 878 conditions. In case a failing case is found, we throw 879 the error and the condition string will be rejected. 880 This two-pass approach is taken to avoid setting the 881 state of locations in case of a reject. */ 882 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next) 883 { 884 const char *arg = exp; 885 parse_exp_1 (&arg, loc->address, 886 block_for_pc (loc->address), 0); 887 if (*arg != 0) 888 error (_("Junk at end of expression")); 889 } 890 891 /* If we reach here, the condition is valid at all locations. */ 892 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next) 893 { 894 const char *arg = exp; 895 loc->cond = 896 parse_exp_1 (&arg, loc->address, 897 block_for_pc (loc->address), 0); 898 } 899 } 900 901 /* We know that the new condition parsed successfully. The 902 condition string of the breakpoint can be safely updated. */ 903 xfree (b->cond_string); 904 b->cond_string = xstrdup (exp); 905 b->condition_not_parsed = 0; 906 } 907 mark_breakpoint_modified (b); 908 909 gdb::observers::breakpoint_modified.notify (b); 910 } 911 912 /* Completion for the "condition" command. */ 913 914 static void 915 condition_completer (struct cmd_list_element *cmd, 916 completion_tracker &tracker, 917 const char *text, const char *word) 918 { 919 const char *space; 920 921 text = skip_spaces (text); 922 space = skip_to_space (text); 923 if (*space == '\0') 924 { 925 int len; 926 struct breakpoint *b; 927 928 if (text[0] == '$') 929 { 930 /* We don't support completion of history indices. */ 931 if (!isdigit (text[1])) 932 complete_internalvar (tracker, &text[1]); 933 return; 934 } 935 936 /* We're completing the breakpoint number. */ 937 len = strlen (text); 938 939 ALL_BREAKPOINTS (b) 940 { 941 char number[50]; 942 943 xsnprintf (number, sizeof (number), "%d", b->number); 944 945 if (strncmp (number, text, len) == 0) 946 tracker.add_completion (make_unique_xstrdup (number)); 947 } 948 949 return; 950 } 951 952 /* We're completing the expression part. */ 953 text = skip_spaces (space); 954 expression_completer (cmd, tracker, text, word); 955 } 956 957 /* condition N EXP -- set break condition of breakpoint N to EXP. */ 958 959 static void 960 condition_command (const char *arg, int from_tty) 961 { 962 struct breakpoint *b; 963 const char *p; 964 int bnum; 965 966 if (arg == 0) 967 error_no_arg (_("breakpoint number")); 968 969 p = arg; 970 bnum = get_number (&p); 971 if (bnum == 0) 972 error (_("Bad breakpoint argument: '%s'"), arg); 973 974 ALL_BREAKPOINTS (b) 975 if (b->number == bnum) 976 { 977 /* Check if this breakpoint has a "stop" method implemented in an 978 extension language. This method and conditions entered into GDB 979 from the CLI are mutually exclusive. */ 980 const struct extension_language_defn *extlang 981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE); 982 983 if (extlang != NULL) 984 { 985 error (_("Only one stop condition allowed. There is currently" 986 " a %s stop condition defined for this breakpoint."), 987 ext_lang_capitalized_name (extlang)); 988 } 989 set_breakpoint_condition (b, p, from_tty); 990 991 if (is_breakpoint (b)) 992 update_global_location_list (UGLL_MAY_INSERT); 993 994 return; 995 } 996 997 error (_("No breakpoint number %d."), bnum); 998 } 999 1000 /* Check that COMMAND do not contain commands that are suitable 1001 only for tracepoints and not suitable for ordinary breakpoints. 1002 Throw if any such commands is found. */ 1003 1004 static void 1005 check_no_tracepoint_commands (struct command_line *commands) 1006 { 1007 struct command_line *c; 1008 1009 for (c = commands; c; c = c->next) 1010 { 1011 if (c->control_type == while_stepping_control) 1012 error (_("The 'while-stepping' command can " 1013 "only be used for tracepoints")); 1014 1015 check_no_tracepoint_commands (c->body_list_0.get ()); 1016 check_no_tracepoint_commands (c->body_list_1.get ()); 1017 1018 /* Not that command parsing removes leading whitespace and comment 1019 lines and also empty lines. So, we only need to check for 1020 command directly. */ 1021 if (strstr (c->line, "collect ") == c->line) 1022 error (_("The 'collect' command can only be used for tracepoints")); 1023 1024 if (strstr (c->line, "teval ") == c->line) 1025 error (_("The 'teval' command can only be used for tracepoints")); 1026 } 1027 } 1028 1029 struct longjmp_breakpoint : public breakpoint 1030 { 1031 ~longjmp_breakpoint () override; 1032 }; 1033 1034 /* Encapsulate tests for different types of tracepoints. */ 1035 1036 static bool 1037 is_tracepoint_type (bptype type) 1038 { 1039 return (type == bp_tracepoint 1040 || type == bp_fast_tracepoint 1041 || type == bp_static_tracepoint); 1042 } 1043 1044 static bool 1045 is_longjmp_type (bptype type) 1046 { 1047 return type == bp_longjmp || type == bp_exception; 1048 } 1049 1050 /* See breakpoint.h. */ 1051 1052 bool 1053 is_tracepoint (const struct breakpoint *b) 1054 { 1055 return is_tracepoint_type (b->type); 1056 } 1057 1058 /* Factory function to create an appropriate instance of breakpoint given 1059 TYPE. */ 1060 1061 static std::unique_ptr<breakpoint> 1062 new_breakpoint_from_type (bptype type) 1063 { 1064 breakpoint *b; 1065 1066 if (is_tracepoint_type (type)) 1067 b = new tracepoint (); 1068 else if (is_longjmp_type (type)) 1069 b = new longjmp_breakpoint (); 1070 else 1071 b = new breakpoint (); 1072 1073 return std::unique_ptr<breakpoint> (b); 1074 } 1075 1076 /* A helper function that validates that COMMANDS are valid for a 1077 breakpoint. This function will throw an exception if a problem is 1078 found. */ 1079 1080 static void 1081 validate_commands_for_breakpoint (struct breakpoint *b, 1082 struct command_line *commands) 1083 { 1084 if (is_tracepoint (b)) 1085 { 1086 struct tracepoint *t = (struct tracepoint *) b; 1087 struct command_line *c; 1088 struct command_line *while_stepping = 0; 1089 1090 /* Reset the while-stepping step count. The previous commands 1091 might have included a while-stepping action, while the new 1092 ones might not. */ 1093 t->step_count = 0; 1094 1095 /* We need to verify that each top-level element of commands is 1096 valid for tracepoints, that there's at most one 1097 while-stepping element, and that the while-stepping's body 1098 has valid tracing commands excluding nested while-stepping. 1099 We also need to validate the tracepoint action line in the 1100 context of the tracepoint --- validate_actionline actually 1101 has side effects, like setting the tracepoint's 1102 while-stepping STEP_COUNT, in addition to checking if the 1103 collect/teval actions parse and make sense in the 1104 tracepoint's context. */ 1105 for (c = commands; c; c = c->next) 1106 { 1107 if (c->control_type == while_stepping_control) 1108 { 1109 if (b->type == bp_fast_tracepoint) 1110 error (_("The 'while-stepping' command " 1111 "cannot be used for fast tracepoint")); 1112 else if (b->type == bp_static_tracepoint) 1113 error (_("The 'while-stepping' command " 1114 "cannot be used for static tracepoint")); 1115 1116 if (while_stepping) 1117 error (_("The 'while-stepping' command " 1118 "can be used only once")); 1119 else 1120 while_stepping = c; 1121 } 1122 1123 validate_actionline (c->line, b); 1124 } 1125 if (while_stepping) 1126 { 1127 struct command_line *c2; 1128 1129 gdb_assert (while_stepping->body_list_1 == nullptr); 1130 c2 = while_stepping->body_list_0.get (); 1131 for (; c2; c2 = c2->next) 1132 { 1133 if (c2->control_type == while_stepping_control) 1134 error (_("The 'while-stepping' command cannot be nested")); 1135 } 1136 } 1137 } 1138 else 1139 { 1140 check_no_tracepoint_commands (commands); 1141 } 1142 } 1143 1144 /* Return a vector of all the static tracepoints set at ADDR. The 1145 caller is responsible for releasing the vector. */ 1146 1147 std::vector<breakpoint *> 1148 static_tracepoints_here (CORE_ADDR addr) 1149 { 1150 struct breakpoint *b; 1151 std::vector<breakpoint *> found; 1152 struct bp_location *loc; 1153 1154 ALL_BREAKPOINTS (b) 1155 if (b->type == bp_static_tracepoint) 1156 { 1157 for (loc = b->loc; loc; loc = loc->next) 1158 if (loc->address == addr) 1159 found.push_back (b); 1160 } 1161 1162 return found; 1163 } 1164 1165 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint, 1166 validate that only allowed commands are included. */ 1167 1168 void 1169 breakpoint_set_commands (struct breakpoint *b, 1170 counted_command_line &&commands) 1171 { 1172 validate_commands_for_breakpoint (b, commands.get ()); 1173 1174 b->commands = std::move (commands); 1175 gdb::observers::breakpoint_modified.notify (b); 1176 } 1177 1178 /* Set the internal `silent' flag on the breakpoint. Note that this 1179 is not the same as the "silent" that may appear in the breakpoint's 1180 commands. */ 1181 1182 void 1183 breakpoint_set_silent (struct breakpoint *b, int silent) 1184 { 1185 int old_silent = b->silent; 1186 1187 b->silent = silent; 1188 if (old_silent != silent) 1189 gdb::observers::breakpoint_modified.notify (b); 1190 } 1191 1192 /* Set the thread for this breakpoint. If THREAD is -1, make the 1193 breakpoint work for any thread. */ 1194 1195 void 1196 breakpoint_set_thread (struct breakpoint *b, int thread) 1197 { 1198 int old_thread = b->thread; 1199 1200 b->thread = thread; 1201 if (old_thread != thread) 1202 gdb::observers::breakpoint_modified.notify (b); 1203 } 1204 1205 /* Set the task for this breakpoint. If TASK is 0, make the 1206 breakpoint work for any task. */ 1207 1208 void 1209 breakpoint_set_task (struct breakpoint *b, int task) 1210 { 1211 int old_task = b->task; 1212 1213 b->task = task; 1214 if (old_task != task) 1215 gdb::observers::breakpoint_modified.notify (b); 1216 } 1217 1218 static void 1219 commands_command_1 (const char *arg, int from_tty, 1220 struct command_line *control) 1221 { 1222 counted_command_line cmd; 1223 /* cmd_read will be true once we have read cmd. Note that cmd might still be 1224 NULL after the call to read_command_lines if the user provides an empty 1225 list of command by just typing "end". */ 1226 bool cmd_read = false; 1227 1228 std::string new_arg; 1229 1230 if (arg == NULL || !*arg) 1231 { 1232 if (breakpoint_count - prev_breakpoint_count > 1) 1233 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1, 1234 breakpoint_count); 1235 else if (breakpoint_count > 0) 1236 new_arg = string_printf ("%d", breakpoint_count); 1237 arg = new_arg.c_str (); 1238 } 1239 1240 map_breakpoint_numbers 1241 (arg, [&] (breakpoint *b) 1242 { 1243 if (!cmd_read) 1244 { 1245 gdb_assert (cmd == NULL); 1246 if (control != NULL) 1247 cmd = control->body_list_0; 1248 else 1249 { 1250 std::string str 1251 = string_printf (_("Type commands for breakpoint(s) " 1252 "%s, one per line."), 1253 arg); 1254 1255 auto do_validate = [=] (const char *line) 1256 { 1257 validate_actionline (line, b); 1258 }; 1259 gdb::function_view<void (const char *)> validator; 1260 if (is_tracepoint (b)) 1261 validator = do_validate; 1262 1263 cmd = read_command_lines (str.c_str (), from_tty, 1, validator); 1264 } 1265 cmd_read = true; 1266 } 1267 1268 /* If a breakpoint was on the list more than once, we don't need to 1269 do anything. */ 1270 if (b->commands != cmd) 1271 { 1272 validate_commands_for_breakpoint (b, cmd.get ()); 1273 b->commands = cmd; 1274 gdb::observers::breakpoint_modified.notify (b); 1275 } 1276 }); 1277 } 1278 1279 static void 1280 commands_command (const char *arg, int from_tty) 1281 { 1282 commands_command_1 (arg, from_tty, NULL); 1283 } 1284 1285 /* Like commands_command, but instead of reading the commands from 1286 input stream, takes them from an already parsed command structure. 1287 1288 This is used by cli-script.c to DTRT with breakpoint commands 1289 that are part of if and while bodies. */ 1290 enum command_control_type 1291 commands_from_control_command (const char *arg, struct command_line *cmd) 1292 { 1293 commands_command_1 (arg, 0, cmd); 1294 return simple_control; 1295 } 1296 1297 /* Return non-zero if BL->TARGET_INFO contains valid information. */ 1298 1299 static int 1300 bp_location_has_shadow (struct bp_location *bl) 1301 { 1302 if (bl->loc_type != bp_loc_software_breakpoint) 1303 return 0; 1304 if (!bl->inserted) 1305 return 0; 1306 if (bl->target_info.shadow_len == 0) 1307 /* BL isn't valid, or doesn't shadow memory. */ 1308 return 0; 1309 return 1; 1310 } 1311 1312 /* Update BUF, which is LEN bytes read from the target address 1313 MEMADDR, by replacing a memory breakpoint with its shadowed 1314 contents. 1315 1316 If READBUF is not NULL, this buffer must not overlap with the of 1317 the breakpoint location's shadow_contents buffer. Otherwise, a 1318 failed assertion internal error will be raised. */ 1319 1320 static void 1321 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf, 1322 const gdb_byte *writebuf_org, 1323 ULONGEST memaddr, LONGEST len, 1324 struct bp_target_info *target_info, 1325 struct gdbarch *gdbarch) 1326 { 1327 /* Now do full processing of the found relevant range of elements. */ 1328 CORE_ADDR bp_addr = 0; 1329 int bp_size = 0; 1330 int bptoffset = 0; 1331 1332 if (!breakpoint_address_match (target_info->placed_address_space, 0, 1333 current_program_space->aspace, 0)) 1334 { 1335 /* The breakpoint is inserted in a different address space. */ 1336 return; 1337 } 1338 1339 /* Addresses and length of the part of the breakpoint that 1340 we need to copy. */ 1341 bp_addr = target_info->placed_address; 1342 bp_size = target_info->shadow_len; 1343 1344 if (bp_addr + bp_size <= memaddr) 1345 { 1346 /* The breakpoint is entirely before the chunk of memory we are 1347 reading. */ 1348 return; 1349 } 1350 1351 if (bp_addr >= memaddr + len) 1352 { 1353 /* The breakpoint is entirely after the chunk of memory we are 1354 reading. */ 1355 return; 1356 } 1357 1358 /* Offset within shadow_contents. */ 1359 if (bp_addr < memaddr) 1360 { 1361 /* Only copy the second part of the breakpoint. */ 1362 bp_size -= memaddr - bp_addr; 1363 bptoffset = memaddr - bp_addr; 1364 bp_addr = memaddr; 1365 } 1366 1367 if (bp_addr + bp_size > memaddr + len) 1368 { 1369 /* Only copy the first part of the breakpoint. */ 1370 bp_size -= (bp_addr + bp_size) - (memaddr + len); 1371 } 1372 1373 if (readbuf != NULL) 1374 { 1375 /* Verify that the readbuf buffer does not overlap with the 1376 shadow_contents buffer. */ 1377 gdb_assert (target_info->shadow_contents >= readbuf + len 1378 || readbuf >= (target_info->shadow_contents 1379 + target_info->shadow_len)); 1380 1381 /* Update the read buffer with this inserted breakpoint's 1382 shadow. */ 1383 memcpy (readbuf + bp_addr - memaddr, 1384 target_info->shadow_contents + bptoffset, bp_size); 1385 } 1386 else 1387 { 1388 const unsigned char *bp; 1389 CORE_ADDR addr = target_info->reqstd_address; 1390 int placed_size; 1391 1392 /* Update the shadow with what we want to write to memory. */ 1393 memcpy (target_info->shadow_contents + bptoffset, 1394 writebuf_org + bp_addr - memaddr, bp_size); 1395 1396 /* Determine appropriate breakpoint contents and size for this 1397 address. */ 1398 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size); 1399 1400 /* Update the final write buffer with this inserted 1401 breakpoint's INSN. */ 1402 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size); 1403 } 1404 } 1405 1406 /* Update BUF, which is LEN bytes read from the target address MEMADDR, 1407 by replacing any memory breakpoints with their shadowed contents. 1408 1409 If READBUF is not NULL, this buffer must not overlap with any of 1410 the breakpoint location's shadow_contents buffers. Otherwise, 1411 a failed assertion internal error will be raised. 1412 1413 The range of shadowed area by each bp_location is: 1414 bl->address - bp_locations_placed_address_before_address_max 1415 up to bl->address + bp_locations_shadow_len_after_address_max 1416 The range we were requested to resolve shadows for is: 1417 memaddr ... memaddr + len 1418 Thus the safe cutoff boundaries for performance optimization are 1419 memaddr + len <= (bl->address 1420 - bp_locations_placed_address_before_address_max) 1421 and: 1422 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */ 1423 1424 void 1425 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf, 1426 const gdb_byte *writebuf_org, 1427 ULONGEST memaddr, LONGEST len) 1428 { 1429 /* Left boundary, right boundary and median element of our binary 1430 search. */ 1431 unsigned bc_l, bc_r, bc; 1432 1433 /* Find BC_L which is a leftmost element which may affect BUF 1434 content. It is safe to report lower value but a failure to 1435 report higher one. */ 1436 1437 bc_l = 0; 1438 bc_r = bp_locations_count; 1439 while (bc_l + 1 < bc_r) 1440 { 1441 struct bp_location *bl; 1442 1443 bc = (bc_l + bc_r) / 2; 1444 bl = bp_locations[bc]; 1445 1446 /* Check first BL->ADDRESS will not overflow due to the added 1447 constant. Then advance the left boundary only if we are sure 1448 the BC element can in no way affect the BUF content (MEMADDR 1449 to MEMADDR + LEN range). 1450 1451 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety 1452 offset so that we cannot miss a breakpoint with its shadow 1453 range tail still reaching MEMADDR. */ 1454 1455 if ((bl->address + bp_locations_shadow_len_after_address_max 1456 >= bl->address) 1457 && (bl->address + bp_locations_shadow_len_after_address_max 1458 <= memaddr)) 1459 bc_l = bc; 1460 else 1461 bc_r = bc; 1462 } 1463 1464 /* Due to the binary search above, we need to make sure we pick the 1465 first location that's at BC_L's address. E.g., if there are 1466 multiple locations at the same address, BC_L may end up pointing 1467 at a duplicate location, and miss the "master"/"inserted" 1468 location. Say, given locations L1, L2 and L3 at addresses A and 1469 B: 1470 1471 L1@A, L2@A, L3@B, ... 1472 1473 BC_L could end up pointing at location L2, while the "master" 1474 location could be L1. Since the `loc->inserted' flag is only set 1475 on "master" locations, we'd forget to restore the shadow of L1 1476 and L2. */ 1477 while (bc_l > 0 1478 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address) 1479 bc_l--; 1480 1481 /* Now do full processing of the found relevant range of elements. */ 1482 1483 for (bc = bc_l; bc < bp_locations_count; bc++) 1484 { 1485 struct bp_location *bl = bp_locations[bc]; 1486 1487 /* bp_location array has BL->OWNER always non-NULL. */ 1488 if (bl->owner->type == bp_none) 1489 warning (_("reading through apparently deleted breakpoint #%d?"), 1490 bl->owner->number); 1491 1492 /* Performance optimization: any further element can no longer affect BUF 1493 content. */ 1494 1495 if (bl->address >= bp_locations_placed_address_before_address_max 1496 && memaddr + len <= (bl->address 1497 - bp_locations_placed_address_before_address_max)) 1498 break; 1499 1500 if (!bp_location_has_shadow (bl)) 1501 continue; 1502 1503 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org, 1504 memaddr, len, &bl->target_info, bl->gdbarch); 1505 } 1506 } 1507 1508 /* See breakpoint.h. */ 1509 1510 bool 1511 is_breakpoint (const struct breakpoint *bpt) 1512 { 1513 return (bpt->type == bp_breakpoint 1514 || bpt->type == bp_hardware_breakpoint 1515 || bpt->type == bp_dprintf); 1516 } 1517 1518 /* Return true if BPT is of any hardware watchpoint kind. */ 1519 1520 static bool 1521 is_hardware_watchpoint (const struct breakpoint *bpt) 1522 { 1523 return (bpt->type == bp_hardware_watchpoint 1524 || bpt->type == bp_read_watchpoint 1525 || bpt->type == bp_access_watchpoint); 1526 } 1527 1528 /* See breakpoint.h. */ 1529 1530 bool 1531 is_watchpoint (const struct breakpoint *bpt) 1532 { 1533 return (is_hardware_watchpoint (bpt) 1534 || bpt->type == bp_watchpoint); 1535 } 1536 1537 /* Returns true if the current thread and its running state are safe 1538 to evaluate or update watchpoint B. Watchpoints on local 1539 expressions need to be evaluated in the context of the thread that 1540 was current when the watchpoint was created, and, that thread needs 1541 to be stopped to be able to select the correct frame context. 1542 Watchpoints on global expressions can be evaluated on any thread, 1543 and in any state. It is presently left to the target allowing 1544 memory accesses when threads are running. */ 1545 1546 static int 1547 watchpoint_in_thread_scope (struct watchpoint *b) 1548 { 1549 return (b->pspace == current_program_space 1550 && (b->watchpoint_thread == null_ptid 1551 || (inferior_ptid == b->watchpoint_thread 1552 && !inferior_thread ()->executing))); 1553 } 1554 1555 /* Set watchpoint B to disp_del_at_next_stop, even including its possible 1556 associated bp_watchpoint_scope breakpoint. */ 1557 1558 static void 1559 watchpoint_del_at_next_stop (struct watchpoint *w) 1560 { 1561 if (w->related_breakpoint != w) 1562 { 1563 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope); 1564 gdb_assert (w->related_breakpoint->related_breakpoint == w); 1565 w->related_breakpoint->disposition = disp_del_at_next_stop; 1566 w->related_breakpoint->related_breakpoint = w->related_breakpoint; 1567 w->related_breakpoint = w; 1568 } 1569 w->disposition = disp_del_at_next_stop; 1570 } 1571 1572 /* Extract a bitfield value from value VAL using the bit parameters contained in 1573 watchpoint W. */ 1574 1575 static struct value * 1576 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val) 1577 { 1578 struct value *bit_val; 1579 1580 if (val == NULL) 1581 return NULL; 1582 1583 bit_val = allocate_value (value_type (val)); 1584 1585 unpack_value_bitfield (bit_val, 1586 w->val_bitpos, 1587 w->val_bitsize, 1588 value_contents_for_printing (val), 1589 value_offset (val), 1590 val); 1591 1592 return bit_val; 1593 } 1594 1595 /* Allocate a dummy location and add it to B, which must be a software 1596 watchpoint. This is required because even if a software watchpoint 1597 is not watching any memory, bpstat_stop_status requires a location 1598 to be able to report stops. */ 1599 1600 static void 1601 software_watchpoint_add_no_memory_location (struct breakpoint *b, 1602 struct program_space *pspace) 1603 { 1604 gdb_assert (b->type == bp_watchpoint && b->loc == NULL); 1605 1606 b->loc = allocate_bp_location (b); 1607 b->loc->pspace = pspace; 1608 b->loc->address = -1; 1609 b->loc->length = -1; 1610 } 1611 1612 /* Returns true if B is a software watchpoint that is not watching any 1613 memory (e.g., "watch $pc"). */ 1614 1615 static bool 1616 is_no_memory_software_watchpoint (struct breakpoint *b) 1617 { 1618 return (b->type == bp_watchpoint 1619 && b->loc != NULL 1620 && b->loc->next == NULL 1621 && b->loc->address == -1 1622 && b->loc->length == -1); 1623 } 1624 1625 /* Assuming that B is a watchpoint: 1626 - Reparse watchpoint expression, if REPARSE is non-zero 1627 - Evaluate expression and store the result in B->val 1628 - Evaluate the condition if there is one, and store the result 1629 in b->loc->cond. 1630 - Update the list of values that must be watched in B->loc. 1631 1632 If the watchpoint disposition is disp_del_at_next_stop, then do 1633 nothing. If this is local watchpoint that is out of scope, delete 1634 it. 1635 1636 Even with `set breakpoint always-inserted on' the watchpoints are 1637 removed + inserted on each stop here. Normal breakpoints must 1638 never be removed because they might be missed by a running thread 1639 when debugging in non-stop mode. On the other hand, hardware 1640 watchpoints (is_hardware_watchpoint; processed here) are specific 1641 to each LWP since they are stored in each LWP's hardware debug 1642 registers. Therefore, such LWP must be stopped first in order to 1643 be able to modify its hardware watchpoints. 1644 1645 Hardware watchpoints must be reset exactly once after being 1646 presented to the user. It cannot be done sooner, because it would 1647 reset the data used to present the watchpoint hit to the user. And 1648 it must not be done later because it could display the same single 1649 watchpoint hit during multiple GDB stops. Note that the latter is 1650 relevant only to the hardware watchpoint types bp_read_watchpoint 1651 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is 1652 not user-visible - its hit is suppressed if the memory content has 1653 not changed. 1654 1655 The following constraints influence the location where we can reset 1656 hardware watchpoints: 1657 1658 * target_stopped_by_watchpoint and target_stopped_data_address are 1659 called several times when GDB stops. 1660 1661 [linux] 1662 * Multiple hardware watchpoints can be hit at the same time, 1663 causing GDB to stop. GDB only presents one hardware watchpoint 1664 hit at a time as the reason for stopping, and all the other hits 1665 are presented later, one after the other, each time the user 1666 requests the execution to be resumed. Execution is not resumed 1667 for the threads still having pending hit event stored in 1668 LWP_INFO->STATUS. While the watchpoint is already removed from 1669 the inferior on the first stop the thread hit event is kept being 1670 reported from its cached value by linux_nat_stopped_data_address 1671 until the real thread resume happens after the watchpoint gets 1672 presented and thus its LWP_INFO->STATUS gets reset. 1673 1674 Therefore the hardware watchpoint hit can get safely reset on the 1675 watchpoint removal from inferior. */ 1676 1677 static void 1678 update_watchpoint (struct watchpoint *b, int reparse) 1679 { 1680 int within_current_scope; 1681 struct frame_id saved_frame_id; 1682 int frame_saved; 1683 1684 /* If this is a local watchpoint, we only want to check if the 1685 watchpoint frame is in scope if the current thread is the thread 1686 that was used to create the watchpoint. */ 1687 if (!watchpoint_in_thread_scope (b)) 1688 return; 1689 1690 if (b->disposition == disp_del_at_next_stop) 1691 return; 1692 1693 frame_saved = 0; 1694 1695 /* Determine if the watchpoint is within scope. */ 1696 if (b->exp_valid_block == NULL) 1697 within_current_scope = 1; 1698 else 1699 { 1700 struct frame_info *fi = get_current_frame (); 1701 struct gdbarch *frame_arch = get_frame_arch (fi); 1702 CORE_ADDR frame_pc = get_frame_pc (fi); 1703 1704 /* If we're at a point where the stack has been destroyed 1705 (e.g. in a function epilogue), unwinding may not work 1706 properly. Do not attempt to recreate locations at this 1707 point. See similar comments in watchpoint_check. */ 1708 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc)) 1709 return; 1710 1711 /* Save the current frame's ID so we can restore it after 1712 evaluating the watchpoint expression on its own frame. */ 1713 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression 1714 took a frame parameter, so that we didn't have to change the 1715 selected frame. */ 1716 frame_saved = 1; 1717 saved_frame_id = get_frame_id (get_selected_frame (NULL)); 1718 1719 fi = frame_find_by_id (b->watchpoint_frame); 1720 within_current_scope = (fi != NULL); 1721 if (within_current_scope) 1722 select_frame (fi); 1723 } 1724 1725 /* We don't free locations. They are stored in the bp_location array 1726 and update_global_location_list will eventually delete them and 1727 remove breakpoints if needed. */ 1728 b->loc = NULL; 1729 1730 if (within_current_scope && reparse) 1731 { 1732 const char *s; 1733 1734 b->exp.reset (); 1735 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string; 1736 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0); 1737 /* If the meaning of expression itself changed, the old value is 1738 no longer relevant. We don't want to report a watchpoint hit 1739 to the user when the old value and the new value may actually 1740 be completely different objects. */ 1741 b->val = NULL; 1742 b->val_valid = false; 1743 1744 /* Note that unlike with breakpoints, the watchpoint's condition 1745 expression is stored in the breakpoint object, not in the 1746 locations (re)created below. */ 1747 if (b->cond_string != NULL) 1748 { 1749 b->cond_exp.reset (); 1750 1751 s = b->cond_string; 1752 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0); 1753 } 1754 } 1755 1756 /* If we failed to parse the expression, for example because 1757 it refers to a global variable in a not-yet-loaded shared library, 1758 don't try to insert watchpoint. We don't automatically delete 1759 such watchpoint, though, since failure to parse expression 1760 is different from out-of-scope watchpoint. */ 1761 if (!target_has_execution) 1762 { 1763 /* Without execution, memory can't change. No use to try and 1764 set watchpoint locations. The watchpoint will be reset when 1765 the target gains execution, through breakpoint_re_set. */ 1766 if (!can_use_hw_watchpoints) 1767 { 1768 if (b->ops->works_in_software_mode (b)) 1769 b->type = bp_watchpoint; 1770 else 1771 error (_("Can't set read/access watchpoint when " 1772 "hardware watchpoints are disabled.")); 1773 } 1774 } 1775 else if (within_current_scope && b->exp) 1776 { 1777 int pc = 0; 1778 std::vector<value_ref_ptr> val_chain; 1779 struct value *v, *result; 1780 struct program_space *frame_pspace; 1781 1782 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0); 1783 1784 /* Avoid setting b->val if it's already set. The meaning of 1785 b->val is 'the last value' user saw, and we should update 1786 it only if we reported that last value to user. As it 1787 happens, the code that reports it updates b->val directly. 1788 We don't keep track of the memory value for masked 1789 watchpoints. */ 1790 if (!b->val_valid && !is_masked_watchpoint (b)) 1791 { 1792 if (b->val_bitsize != 0) 1793 v = extract_bitfield_from_watchpoint_value (b, v); 1794 b->val = release_value (v); 1795 b->val_valid = true; 1796 } 1797 1798 frame_pspace = get_frame_program_space (get_selected_frame (NULL)); 1799 1800 /* Look at each value on the value chain. */ 1801 gdb_assert (!val_chain.empty ()); 1802 for (const value_ref_ptr &iter : val_chain) 1803 { 1804 v = iter.get (); 1805 1806 /* If it's a memory location, and GDB actually needed 1807 its contents to evaluate the expression, then we 1808 must watch it. If the first value returned is 1809 still lazy, that means an error occurred reading it; 1810 watch it anyway in case it becomes readable. */ 1811 if (VALUE_LVAL (v) == lval_memory 1812 && (v == val_chain[0] || ! value_lazy (v))) 1813 { 1814 struct type *vtype = check_typedef (value_type (v)); 1815 1816 /* We only watch structs and arrays if user asked 1817 for it explicitly, never if they just happen to 1818 appear in the middle of some value chain. */ 1819 if (v == result 1820 || (vtype->code () != TYPE_CODE_STRUCT 1821 && vtype->code () != TYPE_CODE_ARRAY)) 1822 { 1823 CORE_ADDR addr; 1824 enum target_hw_bp_type type; 1825 struct bp_location *loc, **tmp; 1826 int bitpos = 0, bitsize = 0; 1827 1828 if (value_bitsize (v) != 0) 1829 { 1830 /* Extract the bit parameters out from the bitfield 1831 sub-expression. */ 1832 bitpos = value_bitpos (v); 1833 bitsize = value_bitsize (v); 1834 } 1835 else if (v == result && b->val_bitsize != 0) 1836 { 1837 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield 1838 lvalue whose bit parameters are saved in the fields 1839 VAL_BITPOS and VAL_BITSIZE. */ 1840 bitpos = b->val_bitpos; 1841 bitsize = b->val_bitsize; 1842 } 1843 1844 addr = value_address (v); 1845 if (bitsize != 0) 1846 { 1847 /* Skip the bytes that don't contain the bitfield. */ 1848 addr += bitpos / 8; 1849 } 1850 1851 type = hw_write; 1852 if (b->type == bp_read_watchpoint) 1853 type = hw_read; 1854 else if (b->type == bp_access_watchpoint) 1855 type = hw_access; 1856 1857 loc = allocate_bp_location (b); 1858 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next)) 1859 ; 1860 *tmp = loc; 1861 loc->gdbarch = get_type_arch (value_type (v)); 1862 1863 loc->pspace = frame_pspace; 1864 loc->address = address_significant (loc->gdbarch, addr); 1865 1866 if (bitsize != 0) 1867 { 1868 /* Just cover the bytes that make up the bitfield. */ 1869 loc->length = ((bitpos % 8) + bitsize + 7) / 8; 1870 } 1871 else 1872 loc->length = TYPE_LENGTH (value_type (v)); 1873 1874 loc->watchpoint_type = type; 1875 } 1876 } 1877 } 1878 1879 /* Change the type of breakpoint between hardware assisted or 1880 an ordinary watchpoint depending on the hardware support 1881 and free hardware slots. REPARSE is set when the inferior 1882 is started. */ 1883 if (reparse) 1884 { 1885 int reg_cnt; 1886 enum bp_loc_type loc_type; 1887 struct bp_location *bl; 1888 1889 reg_cnt = can_use_hardware_watchpoint (val_chain); 1890 1891 if (reg_cnt) 1892 { 1893 int i, target_resources_ok, other_type_used; 1894 enum bptype type; 1895 1896 /* Use an exact watchpoint when there's only one memory region to be 1897 watched, and only one debug register is needed to watch it. */ 1898 b->exact = target_exact_watchpoints && reg_cnt == 1; 1899 1900 /* We need to determine how many resources are already 1901 used for all other hardware watchpoints plus this one 1902 to see if we still have enough resources to also fit 1903 this watchpoint in as well. */ 1904 1905 /* If this is a software watchpoint, we try to turn it 1906 to a hardware one -- count resources as if B was of 1907 hardware watchpoint type. */ 1908 type = b->type; 1909 if (type == bp_watchpoint) 1910 type = bp_hardware_watchpoint; 1911 1912 /* This watchpoint may or may not have been placed on 1913 the list yet at this point (it won't be in the list 1914 if we're trying to create it for the first time, 1915 through watch_command), so always account for it 1916 manually. */ 1917 1918 /* Count resources used by all watchpoints except B. */ 1919 i = hw_watchpoint_used_count_others (b, type, &other_type_used); 1920 1921 /* Add in the resources needed for B. */ 1922 i += hw_watchpoint_use_count (b); 1923 1924 target_resources_ok 1925 = target_can_use_hardware_watchpoint (type, i, other_type_used); 1926 if (target_resources_ok <= 0) 1927 { 1928 int sw_mode = b->ops->works_in_software_mode (b); 1929 1930 if (target_resources_ok == 0 && !sw_mode) 1931 error (_("Target does not support this type of " 1932 "hardware watchpoint.")); 1933 else if (target_resources_ok < 0 && !sw_mode) 1934 error (_("There are not enough available hardware " 1935 "resources for this watchpoint.")); 1936 1937 /* Downgrade to software watchpoint. */ 1938 b->type = bp_watchpoint; 1939 } 1940 else 1941 { 1942 /* If this was a software watchpoint, we've just 1943 found we have enough resources to turn it to a 1944 hardware watchpoint. Otherwise, this is a 1945 nop. */ 1946 b->type = type; 1947 } 1948 } 1949 else if (!b->ops->works_in_software_mode (b)) 1950 { 1951 if (!can_use_hw_watchpoints) 1952 error (_("Can't set read/access watchpoint when " 1953 "hardware watchpoints are disabled.")); 1954 else 1955 error (_("Expression cannot be implemented with " 1956 "read/access watchpoint.")); 1957 } 1958 else 1959 b->type = bp_watchpoint; 1960 1961 loc_type = (b->type == bp_watchpoint? bp_loc_other 1962 : bp_loc_hardware_watchpoint); 1963 for (bl = b->loc; bl; bl = bl->next) 1964 bl->loc_type = loc_type; 1965 } 1966 1967 /* If a software watchpoint is not watching any memory, then the 1968 above left it without any location set up. But, 1969 bpstat_stop_status requires a location to be able to report 1970 stops, so make sure there's at least a dummy one. */ 1971 if (b->type == bp_watchpoint && b->loc == NULL) 1972 software_watchpoint_add_no_memory_location (b, frame_pspace); 1973 } 1974 else if (!within_current_scope) 1975 { 1976 printf_filtered (_("\ 1977 Watchpoint %d deleted because the program has left the block\n\ 1978 in which its expression is valid.\n"), 1979 b->number); 1980 watchpoint_del_at_next_stop (b); 1981 } 1982 1983 /* Restore the selected frame. */ 1984 if (frame_saved) 1985 select_frame (frame_find_by_id (saved_frame_id)); 1986 } 1987 1988 1989 /* Returns 1 iff breakpoint location should be 1990 inserted in the inferior. We don't differentiate the type of BL's owner 1991 (breakpoint vs. tracepoint), although insert_location in tracepoint's 1992 breakpoint_ops is not defined, because in insert_bp_location, 1993 tracepoint's insert_location will not be called. */ 1994 static int 1995 should_be_inserted (struct bp_location *bl) 1996 { 1997 if (bl->owner == NULL || !breakpoint_enabled (bl->owner)) 1998 return 0; 1999 2000 if (bl->owner->disposition == disp_del_at_next_stop) 2001 return 0; 2002 2003 if (!bl->enabled || bl->shlib_disabled || bl->duplicate) 2004 return 0; 2005 2006 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup) 2007 return 0; 2008 2009 /* This is set for example, when we're attached to the parent of a 2010 vfork, and have detached from the child. The child is running 2011 free, and we expect it to do an exec or exit, at which point the 2012 OS makes the parent schedulable again (and the target reports 2013 that the vfork is done). Until the child is done with the shared 2014 memory region, do not insert breakpoints in the parent, otherwise 2015 the child could still trip on the parent's breakpoints. Since 2016 the parent is blocked anyway, it won't miss any breakpoint. */ 2017 if (bl->pspace->breakpoints_not_allowed) 2018 return 0; 2019 2020 /* Don't insert a breakpoint if we're trying to step past its 2021 location, except if the breakpoint is a single-step breakpoint, 2022 and the breakpoint's thread is the thread which is stepping past 2023 a breakpoint. */ 2024 if ((bl->loc_type == bp_loc_software_breakpoint 2025 || bl->loc_type == bp_loc_hardware_breakpoint) 2026 && stepping_past_instruction_at (bl->pspace->aspace, 2027 bl->address) 2028 /* The single-step breakpoint may be inserted at the location 2029 we're trying to step if the instruction branches to itself. 2030 However, the instruction won't be executed at all and it may 2031 break the semantics of the instruction, for example, the 2032 instruction is a conditional branch or updates some flags. 2033 We can't fix it unless GDB is able to emulate the instruction 2034 or switch to displaced stepping. */ 2035 && !(bl->owner->type == bp_single_step 2036 && thread_is_stepping_over_breakpoint (bl->owner->thread))) 2037 { 2038 infrun_debug_printf ("skipping breakpoint: stepping past insn at: %s", 2039 paddress (bl->gdbarch, bl->address)); 2040 return 0; 2041 } 2042 2043 /* Don't insert watchpoints if we're trying to step past the 2044 instruction that triggered one. */ 2045 if ((bl->loc_type == bp_loc_hardware_watchpoint) 2046 && stepping_past_nonsteppable_watchpoint ()) 2047 { 2048 infrun_debug_printf ("stepping past non-steppable watchpoint. " 2049 "skipping watchpoint at %s:%d\n", 2050 paddress (bl->gdbarch, bl->address), bl->length); 2051 return 0; 2052 } 2053 2054 return 1; 2055 } 2056 2057 /* Same as should_be_inserted but does the check assuming 2058 that the location is not duplicated. */ 2059 2060 static int 2061 unduplicated_should_be_inserted (struct bp_location *bl) 2062 { 2063 int result; 2064 const int save_duplicate = bl->duplicate; 2065 2066 bl->duplicate = 0; 2067 result = should_be_inserted (bl); 2068 bl->duplicate = save_duplicate; 2069 return result; 2070 } 2071 2072 /* Parses a conditional described by an expression COND into an 2073 agent expression bytecode suitable for evaluation 2074 by the bytecode interpreter. Return NULL if there was 2075 any error during parsing. */ 2076 2077 static agent_expr_up 2078 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond) 2079 { 2080 if (cond == NULL) 2081 return NULL; 2082 2083 agent_expr_up aexpr; 2084 2085 /* We don't want to stop processing, so catch any errors 2086 that may show up. */ 2087 try 2088 { 2089 aexpr = gen_eval_for_expr (scope, cond); 2090 } 2091 2092 catch (const gdb_exception_error &ex) 2093 { 2094 /* If we got here, it means the condition could not be parsed to a valid 2095 bytecode expression and thus can't be evaluated on the target's side. 2096 It's no use iterating through the conditions. */ 2097 } 2098 2099 /* We have a valid agent expression. */ 2100 return aexpr; 2101 } 2102 2103 /* Based on location BL, create a list of breakpoint conditions to be 2104 passed on to the target. If we have duplicated locations with different 2105 conditions, we will add such conditions to the list. The idea is that the 2106 target will evaluate the list of conditions and will only notify GDB when 2107 one of them is true. */ 2108 2109 static void 2110 build_target_condition_list (struct bp_location *bl) 2111 { 2112 struct bp_location **locp = NULL, **loc2p; 2113 int null_condition_or_parse_error = 0; 2114 int modified = bl->needs_update; 2115 struct bp_location *loc; 2116 2117 /* Release conditions left over from a previous insert. */ 2118 bl->target_info.conditions.clear (); 2119 2120 /* This is only meaningful if the target is 2121 evaluating conditions and if the user has 2122 opted for condition evaluation on the target's 2123 side. */ 2124 if (gdb_evaluates_breakpoint_condition_p () 2125 || !target_supports_evaluation_of_breakpoint_conditions ()) 2126 return; 2127 2128 /* Do a first pass to check for locations with no assigned 2129 conditions or conditions that fail to parse to a valid agent 2130 expression bytecode. If any of these happen, then it's no use to 2131 send conditions to the target since this location will always 2132 trigger and generate a response back to GDB. Note we consider 2133 all locations at the same address irrespective of type, i.e., 2134 even if the locations aren't considered duplicates (e.g., 2135 software breakpoint and hardware breakpoint at the same 2136 address). */ 2137 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address) 2138 { 2139 loc = (*loc2p); 2140 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num) 2141 { 2142 if (modified) 2143 { 2144 /* Re-parse the conditions since something changed. In that 2145 case we already freed the condition bytecodes (see 2146 force_breakpoint_reinsertion). We just 2147 need to parse the condition to bytecodes again. */ 2148 loc->cond_bytecode = parse_cond_to_aexpr (bl->address, 2149 loc->cond.get ()); 2150 } 2151 2152 /* If we have a NULL bytecode expression, it means something 2153 went wrong or we have a null condition expression. */ 2154 if (!loc->cond_bytecode) 2155 { 2156 null_condition_or_parse_error = 1; 2157 break; 2158 } 2159 } 2160 } 2161 2162 /* If any of these happened, it means we will have to evaluate the conditions 2163 for the location's address on gdb's side. It is no use keeping bytecodes 2164 for all the other duplicate locations, thus we free all of them here. 2165 2166 This is so we have a finer control over which locations' conditions are 2167 being evaluated by GDB or the remote stub. */ 2168 if (null_condition_or_parse_error) 2169 { 2170 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address) 2171 { 2172 loc = (*loc2p); 2173 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num) 2174 { 2175 /* Only go as far as the first NULL bytecode is 2176 located. */ 2177 if (!loc->cond_bytecode) 2178 return; 2179 2180 loc->cond_bytecode.reset (); 2181 } 2182 } 2183 } 2184 2185 /* No NULL conditions or failed bytecode generation. Build a 2186 condition list for this location's address. If we have software 2187 and hardware locations at the same address, they aren't 2188 considered duplicates, but we still marge all the conditions 2189 anyway, as it's simpler, and doesn't really make a practical 2190 difference. */ 2191 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address) 2192 { 2193 loc = (*loc2p); 2194 if (loc->cond 2195 && is_breakpoint (loc->owner) 2196 && loc->pspace->num == bl->pspace->num 2197 && loc->owner->enable_state == bp_enabled 2198 && loc->enabled) 2199 { 2200 /* Add the condition to the vector. This will be used later 2201 to send the conditions to the target. */ 2202 bl->target_info.conditions.push_back (loc->cond_bytecode.get ()); 2203 } 2204 } 2205 2206 return; 2207 } 2208 2209 /* Parses a command described by string CMD into an agent expression 2210 bytecode suitable for evaluation by the bytecode interpreter. 2211 Return NULL if there was any error during parsing. */ 2212 2213 static agent_expr_up 2214 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd) 2215 { 2216 const char *cmdrest; 2217 const char *format_start, *format_end; 2218 struct gdbarch *gdbarch = get_current_arch (); 2219 2220 if (cmd == NULL) 2221 return NULL; 2222 2223 cmdrest = cmd; 2224 2225 if (*cmdrest == ',') 2226 ++cmdrest; 2227 cmdrest = skip_spaces (cmdrest); 2228 2229 if (*cmdrest++ != '"') 2230 error (_("No format string following the location")); 2231 2232 format_start = cmdrest; 2233 2234 format_pieces fpieces (&cmdrest); 2235 2236 format_end = cmdrest; 2237 2238 if (*cmdrest++ != '"') 2239 error (_("Bad format string, non-terminated '\"'.")); 2240 2241 cmdrest = skip_spaces (cmdrest); 2242 2243 if (!(*cmdrest == ',' || *cmdrest == '\0')) 2244 error (_("Invalid argument syntax")); 2245 2246 if (*cmdrest == ',') 2247 cmdrest++; 2248 cmdrest = skip_spaces (cmdrest); 2249 2250 /* For each argument, make an expression. */ 2251 2252 std::vector<struct expression *> argvec; 2253 while (*cmdrest != '\0') 2254 { 2255 const char *cmd1; 2256 2257 cmd1 = cmdrest; 2258 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1); 2259 argvec.push_back (expr.release ()); 2260 cmdrest = cmd1; 2261 if (*cmdrest == ',') 2262 ++cmdrest; 2263 } 2264 2265 agent_expr_up aexpr; 2266 2267 /* We don't want to stop processing, so catch any errors 2268 that may show up. */ 2269 try 2270 { 2271 aexpr = gen_printf (scope, gdbarch, 0, 0, 2272 format_start, format_end - format_start, 2273 argvec.size (), argvec.data ()); 2274 } 2275 catch (const gdb_exception_error &ex) 2276 { 2277 /* If we got here, it means the command could not be parsed to a valid 2278 bytecode expression and thus can't be evaluated on the target's side. 2279 It's no use iterating through the other commands. */ 2280 } 2281 2282 /* We have a valid agent expression, return it. */ 2283 return aexpr; 2284 } 2285 2286 /* Based on location BL, create a list of breakpoint commands to be 2287 passed on to the target. If we have duplicated locations with 2288 different commands, we will add any such to the list. */ 2289 2290 static void 2291 build_target_command_list (struct bp_location *bl) 2292 { 2293 struct bp_location **locp = NULL, **loc2p; 2294 int null_command_or_parse_error = 0; 2295 int modified = bl->needs_update; 2296 struct bp_location *loc; 2297 2298 /* Clear commands left over from a previous insert. */ 2299 bl->target_info.tcommands.clear (); 2300 2301 if (!target_can_run_breakpoint_commands ()) 2302 return; 2303 2304 /* For now, limit to agent-style dprintf breakpoints. */ 2305 if (dprintf_style != dprintf_style_agent) 2306 return; 2307 2308 /* For now, if we have any location at the same address that isn't a 2309 dprintf, don't install the target-side commands, as that would 2310 make the breakpoint not be reported to the core, and we'd lose 2311 control. */ 2312 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address) 2313 { 2314 loc = (*loc2p); 2315 if (is_breakpoint (loc->owner) 2316 && loc->pspace->num == bl->pspace->num 2317 && loc->owner->type != bp_dprintf) 2318 return; 2319 } 2320 2321 /* Do a first pass to check for locations with no assigned 2322 conditions or conditions that fail to parse to a valid agent expression 2323 bytecode. If any of these happen, then it's no use to send conditions 2324 to the target since this location will always trigger and generate a 2325 response back to GDB. */ 2326 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address) 2327 { 2328 loc = (*loc2p); 2329 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num) 2330 { 2331 if (modified) 2332 { 2333 /* Re-parse the commands since something changed. In that 2334 case we already freed the command bytecodes (see 2335 force_breakpoint_reinsertion). We just 2336 need to parse the command to bytecodes again. */ 2337 loc->cmd_bytecode 2338 = parse_cmd_to_aexpr (bl->address, 2339 loc->owner->extra_string); 2340 } 2341 2342 /* If we have a NULL bytecode expression, it means something 2343 went wrong or we have a null command expression. */ 2344 if (!loc->cmd_bytecode) 2345 { 2346 null_command_or_parse_error = 1; 2347 break; 2348 } 2349 } 2350 } 2351 2352 /* If anything failed, then we're not doing target-side commands, 2353 and so clean up. */ 2354 if (null_command_or_parse_error) 2355 { 2356 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address) 2357 { 2358 loc = (*loc2p); 2359 if (is_breakpoint (loc->owner) 2360 && loc->pspace->num == bl->pspace->num) 2361 { 2362 /* Only go as far as the first NULL bytecode is 2363 located. */ 2364 if (loc->cmd_bytecode == NULL) 2365 return; 2366 2367 loc->cmd_bytecode.reset (); 2368 } 2369 } 2370 } 2371 2372 /* No NULL commands or failed bytecode generation. Build a command 2373 list for all duplicate locations at this location's address. 2374 Note that here we must care for whether the breakpoint location 2375 types are considered duplicates, otherwise, say, if we have a 2376 software and hardware location at the same address, the target 2377 could end up running the commands twice. For the moment, we only 2378 support targets-side commands with dprintf, but it doesn't hurt 2379 to be pedantically correct in case that changes. */ 2380 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address) 2381 { 2382 loc = (*loc2p); 2383 if (breakpoint_locations_match (bl, loc) 2384 && loc->owner->extra_string 2385 && is_breakpoint (loc->owner) 2386 && loc->pspace->num == bl->pspace->num 2387 && loc->owner->enable_state == bp_enabled 2388 && loc->enabled) 2389 { 2390 /* Add the command to the vector. This will be used later 2391 to send the commands to the target. */ 2392 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ()); 2393 } 2394 } 2395 2396 bl->target_info.persist = 0; 2397 /* Maybe flag this location as persistent. */ 2398 if (bl->owner->type == bp_dprintf && disconnected_dprintf) 2399 bl->target_info.persist = 1; 2400 } 2401 2402 /* Return the kind of breakpoint on address *ADDR. Get the kind 2403 of breakpoint according to ADDR except single-step breakpoint. 2404 Get the kind of single-step breakpoint according to the current 2405 registers state. */ 2406 2407 static int 2408 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr) 2409 { 2410 if (bl->owner->type == bp_single_step) 2411 { 2412 struct thread_info *thr = find_thread_global_id (bl->owner->thread); 2413 struct regcache *regcache; 2414 2415 regcache = get_thread_regcache (thr); 2416 2417 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch, 2418 regcache, addr); 2419 } 2420 else 2421 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr); 2422 } 2423 2424 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint 2425 location. Any error messages are printed to TMP_ERROR_STREAM; and 2426 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems. 2427 Returns 0 for success, 1 if the bp_location type is not supported or 2428 -1 for failure. 2429 2430 NOTE drow/2003-09-09: This routine could be broken down to an 2431 object-style method for each breakpoint or catchpoint type. */ 2432 static int 2433 insert_bp_location (struct bp_location *bl, 2434 struct ui_file *tmp_error_stream, 2435 int *disabled_breaks, 2436 int *hw_breakpoint_error, 2437 int *hw_bp_error_explained_already) 2438 { 2439 gdb_exception bp_excpt; 2440 2441 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update)) 2442 return 0; 2443 2444 /* Note we don't initialize bl->target_info, as that wipes out 2445 the breakpoint location's shadow_contents if the breakpoint 2446 is still inserted at that location. This in turn breaks 2447 target_read_memory which depends on these buffers when 2448 a memory read is requested at the breakpoint location: 2449 Once the target_info has been wiped, we fail to see that 2450 we have a breakpoint inserted at that address and thus 2451 read the breakpoint instead of returning the data saved in 2452 the breakpoint location's shadow contents. */ 2453 bl->target_info.reqstd_address = bl->address; 2454 bl->target_info.placed_address_space = bl->pspace->aspace; 2455 bl->target_info.length = bl->length; 2456 2457 /* When working with target-side conditions, we must pass all the conditions 2458 for the same breakpoint address down to the target since GDB will not 2459 insert those locations. With a list of breakpoint conditions, the target 2460 can decide when to stop and notify GDB. */ 2461 2462 if (is_breakpoint (bl->owner)) 2463 { 2464 build_target_condition_list (bl); 2465 build_target_command_list (bl); 2466 /* Reset the modification marker. */ 2467 bl->needs_update = 0; 2468 } 2469 2470 /* If "set breakpoint auto-hw" is "on" and a software breakpoint was 2471 set at a read-only address, then a breakpoint location will have 2472 been changed to hardware breakpoint before we get here. If it is 2473 "off" however, error out before actually trying to insert the 2474 breakpoint, with a nicer error message. */ 2475 if (bl->loc_type == bp_loc_software_breakpoint 2476 && !automatic_hardware_breakpoints) 2477 { 2478 mem_region *mr = lookup_mem_region (bl->address); 2479 2480 if (mr != nullptr && mr->attrib.mode != MEM_RW) 2481 { 2482 fprintf_unfiltered (tmp_error_stream, 2483 _("Cannot insert breakpoint %d.\n" 2484 "Cannot set software breakpoint " 2485 "at read-only address %s\n"), 2486 bl->owner->number, 2487 paddress (bl->gdbarch, bl->address)); 2488 return 1; 2489 } 2490 } 2491 2492 if (bl->loc_type == bp_loc_software_breakpoint 2493 || bl->loc_type == bp_loc_hardware_breakpoint) 2494 { 2495 /* First check to see if we have to handle an overlay. */ 2496 if (overlay_debugging == ovly_off 2497 || bl->section == NULL 2498 || !(section_is_overlay (bl->section))) 2499 { 2500 /* No overlay handling: just set the breakpoint. */ 2501 try 2502 { 2503 int val; 2504 2505 val = bl->owner->ops->insert_location (bl); 2506 if (val) 2507 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR}; 2508 } 2509 catch (gdb_exception &e) 2510 { 2511 bp_excpt = std::move (e); 2512 } 2513 } 2514 else 2515 { 2516 /* This breakpoint is in an overlay section. 2517 Shall we set a breakpoint at the LMA? */ 2518 if (!overlay_events_enabled) 2519 { 2520 /* Yes -- overlay event support is not active, 2521 so we must try to set a breakpoint at the LMA. 2522 This will not work for a hardware breakpoint. */ 2523 if (bl->loc_type == bp_loc_hardware_breakpoint) 2524 warning (_("hardware breakpoint %d not supported in overlay!"), 2525 bl->owner->number); 2526 else 2527 { 2528 CORE_ADDR addr = overlay_unmapped_address (bl->address, 2529 bl->section); 2530 /* Set a software (trap) breakpoint at the LMA. */ 2531 bl->overlay_target_info = bl->target_info; 2532 bl->overlay_target_info.reqstd_address = addr; 2533 2534 /* No overlay handling: just set the breakpoint. */ 2535 try 2536 { 2537 int val; 2538 2539 bl->overlay_target_info.kind 2540 = breakpoint_kind (bl, &addr); 2541 bl->overlay_target_info.placed_address = addr; 2542 val = target_insert_breakpoint (bl->gdbarch, 2543 &bl->overlay_target_info); 2544 if (val) 2545 bp_excpt 2546 = gdb_exception {RETURN_ERROR, GENERIC_ERROR}; 2547 } 2548 catch (gdb_exception &e) 2549 { 2550 bp_excpt = std::move (e); 2551 } 2552 2553 if (bp_excpt.reason != 0) 2554 fprintf_unfiltered (tmp_error_stream, 2555 "Overlay breakpoint %d " 2556 "failed: in ROM?\n", 2557 bl->owner->number); 2558 } 2559 } 2560 /* Shall we set a breakpoint at the VMA? */ 2561 if (section_is_mapped (bl->section)) 2562 { 2563 /* Yes. This overlay section is mapped into memory. */ 2564 try 2565 { 2566 int val; 2567 2568 val = bl->owner->ops->insert_location (bl); 2569 if (val) 2570 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR}; 2571 } 2572 catch (gdb_exception &e) 2573 { 2574 bp_excpt = std::move (e); 2575 } 2576 } 2577 else 2578 { 2579 /* No. This breakpoint will not be inserted. 2580 No error, but do not mark the bp as 'inserted'. */ 2581 return 0; 2582 } 2583 } 2584 2585 if (bp_excpt.reason != 0) 2586 { 2587 /* Can't set the breakpoint. */ 2588 2589 /* In some cases, we might not be able to insert a 2590 breakpoint in a shared library that has already been 2591 removed, but we have not yet processed the shlib unload 2592 event. Unfortunately, some targets that implement 2593 breakpoint insertion themselves can't tell why the 2594 breakpoint insertion failed (e.g., the remote target 2595 doesn't define error codes), so we must treat generic 2596 errors as memory errors. */ 2597 if (bp_excpt.reason == RETURN_ERROR 2598 && (bp_excpt.error == GENERIC_ERROR 2599 || bp_excpt.error == MEMORY_ERROR) 2600 && bl->loc_type == bp_loc_software_breakpoint 2601 && (solib_name_from_address (bl->pspace, bl->address) 2602 || shared_objfile_contains_address_p (bl->pspace, 2603 bl->address))) 2604 { 2605 /* See also: disable_breakpoints_in_shlibs. */ 2606 bl->shlib_disabled = 1; 2607 gdb::observers::breakpoint_modified.notify (bl->owner); 2608 if (!*disabled_breaks) 2609 { 2610 fprintf_unfiltered (tmp_error_stream, 2611 "Cannot insert breakpoint %d.\n", 2612 bl->owner->number); 2613 fprintf_unfiltered (tmp_error_stream, 2614 "Temporarily disabling shared " 2615 "library breakpoints:\n"); 2616 } 2617 *disabled_breaks = 1; 2618 fprintf_unfiltered (tmp_error_stream, 2619 "breakpoint #%d\n", bl->owner->number); 2620 return 0; 2621 } 2622 else 2623 { 2624 if (bl->loc_type == bp_loc_hardware_breakpoint) 2625 { 2626 *hw_breakpoint_error = 1; 2627 *hw_bp_error_explained_already = bp_excpt.message != NULL; 2628 fprintf_unfiltered (tmp_error_stream, 2629 "Cannot insert hardware breakpoint %d%s", 2630 bl->owner->number, 2631 bp_excpt.message ? ":" : ".\n"); 2632 if (bp_excpt.message != NULL) 2633 fprintf_unfiltered (tmp_error_stream, "%s.\n", 2634 bp_excpt.what ()); 2635 } 2636 else 2637 { 2638 if (bp_excpt.message == NULL) 2639 { 2640 std::string message 2641 = memory_error_message (TARGET_XFER_E_IO, 2642 bl->gdbarch, bl->address); 2643 2644 fprintf_unfiltered (tmp_error_stream, 2645 "Cannot insert breakpoint %d.\n" 2646 "%s\n", 2647 bl->owner->number, message.c_str ()); 2648 } 2649 else 2650 { 2651 fprintf_unfiltered (tmp_error_stream, 2652 "Cannot insert breakpoint %d: %s\n", 2653 bl->owner->number, 2654 bp_excpt.what ()); 2655 } 2656 } 2657 return 1; 2658 2659 } 2660 } 2661 else 2662 bl->inserted = 1; 2663 2664 return 0; 2665 } 2666 2667 else if (bl->loc_type == bp_loc_hardware_watchpoint 2668 /* NOTE drow/2003-09-08: This state only exists for removing 2669 watchpoints. It's not clear that it's necessary... */ 2670 && bl->owner->disposition != disp_del_at_next_stop) 2671 { 2672 int val; 2673 2674 gdb_assert (bl->owner->ops != NULL 2675 && bl->owner->ops->insert_location != NULL); 2676 2677 val = bl->owner->ops->insert_location (bl); 2678 2679 /* If trying to set a read-watchpoint, and it turns out it's not 2680 supported, try emulating one with an access watchpoint. */ 2681 if (val == 1 && bl->watchpoint_type == hw_read) 2682 { 2683 struct bp_location *loc, **loc_temp; 2684 2685 /* But don't try to insert it, if there's already another 2686 hw_access location that would be considered a duplicate 2687 of this one. */ 2688 ALL_BP_LOCATIONS (loc, loc_temp) 2689 if (loc != bl 2690 && loc->watchpoint_type == hw_access 2691 && watchpoint_locations_match (bl, loc)) 2692 { 2693 bl->duplicate = 1; 2694 bl->inserted = 1; 2695 bl->target_info = loc->target_info; 2696 bl->watchpoint_type = hw_access; 2697 val = 0; 2698 break; 2699 } 2700 2701 if (val == 1) 2702 { 2703 bl->watchpoint_type = hw_access; 2704 val = bl->owner->ops->insert_location (bl); 2705 2706 if (val) 2707 /* Back to the original value. */ 2708 bl->watchpoint_type = hw_read; 2709 } 2710 } 2711 2712 bl->inserted = (val == 0); 2713 } 2714 2715 else if (bl->owner->type == bp_catchpoint) 2716 { 2717 int val; 2718 2719 gdb_assert (bl->owner->ops != NULL 2720 && bl->owner->ops->insert_location != NULL); 2721 2722 val = bl->owner->ops->insert_location (bl); 2723 if (val) 2724 { 2725 bl->owner->enable_state = bp_disabled; 2726 2727 if (val == 1) 2728 warning (_("\ 2729 Error inserting catchpoint %d: Your system does not support this type\n\ 2730 of catchpoint."), bl->owner->number); 2731 else 2732 warning (_("Error inserting catchpoint %d."), bl->owner->number); 2733 } 2734 2735 bl->inserted = (val == 0); 2736 2737 /* We've already printed an error message if there was a problem 2738 inserting this catchpoint, and we've disabled the catchpoint, 2739 so just return success. */ 2740 return 0; 2741 } 2742 2743 return 0; 2744 } 2745 2746 /* This function is called when program space PSPACE is about to be 2747 deleted. It takes care of updating breakpoints to not reference 2748 PSPACE anymore. */ 2749 2750 void 2751 breakpoint_program_space_exit (struct program_space *pspace) 2752 { 2753 struct breakpoint *b, *b_temp; 2754 struct bp_location *loc, **loc_temp; 2755 2756 /* Remove any breakpoint that was set through this program space. */ 2757 ALL_BREAKPOINTS_SAFE (b, b_temp) 2758 { 2759 if (b->pspace == pspace) 2760 delete_breakpoint (b); 2761 } 2762 2763 /* Breakpoints set through other program spaces could have locations 2764 bound to PSPACE as well. Remove those. */ 2765 ALL_BP_LOCATIONS (loc, loc_temp) 2766 { 2767 struct bp_location *tmp; 2768 2769 if (loc->pspace == pspace) 2770 { 2771 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */ 2772 if (loc->owner->loc == loc) 2773 loc->owner->loc = loc->next; 2774 else 2775 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next) 2776 if (tmp->next == loc) 2777 { 2778 tmp->next = loc->next; 2779 break; 2780 } 2781 } 2782 } 2783 2784 /* Now update the global location list to permanently delete the 2785 removed locations above. */ 2786 update_global_location_list (UGLL_DONT_INSERT); 2787 } 2788 2789 /* Make sure all breakpoints are inserted in inferior. 2790 Throws exception on any error. 2791 A breakpoint that is already inserted won't be inserted 2792 again, so calling this function twice is safe. */ 2793 void 2794 insert_breakpoints (void) 2795 { 2796 struct breakpoint *bpt; 2797 2798 ALL_BREAKPOINTS (bpt) 2799 if (is_hardware_watchpoint (bpt)) 2800 { 2801 struct watchpoint *w = (struct watchpoint *) bpt; 2802 2803 update_watchpoint (w, 0 /* don't reparse. */); 2804 } 2805 2806 /* Updating watchpoints creates new locations, so update the global 2807 location list. Explicitly tell ugll to insert locations and 2808 ignore breakpoints_always_inserted_mode. Also, 2809 update_global_location_list tries to "upgrade" software 2810 breakpoints to hardware breakpoints to handle "set breakpoint 2811 auto-hw", so we need to call it even if we don't have new 2812 locations. */ 2813 update_global_location_list (UGLL_INSERT); 2814 } 2815 2816 /* Invoke CALLBACK for each of bp_location. */ 2817 2818 void 2819 iterate_over_bp_locations (walk_bp_location_callback callback) 2820 { 2821 struct bp_location *loc, **loc_tmp; 2822 2823 ALL_BP_LOCATIONS (loc, loc_tmp) 2824 { 2825 callback (loc, NULL); 2826 } 2827 } 2828 2829 /* This is used when we need to synch breakpoint conditions between GDB and the 2830 target. It is the case with deleting and disabling of breakpoints when using 2831 always-inserted mode. */ 2832 2833 static void 2834 update_inserted_breakpoint_locations (void) 2835 { 2836 struct bp_location *bl, **blp_tmp; 2837 int error_flag = 0; 2838 int val = 0; 2839 int disabled_breaks = 0; 2840 int hw_breakpoint_error = 0; 2841 int hw_bp_details_reported = 0; 2842 2843 string_file tmp_error_stream; 2844 2845 /* Explicitly mark the warning -- this will only be printed if 2846 there was an error. */ 2847 tmp_error_stream.puts ("Warning:\n"); 2848 2849 scoped_restore_current_pspace_and_thread restore_pspace_thread; 2850 2851 ALL_BP_LOCATIONS (bl, blp_tmp) 2852 { 2853 /* We only want to update software breakpoints and hardware 2854 breakpoints. */ 2855 if (!is_breakpoint (bl->owner)) 2856 continue; 2857 2858 /* We only want to update locations that are already inserted 2859 and need updating. This is to avoid unwanted insertion during 2860 deletion of breakpoints. */ 2861 if (!bl->inserted || !bl->needs_update) 2862 continue; 2863 2864 switch_to_program_space_and_thread (bl->pspace); 2865 2866 /* For targets that support global breakpoints, there's no need 2867 to select an inferior to insert breakpoint to. In fact, even 2868 if we aren't attached to any process yet, we should still 2869 insert breakpoints. */ 2870 if (!gdbarch_has_global_breakpoints (target_gdbarch ()) 2871 && (inferior_ptid == null_ptid || !target_has_execution)) 2872 continue; 2873 2874 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks, 2875 &hw_breakpoint_error, &hw_bp_details_reported); 2876 if (val) 2877 error_flag = val; 2878 } 2879 2880 if (error_flag) 2881 { 2882 target_terminal::ours_for_output (); 2883 error_stream (tmp_error_stream); 2884 } 2885 } 2886 2887 /* Used when starting or continuing the program. */ 2888 2889 static void 2890 insert_breakpoint_locations (void) 2891 { 2892 struct breakpoint *bpt; 2893 struct bp_location *bl, **blp_tmp; 2894 int error_flag = 0; 2895 int val = 0; 2896 int disabled_breaks = 0; 2897 int hw_breakpoint_error = 0; 2898 int hw_bp_error_explained_already = 0; 2899 2900 string_file tmp_error_stream; 2901 2902 /* Explicitly mark the warning -- this will only be printed if 2903 there was an error. */ 2904 tmp_error_stream.puts ("Warning:\n"); 2905 2906 scoped_restore_current_pspace_and_thread restore_pspace_thread; 2907 2908 ALL_BP_LOCATIONS (bl, blp_tmp) 2909 { 2910 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update)) 2911 continue; 2912 2913 /* There is no point inserting thread-specific breakpoints if 2914 the thread no longer exists. ALL_BP_LOCATIONS bp_location 2915 has BL->OWNER always non-NULL. */ 2916 if (bl->owner->thread != -1 2917 && !valid_global_thread_id (bl->owner->thread)) 2918 continue; 2919 2920 switch_to_program_space_and_thread (bl->pspace); 2921 2922 /* For targets that support global breakpoints, there's no need 2923 to select an inferior to insert breakpoint to. In fact, even 2924 if we aren't attached to any process yet, we should still 2925 insert breakpoints. */ 2926 if (!gdbarch_has_global_breakpoints (target_gdbarch ()) 2927 && (inferior_ptid == null_ptid || !target_has_execution)) 2928 continue; 2929 2930 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks, 2931 &hw_breakpoint_error, &hw_bp_error_explained_already); 2932 if (val) 2933 error_flag = val; 2934 } 2935 2936 /* If we failed to insert all locations of a watchpoint, remove 2937 them, as half-inserted watchpoint is of limited use. */ 2938 ALL_BREAKPOINTS (bpt) 2939 { 2940 int some_failed = 0; 2941 struct bp_location *loc; 2942 2943 if (!is_hardware_watchpoint (bpt)) 2944 continue; 2945 2946 if (!breakpoint_enabled (bpt)) 2947 continue; 2948 2949 if (bpt->disposition == disp_del_at_next_stop) 2950 continue; 2951 2952 for (loc = bpt->loc; loc; loc = loc->next) 2953 if (!loc->inserted && should_be_inserted (loc)) 2954 { 2955 some_failed = 1; 2956 break; 2957 } 2958 if (some_failed) 2959 { 2960 for (loc = bpt->loc; loc; loc = loc->next) 2961 if (loc->inserted) 2962 remove_breakpoint (loc); 2963 2964 hw_breakpoint_error = 1; 2965 tmp_error_stream.printf ("Could not insert " 2966 "hardware watchpoint %d.\n", 2967 bpt->number); 2968 error_flag = -1; 2969 } 2970 } 2971 2972 if (error_flag) 2973 { 2974 /* If a hardware breakpoint or watchpoint was inserted, add a 2975 message about possibly exhausted resources. */ 2976 if (hw_breakpoint_error && !hw_bp_error_explained_already) 2977 { 2978 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\ 2979 You may have requested too many hardware breakpoints/watchpoints.\n"); 2980 } 2981 target_terminal::ours_for_output (); 2982 error_stream (tmp_error_stream); 2983 } 2984 } 2985 2986 /* Used when the program stops. 2987 Returns zero if successful, or non-zero if there was a problem 2988 removing a breakpoint location. */ 2989 2990 int 2991 remove_breakpoints (void) 2992 { 2993 struct bp_location *bl, **blp_tmp; 2994 int val = 0; 2995 2996 ALL_BP_LOCATIONS (bl, blp_tmp) 2997 { 2998 if (bl->inserted && !is_tracepoint (bl->owner)) 2999 val |= remove_breakpoint (bl); 3000 } 3001 return val; 3002 } 3003 3004 /* When a thread exits, remove breakpoints that are related to 3005 that thread. */ 3006 3007 static void 3008 remove_threaded_breakpoints (struct thread_info *tp, int silent) 3009 { 3010 struct breakpoint *b, *b_tmp; 3011 3012 ALL_BREAKPOINTS_SAFE (b, b_tmp) 3013 { 3014 if (b->thread == tp->global_num && user_breakpoint_p (b)) 3015 { 3016 b->disposition = disp_del_at_next_stop; 3017 3018 printf_filtered (_("\ 3019 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"), 3020 b->number, print_thread_id (tp)); 3021 3022 /* Hide it from the user. */ 3023 b->number = 0; 3024 } 3025 } 3026 } 3027 3028 /* See breakpoint.h. */ 3029 3030 void 3031 remove_breakpoints_inf (inferior *inf) 3032 { 3033 struct bp_location *bl, **blp_tmp; 3034 int val; 3035 3036 ALL_BP_LOCATIONS (bl, blp_tmp) 3037 { 3038 if (bl->pspace != inf->pspace) 3039 continue; 3040 3041 if (bl->inserted && !bl->target_info.persist) 3042 { 3043 val = remove_breakpoint (bl); 3044 if (val != 0) 3045 return; 3046 } 3047 } 3048 } 3049 3050 static int internal_breakpoint_number = -1; 3051 3052 /* Set the breakpoint number of B, depending on the value of INTERNAL. 3053 If INTERNAL is non-zero, the breakpoint number will be populated 3054 from internal_breakpoint_number and that variable decremented. 3055 Otherwise the breakpoint number will be populated from 3056 breakpoint_count and that value incremented. Internal breakpoints 3057 do not set the internal var bpnum. */ 3058 static void 3059 set_breakpoint_number (int internal, struct breakpoint *b) 3060 { 3061 if (internal) 3062 b->number = internal_breakpoint_number--; 3063 else 3064 { 3065 set_breakpoint_count (breakpoint_count + 1); 3066 b->number = breakpoint_count; 3067 } 3068 } 3069 3070 static struct breakpoint * 3071 create_internal_breakpoint (struct gdbarch *gdbarch, 3072 CORE_ADDR address, enum bptype type, 3073 const struct breakpoint_ops *ops) 3074 { 3075 symtab_and_line sal; 3076 sal.pc = address; 3077 sal.section = find_pc_overlay (sal.pc); 3078 sal.pspace = current_program_space; 3079 3080 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops); 3081 b->number = internal_breakpoint_number--; 3082 b->disposition = disp_donttouch; 3083 3084 return b; 3085 } 3086 3087 static const char *const longjmp_names[] = 3088 { 3089 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp" 3090 }; 3091 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names) 3092 3093 /* Per-objfile data private to breakpoint.c. */ 3094 struct breakpoint_objfile_data 3095 { 3096 /* Minimal symbol for "_ovly_debug_event" (if any). */ 3097 struct bound_minimal_symbol overlay_msym {}; 3098 3099 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */ 3100 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {}; 3101 3102 /* True if we have looked for longjmp probes. */ 3103 int longjmp_searched = 0; 3104 3105 /* SystemTap probe points for longjmp (if any). These are non-owning 3106 references. */ 3107 std::vector<probe *> longjmp_probes; 3108 3109 /* Minimal symbol for "std::terminate()" (if any). */ 3110 struct bound_minimal_symbol terminate_msym {}; 3111 3112 /* Minimal symbol for "_Unwind_DebugHook" (if any). */ 3113 struct bound_minimal_symbol exception_msym {}; 3114 3115 /* True if we have looked for exception probes. */ 3116 int exception_searched = 0; 3117 3118 /* SystemTap probe points for unwinding (if any). These are non-owning 3119 references. */ 3120 std::vector<probe *> exception_probes; 3121 }; 3122 3123 static const struct objfile_key<breakpoint_objfile_data> 3124 breakpoint_objfile_key; 3125 3126 /* Minimal symbol not found sentinel. */ 3127 static struct minimal_symbol msym_not_found; 3128 3129 /* Returns TRUE if MSYM point to the "not found" sentinel. */ 3130 3131 static int 3132 msym_not_found_p (const struct minimal_symbol *msym) 3133 { 3134 return msym == &msym_not_found; 3135 } 3136 3137 /* Return per-objfile data needed by breakpoint.c. 3138 Allocate the data if necessary. */ 3139 3140 static struct breakpoint_objfile_data * 3141 get_breakpoint_objfile_data (struct objfile *objfile) 3142 { 3143 struct breakpoint_objfile_data *bp_objfile_data; 3144 3145 bp_objfile_data = breakpoint_objfile_key.get (objfile); 3146 if (bp_objfile_data == NULL) 3147 bp_objfile_data = breakpoint_objfile_key.emplace (objfile); 3148 return bp_objfile_data; 3149 } 3150 3151 static void 3152 create_overlay_event_breakpoint (void) 3153 { 3154 const char *const func_name = "_ovly_debug_event"; 3155 3156 for (objfile *objfile : current_program_space->objfiles ()) 3157 { 3158 struct breakpoint *b; 3159 struct breakpoint_objfile_data *bp_objfile_data; 3160 CORE_ADDR addr; 3161 struct explicit_location explicit_loc; 3162 3163 bp_objfile_data = get_breakpoint_objfile_data (objfile); 3164 3165 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym)) 3166 continue; 3167 3168 if (bp_objfile_data->overlay_msym.minsym == NULL) 3169 { 3170 struct bound_minimal_symbol m; 3171 3172 m = lookup_minimal_symbol_text (func_name, objfile); 3173 if (m.minsym == NULL) 3174 { 3175 /* Avoid future lookups in this objfile. */ 3176 bp_objfile_data->overlay_msym.minsym = &msym_not_found; 3177 continue; 3178 } 3179 bp_objfile_data->overlay_msym = m; 3180 } 3181 3182 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym); 3183 b = create_internal_breakpoint (objfile->arch (), addr, 3184 bp_overlay_event, 3185 &internal_breakpoint_ops); 3186 initialize_explicit_location (&explicit_loc); 3187 explicit_loc.function_name = ASTRDUP (func_name); 3188 b->location = new_explicit_location (&explicit_loc); 3189 3190 if (overlay_debugging == ovly_auto) 3191 { 3192 b->enable_state = bp_enabled; 3193 overlay_events_enabled = 1; 3194 } 3195 else 3196 { 3197 b->enable_state = bp_disabled; 3198 overlay_events_enabled = 0; 3199 } 3200 } 3201 } 3202 3203 static void 3204 create_longjmp_master_breakpoint (void) 3205 { 3206 scoped_restore_current_program_space restore_pspace; 3207 3208 for (struct program_space *pspace : program_spaces) 3209 { 3210 set_current_program_space (pspace); 3211 3212 for (objfile *objfile : current_program_space->objfiles ()) 3213 { 3214 int i; 3215 struct gdbarch *gdbarch; 3216 struct breakpoint_objfile_data *bp_objfile_data; 3217 3218 gdbarch = objfile->arch (); 3219 3220 bp_objfile_data = get_breakpoint_objfile_data (objfile); 3221 3222 if (!bp_objfile_data->longjmp_searched) 3223 { 3224 std::vector<probe *> ret 3225 = find_probes_in_objfile (objfile, "libc", "longjmp"); 3226 3227 if (!ret.empty ()) 3228 { 3229 /* We are only interested in checking one element. */ 3230 probe *p = ret[0]; 3231 3232 if (!p->can_evaluate_arguments ()) 3233 { 3234 /* We cannot use the probe interface here, 3235 because it does not know how to evaluate 3236 arguments. */ 3237 ret.clear (); 3238 } 3239 } 3240 bp_objfile_data->longjmp_probes = ret; 3241 bp_objfile_data->longjmp_searched = 1; 3242 } 3243 3244 if (!bp_objfile_data->longjmp_probes.empty ()) 3245 { 3246 for (probe *p : bp_objfile_data->longjmp_probes) 3247 { 3248 struct breakpoint *b; 3249 3250 b = create_internal_breakpoint (gdbarch, 3251 p->get_relocated_address (objfile), 3252 bp_longjmp_master, 3253 &internal_breakpoint_ops); 3254 b->location = new_probe_location ("-probe-stap libc:longjmp"); 3255 b->enable_state = bp_disabled; 3256 } 3257 3258 continue; 3259 } 3260 3261 if (!gdbarch_get_longjmp_target_p (gdbarch)) 3262 continue; 3263 3264 for (i = 0; i < NUM_LONGJMP_NAMES; i++) 3265 { 3266 struct breakpoint *b; 3267 const char *func_name; 3268 CORE_ADDR addr; 3269 struct explicit_location explicit_loc; 3270 3271 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym)) 3272 continue; 3273 3274 func_name = longjmp_names[i]; 3275 if (bp_objfile_data->longjmp_msym[i].minsym == NULL) 3276 { 3277 struct bound_minimal_symbol m; 3278 3279 m = lookup_minimal_symbol_text (func_name, objfile); 3280 if (m.minsym == NULL) 3281 { 3282 /* Prevent future lookups in this objfile. */ 3283 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found; 3284 continue; 3285 } 3286 bp_objfile_data->longjmp_msym[i] = m; 3287 } 3288 3289 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]); 3290 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master, 3291 &internal_breakpoint_ops); 3292 initialize_explicit_location (&explicit_loc); 3293 explicit_loc.function_name = ASTRDUP (func_name); 3294 b->location = new_explicit_location (&explicit_loc); 3295 b->enable_state = bp_disabled; 3296 } 3297 } 3298 } 3299 } 3300 3301 /* Create a master std::terminate breakpoint. */ 3302 static void 3303 create_std_terminate_master_breakpoint (void) 3304 { 3305 const char *const func_name = "std::terminate()"; 3306 3307 scoped_restore_current_program_space restore_pspace; 3308 3309 for (struct program_space *pspace : program_spaces) 3310 { 3311 CORE_ADDR addr; 3312 3313 set_current_program_space (pspace); 3314 3315 for (objfile *objfile : current_program_space->objfiles ()) 3316 { 3317 struct breakpoint *b; 3318 struct breakpoint_objfile_data *bp_objfile_data; 3319 struct explicit_location explicit_loc; 3320 3321 bp_objfile_data = get_breakpoint_objfile_data (objfile); 3322 3323 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym)) 3324 continue; 3325 3326 if (bp_objfile_data->terminate_msym.minsym == NULL) 3327 { 3328 struct bound_minimal_symbol m; 3329 3330 m = lookup_minimal_symbol (func_name, NULL, objfile); 3331 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text 3332 && MSYMBOL_TYPE (m.minsym) != mst_file_text)) 3333 { 3334 /* Prevent future lookups in this objfile. */ 3335 bp_objfile_data->terminate_msym.minsym = &msym_not_found; 3336 continue; 3337 } 3338 bp_objfile_data->terminate_msym = m; 3339 } 3340 3341 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym); 3342 b = create_internal_breakpoint (objfile->arch (), addr, 3343 bp_std_terminate_master, 3344 &internal_breakpoint_ops); 3345 initialize_explicit_location (&explicit_loc); 3346 explicit_loc.function_name = ASTRDUP (func_name); 3347 b->location = new_explicit_location (&explicit_loc); 3348 b->enable_state = bp_disabled; 3349 } 3350 } 3351 } 3352 3353 /* Install a master breakpoint on the unwinder's debug hook. */ 3354 3355 static void 3356 create_exception_master_breakpoint (void) 3357 { 3358 const char *const func_name = "_Unwind_DebugHook"; 3359 3360 for (objfile *objfile : current_program_space->objfiles ()) 3361 { 3362 struct breakpoint *b; 3363 struct gdbarch *gdbarch; 3364 struct breakpoint_objfile_data *bp_objfile_data; 3365 CORE_ADDR addr; 3366 struct explicit_location explicit_loc; 3367 3368 bp_objfile_data = get_breakpoint_objfile_data (objfile); 3369 3370 /* We prefer the SystemTap probe point if it exists. */ 3371 if (!bp_objfile_data->exception_searched) 3372 { 3373 std::vector<probe *> ret 3374 = find_probes_in_objfile (objfile, "libgcc", "unwind"); 3375 3376 if (!ret.empty ()) 3377 { 3378 /* We are only interested in checking one element. */ 3379 probe *p = ret[0]; 3380 3381 if (!p->can_evaluate_arguments ()) 3382 { 3383 /* We cannot use the probe interface here, because it does 3384 not know how to evaluate arguments. */ 3385 ret.clear (); 3386 } 3387 } 3388 bp_objfile_data->exception_probes = ret; 3389 bp_objfile_data->exception_searched = 1; 3390 } 3391 3392 if (!bp_objfile_data->exception_probes.empty ()) 3393 { 3394 gdbarch = objfile->arch (); 3395 3396 for (probe *p : bp_objfile_data->exception_probes) 3397 { 3398 b = create_internal_breakpoint (gdbarch, 3399 p->get_relocated_address (objfile), 3400 bp_exception_master, 3401 &internal_breakpoint_ops); 3402 b->location = new_probe_location ("-probe-stap libgcc:unwind"); 3403 b->enable_state = bp_disabled; 3404 } 3405 3406 continue; 3407 } 3408 3409 /* Otherwise, try the hook function. */ 3410 3411 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym)) 3412 continue; 3413 3414 gdbarch = objfile->arch (); 3415 3416 if (bp_objfile_data->exception_msym.minsym == NULL) 3417 { 3418 struct bound_minimal_symbol debug_hook; 3419 3420 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile); 3421 if (debug_hook.minsym == NULL) 3422 { 3423 bp_objfile_data->exception_msym.minsym = &msym_not_found; 3424 continue; 3425 } 3426 3427 bp_objfile_data->exception_msym = debug_hook; 3428 } 3429 3430 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym); 3431 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, 3432 current_top_target ()); 3433 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master, 3434 &internal_breakpoint_ops); 3435 initialize_explicit_location (&explicit_loc); 3436 explicit_loc.function_name = ASTRDUP (func_name); 3437 b->location = new_explicit_location (&explicit_loc); 3438 b->enable_state = bp_disabled; 3439 } 3440 } 3441 3442 /* Does B have a location spec? */ 3443 3444 static int 3445 breakpoint_event_location_empty_p (const struct breakpoint *b) 3446 { 3447 return b->location != NULL && event_location_empty_p (b->location.get ()); 3448 } 3449 3450 void 3451 update_breakpoints_after_exec (void) 3452 { 3453 struct breakpoint *b, *b_tmp; 3454 struct bp_location *bploc, **bplocp_tmp; 3455 3456 /* We're about to delete breakpoints from GDB's lists. If the 3457 INSERTED flag is true, GDB will try to lift the breakpoints by 3458 writing the breakpoints' "shadow contents" back into memory. The 3459 "shadow contents" are NOT valid after an exec, so GDB should not 3460 do that. Instead, the target is responsible from marking 3461 breakpoints out as soon as it detects an exec. We don't do that 3462 here instead, because there may be other attempts to delete 3463 breakpoints after detecting an exec and before reaching here. */ 3464 ALL_BP_LOCATIONS (bploc, bplocp_tmp) 3465 if (bploc->pspace == current_program_space) 3466 gdb_assert (!bploc->inserted); 3467 3468 ALL_BREAKPOINTS_SAFE (b, b_tmp) 3469 { 3470 if (b->pspace != current_program_space) 3471 continue; 3472 3473 /* Solib breakpoints must be explicitly reset after an exec(). */ 3474 if (b->type == bp_shlib_event) 3475 { 3476 delete_breakpoint (b); 3477 continue; 3478 } 3479 3480 /* JIT breakpoints must be explicitly reset after an exec(). */ 3481 if (b->type == bp_jit_event) 3482 { 3483 delete_breakpoint (b); 3484 continue; 3485 } 3486 3487 /* Thread event breakpoints must be set anew after an exec(), 3488 as must overlay event and longjmp master breakpoints. */ 3489 if (b->type == bp_thread_event || b->type == bp_overlay_event 3490 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master 3491 || b->type == bp_exception_master) 3492 { 3493 delete_breakpoint (b); 3494 continue; 3495 } 3496 3497 /* Step-resume breakpoints are meaningless after an exec(). */ 3498 if (b->type == bp_step_resume || b->type == bp_hp_step_resume) 3499 { 3500 delete_breakpoint (b); 3501 continue; 3502 } 3503 3504 /* Just like single-step breakpoints. */ 3505 if (b->type == bp_single_step) 3506 { 3507 delete_breakpoint (b); 3508 continue; 3509 } 3510 3511 /* Longjmp and longjmp-resume breakpoints are also meaningless 3512 after an exec. */ 3513 if (b->type == bp_longjmp || b->type == bp_longjmp_resume 3514 || b->type == bp_longjmp_call_dummy 3515 || b->type == bp_exception || b->type == bp_exception_resume) 3516 { 3517 delete_breakpoint (b); 3518 continue; 3519 } 3520 3521 if (b->type == bp_catchpoint) 3522 { 3523 /* For now, none of the bp_catchpoint breakpoints need to 3524 do anything at this point. In the future, if some of 3525 the catchpoints need to something, we will need to add 3526 a new method, and call this method from here. */ 3527 continue; 3528 } 3529 3530 /* bp_finish is a special case. The only way we ought to be able 3531 to see one of these when an exec() has happened, is if the user 3532 caught a vfork, and then said "finish". Ordinarily a finish just 3533 carries them to the call-site of the current callee, by setting 3534 a temporary bp there and resuming. But in this case, the finish 3535 will carry them entirely through the vfork & exec. 3536 3537 We don't want to allow a bp_finish to remain inserted now. But 3538 we can't safely delete it, 'cause finish_command has a handle to 3539 the bp on a bpstat, and will later want to delete it. There's a 3540 chance (and I've seen it happen) that if we delete the bp_finish 3541 here, that its storage will get reused by the time finish_command 3542 gets 'round to deleting the "use to be a bp_finish" breakpoint. 3543 We really must allow finish_command to delete a bp_finish. 3544 3545 In the absence of a general solution for the "how do we know 3546 it's safe to delete something others may have handles to?" 3547 problem, what we'll do here is just uninsert the bp_finish, and 3548 let finish_command delete it. 3549 3550 (We know the bp_finish is "doomed" in the sense that it's 3551 momentary, and will be deleted as soon as finish_command sees 3552 the inferior stopped. So it doesn't matter that the bp's 3553 address is probably bogus in the new a.out, unlike e.g., the 3554 solib breakpoints.) */ 3555 3556 if (b->type == bp_finish) 3557 { 3558 continue; 3559 } 3560 3561 /* Without a symbolic address, we have little hope of the 3562 pre-exec() address meaning the same thing in the post-exec() 3563 a.out. */ 3564 if (breakpoint_event_location_empty_p (b)) 3565 { 3566 delete_breakpoint (b); 3567 continue; 3568 } 3569 } 3570 } 3571 3572 int 3573 detach_breakpoints (ptid_t ptid) 3574 { 3575 struct bp_location *bl, **blp_tmp; 3576 int val = 0; 3577 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); 3578 struct inferior *inf = current_inferior (); 3579 3580 if (ptid.pid () == inferior_ptid.pid ()) 3581 error (_("Cannot detach breakpoints of inferior_ptid")); 3582 3583 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */ 3584 inferior_ptid = ptid; 3585 ALL_BP_LOCATIONS (bl, blp_tmp) 3586 { 3587 if (bl->pspace != inf->pspace) 3588 continue; 3589 3590 /* This function must physically remove breakpoints locations 3591 from the specified ptid, without modifying the breakpoint 3592 package's state. Locations of type bp_loc_other are only 3593 maintained at GDB side. So, there is no need to remove 3594 these bp_loc_other locations. Moreover, removing these 3595 would modify the breakpoint package's state. */ 3596 if (bl->loc_type == bp_loc_other) 3597 continue; 3598 3599 if (bl->inserted) 3600 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT); 3601 } 3602 3603 return val; 3604 } 3605 3606 /* Remove the breakpoint location BL from the current address space. 3607 Note that this is used to detach breakpoints from a child fork. 3608 When we get here, the child isn't in the inferior list, and neither 3609 do we have objects to represent its address space --- we should 3610 *not* look at bl->pspace->aspace here. */ 3611 3612 static int 3613 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason) 3614 { 3615 int val; 3616 3617 /* BL is never in moribund_locations by our callers. */ 3618 gdb_assert (bl->owner != NULL); 3619 3620 /* The type of none suggests that owner is actually deleted. 3621 This should not ever happen. */ 3622 gdb_assert (bl->owner->type != bp_none); 3623 3624 if (bl->loc_type == bp_loc_software_breakpoint 3625 || bl->loc_type == bp_loc_hardware_breakpoint) 3626 { 3627 /* "Normal" instruction breakpoint: either the standard 3628 trap-instruction bp (bp_breakpoint), or a 3629 bp_hardware_breakpoint. */ 3630 3631 /* First check to see if we have to handle an overlay. */ 3632 if (overlay_debugging == ovly_off 3633 || bl->section == NULL 3634 || !(section_is_overlay (bl->section))) 3635 { 3636 /* No overlay handling: just remove the breakpoint. */ 3637 3638 /* If we're trying to uninsert a memory breakpoint that we 3639 know is set in a dynamic object that is marked 3640 shlib_disabled, then either the dynamic object was 3641 removed with "remove-symbol-file" or with 3642 "nosharedlibrary". In the former case, we don't know 3643 whether another dynamic object might have loaded over the 3644 breakpoint's address -- the user might well let us know 3645 about it next with add-symbol-file (the whole point of 3646 add-symbol-file is letting the user manually maintain a 3647 list of dynamically loaded objects). If we have the 3648 breakpoint's shadow memory, that is, this is a software 3649 breakpoint managed by GDB, check whether the breakpoint 3650 is still inserted in memory, to avoid overwriting wrong 3651 code with stale saved shadow contents. Note that HW 3652 breakpoints don't have shadow memory, as they're 3653 implemented using a mechanism that is not dependent on 3654 being able to modify the target's memory, and as such 3655 they should always be removed. */ 3656 if (bl->shlib_disabled 3657 && bl->target_info.shadow_len != 0 3658 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info)) 3659 val = 0; 3660 else 3661 val = bl->owner->ops->remove_location (bl, reason); 3662 } 3663 else 3664 { 3665 /* This breakpoint is in an overlay section. 3666 Did we set a breakpoint at the LMA? */ 3667 if (!overlay_events_enabled) 3668 { 3669 /* Yes -- overlay event support is not active, so we 3670 should have set a breakpoint at the LMA. Remove it. 3671 */ 3672 /* Ignore any failures: if the LMA is in ROM, we will 3673 have already warned when we failed to insert it. */ 3674 if (bl->loc_type == bp_loc_hardware_breakpoint) 3675 target_remove_hw_breakpoint (bl->gdbarch, 3676 &bl->overlay_target_info); 3677 else 3678 target_remove_breakpoint (bl->gdbarch, 3679 &bl->overlay_target_info, 3680 reason); 3681 } 3682 /* Did we set a breakpoint at the VMA? 3683 If so, we will have marked the breakpoint 'inserted'. */ 3684 if (bl->inserted) 3685 { 3686 /* Yes -- remove it. Previously we did not bother to 3687 remove the breakpoint if the section had been 3688 unmapped, but let's not rely on that being safe. We 3689 don't know what the overlay manager might do. */ 3690 3691 /* However, we should remove *software* breakpoints only 3692 if the section is still mapped, or else we overwrite 3693 wrong code with the saved shadow contents. */ 3694 if (bl->loc_type == bp_loc_hardware_breakpoint 3695 || section_is_mapped (bl->section)) 3696 val = bl->owner->ops->remove_location (bl, reason); 3697 else 3698 val = 0; 3699 } 3700 else 3701 { 3702 /* No -- not inserted, so no need to remove. No error. */ 3703 val = 0; 3704 } 3705 } 3706 3707 /* In some cases, we might not be able to remove a breakpoint in 3708 a shared library that has already been removed, but we have 3709 not yet processed the shlib unload event. Similarly for an 3710 unloaded add-symbol-file object - the user might not yet have 3711 had the chance to remove-symbol-file it. shlib_disabled will 3712 be set if the library/object has already been removed, but 3713 the breakpoint hasn't been uninserted yet, e.g., after 3714 "nosharedlibrary" or "remove-symbol-file" with breakpoints 3715 always-inserted mode. */ 3716 if (val 3717 && (bl->loc_type == bp_loc_software_breakpoint 3718 && (bl->shlib_disabled 3719 || solib_name_from_address (bl->pspace, bl->address) 3720 || shared_objfile_contains_address_p (bl->pspace, 3721 bl->address)))) 3722 val = 0; 3723 3724 if (val) 3725 return val; 3726 bl->inserted = (reason == DETACH_BREAKPOINT); 3727 } 3728 else if (bl->loc_type == bp_loc_hardware_watchpoint) 3729 { 3730 gdb_assert (bl->owner->ops != NULL 3731 && bl->owner->ops->remove_location != NULL); 3732 3733 bl->inserted = (reason == DETACH_BREAKPOINT); 3734 bl->owner->ops->remove_location (bl, reason); 3735 3736 /* Failure to remove any of the hardware watchpoints comes here. */ 3737 if (reason == REMOVE_BREAKPOINT && bl->inserted) 3738 warning (_("Could not remove hardware watchpoint %d."), 3739 bl->owner->number); 3740 } 3741 else if (bl->owner->type == bp_catchpoint 3742 && breakpoint_enabled (bl->owner) 3743 && !bl->duplicate) 3744 { 3745 gdb_assert (bl->owner->ops != NULL 3746 && bl->owner->ops->remove_location != NULL); 3747 3748 val = bl->owner->ops->remove_location (bl, reason); 3749 if (val) 3750 return val; 3751 3752 bl->inserted = (reason == DETACH_BREAKPOINT); 3753 } 3754 3755 return 0; 3756 } 3757 3758 static int 3759 remove_breakpoint (struct bp_location *bl) 3760 { 3761 /* BL is never in moribund_locations by our callers. */ 3762 gdb_assert (bl->owner != NULL); 3763 3764 /* The type of none suggests that owner is actually deleted. 3765 This should not ever happen. */ 3766 gdb_assert (bl->owner->type != bp_none); 3767 3768 scoped_restore_current_pspace_and_thread restore_pspace_thread; 3769 3770 switch_to_program_space_and_thread (bl->pspace); 3771 3772 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT); 3773 } 3774 3775 /* Clear the "inserted" flag in all breakpoints. */ 3776 3777 void 3778 mark_breakpoints_out (void) 3779 { 3780 struct bp_location *bl, **blp_tmp; 3781 3782 ALL_BP_LOCATIONS (bl, blp_tmp) 3783 if (bl->pspace == current_program_space) 3784 bl->inserted = 0; 3785 } 3786 3787 /* Clear the "inserted" flag in all breakpoints and delete any 3788 breakpoints which should go away between runs of the program. 3789 3790 Plus other such housekeeping that has to be done for breakpoints 3791 between runs. 3792 3793 Note: this function gets called at the end of a run (by 3794 generic_mourn_inferior) and when a run begins (by 3795 init_wait_for_inferior). */ 3796 3797 3798 3799 void 3800 breakpoint_init_inferior (enum inf_context context) 3801 { 3802 struct breakpoint *b, *b_tmp; 3803 struct program_space *pspace = current_program_space; 3804 3805 /* If breakpoint locations are shared across processes, then there's 3806 nothing to do. */ 3807 if (gdbarch_has_global_breakpoints (target_gdbarch ())) 3808 return; 3809 3810 mark_breakpoints_out (); 3811 3812 ALL_BREAKPOINTS_SAFE (b, b_tmp) 3813 { 3814 if (b->loc && b->loc->pspace != pspace) 3815 continue; 3816 3817 switch (b->type) 3818 { 3819 case bp_call_dummy: 3820 case bp_longjmp_call_dummy: 3821 3822 /* If the call dummy breakpoint is at the entry point it will 3823 cause problems when the inferior is rerun, so we better get 3824 rid of it. */ 3825 3826 case bp_watchpoint_scope: 3827 3828 /* Also get rid of scope breakpoints. */ 3829 3830 case bp_shlib_event: 3831 3832 /* Also remove solib event breakpoints. Their addresses may 3833 have changed since the last time we ran the program. 3834 Actually we may now be debugging against different target; 3835 and so the solib backend that installed this breakpoint may 3836 not be used in by the target. E.g., 3837 3838 (gdb) file prog-linux 3839 (gdb) run # native linux target 3840 ... 3841 (gdb) kill 3842 (gdb) file prog-win.exe 3843 (gdb) tar rem :9999 # remote Windows gdbserver. 3844 */ 3845 3846 case bp_step_resume: 3847 3848 /* Also remove step-resume breakpoints. */ 3849 3850 case bp_single_step: 3851 3852 /* Also remove single-step breakpoints. */ 3853 3854 delete_breakpoint (b); 3855 break; 3856 3857 case bp_watchpoint: 3858 case bp_hardware_watchpoint: 3859 case bp_read_watchpoint: 3860 case bp_access_watchpoint: 3861 { 3862 struct watchpoint *w = (struct watchpoint *) b; 3863 3864 /* Likewise for watchpoints on local expressions. */ 3865 if (w->exp_valid_block != NULL) 3866 delete_breakpoint (b); 3867 else 3868 { 3869 /* Get rid of existing locations, which are no longer 3870 valid. New ones will be created in 3871 update_watchpoint, when the inferior is restarted. 3872 The next update_global_location_list call will 3873 garbage collect them. */ 3874 b->loc = NULL; 3875 3876 if (context == inf_starting) 3877 { 3878 /* Reset val field to force reread of starting value in 3879 insert_breakpoints. */ 3880 w->val.reset (nullptr); 3881 w->val_valid = false; 3882 } 3883 } 3884 } 3885 break; 3886 default: 3887 break; 3888 } 3889 } 3890 3891 /* Get rid of the moribund locations. */ 3892 for (bp_location *bl : moribund_locations) 3893 decref_bp_location (&bl); 3894 moribund_locations.clear (); 3895 } 3896 3897 /* These functions concern about actual breakpoints inserted in the 3898 target --- to e.g. check if we need to do decr_pc adjustment or if 3899 we need to hop over the bkpt --- so we check for address space 3900 match, not program space. */ 3901 3902 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint 3903 exists at PC. It returns ordinary_breakpoint_here if it's an 3904 ordinary breakpoint, or permanent_breakpoint_here if it's a 3905 permanent breakpoint. 3906 - When continuing from a location with an ordinary breakpoint, we 3907 actually single step once before calling insert_breakpoints. 3908 - When continuing from a location with a permanent breakpoint, we 3909 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by 3910 the target, to advance the PC past the breakpoint. */ 3911 3912 enum breakpoint_here 3913 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc) 3914 { 3915 struct bp_location *bl, **blp_tmp; 3916 int any_breakpoint_here = 0; 3917 3918 ALL_BP_LOCATIONS (bl, blp_tmp) 3919 { 3920 if (bl->loc_type != bp_loc_software_breakpoint 3921 && bl->loc_type != bp_loc_hardware_breakpoint) 3922 continue; 3923 3924 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */ 3925 if ((breakpoint_enabled (bl->owner) 3926 || bl->permanent) 3927 && breakpoint_location_address_match (bl, aspace, pc)) 3928 { 3929 if (overlay_debugging 3930 && section_is_overlay (bl->section) 3931 && !section_is_mapped (bl->section)) 3932 continue; /* unmapped overlay -- can't be a match */ 3933 else if (bl->permanent) 3934 return permanent_breakpoint_here; 3935 else 3936 any_breakpoint_here = 1; 3937 } 3938 } 3939 3940 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here; 3941 } 3942 3943 /* See breakpoint.h. */ 3944 3945 int 3946 breakpoint_in_range_p (const address_space *aspace, 3947 CORE_ADDR addr, ULONGEST len) 3948 { 3949 struct bp_location *bl, **blp_tmp; 3950 3951 ALL_BP_LOCATIONS (bl, blp_tmp) 3952 { 3953 if (bl->loc_type != bp_loc_software_breakpoint 3954 && bl->loc_type != bp_loc_hardware_breakpoint) 3955 continue; 3956 3957 if ((breakpoint_enabled (bl->owner) 3958 || bl->permanent) 3959 && breakpoint_location_address_range_overlap (bl, aspace, 3960 addr, len)) 3961 { 3962 if (overlay_debugging 3963 && section_is_overlay (bl->section) 3964 && !section_is_mapped (bl->section)) 3965 { 3966 /* Unmapped overlay -- can't be a match. */ 3967 continue; 3968 } 3969 3970 return 1; 3971 } 3972 } 3973 3974 return 0; 3975 } 3976 3977 /* Return true if there's a moribund breakpoint at PC. */ 3978 3979 int 3980 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc) 3981 { 3982 for (bp_location *loc : moribund_locations) 3983 if (breakpoint_location_address_match (loc, aspace, pc)) 3984 return 1; 3985 3986 return 0; 3987 } 3988 3989 /* Returns non-zero iff BL is inserted at PC, in address space 3990 ASPACE. */ 3991 3992 static int 3993 bp_location_inserted_here_p (struct bp_location *bl, 3994 const address_space *aspace, CORE_ADDR pc) 3995 { 3996 if (bl->inserted 3997 && breakpoint_address_match (bl->pspace->aspace, bl->address, 3998 aspace, pc)) 3999 { 4000 if (overlay_debugging 4001 && section_is_overlay (bl->section) 4002 && !section_is_mapped (bl->section)) 4003 return 0; /* unmapped overlay -- can't be a match */ 4004 else 4005 return 1; 4006 } 4007 return 0; 4008 } 4009 4010 /* Returns non-zero iff there's a breakpoint inserted at PC. */ 4011 4012 int 4013 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc) 4014 { 4015 struct bp_location **blp, **blp_tmp = NULL; 4016 4017 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc) 4018 { 4019 struct bp_location *bl = *blp; 4020 4021 if (bl->loc_type != bp_loc_software_breakpoint 4022 && bl->loc_type != bp_loc_hardware_breakpoint) 4023 continue; 4024 4025 if (bp_location_inserted_here_p (bl, aspace, pc)) 4026 return 1; 4027 } 4028 return 0; 4029 } 4030 4031 /* This function returns non-zero iff there is a software breakpoint 4032 inserted at PC. */ 4033 4034 int 4035 software_breakpoint_inserted_here_p (const address_space *aspace, 4036 CORE_ADDR pc) 4037 { 4038 struct bp_location **blp, **blp_tmp = NULL; 4039 4040 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc) 4041 { 4042 struct bp_location *bl = *blp; 4043 4044 if (bl->loc_type != bp_loc_software_breakpoint) 4045 continue; 4046 4047 if (bp_location_inserted_here_p (bl, aspace, pc)) 4048 return 1; 4049 } 4050 4051 return 0; 4052 } 4053 4054 /* See breakpoint.h. */ 4055 4056 int 4057 hardware_breakpoint_inserted_here_p (const address_space *aspace, 4058 CORE_ADDR pc) 4059 { 4060 struct bp_location **blp, **blp_tmp = NULL; 4061 4062 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc) 4063 { 4064 struct bp_location *bl = *blp; 4065 4066 if (bl->loc_type != bp_loc_hardware_breakpoint) 4067 continue; 4068 4069 if (bp_location_inserted_here_p (bl, aspace, pc)) 4070 return 1; 4071 } 4072 4073 return 0; 4074 } 4075 4076 int 4077 hardware_watchpoint_inserted_in_range (const address_space *aspace, 4078 CORE_ADDR addr, ULONGEST len) 4079 { 4080 struct breakpoint *bpt; 4081 4082 ALL_BREAKPOINTS (bpt) 4083 { 4084 struct bp_location *loc; 4085 4086 if (bpt->type != bp_hardware_watchpoint 4087 && bpt->type != bp_access_watchpoint) 4088 continue; 4089 4090 if (!breakpoint_enabled (bpt)) 4091 continue; 4092 4093 for (loc = bpt->loc; loc; loc = loc->next) 4094 if (loc->pspace->aspace == aspace && loc->inserted) 4095 { 4096 CORE_ADDR l, h; 4097 4098 /* Check for intersection. */ 4099 l = std::max<CORE_ADDR> (loc->address, addr); 4100 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len); 4101 if (l < h) 4102 return 1; 4103 } 4104 } 4105 return 0; 4106 } 4107 4108 /* See breakpoint.h. */ 4109 4110 bool 4111 is_catchpoint (struct breakpoint *b) 4112 { 4113 return (b->type == bp_catchpoint); 4114 } 4115 4116 /* Frees any storage that is part of a bpstat. Does not walk the 4117 'next' chain. */ 4118 4119 bpstats::~bpstats () 4120 { 4121 if (bp_location_at != NULL) 4122 decref_bp_location (&bp_location_at); 4123 } 4124 4125 /* Clear a bpstat so that it says we are not at any breakpoint. 4126 Also free any storage that is part of a bpstat. */ 4127 4128 void 4129 bpstat_clear (bpstat *bsp) 4130 { 4131 bpstat p; 4132 bpstat q; 4133 4134 if (bsp == 0) 4135 return; 4136 p = *bsp; 4137 while (p != NULL) 4138 { 4139 q = p->next; 4140 delete p; 4141 p = q; 4142 } 4143 *bsp = NULL; 4144 } 4145 4146 bpstats::bpstats (const bpstats &other) 4147 : next (NULL), 4148 bp_location_at (other.bp_location_at), 4149 breakpoint_at (other.breakpoint_at), 4150 commands (other.commands), 4151 print (other.print), 4152 stop (other.stop), 4153 print_it (other.print_it) 4154 { 4155 if (other.old_val != NULL) 4156 old_val = release_value (value_copy (other.old_val.get ())); 4157 incref_bp_location (bp_location_at); 4158 } 4159 4160 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that 4161 is part of the bpstat is copied as well. */ 4162 4163 bpstat 4164 bpstat_copy (bpstat bs) 4165 { 4166 bpstat p = NULL; 4167 bpstat tmp; 4168 bpstat retval = NULL; 4169 4170 if (bs == NULL) 4171 return bs; 4172 4173 for (; bs != NULL; bs = bs->next) 4174 { 4175 tmp = new bpstats (*bs); 4176 4177 if (p == NULL) 4178 /* This is the first thing in the chain. */ 4179 retval = tmp; 4180 else 4181 p->next = tmp; 4182 p = tmp; 4183 } 4184 p->next = NULL; 4185 return retval; 4186 } 4187 4188 /* Find the bpstat associated with this breakpoint. */ 4189 4190 bpstat 4191 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint) 4192 { 4193 if (bsp == NULL) 4194 return NULL; 4195 4196 for (; bsp != NULL; bsp = bsp->next) 4197 { 4198 if (bsp->breakpoint_at == breakpoint) 4199 return bsp; 4200 } 4201 return NULL; 4202 } 4203 4204 /* See breakpoint.h. */ 4205 4206 bool 4207 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig) 4208 { 4209 for (; bsp != NULL; bsp = bsp->next) 4210 { 4211 if (bsp->breakpoint_at == NULL) 4212 { 4213 /* A moribund location can never explain a signal other than 4214 GDB_SIGNAL_TRAP. */ 4215 if (sig == GDB_SIGNAL_TRAP) 4216 return true; 4217 } 4218 else 4219 { 4220 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at, 4221 sig)) 4222 return true; 4223 } 4224 } 4225 4226 return false; 4227 } 4228 4229 /* Put in *NUM the breakpoint number of the first breakpoint we are 4230 stopped at. *BSP upon return is a bpstat which points to the 4231 remaining breakpoints stopped at (but which is not guaranteed to be 4232 good for anything but further calls to bpstat_num). 4233 4234 Return 0 if passed a bpstat which does not indicate any breakpoints. 4235 Return -1 if stopped at a breakpoint that has been deleted since 4236 we set it. 4237 Return 1 otherwise. */ 4238 4239 int 4240 bpstat_num (bpstat *bsp, int *num) 4241 { 4242 struct breakpoint *b; 4243 4244 if ((*bsp) == NULL) 4245 return 0; /* No more breakpoint values */ 4246 4247 /* We assume we'll never have several bpstats that correspond to a 4248 single breakpoint -- otherwise, this function might return the 4249 same number more than once and this will look ugly. */ 4250 b = (*bsp)->breakpoint_at; 4251 *bsp = (*bsp)->next; 4252 if (b == NULL) 4253 return -1; /* breakpoint that's been deleted since */ 4254 4255 *num = b->number; /* We have its number */ 4256 return 1; 4257 } 4258 4259 /* See breakpoint.h. */ 4260 4261 void 4262 bpstat_clear_actions (void) 4263 { 4264 bpstat bs; 4265 4266 if (inferior_ptid == null_ptid) 4267 return; 4268 4269 thread_info *tp = inferior_thread (); 4270 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next) 4271 { 4272 bs->commands = NULL; 4273 bs->old_val.reset (nullptr); 4274 } 4275 } 4276 4277 /* Called when a command is about to proceed the inferior. */ 4278 4279 static void 4280 breakpoint_about_to_proceed (void) 4281 { 4282 if (inferior_ptid != null_ptid) 4283 { 4284 struct thread_info *tp = inferior_thread (); 4285 4286 /* Allow inferior function calls in breakpoint commands to not 4287 interrupt the command list. When the call finishes 4288 successfully, the inferior will be standing at the same 4289 breakpoint as if nothing happened. */ 4290 if (tp->control.in_infcall) 4291 return; 4292 } 4293 4294 breakpoint_proceeded = 1; 4295 } 4296 4297 /* Return non-zero iff CMD as the first line of a command sequence is `silent' 4298 or its equivalent. */ 4299 4300 static int 4301 command_line_is_silent (struct command_line *cmd) 4302 { 4303 return cmd && (strcmp ("silent", cmd->line) == 0); 4304 } 4305 4306 /* Execute all the commands associated with all the breakpoints at 4307 this location. Any of these commands could cause the process to 4308 proceed beyond this point, etc. We look out for such changes by 4309 checking the global "breakpoint_proceeded" after each command. 4310 4311 Returns true if a breakpoint command resumed the inferior. In that 4312 case, it is the caller's responsibility to recall it again with the 4313 bpstat of the current thread. */ 4314 4315 static int 4316 bpstat_do_actions_1 (bpstat *bsp) 4317 { 4318 bpstat bs; 4319 int again = 0; 4320 4321 /* Avoid endless recursion if a `source' command is contained 4322 in bs->commands. */ 4323 if (executing_breakpoint_commands) 4324 return 0; 4325 4326 scoped_restore save_executing 4327 = make_scoped_restore (&executing_breakpoint_commands, 1); 4328 4329 scoped_restore preventer = prevent_dont_repeat (); 4330 4331 /* This pointer will iterate over the list of bpstat's. */ 4332 bs = *bsp; 4333 4334 breakpoint_proceeded = 0; 4335 for (; bs != NULL; bs = bs->next) 4336 { 4337 struct command_line *cmd = NULL; 4338 4339 /* Take ownership of the BSP's command tree, if it has one. 4340 4341 The command tree could legitimately contain commands like 4342 'step' and 'next', which call clear_proceed_status, which 4343 frees stop_bpstat's command tree. To make sure this doesn't 4344 free the tree we're executing out from under us, we need to 4345 take ownership of the tree ourselves. Since a given bpstat's 4346 commands are only executed once, we don't need to copy it; we 4347 can clear the pointer in the bpstat, and make sure we free 4348 the tree when we're done. */ 4349 counted_command_line ccmd = bs->commands; 4350 bs->commands = NULL; 4351 if (ccmd != NULL) 4352 cmd = ccmd.get (); 4353 if (command_line_is_silent (cmd)) 4354 { 4355 /* The action has been already done by bpstat_stop_status. */ 4356 cmd = cmd->next; 4357 } 4358 4359 while (cmd != NULL) 4360 { 4361 execute_control_command (cmd); 4362 4363 if (breakpoint_proceeded) 4364 break; 4365 else 4366 cmd = cmd->next; 4367 } 4368 4369 if (breakpoint_proceeded) 4370 { 4371 if (current_ui->async) 4372 /* If we are in async mode, then the target might be still 4373 running, not stopped at any breakpoint, so nothing for 4374 us to do here -- just return to the event loop. */ 4375 ; 4376 else 4377 /* In sync mode, when execute_control_command returns 4378 we're already standing on the next breakpoint. 4379 Breakpoint commands for that stop were not run, since 4380 execute_command does not run breakpoint commands -- 4381 only command_line_handler does, but that one is not 4382 involved in execution of breakpoint commands. So, we 4383 can now execute breakpoint commands. It should be 4384 noted that making execute_command do bpstat actions is 4385 not an option -- in this case we'll have recursive 4386 invocation of bpstat for each breakpoint with a 4387 command, and can easily blow up GDB stack. Instead, we 4388 return true, which will trigger the caller to recall us 4389 with the new stop_bpstat. */ 4390 again = 1; 4391 break; 4392 } 4393 } 4394 return again; 4395 } 4396 4397 /* Helper for bpstat_do_actions. Get the current thread, if there's 4398 one, is alive and has execution. Return NULL otherwise. */ 4399 4400 static thread_info * 4401 get_bpstat_thread () 4402 { 4403 if (inferior_ptid == null_ptid || !target_has_execution) 4404 return NULL; 4405 4406 thread_info *tp = inferior_thread (); 4407 if (tp->state == THREAD_EXITED || tp->executing) 4408 return NULL; 4409 return tp; 4410 } 4411 4412 void 4413 bpstat_do_actions (void) 4414 { 4415 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions); 4416 thread_info *tp; 4417 4418 /* Do any commands attached to breakpoint we are stopped at. */ 4419 while ((tp = get_bpstat_thread ()) != NULL) 4420 { 4421 /* Since in sync mode, bpstat_do_actions may resume the 4422 inferior, and only return when it is stopped at the next 4423 breakpoint, we keep doing breakpoint actions until it returns 4424 false to indicate the inferior was not resumed. */ 4425 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat)) 4426 break; 4427 } 4428 4429 cleanup_if_error.release (); 4430 } 4431 4432 /* Print out the (old or new) value associated with a watchpoint. */ 4433 4434 static void 4435 watchpoint_value_print (struct value *val, struct ui_file *stream) 4436 { 4437 if (val == NULL) 4438 fprintf_styled (stream, metadata_style.style (), _("<unreadable>")); 4439 else 4440 { 4441 struct value_print_options opts; 4442 get_user_print_options (&opts); 4443 value_print (val, stream, &opts); 4444 } 4445 } 4446 4447 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if 4448 debugging multiple threads. */ 4449 4450 void 4451 maybe_print_thread_hit_breakpoint (struct ui_out *uiout) 4452 { 4453 if (uiout->is_mi_like_p ()) 4454 return; 4455 4456 uiout->text ("\n"); 4457 4458 if (show_thread_that_caused_stop ()) 4459 { 4460 const char *name; 4461 struct thread_info *thr = inferior_thread (); 4462 4463 uiout->text ("Thread "); 4464 uiout->field_string ("thread-id", print_thread_id (thr)); 4465 4466 name = thr->name != NULL ? thr->name : target_thread_name (thr); 4467 if (name != NULL) 4468 { 4469 uiout->text (" \""); 4470 uiout->field_string ("name", name); 4471 uiout->text ("\""); 4472 } 4473 4474 uiout->text (" hit "); 4475 } 4476 } 4477 4478 /* Generic routine for printing messages indicating why we 4479 stopped. The behavior of this function depends on the value 4480 'print_it' in the bpstat structure. Under some circumstances we 4481 may decide not to print anything here and delegate the task to 4482 normal_stop(). */ 4483 4484 static enum print_stop_action 4485 print_bp_stop_message (bpstat bs) 4486 { 4487 switch (bs->print_it) 4488 { 4489 case print_it_noop: 4490 /* Nothing should be printed for this bpstat entry. */ 4491 return PRINT_UNKNOWN; 4492 break; 4493 4494 case print_it_done: 4495 /* We still want to print the frame, but we already printed the 4496 relevant messages. */ 4497 return PRINT_SRC_AND_LOC; 4498 break; 4499 4500 case print_it_normal: 4501 { 4502 struct breakpoint *b = bs->breakpoint_at; 4503 4504 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint 4505 which has since been deleted. */ 4506 if (b == NULL) 4507 return PRINT_UNKNOWN; 4508 4509 /* Normal case. Call the breakpoint's print_it method. */ 4510 return b->ops->print_it (bs); 4511 } 4512 break; 4513 4514 default: 4515 internal_error (__FILE__, __LINE__, 4516 _("print_bp_stop_message: unrecognized enum value")); 4517 break; 4518 } 4519 } 4520 4521 /* A helper function that prints a shared library stopped event. */ 4522 4523 static void 4524 print_solib_event (int is_catchpoint) 4525 { 4526 bool any_deleted = !current_program_space->deleted_solibs.empty (); 4527 bool any_added = !current_program_space->added_solibs.empty (); 4528 4529 if (!is_catchpoint) 4530 { 4531 if (any_added || any_deleted) 4532 current_uiout->text (_("Stopped due to shared library event:\n")); 4533 else 4534 current_uiout->text (_("Stopped due to shared library event (no " 4535 "libraries added or removed)\n")); 4536 } 4537 4538 if (current_uiout->is_mi_like_p ()) 4539 current_uiout->field_string ("reason", 4540 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT)); 4541 4542 if (any_deleted) 4543 { 4544 current_uiout->text (_(" Inferior unloaded ")); 4545 ui_out_emit_list list_emitter (current_uiout, "removed"); 4546 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++) 4547 { 4548 const std::string &name = current_program_space->deleted_solibs[ix]; 4549 4550 if (ix > 0) 4551 current_uiout->text (" "); 4552 current_uiout->field_string ("library", name); 4553 current_uiout->text ("\n"); 4554 } 4555 } 4556 4557 if (any_added) 4558 { 4559 current_uiout->text (_(" Inferior loaded ")); 4560 ui_out_emit_list list_emitter (current_uiout, "added"); 4561 bool first = true; 4562 for (so_list *iter : current_program_space->added_solibs) 4563 { 4564 if (!first) 4565 current_uiout->text (" "); 4566 first = false; 4567 current_uiout->field_string ("library", iter->so_name); 4568 current_uiout->text ("\n"); 4569 } 4570 } 4571 } 4572 4573 /* Print a message indicating what happened. This is called from 4574 normal_stop(). The input to this routine is the head of the bpstat 4575 list - a list of the eventpoints that caused this stop. KIND is 4576 the target_waitkind for the stopping event. This 4577 routine calls the generic print routine for printing a message 4578 about reasons for stopping. This will print (for example) the 4579 "Breakpoint n," part of the output. The return value of this 4580 routine is one of: 4581 4582 PRINT_UNKNOWN: Means we printed nothing. 4583 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent 4584 code to print the location. An example is 4585 "Breakpoint 1, " which should be followed by 4586 the location. 4587 PRINT_SRC_ONLY: Means we printed something, but there is no need 4588 to also print the location part of the message. 4589 An example is the catch/throw messages, which 4590 don't require a location appended to the end. 4591 PRINT_NOTHING: We have done some printing and we don't need any 4592 further info to be printed. */ 4593 4594 enum print_stop_action 4595 bpstat_print (bpstat bs, int kind) 4596 { 4597 enum print_stop_action val; 4598 4599 /* Maybe another breakpoint in the chain caused us to stop. 4600 (Currently all watchpoints go on the bpstat whether hit or not. 4601 That probably could (should) be changed, provided care is taken 4602 with respect to bpstat_explains_signal). */ 4603 for (; bs; bs = bs->next) 4604 { 4605 val = print_bp_stop_message (bs); 4606 if (val == PRINT_SRC_ONLY 4607 || val == PRINT_SRC_AND_LOC 4608 || val == PRINT_NOTHING) 4609 return val; 4610 } 4611 4612 /* If we had hit a shared library event breakpoint, 4613 print_bp_stop_message would print out this message. If we hit an 4614 OS-level shared library event, do the same thing. */ 4615 if (kind == TARGET_WAITKIND_LOADED) 4616 { 4617 print_solib_event (0); 4618 return PRINT_NOTHING; 4619 } 4620 4621 /* We reached the end of the chain, or we got a null BS to start 4622 with and nothing was printed. */ 4623 return PRINT_UNKNOWN; 4624 } 4625 4626 /* Evaluate the boolean expression EXP and return the result. */ 4627 4628 static bool 4629 breakpoint_cond_eval (expression *exp) 4630 { 4631 struct value *mark = value_mark (); 4632 bool res = value_true (evaluate_expression (exp)); 4633 4634 value_free_to_mark (mark); 4635 return res; 4636 } 4637 4638 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */ 4639 4640 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer) 4641 : next (NULL), 4642 bp_location_at (bl), 4643 breakpoint_at (bl->owner), 4644 commands (NULL), 4645 print (0), 4646 stop (0), 4647 print_it (print_it_normal) 4648 { 4649 incref_bp_location (bl); 4650 **bs_link_pointer = this; 4651 *bs_link_pointer = &next; 4652 } 4653 4654 bpstats::bpstats () 4655 : next (NULL), 4656 bp_location_at (NULL), 4657 breakpoint_at (NULL), 4658 commands (NULL), 4659 print (0), 4660 stop (0), 4661 print_it (print_it_normal) 4662 { 4663 } 4664 4665 /* The target has stopped with waitstatus WS. Check if any hardware 4666 watchpoints have triggered, according to the target. */ 4667 4668 int 4669 watchpoints_triggered (struct target_waitstatus *ws) 4670 { 4671 bool stopped_by_watchpoint = target_stopped_by_watchpoint (); 4672 CORE_ADDR addr; 4673 struct breakpoint *b; 4674 4675 if (!stopped_by_watchpoint) 4676 { 4677 /* We were not stopped by a watchpoint. Mark all watchpoints 4678 as not triggered. */ 4679 ALL_BREAKPOINTS (b) 4680 if (is_hardware_watchpoint (b)) 4681 { 4682 struct watchpoint *w = (struct watchpoint *) b; 4683 4684 w->watchpoint_triggered = watch_triggered_no; 4685 } 4686 4687 return 0; 4688 } 4689 4690 if (!target_stopped_data_address (current_top_target (), &addr)) 4691 { 4692 /* We were stopped by a watchpoint, but we don't know where. 4693 Mark all watchpoints as unknown. */ 4694 ALL_BREAKPOINTS (b) 4695 if (is_hardware_watchpoint (b)) 4696 { 4697 struct watchpoint *w = (struct watchpoint *) b; 4698 4699 w->watchpoint_triggered = watch_triggered_unknown; 4700 } 4701 4702 return 1; 4703 } 4704 4705 /* The target could report the data address. Mark watchpoints 4706 affected by this data address as triggered, and all others as not 4707 triggered. */ 4708 4709 ALL_BREAKPOINTS (b) 4710 if (is_hardware_watchpoint (b)) 4711 { 4712 struct watchpoint *w = (struct watchpoint *) b; 4713 struct bp_location *loc; 4714 4715 w->watchpoint_triggered = watch_triggered_no; 4716 for (loc = b->loc; loc; loc = loc->next) 4717 { 4718 if (is_masked_watchpoint (b)) 4719 { 4720 CORE_ADDR newaddr = addr & w->hw_wp_mask; 4721 CORE_ADDR start = loc->address & w->hw_wp_mask; 4722 4723 if (newaddr == start) 4724 { 4725 w->watchpoint_triggered = watch_triggered_yes; 4726 break; 4727 } 4728 } 4729 /* Exact match not required. Within range is sufficient. */ 4730 else if (target_watchpoint_addr_within_range (current_top_target (), 4731 addr, loc->address, 4732 loc->length)) 4733 { 4734 w->watchpoint_triggered = watch_triggered_yes; 4735 break; 4736 } 4737 } 4738 } 4739 4740 return 1; 4741 } 4742 4743 /* Possible return values for watchpoint_check. */ 4744 enum wp_check_result 4745 { 4746 /* The watchpoint has been deleted. */ 4747 WP_DELETED = 1, 4748 4749 /* The value has changed. */ 4750 WP_VALUE_CHANGED = 2, 4751 4752 /* The value has not changed. */ 4753 WP_VALUE_NOT_CHANGED = 3, 4754 4755 /* Ignore this watchpoint, no matter if the value changed or not. */ 4756 WP_IGNORE = 4, 4757 }; 4758 4759 #define BP_TEMPFLAG 1 4760 #define BP_HARDWAREFLAG 2 4761 4762 /* Evaluate watchpoint condition expression and check if its value 4763 changed. */ 4764 4765 static wp_check_result 4766 watchpoint_check (bpstat bs) 4767 { 4768 struct watchpoint *b; 4769 struct frame_info *fr; 4770 int within_current_scope; 4771 4772 /* BS is built from an existing struct breakpoint. */ 4773 gdb_assert (bs->breakpoint_at != NULL); 4774 b = (struct watchpoint *) bs->breakpoint_at; 4775 4776 /* If this is a local watchpoint, we only want to check if the 4777 watchpoint frame is in scope if the current thread is the thread 4778 that was used to create the watchpoint. */ 4779 if (!watchpoint_in_thread_scope (b)) 4780 return WP_IGNORE; 4781 4782 if (b->exp_valid_block == NULL) 4783 within_current_scope = 1; 4784 else 4785 { 4786 struct frame_info *frame = get_current_frame (); 4787 struct gdbarch *frame_arch = get_frame_arch (frame); 4788 CORE_ADDR frame_pc = get_frame_pc (frame); 4789 4790 /* stack_frame_destroyed_p() returns a non-zero value if we're 4791 still in the function but the stack frame has already been 4792 invalidated. Since we can't rely on the values of local 4793 variables after the stack has been destroyed, we are treating 4794 the watchpoint in that state as `not changed' without further 4795 checking. Don't mark watchpoints as changed if the current 4796 frame is in an epilogue - even if they are in some other 4797 frame, our view of the stack is likely to be wrong and 4798 frame_find_by_id could error out. */ 4799 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc)) 4800 return WP_IGNORE; 4801 4802 fr = frame_find_by_id (b->watchpoint_frame); 4803 within_current_scope = (fr != NULL); 4804 4805 /* If we've gotten confused in the unwinder, we might have 4806 returned a frame that can't describe this variable. */ 4807 if (within_current_scope) 4808 { 4809 struct symbol *function; 4810 4811 function = get_frame_function (fr); 4812 if (function == NULL 4813 || !contained_in (b->exp_valid_block, 4814 SYMBOL_BLOCK_VALUE (function))) 4815 within_current_scope = 0; 4816 } 4817 4818 if (within_current_scope) 4819 /* If we end up stopping, the current frame will get selected 4820 in normal_stop. So this call to select_frame won't affect 4821 the user. */ 4822 select_frame (fr); 4823 } 4824 4825 if (within_current_scope) 4826 { 4827 /* We use value_{,free_to_}mark because it could be a *long* 4828 time before we return to the command level and call 4829 free_all_values. We can't call free_all_values because we 4830 might be in the middle of evaluating a function call. */ 4831 4832 int pc = 0; 4833 struct value *mark; 4834 struct value *new_val; 4835 4836 if (is_masked_watchpoint (b)) 4837 /* Since we don't know the exact trigger address (from 4838 stopped_data_address), just tell the user we've triggered 4839 a mask watchpoint. */ 4840 return WP_VALUE_CHANGED; 4841 4842 mark = value_mark (); 4843 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0); 4844 4845 if (b->val_bitsize != 0) 4846 new_val = extract_bitfield_from_watchpoint_value (b, new_val); 4847 4848 /* We use value_equal_contents instead of value_equal because 4849 the latter coerces an array to a pointer, thus comparing just 4850 the address of the array instead of its contents. This is 4851 not what we want. */ 4852 if ((b->val != NULL) != (new_val != NULL) 4853 || (b->val != NULL && !value_equal_contents (b->val.get (), 4854 new_val))) 4855 { 4856 bs->old_val = b->val; 4857 b->val = release_value (new_val); 4858 b->val_valid = true; 4859 if (new_val != NULL) 4860 value_free_to_mark (mark); 4861 return WP_VALUE_CHANGED; 4862 } 4863 else 4864 { 4865 /* Nothing changed. */ 4866 value_free_to_mark (mark); 4867 return WP_VALUE_NOT_CHANGED; 4868 } 4869 } 4870 else 4871 { 4872 /* This seems like the only logical thing to do because 4873 if we temporarily ignored the watchpoint, then when 4874 we reenter the block in which it is valid it contains 4875 garbage (in the case of a function, it may have two 4876 garbage values, one before and one after the prologue). 4877 So we can't even detect the first assignment to it and 4878 watch after that (since the garbage may or may not equal 4879 the first value assigned). */ 4880 /* We print all the stop information in 4881 breakpoint_ops->print_it, but in this case, by the time we 4882 call breakpoint_ops->print_it this bp will be deleted 4883 already. So we have no choice but print the information 4884 here. */ 4885 4886 SWITCH_THRU_ALL_UIS () 4887 { 4888 struct ui_out *uiout = current_uiout; 4889 4890 if (uiout->is_mi_like_p ()) 4891 uiout->field_string 4892 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE)); 4893 uiout->message ("\nWatchpoint %pF deleted because the program has " 4894 "left the block in\n" 4895 "which its expression is valid.\n", 4896 signed_field ("wpnum", b->number)); 4897 } 4898 4899 /* Make sure the watchpoint's commands aren't executed. */ 4900 b->commands = NULL; 4901 watchpoint_del_at_next_stop (b); 4902 4903 return WP_DELETED; 4904 } 4905 } 4906 4907 /* Return true if it looks like target has stopped due to hitting 4908 breakpoint location BL. This function does not check if we should 4909 stop, only if BL explains the stop. */ 4910 4911 static int 4912 bpstat_check_location (const struct bp_location *bl, 4913 const address_space *aspace, CORE_ADDR bp_addr, 4914 const struct target_waitstatus *ws) 4915 { 4916 struct breakpoint *b = bl->owner; 4917 4918 /* BL is from an existing breakpoint. */ 4919 gdb_assert (b != NULL); 4920 4921 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws); 4922 } 4923 4924 /* Determine if the watched values have actually changed, and we 4925 should stop. If not, set BS->stop to 0. */ 4926 4927 static void 4928 bpstat_check_watchpoint (bpstat bs) 4929 { 4930 const struct bp_location *bl; 4931 struct watchpoint *b; 4932 4933 /* BS is built for existing struct breakpoint. */ 4934 bl = bs->bp_location_at; 4935 gdb_assert (bl != NULL); 4936 b = (struct watchpoint *) bs->breakpoint_at; 4937 gdb_assert (b != NULL); 4938 4939 { 4940 int must_check_value = 0; 4941 4942 if (b->type == bp_watchpoint) 4943 /* For a software watchpoint, we must always check the 4944 watched value. */ 4945 must_check_value = 1; 4946 else if (b->watchpoint_triggered == watch_triggered_yes) 4947 /* We have a hardware watchpoint (read, write, or access) 4948 and the target earlier reported an address watched by 4949 this watchpoint. */ 4950 must_check_value = 1; 4951 else if (b->watchpoint_triggered == watch_triggered_unknown 4952 && b->type == bp_hardware_watchpoint) 4953 /* We were stopped by a hardware watchpoint, but the target could 4954 not report the data address. We must check the watchpoint's 4955 value. Access and read watchpoints are out of luck; without 4956 a data address, we can't figure it out. */ 4957 must_check_value = 1; 4958 4959 if (must_check_value) 4960 { 4961 wp_check_result e; 4962 4963 try 4964 { 4965 e = watchpoint_check (bs); 4966 } 4967 catch (const gdb_exception &ex) 4968 { 4969 exception_fprintf (gdb_stderr, ex, 4970 "Error evaluating expression " 4971 "for watchpoint %d\n", 4972 b->number); 4973 4974 SWITCH_THRU_ALL_UIS () 4975 { 4976 printf_filtered (_("Watchpoint %d deleted.\n"), 4977 b->number); 4978 } 4979 watchpoint_del_at_next_stop (b); 4980 e = WP_DELETED; 4981 } 4982 4983 switch (e) 4984 { 4985 case WP_DELETED: 4986 /* We've already printed what needs to be printed. */ 4987 bs->print_it = print_it_done; 4988 /* Stop. */ 4989 break; 4990 case WP_IGNORE: 4991 bs->print_it = print_it_noop; 4992 bs->stop = 0; 4993 break; 4994 case WP_VALUE_CHANGED: 4995 if (b->type == bp_read_watchpoint) 4996 { 4997 /* There are two cases to consider here: 4998 4999 1. We're watching the triggered memory for reads. 5000 In that case, trust the target, and always report 5001 the watchpoint hit to the user. Even though 5002 reads don't cause value changes, the value may 5003 have changed since the last time it was read, and 5004 since we're not trapping writes, we will not see 5005 those, and as such we should ignore our notion of 5006 old value. 5007 5008 2. We're watching the triggered memory for both 5009 reads and writes. There are two ways this may 5010 happen: 5011 5012 2.1. This is a target that can't break on data 5013 reads only, but can break on accesses (reads or 5014 writes), such as e.g., x86. We detect this case 5015 at the time we try to insert read watchpoints. 5016 5017 2.2. Otherwise, the target supports read 5018 watchpoints, but, the user set an access or write 5019 watchpoint watching the same memory as this read 5020 watchpoint. 5021 5022 If we're watching memory writes as well as reads, 5023 ignore watchpoint hits when we find that the 5024 value hasn't changed, as reads don't cause 5025 changes. This still gives false positives when 5026 the program writes the same value to memory as 5027 what there was already in memory (we will confuse 5028 it for a read), but it's much better than 5029 nothing. */ 5030 5031 int other_write_watchpoint = 0; 5032 5033 if (bl->watchpoint_type == hw_read) 5034 { 5035 struct breakpoint *other_b; 5036 5037 ALL_BREAKPOINTS (other_b) 5038 if (other_b->type == bp_hardware_watchpoint 5039 || other_b->type == bp_access_watchpoint) 5040 { 5041 struct watchpoint *other_w = 5042 (struct watchpoint *) other_b; 5043 5044 if (other_w->watchpoint_triggered 5045 == watch_triggered_yes) 5046 { 5047 other_write_watchpoint = 1; 5048 break; 5049 } 5050 } 5051 } 5052 5053 if (other_write_watchpoint 5054 || bl->watchpoint_type == hw_access) 5055 { 5056 /* We're watching the same memory for writes, 5057 and the value changed since the last time we 5058 updated it, so this trap must be for a write. 5059 Ignore it. */ 5060 bs->print_it = print_it_noop; 5061 bs->stop = 0; 5062 } 5063 } 5064 break; 5065 case WP_VALUE_NOT_CHANGED: 5066 if (b->type == bp_hardware_watchpoint 5067 || b->type == bp_watchpoint) 5068 { 5069 /* Don't stop: write watchpoints shouldn't fire if 5070 the value hasn't changed. */ 5071 bs->print_it = print_it_noop; 5072 bs->stop = 0; 5073 } 5074 /* Stop. */ 5075 break; 5076 default: 5077 /* Can't happen. */ 5078 break; 5079 } 5080 } 5081 else /* must_check_value == 0 */ 5082 { 5083 /* This is a case where some watchpoint(s) triggered, but 5084 not at the address of this watchpoint, or else no 5085 watchpoint triggered after all. So don't print 5086 anything for this watchpoint. */ 5087 bs->print_it = print_it_noop; 5088 bs->stop = 0; 5089 } 5090 } 5091 } 5092 5093 /* For breakpoints that are currently marked as telling gdb to stop, 5094 check conditions (condition proper, frame, thread and ignore count) 5095 of breakpoint referred to by BS. If we should not stop for this 5096 breakpoint, set BS->stop to 0. */ 5097 5098 static void 5099 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread) 5100 { 5101 const struct bp_location *bl; 5102 struct breakpoint *b; 5103 /* Assume stop. */ 5104 bool condition_result = true; 5105 struct expression *cond; 5106 5107 gdb_assert (bs->stop); 5108 5109 /* BS is built for existing struct breakpoint. */ 5110 bl = bs->bp_location_at; 5111 gdb_assert (bl != NULL); 5112 b = bs->breakpoint_at; 5113 gdb_assert (b != NULL); 5114 5115 /* Even if the target evaluated the condition on its end and notified GDB, we 5116 need to do so again since GDB does not know if we stopped due to a 5117 breakpoint or a single step breakpoint. */ 5118 5119 if (frame_id_p (b->frame_id) 5120 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ()))) 5121 { 5122 bs->stop = 0; 5123 return; 5124 } 5125 5126 /* If this is a thread/task-specific breakpoint, don't waste cpu 5127 evaluating the condition if this isn't the specified 5128 thread/task. */ 5129 if ((b->thread != -1 && b->thread != thread->global_num) 5130 || (b->task != 0 && b->task != ada_get_task_number (thread))) 5131 { 5132 bs->stop = 0; 5133 return; 5134 } 5135 5136 /* Evaluate extension language breakpoints that have a "stop" method 5137 implemented. */ 5138 bs->stop = breakpoint_ext_lang_cond_says_stop (b); 5139 5140 if (is_watchpoint (b)) 5141 { 5142 struct watchpoint *w = (struct watchpoint *) b; 5143 5144 cond = w->cond_exp.get (); 5145 } 5146 else 5147 cond = bl->cond.get (); 5148 5149 if (cond && b->disposition != disp_del_at_next_stop) 5150 { 5151 int within_current_scope = 1; 5152 struct watchpoint * w; 5153 5154 /* We use value_mark and value_free_to_mark because it could 5155 be a long time before we return to the command level and 5156 call free_all_values. We can't call free_all_values 5157 because we might be in the middle of evaluating a 5158 function call. */ 5159 struct value *mark = value_mark (); 5160 5161 if (is_watchpoint (b)) 5162 w = (struct watchpoint *) b; 5163 else 5164 w = NULL; 5165 5166 /* Need to select the frame, with all that implies so that 5167 the conditions will have the right context. Because we 5168 use the frame, we will not see an inlined function's 5169 variables when we arrive at a breakpoint at the start 5170 of the inlined function; the current frame will be the 5171 call site. */ 5172 if (w == NULL || w->cond_exp_valid_block == NULL) 5173 select_frame (get_current_frame ()); 5174 else 5175 { 5176 struct frame_info *frame; 5177 5178 /* For local watchpoint expressions, which particular 5179 instance of a local is being watched matters, so we 5180 keep track of the frame to evaluate the expression 5181 in. To evaluate the condition however, it doesn't 5182 really matter which instantiation of the function 5183 where the condition makes sense triggers the 5184 watchpoint. This allows an expression like "watch 5185 global if q > 10" set in `func', catch writes to 5186 global on all threads that call `func', or catch 5187 writes on all recursive calls of `func' by a single 5188 thread. We simply always evaluate the condition in 5189 the innermost frame that's executing where it makes 5190 sense to evaluate the condition. It seems 5191 intuitive. */ 5192 frame = block_innermost_frame (w->cond_exp_valid_block); 5193 if (frame != NULL) 5194 select_frame (frame); 5195 else 5196 within_current_scope = 0; 5197 } 5198 if (within_current_scope) 5199 { 5200 try 5201 { 5202 condition_result = breakpoint_cond_eval (cond); 5203 } 5204 catch (const gdb_exception &ex) 5205 { 5206 exception_fprintf (gdb_stderr, ex, 5207 "Error in testing breakpoint condition:\n"); 5208 } 5209 } 5210 else 5211 { 5212 warning (_("Watchpoint condition cannot be tested " 5213 "in the current scope")); 5214 /* If we failed to set the right context for this 5215 watchpoint, unconditionally report it. */ 5216 } 5217 /* FIXME-someday, should give breakpoint #. */ 5218 value_free_to_mark (mark); 5219 } 5220 5221 if (cond && !condition_result) 5222 { 5223 bs->stop = 0; 5224 } 5225 else if (b->ignore_count > 0) 5226 { 5227 b->ignore_count--; 5228 bs->stop = 0; 5229 /* Increase the hit count even though we don't stop. */ 5230 ++(b->hit_count); 5231 gdb::observers::breakpoint_modified.notify (b); 5232 } 5233 } 5234 5235 /* Returns true if we need to track moribund locations of LOC's type 5236 on the current target. */ 5237 5238 static int 5239 need_moribund_for_location_type (struct bp_location *loc) 5240 { 5241 return ((loc->loc_type == bp_loc_software_breakpoint 5242 && !target_supports_stopped_by_sw_breakpoint ()) 5243 || (loc->loc_type == bp_loc_hardware_breakpoint 5244 && !target_supports_stopped_by_hw_breakpoint ())); 5245 } 5246 5247 /* See breakpoint.h. */ 5248 5249 bpstat 5250 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr, 5251 const struct target_waitstatus *ws) 5252 { 5253 struct breakpoint *b; 5254 bpstat bs_head = NULL, *bs_link = &bs_head; 5255 5256 ALL_BREAKPOINTS (b) 5257 { 5258 if (!breakpoint_enabled (b)) 5259 continue; 5260 5261 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next) 5262 { 5263 /* For hardware watchpoints, we look only at the first 5264 location. The watchpoint_check function will work on the 5265 entire expression, not the individual locations. For 5266 read watchpoints, the watchpoints_triggered function has 5267 checked all locations already. */ 5268 if (b->type == bp_hardware_watchpoint && bl != b->loc) 5269 break; 5270 5271 if (!bl->enabled || bl->shlib_disabled) 5272 continue; 5273 5274 if (!bpstat_check_location (bl, aspace, bp_addr, ws)) 5275 continue; 5276 5277 /* Come here if it's a watchpoint, or if the break address 5278 matches. */ 5279 5280 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to 5281 explain stop. */ 5282 5283 /* Assume we stop. Should we find a watchpoint that is not 5284 actually triggered, or if the condition of the breakpoint 5285 evaluates as false, we'll reset 'stop' to 0. */ 5286 bs->stop = 1; 5287 bs->print = 1; 5288 5289 /* If this is a scope breakpoint, mark the associated 5290 watchpoint as triggered so that we will handle the 5291 out-of-scope event. We'll get to the watchpoint next 5292 iteration. */ 5293 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b) 5294 { 5295 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint; 5296 5297 w->watchpoint_triggered = watch_triggered_yes; 5298 } 5299 } 5300 } 5301 5302 /* Check if a moribund breakpoint explains the stop. */ 5303 if (!target_supports_stopped_by_sw_breakpoint () 5304 || !target_supports_stopped_by_hw_breakpoint ()) 5305 { 5306 for (bp_location *loc : moribund_locations) 5307 { 5308 if (breakpoint_location_address_match (loc, aspace, bp_addr) 5309 && need_moribund_for_location_type (loc)) 5310 { 5311 bpstat bs = new bpstats (loc, &bs_link); 5312 /* For hits of moribund locations, we should just proceed. */ 5313 bs->stop = 0; 5314 bs->print = 0; 5315 bs->print_it = print_it_noop; 5316 } 5317 } 5318 } 5319 5320 return bs_head; 5321 } 5322 5323 /* See breakpoint.h. */ 5324 5325 bpstat 5326 bpstat_stop_status (const address_space *aspace, 5327 CORE_ADDR bp_addr, thread_info *thread, 5328 const struct target_waitstatus *ws, 5329 bpstat stop_chain) 5330 { 5331 struct breakpoint *b = NULL; 5332 /* First item of allocated bpstat's. */ 5333 bpstat bs_head = stop_chain; 5334 bpstat bs; 5335 int need_remove_insert; 5336 int removed_any; 5337 5338 /* First, build the bpstat chain with locations that explain a 5339 target stop, while being careful to not set the target running, 5340 as that may invalidate locations (in particular watchpoint 5341 locations are recreated). Resuming will happen here with 5342 breakpoint conditions or watchpoint expressions that include 5343 inferior function calls. */ 5344 if (bs_head == NULL) 5345 bs_head = build_bpstat_chain (aspace, bp_addr, ws); 5346 5347 /* A bit of special processing for shlib breakpoints. We need to 5348 process solib loading here, so that the lists of loaded and 5349 unloaded libraries are correct before we handle "catch load" and 5350 "catch unload". */ 5351 for (bs = bs_head; bs != NULL; bs = bs->next) 5352 { 5353 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event) 5354 { 5355 handle_solib_event (); 5356 break; 5357 } 5358 } 5359 5360 /* Now go through the locations that caused the target to stop, and 5361 check whether we're interested in reporting this stop to higher 5362 layers, or whether we should resume the target transparently. */ 5363 5364 removed_any = 0; 5365 5366 for (bs = bs_head; bs != NULL; bs = bs->next) 5367 { 5368 if (!bs->stop) 5369 continue; 5370 5371 b = bs->breakpoint_at; 5372 b->ops->check_status (bs); 5373 if (bs->stop) 5374 { 5375 bpstat_check_breakpoint_conditions (bs, thread); 5376 5377 if (bs->stop) 5378 { 5379 ++(b->hit_count); 5380 gdb::observers::breakpoint_modified.notify (b); 5381 5382 /* We will stop here. */ 5383 if (b->disposition == disp_disable) 5384 { 5385 --(b->enable_count); 5386 if (b->enable_count <= 0) 5387 b->enable_state = bp_disabled; 5388 removed_any = 1; 5389 } 5390 if (b->silent) 5391 bs->print = 0; 5392 bs->commands = b->commands; 5393 if (command_line_is_silent (bs->commands 5394 ? bs->commands.get () : NULL)) 5395 bs->print = 0; 5396 5397 b->ops->after_condition_true (bs); 5398 } 5399 5400 } 5401 5402 /* Print nothing for this entry if we don't stop or don't 5403 print. */ 5404 if (!bs->stop || !bs->print) 5405 bs->print_it = print_it_noop; 5406 } 5407 5408 /* If we aren't stopping, the value of some hardware watchpoint may 5409 not have changed, but the intermediate memory locations we are 5410 watching may have. Don't bother if we're stopping; this will get 5411 done later. */ 5412 need_remove_insert = 0; 5413 if (! bpstat_causes_stop (bs_head)) 5414 for (bs = bs_head; bs != NULL; bs = bs->next) 5415 if (!bs->stop 5416 && bs->breakpoint_at 5417 && is_hardware_watchpoint (bs->breakpoint_at)) 5418 { 5419 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at; 5420 5421 update_watchpoint (w, 0 /* don't reparse. */); 5422 need_remove_insert = 1; 5423 } 5424 5425 if (need_remove_insert) 5426 update_global_location_list (UGLL_MAY_INSERT); 5427 else if (removed_any) 5428 update_global_location_list (UGLL_DONT_INSERT); 5429 5430 return bs_head; 5431 } 5432 5433 static void 5434 handle_jit_event (void) 5435 { 5436 struct frame_info *frame; 5437 struct gdbarch *gdbarch; 5438 5439 infrun_debug_printf ("handling bp_jit_event"); 5440 5441 /* Switch terminal for any messages produced by 5442 breakpoint_re_set. */ 5443 target_terminal::ours_for_output (); 5444 5445 frame = get_current_frame (); 5446 gdbarch = get_frame_arch (frame); 5447 objfile *jiter = symbol_objfile (get_frame_function (frame)); 5448 5449 jit_event_handler (gdbarch, jiter); 5450 5451 target_terminal::inferior (); 5452 } 5453 5454 /* Prepare WHAT final decision for infrun. */ 5455 5456 /* Decide what infrun needs to do with this bpstat. */ 5457 5458 struct bpstat_what 5459 bpstat_what (bpstat bs_head) 5460 { 5461 struct bpstat_what retval; 5462 bpstat bs; 5463 5464 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING; 5465 retval.call_dummy = STOP_NONE; 5466 retval.is_longjmp = false; 5467 5468 for (bs = bs_head; bs != NULL; bs = bs->next) 5469 { 5470 /* Extract this BS's action. After processing each BS, we check 5471 if its action overrides all we've seem so far. */ 5472 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING; 5473 enum bptype bptype; 5474 5475 if (bs->breakpoint_at == NULL) 5476 { 5477 /* I suspect this can happen if it was a momentary 5478 breakpoint which has since been deleted. */ 5479 bptype = bp_none; 5480 } 5481 else 5482 bptype = bs->breakpoint_at->type; 5483 5484 switch (bptype) 5485 { 5486 case bp_none: 5487 break; 5488 case bp_breakpoint: 5489 case bp_hardware_breakpoint: 5490 case bp_single_step: 5491 case bp_until: 5492 case bp_finish: 5493 case bp_shlib_event: 5494 if (bs->stop) 5495 { 5496 if (bs->print) 5497 this_action = BPSTAT_WHAT_STOP_NOISY; 5498 else 5499 this_action = BPSTAT_WHAT_STOP_SILENT; 5500 } 5501 else 5502 this_action = BPSTAT_WHAT_SINGLE; 5503 break; 5504 case bp_watchpoint: 5505 case bp_hardware_watchpoint: 5506 case bp_read_watchpoint: 5507 case bp_access_watchpoint: 5508 if (bs->stop) 5509 { 5510 if (bs->print) 5511 this_action = BPSTAT_WHAT_STOP_NOISY; 5512 else 5513 this_action = BPSTAT_WHAT_STOP_SILENT; 5514 } 5515 else 5516 { 5517 /* There was a watchpoint, but we're not stopping. 5518 This requires no further action. */ 5519 } 5520 break; 5521 case bp_longjmp: 5522 case bp_longjmp_call_dummy: 5523 case bp_exception: 5524 if (bs->stop) 5525 { 5526 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME; 5527 retval.is_longjmp = bptype != bp_exception; 5528 } 5529 else 5530 this_action = BPSTAT_WHAT_SINGLE; 5531 break; 5532 case bp_longjmp_resume: 5533 case bp_exception_resume: 5534 if (bs->stop) 5535 { 5536 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME; 5537 retval.is_longjmp = bptype == bp_longjmp_resume; 5538 } 5539 else 5540 this_action = BPSTAT_WHAT_SINGLE; 5541 break; 5542 case bp_step_resume: 5543 if (bs->stop) 5544 this_action = BPSTAT_WHAT_STEP_RESUME; 5545 else 5546 { 5547 /* It is for the wrong frame. */ 5548 this_action = BPSTAT_WHAT_SINGLE; 5549 } 5550 break; 5551 case bp_hp_step_resume: 5552 if (bs->stop) 5553 this_action = BPSTAT_WHAT_HP_STEP_RESUME; 5554 else 5555 { 5556 /* It is for the wrong frame. */ 5557 this_action = BPSTAT_WHAT_SINGLE; 5558 } 5559 break; 5560 case bp_watchpoint_scope: 5561 case bp_thread_event: 5562 case bp_overlay_event: 5563 case bp_longjmp_master: 5564 case bp_std_terminate_master: 5565 case bp_exception_master: 5566 this_action = BPSTAT_WHAT_SINGLE; 5567 break; 5568 case bp_catchpoint: 5569 if (bs->stop) 5570 { 5571 if (bs->print) 5572 this_action = BPSTAT_WHAT_STOP_NOISY; 5573 else 5574 this_action = BPSTAT_WHAT_STOP_SILENT; 5575 } 5576 else 5577 { 5578 /* Some catchpoints are implemented with breakpoints. 5579 For those, we need to step over the breakpoint. */ 5580 if (bs->bp_location_at->loc_type != bp_loc_other) 5581 this_action = BPSTAT_WHAT_SINGLE; 5582 } 5583 break; 5584 case bp_jit_event: 5585 this_action = BPSTAT_WHAT_SINGLE; 5586 break; 5587 case bp_call_dummy: 5588 /* Make sure the action is stop (silent or noisy), 5589 so infrun.c pops the dummy frame. */ 5590 retval.call_dummy = STOP_STACK_DUMMY; 5591 this_action = BPSTAT_WHAT_STOP_SILENT; 5592 break; 5593 case bp_std_terminate: 5594 /* Make sure the action is stop (silent or noisy), 5595 so infrun.c pops the dummy frame. */ 5596 retval.call_dummy = STOP_STD_TERMINATE; 5597 this_action = BPSTAT_WHAT_STOP_SILENT; 5598 break; 5599 case bp_tracepoint: 5600 case bp_fast_tracepoint: 5601 case bp_static_tracepoint: 5602 /* Tracepoint hits should not be reported back to GDB, and 5603 if one got through somehow, it should have been filtered 5604 out already. */ 5605 internal_error (__FILE__, __LINE__, 5606 _("bpstat_what: tracepoint encountered")); 5607 break; 5608 case bp_gnu_ifunc_resolver: 5609 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */ 5610 this_action = BPSTAT_WHAT_SINGLE; 5611 break; 5612 case bp_gnu_ifunc_resolver_return: 5613 /* The breakpoint will be removed, execution will restart from the 5614 PC of the former breakpoint. */ 5615 this_action = BPSTAT_WHAT_KEEP_CHECKING; 5616 break; 5617 5618 case bp_dprintf: 5619 if (bs->stop) 5620 this_action = BPSTAT_WHAT_STOP_SILENT; 5621 else 5622 this_action = BPSTAT_WHAT_SINGLE; 5623 break; 5624 5625 default: 5626 internal_error (__FILE__, __LINE__, 5627 _("bpstat_what: unhandled bptype %d"), (int) bptype); 5628 } 5629 5630 retval.main_action = std::max (retval.main_action, this_action); 5631 } 5632 5633 return retval; 5634 } 5635 5636 void 5637 bpstat_run_callbacks (bpstat bs_head) 5638 { 5639 bpstat bs; 5640 5641 for (bs = bs_head; bs != NULL; bs = bs->next) 5642 { 5643 struct breakpoint *b = bs->breakpoint_at; 5644 5645 if (b == NULL) 5646 continue; 5647 switch (b->type) 5648 { 5649 case bp_jit_event: 5650 handle_jit_event (); 5651 break; 5652 case bp_gnu_ifunc_resolver: 5653 gnu_ifunc_resolver_stop (b); 5654 break; 5655 case bp_gnu_ifunc_resolver_return: 5656 gnu_ifunc_resolver_return_stop (b); 5657 break; 5658 } 5659 } 5660 } 5661 5662 /* See breakpoint.h. */ 5663 5664 bool 5665 bpstat_should_step () 5666 { 5667 struct breakpoint *b; 5668 5669 ALL_BREAKPOINTS (b) 5670 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL) 5671 return true; 5672 return false; 5673 } 5674 5675 /* See breakpoint.h. */ 5676 5677 bool 5678 bpstat_causes_stop (bpstat bs) 5679 { 5680 for (; bs != NULL; bs = bs->next) 5681 if (bs->stop) 5682 return true; 5683 5684 return false; 5685 } 5686 5687 5688 5689 /* Compute a string of spaces suitable to indent the next line 5690 so it starts at the position corresponding to the table column 5691 named COL_NAME in the currently active table of UIOUT. */ 5692 5693 static char * 5694 wrap_indent_at_field (struct ui_out *uiout, const char *col_name) 5695 { 5696 static char wrap_indent[80]; 5697 int i, total_width, width, align; 5698 const char *text; 5699 5700 total_width = 0; 5701 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++) 5702 { 5703 if (strcmp (text, col_name) == 0) 5704 { 5705 gdb_assert (total_width < sizeof wrap_indent); 5706 memset (wrap_indent, ' ', total_width); 5707 wrap_indent[total_width] = 0; 5708 5709 return wrap_indent; 5710 } 5711 5712 total_width += width + 1; 5713 } 5714 5715 return NULL; 5716 } 5717 5718 /* Determine if the locations of this breakpoint will have their conditions 5719 evaluated by the target, host or a mix of both. Returns the following: 5720 5721 "host": Host evals condition. 5722 "host or target": Host or Target evals condition. 5723 "target": Target evals condition. 5724 */ 5725 5726 static const char * 5727 bp_condition_evaluator (struct breakpoint *b) 5728 { 5729 struct bp_location *bl; 5730 char host_evals = 0; 5731 char target_evals = 0; 5732 5733 if (!b) 5734 return NULL; 5735 5736 if (!is_breakpoint (b)) 5737 return NULL; 5738 5739 if (gdb_evaluates_breakpoint_condition_p () 5740 || !target_supports_evaluation_of_breakpoint_conditions ()) 5741 return condition_evaluation_host; 5742 5743 for (bl = b->loc; bl; bl = bl->next) 5744 { 5745 if (bl->cond_bytecode) 5746 target_evals++; 5747 else 5748 host_evals++; 5749 } 5750 5751 if (host_evals && target_evals) 5752 return condition_evaluation_both; 5753 else if (target_evals) 5754 return condition_evaluation_target; 5755 else 5756 return condition_evaluation_host; 5757 } 5758 5759 /* Determine the breakpoint location's condition evaluator. This is 5760 similar to bp_condition_evaluator, but for locations. */ 5761 5762 static const char * 5763 bp_location_condition_evaluator (struct bp_location *bl) 5764 { 5765 if (bl && !is_breakpoint (bl->owner)) 5766 return NULL; 5767 5768 if (gdb_evaluates_breakpoint_condition_p () 5769 || !target_supports_evaluation_of_breakpoint_conditions ()) 5770 return condition_evaluation_host; 5771 5772 if (bl && bl->cond_bytecode) 5773 return condition_evaluation_target; 5774 else 5775 return condition_evaluation_host; 5776 } 5777 5778 /* Print the LOC location out of the list of B->LOC locations. */ 5779 5780 static void 5781 print_breakpoint_location (struct breakpoint *b, 5782 struct bp_location *loc) 5783 { 5784 struct ui_out *uiout = current_uiout; 5785 5786 scoped_restore_current_program_space restore_pspace; 5787 5788 if (loc != NULL && loc->shlib_disabled) 5789 loc = NULL; 5790 5791 if (loc != NULL) 5792 set_current_program_space (loc->pspace); 5793 5794 if (b->display_canonical) 5795 uiout->field_string ("what", event_location_to_string (b->location.get ())); 5796 else if (loc && loc->symtab) 5797 { 5798 const struct symbol *sym = loc->symbol; 5799 5800 if (sym) 5801 { 5802 uiout->text ("in "); 5803 uiout->field_string ("func", sym->print_name (), 5804 function_name_style.style ()); 5805 uiout->text (" "); 5806 uiout->wrap_hint (wrap_indent_at_field (uiout, "what")); 5807 uiout->text ("at "); 5808 } 5809 uiout->field_string ("file", 5810 symtab_to_filename_for_display (loc->symtab), 5811 file_name_style.style ()); 5812 uiout->text (":"); 5813 5814 if (uiout->is_mi_like_p ()) 5815 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab)); 5816 5817 uiout->field_signed ("line", loc->line_number); 5818 } 5819 else if (loc) 5820 { 5821 string_file stb; 5822 5823 print_address_symbolic (loc->gdbarch, loc->address, &stb, 5824 demangle, ""); 5825 uiout->field_stream ("at", stb); 5826 } 5827 else 5828 { 5829 uiout->field_string ("pending", 5830 event_location_to_string (b->location.get ())); 5831 /* If extra_string is available, it could be holding a condition 5832 or dprintf arguments. In either case, make sure it is printed, 5833 too, but only for non-MI streams. */ 5834 if (!uiout->is_mi_like_p () && b->extra_string != NULL) 5835 { 5836 if (b->type == bp_dprintf) 5837 uiout->text (","); 5838 else 5839 uiout->text (" "); 5840 uiout->text (b->extra_string); 5841 } 5842 } 5843 5844 if (loc && is_breakpoint (b) 5845 && breakpoint_condition_evaluation_mode () == condition_evaluation_target 5846 && bp_condition_evaluator (b) == condition_evaluation_both) 5847 { 5848 uiout->text (" ("); 5849 uiout->field_string ("evaluated-by", 5850 bp_location_condition_evaluator (loc)); 5851 uiout->text (")"); 5852 } 5853 } 5854 5855 static const char * 5856 bptype_string (enum bptype type) 5857 { 5858 struct ep_type_description 5859 { 5860 enum bptype type; 5861 const char *description; 5862 }; 5863 static struct ep_type_description bptypes[] = 5864 { 5865 {bp_none, "?deleted?"}, 5866 {bp_breakpoint, "breakpoint"}, 5867 {bp_hardware_breakpoint, "hw breakpoint"}, 5868 {bp_single_step, "sw single-step"}, 5869 {bp_until, "until"}, 5870 {bp_finish, "finish"}, 5871 {bp_watchpoint, "watchpoint"}, 5872 {bp_hardware_watchpoint, "hw watchpoint"}, 5873 {bp_read_watchpoint, "read watchpoint"}, 5874 {bp_access_watchpoint, "acc watchpoint"}, 5875 {bp_longjmp, "longjmp"}, 5876 {bp_longjmp_resume, "longjmp resume"}, 5877 {bp_longjmp_call_dummy, "longjmp for call dummy"}, 5878 {bp_exception, "exception"}, 5879 {bp_exception_resume, "exception resume"}, 5880 {bp_step_resume, "step resume"}, 5881 {bp_hp_step_resume, "high-priority step resume"}, 5882 {bp_watchpoint_scope, "watchpoint scope"}, 5883 {bp_call_dummy, "call dummy"}, 5884 {bp_std_terminate, "std::terminate"}, 5885 {bp_shlib_event, "shlib events"}, 5886 {bp_thread_event, "thread events"}, 5887 {bp_overlay_event, "overlay events"}, 5888 {bp_longjmp_master, "longjmp master"}, 5889 {bp_std_terminate_master, "std::terminate master"}, 5890 {bp_exception_master, "exception master"}, 5891 {bp_catchpoint, "catchpoint"}, 5892 {bp_tracepoint, "tracepoint"}, 5893 {bp_fast_tracepoint, "fast tracepoint"}, 5894 {bp_static_tracepoint, "static tracepoint"}, 5895 {bp_dprintf, "dprintf"}, 5896 {bp_jit_event, "jit events"}, 5897 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"}, 5898 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"}, 5899 }; 5900 5901 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0]))) 5902 || ((int) type != bptypes[(int) type].type)) 5903 internal_error (__FILE__, __LINE__, 5904 _("bptypes table does not describe type #%d."), 5905 (int) type); 5906 5907 return bptypes[(int) type].description; 5908 } 5909 5910 /* For MI, output a field named 'thread-groups' with a list as the value. 5911 For CLI, prefix the list with the string 'inf'. */ 5912 5913 static void 5914 output_thread_groups (struct ui_out *uiout, 5915 const char *field_name, 5916 const std::vector<int> &inf_nums, 5917 int mi_only) 5918 { 5919 int is_mi = uiout->is_mi_like_p (); 5920 5921 /* For backward compatibility, don't display inferiors in CLI unless 5922 there are several. Always display them for MI. */ 5923 if (!is_mi && mi_only) 5924 return; 5925 5926 ui_out_emit_list list_emitter (uiout, field_name); 5927 5928 for (size_t i = 0; i < inf_nums.size (); i++) 5929 { 5930 if (is_mi) 5931 { 5932 char mi_group[10]; 5933 5934 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]); 5935 uiout->field_string (NULL, mi_group); 5936 } 5937 else 5938 { 5939 if (i == 0) 5940 uiout->text (" inf "); 5941 else 5942 uiout->text (", "); 5943 5944 uiout->text (plongest (inf_nums[i])); 5945 } 5946 } 5947 } 5948 5949 /* Print B to gdb_stdout. If RAW_LOC, print raw breakpoint locations 5950 instead of going via breakpoint_ops::print_one. This makes "maint 5951 info breakpoints" show the software breakpoint locations of 5952 catchpoints, which are considered internal implementation 5953 detail. */ 5954 5955 static void 5956 print_one_breakpoint_location (struct breakpoint *b, 5957 struct bp_location *loc, 5958 int loc_number, 5959 struct bp_location **last_loc, 5960 int allflag, bool raw_loc) 5961 { 5962 struct command_line *l; 5963 static char bpenables[] = "nynny"; 5964 5965 struct ui_out *uiout = current_uiout; 5966 int header_of_multiple = 0; 5967 int part_of_multiple = (loc != NULL); 5968 struct value_print_options opts; 5969 5970 get_user_print_options (&opts); 5971 5972 gdb_assert (!loc || loc_number != 0); 5973 /* See comment in print_one_breakpoint concerning treatment of 5974 breakpoints with single disabled location. */ 5975 if (loc == NULL 5976 && (b->loc != NULL 5977 && (b->loc->next != NULL || !b->loc->enabled))) 5978 header_of_multiple = 1; 5979 if (loc == NULL) 5980 loc = b->loc; 5981 5982 annotate_record (); 5983 5984 /* 1 */ 5985 annotate_field (0); 5986 if (part_of_multiple) 5987 uiout->field_fmt ("number", "%d.%d", b->number, loc_number); 5988 else 5989 uiout->field_signed ("number", b->number); 5990 5991 /* 2 */ 5992 annotate_field (1); 5993 if (part_of_multiple) 5994 uiout->field_skip ("type"); 5995 else 5996 uiout->field_string ("type", bptype_string (b->type)); 5997 5998 /* 3 */ 5999 annotate_field (2); 6000 if (part_of_multiple) 6001 uiout->field_skip ("disp"); 6002 else 6003 uiout->field_string ("disp", bpdisp_text (b->disposition)); 6004 6005 /* 4 */ 6006 annotate_field (3); 6007 if (part_of_multiple) 6008 uiout->field_string ("enabled", loc->enabled ? "y" : "n"); 6009 else 6010 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]); 6011 6012 /* 5 and 6 */ 6013 if (!raw_loc && b->ops != NULL && b->ops->print_one != NULL) 6014 b->ops->print_one (b, last_loc); 6015 else 6016 { 6017 if (is_watchpoint (b)) 6018 { 6019 struct watchpoint *w = (struct watchpoint *) b; 6020 6021 /* Field 4, the address, is omitted (which makes the columns 6022 not line up too nicely with the headers, but the effect 6023 is relatively readable). */ 6024 if (opts.addressprint) 6025 uiout->field_skip ("addr"); 6026 annotate_field (5); 6027 uiout->field_string ("what", w->exp_string); 6028 } 6029 else if (!is_catchpoint (b) || is_exception_catchpoint (b) 6030 || is_ada_exception_catchpoint (b)) 6031 { 6032 if (opts.addressprint) 6033 { 6034 annotate_field (4); 6035 if (header_of_multiple) 6036 uiout->field_string ("addr", "<MULTIPLE>", 6037 metadata_style.style ()); 6038 else if (b->loc == NULL || loc->shlib_disabled) 6039 uiout->field_string ("addr", "<PENDING>", 6040 metadata_style.style ()); 6041 else 6042 uiout->field_core_addr ("addr", 6043 loc->gdbarch, loc->address); 6044 } 6045 annotate_field (5); 6046 if (!header_of_multiple) 6047 print_breakpoint_location (b, loc); 6048 if (b->loc) 6049 *last_loc = b->loc; 6050 } 6051 } 6052 6053 if (loc != NULL && !header_of_multiple) 6054 { 6055 std::vector<int> inf_nums; 6056 int mi_only = 1; 6057 6058 for (inferior *inf : all_inferiors ()) 6059 { 6060 if (inf->pspace == loc->pspace) 6061 inf_nums.push_back (inf->num); 6062 } 6063 6064 /* For backward compatibility, don't display inferiors in CLI unless 6065 there are several. Always display for MI. */ 6066 if (allflag 6067 || (!gdbarch_has_global_breakpoints (target_gdbarch ()) 6068 && (program_spaces.size () > 1 6069 || number_of_inferiors () > 1) 6070 /* LOC is for existing B, it cannot be in 6071 moribund_locations and thus having NULL OWNER. */ 6072 && loc->owner->type != bp_catchpoint)) 6073 mi_only = 0; 6074 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only); 6075 } 6076 6077 if (!part_of_multiple) 6078 { 6079 if (b->thread != -1) 6080 { 6081 /* FIXME: This seems to be redundant and lost here; see the 6082 "stop only in" line a little further down. */ 6083 uiout->text (" thread "); 6084 uiout->field_signed ("thread", b->thread); 6085 } 6086 else if (b->task != 0) 6087 { 6088 uiout->text (" task "); 6089 uiout->field_signed ("task", b->task); 6090 } 6091 } 6092 6093 uiout->text ("\n"); 6094 6095 if (!part_of_multiple) 6096 b->ops->print_one_detail (b, uiout); 6097 6098 if (part_of_multiple && frame_id_p (b->frame_id)) 6099 { 6100 annotate_field (6); 6101 uiout->text ("\tstop only in stack frame at "); 6102 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside 6103 the frame ID. */ 6104 uiout->field_core_addr ("frame", 6105 b->gdbarch, b->frame_id.stack_addr); 6106 uiout->text ("\n"); 6107 } 6108 6109 if (!part_of_multiple && b->cond_string) 6110 { 6111 annotate_field (7); 6112 if (is_tracepoint (b)) 6113 uiout->text ("\ttrace only if "); 6114 else 6115 uiout->text ("\tstop only if "); 6116 uiout->field_string ("cond", b->cond_string); 6117 6118 /* Print whether the target is doing the breakpoint's condition 6119 evaluation. If GDB is doing the evaluation, don't print anything. */ 6120 if (is_breakpoint (b) 6121 && breakpoint_condition_evaluation_mode () 6122 == condition_evaluation_target) 6123 { 6124 uiout->message (" (%pF evals)", 6125 string_field ("evaluated-by", 6126 bp_condition_evaluator (b))); 6127 } 6128 uiout->text ("\n"); 6129 } 6130 6131 if (!part_of_multiple && b->thread != -1) 6132 { 6133 /* FIXME should make an annotation for this. */ 6134 uiout->text ("\tstop only in thread "); 6135 if (uiout->is_mi_like_p ()) 6136 uiout->field_signed ("thread", b->thread); 6137 else 6138 { 6139 struct thread_info *thr = find_thread_global_id (b->thread); 6140 6141 uiout->field_string ("thread", print_thread_id (thr)); 6142 } 6143 uiout->text ("\n"); 6144 } 6145 6146 if (!part_of_multiple) 6147 { 6148 if (b->hit_count) 6149 { 6150 /* FIXME should make an annotation for this. */ 6151 if (is_catchpoint (b)) 6152 uiout->text ("\tcatchpoint"); 6153 else if (is_tracepoint (b)) 6154 uiout->text ("\ttracepoint"); 6155 else 6156 uiout->text ("\tbreakpoint"); 6157 uiout->text (" already hit "); 6158 uiout->field_signed ("times", b->hit_count); 6159 if (b->hit_count == 1) 6160 uiout->text (" time\n"); 6161 else 6162 uiout->text (" times\n"); 6163 } 6164 else 6165 { 6166 /* Output the count also if it is zero, but only if this is mi. */ 6167 if (uiout->is_mi_like_p ()) 6168 uiout->field_signed ("times", b->hit_count); 6169 } 6170 } 6171 6172 if (!part_of_multiple && b->ignore_count) 6173 { 6174 annotate_field (8); 6175 uiout->message ("\tignore next %pF hits\n", 6176 signed_field ("ignore", b->ignore_count)); 6177 } 6178 6179 /* Note that an enable count of 1 corresponds to "enable once" 6180 behavior, which is reported by the combination of enablement and 6181 disposition, so we don't need to mention it here. */ 6182 if (!part_of_multiple && b->enable_count > 1) 6183 { 6184 annotate_field (8); 6185 uiout->text ("\tdisable after "); 6186 /* Tweak the wording to clarify that ignore and enable counts 6187 are distinct, and have additive effect. */ 6188 if (b->ignore_count) 6189 uiout->text ("additional "); 6190 else 6191 uiout->text ("next "); 6192 uiout->field_signed ("enable", b->enable_count); 6193 uiout->text (" hits\n"); 6194 } 6195 6196 if (!part_of_multiple && is_tracepoint (b)) 6197 { 6198 struct tracepoint *tp = (struct tracepoint *) b; 6199 6200 if (tp->traceframe_usage) 6201 { 6202 uiout->text ("\ttrace buffer usage "); 6203 uiout->field_signed ("traceframe-usage", tp->traceframe_usage); 6204 uiout->text (" bytes\n"); 6205 } 6206 } 6207 6208 l = b->commands ? b->commands.get () : NULL; 6209 if (!part_of_multiple && l) 6210 { 6211 annotate_field (9); 6212 ui_out_emit_tuple tuple_emitter (uiout, "script"); 6213 print_command_lines (uiout, l, 4); 6214 } 6215 6216 if (is_tracepoint (b)) 6217 { 6218 struct tracepoint *t = (struct tracepoint *) b; 6219 6220 if (!part_of_multiple && t->pass_count) 6221 { 6222 annotate_field (10); 6223 uiout->text ("\tpass count "); 6224 uiout->field_signed ("pass", t->pass_count); 6225 uiout->text (" \n"); 6226 } 6227 6228 /* Don't display it when tracepoint or tracepoint location is 6229 pending. */ 6230 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled) 6231 { 6232 annotate_field (11); 6233 6234 if (uiout->is_mi_like_p ()) 6235 uiout->field_string ("installed", 6236 loc->inserted ? "y" : "n"); 6237 else 6238 { 6239 if (loc->inserted) 6240 uiout->text ("\t"); 6241 else 6242 uiout->text ("\tnot "); 6243 uiout->text ("installed on target\n"); 6244 } 6245 } 6246 } 6247 6248 if (uiout->is_mi_like_p () && !part_of_multiple) 6249 { 6250 if (is_watchpoint (b)) 6251 { 6252 struct watchpoint *w = (struct watchpoint *) b; 6253 6254 uiout->field_string ("original-location", w->exp_string); 6255 } 6256 else if (b->location != NULL 6257 && event_location_to_string (b->location.get ()) != NULL) 6258 uiout->field_string ("original-location", 6259 event_location_to_string (b->location.get ())); 6260 } 6261 } 6262 6263 /* See breakpoint.h. */ 6264 6265 bool fix_multi_location_breakpoint_output_globally = false; 6266 6267 static void 6268 print_one_breakpoint (struct breakpoint *b, 6269 struct bp_location **last_loc, 6270 int allflag) 6271 { 6272 struct ui_out *uiout = current_uiout; 6273 bool use_fixed_output 6274 = (uiout->test_flags (fix_multi_location_breakpoint_output) 6275 || fix_multi_location_breakpoint_output_globally); 6276 6277 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt"); 6278 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag, false); 6279 6280 /* The mi2 broken format: the main breakpoint tuple ends here, the locations 6281 are outside. */ 6282 if (!use_fixed_output) 6283 bkpt_tuple_emitter.reset (); 6284 6285 /* If this breakpoint has custom print function, 6286 it's already printed. Otherwise, print individual 6287 locations, if any. */ 6288 if (b->ops == NULL 6289 || b->ops->print_one == NULL 6290 || allflag) 6291 { 6292 /* If breakpoint has a single location that is disabled, we 6293 print it as if it had several locations, since otherwise it's 6294 hard to represent "breakpoint enabled, location disabled" 6295 situation. 6296 6297 Note that while hardware watchpoints have several locations 6298 internally, that's not a property exposed to users. 6299 6300 Likewise, while catchpoints may be implemented with 6301 breakpoints (e.g., catch throw), that's not a property 6302 exposed to users. We do however display the internal 6303 breakpoint locations with "maint info breakpoints". */ 6304 if (!is_hardware_watchpoint (b) 6305 && (!is_catchpoint (b) || is_exception_catchpoint (b) 6306 || is_ada_exception_catchpoint (b)) 6307 && (allflag 6308 || (b->loc && (b->loc->next || !b->loc->enabled)))) 6309 { 6310 gdb::optional<ui_out_emit_list> locations_list; 6311 6312 /* For MI version <= 2, keep the behavior where GDB outputs an invalid 6313 MI record. For later versions, place breakpoint locations in a 6314 list. */ 6315 if (uiout->is_mi_like_p () && use_fixed_output) 6316 locations_list.emplace (uiout, "locations"); 6317 6318 int n = 1; 6319 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n) 6320 { 6321 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL); 6322 print_one_breakpoint_location (b, loc, n, last_loc, 6323 allflag, allflag); 6324 } 6325 } 6326 } 6327 } 6328 6329 static int 6330 breakpoint_address_bits (struct breakpoint *b) 6331 { 6332 int print_address_bits = 0; 6333 struct bp_location *loc; 6334 6335 /* Software watchpoints that aren't watching memory don't have an 6336 address to print. */ 6337 if (is_no_memory_software_watchpoint (b)) 6338 return 0; 6339 6340 for (loc = b->loc; loc; loc = loc->next) 6341 { 6342 int addr_bit; 6343 6344 addr_bit = gdbarch_addr_bit (loc->gdbarch); 6345 if (addr_bit > print_address_bits) 6346 print_address_bits = addr_bit; 6347 } 6348 6349 return print_address_bits; 6350 } 6351 6352 /* See breakpoint.h. */ 6353 6354 void 6355 print_breakpoint (breakpoint *b) 6356 { 6357 struct bp_location *dummy_loc = NULL; 6358 print_one_breakpoint (b, &dummy_loc, 0); 6359 } 6360 6361 /* Return true if this breakpoint was set by the user, false if it is 6362 internal or momentary. */ 6363 6364 int 6365 user_breakpoint_p (struct breakpoint *b) 6366 { 6367 return b->number > 0; 6368 } 6369 6370 /* See breakpoint.h. */ 6371 6372 int 6373 pending_breakpoint_p (struct breakpoint *b) 6374 { 6375 return b->loc == NULL; 6376 } 6377 6378 /* Print information on breakpoints (including watchpoints and tracepoints). 6379 6380 If non-NULL, BP_NUM_LIST is a list of numbers and number ranges as 6381 understood by number_or_range_parser. Only breakpoints included in this 6382 list are then printed. 6383 6384 If SHOW_INTERNAL is true, print internal breakpoints. 6385 6386 If FILTER is non-NULL, call it on each breakpoint and only include the 6387 ones for which it returns true. 6388 6389 Return the total number of breakpoints listed. */ 6390 6391 static int 6392 breakpoint_1 (const char *bp_num_list, bool show_internal, 6393 bool (*filter) (const struct breakpoint *)) 6394 { 6395 struct breakpoint *b; 6396 struct bp_location *last_loc = NULL; 6397 int nr_printable_breakpoints; 6398 struct value_print_options opts; 6399 int print_address_bits = 0; 6400 int print_type_col_width = 14; 6401 struct ui_out *uiout = current_uiout; 6402 6403 get_user_print_options (&opts); 6404 6405 /* Compute the number of rows in the table, as well as the size 6406 required for address fields. */ 6407 nr_printable_breakpoints = 0; 6408 ALL_BREAKPOINTS (b) 6409 { 6410 /* If we have a filter, only list the breakpoints it accepts. */ 6411 if (filter && !filter (b)) 6412 continue; 6413 6414 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to 6415 accept. Skip the others. */ 6416 if (bp_num_list != NULL && *bp_num_list != '\0') 6417 { 6418 if (show_internal && parse_and_eval_long (bp_num_list) != b->number) 6419 continue; 6420 if (!show_internal && !number_is_in_list (bp_num_list, b->number)) 6421 continue; 6422 } 6423 6424 if (show_internal || user_breakpoint_p (b)) 6425 { 6426 int addr_bit, type_len; 6427 6428 addr_bit = breakpoint_address_bits (b); 6429 if (addr_bit > print_address_bits) 6430 print_address_bits = addr_bit; 6431 6432 type_len = strlen (bptype_string (b->type)); 6433 if (type_len > print_type_col_width) 6434 print_type_col_width = type_len; 6435 6436 nr_printable_breakpoints++; 6437 } 6438 } 6439 6440 { 6441 ui_out_emit_table table_emitter (uiout, 6442 opts.addressprint ? 6 : 5, 6443 nr_printable_breakpoints, 6444 "BreakpointTable"); 6445 6446 if (nr_printable_breakpoints > 0) 6447 annotate_breakpoints_headers (); 6448 if (nr_printable_breakpoints > 0) 6449 annotate_field (0); 6450 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */ 6451 if (nr_printable_breakpoints > 0) 6452 annotate_field (1); 6453 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */ 6454 if (nr_printable_breakpoints > 0) 6455 annotate_field (2); 6456 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */ 6457 if (nr_printable_breakpoints > 0) 6458 annotate_field (3); 6459 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */ 6460 if (opts.addressprint) 6461 { 6462 if (nr_printable_breakpoints > 0) 6463 annotate_field (4); 6464 if (print_address_bits <= 32) 6465 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */ 6466 else 6467 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */ 6468 } 6469 if (nr_printable_breakpoints > 0) 6470 annotate_field (5); 6471 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */ 6472 uiout->table_body (); 6473 if (nr_printable_breakpoints > 0) 6474 annotate_breakpoints_table (); 6475 6476 ALL_BREAKPOINTS (b) 6477 { 6478 QUIT; 6479 /* If we have a filter, only list the breakpoints it accepts. */ 6480 if (filter && !filter (b)) 6481 continue; 6482 6483 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to 6484 accept. Skip the others. */ 6485 6486 if (bp_num_list != NULL && *bp_num_list != '\0') 6487 { 6488 if (show_internal) /* maintenance info breakpoint */ 6489 { 6490 if (parse_and_eval_long (bp_num_list) != b->number) 6491 continue; 6492 } 6493 else /* all others */ 6494 { 6495 if (!number_is_in_list (bp_num_list, b->number)) 6496 continue; 6497 } 6498 } 6499 /* We only print out user settable breakpoints unless the 6500 show_internal is set. */ 6501 if (show_internal || user_breakpoint_p (b)) 6502 print_one_breakpoint (b, &last_loc, show_internal); 6503 } 6504 } 6505 6506 if (nr_printable_breakpoints == 0) 6507 { 6508 /* If there's a filter, let the caller decide how to report 6509 empty list. */ 6510 if (!filter) 6511 { 6512 if (bp_num_list == NULL || *bp_num_list == '\0') 6513 uiout->message ("No breakpoints or watchpoints.\n"); 6514 else 6515 uiout->message ("No breakpoint or watchpoint matching '%s'.\n", 6516 bp_num_list); 6517 } 6518 } 6519 else 6520 { 6521 if (last_loc && !server_command) 6522 set_next_address (last_loc->gdbarch, last_loc->address); 6523 } 6524 6525 /* FIXME? Should this be moved up so that it is only called when 6526 there have been breakpoints? */ 6527 annotate_breakpoints_table_end (); 6528 6529 return nr_printable_breakpoints; 6530 } 6531 6532 /* Display the value of default-collect in a way that is generally 6533 compatible with the breakpoint list. */ 6534 6535 static void 6536 default_collect_info (void) 6537 { 6538 struct ui_out *uiout = current_uiout; 6539 6540 /* If it has no value (which is frequently the case), say nothing; a 6541 message like "No default-collect." gets in user's face when it's 6542 not wanted. */ 6543 if (!*default_collect) 6544 return; 6545 6546 /* The following phrase lines up nicely with per-tracepoint collect 6547 actions. */ 6548 uiout->text ("default collect "); 6549 uiout->field_string ("default-collect", default_collect); 6550 uiout->text (" \n"); 6551 } 6552 6553 static void 6554 info_breakpoints_command (const char *args, int from_tty) 6555 { 6556 breakpoint_1 (args, false, NULL); 6557 6558 default_collect_info (); 6559 } 6560 6561 static void 6562 info_watchpoints_command (const char *args, int from_tty) 6563 { 6564 int num_printed = breakpoint_1 (args, false, is_watchpoint); 6565 struct ui_out *uiout = current_uiout; 6566 6567 if (num_printed == 0) 6568 { 6569 if (args == NULL || *args == '\0') 6570 uiout->message ("No watchpoints.\n"); 6571 else 6572 uiout->message ("No watchpoint matching '%s'.\n", args); 6573 } 6574 } 6575 6576 static void 6577 maintenance_info_breakpoints (const char *args, int from_tty) 6578 { 6579 breakpoint_1 (args, true, NULL); 6580 6581 default_collect_info (); 6582 } 6583 6584 static int 6585 breakpoint_has_pc (struct breakpoint *b, 6586 struct program_space *pspace, 6587 CORE_ADDR pc, struct obj_section *section) 6588 { 6589 struct bp_location *bl = b->loc; 6590 6591 for (; bl; bl = bl->next) 6592 { 6593 if (bl->pspace == pspace 6594 && bl->address == pc 6595 && (!overlay_debugging || bl->section == section)) 6596 return 1; 6597 } 6598 return 0; 6599 } 6600 6601 /* Print a message describing any user-breakpoints set at PC. This 6602 concerns with logical breakpoints, so we match program spaces, not 6603 address spaces. */ 6604 6605 static void 6606 describe_other_breakpoints (struct gdbarch *gdbarch, 6607 struct program_space *pspace, CORE_ADDR pc, 6608 struct obj_section *section, int thread) 6609 { 6610 int others = 0; 6611 struct breakpoint *b; 6612 6613 ALL_BREAKPOINTS (b) 6614 others += (user_breakpoint_p (b) 6615 && breakpoint_has_pc (b, pspace, pc, section)); 6616 if (others > 0) 6617 { 6618 if (others == 1) 6619 printf_filtered (_("Note: breakpoint ")); 6620 else /* if (others == ???) */ 6621 printf_filtered (_("Note: breakpoints ")); 6622 ALL_BREAKPOINTS (b) 6623 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section)) 6624 { 6625 others--; 6626 printf_filtered ("%d", b->number); 6627 if (b->thread == -1 && thread != -1) 6628 printf_filtered (" (all threads)"); 6629 else if (b->thread != -1) 6630 printf_filtered (" (thread %d)", b->thread); 6631 printf_filtered ("%s%s ", 6632 ((b->enable_state == bp_disabled 6633 || b->enable_state == bp_call_disabled) 6634 ? " (disabled)" 6635 : ""), 6636 (others > 1) ? "," 6637 : ((others == 1) ? " and" : "")); 6638 } 6639 current_uiout->message (_("also set at pc %ps.\n"), 6640 styled_string (address_style.style (), 6641 paddress (gdbarch, pc))); 6642 } 6643 } 6644 6645 6646 /* Return true iff it is meaningful to use the address member of LOC. 6647 For some breakpoint types, the locations' address members are 6648 irrelevant and it makes no sense to attempt to compare them to 6649 other addresses (or use them for any other purpose either). 6650 6651 More specifically, software watchpoints and catchpoints that are 6652 not backed by breakpoints always have a zero valued location 6653 address and we don't want to mark breakpoints of any of these types 6654 to be a duplicate of an actual breakpoint location at address 6655 zero. */ 6656 6657 static bool 6658 bl_address_is_meaningful (bp_location *loc) 6659 { 6660 return loc->loc_type != bp_loc_other; 6661 } 6662 6663 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns 6664 true if LOC1 and LOC2 represent the same watchpoint location. */ 6665 6666 static int 6667 watchpoint_locations_match (struct bp_location *loc1, 6668 struct bp_location *loc2) 6669 { 6670 struct watchpoint *w1 = (struct watchpoint *) loc1->owner; 6671 struct watchpoint *w2 = (struct watchpoint *) loc2->owner; 6672 6673 /* Both of them must exist. */ 6674 gdb_assert (w1 != NULL); 6675 gdb_assert (w2 != NULL); 6676 6677 /* If the target can evaluate the condition expression in hardware, 6678 then we we need to insert both watchpoints even if they are at 6679 the same place. Otherwise the watchpoint will only trigger when 6680 the condition of whichever watchpoint was inserted evaluates to 6681 true, not giving a chance for GDB to check the condition of the 6682 other watchpoint. */ 6683 if ((w1->cond_exp 6684 && target_can_accel_watchpoint_condition (loc1->address, 6685 loc1->length, 6686 loc1->watchpoint_type, 6687 w1->cond_exp.get ())) 6688 || (w2->cond_exp 6689 && target_can_accel_watchpoint_condition (loc2->address, 6690 loc2->length, 6691 loc2->watchpoint_type, 6692 w2->cond_exp.get ()))) 6693 return 0; 6694 6695 /* Note that this checks the owner's type, not the location's. In 6696 case the target does not support read watchpoints, but does 6697 support access watchpoints, we'll have bp_read_watchpoint 6698 watchpoints with hw_access locations. Those should be considered 6699 duplicates of hw_read locations. The hw_read locations will 6700 become hw_access locations later. */ 6701 return (loc1->owner->type == loc2->owner->type 6702 && loc1->pspace->aspace == loc2->pspace->aspace 6703 && loc1->address == loc2->address 6704 && loc1->length == loc2->length); 6705 } 6706 6707 /* See breakpoint.h. */ 6708 6709 int 6710 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1, 6711 const address_space *aspace2, CORE_ADDR addr2) 6712 { 6713 return ((gdbarch_has_global_breakpoints (target_gdbarch ()) 6714 || aspace1 == aspace2) 6715 && addr1 == addr2); 6716 } 6717 6718 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by 6719 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1 6720 matches ASPACE2. On targets that have global breakpoints, the address 6721 space doesn't really matter. */ 6722 6723 static int 6724 breakpoint_address_match_range (const address_space *aspace1, 6725 CORE_ADDR addr1, 6726 int len1, const address_space *aspace2, 6727 CORE_ADDR addr2) 6728 { 6729 return ((gdbarch_has_global_breakpoints (target_gdbarch ()) 6730 || aspace1 == aspace2) 6731 && addr2 >= addr1 && addr2 < addr1 + len1); 6732 } 6733 6734 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be 6735 a ranged breakpoint. In most targets, a match happens only if ASPACE 6736 matches the breakpoint's address space. On targets that have global 6737 breakpoints, the address space doesn't really matter. */ 6738 6739 static int 6740 breakpoint_location_address_match (struct bp_location *bl, 6741 const address_space *aspace, 6742 CORE_ADDR addr) 6743 { 6744 return (breakpoint_address_match (bl->pspace->aspace, bl->address, 6745 aspace, addr) 6746 || (bl->length 6747 && breakpoint_address_match_range (bl->pspace->aspace, 6748 bl->address, bl->length, 6749 aspace, addr))); 6750 } 6751 6752 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps 6753 breakpoint BL. BL may be a ranged breakpoint. In most targets, a 6754 match happens only if ASPACE matches the breakpoint's address 6755 space. On targets that have global breakpoints, the address space 6756 doesn't really matter. */ 6757 6758 static int 6759 breakpoint_location_address_range_overlap (struct bp_location *bl, 6760 const address_space *aspace, 6761 CORE_ADDR addr, int len) 6762 { 6763 if (gdbarch_has_global_breakpoints (target_gdbarch ()) 6764 || bl->pspace->aspace == aspace) 6765 { 6766 int bl_len = bl->length != 0 ? bl->length : 1; 6767 6768 if (mem_ranges_overlap (addr, len, bl->address, bl_len)) 6769 return 1; 6770 } 6771 return 0; 6772 } 6773 6774 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly. 6775 Then, if LOC1 and LOC2 represent the same tracepoint location, returns 6776 true, otherwise returns false. */ 6777 6778 static int 6779 tracepoint_locations_match (struct bp_location *loc1, 6780 struct bp_location *loc2) 6781 { 6782 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner)) 6783 /* Since tracepoint locations are never duplicated with others', tracepoint 6784 locations at the same address of different tracepoints are regarded as 6785 different locations. */ 6786 return (loc1->address == loc2->address && loc1->owner == loc2->owner); 6787 else 6788 return 0; 6789 } 6790 6791 /* Assuming LOC1 and LOC2's types' have meaningful target addresses 6792 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent 6793 the same location. If SW_HW_BPS_MATCH is true, then software 6794 breakpoint locations and hardware breakpoint locations match, 6795 otherwise they don't. */ 6796 6797 static int 6798 breakpoint_locations_match (struct bp_location *loc1, 6799 struct bp_location *loc2, 6800 bool sw_hw_bps_match) 6801 { 6802 int hw_point1, hw_point2; 6803 6804 /* Both of them must not be in moribund_locations. */ 6805 gdb_assert (loc1->owner != NULL); 6806 gdb_assert (loc2->owner != NULL); 6807 6808 hw_point1 = is_hardware_watchpoint (loc1->owner); 6809 hw_point2 = is_hardware_watchpoint (loc2->owner); 6810 6811 if (hw_point1 != hw_point2) 6812 return 0; 6813 else if (hw_point1) 6814 return watchpoint_locations_match (loc1, loc2); 6815 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner)) 6816 return tracepoint_locations_match (loc1, loc2); 6817 else 6818 /* We compare bp_location.length in order to cover ranged 6819 breakpoints. Keep this in sync with 6820 bp_location_is_less_than. */ 6821 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address, 6822 loc2->pspace->aspace, loc2->address) 6823 && (loc1->loc_type == loc2->loc_type || sw_hw_bps_match) 6824 && loc1->length == loc2->length); 6825 } 6826 6827 static void 6828 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr, 6829 int bnum, int have_bnum) 6830 { 6831 /* The longest string possibly returned by hex_string_custom 6832 is 50 chars. These must be at least that big for safety. */ 6833 char astr1[64]; 6834 char astr2[64]; 6835 6836 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8)); 6837 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8)); 6838 if (have_bnum) 6839 warning (_("Breakpoint %d address previously adjusted from %s to %s."), 6840 bnum, astr1, astr2); 6841 else 6842 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2); 6843 } 6844 6845 /* Adjust a breakpoint's address to account for architectural 6846 constraints on breakpoint placement. Return the adjusted address. 6847 Note: Very few targets require this kind of adjustment. For most 6848 targets, this function is simply the identity function. */ 6849 6850 static CORE_ADDR 6851 adjust_breakpoint_address (struct gdbarch *gdbarch, 6852 CORE_ADDR bpaddr, enum bptype bptype) 6853 { 6854 if (bptype == bp_watchpoint 6855 || bptype == bp_hardware_watchpoint 6856 || bptype == bp_read_watchpoint 6857 || bptype == bp_access_watchpoint 6858 || bptype == bp_catchpoint) 6859 { 6860 /* Watchpoints and the various bp_catch_* eventpoints should not 6861 have their addresses modified. */ 6862 return bpaddr; 6863 } 6864 else if (bptype == bp_single_step) 6865 { 6866 /* Single-step breakpoints should not have their addresses 6867 modified. If there's any architectural constrain that 6868 applies to this address, then it should have already been 6869 taken into account when the breakpoint was created in the 6870 first place. If we didn't do this, stepping through e.g., 6871 Thumb-2 IT blocks would break. */ 6872 return bpaddr; 6873 } 6874 else 6875 { 6876 CORE_ADDR adjusted_bpaddr = bpaddr; 6877 6878 if (gdbarch_adjust_breakpoint_address_p (gdbarch)) 6879 { 6880 /* Some targets have architectural constraints on the placement 6881 of breakpoint instructions. Obtain the adjusted address. */ 6882 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr); 6883 } 6884 6885 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr); 6886 6887 /* An adjusted breakpoint address can significantly alter 6888 a user's expectations. Print a warning if an adjustment 6889 is required. */ 6890 if (adjusted_bpaddr != bpaddr) 6891 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0); 6892 6893 return adjusted_bpaddr; 6894 } 6895 } 6896 6897 static bp_loc_type 6898 bp_location_from_bp_type (bptype type) 6899 { 6900 switch (type) 6901 { 6902 case bp_breakpoint: 6903 case bp_single_step: 6904 case bp_until: 6905 case bp_finish: 6906 case bp_longjmp: 6907 case bp_longjmp_resume: 6908 case bp_longjmp_call_dummy: 6909 case bp_exception: 6910 case bp_exception_resume: 6911 case bp_step_resume: 6912 case bp_hp_step_resume: 6913 case bp_watchpoint_scope: 6914 case bp_call_dummy: 6915 case bp_std_terminate: 6916 case bp_shlib_event: 6917 case bp_thread_event: 6918 case bp_overlay_event: 6919 case bp_jit_event: 6920 case bp_longjmp_master: 6921 case bp_std_terminate_master: 6922 case bp_exception_master: 6923 case bp_gnu_ifunc_resolver: 6924 case bp_gnu_ifunc_resolver_return: 6925 case bp_dprintf: 6926 return bp_loc_software_breakpoint; 6927 case bp_hardware_breakpoint: 6928 return bp_loc_hardware_breakpoint; 6929 case bp_hardware_watchpoint: 6930 case bp_read_watchpoint: 6931 case bp_access_watchpoint: 6932 return bp_loc_hardware_watchpoint; 6933 case bp_watchpoint: 6934 case bp_catchpoint: 6935 case bp_tracepoint: 6936 case bp_fast_tracepoint: 6937 case bp_static_tracepoint: 6938 return bp_loc_other; 6939 default: 6940 internal_error (__FILE__, __LINE__, _("unknown breakpoint type")); 6941 } 6942 } 6943 6944 bp_location::bp_location (breakpoint *owner, bp_loc_type type) 6945 { 6946 this->owner = owner; 6947 this->cond_bytecode = NULL; 6948 this->shlib_disabled = 0; 6949 this->enabled = 1; 6950 6951 this->loc_type = type; 6952 6953 if (this->loc_type == bp_loc_software_breakpoint 6954 || this->loc_type == bp_loc_hardware_breakpoint) 6955 mark_breakpoint_location_modified (this); 6956 6957 this->refc = 1; 6958 } 6959 6960 bp_location::bp_location (breakpoint *owner) 6961 : bp_location::bp_location (owner, 6962 bp_location_from_bp_type (owner->type)) 6963 { 6964 } 6965 6966 /* Allocate a struct bp_location. */ 6967 6968 static struct bp_location * 6969 allocate_bp_location (struct breakpoint *bpt) 6970 { 6971 return bpt->ops->allocate_location (bpt); 6972 } 6973 6974 static void 6975 free_bp_location (struct bp_location *loc) 6976 { 6977 delete loc; 6978 } 6979 6980 /* Increment reference count. */ 6981 6982 static void 6983 incref_bp_location (struct bp_location *bl) 6984 { 6985 ++bl->refc; 6986 } 6987 6988 /* Decrement reference count. If the reference count reaches 0, 6989 destroy the bp_location. Sets *BLP to NULL. */ 6990 6991 static void 6992 decref_bp_location (struct bp_location **blp) 6993 { 6994 gdb_assert ((*blp)->refc > 0); 6995 6996 if (--(*blp)->refc == 0) 6997 free_bp_location (*blp); 6998 *blp = NULL; 6999 } 7000 7001 /* Add breakpoint B at the end of the global breakpoint chain. */ 7002 7003 static breakpoint * 7004 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b) 7005 { 7006 struct breakpoint *b1; 7007 struct breakpoint *result = b.get (); 7008 7009 /* Add this breakpoint to the end of the chain so that a list of 7010 breakpoints will come out in order of increasing numbers. */ 7011 7012 b1 = breakpoint_chain; 7013 if (b1 == 0) 7014 breakpoint_chain = b.release (); 7015 else 7016 { 7017 while (b1->next) 7018 b1 = b1->next; 7019 b1->next = b.release (); 7020 } 7021 7022 return result; 7023 } 7024 7025 /* Initializes breakpoint B with type BPTYPE and no locations yet. */ 7026 7027 static void 7028 init_raw_breakpoint_without_location (struct breakpoint *b, 7029 struct gdbarch *gdbarch, 7030 enum bptype bptype, 7031 const struct breakpoint_ops *ops) 7032 { 7033 gdb_assert (ops != NULL); 7034 7035 b->ops = ops; 7036 b->type = bptype; 7037 b->gdbarch = gdbarch; 7038 b->language = current_language->la_language; 7039 b->input_radix = input_radix; 7040 b->related_breakpoint = b; 7041 } 7042 7043 /* Helper to set_raw_breakpoint below. Creates a breakpoint 7044 that has type BPTYPE and has no locations as yet. */ 7045 7046 static struct breakpoint * 7047 set_raw_breakpoint_without_location (struct gdbarch *gdbarch, 7048 enum bptype bptype, 7049 const struct breakpoint_ops *ops) 7050 { 7051 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype); 7052 7053 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops); 7054 return add_to_breakpoint_chain (std::move (b)); 7055 } 7056 7057 /* Initialize loc->function_name. */ 7058 7059 static void 7060 set_breakpoint_location_function (struct bp_location *loc) 7061 { 7062 gdb_assert (loc->owner != NULL); 7063 7064 if (loc->owner->type == bp_breakpoint 7065 || loc->owner->type == bp_hardware_breakpoint 7066 || is_tracepoint (loc->owner)) 7067 { 7068 const char *function_name; 7069 7070 if (loc->msymbol != NULL 7071 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc 7072 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)) 7073 { 7074 struct breakpoint *b = loc->owner; 7075 7076 function_name = loc->msymbol->linkage_name (); 7077 7078 if (b->type == bp_breakpoint && b->loc == loc 7079 && loc->next == NULL && b->related_breakpoint == b) 7080 { 7081 /* Create only the whole new breakpoint of this type but do not 7082 mess more complicated breakpoints with multiple locations. */ 7083 b->type = bp_gnu_ifunc_resolver; 7084 /* Remember the resolver's address for use by the return 7085 breakpoint. */ 7086 loc->related_address = loc->address; 7087 } 7088 } 7089 else 7090 find_pc_partial_function (loc->address, &function_name, NULL, NULL); 7091 7092 if (function_name) 7093 loc->function_name = xstrdup (function_name); 7094 } 7095 } 7096 7097 /* Attempt to determine architecture of location identified by SAL. */ 7098 struct gdbarch * 7099 get_sal_arch (struct symtab_and_line sal) 7100 { 7101 if (sal.section) 7102 return sal.section->objfile->arch (); 7103 if (sal.symtab) 7104 return SYMTAB_OBJFILE (sal.symtab)->arch (); 7105 7106 return NULL; 7107 } 7108 7109 /* Low level routine for partially initializing a breakpoint of type 7110 BPTYPE. The newly created breakpoint's address, section, source 7111 file name, and line number are provided by SAL. 7112 7113 It is expected that the caller will complete the initialization of 7114 the newly created breakpoint struct as well as output any status 7115 information regarding the creation of a new breakpoint. */ 7116 7117 static void 7118 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch, 7119 struct symtab_and_line sal, enum bptype bptype, 7120 const struct breakpoint_ops *ops) 7121 { 7122 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops); 7123 7124 add_location_to_breakpoint (b, &sal); 7125 7126 if (bptype != bp_catchpoint) 7127 gdb_assert (sal.pspace != NULL); 7128 7129 /* Store the program space that was used to set the breakpoint, 7130 except for ordinary breakpoints, which are independent of the 7131 program space. */ 7132 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint) 7133 b->pspace = sal.pspace; 7134 } 7135 7136 /* set_raw_breakpoint is a low level routine for allocating and 7137 partially initializing a breakpoint of type BPTYPE. The newly 7138 created breakpoint's address, section, source file name, and line 7139 number are provided by SAL. The newly created and partially 7140 initialized breakpoint is added to the breakpoint chain and 7141 is also returned as the value of this function. 7142 7143 It is expected that the caller will complete the initialization of 7144 the newly created breakpoint struct as well as output any status 7145 information regarding the creation of a new breakpoint. In 7146 particular, set_raw_breakpoint does NOT set the breakpoint 7147 number! Care should be taken to not allow an error to occur 7148 prior to completing the initialization of the breakpoint. If this 7149 should happen, a bogus breakpoint will be left on the chain. */ 7150 7151 struct breakpoint * 7152 set_raw_breakpoint (struct gdbarch *gdbarch, 7153 struct symtab_and_line sal, enum bptype bptype, 7154 const struct breakpoint_ops *ops) 7155 { 7156 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype); 7157 7158 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops); 7159 return add_to_breakpoint_chain (std::move (b)); 7160 } 7161 7162 /* Call this routine when stepping and nexting to enable a breakpoint 7163 if we do a longjmp() or 'throw' in TP. FRAME is the frame which 7164 initiated the operation. */ 7165 7166 void 7167 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame) 7168 { 7169 struct breakpoint *b, *b_tmp; 7170 int thread = tp->global_num; 7171 7172 /* To avoid having to rescan all objfile symbols at every step, 7173 we maintain a list of continually-inserted but always disabled 7174 longjmp "master" breakpoints. Here, we simply create momentary 7175 clones of those and enable them for the requested thread. */ 7176 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7177 if (b->pspace == current_program_space 7178 && (b->type == bp_longjmp_master 7179 || b->type == bp_exception_master)) 7180 { 7181 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception; 7182 struct breakpoint *clone; 7183 7184 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again 7185 after their removal. */ 7186 clone = momentary_breakpoint_from_master (b, type, 7187 &momentary_breakpoint_ops, 1); 7188 clone->thread = thread; 7189 } 7190 7191 tp->initiating_frame = frame; 7192 } 7193 7194 /* Delete all longjmp breakpoints from THREAD. */ 7195 void 7196 delete_longjmp_breakpoint (int thread) 7197 { 7198 struct breakpoint *b, *b_tmp; 7199 7200 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7201 if (b->type == bp_longjmp || b->type == bp_exception) 7202 { 7203 if (b->thread == thread) 7204 delete_breakpoint (b); 7205 } 7206 } 7207 7208 void 7209 delete_longjmp_breakpoint_at_next_stop (int thread) 7210 { 7211 struct breakpoint *b, *b_tmp; 7212 7213 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7214 if (b->type == bp_longjmp || b->type == bp_exception) 7215 { 7216 if (b->thread == thread) 7217 b->disposition = disp_del_at_next_stop; 7218 } 7219 } 7220 7221 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for 7222 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return 7223 pointer to any of them. Return NULL if this system cannot place longjmp 7224 breakpoints. */ 7225 7226 struct breakpoint * 7227 set_longjmp_breakpoint_for_call_dummy (void) 7228 { 7229 struct breakpoint *b, *retval = NULL; 7230 7231 ALL_BREAKPOINTS (b) 7232 if (b->pspace == current_program_space && b->type == bp_longjmp_master) 7233 { 7234 struct breakpoint *new_b; 7235 7236 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy, 7237 &momentary_breakpoint_ops, 7238 1); 7239 new_b->thread = inferior_thread ()->global_num; 7240 7241 /* Link NEW_B into the chain of RETVAL breakpoints. */ 7242 7243 gdb_assert (new_b->related_breakpoint == new_b); 7244 if (retval == NULL) 7245 retval = new_b; 7246 new_b->related_breakpoint = retval; 7247 while (retval->related_breakpoint != new_b->related_breakpoint) 7248 retval = retval->related_breakpoint; 7249 retval->related_breakpoint = new_b; 7250 } 7251 7252 return retval; 7253 } 7254 7255 /* Verify all existing dummy frames and their associated breakpoints for 7256 TP. Remove those which can no longer be found in the current frame 7257 stack. 7258 7259 You should call this function only at places where it is safe to currently 7260 unwind the whole stack. Failed stack unwind would discard live dummy 7261 frames. */ 7262 7263 void 7264 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp) 7265 { 7266 struct breakpoint *b, *b_tmp; 7267 7268 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7269 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num) 7270 { 7271 struct breakpoint *dummy_b = b->related_breakpoint; 7272 7273 while (dummy_b != b && dummy_b->type != bp_call_dummy) 7274 dummy_b = dummy_b->related_breakpoint; 7275 if (dummy_b->type != bp_call_dummy 7276 || frame_find_by_id (dummy_b->frame_id) != NULL) 7277 continue; 7278 7279 dummy_frame_discard (dummy_b->frame_id, tp); 7280 7281 while (b->related_breakpoint != b) 7282 { 7283 if (b_tmp == b->related_breakpoint) 7284 b_tmp = b->related_breakpoint->next; 7285 delete_breakpoint (b->related_breakpoint); 7286 } 7287 delete_breakpoint (b); 7288 } 7289 } 7290 7291 void 7292 enable_overlay_breakpoints (void) 7293 { 7294 struct breakpoint *b; 7295 7296 ALL_BREAKPOINTS (b) 7297 if (b->type == bp_overlay_event) 7298 { 7299 b->enable_state = bp_enabled; 7300 update_global_location_list (UGLL_MAY_INSERT); 7301 overlay_events_enabled = 1; 7302 } 7303 } 7304 7305 void 7306 disable_overlay_breakpoints (void) 7307 { 7308 struct breakpoint *b; 7309 7310 ALL_BREAKPOINTS (b) 7311 if (b->type == bp_overlay_event) 7312 { 7313 b->enable_state = bp_disabled; 7314 update_global_location_list (UGLL_DONT_INSERT); 7315 overlay_events_enabled = 0; 7316 } 7317 } 7318 7319 /* Set an active std::terminate breakpoint for each std::terminate 7320 master breakpoint. */ 7321 void 7322 set_std_terminate_breakpoint (void) 7323 { 7324 struct breakpoint *b, *b_tmp; 7325 7326 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7327 if (b->pspace == current_program_space 7328 && b->type == bp_std_terminate_master) 7329 { 7330 momentary_breakpoint_from_master (b, bp_std_terminate, 7331 &momentary_breakpoint_ops, 1); 7332 } 7333 } 7334 7335 /* Delete all the std::terminate breakpoints. */ 7336 void 7337 delete_std_terminate_breakpoint (void) 7338 { 7339 struct breakpoint *b, *b_tmp; 7340 7341 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7342 if (b->type == bp_std_terminate) 7343 delete_breakpoint (b); 7344 } 7345 7346 struct breakpoint * 7347 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address) 7348 { 7349 struct breakpoint *b; 7350 7351 b = create_internal_breakpoint (gdbarch, address, bp_thread_event, 7352 &internal_breakpoint_ops); 7353 7354 b->enable_state = bp_enabled; 7355 /* location has to be used or breakpoint_re_set will delete me. */ 7356 b->location = new_address_location (b->loc->address, NULL, 0); 7357 7358 update_global_location_list_nothrow (UGLL_MAY_INSERT); 7359 7360 return b; 7361 } 7362 7363 struct lang_and_radix 7364 { 7365 enum language lang; 7366 int radix; 7367 }; 7368 7369 /* Create a breakpoint for JIT code registration and unregistration. */ 7370 7371 struct breakpoint * 7372 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address) 7373 { 7374 return create_internal_breakpoint (gdbarch, address, bp_jit_event, 7375 &internal_breakpoint_ops); 7376 } 7377 7378 /* Remove JIT code registration and unregistration breakpoint(s). */ 7379 7380 void 7381 remove_jit_event_breakpoints (void) 7382 { 7383 struct breakpoint *b, *b_tmp; 7384 7385 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7386 if (b->type == bp_jit_event 7387 && b->loc->pspace == current_program_space) 7388 delete_breakpoint (b); 7389 } 7390 7391 void 7392 remove_solib_event_breakpoints (void) 7393 { 7394 struct breakpoint *b, *b_tmp; 7395 7396 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7397 if (b->type == bp_shlib_event 7398 && b->loc->pspace == current_program_space) 7399 delete_breakpoint (b); 7400 } 7401 7402 /* See breakpoint.h. */ 7403 7404 void 7405 remove_solib_event_breakpoints_at_next_stop (void) 7406 { 7407 struct breakpoint *b, *b_tmp; 7408 7409 ALL_BREAKPOINTS_SAFE (b, b_tmp) 7410 if (b->type == bp_shlib_event 7411 && b->loc->pspace == current_program_space) 7412 b->disposition = disp_del_at_next_stop; 7413 } 7414 7415 /* Helper for create_solib_event_breakpoint / 7416 create_and_insert_solib_event_breakpoint. Allows specifying which 7417 INSERT_MODE to pass through to update_global_location_list. */ 7418 7419 static struct breakpoint * 7420 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address, 7421 enum ugll_insert_mode insert_mode) 7422 { 7423 struct breakpoint *b; 7424 7425 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event, 7426 &internal_breakpoint_ops); 7427 update_global_location_list_nothrow (insert_mode); 7428 return b; 7429 } 7430 7431 struct breakpoint * 7432 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address) 7433 { 7434 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT); 7435 } 7436 7437 /* See breakpoint.h. */ 7438 7439 struct breakpoint * 7440 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address) 7441 { 7442 struct breakpoint *b; 7443 7444 /* Explicitly tell update_global_location_list to insert 7445 locations. */ 7446 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT); 7447 if (!b->loc->inserted) 7448 { 7449 delete_breakpoint (b); 7450 return NULL; 7451 } 7452 return b; 7453 } 7454 7455 /* Disable any breakpoints that are on code in shared libraries. Only 7456 apply to enabled breakpoints, disabled ones can just stay disabled. */ 7457 7458 void 7459 disable_breakpoints_in_shlibs (void) 7460 { 7461 struct bp_location *loc, **locp_tmp; 7462 7463 ALL_BP_LOCATIONS (loc, locp_tmp) 7464 { 7465 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */ 7466 struct breakpoint *b = loc->owner; 7467 7468 /* We apply the check to all breakpoints, including disabled for 7469 those with loc->duplicate set. This is so that when breakpoint 7470 becomes enabled, or the duplicate is removed, gdb will try to 7471 insert all breakpoints. If we don't set shlib_disabled here, 7472 we'll try to insert those breakpoints and fail. */ 7473 if (((b->type == bp_breakpoint) 7474 || (b->type == bp_jit_event) 7475 || (b->type == bp_hardware_breakpoint) 7476 || (is_tracepoint (b))) 7477 && loc->pspace == current_program_space 7478 && !loc->shlib_disabled 7479 && solib_name_from_address (loc->pspace, loc->address) 7480 ) 7481 { 7482 loc->shlib_disabled = 1; 7483 } 7484 } 7485 } 7486 7487 /* Disable any breakpoints and tracepoints that are in SOLIB upon 7488 notification of unloaded_shlib. Only apply to enabled breakpoints, 7489 disabled ones can just stay disabled. */ 7490 7491 static void 7492 disable_breakpoints_in_unloaded_shlib (struct so_list *solib) 7493 { 7494 struct bp_location *loc, **locp_tmp; 7495 int disabled_shlib_breaks = 0; 7496 7497 ALL_BP_LOCATIONS (loc, locp_tmp) 7498 { 7499 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */ 7500 struct breakpoint *b = loc->owner; 7501 7502 if (solib->pspace == loc->pspace 7503 && !loc->shlib_disabled 7504 && (((b->type == bp_breakpoint 7505 || b->type == bp_jit_event 7506 || b->type == bp_hardware_breakpoint) 7507 && (loc->loc_type == bp_loc_hardware_breakpoint 7508 || loc->loc_type == bp_loc_software_breakpoint)) 7509 || is_tracepoint (b)) 7510 && solib_contains_address_p (solib, loc->address)) 7511 { 7512 loc->shlib_disabled = 1; 7513 /* At this point, we cannot rely on remove_breakpoint 7514 succeeding so we must mark the breakpoint as not inserted 7515 to prevent future errors occurring in remove_breakpoints. */ 7516 loc->inserted = 0; 7517 7518 /* This may cause duplicate notifications for the same breakpoint. */ 7519 gdb::observers::breakpoint_modified.notify (b); 7520 7521 if (!disabled_shlib_breaks) 7522 { 7523 target_terminal::ours_for_output (); 7524 warning (_("Temporarily disabling breakpoints " 7525 "for unloaded shared library \"%s\""), 7526 solib->so_name); 7527 } 7528 disabled_shlib_breaks = 1; 7529 } 7530 } 7531 } 7532 7533 /* Disable any breakpoints and tracepoints in OBJFILE upon 7534 notification of free_objfile. Only apply to enabled breakpoints, 7535 disabled ones can just stay disabled. */ 7536 7537 static void 7538 disable_breakpoints_in_freed_objfile (struct objfile *objfile) 7539 { 7540 struct breakpoint *b; 7541 7542 if (objfile == NULL) 7543 return; 7544 7545 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually 7546 managed by the user with add-symbol-file/remove-symbol-file. 7547 Similarly to how breakpoints in shared libraries are handled in 7548 response to "nosharedlibrary", mark breakpoints in such modules 7549 shlib_disabled so they end up uninserted on the next global 7550 location list update. Shared libraries not loaded by the user 7551 aren't handled here -- they're already handled in 7552 disable_breakpoints_in_unloaded_shlib, called by solib.c's 7553 solib_unloaded observer. We skip objfiles that are not 7554 OBJF_SHARED as those aren't considered dynamic objects (e.g. the 7555 main objfile). */ 7556 if ((objfile->flags & OBJF_SHARED) == 0 7557 || (objfile->flags & OBJF_USERLOADED) == 0) 7558 return; 7559 7560 ALL_BREAKPOINTS (b) 7561 { 7562 struct bp_location *loc; 7563 int bp_modified = 0; 7564 7565 if (!is_breakpoint (b) && !is_tracepoint (b)) 7566 continue; 7567 7568 for (loc = b->loc; loc != NULL; loc = loc->next) 7569 { 7570 CORE_ADDR loc_addr = loc->address; 7571 7572 if (loc->loc_type != bp_loc_hardware_breakpoint 7573 && loc->loc_type != bp_loc_software_breakpoint) 7574 continue; 7575 7576 if (loc->shlib_disabled != 0) 7577 continue; 7578 7579 if (objfile->pspace != loc->pspace) 7580 continue; 7581 7582 if (loc->loc_type != bp_loc_hardware_breakpoint 7583 && loc->loc_type != bp_loc_software_breakpoint) 7584 continue; 7585 7586 if (is_addr_in_objfile (loc_addr, objfile)) 7587 { 7588 loc->shlib_disabled = 1; 7589 /* At this point, we don't know whether the object was 7590 unmapped from the inferior or not, so leave the 7591 inserted flag alone. We'll handle failure to 7592 uninsert quietly, in case the object was indeed 7593 unmapped. */ 7594 7595 mark_breakpoint_location_modified (loc); 7596 7597 bp_modified = 1; 7598 } 7599 } 7600 7601 if (bp_modified) 7602 gdb::observers::breakpoint_modified.notify (b); 7603 } 7604 } 7605 7606 /* FORK & VFORK catchpoints. */ 7607 7608 /* An instance of this type is used to represent a fork or vfork 7609 catchpoint. A breakpoint is really of this type iff its ops pointer points 7610 to CATCH_FORK_BREAKPOINT_OPS. */ 7611 7612 struct fork_catchpoint : public breakpoint 7613 { 7614 /* Process id of a child process whose forking triggered this 7615 catchpoint. This field is only valid immediately after this 7616 catchpoint has triggered. */ 7617 ptid_t forked_inferior_pid; 7618 }; 7619 7620 /* Implement the "insert" breakpoint_ops method for fork 7621 catchpoints. */ 7622 7623 static int 7624 insert_catch_fork (struct bp_location *bl) 7625 { 7626 return target_insert_fork_catchpoint (inferior_ptid.pid ()); 7627 } 7628 7629 /* Implement the "remove" breakpoint_ops method for fork 7630 catchpoints. */ 7631 7632 static int 7633 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason) 7634 { 7635 return target_remove_fork_catchpoint (inferior_ptid.pid ()); 7636 } 7637 7638 /* Implement the "breakpoint_hit" breakpoint_ops method for fork 7639 catchpoints. */ 7640 7641 static int 7642 breakpoint_hit_catch_fork (const struct bp_location *bl, 7643 const address_space *aspace, CORE_ADDR bp_addr, 7644 const struct target_waitstatus *ws) 7645 { 7646 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner; 7647 7648 if (ws->kind != TARGET_WAITKIND_FORKED) 7649 return 0; 7650 7651 c->forked_inferior_pid = ws->value.related_pid; 7652 return 1; 7653 } 7654 7655 /* Implement the "print_it" breakpoint_ops method for fork 7656 catchpoints. */ 7657 7658 static enum print_stop_action 7659 print_it_catch_fork (bpstat bs) 7660 { 7661 struct ui_out *uiout = current_uiout; 7662 struct breakpoint *b = bs->breakpoint_at; 7663 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at; 7664 7665 annotate_catchpoint (b->number); 7666 maybe_print_thread_hit_breakpoint (uiout); 7667 if (b->disposition == disp_del) 7668 uiout->text ("Temporary catchpoint "); 7669 else 7670 uiout->text ("Catchpoint "); 7671 if (uiout->is_mi_like_p ()) 7672 { 7673 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK)); 7674 uiout->field_string ("disp", bpdisp_text (b->disposition)); 7675 } 7676 uiout->field_signed ("bkptno", b->number); 7677 uiout->text (" (forked process "); 7678 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ()); 7679 uiout->text ("), "); 7680 return PRINT_SRC_AND_LOC; 7681 } 7682 7683 /* Implement the "print_one" breakpoint_ops method for fork 7684 catchpoints. */ 7685 7686 static void 7687 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc) 7688 { 7689 struct fork_catchpoint *c = (struct fork_catchpoint *) b; 7690 struct value_print_options opts; 7691 struct ui_out *uiout = current_uiout; 7692 7693 get_user_print_options (&opts); 7694 7695 /* Field 4, the address, is omitted (which makes the columns not 7696 line up too nicely with the headers, but the effect is relatively 7697 readable). */ 7698 if (opts.addressprint) 7699 uiout->field_skip ("addr"); 7700 annotate_field (5); 7701 uiout->text ("fork"); 7702 if (c->forked_inferior_pid != null_ptid) 7703 { 7704 uiout->text (", process "); 7705 uiout->field_signed ("what", c->forked_inferior_pid.pid ()); 7706 uiout->spaces (1); 7707 } 7708 7709 if (uiout->is_mi_like_p ()) 7710 uiout->field_string ("catch-type", "fork"); 7711 } 7712 7713 /* Implement the "print_mention" breakpoint_ops method for fork 7714 catchpoints. */ 7715 7716 static void 7717 print_mention_catch_fork (struct breakpoint *b) 7718 { 7719 printf_filtered (_("Catchpoint %d (fork)"), b->number); 7720 } 7721 7722 /* Implement the "print_recreate" breakpoint_ops method for fork 7723 catchpoints. */ 7724 7725 static void 7726 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp) 7727 { 7728 fprintf_unfiltered (fp, "catch fork"); 7729 print_recreate_thread (b, fp); 7730 } 7731 7732 /* The breakpoint_ops structure to be used in fork catchpoints. */ 7733 7734 static struct breakpoint_ops catch_fork_breakpoint_ops; 7735 7736 /* Implement the "insert" breakpoint_ops method for vfork 7737 catchpoints. */ 7738 7739 static int 7740 insert_catch_vfork (struct bp_location *bl) 7741 { 7742 return target_insert_vfork_catchpoint (inferior_ptid.pid ()); 7743 } 7744 7745 /* Implement the "remove" breakpoint_ops method for vfork 7746 catchpoints. */ 7747 7748 static int 7749 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason) 7750 { 7751 return target_remove_vfork_catchpoint (inferior_ptid.pid ()); 7752 } 7753 7754 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork 7755 catchpoints. */ 7756 7757 static int 7758 breakpoint_hit_catch_vfork (const struct bp_location *bl, 7759 const address_space *aspace, CORE_ADDR bp_addr, 7760 const struct target_waitstatus *ws) 7761 { 7762 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner; 7763 7764 if (ws->kind != TARGET_WAITKIND_VFORKED) 7765 return 0; 7766 7767 c->forked_inferior_pid = ws->value.related_pid; 7768 return 1; 7769 } 7770 7771 /* Implement the "print_it" breakpoint_ops method for vfork 7772 catchpoints. */ 7773 7774 static enum print_stop_action 7775 print_it_catch_vfork (bpstat bs) 7776 { 7777 struct ui_out *uiout = current_uiout; 7778 struct breakpoint *b = bs->breakpoint_at; 7779 struct fork_catchpoint *c = (struct fork_catchpoint *) b; 7780 7781 annotate_catchpoint (b->number); 7782 maybe_print_thread_hit_breakpoint (uiout); 7783 if (b->disposition == disp_del) 7784 uiout->text ("Temporary catchpoint "); 7785 else 7786 uiout->text ("Catchpoint "); 7787 if (uiout->is_mi_like_p ()) 7788 { 7789 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK)); 7790 uiout->field_string ("disp", bpdisp_text (b->disposition)); 7791 } 7792 uiout->field_signed ("bkptno", b->number); 7793 uiout->text (" (vforked process "); 7794 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ()); 7795 uiout->text ("), "); 7796 return PRINT_SRC_AND_LOC; 7797 } 7798 7799 /* Implement the "print_one" breakpoint_ops method for vfork 7800 catchpoints. */ 7801 7802 static void 7803 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc) 7804 { 7805 struct fork_catchpoint *c = (struct fork_catchpoint *) b; 7806 struct value_print_options opts; 7807 struct ui_out *uiout = current_uiout; 7808 7809 get_user_print_options (&opts); 7810 /* Field 4, the address, is omitted (which makes the columns not 7811 line up too nicely with the headers, but the effect is relatively 7812 readable). */ 7813 if (opts.addressprint) 7814 uiout->field_skip ("addr"); 7815 annotate_field (5); 7816 uiout->text ("vfork"); 7817 if (c->forked_inferior_pid != null_ptid) 7818 { 7819 uiout->text (", process "); 7820 uiout->field_signed ("what", c->forked_inferior_pid.pid ()); 7821 uiout->spaces (1); 7822 } 7823 7824 if (uiout->is_mi_like_p ()) 7825 uiout->field_string ("catch-type", "vfork"); 7826 } 7827 7828 /* Implement the "print_mention" breakpoint_ops method for vfork 7829 catchpoints. */ 7830 7831 static void 7832 print_mention_catch_vfork (struct breakpoint *b) 7833 { 7834 printf_filtered (_("Catchpoint %d (vfork)"), b->number); 7835 } 7836 7837 /* Implement the "print_recreate" breakpoint_ops method for vfork 7838 catchpoints. */ 7839 7840 static void 7841 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp) 7842 { 7843 fprintf_unfiltered (fp, "catch vfork"); 7844 print_recreate_thread (b, fp); 7845 } 7846 7847 /* The breakpoint_ops structure to be used in vfork catchpoints. */ 7848 7849 static struct breakpoint_ops catch_vfork_breakpoint_ops; 7850 7851 /* An instance of this type is used to represent an solib catchpoint. 7852 A breakpoint is really of this type iff its ops pointer points to 7853 CATCH_SOLIB_BREAKPOINT_OPS. */ 7854 7855 struct solib_catchpoint : public breakpoint 7856 { 7857 ~solib_catchpoint () override; 7858 7859 /* True for "catch load", false for "catch unload". */ 7860 unsigned char is_load; 7861 7862 /* Regular expression to match, if any. COMPILED is only valid when 7863 REGEX is non-NULL. */ 7864 char *regex; 7865 std::unique_ptr<compiled_regex> compiled; 7866 }; 7867 7868 solib_catchpoint::~solib_catchpoint () 7869 { 7870 xfree (this->regex); 7871 } 7872 7873 static int 7874 insert_catch_solib (struct bp_location *ignore) 7875 { 7876 return 0; 7877 } 7878 7879 static int 7880 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason) 7881 { 7882 return 0; 7883 } 7884 7885 static int 7886 breakpoint_hit_catch_solib (const struct bp_location *bl, 7887 const address_space *aspace, 7888 CORE_ADDR bp_addr, 7889 const struct target_waitstatus *ws) 7890 { 7891 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner; 7892 struct breakpoint *other; 7893 7894 if (ws->kind == TARGET_WAITKIND_LOADED) 7895 return 1; 7896 7897 ALL_BREAKPOINTS (other) 7898 { 7899 struct bp_location *other_bl; 7900 7901 if (other == bl->owner) 7902 continue; 7903 7904 if (other->type != bp_shlib_event) 7905 continue; 7906 7907 if (self->pspace != NULL && other->pspace != self->pspace) 7908 continue; 7909 7910 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next) 7911 { 7912 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws)) 7913 return 1; 7914 } 7915 } 7916 7917 return 0; 7918 } 7919 7920 static void 7921 check_status_catch_solib (struct bpstats *bs) 7922 { 7923 struct solib_catchpoint *self 7924 = (struct solib_catchpoint *) bs->breakpoint_at; 7925 7926 if (self->is_load) 7927 { 7928 for (so_list *iter : current_program_space->added_solibs) 7929 { 7930 if (!self->regex 7931 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0) 7932 return; 7933 } 7934 } 7935 else 7936 { 7937 for (const std::string &iter : current_program_space->deleted_solibs) 7938 { 7939 if (!self->regex 7940 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0) 7941 return; 7942 } 7943 } 7944 7945 bs->stop = 0; 7946 bs->print_it = print_it_noop; 7947 } 7948 7949 static enum print_stop_action 7950 print_it_catch_solib (bpstat bs) 7951 { 7952 struct breakpoint *b = bs->breakpoint_at; 7953 struct ui_out *uiout = current_uiout; 7954 7955 annotate_catchpoint (b->number); 7956 maybe_print_thread_hit_breakpoint (uiout); 7957 if (b->disposition == disp_del) 7958 uiout->text ("Temporary catchpoint "); 7959 else 7960 uiout->text ("Catchpoint "); 7961 uiout->field_signed ("bkptno", b->number); 7962 uiout->text ("\n"); 7963 if (uiout->is_mi_like_p ()) 7964 uiout->field_string ("disp", bpdisp_text (b->disposition)); 7965 print_solib_event (1); 7966 return PRINT_SRC_AND_LOC; 7967 } 7968 7969 static void 7970 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs) 7971 { 7972 struct solib_catchpoint *self = (struct solib_catchpoint *) b; 7973 struct value_print_options opts; 7974 struct ui_out *uiout = current_uiout; 7975 7976 get_user_print_options (&opts); 7977 /* Field 4, the address, is omitted (which makes the columns not 7978 line up too nicely with the headers, but the effect is relatively 7979 readable). */ 7980 if (opts.addressprint) 7981 { 7982 annotate_field (4); 7983 uiout->field_skip ("addr"); 7984 } 7985 7986 std::string msg; 7987 annotate_field (5); 7988 if (self->is_load) 7989 { 7990 if (self->regex) 7991 msg = string_printf (_("load of library matching %s"), self->regex); 7992 else 7993 msg = _("load of library"); 7994 } 7995 else 7996 { 7997 if (self->regex) 7998 msg = string_printf (_("unload of library matching %s"), self->regex); 7999 else 8000 msg = _("unload of library"); 8001 } 8002 uiout->field_string ("what", msg); 8003 8004 if (uiout->is_mi_like_p ()) 8005 uiout->field_string ("catch-type", self->is_load ? "load" : "unload"); 8006 } 8007 8008 static void 8009 print_mention_catch_solib (struct breakpoint *b) 8010 { 8011 struct solib_catchpoint *self = (struct solib_catchpoint *) b; 8012 8013 printf_filtered (_("Catchpoint %d (%s)"), b->number, 8014 self->is_load ? "load" : "unload"); 8015 } 8016 8017 static void 8018 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp) 8019 { 8020 struct solib_catchpoint *self = (struct solib_catchpoint *) b; 8021 8022 fprintf_unfiltered (fp, "%s %s", 8023 b->disposition == disp_del ? "tcatch" : "catch", 8024 self->is_load ? "load" : "unload"); 8025 if (self->regex) 8026 fprintf_unfiltered (fp, " %s", self->regex); 8027 fprintf_unfiltered (fp, "\n"); 8028 } 8029 8030 static struct breakpoint_ops catch_solib_breakpoint_ops; 8031 8032 /* Shared helper function (MI and CLI) for creating and installing 8033 a shared object event catchpoint. If IS_LOAD is non-zero then 8034 the events to be caught are load events, otherwise they are 8035 unload events. If IS_TEMP is non-zero the catchpoint is a 8036 temporary one. If ENABLED is non-zero the catchpoint is 8037 created in an enabled state. */ 8038 8039 void 8040 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled) 8041 { 8042 struct gdbarch *gdbarch = get_current_arch (); 8043 8044 if (!arg) 8045 arg = ""; 8046 arg = skip_spaces (arg); 8047 8048 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ()); 8049 8050 if (*arg != '\0') 8051 { 8052 c->compiled.reset (new compiled_regex (arg, REG_NOSUB, 8053 _("Invalid regexp"))); 8054 c->regex = xstrdup (arg); 8055 } 8056 8057 c->is_load = is_load; 8058 init_catchpoint (c.get (), gdbarch, is_temp, NULL, 8059 &catch_solib_breakpoint_ops); 8060 8061 c->enable_state = enabled ? bp_enabled : bp_disabled; 8062 8063 install_breakpoint (0, std::move (c), 1); 8064 } 8065 8066 /* A helper function that does all the work for "catch load" and 8067 "catch unload". */ 8068 8069 static void 8070 catch_load_or_unload (const char *arg, int from_tty, int is_load, 8071 struct cmd_list_element *command) 8072 { 8073 int tempflag; 8074 const int enabled = 1; 8075 8076 tempflag = get_cmd_context (command) == CATCH_TEMPORARY; 8077 8078 add_solib_catchpoint (arg, is_load, tempflag, enabled); 8079 } 8080 8081 static void 8082 catch_load_command_1 (const char *arg, int from_tty, 8083 struct cmd_list_element *command) 8084 { 8085 catch_load_or_unload (arg, from_tty, 1, command); 8086 } 8087 8088 static void 8089 catch_unload_command_1 (const char *arg, int from_tty, 8090 struct cmd_list_element *command) 8091 { 8092 catch_load_or_unload (arg, from_tty, 0, command); 8093 } 8094 8095 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG 8096 is non-zero, then make the breakpoint temporary. If COND_STRING is 8097 not NULL, then store it in the breakpoint. OPS, if not NULL, is 8098 the breakpoint_ops structure associated to the catchpoint. */ 8099 8100 void 8101 init_catchpoint (struct breakpoint *b, 8102 struct gdbarch *gdbarch, int tempflag, 8103 const char *cond_string, 8104 const struct breakpoint_ops *ops) 8105 { 8106 symtab_and_line sal; 8107 sal.pspace = current_program_space; 8108 8109 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops); 8110 8111 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string); 8112 b->disposition = tempflag ? disp_del : disp_donttouch; 8113 } 8114 8115 void 8116 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll) 8117 { 8118 breakpoint *b = add_to_breakpoint_chain (std::move (arg)); 8119 set_breakpoint_number (internal, b); 8120 if (is_tracepoint (b)) 8121 set_tracepoint_count (breakpoint_count); 8122 if (!internal) 8123 mention (b); 8124 gdb::observers::breakpoint_created.notify (b); 8125 8126 if (update_gll) 8127 update_global_location_list (UGLL_MAY_INSERT); 8128 } 8129 8130 static void 8131 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch, 8132 int tempflag, const char *cond_string, 8133 const struct breakpoint_ops *ops) 8134 { 8135 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ()); 8136 8137 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops); 8138 8139 c->forked_inferior_pid = null_ptid; 8140 8141 install_breakpoint (0, std::move (c), 1); 8142 } 8143 8144 /* Exec catchpoints. */ 8145 8146 /* An instance of this type is used to represent an exec catchpoint. 8147 A breakpoint is really of this type iff its ops pointer points to 8148 CATCH_EXEC_BREAKPOINT_OPS. */ 8149 8150 struct exec_catchpoint : public breakpoint 8151 { 8152 ~exec_catchpoint () override; 8153 8154 /* Filename of a program whose exec triggered this catchpoint. 8155 This field is only valid immediately after this catchpoint has 8156 triggered. */ 8157 char *exec_pathname; 8158 }; 8159 8160 /* Exec catchpoint destructor. */ 8161 8162 exec_catchpoint::~exec_catchpoint () 8163 { 8164 xfree (this->exec_pathname); 8165 } 8166 8167 static int 8168 insert_catch_exec (struct bp_location *bl) 8169 { 8170 return target_insert_exec_catchpoint (inferior_ptid.pid ()); 8171 } 8172 8173 static int 8174 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason) 8175 { 8176 return target_remove_exec_catchpoint (inferior_ptid.pid ()); 8177 } 8178 8179 static int 8180 breakpoint_hit_catch_exec (const struct bp_location *bl, 8181 const address_space *aspace, CORE_ADDR bp_addr, 8182 const struct target_waitstatus *ws) 8183 { 8184 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner; 8185 8186 if (ws->kind != TARGET_WAITKIND_EXECD) 8187 return 0; 8188 8189 c->exec_pathname = xstrdup (ws->value.execd_pathname); 8190 return 1; 8191 } 8192 8193 static enum print_stop_action 8194 print_it_catch_exec (bpstat bs) 8195 { 8196 struct ui_out *uiout = current_uiout; 8197 struct breakpoint *b = bs->breakpoint_at; 8198 struct exec_catchpoint *c = (struct exec_catchpoint *) b; 8199 8200 annotate_catchpoint (b->number); 8201 maybe_print_thread_hit_breakpoint (uiout); 8202 if (b->disposition == disp_del) 8203 uiout->text ("Temporary catchpoint "); 8204 else 8205 uiout->text ("Catchpoint "); 8206 if (uiout->is_mi_like_p ()) 8207 { 8208 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC)); 8209 uiout->field_string ("disp", bpdisp_text (b->disposition)); 8210 } 8211 uiout->field_signed ("bkptno", b->number); 8212 uiout->text (" (exec'd "); 8213 uiout->field_string ("new-exec", c->exec_pathname); 8214 uiout->text ("), "); 8215 8216 return PRINT_SRC_AND_LOC; 8217 } 8218 8219 static void 8220 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc) 8221 { 8222 struct exec_catchpoint *c = (struct exec_catchpoint *) b; 8223 struct value_print_options opts; 8224 struct ui_out *uiout = current_uiout; 8225 8226 get_user_print_options (&opts); 8227 8228 /* Field 4, the address, is omitted (which makes the columns 8229 not line up too nicely with the headers, but the effect 8230 is relatively readable). */ 8231 if (opts.addressprint) 8232 uiout->field_skip ("addr"); 8233 annotate_field (5); 8234 uiout->text ("exec"); 8235 if (c->exec_pathname != NULL) 8236 { 8237 uiout->text (", program \""); 8238 uiout->field_string ("what", c->exec_pathname); 8239 uiout->text ("\" "); 8240 } 8241 8242 if (uiout->is_mi_like_p ()) 8243 uiout->field_string ("catch-type", "exec"); 8244 } 8245 8246 static void 8247 print_mention_catch_exec (struct breakpoint *b) 8248 { 8249 printf_filtered (_("Catchpoint %d (exec)"), b->number); 8250 } 8251 8252 /* Implement the "print_recreate" breakpoint_ops method for exec 8253 catchpoints. */ 8254 8255 static void 8256 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp) 8257 { 8258 fprintf_unfiltered (fp, "catch exec"); 8259 print_recreate_thread (b, fp); 8260 } 8261 8262 static struct breakpoint_ops catch_exec_breakpoint_ops; 8263 8264 static int 8265 hw_breakpoint_used_count (void) 8266 { 8267 int i = 0; 8268 struct breakpoint *b; 8269 struct bp_location *bl; 8270 8271 ALL_BREAKPOINTS (b) 8272 { 8273 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b)) 8274 for (bl = b->loc; bl; bl = bl->next) 8275 { 8276 /* Special types of hardware breakpoints may use more than 8277 one register. */ 8278 i += b->ops->resources_needed (bl); 8279 } 8280 } 8281 8282 return i; 8283 } 8284 8285 /* Returns the resources B would use if it were a hardware 8286 watchpoint. */ 8287 8288 static int 8289 hw_watchpoint_use_count (struct breakpoint *b) 8290 { 8291 int i = 0; 8292 struct bp_location *bl; 8293 8294 if (!breakpoint_enabled (b)) 8295 return 0; 8296 8297 for (bl = b->loc; bl; bl = bl->next) 8298 { 8299 /* Special types of hardware watchpoints may use more than 8300 one register. */ 8301 i += b->ops->resources_needed (bl); 8302 } 8303 8304 return i; 8305 } 8306 8307 /* Returns the sum the used resources of all hardware watchpoints of 8308 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED 8309 the sum of the used resources of all hardware watchpoints of other 8310 types _not_ TYPE. */ 8311 8312 static int 8313 hw_watchpoint_used_count_others (struct breakpoint *except, 8314 enum bptype type, int *other_type_used) 8315 { 8316 int i = 0; 8317 struct breakpoint *b; 8318 8319 *other_type_used = 0; 8320 ALL_BREAKPOINTS (b) 8321 { 8322 if (b == except) 8323 continue; 8324 if (!breakpoint_enabled (b)) 8325 continue; 8326 8327 if (b->type == type) 8328 i += hw_watchpoint_use_count (b); 8329 else if (is_hardware_watchpoint (b)) 8330 *other_type_used = 1; 8331 } 8332 8333 return i; 8334 } 8335 8336 void 8337 disable_watchpoints_before_interactive_call_start (void) 8338 { 8339 struct breakpoint *b; 8340 8341 ALL_BREAKPOINTS (b) 8342 { 8343 if (is_watchpoint (b) && breakpoint_enabled (b)) 8344 { 8345 b->enable_state = bp_call_disabled; 8346 update_global_location_list (UGLL_DONT_INSERT); 8347 } 8348 } 8349 } 8350 8351 void 8352 enable_watchpoints_after_interactive_call_stop (void) 8353 { 8354 struct breakpoint *b; 8355 8356 ALL_BREAKPOINTS (b) 8357 { 8358 if (is_watchpoint (b) && b->enable_state == bp_call_disabled) 8359 { 8360 b->enable_state = bp_enabled; 8361 update_global_location_list (UGLL_MAY_INSERT); 8362 } 8363 } 8364 } 8365 8366 void 8367 disable_breakpoints_before_startup (void) 8368 { 8369 current_program_space->executing_startup = 1; 8370 update_global_location_list (UGLL_DONT_INSERT); 8371 } 8372 8373 void 8374 enable_breakpoints_after_startup (void) 8375 { 8376 current_program_space->executing_startup = 0; 8377 breakpoint_re_set (); 8378 } 8379 8380 /* Create a new single-step breakpoint for thread THREAD, with no 8381 locations. */ 8382 8383 static struct breakpoint * 8384 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch) 8385 { 8386 std::unique_ptr<breakpoint> b (new breakpoint ()); 8387 8388 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step, 8389 &momentary_breakpoint_ops); 8390 8391 b->disposition = disp_donttouch; 8392 b->frame_id = null_frame_id; 8393 8394 b->thread = thread; 8395 gdb_assert (b->thread != 0); 8396 8397 return add_to_breakpoint_chain (std::move (b)); 8398 } 8399 8400 /* Set a momentary breakpoint of type TYPE at address specified by 8401 SAL. If FRAME_ID is valid, the breakpoint is restricted to that 8402 frame. */ 8403 8404 breakpoint_up 8405 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal, 8406 struct frame_id frame_id, enum bptype type) 8407 { 8408 struct breakpoint *b; 8409 8410 /* If FRAME_ID is valid, it should be a real frame, not an inlined or 8411 tail-called one. */ 8412 gdb_assert (!frame_id_artificial_p (frame_id)); 8413 8414 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops); 8415 b->enable_state = bp_enabled; 8416 b->disposition = disp_donttouch; 8417 b->frame_id = frame_id; 8418 8419 b->thread = inferior_thread ()->global_num; 8420 8421 update_global_location_list_nothrow (UGLL_MAY_INSERT); 8422 8423 return breakpoint_up (b); 8424 } 8425 8426 /* Make a momentary breakpoint based on the master breakpoint ORIG. 8427 The new breakpoint will have type TYPE, use OPS as its 8428 breakpoint_ops, and will set enabled to LOC_ENABLED. */ 8429 8430 static struct breakpoint * 8431 momentary_breakpoint_from_master (struct breakpoint *orig, 8432 enum bptype type, 8433 const struct breakpoint_ops *ops, 8434 int loc_enabled) 8435 { 8436 struct breakpoint *copy; 8437 8438 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops); 8439 copy->loc = allocate_bp_location (copy); 8440 set_breakpoint_location_function (copy->loc); 8441 8442 copy->loc->gdbarch = orig->loc->gdbarch; 8443 copy->loc->requested_address = orig->loc->requested_address; 8444 copy->loc->address = orig->loc->address; 8445 copy->loc->section = orig->loc->section; 8446 copy->loc->pspace = orig->loc->pspace; 8447 copy->loc->probe = orig->loc->probe; 8448 copy->loc->line_number = orig->loc->line_number; 8449 copy->loc->symtab = orig->loc->symtab; 8450 copy->loc->enabled = loc_enabled; 8451 copy->frame_id = orig->frame_id; 8452 copy->thread = orig->thread; 8453 copy->pspace = orig->pspace; 8454 8455 copy->enable_state = bp_enabled; 8456 copy->disposition = disp_donttouch; 8457 copy->number = internal_breakpoint_number--; 8458 8459 update_global_location_list_nothrow (UGLL_DONT_INSERT); 8460 return copy; 8461 } 8462 8463 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if 8464 ORIG is NULL. */ 8465 8466 struct breakpoint * 8467 clone_momentary_breakpoint (struct breakpoint *orig) 8468 { 8469 /* If there's nothing to clone, then return nothing. */ 8470 if (orig == NULL) 8471 return NULL; 8472 8473 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0); 8474 } 8475 8476 breakpoint_up 8477 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc, 8478 enum bptype type) 8479 { 8480 struct symtab_and_line sal; 8481 8482 sal = find_pc_line (pc, 0); 8483 sal.pc = pc; 8484 sal.section = find_pc_overlay (pc); 8485 sal.explicit_pc = 1; 8486 8487 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type); 8488 } 8489 8490 8491 /* Tell the user we have just set a breakpoint B. */ 8492 8493 static void 8494 mention (struct breakpoint *b) 8495 { 8496 b->ops->print_mention (b); 8497 current_uiout->text ("\n"); 8498 } 8499 8500 8501 static bool bp_loc_is_permanent (struct bp_location *loc); 8502 8503 /* Handle "set breakpoint auto-hw on". 8504 8505 If the explicitly specified breakpoint type is not hardware 8506 breakpoint, check the memory map to see whether the breakpoint 8507 address is in read-only memory. 8508 8509 - location type is not hardware breakpoint, memory is read-only. 8510 We change the type of the location to hardware breakpoint. 8511 8512 - location type is hardware breakpoint, memory is read-write. This 8513 means we've previously made the location hardware one, but then the 8514 memory map changed, so we undo. 8515 */ 8516 8517 static void 8518 handle_automatic_hardware_breakpoints (bp_location *bl) 8519 { 8520 if (automatic_hardware_breakpoints 8521 && bl->owner->type != bp_hardware_breakpoint 8522 && (bl->loc_type == bp_loc_software_breakpoint 8523 || bl->loc_type == bp_loc_hardware_breakpoint)) 8524 { 8525 /* When breakpoints are removed, remove_breakpoints will use 8526 location types we've just set here, the only possible problem 8527 is that memory map has changed during running program, but 8528 it's not going to work anyway with current gdb. */ 8529 mem_region *mr = lookup_mem_region (bl->address); 8530 8531 if (mr != nullptr) 8532 { 8533 enum bp_loc_type new_type; 8534 8535 if (mr->attrib.mode != MEM_RW) 8536 new_type = bp_loc_hardware_breakpoint; 8537 else 8538 new_type = bp_loc_software_breakpoint; 8539 8540 if (new_type != bl->loc_type) 8541 { 8542 static bool said = false; 8543 8544 bl->loc_type = new_type; 8545 if (!said) 8546 { 8547 fprintf_filtered (gdb_stdout, 8548 _("Note: automatically using " 8549 "hardware breakpoints for " 8550 "read-only addresses.\n")); 8551 said = true; 8552 } 8553 } 8554 } 8555 } 8556 } 8557 8558 static struct bp_location * 8559 add_location_to_breakpoint (struct breakpoint *b, 8560 const struct symtab_and_line *sal) 8561 { 8562 struct bp_location *loc, **tmp; 8563 CORE_ADDR adjusted_address; 8564 struct gdbarch *loc_gdbarch = get_sal_arch (*sal); 8565 8566 if (loc_gdbarch == NULL) 8567 loc_gdbarch = b->gdbarch; 8568 8569 /* Adjust the breakpoint's address prior to allocating a location. 8570 Once we call allocate_bp_location(), that mostly uninitialized 8571 location will be placed on the location chain. Adjustment of the 8572 breakpoint may cause target_read_memory() to be called and we do 8573 not want its scan of the location chain to find a breakpoint and 8574 location that's only been partially initialized. */ 8575 adjusted_address = adjust_breakpoint_address (loc_gdbarch, 8576 sal->pc, b->type); 8577 8578 /* Sort the locations by their ADDRESS. */ 8579 loc = allocate_bp_location (b); 8580 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address; 8581 tmp = &((*tmp)->next)) 8582 ; 8583 loc->next = *tmp; 8584 *tmp = loc; 8585 8586 loc->requested_address = sal->pc; 8587 loc->address = adjusted_address; 8588 loc->pspace = sal->pspace; 8589 loc->probe.prob = sal->prob; 8590 loc->probe.objfile = sal->objfile; 8591 gdb_assert (loc->pspace != NULL); 8592 loc->section = sal->section; 8593 loc->gdbarch = loc_gdbarch; 8594 loc->line_number = sal->line; 8595 loc->symtab = sal->symtab; 8596 loc->symbol = sal->symbol; 8597 loc->msymbol = sal->msymbol; 8598 loc->objfile = sal->objfile; 8599 8600 set_breakpoint_location_function (loc); 8601 8602 /* While by definition, permanent breakpoints are already present in the 8603 code, we don't mark the location as inserted. Normally one would expect 8604 that GDB could rely on that breakpoint instruction to stop the program, 8605 thus removing the need to insert its own breakpoint, except that executing 8606 the breakpoint instruction can kill the target instead of reporting a 8607 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the 8608 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies 8609 with "Trap 0x02 while interrupts disabled, Error state". Letting the 8610 breakpoint be inserted normally results in QEMU knowing about the GDB 8611 breakpoint, and thus trap before the breakpoint instruction is executed. 8612 (If GDB later needs to continue execution past the permanent breakpoint, 8613 it manually increments the PC, thus avoiding executing the breakpoint 8614 instruction.) */ 8615 if (bp_loc_is_permanent (loc)) 8616 loc->permanent = 1; 8617 8618 return loc; 8619 } 8620 8621 8622 /* Return true if LOC is pointing to a permanent breakpoint, 8623 return false otherwise. */ 8624 8625 static bool 8626 bp_loc_is_permanent (struct bp_location *loc) 8627 { 8628 gdb_assert (loc != NULL); 8629 8630 /* If we have a non-breakpoint-backed catchpoint or a software 8631 watchpoint, just return 0. We should not attempt to read from 8632 the addresses the locations of these breakpoint types point to. 8633 gdbarch_program_breakpoint_here_p, below, will attempt to read 8634 memory. */ 8635 if (!bl_address_is_meaningful (loc)) 8636 return false; 8637 8638 scoped_restore_current_pspace_and_thread restore_pspace_thread; 8639 switch_to_program_space_and_thread (loc->pspace); 8640 return gdbarch_program_breakpoint_here_p (loc->gdbarch, loc->address); 8641 } 8642 8643 /* Build a command list for the dprintf corresponding to the current 8644 settings of the dprintf style options. */ 8645 8646 static void 8647 update_dprintf_command_list (struct breakpoint *b) 8648 { 8649 char *dprintf_args = b->extra_string; 8650 char *printf_line = NULL; 8651 8652 if (!dprintf_args) 8653 return; 8654 8655 dprintf_args = skip_spaces (dprintf_args); 8656 8657 /* Allow a comma, as it may have terminated a location, but don't 8658 insist on it. */ 8659 if (*dprintf_args == ',') 8660 ++dprintf_args; 8661 dprintf_args = skip_spaces (dprintf_args); 8662 8663 if (*dprintf_args != '"') 8664 error (_("Bad format string, missing '\"'.")); 8665 8666 if (strcmp (dprintf_style, dprintf_style_gdb) == 0) 8667 printf_line = xstrprintf ("printf %s", dprintf_args); 8668 else if (strcmp (dprintf_style, dprintf_style_call) == 0) 8669 { 8670 if (!dprintf_function) 8671 error (_("No function supplied for dprintf call")); 8672 8673 if (dprintf_channel && strlen (dprintf_channel) > 0) 8674 printf_line = xstrprintf ("call (void) %s (%s,%s)", 8675 dprintf_function, 8676 dprintf_channel, 8677 dprintf_args); 8678 else 8679 printf_line = xstrprintf ("call (void) %s (%s)", 8680 dprintf_function, 8681 dprintf_args); 8682 } 8683 else if (strcmp (dprintf_style, dprintf_style_agent) == 0) 8684 { 8685 if (target_can_run_breakpoint_commands ()) 8686 printf_line = xstrprintf ("agent-printf %s", dprintf_args); 8687 else 8688 { 8689 warning (_("Target cannot run dprintf commands, falling back to GDB printf")); 8690 printf_line = xstrprintf ("printf %s", dprintf_args); 8691 } 8692 } 8693 else 8694 internal_error (__FILE__, __LINE__, 8695 _("Invalid dprintf style.")); 8696 8697 gdb_assert (printf_line != NULL); 8698 8699 /* Manufacture a printf sequence. */ 8700 struct command_line *printf_cmd_line 8701 = new struct command_line (simple_control, printf_line); 8702 breakpoint_set_commands (b, counted_command_line (printf_cmd_line, 8703 command_lines_deleter ())); 8704 } 8705 8706 /* Update all dprintf commands, making their command lists reflect 8707 current style settings. */ 8708 8709 static void 8710 update_dprintf_commands (const char *args, int from_tty, 8711 struct cmd_list_element *c) 8712 { 8713 struct breakpoint *b; 8714 8715 ALL_BREAKPOINTS (b) 8716 { 8717 if (b->type == bp_dprintf) 8718 update_dprintf_command_list (b); 8719 } 8720 } 8721 8722 /* Create a breakpoint with SAL as location. Use LOCATION 8723 as a description of the location, and COND_STRING 8724 as condition expression. If LOCATION is NULL then create an 8725 "address location" from the address in the SAL. */ 8726 8727 static void 8728 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch, 8729 gdb::array_view<const symtab_and_line> sals, 8730 event_location_up &&location, 8731 gdb::unique_xmalloc_ptr<char> filter, 8732 gdb::unique_xmalloc_ptr<char> cond_string, 8733 gdb::unique_xmalloc_ptr<char> extra_string, 8734 enum bptype type, enum bpdisp disposition, 8735 int thread, int task, int ignore_count, 8736 const struct breakpoint_ops *ops, int from_tty, 8737 int enabled, int internal, unsigned flags, 8738 int display_canonical) 8739 { 8740 int i; 8741 8742 if (type == bp_hardware_breakpoint) 8743 { 8744 int target_resources_ok; 8745 8746 i = hw_breakpoint_used_count (); 8747 target_resources_ok = 8748 target_can_use_hardware_watchpoint (bp_hardware_breakpoint, 8749 i + 1, 0); 8750 if (target_resources_ok == 0) 8751 error (_("No hardware breakpoint support in the target.")); 8752 else if (target_resources_ok < 0) 8753 error (_("Hardware breakpoints used exceeds limit.")); 8754 } 8755 8756 gdb_assert (!sals.empty ()); 8757 8758 for (const auto &sal : sals) 8759 { 8760 struct bp_location *loc; 8761 8762 if (from_tty) 8763 { 8764 struct gdbarch *loc_gdbarch = get_sal_arch (sal); 8765 if (!loc_gdbarch) 8766 loc_gdbarch = gdbarch; 8767 8768 describe_other_breakpoints (loc_gdbarch, 8769 sal.pspace, sal.pc, sal.section, thread); 8770 } 8771 8772 if (&sal == &sals[0]) 8773 { 8774 init_raw_breakpoint (b, gdbarch, sal, type, ops); 8775 b->thread = thread; 8776 b->task = task; 8777 8778 b->cond_string = cond_string.release (); 8779 b->extra_string = extra_string.release (); 8780 b->ignore_count = ignore_count; 8781 b->enable_state = enabled ? bp_enabled : bp_disabled; 8782 b->disposition = disposition; 8783 8784 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0) 8785 b->loc->inserted = 1; 8786 8787 if (type == bp_static_tracepoint) 8788 { 8789 struct tracepoint *t = (struct tracepoint *) b; 8790 struct static_tracepoint_marker marker; 8791 8792 if (strace_marker_p (b)) 8793 { 8794 /* We already know the marker exists, otherwise, we 8795 wouldn't see a sal for it. */ 8796 const char *p 8797 = &event_location_to_string (b->location.get ())[3]; 8798 const char *endp; 8799 8800 p = skip_spaces (p); 8801 8802 endp = skip_to_space (p); 8803 8804 t->static_trace_marker_id.assign (p, endp - p); 8805 8806 printf_filtered (_("Probed static tracepoint " 8807 "marker \"%s\"\n"), 8808 t->static_trace_marker_id.c_str ()); 8809 } 8810 else if (target_static_tracepoint_marker_at (sal.pc, &marker)) 8811 { 8812 t->static_trace_marker_id = std::move (marker.str_id); 8813 8814 printf_filtered (_("Probed static tracepoint " 8815 "marker \"%s\"\n"), 8816 t->static_trace_marker_id.c_str ()); 8817 } 8818 else 8819 warning (_("Couldn't determine the static " 8820 "tracepoint marker to probe")); 8821 } 8822 8823 loc = b->loc; 8824 } 8825 else 8826 { 8827 loc = add_location_to_breakpoint (b, &sal); 8828 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0) 8829 loc->inserted = 1; 8830 } 8831 8832 if (b->cond_string) 8833 { 8834 const char *arg = b->cond_string; 8835 8836 loc->cond = parse_exp_1 (&arg, loc->address, 8837 block_for_pc (loc->address), 0); 8838 if (*arg) 8839 error (_("Garbage '%s' follows condition"), arg); 8840 } 8841 8842 /* Dynamic printf requires and uses additional arguments on the 8843 command line, otherwise it's an error. */ 8844 if (type == bp_dprintf) 8845 { 8846 if (b->extra_string) 8847 update_dprintf_command_list (b); 8848 else 8849 error (_("Format string required")); 8850 } 8851 else if (b->extra_string) 8852 error (_("Garbage '%s' at end of command"), b->extra_string); 8853 } 8854 8855 b->display_canonical = display_canonical; 8856 if (location != NULL) 8857 b->location = std::move (location); 8858 else 8859 b->location = new_address_location (b->loc->address, NULL, 0); 8860 b->filter = std::move (filter); 8861 } 8862 8863 static void 8864 create_breakpoint_sal (struct gdbarch *gdbarch, 8865 gdb::array_view<const symtab_and_line> sals, 8866 event_location_up &&location, 8867 gdb::unique_xmalloc_ptr<char> filter, 8868 gdb::unique_xmalloc_ptr<char> cond_string, 8869 gdb::unique_xmalloc_ptr<char> extra_string, 8870 enum bptype type, enum bpdisp disposition, 8871 int thread, int task, int ignore_count, 8872 const struct breakpoint_ops *ops, int from_tty, 8873 int enabled, int internal, unsigned flags, 8874 int display_canonical) 8875 { 8876 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type); 8877 8878 init_breakpoint_sal (b.get (), gdbarch, 8879 sals, std::move (location), 8880 std::move (filter), 8881 std::move (cond_string), 8882 std::move (extra_string), 8883 type, disposition, 8884 thread, task, ignore_count, 8885 ops, from_tty, 8886 enabled, internal, flags, 8887 display_canonical); 8888 8889 install_breakpoint (internal, std::move (b), 0); 8890 } 8891 8892 /* Add SALS.nelts breakpoints to the breakpoint table. For each 8893 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i] 8894 value. COND_STRING, if not NULL, specified the condition to be 8895 used for all breakpoints. Essentially the only case where 8896 SALS.nelts is not 1 is when we set a breakpoint on an overloaded 8897 function. In that case, it's still not possible to specify 8898 separate conditions for different overloaded functions, so 8899 we take just a single condition string. 8900 8901 NOTE: If the function succeeds, the caller is expected to cleanup 8902 the arrays ADDR_STRING, COND_STRING, and SALS (but not the 8903 array contents). If the function fails (error() is called), the 8904 caller is expected to cleanups both the ADDR_STRING, COND_STRING, 8905 COND and SALS arrays and each of those arrays contents. */ 8906 8907 static void 8908 create_breakpoints_sal (struct gdbarch *gdbarch, 8909 struct linespec_result *canonical, 8910 gdb::unique_xmalloc_ptr<char> cond_string, 8911 gdb::unique_xmalloc_ptr<char> extra_string, 8912 enum bptype type, enum bpdisp disposition, 8913 int thread, int task, int ignore_count, 8914 const struct breakpoint_ops *ops, int from_tty, 8915 int enabled, int internal, unsigned flags) 8916 { 8917 if (canonical->pre_expanded) 8918 gdb_assert (canonical->lsals.size () == 1); 8919 8920 for (const auto &lsal : canonical->lsals) 8921 { 8922 /* Note that 'location' can be NULL in the case of a plain 8923 'break', without arguments. */ 8924 event_location_up location 8925 = (canonical->location != NULL 8926 ? copy_event_location (canonical->location.get ()) : NULL); 8927 gdb::unique_xmalloc_ptr<char> filter_string 8928 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL); 8929 8930 create_breakpoint_sal (gdbarch, lsal.sals, 8931 std::move (location), 8932 std::move (filter_string), 8933 std::move (cond_string), 8934 std::move (extra_string), 8935 type, disposition, 8936 thread, task, ignore_count, ops, 8937 from_tty, enabled, internal, flags, 8938 canonical->special_display); 8939 } 8940 } 8941 8942 /* Parse LOCATION which is assumed to be a SAL specification possibly 8943 followed by conditionals. On return, SALS contains an array of SAL 8944 addresses found. LOCATION points to the end of the SAL (for 8945 linespec locations). 8946 8947 The array and the line spec strings are allocated on the heap, it is 8948 the caller's responsibility to free them. */ 8949 8950 static void 8951 parse_breakpoint_sals (struct event_location *location, 8952 struct linespec_result *canonical) 8953 { 8954 struct symtab_and_line cursal; 8955 8956 if (event_location_type (location) == LINESPEC_LOCATION) 8957 { 8958 const char *spec = get_linespec_location (location)->spec_string; 8959 8960 if (spec == NULL) 8961 { 8962 /* The last displayed codepoint, if it's valid, is our default 8963 breakpoint address. */ 8964 if (last_displayed_sal_is_valid ()) 8965 { 8966 /* Set sal's pspace, pc, symtab, and line to the values 8967 corresponding to the last call to print_frame_info. 8968 Be sure to reinitialize LINE with NOTCURRENT == 0 8969 as the breakpoint line number is inappropriate otherwise. 8970 find_pc_line would adjust PC, re-set it back. */ 8971 symtab_and_line sal = get_last_displayed_sal (); 8972 CORE_ADDR pc = sal.pc; 8973 8974 sal = find_pc_line (pc, 0); 8975 8976 /* "break" without arguments is equivalent to "break *PC" 8977 where PC is the last displayed codepoint's address. So 8978 make sure to set sal.explicit_pc to prevent GDB from 8979 trying to expand the list of sals to include all other 8980 instances with the same symtab and line. */ 8981 sal.pc = pc; 8982 sal.explicit_pc = 1; 8983 8984 struct linespec_sals lsal; 8985 lsal.sals = {sal}; 8986 lsal.canonical = NULL; 8987 8988 canonical->lsals.push_back (std::move (lsal)); 8989 return; 8990 } 8991 else 8992 error (_("No default breakpoint address now.")); 8993 } 8994 } 8995 8996 /* Force almost all breakpoints to be in terms of the 8997 current_source_symtab (which is decode_line_1's default). 8998 This should produce the results we want almost all of the 8999 time while leaving default_breakpoint_* alone. 9000 9001 ObjC: However, don't match an Objective-C method name which 9002 may have a '+' or '-' succeeded by a '['. */ 9003 cursal = get_current_source_symtab_and_line (); 9004 if (last_displayed_sal_is_valid ()) 9005 { 9006 const char *spec = NULL; 9007 9008 if (event_location_type (location) == LINESPEC_LOCATION) 9009 spec = get_linespec_location (location)->spec_string; 9010 9011 if (!cursal.symtab 9012 || (spec != NULL 9013 && strchr ("+-", spec[0]) != NULL 9014 && spec[1] != '[')) 9015 { 9016 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL, 9017 get_last_displayed_symtab (), 9018 get_last_displayed_line (), 9019 canonical, NULL, NULL); 9020 return; 9021 } 9022 } 9023 9024 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL, 9025 cursal.symtab, cursal.line, canonical, NULL, NULL); 9026 } 9027 9028 9029 /* Convert each SAL into a real PC. Verify that the PC can be 9030 inserted as a breakpoint. If it can't throw an error. */ 9031 9032 static void 9033 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals) 9034 { 9035 for (auto &sal : sals) 9036 resolve_sal_pc (&sal); 9037 } 9038 9039 /* Fast tracepoints may have restrictions on valid locations. For 9040 instance, a fast tracepoint using a jump instead of a trap will 9041 likely have to overwrite more bytes than a trap would, and so can 9042 only be placed where the instruction is longer than the jump, or a 9043 multi-instruction sequence does not have a jump into the middle of 9044 it, etc. */ 9045 9046 static void 9047 check_fast_tracepoint_sals (struct gdbarch *gdbarch, 9048 gdb::array_view<const symtab_and_line> sals) 9049 { 9050 for (const auto &sal : sals) 9051 { 9052 struct gdbarch *sarch; 9053 9054 sarch = get_sal_arch (sal); 9055 /* We fall back to GDBARCH if there is no architecture 9056 associated with SAL. */ 9057 if (sarch == NULL) 9058 sarch = gdbarch; 9059 std::string msg; 9060 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg)) 9061 error (_("May not have a fast tracepoint at %s%s"), 9062 paddress (sarch, sal.pc), msg.c_str ()); 9063 } 9064 } 9065 9066 /* Given TOK, a string specification of condition and thread, as 9067 accepted by the 'break' command, extract the condition 9068 string and thread number and set *COND_STRING and *THREAD. 9069 PC identifies the context at which the condition should be parsed. 9070 If no condition is found, *COND_STRING is set to NULL. 9071 If no thread is found, *THREAD is set to -1. */ 9072 9073 static void 9074 find_condition_and_thread (const char *tok, CORE_ADDR pc, 9075 char **cond_string, int *thread, int *task, 9076 char **rest) 9077 { 9078 *cond_string = NULL; 9079 *thread = -1; 9080 *task = 0; 9081 *rest = NULL; 9082 9083 while (tok && *tok) 9084 { 9085 const char *end_tok; 9086 int toklen; 9087 const char *cond_start = NULL; 9088 const char *cond_end = NULL; 9089 9090 tok = skip_spaces (tok); 9091 9092 if ((*tok == '"' || *tok == ',') && rest) 9093 { 9094 *rest = savestring (tok, strlen (tok)); 9095 return; 9096 } 9097 9098 end_tok = skip_to_space (tok); 9099 9100 toklen = end_tok - tok; 9101 9102 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0) 9103 { 9104 tok = cond_start = end_tok + 1; 9105 parse_exp_1 (&tok, pc, block_for_pc (pc), 0); 9106 cond_end = tok; 9107 *cond_string = savestring (cond_start, cond_end - cond_start); 9108 } 9109 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0) 9110 { 9111 const char *tmptok; 9112 struct thread_info *thr; 9113 9114 tok = end_tok + 1; 9115 thr = parse_thread_id (tok, &tmptok); 9116 if (tok == tmptok) 9117 error (_("Junk after thread keyword.")); 9118 *thread = thr->global_num; 9119 tok = tmptok; 9120 } 9121 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0) 9122 { 9123 char *tmptok; 9124 9125 tok = end_tok + 1; 9126 *task = strtol (tok, &tmptok, 0); 9127 if (tok == tmptok) 9128 error (_("Junk after task keyword.")); 9129 if (!valid_task_id (*task)) 9130 error (_("Unknown task %d."), *task); 9131 tok = tmptok; 9132 } 9133 else if (rest) 9134 { 9135 *rest = savestring (tok, strlen (tok)); 9136 return; 9137 } 9138 else 9139 error (_("Junk at end of arguments.")); 9140 } 9141 } 9142 9143 /* Decode a static tracepoint marker spec. */ 9144 9145 static std::vector<symtab_and_line> 9146 decode_static_tracepoint_spec (const char **arg_p) 9147 { 9148 const char *p = &(*arg_p)[3]; 9149 const char *endp; 9150 9151 p = skip_spaces (p); 9152 9153 endp = skip_to_space (p); 9154 9155 std::string marker_str (p, endp - p); 9156 9157 std::vector<static_tracepoint_marker> markers 9158 = target_static_tracepoint_markers_by_strid (marker_str.c_str ()); 9159 if (markers.empty ()) 9160 error (_("No known static tracepoint marker named %s"), 9161 marker_str.c_str ()); 9162 9163 std::vector<symtab_and_line> sals; 9164 sals.reserve (markers.size ()); 9165 9166 for (const static_tracepoint_marker &marker : markers) 9167 { 9168 symtab_and_line sal = find_pc_line (marker.address, 0); 9169 sal.pc = marker.address; 9170 sals.push_back (sal); 9171 } 9172 9173 *arg_p = endp; 9174 return sals; 9175 } 9176 9177 /* Returns the breakpoint ops appropriate for use with with LOCATION_TYPE and 9178 according to IS_TRACEPOINT. */ 9179 9180 static const struct breakpoint_ops * 9181 breakpoint_ops_for_event_location_type (enum event_location_type location_type, 9182 bool is_tracepoint) 9183 { 9184 if (is_tracepoint) 9185 { 9186 if (location_type == PROBE_LOCATION) 9187 return &tracepoint_probe_breakpoint_ops; 9188 else 9189 return &tracepoint_breakpoint_ops; 9190 } 9191 else 9192 { 9193 if (location_type == PROBE_LOCATION) 9194 return &bkpt_probe_breakpoint_ops; 9195 else 9196 return &bkpt_breakpoint_ops; 9197 } 9198 } 9199 9200 /* See breakpoint.h. */ 9201 9202 const struct breakpoint_ops * 9203 breakpoint_ops_for_event_location (const struct event_location *location, 9204 bool is_tracepoint) 9205 { 9206 if (location != nullptr) 9207 return breakpoint_ops_for_event_location_type 9208 (event_location_type (location), is_tracepoint); 9209 return is_tracepoint ? &tracepoint_breakpoint_ops : &bkpt_breakpoint_ops; 9210 } 9211 9212 /* See breakpoint.h. */ 9213 9214 int 9215 create_breakpoint (struct gdbarch *gdbarch, 9216 struct event_location *location, 9217 const char *cond_string, 9218 int thread, const char *extra_string, 9219 int parse_extra, 9220 int tempflag, enum bptype type_wanted, 9221 int ignore_count, 9222 enum auto_boolean pending_break_support, 9223 const struct breakpoint_ops *ops, 9224 int from_tty, int enabled, int internal, 9225 unsigned flags) 9226 { 9227 struct linespec_result canonical; 9228 int pending = 0; 9229 int task = 0; 9230 int prev_bkpt_count = breakpoint_count; 9231 9232 gdb_assert (ops != NULL); 9233 9234 /* If extra_string isn't useful, set it to NULL. */ 9235 if (extra_string != NULL && *extra_string == '\0') 9236 extra_string = NULL; 9237 9238 try 9239 { 9240 ops->create_sals_from_location (location, &canonical, type_wanted); 9241 } 9242 catch (const gdb_exception_error &e) 9243 { 9244 /* If caller is interested in rc value from parse, set 9245 value. */ 9246 if (e.error == NOT_FOUND_ERROR) 9247 { 9248 /* If pending breakpoint support is turned off, throw 9249 error. */ 9250 9251 if (pending_break_support == AUTO_BOOLEAN_FALSE) 9252 throw; 9253 9254 exception_print (gdb_stderr, e); 9255 9256 /* If pending breakpoint support is auto query and the user 9257 selects no, then simply return the error code. */ 9258 if (pending_break_support == AUTO_BOOLEAN_AUTO 9259 && !nquery (_("Make %s pending on future shared library load? "), 9260 bptype_string (type_wanted))) 9261 return 0; 9262 9263 /* At this point, either the user was queried about setting 9264 a pending breakpoint and selected yes, or pending 9265 breakpoint behavior is on and thus a pending breakpoint 9266 is defaulted on behalf of the user. */ 9267 pending = 1; 9268 } 9269 else 9270 throw; 9271 } 9272 9273 if (!pending && canonical.lsals.empty ()) 9274 return 0; 9275 9276 /* Resolve all line numbers to PC's and verify that the addresses 9277 are ok for the target. */ 9278 if (!pending) 9279 { 9280 for (auto &lsal : canonical.lsals) 9281 breakpoint_sals_to_pc (lsal.sals); 9282 } 9283 9284 /* Fast tracepoints may have additional restrictions on location. */ 9285 if (!pending && type_wanted == bp_fast_tracepoint) 9286 { 9287 for (const auto &lsal : canonical.lsals) 9288 check_fast_tracepoint_sals (gdbarch, lsal.sals); 9289 } 9290 9291 /* Verify that condition can be parsed, before setting any 9292 breakpoints. Allocate a separate condition expression for each 9293 breakpoint. */ 9294 if (!pending) 9295 { 9296 gdb::unique_xmalloc_ptr<char> cond_string_copy; 9297 gdb::unique_xmalloc_ptr<char> extra_string_copy; 9298 9299 if (parse_extra) 9300 { 9301 char *rest; 9302 char *cond; 9303 9304 const linespec_sals &lsal = canonical.lsals[0]; 9305 9306 /* Here we only parse 'arg' to separate condition 9307 from thread number, so parsing in context of first 9308 sal is OK. When setting the breakpoint we'll 9309 re-parse it in context of each sal. */ 9310 9311 find_condition_and_thread (extra_string, lsal.sals[0].pc, 9312 &cond, &thread, &task, &rest); 9313 cond_string_copy.reset (cond); 9314 extra_string_copy.reset (rest); 9315 } 9316 else 9317 { 9318 if (type_wanted != bp_dprintf 9319 && extra_string != NULL && *extra_string != '\0') 9320 error (_("Garbage '%s' at end of location"), extra_string); 9321 9322 /* Create a private copy of condition string. */ 9323 if (cond_string) 9324 cond_string_copy.reset (xstrdup (cond_string)); 9325 /* Create a private copy of any extra string. */ 9326 if (extra_string) 9327 extra_string_copy.reset (xstrdup (extra_string)); 9328 } 9329 9330 ops->create_breakpoints_sal (gdbarch, &canonical, 9331 std::move (cond_string_copy), 9332 std::move (extra_string_copy), 9333 type_wanted, 9334 tempflag ? disp_del : disp_donttouch, 9335 thread, task, ignore_count, ops, 9336 from_tty, enabled, internal, flags); 9337 } 9338 else 9339 { 9340 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted); 9341 9342 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops); 9343 b->location = copy_event_location (location); 9344 9345 if (parse_extra) 9346 b->cond_string = NULL; 9347 else 9348 { 9349 /* Create a private copy of condition string. */ 9350 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL; 9351 b->thread = thread; 9352 } 9353 9354 /* Create a private copy of any extra string. */ 9355 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL; 9356 b->ignore_count = ignore_count; 9357 b->disposition = tempflag ? disp_del : disp_donttouch; 9358 b->condition_not_parsed = 1; 9359 b->enable_state = enabled ? bp_enabled : bp_disabled; 9360 if ((type_wanted != bp_breakpoint 9361 && type_wanted != bp_hardware_breakpoint) || thread != -1) 9362 b->pspace = current_program_space; 9363 9364 install_breakpoint (internal, std::move (b), 0); 9365 } 9366 9367 if (canonical.lsals.size () > 1) 9368 { 9369 warning (_("Multiple breakpoints were set.\nUse the " 9370 "\"delete\" command to delete unwanted breakpoints.")); 9371 prev_breakpoint_count = prev_bkpt_count; 9372 } 9373 9374 update_global_location_list (UGLL_MAY_INSERT); 9375 9376 return 1; 9377 } 9378 9379 /* Set a breakpoint. 9380 ARG is a string describing breakpoint address, 9381 condition, and thread. 9382 FLAG specifies if a breakpoint is hardware on, 9383 and if breakpoint is temporary, using BP_HARDWARE_FLAG 9384 and BP_TEMPFLAG. */ 9385 9386 static void 9387 break_command_1 (const char *arg, int flag, int from_tty) 9388 { 9389 int tempflag = flag & BP_TEMPFLAG; 9390 enum bptype type_wanted = (flag & BP_HARDWAREFLAG 9391 ? bp_hardware_breakpoint 9392 : bp_breakpoint); 9393 9394 event_location_up location = string_to_event_location (&arg, current_language); 9395 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location 9396 (location.get (), false /* is_tracepoint */); 9397 9398 create_breakpoint (get_current_arch (), 9399 location.get (), 9400 NULL, 0, arg, 1 /* parse arg */, 9401 tempflag, type_wanted, 9402 0 /* Ignore count */, 9403 pending_break_support, 9404 ops, 9405 from_tty, 9406 1 /* enabled */, 9407 0 /* internal */, 9408 0); 9409 } 9410 9411 /* Helper function for break_command_1 and disassemble_command. */ 9412 9413 void 9414 resolve_sal_pc (struct symtab_and_line *sal) 9415 { 9416 CORE_ADDR pc; 9417 9418 if (sal->pc == 0 && sal->symtab != NULL) 9419 { 9420 if (!find_line_pc (sal->symtab, sal->line, &pc)) 9421 error (_("No line %d in file \"%s\"."), 9422 sal->line, symtab_to_filename_for_display (sal->symtab)); 9423 sal->pc = pc; 9424 9425 /* If this SAL corresponds to a breakpoint inserted using a line 9426 number, then skip the function prologue if necessary. */ 9427 if (sal->explicit_line) 9428 skip_prologue_sal (sal); 9429 } 9430 9431 if (sal->section == 0 && sal->symtab != NULL) 9432 { 9433 const struct blockvector *bv; 9434 const struct block *b; 9435 struct symbol *sym; 9436 9437 bv = blockvector_for_pc_sect (sal->pc, 0, &b, 9438 SYMTAB_COMPUNIT (sal->symtab)); 9439 if (bv != NULL) 9440 { 9441 sym = block_linkage_function (b); 9442 if (sym != NULL) 9443 { 9444 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab)); 9445 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab), 9446 sym); 9447 } 9448 else 9449 { 9450 /* It really is worthwhile to have the section, so we'll 9451 just have to look harder. This case can be executed 9452 if we have line numbers but no functions (as can 9453 happen in assembly source). */ 9454 9455 scoped_restore_current_pspace_and_thread restore_pspace_thread; 9456 switch_to_program_space_and_thread (sal->pspace); 9457 9458 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc); 9459 if (msym.minsym) 9460 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym); 9461 } 9462 } 9463 } 9464 } 9465 9466 void 9467 break_command (const char *arg, int from_tty) 9468 { 9469 break_command_1 (arg, 0, from_tty); 9470 } 9471 9472 void 9473 tbreak_command (const char *arg, int from_tty) 9474 { 9475 break_command_1 (arg, BP_TEMPFLAG, from_tty); 9476 } 9477 9478 static void 9479 hbreak_command (const char *arg, int from_tty) 9480 { 9481 break_command_1 (arg, BP_HARDWAREFLAG, from_tty); 9482 } 9483 9484 static void 9485 thbreak_command (const char *arg, int from_tty) 9486 { 9487 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty); 9488 } 9489 9490 static void 9491 stop_command (const char *arg, int from_tty) 9492 { 9493 printf_filtered (_("Specify the type of breakpoint to set.\n\ 9494 Usage: stop in <function | address>\n\ 9495 stop at <line>\n")); 9496 } 9497 9498 static void 9499 stopin_command (const char *arg, int from_tty) 9500 { 9501 int badInput = 0; 9502 9503 if (arg == NULL) 9504 badInput = 1; 9505 else if (*arg != '*') 9506 { 9507 const char *argptr = arg; 9508 int hasColon = 0; 9509 9510 /* Look for a ':'. If this is a line number specification, then 9511 say it is bad, otherwise, it should be an address or 9512 function/method name. */ 9513 while (*argptr && !hasColon) 9514 { 9515 hasColon = (*argptr == ':'); 9516 argptr++; 9517 } 9518 9519 if (hasColon) 9520 badInput = (*argptr != ':'); /* Not a class::method */ 9521 else 9522 badInput = isdigit (*arg); /* a simple line number */ 9523 } 9524 9525 if (badInput) 9526 printf_filtered (_("Usage: stop in <function | address>\n")); 9527 else 9528 break_command_1 (arg, 0, from_tty); 9529 } 9530 9531 static void 9532 stopat_command (const char *arg, int from_tty) 9533 { 9534 int badInput = 0; 9535 9536 if (arg == NULL || *arg == '*') /* no line number */ 9537 badInput = 1; 9538 else 9539 { 9540 const char *argptr = arg; 9541 int hasColon = 0; 9542 9543 /* Look for a ':'. If there is a '::' then get out, otherwise 9544 it is probably a line number. */ 9545 while (*argptr && !hasColon) 9546 { 9547 hasColon = (*argptr == ':'); 9548 argptr++; 9549 } 9550 9551 if (hasColon) 9552 badInput = (*argptr == ':'); /* we have class::method */ 9553 else 9554 badInput = !isdigit (*arg); /* not a line number */ 9555 } 9556 9557 if (badInput) 9558 printf_filtered (_("Usage: stop at LINE\n")); 9559 else 9560 break_command_1 (arg, 0, from_tty); 9561 } 9562 9563 /* The dynamic printf command is mostly like a regular breakpoint, but 9564 with a prewired command list consisting of a single output command, 9565 built from extra arguments supplied on the dprintf command 9566 line. */ 9567 9568 static void 9569 dprintf_command (const char *arg, int from_tty) 9570 { 9571 event_location_up location = string_to_event_location (&arg, current_language); 9572 9573 /* If non-NULL, ARG should have been advanced past the location; 9574 the next character must be ','. */ 9575 if (arg != NULL) 9576 { 9577 if (arg[0] != ',' || arg[1] == '\0') 9578 error (_("Format string required")); 9579 else 9580 { 9581 /* Skip the comma. */ 9582 ++arg; 9583 } 9584 } 9585 9586 create_breakpoint (get_current_arch (), 9587 location.get (), 9588 NULL, 0, arg, 1 /* parse arg */, 9589 0, bp_dprintf, 9590 0 /* Ignore count */, 9591 pending_break_support, 9592 &dprintf_breakpoint_ops, 9593 from_tty, 9594 1 /* enabled */, 9595 0 /* internal */, 9596 0); 9597 } 9598 9599 static void 9600 agent_printf_command (const char *arg, int from_tty) 9601 { 9602 error (_("May only run agent-printf on the target")); 9603 } 9604 9605 /* Implement the "breakpoint_hit" breakpoint_ops method for 9606 ranged breakpoints. */ 9607 9608 static int 9609 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl, 9610 const address_space *aspace, 9611 CORE_ADDR bp_addr, 9612 const struct target_waitstatus *ws) 9613 { 9614 if (ws->kind != TARGET_WAITKIND_STOPPED 9615 || ws->value.sig != GDB_SIGNAL_TRAP) 9616 return 0; 9617 9618 return breakpoint_address_match_range (bl->pspace->aspace, bl->address, 9619 bl->length, aspace, bp_addr); 9620 } 9621 9622 /* Implement the "resources_needed" breakpoint_ops method for 9623 ranged breakpoints. */ 9624 9625 static int 9626 resources_needed_ranged_breakpoint (const struct bp_location *bl) 9627 { 9628 return target_ranged_break_num_registers (); 9629 } 9630 9631 /* Implement the "print_it" breakpoint_ops method for 9632 ranged breakpoints. */ 9633 9634 static enum print_stop_action 9635 print_it_ranged_breakpoint (bpstat bs) 9636 { 9637 struct breakpoint *b = bs->breakpoint_at; 9638 struct bp_location *bl = b->loc; 9639 struct ui_out *uiout = current_uiout; 9640 9641 gdb_assert (b->type == bp_hardware_breakpoint); 9642 9643 /* Ranged breakpoints have only one location. */ 9644 gdb_assert (bl && bl->next == NULL); 9645 9646 annotate_breakpoint (b->number); 9647 9648 maybe_print_thread_hit_breakpoint (uiout); 9649 9650 if (b->disposition == disp_del) 9651 uiout->text ("Temporary ranged breakpoint "); 9652 else 9653 uiout->text ("Ranged breakpoint "); 9654 if (uiout->is_mi_like_p ()) 9655 { 9656 uiout->field_string ("reason", 9657 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); 9658 uiout->field_string ("disp", bpdisp_text (b->disposition)); 9659 } 9660 uiout->field_signed ("bkptno", b->number); 9661 uiout->text (", "); 9662 9663 return PRINT_SRC_AND_LOC; 9664 } 9665 9666 /* Implement the "print_one" breakpoint_ops method for 9667 ranged breakpoints. */ 9668 9669 static void 9670 print_one_ranged_breakpoint (struct breakpoint *b, 9671 struct bp_location **last_loc) 9672 { 9673 struct bp_location *bl = b->loc; 9674 struct value_print_options opts; 9675 struct ui_out *uiout = current_uiout; 9676 9677 /* Ranged breakpoints have only one location. */ 9678 gdb_assert (bl && bl->next == NULL); 9679 9680 get_user_print_options (&opts); 9681 9682 if (opts.addressprint) 9683 /* We don't print the address range here, it will be printed later 9684 by print_one_detail_ranged_breakpoint. */ 9685 uiout->field_skip ("addr"); 9686 annotate_field (5); 9687 print_breakpoint_location (b, bl); 9688 *last_loc = bl; 9689 } 9690 9691 /* Implement the "print_one_detail" breakpoint_ops method for 9692 ranged breakpoints. */ 9693 9694 static void 9695 print_one_detail_ranged_breakpoint (const struct breakpoint *b, 9696 struct ui_out *uiout) 9697 { 9698 CORE_ADDR address_start, address_end; 9699 struct bp_location *bl = b->loc; 9700 string_file stb; 9701 9702 gdb_assert (bl); 9703 9704 address_start = bl->address; 9705 address_end = address_start + bl->length - 1; 9706 9707 uiout->text ("\taddress range: "); 9708 stb.printf ("[%s, %s]", 9709 print_core_address (bl->gdbarch, address_start), 9710 print_core_address (bl->gdbarch, address_end)); 9711 uiout->field_stream ("addr", stb); 9712 uiout->text ("\n"); 9713 } 9714 9715 /* Implement the "print_mention" breakpoint_ops method for 9716 ranged breakpoints. */ 9717 9718 static void 9719 print_mention_ranged_breakpoint (struct breakpoint *b) 9720 { 9721 struct bp_location *bl = b->loc; 9722 struct ui_out *uiout = current_uiout; 9723 9724 gdb_assert (bl); 9725 gdb_assert (b->type == bp_hardware_breakpoint); 9726 9727 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."), 9728 b->number, paddress (bl->gdbarch, bl->address), 9729 paddress (bl->gdbarch, bl->address + bl->length - 1)); 9730 } 9731 9732 /* Implement the "print_recreate" breakpoint_ops method for 9733 ranged breakpoints. */ 9734 9735 static void 9736 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp) 9737 { 9738 fprintf_unfiltered (fp, "break-range %s, %s", 9739 event_location_to_string (b->location.get ()), 9740 event_location_to_string (b->location_range_end.get ())); 9741 print_recreate_thread (b, fp); 9742 } 9743 9744 /* The breakpoint_ops structure to be used in ranged breakpoints. */ 9745 9746 static struct breakpoint_ops ranged_breakpoint_ops; 9747 9748 /* Find the address where the end of the breakpoint range should be 9749 placed, given the SAL of the end of the range. This is so that if 9750 the user provides a line number, the end of the range is set to the 9751 last instruction of the given line. */ 9752 9753 static CORE_ADDR 9754 find_breakpoint_range_end (struct symtab_and_line sal) 9755 { 9756 CORE_ADDR end; 9757 9758 /* If the user provided a PC value, use it. Otherwise, 9759 find the address of the end of the given location. */ 9760 if (sal.explicit_pc) 9761 end = sal.pc; 9762 else 9763 { 9764 int ret; 9765 CORE_ADDR start; 9766 9767 ret = find_line_pc_range (sal, &start, &end); 9768 if (!ret) 9769 error (_("Could not find location of the end of the range.")); 9770 9771 /* find_line_pc_range returns the start of the next line. */ 9772 end--; 9773 } 9774 9775 return end; 9776 } 9777 9778 /* Implement the "break-range" CLI command. */ 9779 9780 static void 9781 break_range_command (const char *arg, int from_tty) 9782 { 9783 const char *arg_start; 9784 struct linespec_result canonical_start, canonical_end; 9785 int bp_count, can_use_bp, length; 9786 CORE_ADDR end; 9787 struct breakpoint *b; 9788 9789 /* We don't support software ranged breakpoints. */ 9790 if (target_ranged_break_num_registers () < 0) 9791 error (_("This target does not support hardware ranged breakpoints.")); 9792 9793 bp_count = hw_breakpoint_used_count (); 9794 bp_count += target_ranged_break_num_registers (); 9795 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint, 9796 bp_count, 0); 9797 if (can_use_bp < 0) 9798 error (_("Hardware breakpoints used exceeds limit.")); 9799 9800 arg = skip_spaces (arg); 9801 if (arg == NULL || arg[0] == '\0') 9802 error(_("No address range specified.")); 9803 9804 arg_start = arg; 9805 event_location_up start_location = string_to_event_location (&arg, 9806 current_language); 9807 parse_breakpoint_sals (start_location.get (), &canonical_start); 9808 9809 if (arg[0] != ',') 9810 error (_("Too few arguments.")); 9811 else if (canonical_start.lsals.empty ()) 9812 error (_("Could not find location of the beginning of the range.")); 9813 9814 const linespec_sals &lsal_start = canonical_start.lsals[0]; 9815 9816 if (canonical_start.lsals.size () > 1 9817 || lsal_start.sals.size () != 1) 9818 error (_("Cannot create a ranged breakpoint with multiple locations.")); 9819 9820 const symtab_and_line &sal_start = lsal_start.sals[0]; 9821 std::string addr_string_start (arg_start, arg - arg_start); 9822 9823 arg++; /* Skip the comma. */ 9824 arg = skip_spaces (arg); 9825 9826 /* Parse the end location. */ 9827 9828 arg_start = arg; 9829 9830 /* We call decode_line_full directly here instead of using 9831 parse_breakpoint_sals because we need to specify the start location's 9832 symtab and line as the default symtab and line for the end of the 9833 range. This makes it possible to have ranges like "foo.c:27, +14", 9834 where +14 means 14 lines from the start location. */ 9835 event_location_up end_location = string_to_event_location (&arg, 9836 current_language); 9837 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL, 9838 sal_start.symtab, sal_start.line, 9839 &canonical_end, NULL, NULL); 9840 9841 if (canonical_end.lsals.empty ()) 9842 error (_("Could not find location of the end of the range.")); 9843 9844 const linespec_sals &lsal_end = canonical_end.lsals[0]; 9845 if (canonical_end.lsals.size () > 1 9846 || lsal_end.sals.size () != 1) 9847 error (_("Cannot create a ranged breakpoint with multiple locations.")); 9848 9849 const symtab_and_line &sal_end = lsal_end.sals[0]; 9850 9851 end = find_breakpoint_range_end (sal_end); 9852 if (sal_start.pc > end) 9853 error (_("Invalid address range, end precedes start.")); 9854 9855 length = end - sal_start.pc + 1; 9856 if (length < 0) 9857 /* Length overflowed. */ 9858 error (_("Address range too large.")); 9859 else if (length == 1) 9860 { 9861 /* This range is simple enough to be handled by 9862 the `hbreak' command. */ 9863 hbreak_command (&addr_string_start[0], 1); 9864 9865 return; 9866 } 9867 9868 /* Now set up the breakpoint. */ 9869 b = set_raw_breakpoint (get_current_arch (), sal_start, 9870 bp_hardware_breakpoint, &ranged_breakpoint_ops); 9871 set_breakpoint_count (breakpoint_count + 1); 9872 b->number = breakpoint_count; 9873 b->disposition = disp_donttouch; 9874 b->location = std::move (start_location); 9875 b->location_range_end = std::move (end_location); 9876 b->loc->length = length; 9877 9878 mention (b); 9879 gdb::observers::breakpoint_created.notify (b); 9880 update_global_location_list (UGLL_MAY_INSERT); 9881 } 9882 9883 /* Return non-zero if EXP is verified as constant. Returned zero 9884 means EXP is variable. Also the constant detection may fail for 9885 some constant expressions and in such case still falsely return 9886 zero. */ 9887 9888 static int 9889 watchpoint_exp_is_const (const struct expression *exp) 9890 { 9891 int i = exp->nelts; 9892 9893 while (i > 0) 9894 { 9895 int oplenp, argsp; 9896 9897 /* We are only interested in the descriptor of each element. */ 9898 operator_length (exp, i, &oplenp, &argsp); 9899 i -= oplenp; 9900 9901 switch (exp->elts[i].opcode) 9902 { 9903 case BINOP_ADD: 9904 case BINOP_SUB: 9905 case BINOP_MUL: 9906 case BINOP_DIV: 9907 case BINOP_REM: 9908 case BINOP_MOD: 9909 case BINOP_LSH: 9910 case BINOP_RSH: 9911 case BINOP_LOGICAL_AND: 9912 case BINOP_LOGICAL_OR: 9913 case BINOP_BITWISE_AND: 9914 case BINOP_BITWISE_IOR: 9915 case BINOP_BITWISE_XOR: 9916 case BINOP_EQUAL: 9917 case BINOP_NOTEQUAL: 9918 case BINOP_LESS: 9919 case BINOP_GTR: 9920 case BINOP_LEQ: 9921 case BINOP_GEQ: 9922 case BINOP_REPEAT: 9923 case BINOP_COMMA: 9924 case BINOP_EXP: 9925 case BINOP_MIN: 9926 case BINOP_MAX: 9927 case BINOP_INTDIV: 9928 case BINOP_CONCAT: 9929 case TERNOP_COND: 9930 case TERNOP_SLICE: 9931 9932 case OP_LONG: 9933 case OP_FLOAT: 9934 case OP_LAST: 9935 case OP_COMPLEX: 9936 case OP_STRING: 9937 case OP_ARRAY: 9938 case OP_TYPE: 9939 case OP_TYPEOF: 9940 case OP_DECLTYPE: 9941 case OP_TYPEID: 9942 case OP_NAME: 9943 case OP_OBJC_NSSTRING: 9944 9945 case UNOP_NEG: 9946 case UNOP_LOGICAL_NOT: 9947 case UNOP_COMPLEMENT: 9948 case UNOP_ADDR: 9949 case UNOP_HIGH: 9950 case UNOP_CAST: 9951 9952 case UNOP_CAST_TYPE: 9953 case UNOP_REINTERPRET_CAST: 9954 case UNOP_DYNAMIC_CAST: 9955 /* Unary, binary and ternary operators: We have to check 9956 their operands. If they are constant, then so is the 9957 result of that operation. For instance, if A and B are 9958 determined to be constants, then so is "A + B". 9959 9960 UNOP_IND is one exception to the rule above, because the 9961 value of *ADDR is not necessarily a constant, even when 9962 ADDR is. */ 9963 break; 9964 9965 case OP_VAR_VALUE: 9966 /* Check whether the associated symbol is a constant. 9967 9968 We use SYMBOL_CLASS rather than TYPE_CONST because it's 9969 possible that a buggy compiler could mark a variable as 9970 constant even when it is not, and TYPE_CONST would return 9971 true in this case, while SYMBOL_CLASS wouldn't. 9972 9973 We also have to check for function symbols because they 9974 are always constant. */ 9975 { 9976 struct symbol *s = exp->elts[i + 2].symbol; 9977 9978 if (SYMBOL_CLASS (s) != LOC_BLOCK 9979 && SYMBOL_CLASS (s) != LOC_CONST 9980 && SYMBOL_CLASS (s) != LOC_CONST_BYTES) 9981 return 0; 9982 break; 9983 } 9984 9985 /* The default action is to return 0 because we are using 9986 the optimistic approach here: If we don't know something, 9987 then it is not a constant. */ 9988 default: 9989 return 0; 9990 } 9991 } 9992 9993 return 1; 9994 } 9995 9996 /* Watchpoint destructor. */ 9997 9998 watchpoint::~watchpoint () 9999 { 10000 xfree (this->exp_string); 10001 xfree (this->exp_string_reparse); 10002 } 10003 10004 /* Implement the "re_set" breakpoint_ops method for watchpoints. */ 10005 10006 static void 10007 re_set_watchpoint (struct breakpoint *b) 10008 { 10009 struct watchpoint *w = (struct watchpoint *) b; 10010 10011 /* Watchpoint can be either on expression using entirely global 10012 variables, or it can be on local variables. 10013 10014 Watchpoints of the first kind are never auto-deleted, and even 10015 persist across program restarts. Since they can use variables 10016 from shared libraries, we need to reparse expression as libraries 10017 are loaded and unloaded. 10018 10019 Watchpoints on local variables can also change meaning as result 10020 of solib event. For example, if a watchpoint uses both a local 10021 and a global variables in expression, it's a local watchpoint, 10022 but unloading of a shared library will make the expression 10023 invalid. This is not a very common use case, but we still 10024 re-evaluate expression, to avoid surprises to the user. 10025 10026 Note that for local watchpoints, we re-evaluate it only if 10027 watchpoints frame id is still valid. If it's not, it means the 10028 watchpoint is out of scope and will be deleted soon. In fact, 10029 I'm not sure we'll ever be called in this case. 10030 10031 If a local watchpoint's frame id is still valid, then 10032 w->exp_valid_block is likewise valid, and we can safely use it. 10033 10034 Don't do anything about disabled watchpoints, since they will be 10035 reevaluated again when enabled. */ 10036 update_watchpoint (w, 1 /* reparse */); 10037 } 10038 10039 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */ 10040 10041 static int 10042 insert_watchpoint (struct bp_location *bl) 10043 { 10044 struct watchpoint *w = (struct watchpoint *) bl->owner; 10045 int length = w->exact ? 1 : bl->length; 10046 10047 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type, 10048 w->cond_exp.get ()); 10049 } 10050 10051 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */ 10052 10053 static int 10054 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason) 10055 { 10056 struct watchpoint *w = (struct watchpoint *) bl->owner; 10057 int length = w->exact ? 1 : bl->length; 10058 10059 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type, 10060 w->cond_exp.get ()); 10061 } 10062 10063 static int 10064 breakpoint_hit_watchpoint (const struct bp_location *bl, 10065 const address_space *aspace, CORE_ADDR bp_addr, 10066 const struct target_waitstatus *ws) 10067 { 10068 struct breakpoint *b = bl->owner; 10069 struct watchpoint *w = (struct watchpoint *) b; 10070 10071 /* Continuable hardware watchpoints are treated as non-existent if the 10072 reason we stopped wasn't a hardware watchpoint (we didn't stop on 10073 some data address). Otherwise gdb won't stop on a break instruction 10074 in the code (not from a breakpoint) when a hardware watchpoint has 10075 been defined. Also skip watchpoints which we know did not trigger 10076 (did not match the data address). */ 10077 if (is_hardware_watchpoint (b) 10078 && w->watchpoint_triggered == watch_triggered_no) 10079 return 0; 10080 10081 return 1; 10082 } 10083 10084 static void 10085 check_status_watchpoint (bpstat bs) 10086 { 10087 gdb_assert (is_watchpoint (bs->breakpoint_at)); 10088 10089 bpstat_check_watchpoint (bs); 10090 } 10091 10092 /* Implement the "resources_needed" breakpoint_ops method for 10093 hardware watchpoints. */ 10094 10095 static int 10096 resources_needed_watchpoint (const struct bp_location *bl) 10097 { 10098 struct watchpoint *w = (struct watchpoint *) bl->owner; 10099 int length = w->exact? 1 : bl->length; 10100 10101 return target_region_ok_for_hw_watchpoint (bl->address, length); 10102 } 10103 10104 /* Implement the "works_in_software_mode" breakpoint_ops method for 10105 hardware watchpoints. */ 10106 10107 static int 10108 works_in_software_mode_watchpoint (const struct breakpoint *b) 10109 { 10110 /* Read and access watchpoints only work with hardware support. */ 10111 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint; 10112 } 10113 10114 static enum print_stop_action 10115 print_it_watchpoint (bpstat bs) 10116 { 10117 struct breakpoint *b; 10118 enum print_stop_action result; 10119 struct watchpoint *w; 10120 struct ui_out *uiout = current_uiout; 10121 10122 gdb_assert (bs->bp_location_at != NULL); 10123 10124 b = bs->breakpoint_at; 10125 w = (struct watchpoint *) b; 10126 10127 annotate_watchpoint (b->number); 10128 maybe_print_thread_hit_breakpoint (uiout); 10129 10130 string_file stb; 10131 10132 gdb::optional<ui_out_emit_tuple> tuple_emitter; 10133 switch (b->type) 10134 { 10135 case bp_watchpoint: 10136 case bp_hardware_watchpoint: 10137 if (uiout->is_mi_like_p ()) 10138 uiout->field_string 10139 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER)); 10140 mention (b); 10141 tuple_emitter.emplace (uiout, "value"); 10142 uiout->text ("\nOld value = "); 10143 watchpoint_value_print (bs->old_val.get (), &stb); 10144 uiout->field_stream ("old", stb); 10145 uiout->text ("\nNew value = "); 10146 watchpoint_value_print (w->val.get (), &stb); 10147 uiout->field_stream ("new", stb); 10148 uiout->text ("\n"); 10149 /* More than one watchpoint may have been triggered. */ 10150 result = PRINT_UNKNOWN; 10151 break; 10152 10153 case bp_read_watchpoint: 10154 if (uiout->is_mi_like_p ()) 10155 uiout->field_string 10156 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER)); 10157 mention (b); 10158 tuple_emitter.emplace (uiout, "value"); 10159 uiout->text ("\nValue = "); 10160 watchpoint_value_print (w->val.get (), &stb); 10161 uiout->field_stream ("value", stb); 10162 uiout->text ("\n"); 10163 result = PRINT_UNKNOWN; 10164 break; 10165 10166 case bp_access_watchpoint: 10167 if (bs->old_val != NULL) 10168 { 10169 if (uiout->is_mi_like_p ()) 10170 uiout->field_string 10171 ("reason", 10172 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER)); 10173 mention (b); 10174 tuple_emitter.emplace (uiout, "value"); 10175 uiout->text ("\nOld value = "); 10176 watchpoint_value_print (bs->old_val.get (), &stb); 10177 uiout->field_stream ("old", stb); 10178 uiout->text ("\nNew value = "); 10179 } 10180 else 10181 { 10182 mention (b); 10183 if (uiout->is_mi_like_p ()) 10184 uiout->field_string 10185 ("reason", 10186 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER)); 10187 tuple_emitter.emplace (uiout, "value"); 10188 uiout->text ("\nValue = "); 10189 } 10190 watchpoint_value_print (w->val.get (), &stb); 10191 uiout->field_stream ("new", stb); 10192 uiout->text ("\n"); 10193 result = PRINT_UNKNOWN; 10194 break; 10195 default: 10196 result = PRINT_UNKNOWN; 10197 } 10198 10199 return result; 10200 } 10201 10202 /* Implement the "print_mention" breakpoint_ops method for hardware 10203 watchpoints. */ 10204 10205 static void 10206 print_mention_watchpoint (struct breakpoint *b) 10207 { 10208 struct watchpoint *w = (struct watchpoint *) b; 10209 struct ui_out *uiout = current_uiout; 10210 const char *tuple_name; 10211 10212 switch (b->type) 10213 { 10214 case bp_watchpoint: 10215 uiout->text ("Watchpoint "); 10216 tuple_name = "wpt"; 10217 break; 10218 case bp_hardware_watchpoint: 10219 uiout->text ("Hardware watchpoint "); 10220 tuple_name = "wpt"; 10221 break; 10222 case bp_read_watchpoint: 10223 uiout->text ("Hardware read watchpoint "); 10224 tuple_name = "hw-rwpt"; 10225 break; 10226 case bp_access_watchpoint: 10227 uiout->text ("Hardware access (read/write) watchpoint "); 10228 tuple_name = "hw-awpt"; 10229 break; 10230 default: 10231 internal_error (__FILE__, __LINE__, 10232 _("Invalid hardware watchpoint type.")); 10233 } 10234 10235 ui_out_emit_tuple tuple_emitter (uiout, tuple_name); 10236 uiout->field_signed ("number", b->number); 10237 uiout->text (": "); 10238 uiout->field_string ("exp", w->exp_string); 10239 } 10240 10241 /* Implement the "print_recreate" breakpoint_ops method for 10242 watchpoints. */ 10243 10244 static void 10245 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp) 10246 { 10247 struct watchpoint *w = (struct watchpoint *) b; 10248 10249 switch (b->type) 10250 { 10251 case bp_watchpoint: 10252 case bp_hardware_watchpoint: 10253 fprintf_unfiltered (fp, "watch"); 10254 break; 10255 case bp_read_watchpoint: 10256 fprintf_unfiltered (fp, "rwatch"); 10257 break; 10258 case bp_access_watchpoint: 10259 fprintf_unfiltered (fp, "awatch"); 10260 break; 10261 default: 10262 internal_error (__FILE__, __LINE__, 10263 _("Invalid watchpoint type.")); 10264 } 10265 10266 fprintf_unfiltered (fp, " %s", w->exp_string); 10267 print_recreate_thread (b, fp); 10268 } 10269 10270 /* Implement the "explains_signal" breakpoint_ops method for 10271 watchpoints. */ 10272 10273 static int 10274 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig) 10275 { 10276 /* A software watchpoint cannot cause a signal other than 10277 GDB_SIGNAL_TRAP. */ 10278 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP) 10279 return 0; 10280 10281 return 1; 10282 } 10283 10284 /* The breakpoint_ops structure to be used in hardware watchpoints. */ 10285 10286 static struct breakpoint_ops watchpoint_breakpoint_ops; 10287 10288 /* Implement the "insert" breakpoint_ops method for 10289 masked hardware watchpoints. */ 10290 10291 static int 10292 insert_masked_watchpoint (struct bp_location *bl) 10293 { 10294 struct watchpoint *w = (struct watchpoint *) bl->owner; 10295 10296 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask, 10297 bl->watchpoint_type); 10298 } 10299 10300 /* Implement the "remove" breakpoint_ops method for 10301 masked hardware watchpoints. */ 10302 10303 static int 10304 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason) 10305 { 10306 struct watchpoint *w = (struct watchpoint *) bl->owner; 10307 10308 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask, 10309 bl->watchpoint_type); 10310 } 10311 10312 /* Implement the "resources_needed" breakpoint_ops method for 10313 masked hardware watchpoints. */ 10314 10315 static int 10316 resources_needed_masked_watchpoint (const struct bp_location *bl) 10317 { 10318 struct watchpoint *w = (struct watchpoint *) bl->owner; 10319 10320 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask); 10321 } 10322 10323 /* Implement the "works_in_software_mode" breakpoint_ops method for 10324 masked hardware watchpoints. */ 10325 10326 static int 10327 works_in_software_mode_masked_watchpoint (const struct breakpoint *b) 10328 { 10329 return 0; 10330 } 10331 10332 /* Implement the "print_it" breakpoint_ops method for 10333 masked hardware watchpoints. */ 10334 10335 static enum print_stop_action 10336 print_it_masked_watchpoint (bpstat bs) 10337 { 10338 struct breakpoint *b = bs->breakpoint_at; 10339 struct ui_out *uiout = current_uiout; 10340 10341 /* Masked watchpoints have only one location. */ 10342 gdb_assert (b->loc && b->loc->next == NULL); 10343 10344 annotate_watchpoint (b->number); 10345 maybe_print_thread_hit_breakpoint (uiout); 10346 10347 switch (b->type) 10348 { 10349 case bp_hardware_watchpoint: 10350 if (uiout->is_mi_like_p ()) 10351 uiout->field_string 10352 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER)); 10353 break; 10354 10355 case bp_read_watchpoint: 10356 if (uiout->is_mi_like_p ()) 10357 uiout->field_string 10358 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER)); 10359 break; 10360 10361 case bp_access_watchpoint: 10362 if (uiout->is_mi_like_p ()) 10363 uiout->field_string 10364 ("reason", 10365 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER)); 10366 break; 10367 default: 10368 internal_error (__FILE__, __LINE__, 10369 _("Invalid hardware watchpoint type.")); 10370 } 10371 10372 mention (b); 10373 uiout->text (_("\n\ 10374 Check the underlying instruction at PC for the memory\n\ 10375 address and value which triggered this watchpoint.\n")); 10376 uiout->text ("\n"); 10377 10378 /* More than one watchpoint may have been triggered. */ 10379 return PRINT_UNKNOWN; 10380 } 10381 10382 /* Implement the "print_one_detail" breakpoint_ops method for 10383 masked hardware watchpoints. */ 10384 10385 static void 10386 print_one_detail_masked_watchpoint (const struct breakpoint *b, 10387 struct ui_out *uiout) 10388 { 10389 struct watchpoint *w = (struct watchpoint *) b; 10390 10391 /* Masked watchpoints have only one location. */ 10392 gdb_assert (b->loc && b->loc->next == NULL); 10393 10394 uiout->text ("\tmask "); 10395 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask); 10396 uiout->text ("\n"); 10397 } 10398 10399 /* Implement the "print_mention" breakpoint_ops method for 10400 masked hardware watchpoints. */ 10401 10402 static void 10403 print_mention_masked_watchpoint (struct breakpoint *b) 10404 { 10405 struct watchpoint *w = (struct watchpoint *) b; 10406 struct ui_out *uiout = current_uiout; 10407 const char *tuple_name; 10408 10409 switch (b->type) 10410 { 10411 case bp_hardware_watchpoint: 10412 uiout->text ("Masked hardware watchpoint "); 10413 tuple_name = "wpt"; 10414 break; 10415 case bp_read_watchpoint: 10416 uiout->text ("Masked hardware read watchpoint "); 10417 tuple_name = "hw-rwpt"; 10418 break; 10419 case bp_access_watchpoint: 10420 uiout->text ("Masked hardware access (read/write) watchpoint "); 10421 tuple_name = "hw-awpt"; 10422 break; 10423 default: 10424 internal_error (__FILE__, __LINE__, 10425 _("Invalid hardware watchpoint type.")); 10426 } 10427 10428 ui_out_emit_tuple tuple_emitter (uiout, tuple_name); 10429 uiout->field_signed ("number", b->number); 10430 uiout->text (": "); 10431 uiout->field_string ("exp", w->exp_string); 10432 } 10433 10434 /* Implement the "print_recreate" breakpoint_ops method for 10435 masked hardware watchpoints. */ 10436 10437 static void 10438 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp) 10439 { 10440 struct watchpoint *w = (struct watchpoint *) b; 10441 10442 switch (b->type) 10443 { 10444 case bp_hardware_watchpoint: 10445 fprintf_unfiltered (fp, "watch"); 10446 break; 10447 case bp_read_watchpoint: 10448 fprintf_unfiltered (fp, "rwatch"); 10449 break; 10450 case bp_access_watchpoint: 10451 fprintf_unfiltered (fp, "awatch"); 10452 break; 10453 default: 10454 internal_error (__FILE__, __LINE__, 10455 _("Invalid hardware watchpoint type.")); 10456 } 10457 10458 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, 10459 phex (w->hw_wp_mask, sizeof (CORE_ADDR))); 10460 print_recreate_thread (b, fp); 10461 } 10462 10463 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */ 10464 10465 static struct breakpoint_ops masked_watchpoint_breakpoint_ops; 10466 10467 /* Tell whether the given watchpoint is a masked hardware watchpoint. */ 10468 10469 static bool 10470 is_masked_watchpoint (const struct breakpoint *b) 10471 { 10472 return b->ops == &masked_watchpoint_breakpoint_ops; 10473 } 10474 10475 /* accessflag: hw_write: watch write, 10476 hw_read: watch read, 10477 hw_access: watch access (read or write) */ 10478 static void 10479 watch_command_1 (const char *arg, int accessflag, int from_tty, 10480 int just_location, int internal) 10481 { 10482 struct breakpoint *scope_breakpoint = NULL; 10483 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL; 10484 struct value *result; 10485 int saved_bitpos = 0, saved_bitsize = 0; 10486 const char *exp_start = NULL; 10487 const char *exp_end = NULL; 10488 const char *tok, *end_tok; 10489 int toklen = -1; 10490 const char *cond_start = NULL; 10491 const char *cond_end = NULL; 10492 enum bptype bp_type; 10493 int thread = -1; 10494 int pc = 0; 10495 /* Flag to indicate whether we are going to use masks for 10496 the hardware watchpoint. */ 10497 int use_mask = 0; 10498 CORE_ADDR mask = 0; 10499 10500 /* Make sure that we actually have parameters to parse. */ 10501 if (arg != NULL && arg[0] != '\0') 10502 { 10503 const char *value_start; 10504 10505 exp_end = arg + strlen (arg); 10506 10507 /* Look for "parameter value" pairs at the end 10508 of the arguments string. */ 10509 for (tok = exp_end - 1; tok > arg; tok--) 10510 { 10511 /* Skip whitespace at the end of the argument list. */ 10512 while (tok > arg && (*tok == ' ' || *tok == '\t')) 10513 tok--; 10514 10515 /* Find the beginning of the last token. 10516 This is the value of the parameter. */ 10517 while (tok > arg && (*tok != ' ' && *tok != '\t')) 10518 tok--; 10519 value_start = tok + 1; 10520 10521 /* Skip whitespace. */ 10522 while (tok > arg && (*tok == ' ' || *tok == '\t')) 10523 tok--; 10524 10525 end_tok = tok; 10526 10527 /* Find the beginning of the second to last token. 10528 This is the parameter itself. */ 10529 while (tok > arg && (*tok != ' ' && *tok != '\t')) 10530 tok--; 10531 tok++; 10532 toklen = end_tok - tok + 1; 10533 10534 if (toklen == 6 && startswith (tok, "thread")) 10535 { 10536 struct thread_info *thr; 10537 /* At this point we've found a "thread" token, which means 10538 the user is trying to set a watchpoint that triggers 10539 only in a specific thread. */ 10540 const char *endp; 10541 10542 if (thread != -1) 10543 error(_("You can specify only one thread.")); 10544 10545 /* Extract the thread ID from the next token. */ 10546 thr = parse_thread_id (value_start, &endp); 10547 10548 /* Check if the user provided a valid thread ID. */ 10549 if (*endp != ' ' && *endp != '\t' && *endp != '\0') 10550 invalid_thread_id_error (value_start); 10551 10552 thread = thr->global_num; 10553 } 10554 else if (toklen == 4 && startswith (tok, "mask")) 10555 { 10556 /* We've found a "mask" token, which means the user wants to 10557 create a hardware watchpoint that is going to have the mask 10558 facility. */ 10559 struct value *mask_value, *mark; 10560 10561 if (use_mask) 10562 error(_("You can specify only one mask.")); 10563 10564 use_mask = just_location = 1; 10565 10566 mark = value_mark (); 10567 mask_value = parse_to_comma_and_eval (&value_start); 10568 mask = value_as_address (mask_value); 10569 value_free_to_mark (mark); 10570 } 10571 else 10572 /* We didn't recognize what we found. We should stop here. */ 10573 break; 10574 10575 /* Truncate the string and get rid of the "parameter value" pair before 10576 the arguments string is parsed by the parse_exp_1 function. */ 10577 exp_end = tok; 10578 } 10579 } 10580 else 10581 exp_end = arg; 10582 10583 /* Parse the rest of the arguments. From here on out, everything 10584 is in terms of a newly allocated string instead of the original 10585 ARG. */ 10586 std::string expression (arg, exp_end - arg); 10587 exp_start = arg = expression.c_str (); 10588 innermost_block_tracker tracker; 10589 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker); 10590 exp_end = arg; 10591 /* Remove trailing whitespace from the expression before saving it. 10592 This makes the eventual display of the expression string a bit 10593 prettier. */ 10594 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t')) 10595 --exp_end; 10596 10597 /* Checking if the expression is not constant. */ 10598 if (watchpoint_exp_is_const (exp.get ())) 10599 { 10600 int len; 10601 10602 len = exp_end - exp_start; 10603 while (len > 0 && isspace (exp_start[len - 1])) 10604 len--; 10605 error (_("Cannot watch constant value `%.*s'."), len, exp_start); 10606 } 10607 10608 exp_valid_block = tracker.block (); 10609 struct value *mark = value_mark (); 10610 struct value *val_as_value = nullptr; 10611 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL, 10612 just_location); 10613 10614 if (val_as_value != NULL && just_location) 10615 { 10616 saved_bitpos = value_bitpos (val_as_value); 10617 saved_bitsize = value_bitsize (val_as_value); 10618 } 10619 10620 value_ref_ptr val; 10621 if (just_location) 10622 { 10623 int ret; 10624 10625 exp_valid_block = NULL; 10626 val = release_value (value_addr (result)); 10627 value_free_to_mark (mark); 10628 10629 if (use_mask) 10630 { 10631 ret = target_masked_watch_num_registers (value_as_address (val.get ()), 10632 mask); 10633 if (ret == -1) 10634 error (_("This target does not support masked watchpoints.")); 10635 else if (ret == -2) 10636 error (_("Invalid mask or memory region.")); 10637 } 10638 } 10639 else if (val_as_value != NULL) 10640 val = release_value (val_as_value); 10641 10642 tok = skip_spaces (arg); 10643 end_tok = skip_to_space (tok); 10644 10645 toklen = end_tok - tok; 10646 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0) 10647 { 10648 tok = cond_start = end_tok + 1; 10649 innermost_block_tracker if_tracker; 10650 parse_exp_1 (&tok, 0, 0, 0, &if_tracker); 10651 10652 /* The watchpoint expression may not be local, but the condition 10653 may still be. E.g.: `watch global if local > 0'. */ 10654 cond_exp_valid_block = if_tracker.block (); 10655 10656 cond_end = tok; 10657 } 10658 if (*tok) 10659 error (_("Junk at end of command.")); 10660 10661 frame_info *wp_frame = block_innermost_frame (exp_valid_block); 10662 10663 /* Save this because create_internal_breakpoint below invalidates 10664 'wp_frame'. */ 10665 frame_id watchpoint_frame = get_frame_id (wp_frame); 10666 10667 /* If the expression is "local", then set up a "watchpoint scope" 10668 breakpoint at the point where we've left the scope of the watchpoint 10669 expression. Create the scope breakpoint before the watchpoint, so 10670 that we will encounter it first in bpstat_stop_status. */ 10671 if (exp_valid_block != NULL && wp_frame != NULL) 10672 { 10673 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame); 10674 10675 if (frame_id_p (caller_frame_id)) 10676 { 10677 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame); 10678 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame); 10679 10680 scope_breakpoint 10681 = create_internal_breakpoint (caller_arch, caller_pc, 10682 bp_watchpoint_scope, 10683 &momentary_breakpoint_ops); 10684 10685 /* create_internal_breakpoint could invalidate WP_FRAME. */ 10686 wp_frame = NULL; 10687 10688 scope_breakpoint->enable_state = bp_enabled; 10689 10690 /* Automatically delete the breakpoint when it hits. */ 10691 scope_breakpoint->disposition = disp_del; 10692 10693 /* Only break in the proper frame (help with recursion). */ 10694 scope_breakpoint->frame_id = caller_frame_id; 10695 10696 /* Set the address at which we will stop. */ 10697 scope_breakpoint->loc->gdbarch = caller_arch; 10698 scope_breakpoint->loc->requested_address = caller_pc; 10699 scope_breakpoint->loc->address 10700 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch, 10701 scope_breakpoint->loc->requested_address, 10702 scope_breakpoint->type); 10703 } 10704 } 10705 10706 /* Now set up the breakpoint. We create all watchpoints as hardware 10707 watchpoints here even if hardware watchpoints are turned off, a call 10708 to update_watchpoint later in this function will cause the type to 10709 drop back to bp_watchpoint (software watchpoint) if required. */ 10710 10711 if (accessflag == hw_read) 10712 bp_type = bp_read_watchpoint; 10713 else if (accessflag == hw_access) 10714 bp_type = bp_access_watchpoint; 10715 else 10716 bp_type = bp_hardware_watchpoint; 10717 10718 std::unique_ptr<watchpoint> w (new watchpoint ()); 10719 10720 if (use_mask) 10721 init_raw_breakpoint_without_location (w.get (), NULL, bp_type, 10722 &masked_watchpoint_breakpoint_ops); 10723 else 10724 init_raw_breakpoint_without_location (w.get (), NULL, bp_type, 10725 &watchpoint_breakpoint_ops); 10726 w->thread = thread; 10727 w->disposition = disp_donttouch; 10728 w->pspace = current_program_space; 10729 w->exp = std::move (exp); 10730 w->exp_valid_block = exp_valid_block; 10731 w->cond_exp_valid_block = cond_exp_valid_block; 10732 if (just_location) 10733 { 10734 struct type *t = value_type (val.get ()); 10735 CORE_ADDR addr = value_as_address (val.get ()); 10736 10737 w->exp_string_reparse 10738 = current_language->watch_location_expression (t, addr).release (); 10739 10740 w->exp_string = xstrprintf ("-location %.*s", 10741 (int) (exp_end - exp_start), exp_start); 10742 } 10743 else 10744 w->exp_string = savestring (exp_start, exp_end - exp_start); 10745 10746 if (use_mask) 10747 { 10748 w->hw_wp_mask = mask; 10749 } 10750 else 10751 { 10752 w->val = val; 10753 w->val_bitpos = saved_bitpos; 10754 w->val_bitsize = saved_bitsize; 10755 w->val_valid = true; 10756 } 10757 10758 if (cond_start) 10759 w->cond_string = savestring (cond_start, cond_end - cond_start); 10760 else 10761 w->cond_string = 0; 10762 10763 if (frame_id_p (watchpoint_frame)) 10764 { 10765 w->watchpoint_frame = watchpoint_frame; 10766 w->watchpoint_thread = inferior_ptid; 10767 } 10768 else 10769 { 10770 w->watchpoint_frame = null_frame_id; 10771 w->watchpoint_thread = null_ptid; 10772 } 10773 10774 if (scope_breakpoint != NULL) 10775 { 10776 /* The scope breakpoint is related to the watchpoint. We will 10777 need to act on them together. */ 10778 w->related_breakpoint = scope_breakpoint; 10779 scope_breakpoint->related_breakpoint = w.get (); 10780 } 10781 10782 if (!just_location) 10783 value_free_to_mark (mark); 10784 10785 /* Finally update the new watchpoint. This creates the locations 10786 that should be inserted. */ 10787 update_watchpoint (w.get (), 1); 10788 10789 install_breakpoint (internal, std::move (w), 1); 10790 } 10791 10792 /* Return count of debug registers needed to watch the given expression. 10793 If the watchpoint cannot be handled in hardware return zero. */ 10794 10795 static int 10796 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals) 10797 { 10798 int found_memory_cnt = 0; 10799 10800 /* Did the user specifically forbid us to use hardware watchpoints? */ 10801 if (!can_use_hw_watchpoints) 10802 return 0; 10803 10804 gdb_assert (!vals.empty ()); 10805 struct value *head = vals[0].get (); 10806 10807 /* Make sure that the value of the expression depends only upon 10808 memory contents, and values computed from them within GDB. If we 10809 find any register references or function calls, we can't use a 10810 hardware watchpoint. 10811 10812 The idea here is that evaluating an expression generates a series 10813 of values, one holding the value of every subexpression. (The 10814 expression a*b+c has five subexpressions: a, b, a*b, c, and 10815 a*b+c.) GDB's values hold almost enough information to establish 10816 the criteria given above --- they identify memory lvalues, 10817 register lvalues, computed values, etcetera. So we can evaluate 10818 the expression, and then scan the chain of values that leaves 10819 behind to decide whether we can detect any possible change to the 10820 expression's final value using only hardware watchpoints. 10821 10822 However, I don't think that the values returned by inferior 10823 function calls are special in any way. So this function may not 10824 notice that an expression involving an inferior function call 10825 can't be watched with hardware watchpoints. FIXME. */ 10826 for (const value_ref_ptr &iter : vals) 10827 { 10828 struct value *v = iter.get (); 10829 10830 if (VALUE_LVAL (v) == lval_memory) 10831 { 10832 if (v != head && value_lazy (v)) 10833 /* A lazy memory lvalue in the chain is one that GDB never 10834 needed to fetch; we either just used its address (e.g., 10835 `a' in `a.b') or we never needed it at all (e.g., `a' 10836 in `a,b'). This doesn't apply to HEAD; if that is 10837 lazy then it was not readable, but watch it anyway. */ 10838 ; 10839 else 10840 { 10841 /* Ahh, memory we actually used! Check if we can cover 10842 it with hardware watchpoints. */ 10843 struct type *vtype = check_typedef (value_type (v)); 10844 10845 /* We only watch structs and arrays if user asked for it 10846 explicitly, never if they just happen to appear in a 10847 middle of some value chain. */ 10848 if (v == head 10849 || (vtype->code () != TYPE_CODE_STRUCT 10850 && vtype->code () != TYPE_CODE_ARRAY)) 10851 { 10852 CORE_ADDR vaddr = value_address (v); 10853 int len; 10854 int num_regs; 10855 10856 len = (target_exact_watchpoints 10857 && is_scalar_type_recursive (vtype))? 10858 1 : TYPE_LENGTH (value_type (v)); 10859 10860 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len); 10861 if (!num_regs) 10862 return 0; 10863 else 10864 found_memory_cnt += num_regs; 10865 } 10866 } 10867 } 10868 else if (VALUE_LVAL (v) != not_lval 10869 && deprecated_value_modifiable (v) == 0) 10870 return 0; /* These are values from the history (e.g., $1). */ 10871 else if (VALUE_LVAL (v) == lval_register) 10872 return 0; /* Cannot watch a register with a HW watchpoint. */ 10873 } 10874 10875 /* The expression itself looks suitable for using a hardware 10876 watchpoint, but give the target machine a chance to reject it. */ 10877 return found_memory_cnt; 10878 } 10879 10880 void 10881 watch_command_wrapper (const char *arg, int from_tty, int internal) 10882 { 10883 watch_command_1 (arg, hw_write, from_tty, 0, internal); 10884 } 10885 10886 /* A helper function that looks for the "-location" argument and then 10887 calls watch_command_1. */ 10888 10889 static void 10890 watch_maybe_just_location (const char *arg, int accessflag, int from_tty) 10891 { 10892 int just_location = 0; 10893 10894 if (arg 10895 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1) 10896 || check_for_argument (&arg, "-l", sizeof ("-l") - 1))) 10897 just_location = 1; 10898 10899 watch_command_1 (arg, accessflag, from_tty, just_location, 0); 10900 } 10901 10902 static void 10903 watch_command (const char *arg, int from_tty) 10904 { 10905 watch_maybe_just_location (arg, hw_write, from_tty); 10906 } 10907 10908 void 10909 rwatch_command_wrapper (const char *arg, int from_tty, int internal) 10910 { 10911 watch_command_1 (arg, hw_read, from_tty, 0, internal); 10912 } 10913 10914 static void 10915 rwatch_command (const char *arg, int from_tty) 10916 { 10917 watch_maybe_just_location (arg, hw_read, from_tty); 10918 } 10919 10920 void 10921 awatch_command_wrapper (const char *arg, int from_tty, int internal) 10922 { 10923 watch_command_1 (arg, hw_access, from_tty, 0, internal); 10924 } 10925 10926 static void 10927 awatch_command (const char *arg, int from_tty) 10928 { 10929 watch_maybe_just_location (arg, hw_access, from_tty); 10930 } 10931 10932 10933 /* Data for the FSM that manages the until(location)/advance commands 10934 in infcmd.c. Here because it uses the mechanisms of 10935 breakpoints. */ 10936 10937 struct until_break_fsm : public thread_fsm 10938 { 10939 /* The thread that was current when the command was executed. */ 10940 int thread; 10941 10942 /* The breakpoint set at the return address in the caller frame, 10943 plus breakpoints at all the destination locations. */ 10944 std::vector<breakpoint_up> breakpoints; 10945 10946 until_break_fsm (struct interp *cmd_interp, int thread, 10947 std::vector<breakpoint_up> &&breakpoints) 10948 : thread_fsm (cmd_interp), 10949 thread (thread), 10950 breakpoints (std::move (breakpoints)) 10951 { 10952 } 10953 10954 void clean_up (struct thread_info *thread) override; 10955 bool should_stop (struct thread_info *thread) override; 10956 enum async_reply_reason do_async_reply_reason () override; 10957 }; 10958 10959 /* Implementation of the 'should_stop' FSM method for the 10960 until(location)/advance commands. */ 10961 10962 bool 10963 until_break_fsm::should_stop (struct thread_info *tp) 10964 { 10965 for (const breakpoint_up &bp : breakpoints) 10966 if (bpstat_find_breakpoint (tp->control.stop_bpstat, 10967 bp.get ()) != NULL) 10968 { 10969 set_finished (); 10970 break; 10971 } 10972 10973 return true; 10974 } 10975 10976 /* Implementation of the 'clean_up' FSM method for the 10977 until(location)/advance commands. */ 10978 10979 void 10980 until_break_fsm::clean_up (struct thread_info *) 10981 { 10982 /* Clean up our temporary breakpoints. */ 10983 breakpoints.clear (); 10984 delete_longjmp_breakpoint (thread); 10985 } 10986 10987 /* Implementation of the 'async_reply_reason' FSM method for the 10988 until(location)/advance commands. */ 10989 10990 enum async_reply_reason 10991 until_break_fsm::do_async_reply_reason () 10992 { 10993 return EXEC_ASYNC_LOCATION_REACHED; 10994 } 10995 10996 void 10997 until_break_command (const char *arg, int from_tty, int anywhere) 10998 { 10999 struct frame_info *frame; 11000 struct gdbarch *frame_gdbarch; 11001 struct frame_id stack_frame_id; 11002 struct frame_id caller_frame_id; 11003 int thread; 11004 struct thread_info *tp; 11005 11006 clear_proceed_status (0); 11007 11008 /* Set a breakpoint where the user wants it and at return from 11009 this function. */ 11010 11011 event_location_up location = string_to_event_location (&arg, current_language); 11012 11013 std::vector<symtab_and_line> sals 11014 = (last_displayed_sal_is_valid () 11015 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL, 11016 get_last_displayed_symtab (), 11017 get_last_displayed_line ()) 11018 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, 11019 NULL, NULL, 0)); 11020 11021 if (sals.empty ()) 11022 error (_("Couldn't get information on specified line.")); 11023 11024 if (*arg) 11025 error (_("Junk at end of arguments.")); 11026 11027 tp = inferior_thread (); 11028 thread = tp->global_num; 11029 11030 /* Note linespec handling above invalidates the frame chain. 11031 Installing a breakpoint also invalidates the frame chain (as it 11032 may need to switch threads), so do any frame handling before 11033 that. */ 11034 11035 frame = get_selected_frame (NULL); 11036 frame_gdbarch = get_frame_arch (frame); 11037 stack_frame_id = get_stack_frame_id (frame); 11038 caller_frame_id = frame_unwind_caller_id (frame); 11039 11040 /* Keep within the current frame, or in frames called by the current 11041 one. */ 11042 11043 std::vector<breakpoint_up> breakpoints; 11044 11045 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter; 11046 11047 if (frame_id_p (caller_frame_id)) 11048 { 11049 struct symtab_and_line sal2; 11050 struct gdbarch *caller_gdbarch; 11051 11052 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0); 11053 sal2.pc = frame_unwind_caller_pc (frame); 11054 caller_gdbarch = frame_unwind_caller_arch (frame); 11055 11056 breakpoint_up caller_breakpoint 11057 = set_momentary_breakpoint (caller_gdbarch, sal2, 11058 caller_frame_id, bp_until); 11059 breakpoints.emplace_back (std::move (caller_breakpoint)); 11060 11061 set_longjmp_breakpoint (tp, caller_frame_id); 11062 lj_deleter.emplace (thread); 11063 } 11064 11065 /* set_momentary_breakpoint could invalidate FRAME. */ 11066 frame = NULL; 11067 11068 /* If the user told us to continue until a specified location, we 11069 don't specify a frame at which we need to stop. Otherwise, 11070 specify the selected frame, because we want to stop only at the 11071 very same frame. */ 11072 frame_id stop_frame_id = anywhere ? null_frame_id : stack_frame_id; 11073 11074 for (symtab_and_line &sal : sals) 11075 { 11076 resolve_sal_pc (&sal); 11077 11078 breakpoint_up location_breakpoint 11079 = set_momentary_breakpoint (frame_gdbarch, sal, 11080 stop_frame_id, bp_until); 11081 breakpoints.emplace_back (std::move (location_breakpoint)); 11082 } 11083 11084 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num, 11085 std::move (breakpoints)); 11086 11087 if (lj_deleter) 11088 lj_deleter->release (); 11089 11090 proceed (-1, GDB_SIGNAL_DEFAULT); 11091 } 11092 11093 /* This function attempts to parse an optional "if <cond>" clause 11094 from the arg string. If one is not found, it returns NULL. 11095 11096 Else, it returns a pointer to the condition string. (It does not 11097 attempt to evaluate the string against a particular block.) And, 11098 it updates arg to point to the first character following the parsed 11099 if clause in the arg string. */ 11100 11101 const char * 11102 ep_parse_optional_if_clause (const char **arg) 11103 { 11104 const char *cond_string; 11105 11106 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2])) 11107 return NULL; 11108 11109 /* Skip the "if" keyword. */ 11110 (*arg) += 2; 11111 11112 /* Skip any extra leading whitespace, and record the start of the 11113 condition string. */ 11114 *arg = skip_spaces (*arg); 11115 cond_string = *arg; 11116 11117 /* Assume that the condition occupies the remainder of the arg 11118 string. */ 11119 (*arg) += strlen (cond_string); 11120 11121 return cond_string; 11122 } 11123 11124 /* Commands to deal with catching events, such as signals, exceptions, 11125 process start/exit, etc. */ 11126 11127 typedef enum 11128 { 11129 catch_fork_temporary, catch_vfork_temporary, 11130 catch_fork_permanent, catch_vfork_permanent 11131 } 11132 catch_fork_kind; 11133 11134 static void 11135 catch_fork_command_1 (const char *arg, int from_tty, 11136 struct cmd_list_element *command) 11137 { 11138 struct gdbarch *gdbarch = get_current_arch (); 11139 const char *cond_string = NULL; 11140 catch_fork_kind fork_kind; 11141 int tempflag; 11142 11143 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command); 11144 tempflag = (fork_kind == catch_fork_temporary 11145 || fork_kind == catch_vfork_temporary); 11146 11147 if (!arg) 11148 arg = ""; 11149 arg = skip_spaces (arg); 11150 11151 /* The allowed syntax is: 11152 catch [v]fork 11153 catch [v]fork if <cond> 11154 11155 First, check if there's an if clause. */ 11156 cond_string = ep_parse_optional_if_clause (&arg); 11157 11158 if ((*arg != '\0') && !isspace (*arg)) 11159 error (_("Junk at end of arguments.")); 11160 11161 /* If this target supports it, create a fork or vfork catchpoint 11162 and enable reporting of such events. */ 11163 switch (fork_kind) 11164 { 11165 case catch_fork_temporary: 11166 case catch_fork_permanent: 11167 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string, 11168 &catch_fork_breakpoint_ops); 11169 break; 11170 case catch_vfork_temporary: 11171 case catch_vfork_permanent: 11172 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string, 11173 &catch_vfork_breakpoint_ops); 11174 break; 11175 default: 11176 error (_("unsupported or unknown fork kind; cannot catch it")); 11177 break; 11178 } 11179 } 11180 11181 static void 11182 catch_exec_command_1 (const char *arg, int from_tty, 11183 struct cmd_list_element *command) 11184 { 11185 struct gdbarch *gdbarch = get_current_arch (); 11186 int tempflag; 11187 const char *cond_string = NULL; 11188 11189 tempflag = get_cmd_context (command) == CATCH_TEMPORARY; 11190 11191 if (!arg) 11192 arg = ""; 11193 arg = skip_spaces (arg); 11194 11195 /* The allowed syntax is: 11196 catch exec 11197 catch exec if <cond> 11198 11199 First, check if there's an if clause. */ 11200 cond_string = ep_parse_optional_if_clause (&arg); 11201 11202 if ((*arg != '\0') && !isspace (*arg)) 11203 error (_("Junk at end of arguments.")); 11204 11205 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ()); 11206 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, 11207 &catch_exec_breakpoint_ops); 11208 c->exec_pathname = NULL; 11209 11210 install_breakpoint (0, std::move (c), 1); 11211 } 11212 11213 void 11214 init_ada_exception_breakpoint (struct breakpoint *b, 11215 struct gdbarch *gdbarch, 11216 struct symtab_and_line sal, 11217 const char *addr_string, 11218 const struct breakpoint_ops *ops, 11219 int tempflag, 11220 int enabled, 11221 int from_tty) 11222 { 11223 if (from_tty) 11224 { 11225 struct gdbarch *loc_gdbarch = get_sal_arch (sal); 11226 if (!loc_gdbarch) 11227 loc_gdbarch = gdbarch; 11228 11229 describe_other_breakpoints (loc_gdbarch, 11230 sal.pspace, sal.pc, sal.section, -1); 11231 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special 11232 version for exception catchpoints, because two catchpoints 11233 used for different exception names will use the same address. 11234 In this case, a "breakpoint ... also set at..." warning is 11235 unproductive. Besides, the warning phrasing is also a bit 11236 inappropriate, we should use the word catchpoint, and tell 11237 the user what type of catchpoint it is. The above is good 11238 enough for now, though. */ 11239 } 11240 11241 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops); 11242 11243 b->enable_state = enabled ? bp_enabled : bp_disabled; 11244 b->disposition = tempflag ? disp_del : disp_donttouch; 11245 b->location = string_to_event_location (&addr_string, 11246 language_def (language_ada)); 11247 b->language = language_ada; 11248 } 11249 11250 11251 11252 /* Compare two breakpoints and return a strcmp-like result. */ 11253 11254 static int 11255 compare_breakpoints (const breakpoint *a, const breakpoint *b) 11256 { 11257 uintptr_t ua = (uintptr_t) a; 11258 uintptr_t ub = (uintptr_t) b; 11259 11260 if (a->number < b->number) 11261 return -1; 11262 else if (a->number > b->number) 11263 return 1; 11264 11265 /* Now sort by address, in case we see, e..g, two breakpoints with 11266 the number 0. */ 11267 if (ua < ub) 11268 return -1; 11269 return ua > ub ? 1 : 0; 11270 } 11271 11272 /* Delete breakpoints by address or line. */ 11273 11274 static void 11275 clear_command (const char *arg, int from_tty) 11276 { 11277 struct breakpoint *b; 11278 int default_match; 11279 11280 std::vector<symtab_and_line> decoded_sals; 11281 symtab_and_line last_sal; 11282 gdb::array_view<symtab_and_line> sals; 11283 if (arg) 11284 { 11285 decoded_sals 11286 = decode_line_with_current_source (arg, 11287 (DECODE_LINE_FUNFIRSTLINE 11288 | DECODE_LINE_LIST_MODE)); 11289 default_match = 0; 11290 sals = decoded_sals; 11291 } 11292 else 11293 { 11294 /* Set sal's line, symtab, pc, and pspace to the values 11295 corresponding to the last call to print_frame_info. If the 11296 codepoint is not valid, this will set all the fields to 0. */ 11297 last_sal = get_last_displayed_sal (); 11298 if (last_sal.symtab == 0) 11299 error (_("No source file specified.")); 11300 11301 default_match = 1; 11302 sals = last_sal; 11303 } 11304 11305 /* We don't call resolve_sal_pc here. That's not as bad as it 11306 seems, because all existing breakpoints typically have both 11307 file/line and pc set. So, if clear is given file/line, we can 11308 match this to existing breakpoint without obtaining pc at all. 11309 11310 We only support clearing given the address explicitly 11311 present in breakpoint table. Say, we've set breakpoint 11312 at file:line. There were several PC values for that file:line, 11313 due to optimization, all in one block. 11314 11315 We've picked one PC value. If "clear" is issued with another 11316 PC corresponding to the same file:line, the breakpoint won't 11317 be cleared. We probably can still clear the breakpoint, but 11318 since the other PC value is never presented to user, user 11319 can only find it by guessing, and it does not seem important 11320 to support that. */ 11321 11322 /* For each line spec given, delete bps which correspond to it. Do 11323 it in two passes, solely to preserve the current behavior that 11324 from_tty is forced true if we delete more than one 11325 breakpoint. */ 11326 11327 std::vector<struct breakpoint *> found; 11328 for (const auto &sal : sals) 11329 { 11330 const char *sal_fullname; 11331 11332 /* If exact pc given, clear bpts at that pc. 11333 If line given (pc == 0), clear all bpts on specified line. 11334 If defaulting, clear all bpts on default line 11335 or at default pc. 11336 11337 defaulting sal.pc != 0 tests to do 11338 11339 0 1 pc 11340 1 1 pc _and_ line 11341 0 0 line 11342 1 0 <can't happen> */ 11343 11344 sal_fullname = (sal.symtab == NULL 11345 ? NULL : symtab_to_fullname (sal.symtab)); 11346 11347 /* Find all matching breakpoints and add them to 'found'. */ 11348 ALL_BREAKPOINTS (b) 11349 { 11350 int match = 0; 11351 /* Are we going to delete b? */ 11352 if (b->type != bp_none && !is_watchpoint (b)) 11353 { 11354 struct bp_location *loc = b->loc; 11355 for (; loc; loc = loc->next) 11356 { 11357 /* If the user specified file:line, don't allow a PC 11358 match. This matches historical gdb behavior. */ 11359 int pc_match = (!sal.explicit_line 11360 && sal.pc 11361 && (loc->pspace == sal.pspace) 11362 && (loc->address == sal.pc) 11363 && (!section_is_overlay (loc->section) 11364 || loc->section == sal.section)); 11365 int line_match = 0; 11366 11367 if ((default_match || sal.explicit_line) 11368 && loc->symtab != NULL 11369 && sal_fullname != NULL 11370 && sal.pspace == loc->pspace 11371 && loc->line_number == sal.line 11372 && filename_cmp (symtab_to_fullname (loc->symtab), 11373 sal_fullname) == 0) 11374 line_match = 1; 11375 11376 if (pc_match || line_match) 11377 { 11378 match = 1; 11379 break; 11380 } 11381 } 11382 } 11383 11384 if (match) 11385 found.push_back (b); 11386 } 11387 } 11388 11389 /* Now go thru the 'found' chain and delete them. */ 11390 if (found.empty ()) 11391 { 11392 if (arg) 11393 error (_("No breakpoint at %s."), arg); 11394 else 11395 error (_("No breakpoint at this line.")); 11396 } 11397 11398 /* Remove duplicates from the vec. */ 11399 std::sort (found.begin (), found.end (), 11400 [] (const breakpoint *bp_a, const breakpoint *bp_b) 11401 { 11402 return compare_breakpoints (bp_a, bp_b) < 0; 11403 }); 11404 found.erase (std::unique (found.begin (), found.end (), 11405 [] (const breakpoint *bp_a, const breakpoint *bp_b) 11406 { 11407 return compare_breakpoints (bp_a, bp_b) == 0; 11408 }), 11409 found.end ()); 11410 11411 if (found.size () > 1) 11412 from_tty = 1; /* Always report if deleted more than one. */ 11413 if (from_tty) 11414 { 11415 if (found.size () == 1) 11416 printf_unfiltered (_("Deleted breakpoint ")); 11417 else 11418 printf_unfiltered (_("Deleted breakpoints ")); 11419 } 11420 11421 for (breakpoint *iter : found) 11422 { 11423 if (from_tty) 11424 printf_unfiltered ("%d ", iter->number); 11425 delete_breakpoint (iter); 11426 } 11427 if (from_tty) 11428 putchar_unfiltered ('\n'); 11429 } 11430 11431 /* Delete breakpoint in BS if they are `delete' breakpoints and 11432 all breakpoints that are marked for deletion, whether hit or not. 11433 This is called after any breakpoint is hit, or after errors. */ 11434 11435 void 11436 breakpoint_auto_delete (bpstat bs) 11437 { 11438 struct breakpoint *b, *b_tmp; 11439 11440 for (; bs; bs = bs->next) 11441 if (bs->breakpoint_at 11442 && bs->breakpoint_at->disposition == disp_del 11443 && bs->stop) 11444 delete_breakpoint (bs->breakpoint_at); 11445 11446 ALL_BREAKPOINTS_SAFE (b, b_tmp) 11447 { 11448 if (b->disposition == disp_del_at_next_stop) 11449 delete_breakpoint (b); 11450 } 11451 } 11452 11453 /* A comparison function for bp_location AP and BP being interfaced to 11454 std::sort. Sort elements primarily by their ADDRESS (no matter what 11455 bl_address_is_meaningful says), secondarily by ordering first 11456 permanent elements and terciarily just ensuring the array is sorted 11457 stable way despite std::sort being an unstable algorithm. */ 11458 11459 static int 11460 bp_location_is_less_than (const bp_location *a, const bp_location *b) 11461 { 11462 if (a->address != b->address) 11463 return a->address < b->address; 11464 11465 /* Sort locations at the same address by their pspace number, keeping 11466 locations of the same inferior (in a multi-inferior environment) 11467 grouped. */ 11468 11469 if (a->pspace->num != b->pspace->num) 11470 return a->pspace->num < b->pspace->num; 11471 11472 /* Sort permanent breakpoints first. */ 11473 if (a->permanent != b->permanent) 11474 return a->permanent > b->permanent; 11475 11476 /* Sort by type in order to make duplicate determination easier. 11477 See update_global_location_list. This is kept in sync with 11478 breakpoint_locations_match. */ 11479 if (a->loc_type < b->loc_type) 11480 return true; 11481 11482 /* Likewise, for range-breakpoints, sort by length. */ 11483 if (a->loc_type == bp_loc_hardware_breakpoint 11484 && b->loc_type == bp_loc_hardware_breakpoint 11485 && a->length < b->length) 11486 return true; 11487 11488 /* Make the internal GDB representation stable across GDB runs 11489 where A and B memory inside GDB can differ. Breakpoint locations of 11490 the same type at the same address can be sorted in arbitrary order. */ 11491 11492 if (a->owner->number != b->owner->number) 11493 return a->owner->number < b->owner->number; 11494 11495 return a < b; 11496 } 11497 11498 /* Set bp_locations_placed_address_before_address_max and 11499 bp_locations_shadow_len_after_address_max according to the current 11500 content of the bp_locations array. */ 11501 11502 static void 11503 bp_locations_target_extensions_update (void) 11504 { 11505 struct bp_location *bl, **blp_tmp; 11506 11507 bp_locations_placed_address_before_address_max = 0; 11508 bp_locations_shadow_len_after_address_max = 0; 11509 11510 ALL_BP_LOCATIONS (bl, blp_tmp) 11511 { 11512 CORE_ADDR start, end, addr; 11513 11514 if (!bp_location_has_shadow (bl)) 11515 continue; 11516 11517 start = bl->target_info.placed_address; 11518 end = start + bl->target_info.shadow_len; 11519 11520 gdb_assert (bl->address >= start); 11521 addr = bl->address - start; 11522 if (addr > bp_locations_placed_address_before_address_max) 11523 bp_locations_placed_address_before_address_max = addr; 11524 11525 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */ 11526 11527 gdb_assert (bl->address < end); 11528 addr = end - bl->address; 11529 if (addr > bp_locations_shadow_len_after_address_max) 11530 bp_locations_shadow_len_after_address_max = addr; 11531 } 11532 } 11533 11534 /* Download tracepoint locations if they haven't been. */ 11535 11536 static void 11537 download_tracepoint_locations (void) 11538 { 11539 struct breakpoint *b; 11540 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN; 11541 11542 scoped_restore_current_pspace_and_thread restore_pspace_thread; 11543 11544 ALL_TRACEPOINTS (b) 11545 { 11546 struct bp_location *bl; 11547 struct tracepoint *t; 11548 int bp_location_downloaded = 0; 11549 11550 if ((b->type == bp_fast_tracepoint 11551 ? !may_insert_fast_tracepoints 11552 : !may_insert_tracepoints)) 11553 continue; 11554 11555 if (can_download_tracepoint == TRIBOOL_UNKNOWN) 11556 { 11557 if (target_can_download_tracepoint ()) 11558 can_download_tracepoint = TRIBOOL_TRUE; 11559 else 11560 can_download_tracepoint = TRIBOOL_FALSE; 11561 } 11562 11563 if (can_download_tracepoint == TRIBOOL_FALSE) 11564 break; 11565 11566 for (bl = b->loc; bl; bl = bl->next) 11567 { 11568 /* In tracepoint, locations are _never_ duplicated, so 11569 should_be_inserted is equivalent to 11570 unduplicated_should_be_inserted. */ 11571 if (!should_be_inserted (bl) || bl->inserted) 11572 continue; 11573 11574 switch_to_program_space_and_thread (bl->pspace); 11575 11576 target_download_tracepoint (bl); 11577 11578 bl->inserted = 1; 11579 bp_location_downloaded = 1; 11580 } 11581 t = (struct tracepoint *) b; 11582 t->number_on_target = b->number; 11583 if (bp_location_downloaded) 11584 gdb::observers::breakpoint_modified.notify (b); 11585 } 11586 } 11587 11588 /* Swap the insertion/duplication state between two locations. */ 11589 11590 static void 11591 swap_insertion (struct bp_location *left, struct bp_location *right) 11592 { 11593 const int left_inserted = left->inserted; 11594 const int left_duplicate = left->duplicate; 11595 const int left_needs_update = left->needs_update; 11596 const struct bp_target_info left_target_info = left->target_info; 11597 11598 /* Locations of tracepoints can never be duplicated. */ 11599 if (is_tracepoint (left->owner)) 11600 gdb_assert (!left->duplicate); 11601 if (is_tracepoint (right->owner)) 11602 gdb_assert (!right->duplicate); 11603 11604 left->inserted = right->inserted; 11605 left->duplicate = right->duplicate; 11606 left->needs_update = right->needs_update; 11607 left->target_info = right->target_info; 11608 right->inserted = left_inserted; 11609 right->duplicate = left_duplicate; 11610 right->needs_update = left_needs_update; 11611 right->target_info = left_target_info; 11612 } 11613 11614 /* Force the re-insertion of the locations at ADDRESS. This is called 11615 once a new/deleted/modified duplicate location is found and we are evaluating 11616 conditions on the target's side. Such conditions need to be updated on 11617 the target. */ 11618 11619 static void 11620 force_breakpoint_reinsertion (struct bp_location *bl) 11621 { 11622 struct bp_location **locp = NULL, **loc2p; 11623 struct bp_location *loc; 11624 CORE_ADDR address = 0; 11625 int pspace_num; 11626 11627 address = bl->address; 11628 pspace_num = bl->pspace->num; 11629 11630 /* This is only meaningful if the target is 11631 evaluating conditions and if the user has 11632 opted for condition evaluation on the target's 11633 side. */ 11634 if (gdb_evaluates_breakpoint_condition_p () 11635 || !target_supports_evaluation_of_breakpoint_conditions ()) 11636 return; 11637 11638 /* Flag all breakpoint locations with this address and 11639 the same program space as the location 11640 as "its condition has changed". We need to 11641 update the conditions on the target's side. */ 11642 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address) 11643 { 11644 loc = *loc2p; 11645 11646 if (!is_breakpoint (loc->owner) 11647 || pspace_num != loc->pspace->num) 11648 continue; 11649 11650 /* Flag the location appropriately. We use a different state to 11651 let everyone know that we already updated the set of locations 11652 with addr bl->address and program space bl->pspace. This is so 11653 we don't have to keep calling these functions just to mark locations 11654 that have already been marked. */ 11655 loc->condition_changed = condition_updated; 11656 11657 /* Free the agent expression bytecode as well. We will compute 11658 it later on. */ 11659 loc->cond_bytecode.reset (); 11660 } 11661 } 11662 11663 /* Called whether new breakpoints are created, or existing breakpoints 11664 deleted, to update the global location list and recompute which 11665 locations are duplicate of which. 11666 11667 The INSERT_MODE flag determines whether locations may not, may, or 11668 shall be inserted now. See 'enum ugll_insert_mode' for more 11669 info. */ 11670 11671 static void 11672 update_global_location_list (enum ugll_insert_mode insert_mode) 11673 { 11674 struct breakpoint *b; 11675 struct bp_location **locp, *loc; 11676 /* Last breakpoint location address that was marked for update. */ 11677 CORE_ADDR last_addr = 0; 11678 /* Last breakpoint location program space that was marked for update. */ 11679 int last_pspace_num = -1; 11680 11681 /* Used in the duplicates detection below. When iterating over all 11682 bp_locations, points to the first bp_location of a given address. 11683 Breakpoints and watchpoints of different types are never 11684 duplicates of each other. Keep one pointer for each type of 11685 breakpoint/watchpoint, so we only need to loop over all locations 11686 once. */ 11687 struct bp_location *bp_loc_first; /* breakpoint */ 11688 struct bp_location *wp_loc_first; /* hardware watchpoint */ 11689 struct bp_location *awp_loc_first; /* access watchpoint */ 11690 struct bp_location *rwp_loc_first; /* read watchpoint */ 11691 11692 /* Saved former bp_locations array which we compare against the newly 11693 built bp_locations from the current state of ALL_BREAKPOINTS. */ 11694 struct bp_location **old_locp; 11695 unsigned old_locations_count; 11696 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations); 11697 11698 old_locations_count = bp_locations_count; 11699 bp_locations = NULL; 11700 bp_locations_count = 0; 11701 11702 ALL_BREAKPOINTS (b) 11703 for (loc = b->loc; loc; loc = loc->next) 11704 bp_locations_count++; 11705 11706 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count); 11707 locp = bp_locations; 11708 ALL_BREAKPOINTS (b) 11709 for (loc = b->loc; loc; loc = loc->next) 11710 *locp++ = loc; 11711 11712 /* See if we need to "upgrade" a software breakpoint to a hardware 11713 breakpoint. Do this before deciding whether locations are 11714 duplicates. Also do this before sorting because sorting order 11715 depends on location type. */ 11716 for (locp = bp_locations; 11717 locp < bp_locations + bp_locations_count; 11718 locp++) 11719 { 11720 loc = *locp; 11721 if (!loc->inserted && should_be_inserted (loc)) 11722 handle_automatic_hardware_breakpoints (loc); 11723 } 11724 11725 std::sort (bp_locations, bp_locations + bp_locations_count, 11726 bp_location_is_less_than); 11727 11728 bp_locations_target_extensions_update (); 11729 11730 /* Identify bp_location instances that are no longer present in the 11731 new list, and therefore should be freed. Note that it's not 11732 necessary that those locations should be removed from inferior -- 11733 if there's another location at the same address (previously 11734 marked as duplicate), we don't need to remove/insert the 11735 location. 11736 11737 LOCP is kept in sync with OLD_LOCP, each pointing to the current 11738 and former bp_location array state respectively. */ 11739 11740 locp = bp_locations; 11741 for (old_locp = old_locations.get (); 11742 old_locp < old_locations.get () + old_locations_count; 11743 old_locp++) 11744 { 11745 struct bp_location *old_loc = *old_locp; 11746 struct bp_location **loc2p; 11747 11748 /* Tells if 'old_loc' is found among the new locations. If 11749 not, we have to free it. */ 11750 int found_object = 0; 11751 /* Tells if the location should remain inserted in the target. */ 11752 int keep_in_target = 0; 11753 int removed = 0; 11754 11755 /* Skip LOCP entries which will definitely never be needed. 11756 Stop either at or being the one matching OLD_LOC. */ 11757 while (locp < bp_locations + bp_locations_count 11758 && (*locp)->address < old_loc->address) 11759 locp++; 11760 11761 for (loc2p = locp; 11762 (loc2p < bp_locations + bp_locations_count 11763 && (*loc2p)->address == old_loc->address); 11764 loc2p++) 11765 { 11766 /* Check if this is a new/duplicated location or a duplicated 11767 location that had its condition modified. If so, we want to send 11768 its condition to the target if evaluation of conditions is taking 11769 place there. */ 11770 if ((*loc2p)->condition_changed == condition_modified 11771 && (last_addr != old_loc->address 11772 || last_pspace_num != old_loc->pspace->num)) 11773 { 11774 force_breakpoint_reinsertion (*loc2p); 11775 last_pspace_num = old_loc->pspace->num; 11776 } 11777 11778 if (*loc2p == old_loc) 11779 found_object = 1; 11780 } 11781 11782 /* We have already handled this address, update it so that we don't 11783 have to go through updates again. */ 11784 last_addr = old_loc->address; 11785 11786 /* Target-side condition evaluation: Handle deleted locations. */ 11787 if (!found_object) 11788 force_breakpoint_reinsertion (old_loc); 11789 11790 /* If this location is no longer present, and inserted, look if 11791 there's maybe a new location at the same address. If so, 11792 mark that one inserted, and don't remove this one. This is 11793 needed so that we don't have a time window where a breakpoint 11794 at certain location is not inserted. */ 11795 11796 if (old_loc->inserted) 11797 { 11798 /* If the location is inserted now, we might have to remove 11799 it. */ 11800 11801 if (found_object && should_be_inserted (old_loc)) 11802 { 11803 /* The location is still present in the location list, 11804 and still should be inserted. Don't do anything. */ 11805 keep_in_target = 1; 11806 } 11807 else 11808 { 11809 /* This location still exists, but it won't be kept in the 11810 target since it may have been disabled. We proceed to 11811 remove its target-side condition. */ 11812 11813 /* The location is either no longer present, or got 11814 disabled. See if there's another location at the 11815 same address, in which case we don't need to remove 11816 this one from the target. */ 11817 11818 /* OLD_LOC comes from existing struct breakpoint. */ 11819 if (bl_address_is_meaningful (old_loc)) 11820 { 11821 for (loc2p = locp; 11822 (loc2p < bp_locations + bp_locations_count 11823 && (*loc2p)->address == old_loc->address); 11824 loc2p++) 11825 { 11826 struct bp_location *loc2 = *loc2p; 11827 11828 if (loc2 == old_loc) 11829 continue; 11830 11831 if (breakpoint_locations_match (loc2, old_loc)) 11832 { 11833 /* Read watchpoint locations are switched to 11834 access watchpoints, if the former are not 11835 supported, but the latter are. */ 11836 if (is_hardware_watchpoint (old_loc->owner)) 11837 { 11838 gdb_assert (is_hardware_watchpoint (loc2->owner)); 11839 loc2->watchpoint_type = old_loc->watchpoint_type; 11840 } 11841 11842 /* loc2 is a duplicated location. We need to check 11843 if it should be inserted in case it will be 11844 unduplicated. */ 11845 if (unduplicated_should_be_inserted (loc2)) 11846 { 11847 swap_insertion (old_loc, loc2); 11848 keep_in_target = 1; 11849 break; 11850 } 11851 } 11852 } 11853 } 11854 } 11855 11856 if (!keep_in_target) 11857 { 11858 if (remove_breakpoint (old_loc)) 11859 { 11860 /* This is just about all we can do. We could keep 11861 this location on the global list, and try to 11862 remove it next time, but there's no particular 11863 reason why we will succeed next time. 11864 11865 Note that at this point, old_loc->owner is still 11866 valid, as delete_breakpoint frees the breakpoint 11867 only after calling us. */ 11868 printf_filtered (_("warning: Error removing " 11869 "breakpoint %d\n"), 11870 old_loc->owner->number); 11871 } 11872 removed = 1; 11873 } 11874 } 11875 11876 if (!found_object) 11877 { 11878 if (removed && target_is_non_stop_p () 11879 && need_moribund_for_location_type (old_loc)) 11880 { 11881 /* This location was removed from the target. In 11882 non-stop mode, a race condition is possible where 11883 we've removed a breakpoint, but stop events for that 11884 breakpoint are already queued and will arrive later. 11885 We apply an heuristic to be able to distinguish such 11886 SIGTRAPs from other random SIGTRAPs: we keep this 11887 breakpoint location for a bit, and will retire it 11888 after we see some number of events. The theory here 11889 is that reporting of events should, "on the average", 11890 be fair, so after a while we'll see events from all 11891 threads that have anything of interest, and no longer 11892 need to keep this breakpoint location around. We 11893 don't hold locations forever so to reduce chances of 11894 mistaking a non-breakpoint SIGTRAP for a breakpoint 11895 SIGTRAP. 11896 11897 The heuristic failing can be disastrous on 11898 decr_pc_after_break targets. 11899 11900 On decr_pc_after_break targets, like e.g., x86-linux, 11901 if we fail to recognize a late breakpoint SIGTRAP, 11902 because events_till_retirement has reached 0 too 11903 soon, we'll fail to do the PC adjustment, and report 11904 a random SIGTRAP to the user. When the user resumes 11905 the inferior, it will most likely immediately crash 11906 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently 11907 corrupted, because of being resumed e.g., in the 11908 middle of a multi-byte instruction, or skipped a 11909 one-byte instruction. This was actually seen happen 11910 on native x86-linux, and should be less rare on 11911 targets that do not support new thread events, like 11912 remote, due to the heuristic depending on 11913 thread_count. 11914 11915 Mistaking a random SIGTRAP for a breakpoint trap 11916 causes similar symptoms (PC adjustment applied when 11917 it shouldn't), but then again, playing with SIGTRAPs 11918 behind the debugger's back is asking for trouble. 11919 11920 Since hardware watchpoint traps are always 11921 distinguishable from other traps, so we don't need to 11922 apply keep hardware watchpoint moribund locations 11923 around. We simply always ignore hardware watchpoint 11924 traps we can no longer explain. */ 11925 11926 process_stratum_target *proc_target = nullptr; 11927 for (inferior *inf : all_inferiors ()) 11928 if (inf->pspace == old_loc->pspace) 11929 { 11930 proc_target = inf->process_target (); 11931 break; 11932 } 11933 if (proc_target != nullptr) 11934 old_loc->events_till_retirement 11935 = 3 * (thread_count (proc_target) + 1); 11936 else 11937 old_loc->events_till_retirement = 1; 11938 old_loc->owner = NULL; 11939 11940 moribund_locations.push_back (old_loc); 11941 } 11942 else 11943 { 11944 old_loc->owner = NULL; 11945 decref_bp_location (&old_loc); 11946 } 11947 } 11948 } 11949 11950 /* Rescan breakpoints at the same address and section, marking the 11951 first one as "first" and any others as "duplicates". This is so 11952 that the bpt instruction is only inserted once. If we have a 11953 permanent breakpoint at the same place as BPT, make that one the 11954 official one, and the rest as duplicates. Permanent breakpoints 11955 are sorted first for the same address. 11956 11957 Do the same for hardware watchpoints, but also considering the 11958 watchpoint's type (regular/access/read) and length. */ 11959 11960 bp_loc_first = NULL; 11961 wp_loc_first = NULL; 11962 awp_loc_first = NULL; 11963 rwp_loc_first = NULL; 11964 ALL_BP_LOCATIONS (loc, locp) 11965 { 11966 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always 11967 non-NULL. */ 11968 struct bp_location **loc_first_p; 11969 b = loc->owner; 11970 11971 if (!unduplicated_should_be_inserted (loc) 11972 || !bl_address_is_meaningful (loc) 11973 /* Don't detect duplicate for tracepoint locations because they are 11974 never duplicated. See the comments in field `duplicate' of 11975 `struct bp_location'. */ 11976 || is_tracepoint (b)) 11977 { 11978 /* Clear the condition modification flag. */ 11979 loc->condition_changed = condition_unchanged; 11980 continue; 11981 } 11982 11983 if (b->type == bp_hardware_watchpoint) 11984 loc_first_p = &wp_loc_first; 11985 else if (b->type == bp_read_watchpoint) 11986 loc_first_p = &rwp_loc_first; 11987 else if (b->type == bp_access_watchpoint) 11988 loc_first_p = &awp_loc_first; 11989 else 11990 loc_first_p = &bp_loc_first; 11991 11992 if (*loc_first_p == NULL 11993 || (overlay_debugging && loc->section != (*loc_first_p)->section) 11994 || !breakpoint_locations_match (loc, *loc_first_p)) 11995 { 11996 *loc_first_p = loc; 11997 loc->duplicate = 0; 11998 11999 if (is_breakpoint (loc->owner) && loc->condition_changed) 12000 { 12001 loc->needs_update = 1; 12002 /* Clear the condition modification flag. */ 12003 loc->condition_changed = condition_unchanged; 12004 } 12005 continue; 12006 } 12007 12008 12009 /* This and the above ensure the invariant that the first location 12010 is not duplicated, and is the inserted one. 12011 All following are marked as duplicated, and are not inserted. */ 12012 if (loc->inserted) 12013 swap_insertion (loc, *loc_first_p); 12014 loc->duplicate = 1; 12015 12016 /* Clear the condition modification flag. */ 12017 loc->condition_changed = condition_unchanged; 12018 } 12019 12020 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ()) 12021 { 12022 if (insert_mode != UGLL_DONT_INSERT) 12023 insert_breakpoint_locations (); 12024 else 12025 { 12026 /* Even though the caller told us to not insert new 12027 locations, we may still need to update conditions on the 12028 target's side of breakpoints that were already inserted 12029 if the target is evaluating breakpoint conditions. We 12030 only update conditions for locations that are marked 12031 "needs_update". */ 12032 update_inserted_breakpoint_locations (); 12033 } 12034 } 12035 12036 if (insert_mode != UGLL_DONT_INSERT) 12037 download_tracepoint_locations (); 12038 } 12039 12040 void 12041 breakpoint_retire_moribund (void) 12042 { 12043 for (int ix = 0; ix < moribund_locations.size (); ++ix) 12044 { 12045 struct bp_location *loc = moribund_locations[ix]; 12046 if (--(loc->events_till_retirement) == 0) 12047 { 12048 decref_bp_location (&loc); 12049 unordered_remove (moribund_locations, ix); 12050 --ix; 12051 } 12052 } 12053 } 12054 12055 static void 12056 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode) 12057 { 12058 12059 try 12060 { 12061 update_global_location_list (insert_mode); 12062 } 12063 catch (const gdb_exception_error &e) 12064 { 12065 } 12066 } 12067 12068 /* Clear BKP from a BPS. */ 12069 12070 static void 12071 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt) 12072 { 12073 bpstat bs; 12074 12075 for (bs = bps; bs; bs = bs->next) 12076 if (bs->breakpoint_at == bpt) 12077 { 12078 bs->breakpoint_at = NULL; 12079 bs->old_val = NULL; 12080 /* bs->commands will be freed later. */ 12081 } 12082 } 12083 12084 /* Callback for iterate_over_threads. */ 12085 static int 12086 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data) 12087 { 12088 struct breakpoint *bpt = (struct breakpoint *) data; 12089 12090 bpstat_remove_bp_location (th->control.stop_bpstat, bpt); 12091 return 0; 12092 } 12093 12094 /* Helper for breakpoint and tracepoint breakpoint_ops->mention 12095 callbacks. */ 12096 12097 static void 12098 say_where (struct breakpoint *b) 12099 { 12100 struct value_print_options opts; 12101 12102 get_user_print_options (&opts); 12103 12104 /* i18n: cagney/2005-02-11: Below needs to be merged into a 12105 single string. */ 12106 if (b->loc == NULL) 12107 { 12108 /* For pending locations, the output differs slightly based 12109 on b->extra_string. If this is non-NULL, it contains either 12110 a condition or dprintf arguments. */ 12111 if (b->extra_string == NULL) 12112 { 12113 printf_filtered (_(" (%s) pending."), 12114 event_location_to_string (b->location.get ())); 12115 } 12116 else if (b->type == bp_dprintf) 12117 { 12118 printf_filtered (_(" (%s,%s) pending."), 12119 event_location_to_string (b->location.get ()), 12120 b->extra_string); 12121 } 12122 else 12123 { 12124 printf_filtered (_(" (%s %s) pending."), 12125 event_location_to_string (b->location.get ()), 12126 b->extra_string); 12127 } 12128 } 12129 else 12130 { 12131 if (opts.addressprint || b->loc->symtab == NULL) 12132 printf_filtered (" at %ps", 12133 styled_string (address_style.style (), 12134 paddress (b->loc->gdbarch, 12135 b->loc->address))); 12136 if (b->loc->symtab != NULL) 12137 { 12138 /* If there is a single location, we can print the location 12139 more nicely. */ 12140 if (b->loc->next == NULL) 12141 { 12142 const char *filename 12143 = symtab_to_filename_for_display (b->loc->symtab); 12144 printf_filtered (": file %ps, line %d.", 12145 styled_string (file_name_style.style (), 12146 filename), 12147 b->loc->line_number); 12148 } 12149 else 12150 /* This is not ideal, but each location may have a 12151 different file name, and this at least reflects the 12152 real situation somewhat. */ 12153 printf_filtered (": %s.", 12154 event_location_to_string (b->location.get ())); 12155 } 12156 12157 if (b->loc->next) 12158 { 12159 struct bp_location *loc = b->loc; 12160 int n = 0; 12161 for (; loc; loc = loc->next) 12162 ++n; 12163 printf_filtered (" (%d locations)", n); 12164 } 12165 } 12166 } 12167 12168 bp_location::~bp_location () 12169 { 12170 xfree (function_name); 12171 } 12172 12173 /* Destructor for the breakpoint base class. */ 12174 12175 breakpoint::~breakpoint () 12176 { 12177 xfree (this->cond_string); 12178 xfree (this->extra_string); 12179 } 12180 12181 static struct bp_location * 12182 base_breakpoint_allocate_location (struct breakpoint *self) 12183 { 12184 return new bp_location (self); 12185 } 12186 12187 static void 12188 base_breakpoint_re_set (struct breakpoint *b) 12189 { 12190 /* Nothing to re-set. */ 12191 } 12192 12193 #define internal_error_pure_virtual_called() \ 12194 gdb_assert_not_reached ("pure virtual function called") 12195 12196 static int 12197 base_breakpoint_insert_location (struct bp_location *bl) 12198 { 12199 internal_error_pure_virtual_called (); 12200 } 12201 12202 static int 12203 base_breakpoint_remove_location (struct bp_location *bl, 12204 enum remove_bp_reason reason) 12205 { 12206 internal_error_pure_virtual_called (); 12207 } 12208 12209 static int 12210 base_breakpoint_breakpoint_hit (const struct bp_location *bl, 12211 const address_space *aspace, 12212 CORE_ADDR bp_addr, 12213 const struct target_waitstatus *ws) 12214 { 12215 internal_error_pure_virtual_called (); 12216 } 12217 12218 static void 12219 base_breakpoint_check_status (bpstat bs) 12220 { 12221 /* Always stop. */ 12222 } 12223 12224 /* A "works_in_software_mode" breakpoint_ops method that just internal 12225 errors. */ 12226 12227 static int 12228 base_breakpoint_works_in_software_mode (const struct breakpoint *b) 12229 { 12230 internal_error_pure_virtual_called (); 12231 } 12232 12233 /* A "resources_needed" breakpoint_ops method that just internal 12234 errors. */ 12235 12236 static int 12237 base_breakpoint_resources_needed (const struct bp_location *bl) 12238 { 12239 internal_error_pure_virtual_called (); 12240 } 12241 12242 static enum print_stop_action 12243 base_breakpoint_print_it (bpstat bs) 12244 { 12245 internal_error_pure_virtual_called (); 12246 } 12247 12248 static void 12249 base_breakpoint_print_one_detail (const struct breakpoint *self, 12250 struct ui_out *uiout) 12251 { 12252 /* nothing */ 12253 } 12254 12255 static void 12256 base_breakpoint_print_mention (struct breakpoint *b) 12257 { 12258 internal_error_pure_virtual_called (); 12259 } 12260 12261 static void 12262 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp) 12263 { 12264 internal_error_pure_virtual_called (); 12265 } 12266 12267 static void 12268 base_breakpoint_create_sals_from_location 12269 (struct event_location *location, 12270 struct linespec_result *canonical, 12271 enum bptype type_wanted) 12272 { 12273 internal_error_pure_virtual_called (); 12274 } 12275 12276 static void 12277 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch, 12278 struct linespec_result *c, 12279 gdb::unique_xmalloc_ptr<char> cond_string, 12280 gdb::unique_xmalloc_ptr<char> extra_string, 12281 enum bptype type_wanted, 12282 enum bpdisp disposition, 12283 int thread, 12284 int task, int ignore_count, 12285 const struct breakpoint_ops *o, 12286 int from_tty, int enabled, 12287 int internal, unsigned flags) 12288 { 12289 internal_error_pure_virtual_called (); 12290 } 12291 12292 static std::vector<symtab_and_line> 12293 base_breakpoint_decode_location (struct breakpoint *b, 12294 struct event_location *location, 12295 struct program_space *search_pspace) 12296 { 12297 internal_error_pure_virtual_called (); 12298 } 12299 12300 /* The default 'explains_signal' method. */ 12301 12302 static int 12303 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig) 12304 { 12305 return 1; 12306 } 12307 12308 /* The default "after_condition_true" method. */ 12309 12310 static void 12311 base_breakpoint_after_condition_true (struct bpstats *bs) 12312 { 12313 /* Nothing to do. */ 12314 } 12315 12316 struct breakpoint_ops base_breakpoint_ops = 12317 { 12318 base_breakpoint_allocate_location, 12319 base_breakpoint_re_set, 12320 base_breakpoint_insert_location, 12321 base_breakpoint_remove_location, 12322 base_breakpoint_breakpoint_hit, 12323 base_breakpoint_check_status, 12324 base_breakpoint_resources_needed, 12325 base_breakpoint_works_in_software_mode, 12326 base_breakpoint_print_it, 12327 NULL, 12328 base_breakpoint_print_one_detail, 12329 base_breakpoint_print_mention, 12330 base_breakpoint_print_recreate, 12331 base_breakpoint_create_sals_from_location, 12332 base_breakpoint_create_breakpoints_sal, 12333 base_breakpoint_decode_location, 12334 base_breakpoint_explains_signal, 12335 base_breakpoint_after_condition_true, 12336 }; 12337 12338 /* Default breakpoint_ops methods. */ 12339 12340 static void 12341 bkpt_re_set (struct breakpoint *b) 12342 { 12343 /* FIXME: is this still reachable? */ 12344 if (breakpoint_event_location_empty_p (b)) 12345 { 12346 /* Anything without a location can't be re-set. */ 12347 delete_breakpoint (b); 12348 return; 12349 } 12350 12351 breakpoint_re_set_default (b); 12352 } 12353 12354 static int 12355 bkpt_insert_location (struct bp_location *bl) 12356 { 12357 CORE_ADDR addr = bl->target_info.reqstd_address; 12358 12359 bl->target_info.kind = breakpoint_kind (bl, &addr); 12360 bl->target_info.placed_address = addr; 12361 12362 if (bl->loc_type == bp_loc_hardware_breakpoint) 12363 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info); 12364 else 12365 return target_insert_breakpoint (bl->gdbarch, &bl->target_info); 12366 } 12367 12368 static int 12369 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason) 12370 { 12371 if (bl->loc_type == bp_loc_hardware_breakpoint) 12372 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info); 12373 else 12374 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason); 12375 } 12376 12377 static int 12378 bkpt_breakpoint_hit (const struct bp_location *bl, 12379 const address_space *aspace, CORE_ADDR bp_addr, 12380 const struct target_waitstatus *ws) 12381 { 12382 if (ws->kind != TARGET_WAITKIND_STOPPED 12383 || ws->value.sig != GDB_SIGNAL_TRAP) 12384 return 0; 12385 12386 if (!breakpoint_address_match (bl->pspace->aspace, bl->address, 12387 aspace, bp_addr)) 12388 return 0; 12389 12390 if (overlay_debugging /* unmapped overlay section */ 12391 && section_is_overlay (bl->section) 12392 && !section_is_mapped (bl->section)) 12393 return 0; 12394 12395 return 1; 12396 } 12397 12398 static int 12399 dprintf_breakpoint_hit (const struct bp_location *bl, 12400 const address_space *aspace, CORE_ADDR bp_addr, 12401 const struct target_waitstatus *ws) 12402 { 12403 if (dprintf_style == dprintf_style_agent 12404 && target_can_run_breakpoint_commands ()) 12405 { 12406 /* An agent-style dprintf never causes a stop. If we see a trap 12407 for this address it must be for a breakpoint that happens to 12408 be set at the same address. */ 12409 return 0; 12410 } 12411 12412 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws); 12413 } 12414 12415 static int 12416 bkpt_resources_needed (const struct bp_location *bl) 12417 { 12418 gdb_assert (bl->owner->type == bp_hardware_breakpoint); 12419 12420 return 1; 12421 } 12422 12423 static enum print_stop_action 12424 bkpt_print_it (bpstat bs) 12425 { 12426 struct breakpoint *b; 12427 const struct bp_location *bl; 12428 int bp_temp; 12429 struct ui_out *uiout = current_uiout; 12430 12431 gdb_assert (bs->bp_location_at != NULL); 12432 12433 bl = bs->bp_location_at; 12434 b = bs->breakpoint_at; 12435 12436 bp_temp = b->disposition == disp_del; 12437 if (bl->address != bl->requested_address) 12438 breakpoint_adjustment_warning (bl->requested_address, 12439 bl->address, 12440 b->number, 1); 12441 annotate_breakpoint (b->number); 12442 maybe_print_thread_hit_breakpoint (uiout); 12443 12444 if (uiout->is_mi_like_p ()) 12445 { 12446 uiout->field_string ("reason", 12447 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); 12448 uiout->field_string ("disp", bpdisp_text (b->disposition)); 12449 } 12450 if (bp_temp) 12451 uiout->message ("Temporary breakpoint %pF, ", 12452 signed_field ("bkptno", b->number)); 12453 else 12454 uiout->message ("Breakpoint %pF, ", 12455 signed_field ("bkptno", b->number)); 12456 12457 return PRINT_SRC_AND_LOC; 12458 } 12459 12460 static void 12461 bkpt_print_mention (struct breakpoint *b) 12462 { 12463 if (current_uiout->is_mi_like_p ()) 12464 return; 12465 12466 switch (b->type) 12467 { 12468 case bp_breakpoint: 12469 case bp_gnu_ifunc_resolver: 12470 if (b->disposition == disp_del) 12471 printf_filtered (_("Temporary breakpoint")); 12472 else 12473 printf_filtered (_("Breakpoint")); 12474 printf_filtered (_(" %d"), b->number); 12475 if (b->type == bp_gnu_ifunc_resolver) 12476 printf_filtered (_(" at gnu-indirect-function resolver")); 12477 break; 12478 case bp_hardware_breakpoint: 12479 printf_filtered (_("Hardware assisted breakpoint %d"), b->number); 12480 break; 12481 case bp_dprintf: 12482 printf_filtered (_("Dprintf %d"), b->number); 12483 break; 12484 } 12485 12486 say_where (b); 12487 } 12488 12489 static void 12490 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp) 12491 { 12492 if (tp->type == bp_breakpoint && tp->disposition == disp_del) 12493 fprintf_unfiltered (fp, "tbreak"); 12494 else if (tp->type == bp_breakpoint) 12495 fprintf_unfiltered (fp, "break"); 12496 else if (tp->type == bp_hardware_breakpoint 12497 && tp->disposition == disp_del) 12498 fprintf_unfiltered (fp, "thbreak"); 12499 else if (tp->type == bp_hardware_breakpoint) 12500 fprintf_unfiltered (fp, "hbreak"); 12501 else 12502 internal_error (__FILE__, __LINE__, 12503 _("unhandled breakpoint type %d"), (int) tp->type); 12504 12505 fprintf_unfiltered (fp, " %s", 12506 event_location_to_string (tp->location.get ())); 12507 12508 /* Print out extra_string if this breakpoint is pending. It might 12509 contain, for example, conditions that were set by the user. */ 12510 if (tp->loc == NULL && tp->extra_string != NULL) 12511 fprintf_unfiltered (fp, " %s", tp->extra_string); 12512 12513 print_recreate_thread (tp, fp); 12514 } 12515 12516 static void 12517 bkpt_create_sals_from_location (struct event_location *location, 12518 struct linespec_result *canonical, 12519 enum bptype type_wanted) 12520 { 12521 create_sals_from_location_default (location, canonical, type_wanted); 12522 } 12523 12524 static void 12525 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch, 12526 struct linespec_result *canonical, 12527 gdb::unique_xmalloc_ptr<char> cond_string, 12528 gdb::unique_xmalloc_ptr<char> extra_string, 12529 enum bptype type_wanted, 12530 enum bpdisp disposition, 12531 int thread, 12532 int task, int ignore_count, 12533 const struct breakpoint_ops *ops, 12534 int from_tty, int enabled, 12535 int internal, unsigned flags) 12536 { 12537 create_breakpoints_sal_default (gdbarch, canonical, 12538 std::move (cond_string), 12539 std::move (extra_string), 12540 type_wanted, 12541 disposition, thread, task, 12542 ignore_count, ops, from_tty, 12543 enabled, internal, flags); 12544 } 12545 12546 static std::vector<symtab_and_line> 12547 bkpt_decode_location (struct breakpoint *b, 12548 struct event_location *location, 12549 struct program_space *search_pspace) 12550 { 12551 return decode_location_default (b, location, search_pspace); 12552 } 12553 12554 /* Virtual table for internal breakpoints. */ 12555 12556 static void 12557 internal_bkpt_re_set (struct breakpoint *b) 12558 { 12559 switch (b->type) 12560 { 12561 /* Delete overlay event and longjmp master breakpoints; they 12562 will be reset later by breakpoint_re_set. */ 12563 case bp_overlay_event: 12564 case bp_longjmp_master: 12565 case bp_std_terminate_master: 12566 case bp_exception_master: 12567 delete_breakpoint (b); 12568 break; 12569 12570 /* This breakpoint is special, it's set up when the inferior 12571 starts and we really don't want to touch it. */ 12572 case bp_shlib_event: 12573 12574 /* Like bp_shlib_event, this breakpoint type is special. Once 12575 it is set up, we do not want to touch it. */ 12576 case bp_thread_event: 12577 break; 12578 } 12579 } 12580 12581 static void 12582 internal_bkpt_check_status (bpstat bs) 12583 { 12584 if (bs->breakpoint_at->type == bp_shlib_event) 12585 { 12586 /* If requested, stop when the dynamic linker notifies GDB of 12587 events. This allows the user to get control and place 12588 breakpoints in initializer routines for dynamically loaded 12589 objects (among other things). */ 12590 bs->stop = stop_on_solib_events; 12591 bs->print = stop_on_solib_events; 12592 } 12593 else 12594 bs->stop = 0; 12595 } 12596 12597 static enum print_stop_action 12598 internal_bkpt_print_it (bpstat bs) 12599 { 12600 struct breakpoint *b; 12601 12602 b = bs->breakpoint_at; 12603 12604 switch (b->type) 12605 { 12606 case bp_shlib_event: 12607 /* Did we stop because the user set the stop_on_solib_events 12608 variable? (If so, we report this as a generic, "Stopped due 12609 to shlib event" message.) */ 12610 print_solib_event (0); 12611 break; 12612 12613 case bp_thread_event: 12614 /* Not sure how we will get here. 12615 GDB should not stop for these breakpoints. */ 12616 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n")); 12617 break; 12618 12619 case bp_overlay_event: 12620 /* By analogy with the thread event, GDB should not stop for these. */ 12621 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n")); 12622 break; 12623 12624 case bp_longjmp_master: 12625 /* These should never be enabled. */ 12626 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n")); 12627 break; 12628 12629 case bp_std_terminate_master: 12630 /* These should never be enabled. */ 12631 printf_filtered (_("std::terminate Master Breakpoint: " 12632 "gdb should not stop!\n")); 12633 break; 12634 12635 case bp_exception_master: 12636 /* These should never be enabled. */ 12637 printf_filtered (_("Exception Master Breakpoint: " 12638 "gdb should not stop!\n")); 12639 break; 12640 } 12641 12642 return PRINT_NOTHING; 12643 } 12644 12645 static void 12646 internal_bkpt_print_mention (struct breakpoint *b) 12647 { 12648 /* Nothing to mention. These breakpoints are internal. */ 12649 } 12650 12651 /* Virtual table for momentary breakpoints */ 12652 12653 static void 12654 momentary_bkpt_re_set (struct breakpoint *b) 12655 { 12656 /* Keep temporary breakpoints, which can be encountered when we step 12657 over a dlopen call and solib_add is resetting the breakpoints. 12658 Otherwise these should have been blown away via the cleanup chain 12659 or by breakpoint_init_inferior when we rerun the executable. */ 12660 } 12661 12662 static void 12663 momentary_bkpt_check_status (bpstat bs) 12664 { 12665 /* Nothing. The point of these breakpoints is causing a stop. */ 12666 } 12667 12668 static enum print_stop_action 12669 momentary_bkpt_print_it (bpstat bs) 12670 { 12671 return PRINT_UNKNOWN; 12672 } 12673 12674 static void 12675 momentary_bkpt_print_mention (struct breakpoint *b) 12676 { 12677 /* Nothing to mention. These breakpoints are internal. */ 12678 } 12679 12680 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists. 12681 12682 It gets cleared already on the removal of the first one of such placed 12683 breakpoints. This is OK as they get all removed altogether. */ 12684 12685 longjmp_breakpoint::~longjmp_breakpoint () 12686 { 12687 thread_info *tp = find_thread_global_id (this->thread); 12688 12689 if (tp != NULL) 12690 tp->initiating_frame = null_frame_id; 12691 } 12692 12693 /* Specific methods for probe breakpoints. */ 12694 12695 static int 12696 bkpt_probe_insert_location (struct bp_location *bl) 12697 { 12698 int v = bkpt_insert_location (bl); 12699 12700 if (v == 0) 12701 { 12702 /* The insertion was successful, now let's set the probe's semaphore 12703 if needed. */ 12704 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch); 12705 } 12706 12707 return v; 12708 } 12709 12710 static int 12711 bkpt_probe_remove_location (struct bp_location *bl, 12712 enum remove_bp_reason reason) 12713 { 12714 /* Let's clear the semaphore before removing the location. */ 12715 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch); 12716 12717 return bkpt_remove_location (bl, reason); 12718 } 12719 12720 static void 12721 bkpt_probe_create_sals_from_location (struct event_location *location, 12722 struct linespec_result *canonical, 12723 enum bptype type_wanted) 12724 { 12725 struct linespec_sals lsal; 12726 12727 lsal.sals = parse_probes (location, NULL, canonical); 12728 lsal.canonical 12729 = xstrdup (event_location_to_string (canonical->location.get ())); 12730 canonical->lsals.push_back (std::move (lsal)); 12731 } 12732 12733 static std::vector<symtab_and_line> 12734 bkpt_probe_decode_location (struct breakpoint *b, 12735 struct event_location *location, 12736 struct program_space *search_pspace) 12737 { 12738 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL); 12739 if (sals.empty ()) 12740 error (_("probe not found")); 12741 return sals; 12742 } 12743 12744 /* The breakpoint_ops structure to be used in tracepoints. */ 12745 12746 static void 12747 tracepoint_re_set (struct breakpoint *b) 12748 { 12749 breakpoint_re_set_default (b); 12750 } 12751 12752 static int 12753 tracepoint_breakpoint_hit (const struct bp_location *bl, 12754 const address_space *aspace, CORE_ADDR bp_addr, 12755 const struct target_waitstatus *ws) 12756 { 12757 /* By definition, the inferior does not report stops at 12758 tracepoints. */ 12759 return 0; 12760 } 12761 12762 static void 12763 tracepoint_print_one_detail (const struct breakpoint *self, 12764 struct ui_out *uiout) 12765 { 12766 struct tracepoint *tp = (struct tracepoint *) self; 12767 if (!tp->static_trace_marker_id.empty ()) 12768 { 12769 gdb_assert (self->type == bp_static_tracepoint); 12770 12771 uiout->message ("\tmarker id is %pF\n", 12772 string_field ("static-tracepoint-marker-string-id", 12773 tp->static_trace_marker_id.c_str ())); 12774 } 12775 } 12776 12777 static void 12778 tracepoint_print_mention (struct breakpoint *b) 12779 { 12780 if (current_uiout->is_mi_like_p ()) 12781 return; 12782 12783 switch (b->type) 12784 { 12785 case bp_tracepoint: 12786 printf_filtered (_("Tracepoint")); 12787 printf_filtered (_(" %d"), b->number); 12788 break; 12789 case bp_fast_tracepoint: 12790 printf_filtered (_("Fast tracepoint")); 12791 printf_filtered (_(" %d"), b->number); 12792 break; 12793 case bp_static_tracepoint: 12794 printf_filtered (_("Static tracepoint")); 12795 printf_filtered (_(" %d"), b->number); 12796 break; 12797 default: 12798 internal_error (__FILE__, __LINE__, 12799 _("unhandled tracepoint type %d"), (int) b->type); 12800 } 12801 12802 say_where (b); 12803 } 12804 12805 static void 12806 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp) 12807 { 12808 struct tracepoint *tp = (struct tracepoint *) self; 12809 12810 if (self->type == bp_fast_tracepoint) 12811 fprintf_unfiltered (fp, "ftrace"); 12812 else if (self->type == bp_static_tracepoint) 12813 fprintf_unfiltered (fp, "strace"); 12814 else if (self->type == bp_tracepoint) 12815 fprintf_unfiltered (fp, "trace"); 12816 else 12817 internal_error (__FILE__, __LINE__, 12818 _("unhandled tracepoint type %d"), (int) self->type); 12819 12820 fprintf_unfiltered (fp, " %s", 12821 event_location_to_string (self->location.get ())); 12822 print_recreate_thread (self, fp); 12823 12824 if (tp->pass_count) 12825 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count); 12826 } 12827 12828 static void 12829 tracepoint_create_sals_from_location (struct event_location *location, 12830 struct linespec_result *canonical, 12831 enum bptype type_wanted) 12832 { 12833 create_sals_from_location_default (location, canonical, type_wanted); 12834 } 12835 12836 static void 12837 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch, 12838 struct linespec_result *canonical, 12839 gdb::unique_xmalloc_ptr<char> cond_string, 12840 gdb::unique_xmalloc_ptr<char> extra_string, 12841 enum bptype type_wanted, 12842 enum bpdisp disposition, 12843 int thread, 12844 int task, int ignore_count, 12845 const struct breakpoint_ops *ops, 12846 int from_tty, int enabled, 12847 int internal, unsigned flags) 12848 { 12849 create_breakpoints_sal_default (gdbarch, canonical, 12850 std::move (cond_string), 12851 std::move (extra_string), 12852 type_wanted, 12853 disposition, thread, task, 12854 ignore_count, ops, from_tty, 12855 enabled, internal, flags); 12856 } 12857 12858 static std::vector<symtab_and_line> 12859 tracepoint_decode_location (struct breakpoint *b, 12860 struct event_location *location, 12861 struct program_space *search_pspace) 12862 { 12863 return decode_location_default (b, location, search_pspace); 12864 } 12865 12866 struct breakpoint_ops tracepoint_breakpoint_ops; 12867 12868 /* Virtual table for tracepoints on static probes. */ 12869 12870 static void 12871 tracepoint_probe_create_sals_from_location 12872 (struct event_location *location, 12873 struct linespec_result *canonical, 12874 enum bptype type_wanted) 12875 { 12876 /* We use the same method for breakpoint on probes. */ 12877 bkpt_probe_create_sals_from_location (location, canonical, type_wanted); 12878 } 12879 12880 static std::vector<symtab_and_line> 12881 tracepoint_probe_decode_location (struct breakpoint *b, 12882 struct event_location *location, 12883 struct program_space *search_pspace) 12884 { 12885 /* We use the same method for breakpoint on probes. */ 12886 return bkpt_probe_decode_location (b, location, search_pspace); 12887 } 12888 12889 /* Dprintf breakpoint_ops methods. */ 12890 12891 static void 12892 dprintf_re_set (struct breakpoint *b) 12893 { 12894 breakpoint_re_set_default (b); 12895 12896 /* extra_string should never be non-NULL for dprintf. */ 12897 gdb_assert (b->extra_string != NULL); 12898 12899 /* 1 - connect to target 1, that can run breakpoint commands. 12900 2 - create a dprintf, which resolves fine. 12901 3 - disconnect from target 1 12902 4 - connect to target 2, that can NOT run breakpoint commands. 12903 12904 After steps #3/#4, you'll want the dprintf command list to 12905 be updated, because target 1 and 2 may well return different 12906 answers for target_can_run_breakpoint_commands(). 12907 Given absence of finer grained resetting, we get to do 12908 it all the time. */ 12909 if (b->extra_string != NULL) 12910 update_dprintf_command_list (b); 12911 } 12912 12913 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */ 12914 12915 static void 12916 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp) 12917 { 12918 fprintf_unfiltered (fp, "dprintf %s,%s", 12919 event_location_to_string (tp->location.get ()), 12920 tp->extra_string); 12921 print_recreate_thread (tp, fp); 12922 } 12923 12924 /* Implement the "after_condition_true" breakpoint_ops method for 12925 dprintf. 12926 12927 dprintf's are implemented with regular commands in their command 12928 list, but we run the commands here instead of before presenting the 12929 stop to the user, as dprintf's don't actually cause a stop. This 12930 also makes it so that the commands of multiple dprintfs at the same 12931 address are all handled. */ 12932 12933 static void 12934 dprintf_after_condition_true (struct bpstats *bs) 12935 { 12936 struct bpstats tmp_bs; 12937 struct bpstats *tmp_bs_p = &tmp_bs; 12938 12939 /* dprintf's never cause a stop. This wasn't set in the 12940 check_status hook instead because that would make the dprintf's 12941 condition not be evaluated. */ 12942 bs->stop = 0; 12943 12944 /* Run the command list here. Take ownership of it instead of 12945 copying. We never want these commands to run later in 12946 bpstat_do_actions, if a breakpoint that causes a stop happens to 12947 be set at same address as this dprintf, or even if running the 12948 commands here throws. */ 12949 tmp_bs.commands = bs->commands; 12950 bs->commands = NULL; 12951 12952 bpstat_do_actions_1 (&tmp_bs_p); 12953 12954 /* 'tmp_bs.commands' will usually be NULL by now, but 12955 bpstat_do_actions_1 may return early without processing the whole 12956 list. */ 12957 } 12958 12959 /* The breakpoint_ops structure to be used on static tracepoints with 12960 markers (`-m'). */ 12961 12962 static void 12963 strace_marker_create_sals_from_location (struct event_location *location, 12964 struct linespec_result *canonical, 12965 enum bptype type_wanted) 12966 { 12967 struct linespec_sals lsal; 12968 const char *arg_start, *arg; 12969 12970 arg = arg_start = get_linespec_location (location)->spec_string; 12971 lsal.sals = decode_static_tracepoint_spec (&arg); 12972 12973 std::string str (arg_start, arg - arg_start); 12974 const char *ptr = str.c_str (); 12975 canonical->location 12976 = new_linespec_location (&ptr, symbol_name_match_type::FULL); 12977 12978 lsal.canonical 12979 = xstrdup (event_location_to_string (canonical->location.get ())); 12980 canonical->lsals.push_back (std::move (lsal)); 12981 } 12982 12983 static void 12984 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch, 12985 struct linespec_result *canonical, 12986 gdb::unique_xmalloc_ptr<char> cond_string, 12987 gdb::unique_xmalloc_ptr<char> extra_string, 12988 enum bptype type_wanted, 12989 enum bpdisp disposition, 12990 int thread, 12991 int task, int ignore_count, 12992 const struct breakpoint_ops *ops, 12993 int from_tty, int enabled, 12994 int internal, unsigned flags) 12995 { 12996 const linespec_sals &lsal = canonical->lsals[0]; 12997 12998 /* If the user is creating a static tracepoint by marker id 12999 (strace -m MARKER_ID), then store the sals index, so that 13000 breakpoint_re_set can try to match up which of the newly 13001 found markers corresponds to this one, and, don't try to 13002 expand multiple locations for each sal, given than SALS 13003 already should contain all sals for MARKER_ID. */ 13004 13005 for (size_t i = 0; i < lsal.sals.size (); i++) 13006 { 13007 event_location_up location 13008 = copy_event_location (canonical->location.get ()); 13009 13010 std::unique_ptr<tracepoint> tp (new tracepoint ()); 13011 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i], 13012 std::move (location), NULL, 13013 std::move (cond_string), 13014 std::move (extra_string), 13015 type_wanted, disposition, 13016 thread, task, ignore_count, ops, 13017 from_tty, enabled, internal, flags, 13018 canonical->special_display); 13019 /* Given that its possible to have multiple markers with 13020 the same string id, if the user is creating a static 13021 tracepoint by marker id ("strace -m MARKER_ID"), then 13022 store the sals index, so that breakpoint_re_set can 13023 try to match up which of the newly found markers 13024 corresponds to this one */ 13025 tp->static_trace_marker_id_idx = i; 13026 13027 install_breakpoint (internal, std::move (tp), 0); 13028 } 13029 } 13030 13031 static std::vector<symtab_and_line> 13032 strace_marker_decode_location (struct breakpoint *b, 13033 struct event_location *location, 13034 struct program_space *search_pspace) 13035 { 13036 struct tracepoint *tp = (struct tracepoint *) b; 13037 const char *s = get_linespec_location (location)->spec_string; 13038 13039 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s); 13040 if (sals.size () > tp->static_trace_marker_id_idx) 13041 { 13042 sals[0] = sals[tp->static_trace_marker_id_idx]; 13043 sals.resize (1); 13044 return sals; 13045 } 13046 else 13047 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ()); 13048 } 13049 13050 static struct breakpoint_ops strace_marker_breakpoint_ops; 13051 13052 static int 13053 strace_marker_p (struct breakpoint *b) 13054 { 13055 return b->ops == &strace_marker_breakpoint_ops; 13056 } 13057 13058 /* Delete a breakpoint and clean up all traces of it in the data 13059 structures. */ 13060 13061 void 13062 delete_breakpoint (struct breakpoint *bpt) 13063 { 13064 struct breakpoint *b; 13065 13066 gdb_assert (bpt != NULL); 13067 13068 /* Has this bp already been deleted? This can happen because 13069 multiple lists can hold pointers to bp's. bpstat lists are 13070 especial culprits. 13071 13072 One example of this happening is a watchpoint's scope bp. When 13073 the scope bp triggers, we notice that the watchpoint is out of 13074 scope, and delete it. We also delete its scope bp. But the 13075 scope bp is marked "auto-deleting", and is already on a bpstat. 13076 That bpstat is then checked for auto-deleting bp's, which are 13077 deleted. 13078 13079 A real solution to this problem might involve reference counts in 13080 bp's, and/or giving them pointers back to their referencing 13081 bpstat's, and teaching delete_breakpoint to only free a bp's 13082 storage when no more references were extent. A cheaper bandaid 13083 was chosen. */ 13084 if (bpt->type == bp_none) 13085 return; 13086 13087 /* At least avoid this stale reference until the reference counting 13088 of breakpoints gets resolved. */ 13089 if (bpt->related_breakpoint != bpt) 13090 { 13091 struct breakpoint *related; 13092 struct watchpoint *w; 13093 13094 if (bpt->type == bp_watchpoint_scope) 13095 w = (struct watchpoint *) bpt->related_breakpoint; 13096 else if (bpt->related_breakpoint->type == bp_watchpoint_scope) 13097 w = (struct watchpoint *) bpt; 13098 else 13099 w = NULL; 13100 if (w != NULL) 13101 watchpoint_del_at_next_stop (w); 13102 13103 /* Unlink bpt from the bpt->related_breakpoint ring. */ 13104 for (related = bpt; related->related_breakpoint != bpt; 13105 related = related->related_breakpoint); 13106 related->related_breakpoint = bpt->related_breakpoint; 13107 bpt->related_breakpoint = bpt; 13108 } 13109 13110 /* watch_command_1 creates a watchpoint but only sets its number if 13111 update_watchpoint succeeds in creating its bp_locations. If there's 13112 a problem in that process, we'll be asked to delete the half-created 13113 watchpoint. In that case, don't announce the deletion. */ 13114 if (bpt->number) 13115 gdb::observers::breakpoint_deleted.notify (bpt); 13116 13117 if (breakpoint_chain == bpt) 13118 breakpoint_chain = bpt->next; 13119 13120 ALL_BREAKPOINTS (b) 13121 if (b->next == bpt) 13122 { 13123 b->next = bpt->next; 13124 break; 13125 } 13126 13127 /* Be sure no bpstat's are pointing at the breakpoint after it's 13128 been freed. */ 13129 /* FIXME, how can we find all bpstat's? We just check stop_bpstat 13130 in all threads for now. Note that we cannot just remove bpstats 13131 pointing at bpt from the stop_bpstat list entirely, as breakpoint 13132 commands are associated with the bpstat; if we remove it here, 13133 then the later call to bpstat_do_actions (&stop_bpstat); in 13134 event-top.c won't do anything, and temporary breakpoints with 13135 commands won't work. */ 13136 13137 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt); 13138 13139 /* Now that breakpoint is removed from breakpoint list, update the 13140 global location list. This will remove locations that used to 13141 belong to this breakpoint. Do this before freeing the breakpoint 13142 itself, since remove_breakpoint looks at location's owner. It 13143 might be better design to have location completely 13144 self-contained, but it's not the case now. */ 13145 update_global_location_list (UGLL_DONT_INSERT); 13146 13147 /* On the chance that someone will soon try again to delete this 13148 same bp, we mark it as deleted before freeing its storage. */ 13149 bpt->type = bp_none; 13150 delete bpt; 13151 } 13152 13153 /* Iterator function to call a user-provided callback function once 13154 for each of B and its related breakpoints. */ 13155 13156 static void 13157 iterate_over_related_breakpoints (struct breakpoint *b, 13158 gdb::function_view<void (breakpoint *)> function) 13159 { 13160 struct breakpoint *related; 13161 13162 related = b; 13163 do 13164 { 13165 struct breakpoint *next; 13166 13167 /* FUNCTION may delete RELATED. */ 13168 next = related->related_breakpoint; 13169 13170 if (next == related) 13171 { 13172 /* RELATED is the last ring entry. */ 13173 function (related); 13174 13175 /* FUNCTION may have deleted it, so we'd never reach back to 13176 B. There's nothing left to do anyway, so just break 13177 out. */ 13178 break; 13179 } 13180 else 13181 function (related); 13182 13183 related = next; 13184 } 13185 while (related != b); 13186 } 13187 13188 static void 13189 delete_command (const char *arg, int from_tty) 13190 { 13191 struct breakpoint *b, *b_tmp; 13192 13193 dont_repeat (); 13194 13195 if (arg == 0) 13196 { 13197 int breaks_to_delete = 0; 13198 13199 /* Delete all breakpoints if no argument. Do not delete 13200 internal breakpoints, these have to be deleted with an 13201 explicit breakpoint number argument. */ 13202 ALL_BREAKPOINTS (b) 13203 if (user_breakpoint_p (b)) 13204 { 13205 breaks_to_delete = 1; 13206 break; 13207 } 13208 13209 /* Ask user only if there are some breakpoints to delete. */ 13210 if (!from_tty 13211 || (breaks_to_delete && query (_("Delete all breakpoints? ")))) 13212 { 13213 ALL_BREAKPOINTS_SAFE (b, b_tmp) 13214 if (user_breakpoint_p (b)) 13215 delete_breakpoint (b); 13216 } 13217 } 13218 else 13219 map_breakpoint_numbers 13220 (arg, [&] (breakpoint *br) 13221 { 13222 iterate_over_related_breakpoints (br, delete_breakpoint); 13223 }); 13224 } 13225 13226 /* Return true if all locations of B bound to PSPACE are pending. If 13227 PSPACE is NULL, all locations of all program spaces are 13228 considered. */ 13229 13230 static int 13231 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace) 13232 { 13233 struct bp_location *loc; 13234 13235 for (loc = b->loc; loc != NULL; loc = loc->next) 13236 if ((pspace == NULL 13237 || loc->pspace == pspace) 13238 && !loc->shlib_disabled 13239 && !loc->pspace->executing_startup) 13240 return 0; 13241 return 1; 13242 } 13243 13244 /* Subroutine of update_breakpoint_locations to simplify it. 13245 Return non-zero if multiple fns in list LOC have the same name. 13246 Null names are ignored. */ 13247 13248 static int 13249 ambiguous_names_p (struct bp_location *loc) 13250 { 13251 struct bp_location *l; 13252 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL, 13253 xcalloc, xfree); 13254 13255 for (l = loc; l != NULL; l = l->next) 13256 { 13257 const char **slot; 13258 const char *name = l->function_name; 13259 13260 /* Allow for some names to be NULL, ignore them. */ 13261 if (name == NULL) 13262 continue; 13263 13264 slot = (const char **) htab_find_slot (htab, (const void *) name, 13265 INSERT); 13266 /* NOTE: We can assume slot != NULL here because xcalloc never 13267 returns NULL. */ 13268 if (*slot != NULL) 13269 { 13270 htab_delete (htab); 13271 return 1; 13272 } 13273 *slot = name; 13274 } 13275 13276 htab_delete (htab); 13277 return 0; 13278 } 13279 13280 /* When symbols change, it probably means the sources changed as well, 13281 and it might mean the static tracepoint markers are no longer at 13282 the same address or line numbers they used to be at last we 13283 checked. Losing your static tracepoints whenever you rebuild is 13284 undesirable. This function tries to resync/rematch gdb static 13285 tracepoints with the markers on the target, for static tracepoints 13286 that have not been set by marker id. Static tracepoint that have 13287 been set by marker id are reset by marker id in breakpoint_re_set. 13288 The heuristic is: 13289 13290 1) For a tracepoint set at a specific address, look for a marker at 13291 the old PC. If one is found there, assume to be the same marker. 13292 If the name / string id of the marker found is different from the 13293 previous known name, assume that means the user renamed the marker 13294 in the sources, and output a warning. 13295 13296 2) For a tracepoint set at a given line number, look for a marker 13297 at the new address of the old line number. If one is found there, 13298 assume to be the same marker. If the name / string id of the 13299 marker found is different from the previous known name, assume that 13300 means the user renamed the marker in the sources, and output a 13301 warning. 13302 13303 3) If a marker is no longer found at the same address or line, it 13304 may mean the marker no longer exists. But it may also just mean 13305 the code changed a bit. Maybe the user added a few lines of code 13306 that made the marker move up or down (in line number terms). Ask 13307 the target for info about the marker with the string id as we knew 13308 it. If found, update line number and address in the matching 13309 static tracepoint. This will get confused if there's more than one 13310 marker with the same ID (possible in UST, although unadvised 13311 precisely because it confuses tools). */ 13312 13313 static struct symtab_and_line 13314 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal) 13315 { 13316 struct tracepoint *tp = (struct tracepoint *) b; 13317 struct static_tracepoint_marker marker; 13318 CORE_ADDR pc; 13319 13320 pc = sal.pc; 13321 if (sal.line) 13322 find_line_pc (sal.symtab, sal.line, &pc); 13323 13324 if (target_static_tracepoint_marker_at (pc, &marker)) 13325 { 13326 if (tp->static_trace_marker_id != marker.str_id) 13327 warning (_("static tracepoint %d changed probed marker from %s to %s"), 13328 b->number, tp->static_trace_marker_id.c_str (), 13329 marker.str_id.c_str ()); 13330 13331 tp->static_trace_marker_id = std::move (marker.str_id); 13332 13333 return sal; 13334 } 13335 13336 /* Old marker wasn't found on target at lineno. Try looking it up 13337 by string ID. */ 13338 if (!sal.explicit_pc 13339 && sal.line != 0 13340 && sal.symtab != NULL 13341 && !tp->static_trace_marker_id.empty ()) 13342 { 13343 std::vector<static_tracepoint_marker> markers 13344 = target_static_tracepoint_markers_by_strid 13345 (tp->static_trace_marker_id.c_str ()); 13346 13347 if (!markers.empty ()) 13348 { 13349 struct symbol *sym; 13350 struct static_tracepoint_marker *tpmarker; 13351 struct ui_out *uiout = current_uiout; 13352 struct explicit_location explicit_loc; 13353 13354 tpmarker = &markers[0]; 13355 13356 tp->static_trace_marker_id = std::move (tpmarker->str_id); 13357 13358 warning (_("marker for static tracepoint %d (%s) not " 13359 "found at previous line number"), 13360 b->number, tp->static_trace_marker_id.c_str ()); 13361 13362 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0); 13363 sym = find_pc_sect_function (tpmarker->address, NULL); 13364 uiout->text ("Now in "); 13365 if (sym) 13366 { 13367 uiout->field_string ("func", sym->print_name (), 13368 function_name_style.style ()); 13369 uiout->text (" at "); 13370 } 13371 uiout->field_string ("file", 13372 symtab_to_filename_for_display (sal2.symtab), 13373 file_name_style.style ()); 13374 uiout->text (":"); 13375 13376 if (uiout->is_mi_like_p ()) 13377 { 13378 const char *fullname = symtab_to_fullname (sal2.symtab); 13379 13380 uiout->field_string ("fullname", fullname); 13381 } 13382 13383 uiout->field_signed ("line", sal2.line); 13384 uiout->text ("\n"); 13385 13386 b->loc->line_number = sal2.line; 13387 b->loc->symtab = sym != NULL ? sal2.symtab : NULL; 13388 13389 b->location.reset (NULL); 13390 initialize_explicit_location (&explicit_loc); 13391 explicit_loc.source_filename 13392 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab)); 13393 explicit_loc.line_offset.offset = b->loc->line_number; 13394 explicit_loc.line_offset.sign = LINE_OFFSET_NONE; 13395 b->location = new_explicit_location (&explicit_loc); 13396 13397 /* Might be nice to check if function changed, and warn if 13398 so. */ 13399 } 13400 } 13401 return sal; 13402 } 13403 13404 /* Returns 1 iff locations A and B are sufficiently same that 13405 we don't need to report breakpoint as changed. */ 13406 13407 static int 13408 locations_are_equal (struct bp_location *a, struct bp_location *b) 13409 { 13410 while (a && b) 13411 { 13412 if (a->address != b->address) 13413 return 0; 13414 13415 if (a->shlib_disabled != b->shlib_disabled) 13416 return 0; 13417 13418 if (a->enabled != b->enabled) 13419 return 0; 13420 13421 a = a->next; 13422 b = b->next; 13423 } 13424 13425 if ((a == NULL) != (b == NULL)) 13426 return 0; 13427 13428 return 1; 13429 } 13430 13431 /* Split all locations of B that are bound to PSPACE out of B's 13432 location list to a separate list and return that list's head. If 13433 PSPACE is NULL, hoist out all locations of B. */ 13434 13435 static struct bp_location * 13436 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace) 13437 { 13438 struct bp_location head; 13439 struct bp_location *i = b->loc; 13440 struct bp_location **i_link = &b->loc; 13441 struct bp_location *hoisted = &head; 13442 13443 if (pspace == NULL) 13444 { 13445 i = b->loc; 13446 b->loc = NULL; 13447 return i; 13448 } 13449 13450 head.next = NULL; 13451 13452 while (i != NULL) 13453 { 13454 if (i->pspace == pspace) 13455 { 13456 *i_link = i->next; 13457 i->next = NULL; 13458 hoisted->next = i; 13459 hoisted = i; 13460 } 13461 else 13462 i_link = &i->next; 13463 i = *i_link; 13464 } 13465 13466 return head.next; 13467 } 13468 13469 /* Create new breakpoint locations for B (a hardware or software 13470 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not 13471 zero, then B is a ranged breakpoint. Only recreates locations for 13472 FILTER_PSPACE. Locations of other program spaces are left 13473 untouched. */ 13474 13475 void 13476 update_breakpoint_locations (struct breakpoint *b, 13477 struct program_space *filter_pspace, 13478 gdb::array_view<const symtab_and_line> sals, 13479 gdb::array_view<const symtab_and_line> sals_end) 13480 { 13481 struct bp_location *existing_locations; 13482 13483 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1)) 13484 { 13485 /* Ranged breakpoints have only one start location and one end 13486 location. */ 13487 b->enable_state = bp_disabled; 13488 printf_unfiltered (_("Could not reset ranged breakpoint %d: " 13489 "multiple locations found\n"), 13490 b->number); 13491 return; 13492 } 13493 13494 /* If there's no new locations, and all existing locations are 13495 pending, don't do anything. This optimizes the common case where 13496 all locations are in the same shared library, that was unloaded. 13497 We'd like to retain the location, so that when the library is 13498 loaded again, we don't loose the enabled/disabled status of the 13499 individual locations. */ 13500 if (all_locations_are_pending (b, filter_pspace) && sals.empty ()) 13501 return; 13502 13503 existing_locations = hoist_existing_locations (b, filter_pspace); 13504 13505 for (const auto &sal : sals) 13506 { 13507 struct bp_location *new_loc; 13508 13509 switch_to_program_space_and_thread (sal.pspace); 13510 13511 new_loc = add_location_to_breakpoint (b, &sal); 13512 13513 /* Reparse conditions, they might contain references to the 13514 old symtab. */ 13515 if (b->cond_string != NULL) 13516 { 13517 const char *s; 13518 13519 s = b->cond_string; 13520 try 13521 { 13522 new_loc->cond = parse_exp_1 (&s, sal.pc, 13523 block_for_pc (sal.pc), 13524 0); 13525 } 13526 catch (const gdb_exception_error &e) 13527 { 13528 warning (_("failed to reevaluate condition " 13529 "for breakpoint %d: %s"), 13530 b->number, e.what ()); 13531 new_loc->enabled = 0; 13532 } 13533 } 13534 13535 if (!sals_end.empty ()) 13536 { 13537 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]); 13538 13539 new_loc->length = end - sals[0].pc + 1; 13540 } 13541 } 13542 13543 /* If possible, carry over 'disable' status from existing 13544 breakpoints. */ 13545 { 13546 struct bp_location *e = existing_locations; 13547 /* If there are multiple breakpoints with the same function name, 13548 e.g. for inline functions, comparing function names won't work. 13549 Instead compare pc addresses; this is just a heuristic as things 13550 may have moved, but in practice it gives the correct answer 13551 often enough until a better solution is found. */ 13552 int have_ambiguous_names = ambiguous_names_p (b->loc); 13553 13554 for (; e; e = e->next) 13555 { 13556 if (!e->enabled && e->function_name) 13557 { 13558 struct bp_location *l = b->loc; 13559 if (have_ambiguous_names) 13560 { 13561 for (; l; l = l->next) 13562 { 13563 /* Ignore software vs hardware location type at 13564 this point, because with "set breakpoint 13565 auto-hw", after a re-set, locations that were 13566 hardware can end up as software, or vice versa. 13567 As mentioned above, this is an heuristic and in 13568 practice should give the correct answer often 13569 enough. */ 13570 if (breakpoint_locations_match (e, l, true)) 13571 { 13572 l->enabled = 0; 13573 break; 13574 } 13575 } 13576 } 13577 else 13578 { 13579 for (; l; l = l->next) 13580 if (l->function_name 13581 && strcmp (e->function_name, l->function_name) == 0) 13582 { 13583 l->enabled = 0; 13584 break; 13585 } 13586 } 13587 } 13588 } 13589 } 13590 13591 if (!locations_are_equal (existing_locations, b->loc)) 13592 gdb::observers::breakpoint_modified.notify (b); 13593 } 13594 13595 /* Find the SaL locations corresponding to the given LOCATION. 13596 On return, FOUND will be 1 if any SaL was found, zero otherwise. */ 13597 13598 static std::vector<symtab_and_line> 13599 location_to_sals (struct breakpoint *b, struct event_location *location, 13600 struct program_space *search_pspace, int *found) 13601 { 13602 struct gdb_exception exception; 13603 13604 gdb_assert (b->ops != NULL); 13605 13606 std::vector<symtab_and_line> sals; 13607 13608 try 13609 { 13610 sals = b->ops->decode_location (b, location, search_pspace); 13611 } 13612 catch (gdb_exception_error &e) 13613 { 13614 int not_found_and_ok = 0; 13615 13616 /* For pending breakpoints, it's expected that parsing will 13617 fail until the right shared library is loaded. User has 13618 already told to create pending breakpoints and don't need 13619 extra messages. If breakpoint is in bp_shlib_disabled 13620 state, then user already saw the message about that 13621 breakpoint being disabled, and don't want to see more 13622 errors. */ 13623 if (e.error == NOT_FOUND_ERROR 13624 && (b->condition_not_parsed 13625 || (b->loc != NULL 13626 && search_pspace != NULL 13627 && b->loc->pspace != search_pspace) 13628 || (b->loc && b->loc->shlib_disabled) 13629 || (b->loc && b->loc->pspace->executing_startup) 13630 || b->enable_state == bp_disabled)) 13631 not_found_and_ok = 1; 13632 13633 if (!not_found_and_ok) 13634 { 13635 /* We surely don't want to warn about the same breakpoint 13636 10 times. One solution, implemented here, is disable 13637 the breakpoint on error. Another solution would be to 13638 have separate 'warning emitted' flag. Since this 13639 happens only when a binary has changed, I don't know 13640 which approach is better. */ 13641 b->enable_state = bp_disabled; 13642 throw; 13643 } 13644 13645 exception = std::move (e); 13646 } 13647 13648 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR) 13649 { 13650 for (auto &sal : sals) 13651 resolve_sal_pc (&sal); 13652 if (b->condition_not_parsed && b->extra_string != NULL) 13653 { 13654 char *cond_string, *extra_string; 13655 int thread, task; 13656 13657 find_condition_and_thread (b->extra_string, sals[0].pc, 13658 &cond_string, &thread, &task, 13659 &extra_string); 13660 gdb_assert (b->cond_string == NULL); 13661 if (cond_string) 13662 b->cond_string = cond_string; 13663 b->thread = thread; 13664 b->task = task; 13665 if (extra_string) 13666 { 13667 xfree (b->extra_string); 13668 b->extra_string = extra_string; 13669 } 13670 b->condition_not_parsed = 0; 13671 } 13672 13673 if (b->type == bp_static_tracepoint && !strace_marker_p (b)) 13674 sals[0] = update_static_tracepoint (b, sals[0]); 13675 13676 *found = 1; 13677 } 13678 else 13679 *found = 0; 13680 13681 return sals; 13682 } 13683 13684 /* The default re_set method, for typical hardware or software 13685 breakpoints. Reevaluate the breakpoint and recreate its 13686 locations. */ 13687 13688 static void 13689 breakpoint_re_set_default (struct breakpoint *b) 13690 { 13691 struct program_space *filter_pspace = current_program_space; 13692 std::vector<symtab_and_line> expanded, expanded_end; 13693 13694 int found; 13695 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (), 13696 filter_pspace, &found); 13697 if (found) 13698 expanded = std::move (sals); 13699 13700 if (b->location_range_end != NULL) 13701 { 13702 std::vector<symtab_and_line> sals_end 13703 = location_to_sals (b, b->location_range_end.get (), 13704 filter_pspace, &found); 13705 if (found) 13706 expanded_end = std::move (sals_end); 13707 } 13708 13709 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end); 13710 } 13711 13712 /* Default method for creating SALs from an address string. It basically 13713 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */ 13714 13715 static void 13716 create_sals_from_location_default (struct event_location *location, 13717 struct linespec_result *canonical, 13718 enum bptype type_wanted) 13719 { 13720 parse_breakpoint_sals (location, canonical); 13721 } 13722 13723 /* Call create_breakpoints_sal for the given arguments. This is the default 13724 function for the `create_breakpoints_sal' method of 13725 breakpoint_ops. */ 13726 13727 static void 13728 create_breakpoints_sal_default (struct gdbarch *gdbarch, 13729 struct linespec_result *canonical, 13730 gdb::unique_xmalloc_ptr<char> cond_string, 13731 gdb::unique_xmalloc_ptr<char> extra_string, 13732 enum bptype type_wanted, 13733 enum bpdisp disposition, 13734 int thread, 13735 int task, int ignore_count, 13736 const struct breakpoint_ops *ops, 13737 int from_tty, int enabled, 13738 int internal, unsigned flags) 13739 { 13740 create_breakpoints_sal (gdbarch, canonical, 13741 std::move (cond_string), 13742 std::move (extra_string), 13743 type_wanted, disposition, 13744 thread, task, ignore_count, ops, from_tty, 13745 enabled, internal, flags); 13746 } 13747 13748 /* Decode the line represented by S by calling decode_line_full. This is the 13749 default function for the `decode_location' method of breakpoint_ops. */ 13750 13751 static std::vector<symtab_and_line> 13752 decode_location_default (struct breakpoint *b, 13753 struct event_location *location, 13754 struct program_space *search_pspace) 13755 { 13756 struct linespec_result canonical; 13757 13758 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace, 13759 NULL, 0, &canonical, multiple_symbols_all, 13760 b->filter.get ()); 13761 13762 /* We should get 0 or 1 resulting SALs. */ 13763 gdb_assert (canonical.lsals.size () < 2); 13764 13765 if (!canonical.lsals.empty ()) 13766 { 13767 const linespec_sals &lsal = canonical.lsals[0]; 13768 return std::move (lsal.sals); 13769 } 13770 return {}; 13771 } 13772 13773 /* Reset a breakpoint. */ 13774 13775 static void 13776 breakpoint_re_set_one (breakpoint *b) 13777 { 13778 input_radix = b->input_radix; 13779 set_language (b->language); 13780 13781 b->ops->re_set (b); 13782 } 13783 13784 /* Re-set breakpoint locations for the current program space. 13785 Locations bound to other program spaces are left untouched. */ 13786 13787 void 13788 breakpoint_re_set (void) 13789 { 13790 struct breakpoint *b, *b_tmp; 13791 13792 { 13793 scoped_restore_current_language save_language; 13794 scoped_restore save_input_radix = make_scoped_restore (&input_radix); 13795 scoped_restore_current_pspace_and_thread restore_pspace_thread; 13796 13797 /* breakpoint_re_set_one sets the current_language to the language 13798 of the breakpoint it is resetting (see prepare_re_set_context) 13799 before re-evaluating the breakpoint's location. This change can 13800 unfortunately get undone by accident if the language_mode is set 13801 to auto, and we either switch frames, or more likely in this context, 13802 we select the current frame. 13803 13804 We prevent this by temporarily turning the language_mode to 13805 language_mode_manual. We restore it once all breakpoints 13806 have been reset. */ 13807 scoped_restore save_language_mode = make_scoped_restore (&language_mode); 13808 language_mode = language_mode_manual; 13809 13810 /* Note: we must not try to insert locations until after all 13811 breakpoints have been re-set. Otherwise, e.g., when re-setting 13812 breakpoint 1, we'd insert the locations of breakpoint 2, which 13813 hadn't been re-set yet, and thus may have stale locations. */ 13814 13815 ALL_BREAKPOINTS_SAFE (b, b_tmp) 13816 { 13817 try 13818 { 13819 breakpoint_re_set_one (b); 13820 } 13821 catch (const gdb_exception &ex) 13822 { 13823 exception_fprintf (gdb_stderr, ex, 13824 "Error in re-setting breakpoint %d: ", 13825 b->number); 13826 } 13827 } 13828 13829 jit_breakpoint_re_set (); 13830 } 13831 13832 create_overlay_event_breakpoint (); 13833 create_longjmp_master_breakpoint (); 13834 create_std_terminate_master_breakpoint (); 13835 create_exception_master_breakpoint (); 13836 13837 /* Now we can insert. */ 13838 update_global_location_list (UGLL_MAY_INSERT); 13839 } 13840 13841 /* Reset the thread number of this breakpoint: 13842 13843 - If the breakpoint is for all threads, leave it as-is. 13844 - Else, reset it to the current thread for inferior_ptid. */ 13845 void 13846 breakpoint_re_set_thread (struct breakpoint *b) 13847 { 13848 if (b->thread != -1) 13849 { 13850 b->thread = inferior_thread ()->global_num; 13851 13852 /* We're being called after following a fork. The new fork is 13853 selected as current, and unless this was a vfork will have a 13854 different program space from the original thread. Reset that 13855 as well. */ 13856 b->loc->pspace = current_program_space; 13857 } 13858 } 13859 13860 /* Set ignore-count of breakpoint number BPTNUM to COUNT. 13861 If from_tty is nonzero, it prints a message to that effect, 13862 which ends with a period (no newline). */ 13863 13864 void 13865 set_ignore_count (int bptnum, int count, int from_tty) 13866 { 13867 struct breakpoint *b; 13868 13869 if (count < 0) 13870 count = 0; 13871 13872 ALL_BREAKPOINTS (b) 13873 if (b->number == bptnum) 13874 { 13875 if (is_tracepoint (b)) 13876 { 13877 if (from_tty && count != 0) 13878 printf_filtered (_("Ignore count ignored for tracepoint %d."), 13879 bptnum); 13880 return; 13881 } 13882 13883 b->ignore_count = count; 13884 if (from_tty) 13885 { 13886 if (count == 0) 13887 printf_filtered (_("Will stop next time " 13888 "breakpoint %d is reached."), 13889 bptnum); 13890 else if (count == 1) 13891 printf_filtered (_("Will ignore next crossing of breakpoint %d."), 13892 bptnum); 13893 else 13894 printf_filtered (_("Will ignore next %d " 13895 "crossings of breakpoint %d."), 13896 count, bptnum); 13897 } 13898 gdb::observers::breakpoint_modified.notify (b); 13899 return; 13900 } 13901 13902 error (_("No breakpoint number %d."), bptnum); 13903 } 13904 13905 /* Command to set ignore-count of breakpoint N to COUNT. */ 13906 13907 static void 13908 ignore_command (const char *args, int from_tty) 13909 { 13910 const char *p = args; 13911 int num; 13912 13913 if (p == 0) 13914 error_no_arg (_("a breakpoint number")); 13915 13916 num = get_number (&p); 13917 if (num == 0) 13918 error (_("bad breakpoint number: '%s'"), args); 13919 if (*p == 0) 13920 error (_("Second argument (specified ignore-count) is missing.")); 13921 13922 set_ignore_count (num, 13923 longest_to_int (value_as_long (parse_and_eval (p))), 13924 from_tty); 13925 if (from_tty) 13926 printf_filtered ("\n"); 13927 } 13928 13929 13930 /* Call FUNCTION on each of the breakpoints with numbers in the range 13931 defined by BP_NUM_RANGE (an inclusive range). */ 13932 13933 static void 13934 map_breakpoint_number_range (std::pair<int, int> bp_num_range, 13935 gdb::function_view<void (breakpoint *)> function) 13936 { 13937 if (bp_num_range.first == 0) 13938 { 13939 warning (_("bad breakpoint number at or near '%d'"), 13940 bp_num_range.first); 13941 } 13942 else 13943 { 13944 struct breakpoint *b, *tmp; 13945 13946 for (int i = bp_num_range.first; i <= bp_num_range.second; i++) 13947 { 13948 bool match = false; 13949 13950 ALL_BREAKPOINTS_SAFE (b, tmp) 13951 if (b->number == i) 13952 { 13953 match = true; 13954 function (b); 13955 break; 13956 } 13957 if (!match) 13958 printf_unfiltered (_("No breakpoint number %d.\n"), i); 13959 } 13960 } 13961 } 13962 13963 /* Call FUNCTION on each of the breakpoints whose numbers are given in 13964 ARGS. */ 13965 13966 static void 13967 map_breakpoint_numbers (const char *args, 13968 gdb::function_view<void (breakpoint *)> function) 13969 { 13970 if (args == NULL || *args == '\0') 13971 error_no_arg (_("one or more breakpoint numbers")); 13972 13973 number_or_range_parser parser (args); 13974 13975 while (!parser.finished ()) 13976 { 13977 int num = parser.get_number (); 13978 map_breakpoint_number_range (std::make_pair (num, num), function); 13979 } 13980 } 13981 13982 /* Return the breakpoint location structure corresponding to the 13983 BP_NUM and LOC_NUM values. */ 13984 13985 static struct bp_location * 13986 find_location_by_number (int bp_num, int loc_num) 13987 { 13988 struct breakpoint *b; 13989 13990 ALL_BREAKPOINTS (b) 13991 if (b->number == bp_num) 13992 { 13993 break; 13994 } 13995 13996 if (!b || b->number != bp_num) 13997 error (_("Bad breakpoint number '%d'"), bp_num); 13998 13999 if (loc_num == 0) 14000 error (_("Bad breakpoint location number '%d'"), loc_num); 14001 14002 int n = 0; 14003 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next) 14004 if (++n == loc_num) 14005 return loc; 14006 14007 error (_("Bad breakpoint location number '%d'"), loc_num); 14008 } 14009 14010 /* Modes of operation for extract_bp_num. */ 14011 enum class extract_bp_kind 14012 { 14013 /* Extracting a breakpoint number. */ 14014 bp, 14015 14016 /* Extracting a location number. */ 14017 loc, 14018 }; 14019 14020 /* Extract a breakpoint or location number (as determined by KIND) 14021 from the string starting at START. TRAILER is a character which 14022 can be found after the number. If you don't want a trailer, use 14023 '\0'. If END_OUT is not NULL, it is set to point after the parsed 14024 string. This always returns a positive integer. */ 14025 14026 static int 14027 extract_bp_num (extract_bp_kind kind, const char *start, 14028 int trailer, const char **end_out = NULL) 14029 { 14030 const char *end = start; 14031 int num = get_number_trailer (&end, trailer); 14032 if (num < 0) 14033 error (kind == extract_bp_kind::bp 14034 ? _("Negative breakpoint number '%.*s'") 14035 : _("Negative breakpoint location number '%.*s'"), 14036 int (end - start), start); 14037 if (num == 0) 14038 error (kind == extract_bp_kind::bp 14039 ? _("Bad breakpoint number '%.*s'") 14040 : _("Bad breakpoint location number '%.*s'"), 14041 int (end - start), start); 14042 14043 if (end_out != NULL) 14044 *end_out = end; 14045 return num; 14046 } 14047 14048 /* Extract a breakpoint or location range (as determined by KIND) in 14049 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair 14050 representing the (inclusive) range. The returned pair's elements 14051 are always positive integers. */ 14052 14053 static std::pair<int, int> 14054 extract_bp_or_bp_range (extract_bp_kind kind, 14055 const std::string &arg, 14056 std::string::size_type arg_offset) 14057 { 14058 std::pair<int, int> range; 14059 const char *bp_loc = &arg[arg_offset]; 14060 std::string::size_type dash = arg.find ('-', arg_offset); 14061 if (dash != std::string::npos) 14062 { 14063 /* bp_loc is a range (x-z). */ 14064 if (arg.length () == dash + 1) 14065 error (kind == extract_bp_kind::bp 14066 ? _("Bad breakpoint number at or near: '%s'") 14067 : _("Bad breakpoint location number at or near: '%s'"), 14068 bp_loc); 14069 14070 const char *end; 14071 const char *start_first = bp_loc; 14072 const char *start_second = &arg[dash + 1]; 14073 range.first = extract_bp_num (kind, start_first, '-'); 14074 range.second = extract_bp_num (kind, start_second, '\0', &end); 14075 14076 if (range.first > range.second) 14077 error (kind == extract_bp_kind::bp 14078 ? _("Inverted breakpoint range at '%.*s'") 14079 : _("Inverted breakpoint location range at '%.*s'"), 14080 int (end - start_first), start_first); 14081 } 14082 else 14083 { 14084 /* bp_loc is a single value. */ 14085 range.first = extract_bp_num (kind, bp_loc, '\0'); 14086 range.second = range.first; 14087 } 14088 return range; 14089 } 14090 14091 /* Extract the breakpoint/location range specified by ARG. Returns 14092 the breakpoint range in BP_NUM_RANGE, and the location range in 14093 BP_LOC_RANGE. 14094 14095 ARG may be in any of the following forms: 14096 14097 x where 'x' is a breakpoint number. 14098 x-y where 'x' and 'y' specify a breakpoint numbers range. 14099 x.y where 'x' is a breakpoint number and 'y' a location number. 14100 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a 14101 location number range. 14102 */ 14103 14104 static void 14105 extract_bp_number_and_location (const std::string &arg, 14106 std::pair<int, int> &bp_num_range, 14107 std::pair<int, int> &bp_loc_range) 14108 { 14109 std::string::size_type dot = arg.find ('.'); 14110 14111 if (dot != std::string::npos) 14112 { 14113 /* Handle 'x.y' and 'x.y-z' cases. */ 14114 14115 if (arg.length () == dot + 1 || dot == 0) 14116 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ()); 14117 14118 bp_num_range.first 14119 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.'); 14120 bp_num_range.second = bp_num_range.first; 14121 14122 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc, 14123 arg, dot + 1); 14124 } 14125 else 14126 { 14127 /* Handle x and x-y cases. */ 14128 14129 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0); 14130 bp_loc_range.first = 0; 14131 bp_loc_range.second = 0; 14132 } 14133 } 14134 14135 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE 14136 specifies whether to enable or disable. */ 14137 14138 static void 14139 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable) 14140 { 14141 struct bp_location *loc = find_location_by_number (bp_num, loc_num); 14142 if (loc != NULL) 14143 { 14144 if (loc->enabled != enable) 14145 { 14146 loc->enabled = enable; 14147 mark_breakpoint_location_modified (loc); 14148 } 14149 if (target_supports_enable_disable_tracepoint () 14150 && current_trace_status ()->running && loc->owner 14151 && is_tracepoint (loc->owner)) 14152 target_disable_tracepoint (loc); 14153 } 14154 update_global_location_list (UGLL_DONT_INSERT); 14155 14156 gdb::observers::breakpoint_modified.notify (loc->owner); 14157 } 14158 14159 /* Enable or disable a range of breakpoint locations. BP_NUM is the 14160 number of the breakpoint, and BP_LOC_RANGE specifies the 14161 (inclusive) range of location numbers of that breakpoint to 14162 enable/disable. ENABLE specifies whether to enable or disable the 14163 location. */ 14164 14165 static void 14166 enable_disable_breakpoint_location_range (int bp_num, 14167 std::pair<int, int> &bp_loc_range, 14168 bool enable) 14169 { 14170 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++) 14171 enable_disable_bp_num_loc (bp_num, i, enable); 14172 } 14173 14174 /* Set ignore-count of breakpoint number BPTNUM to COUNT. 14175 If from_tty is nonzero, it prints a message to that effect, 14176 which ends with a period (no newline). */ 14177 14178 void 14179 disable_breakpoint (struct breakpoint *bpt) 14180 { 14181 /* Never disable a watchpoint scope breakpoint; we want to 14182 hit them when we leave scope so we can delete both the 14183 watchpoint and its scope breakpoint at that time. */ 14184 if (bpt->type == bp_watchpoint_scope) 14185 return; 14186 14187 bpt->enable_state = bp_disabled; 14188 14189 /* Mark breakpoint locations modified. */ 14190 mark_breakpoint_modified (bpt); 14191 14192 if (target_supports_enable_disable_tracepoint () 14193 && current_trace_status ()->running && is_tracepoint (bpt)) 14194 { 14195 struct bp_location *location; 14196 14197 for (location = bpt->loc; location; location = location->next) 14198 target_disable_tracepoint (location); 14199 } 14200 14201 update_global_location_list (UGLL_DONT_INSERT); 14202 14203 gdb::observers::breakpoint_modified.notify (bpt); 14204 } 14205 14206 /* Enable or disable the breakpoint(s) or breakpoint location(s) 14207 specified in ARGS. ARGS may be in any of the formats handled by 14208 extract_bp_number_and_location. ENABLE specifies whether to enable 14209 or disable the breakpoints/locations. */ 14210 14211 static void 14212 enable_disable_command (const char *args, int from_tty, bool enable) 14213 { 14214 if (args == 0) 14215 { 14216 struct breakpoint *bpt; 14217 14218 ALL_BREAKPOINTS (bpt) 14219 if (user_breakpoint_p (bpt)) 14220 { 14221 if (enable) 14222 enable_breakpoint (bpt); 14223 else 14224 disable_breakpoint (bpt); 14225 } 14226 } 14227 else 14228 { 14229 std::string num = extract_arg (&args); 14230 14231 while (!num.empty ()) 14232 { 14233 std::pair<int, int> bp_num_range, bp_loc_range; 14234 14235 extract_bp_number_and_location (num, bp_num_range, bp_loc_range); 14236 14237 if (bp_loc_range.first == bp_loc_range.second 14238 && bp_loc_range.first == 0) 14239 { 14240 /* Handle breakpoint ids with formats 'x' or 'x-z'. */ 14241 map_breakpoint_number_range (bp_num_range, 14242 enable 14243 ? enable_breakpoint 14244 : disable_breakpoint); 14245 } 14246 else 14247 { 14248 /* Handle breakpoint ids with formats 'x.y' or 14249 'x.y-z'. */ 14250 enable_disable_breakpoint_location_range 14251 (bp_num_range.first, bp_loc_range, enable); 14252 } 14253 num = extract_arg (&args); 14254 } 14255 } 14256 } 14257 14258 /* The disable command disables the specified breakpoints/locations 14259 (or all defined breakpoints) so they're no longer effective in 14260 stopping the inferior. ARGS may be in any of the forms defined in 14261 extract_bp_number_and_location. */ 14262 14263 static void 14264 disable_command (const char *args, int from_tty) 14265 { 14266 enable_disable_command (args, from_tty, false); 14267 } 14268 14269 static void 14270 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition, 14271 int count) 14272 { 14273 int target_resources_ok; 14274 14275 if (bpt->type == bp_hardware_breakpoint) 14276 { 14277 int i; 14278 i = hw_breakpoint_used_count (); 14279 target_resources_ok = 14280 target_can_use_hardware_watchpoint (bp_hardware_breakpoint, 14281 i + 1, 0); 14282 if (target_resources_ok == 0) 14283 error (_("No hardware breakpoint support in the target.")); 14284 else if (target_resources_ok < 0) 14285 error (_("Hardware breakpoints used exceeds limit.")); 14286 } 14287 14288 if (is_watchpoint (bpt)) 14289 { 14290 /* Initialize it just to avoid a GCC false warning. */ 14291 enum enable_state orig_enable_state = bp_disabled; 14292 14293 try 14294 { 14295 struct watchpoint *w = (struct watchpoint *) bpt; 14296 14297 orig_enable_state = bpt->enable_state; 14298 bpt->enable_state = bp_enabled; 14299 update_watchpoint (w, 1 /* reparse */); 14300 } 14301 catch (const gdb_exception &e) 14302 { 14303 bpt->enable_state = orig_enable_state; 14304 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "), 14305 bpt->number); 14306 return; 14307 } 14308 } 14309 14310 bpt->enable_state = bp_enabled; 14311 14312 /* Mark breakpoint locations modified. */ 14313 mark_breakpoint_modified (bpt); 14314 14315 if (target_supports_enable_disable_tracepoint () 14316 && current_trace_status ()->running && is_tracepoint (bpt)) 14317 { 14318 struct bp_location *location; 14319 14320 for (location = bpt->loc; location; location = location->next) 14321 target_enable_tracepoint (location); 14322 } 14323 14324 bpt->disposition = disposition; 14325 bpt->enable_count = count; 14326 update_global_location_list (UGLL_MAY_INSERT); 14327 14328 gdb::observers::breakpoint_modified.notify (bpt); 14329 } 14330 14331 14332 void 14333 enable_breakpoint (struct breakpoint *bpt) 14334 { 14335 enable_breakpoint_disp (bpt, bpt->disposition, 0); 14336 } 14337 14338 /* The enable command enables the specified breakpoints/locations (or 14339 all defined breakpoints) so they once again become (or continue to 14340 be) effective in stopping the inferior. ARGS may be in any of the 14341 forms defined in extract_bp_number_and_location. */ 14342 14343 static void 14344 enable_command (const char *args, int from_tty) 14345 { 14346 enable_disable_command (args, from_tty, true); 14347 } 14348 14349 static void 14350 enable_once_command (const char *args, int from_tty) 14351 { 14352 map_breakpoint_numbers 14353 (args, [&] (breakpoint *b) 14354 { 14355 iterate_over_related_breakpoints 14356 (b, [&] (breakpoint *bpt) 14357 { 14358 enable_breakpoint_disp (bpt, disp_disable, 1); 14359 }); 14360 }); 14361 } 14362 14363 static void 14364 enable_count_command (const char *args, int from_tty) 14365 { 14366 int count; 14367 14368 if (args == NULL) 14369 error_no_arg (_("hit count")); 14370 14371 count = get_number (&args); 14372 14373 map_breakpoint_numbers 14374 (args, [&] (breakpoint *b) 14375 { 14376 iterate_over_related_breakpoints 14377 (b, [&] (breakpoint *bpt) 14378 { 14379 enable_breakpoint_disp (bpt, disp_disable, count); 14380 }); 14381 }); 14382 } 14383 14384 static void 14385 enable_delete_command (const char *args, int from_tty) 14386 { 14387 map_breakpoint_numbers 14388 (args, [&] (breakpoint *b) 14389 { 14390 iterate_over_related_breakpoints 14391 (b, [&] (breakpoint *bpt) 14392 { 14393 enable_breakpoint_disp (bpt, disp_del, 1); 14394 }); 14395 }); 14396 } 14397 14398 /* Invalidate last known value of any hardware watchpoint if 14399 the memory which that value represents has been written to by 14400 GDB itself. */ 14401 14402 static void 14403 invalidate_bp_value_on_memory_change (struct inferior *inferior, 14404 CORE_ADDR addr, ssize_t len, 14405 const bfd_byte *data) 14406 { 14407 struct breakpoint *bp; 14408 14409 ALL_BREAKPOINTS (bp) 14410 if (bp->enable_state == bp_enabled 14411 && bp->type == bp_hardware_watchpoint) 14412 { 14413 struct watchpoint *wp = (struct watchpoint *) bp; 14414 14415 if (wp->val_valid && wp->val != nullptr) 14416 { 14417 struct bp_location *loc; 14418 14419 for (loc = bp->loc; loc != NULL; loc = loc->next) 14420 if (loc->loc_type == bp_loc_hardware_watchpoint 14421 && loc->address + loc->length > addr 14422 && addr + len > loc->address) 14423 { 14424 wp->val = NULL; 14425 wp->val_valid = false; 14426 } 14427 } 14428 } 14429 } 14430 14431 /* Create and insert a breakpoint for software single step. */ 14432 14433 void 14434 insert_single_step_breakpoint (struct gdbarch *gdbarch, 14435 const address_space *aspace, 14436 CORE_ADDR next_pc) 14437 { 14438 struct thread_info *tp = inferior_thread (); 14439 struct symtab_and_line sal; 14440 CORE_ADDR pc = next_pc; 14441 14442 if (tp->control.single_step_breakpoints == NULL) 14443 { 14444 tp->control.single_step_breakpoints 14445 = new_single_step_breakpoint (tp->global_num, gdbarch); 14446 } 14447 14448 sal = find_pc_line (pc, 0); 14449 sal.pc = pc; 14450 sal.section = find_pc_overlay (pc); 14451 sal.explicit_pc = 1; 14452 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal); 14453 14454 update_global_location_list (UGLL_INSERT); 14455 } 14456 14457 /* Insert single step breakpoints according to the current state. */ 14458 14459 int 14460 insert_single_step_breakpoints (struct gdbarch *gdbarch) 14461 { 14462 struct regcache *regcache = get_current_regcache (); 14463 std::vector<CORE_ADDR> next_pcs; 14464 14465 next_pcs = gdbarch_software_single_step (gdbarch, regcache); 14466 14467 if (!next_pcs.empty ()) 14468 { 14469 struct frame_info *frame = get_current_frame (); 14470 const address_space *aspace = get_frame_address_space (frame); 14471 14472 for (CORE_ADDR pc : next_pcs) 14473 insert_single_step_breakpoint (gdbarch, aspace, pc); 14474 14475 return 1; 14476 } 14477 else 14478 return 0; 14479 } 14480 14481 /* See breakpoint.h. */ 14482 14483 int 14484 breakpoint_has_location_inserted_here (struct breakpoint *bp, 14485 const address_space *aspace, 14486 CORE_ADDR pc) 14487 { 14488 struct bp_location *loc; 14489 14490 for (loc = bp->loc; loc != NULL; loc = loc->next) 14491 if (loc->inserted 14492 && breakpoint_location_address_match (loc, aspace, pc)) 14493 return 1; 14494 14495 return 0; 14496 } 14497 14498 /* Check whether a software single-step breakpoint is inserted at 14499 PC. */ 14500 14501 int 14502 single_step_breakpoint_inserted_here_p (const address_space *aspace, 14503 CORE_ADDR pc) 14504 { 14505 struct breakpoint *bpt; 14506 14507 ALL_BREAKPOINTS (bpt) 14508 { 14509 if (bpt->type == bp_single_step 14510 && breakpoint_has_location_inserted_here (bpt, aspace, pc)) 14511 return 1; 14512 } 14513 return 0; 14514 } 14515 14516 /* Tracepoint-specific operations. */ 14517 14518 /* Set tracepoint count to NUM. */ 14519 static void 14520 set_tracepoint_count (int num) 14521 { 14522 tracepoint_count = num; 14523 set_internalvar_integer (lookup_internalvar ("tpnum"), num); 14524 } 14525 14526 static void 14527 trace_command (const char *arg, int from_tty) 14528 { 14529 event_location_up location = string_to_event_location (&arg, 14530 current_language); 14531 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location 14532 (location.get (), true /* is_tracepoint */); 14533 14534 create_breakpoint (get_current_arch (), 14535 location.get (), 14536 NULL, 0, arg, 1 /* parse arg */, 14537 0 /* tempflag */, 14538 bp_tracepoint /* type_wanted */, 14539 0 /* Ignore count */, 14540 pending_break_support, 14541 ops, 14542 from_tty, 14543 1 /* enabled */, 14544 0 /* internal */, 0); 14545 } 14546 14547 static void 14548 ftrace_command (const char *arg, int from_tty) 14549 { 14550 event_location_up location = string_to_event_location (&arg, 14551 current_language); 14552 create_breakpoint (get_current_arch (), 14553 location.get (), 14554 NULL, 0, arg, 1 /* parse arg */, 14555 0 /* tempflag */, 14556 bp_fast_tracepoint /* type_wanted */, 14557 0 /* Ignore count */, 14558 pending_break_support, 14559 &tracepoint_breakpoint_ops, 14560 from_tty, 14561 1 /* enabled */, 14562 0 /* internal */, 0); 14563 } 14564 14565 /* strace command implementation. Creates a static tracepoint. */ 14566 14567 static void 14568 strace_command (const char *arg, int from_tty) 14569 { 14570 struct breakpoint_ops *ops; 14571 event_location_up location; 14572 14573 /* Decide if we are dealing with a static tracepoint marker (`-m'), 14574 or with a normal static tracepoint. */ 14575 if (arg && startswith (arg, "-m") && isspace (arg[2])) 14576 { 14577 ops = &strace_marker_breakpoint_ops; 14578 location = new_linespec_location (&arg, symbol_name_match_type::FULL); 14579 } 14580 else 14581 { 14582 ops = &tracepoint_breakpoint_ops; 14583 location = string_to_event_location (&arg, current_language); 14584 } 14585 14586 create_breakpoint (get_current_arch (), 14587 location.get (), 14588 NULL, 0, arg, 1 /* parse arg */, 14589 0 /* tempflag */, 14590 bp_static_tracepoint /* type_wanted */, 14591 0 /* Ignore count */, 14592 pending_break_support, 14593 ops, 14594 from_tty, 14595 1 /* enabled */, 14596 0 /* internal */, 0); 14597 } 14598 14599 /* Set up a fake reader function that gets command lines from a linked 14600 list that was acquired during tracepoint uploading. */ 14601 14602 static struct uploaded_tp *this_utp; 14603 static int next_cmd; 14604 14605 static char * 14606 read_uploaded_action (void) 14607 { 14608 char *rslt = nullptr; 14609 14610 if (next_cmd < this_utp->cmd_strings.size ()) 14611 { 14612 rslt = this_utp->cmd_strings[next_cmd].get (); 14613 next_cmd++; 14614 } 14615 14616 return rslt; 14617 } 14618 14619 /* Given information about a tracepoint as recorded on a target (which 14620 can be either a live system or a trace file), attempt to create an 14621 equivalent GDB tracepoint. This is not a reliable process, since 14622 the target does not necessarily have all the information used when 14623 the tracepoint was originally defined. */ 14624 14625 struct tracepoint * 14626 create_tracepoint_from_upload (struct uploaded_tp *utp) 14627 { 14628 const char *addr_str; 14629 char small_buf[100]; 14630 struct tracepoint *tp; 14631 14632 if (utp->at_string) 14633 addr_str = utp->at_string.get (); 14634 else 14635 { 14636 /* In the absence of a source location, fall back to raw 14637 address. Since there is no way to confirm that the address 14638 means the same thing as when the trace was started, warn the 14639 user. */ 14640 warning (_("Uploaded tracepoint %d has no " 14641 "source location, using raw address"), 14642 utp->number); 14643 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr)); 14644 addr_str = small_buf; 14645 } 14646 14647 /* There's not much we can do with a sequence of bytecodes. */ 14648 if (utp->cond && !utp->cond_string) 14649 warning (_("Uploaded tracepoint %d condition " 14650 "has no source form, ignoring it"), 14651 utp->number); 14652 14653 event_location_up location = string_to_event_location (&addr_str, 14654 current_language); 14655 if (!create_breakpoint (get_current_arch (), 14656 location.get (), 14657 utp->cond_string.get (), -1, addr_str, 14658 0 /* parse cond/thread */, 14659 0 /* tempflag */, 14660 utp->type /* type_wanted */, 14661 0 /* Ignore count */, 14662 pending_break_support, 14663 &tracepoint_breakpoint_ops, 14664 0 /* from_tty */, 14665 utp->enabled /* enabled */, 14666 0 /* internal */, 14667 CREATE_BREAKPOINT_FLAGS_INSERTED)) 14668 return NULL; 14669 14670 /* Get the tracepoint we just created. */ 14671 tp = get_tracepoint (tracepoint_count); 14672 gdb_assert (tp != NULL); 14673 14674 if (utp->pass > 0) 14675 { 14676 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass, 14677 tp->number); 14678 14679 trace_pass_command (small_buf, 0); 14680 } 14681 14682 /* If we have uploaded versions of the original commands, set up a 14683 special-purpose "reader" function and call the usual command line 14684 reader, then pass the result to the breakpoint command-setting 14685 function. */ 14686 if (!utp->cmd_strings.empty ()) 14687 { 14688 counted_command_line cmd_list; 14689 14690 this_utp = utp; 14691 next_cmd = 0; 14692 14693 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL); 14694 14695 breakpoint_set_commands (tp, std::move (cmd_list)); 14696 } 14697 else if (!utp->actions.empty () 14698 || !utp->step_actions.empty ()) 14699 warning (_("Uploaded tracepoint %d actions " 14700 "have no source form, ignoring them"), 14701 utp->number); 14702 14703 /* Copy any status information that might be available. */ 14704 tp->hit_count = utp->hit_count; 14705 tp->traceframe_usage = utp->traceframe_usage; 14706 14707 return tp; 14708 } 14709 14710 /* Print information on tracepoint number TPNUM_EXP, or all if 14711 omitted. */ 14712 14713 static void 14714 info_tracepoints_command (const char *args, int from_tty) 14715 { 14716 struct ui_out *uiout = current_uiout; 14717 int num_printed; 14718 14719 num_printed = breakpoint_1 (args, false, is_tracepoint); 14720 14721 if (num_printed == 0) 14722 { 14723 if (args == NULL || *args == '\0') 14724 uiout->message ("No tracepoints.\n"); 14725 else 14726 uiout->message ("No tracepoint matching '%s'.\n", args); 14727 } 14728 14729 default_collect_info (); 14730 } 14731 14732 /* The 'enable trace' command enables tracepoints. 14733 Not supported by all targets. */ 14734 static void 14735 enable_trace_command (const char *args, int from_tty) 14736 { 14737 enable_command (args, from_tty); 14738 } 14739 14740 /* The 'disable trace' command disables tracepoints. 14741 Not supported by all targets. */ 14742 static void 14743 disable_trace_command (const char *args, int from_tty) 14744 { 14745 disable_command (args, from_tty); 14746 } 14747 14748 /* Remove a tracepoint (or all if no argument). */ 14749 static void 14750 delete_trace_command (const char *arg, int from_tty) 14751 { 14752 struct breakpoint *b, *b_tmp; 14753 14754 dont_repeat (); 14755 14756 if (arg == 0) 14757 { 14758 int breaks_to_delete = 0; 14759 14760 /* Delete all breakpoints if no argument. 14761 Do not delete internal or call-dummy breakpoints, these 14762 have to be deleted with an explicit breakpoint number 14763 argument. */ 14764 ALL_TRACEPOINTS (b) 14765 if (is_tracepoint (b) && user_breakpoint_p (b)) 14766 { 14767 breaks_to_delete = 1; 14768 break; 14769 } 14770 14771 /* Ask user only if there are some breakpoints to delete. */ 14772 if (!from_tty 14773 || (breaks_to_delete && query (_("Delete all tracepoints? ")))) 14774 { 14775 ALL_BREAKPOINTS_SAFE (b, b_tmp) 14776 if (is_tracepoint (b) && user_breakpoint_p (b)) 14777 delete_breakpoint (b); 14778 } 14779 } 14780 else 14781 map_breakpoint_numbers 14782 (arg, [&] (breakpoint *br) 14783 { 14784 iterate_over_related_breakpoints (br, delete_breakpoint); 14785 }); 14786 } 14787 14788 /* Helper function for trace_pass_command. */ 14789 14790 static void 14791 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty) 14792 { 14793 tp->pass_count = count; 14794 gdb::observers::breakpoint_modified.notify (tp); 14795 if (from_tty) 14796 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"), 14797 tp->number, count); 14798 } 14799 14800 /* Set passcount for tracepoint. 14801 14802 First command argument is passcount, second is tracepoint number. 14803 If tracepoint number omitted, apply to most recently defined. 14804 Also accepts special argument "all". */ 14805 14806 static void 14807 trace_pass_command (const char *args, int from_tty) 14808 { 14809 struct tracepoint *t1; 14810 ULONGEST count; 14811 14812 if (args == 0 || *args == 0) 14813 error (_("passcount command requires an " 14814 "argument (count + optional TP num)")); 14815 14816 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */ 14817 14818 args = skip_spaces (args); 14819 if (*args && strncasecmp (args, "all", 3) == 0) 14820 { 14821 struct breakpoint *b; 14822 14823 args += 3; /* Skip special argument "all". */ 14824 if (*args) 14825 error (_("Junk at end of arguments.")); 14826 14827 ALL_TRACEPOINTS (b) 14828 { 14829 t1 = (struct tracepoint *) b; 14830 trace_pass_set_count (t1, count, from_tty); 14831 } 14832 } 14833 else if (*args == '\0') 14834 { 14835 t1 = get_tracepoint_by_number (&args, NULL); 14836 if (t1) 14837 trace_pass_set_count (t1, count, from_tty); 14838 } 14839 else 14840 { 14841 number_or_range_parser parser (args); 14842 while (!parser.finished ()) 14843 { 14844 t1 = get_tracepoint_by_number (&args, &parser); 14845 if (t1) 14846 trace_pass_set_count (t1, count, from_tty); 14847 } 14848 } 14849 } 14850 14851 struct tracepoint * 14852 get_tracepoint (int num) 14853 { 14854 struct breakpoint *t; 14855 14856 ALL_TRACEPOINTS (t) 14857 if (t->number == num) 14858 return (struct tracepoint *) t; 14859 14860 return NULL; 14861 } 14862 14863 /* Find the tracepoint with the given target-side number (which may be 14864 different from the tracepoint number after disconnecting and 14865 reconnecting). */ 14866 14867 struct tracepoint * 14868 get_tracepoint_by_number_on_target (int num) 14869 { 14870 struct breakpoint *b; 14871 14872 ALL_TRACEPOINTS (b) 14873 { 14874 struct tracepoint *t = (struct tracepoint *) b; 14875 14876 if (t->number_on_target == num) 14877 return t; 14878 } 14879 14880 return NULL; 14881 } 14882 14883 /* Utility: parse a tracepoint number and look it up in the list. 14884 If STATE is not NULL, use, get_number_or_range_state and ignore ARG. 14885 If the argument is missing, the most recent tracepoint 14886 (tracepoint_count) is returned. */ 14887 14888 struct tracepoint * 14889 get_tracepoint_by_number (const char **arg, 14890 number_or_range_parser *parser) 14891 { 14892 struct breakpoint *t; 14893 int tpnum; 14894 const char *instring = arg == NULL ? NULL : *arg; 14895 14896 if (parser != NULL) 14897 { 14898 gdb_assert (!parser->finished ()); 14899 tpnum = parser->get_number (); 14900 } 14901 else if (arg == NULL || *arg == NULL || ! **arg) 14902 tpnum = tracepoint_count; 14903 else 14904 tpnum = get_number (arg); 14905 14906 if (tpnum <= 0) 14907 { 14908 if (instring && *instring) 14909 printf_filtered (_("bad tracepoint number at or near '%s'\n"), 14910 instring); 14911 else 14912 printf_filtered (_("No previous tracepoint\n")); 14913 return NULL; 14914 } 14915 14916 ALL_TRACEPOINTS (t) 14917 if (t->number == tpnum) 14918 { 14919 return (struct tracepoint *) t; 14920 } 14921 14922 printf_unfiltered ("No tracepoint number %d.\n", tpnum); 14923 return NULL; 14924 } 14925 14926 void 14927 print_recreate_thread (struct breakpoint *b, struct ui_file *fp) 14928 { 14929 if (b->thread != -1) 14930 fprintf_unfiltered (fp, " thread %d", b->thread); 14931 14932 if (b->task != 0) 14933 fprintf_unfiltered (fp, " task %d", b->task); 14934 14935 fprintf_unfiltered (fp, "\n"); 14936 } 14937 14938 /* Save information on user settable breakpoints (watchpoints, etc) to 14939 a new script file named FILENAME. If FILTER is non-NULL, call it 14940 on each breakpoint and only include the ones for which it returns 14941 true. */ 14942 14943 static void 14944 save_breakpoints (const char *filename, int from_tty, 14945 bool (*filter) (const struct breakpoint *)) 14946 { 14947 struct breakpoint *tp; 14948 int any = 0; 14949 int extra_trace_bits = 0; 14950 14951 if (filename == 0 || *filename == 0) 14952 error (_("Argument required (file name in which to save)")); 14953 14954 /* See if we have anything to save. */ 14955 ALL_BREAKPOINTS (tp) 14956 { 14957 /* Skip internal and momentary breakpoints. */ 14958 if (!user_breakpoint_p (tp)) 14959 continue; 14960 14961 /* If we have a filter, only save the breakpoints it accepts. */ 14962 if (filter && !filter (tp)) 14963 continue; 14964 14965 any = 1; 14966 14967 if (is_tracepoint (tp)) 14968 { 14969 extra_trace_bits = 1; 14970 14971 /* We can stop searching. */ 14972 break; 14973 } 14974 } 14975 14976 if (!any) 14977 { 14978 warning (_("Nothing to save.")); 14979 return; 14980 } 14981 14982 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename)); 14983 14984 stdio_file fp; 14985 14986 if (!fp.open (expanded_filename.get (), "w")) 14987 error (_("Unable to open file '%s' for saving (%s)"), 14988 expanded_filename.get (), safe_strerror (errno)); 14989 14990 if (extra_trace_bits) 14991 save_trace_state_variables (&fp); 14992 14993 ALL_BREAKPOINTS (tp) 14994 { 14995 /* Skip internal and momentary breakpoints. */ 14996 if (!user_breakpoint_p (tp)) 14997 continue; 14998 14999 /* If we have a filter, only save the breakpoints it accepts. */ 15000 if (filter && !filter (tp)) 15001 continue; 15002 15003 tp->ops->print_recreate (tp, &fp); 15004 15005 /* Note, we can't rely on tp->number for anything, as we can't 15006 assume the recreated breakpoint numbers will match. Use $bpnum 15007 instead. */ 15008 15009 if (tp->cond_string) 15010 fp.printf (" condition $bpnum %s\n", tp->cond_string); 15011 15012 if (tp->ignore_count) 15013 fp.printf (" ignore $bpnum %d\n", tp->ignore_count); 15014 15015 if (tp->type != bp_dprintf && tp->commands) 15016 { 15017 fp.puts (" commands\n"); 15018 15019 current_uiout->redirect (&fp); 15020 try 15021 { 15022 print_command_lines (current_uiout, tp->commands.get (), 2); 15023 } 15024 catch (const gdb_exception &ex) 15025 { 15026 current_uiout->redirect (NULL); 15027 throw; 15028 } 15029 15030 current_uiout->redirect (NULL); 15031 fp.puts (" end\n"); 15032 } 15033 15034 if (tp->enable_state == bp_disabled) 15035 fp.puts ("disable $bpnum\n"); 15036 15037 /* If this is a multi-location breakpoint, check if the locations 15038 should be individually disabled. Watchpoint locations are 15039 special, and not user visible. */ 15040 if (!is_watchpoint (tp) && tp->loc && tp->loc->next) 15041 { 15042 struct bp_location *loc; 15043 int n = 1; 15044 15045 for (loc = tp->loc; loc != NULL; loc = loc->next, n++) 15046 if (!loc->enabled) 15047 fp.printf ("disable $bpnum.%d\n", n); 15048 } 15049 } 15050 15051 if (extra_trace_bits && *default_collect) 15052 fp.printf ("set default-collect %s\n", default_collect); 15053 15054 if (from_tty) 15055 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ()); 15056 } 15057 15058 /* The `save breakpoints' command. */ 15059 15060 static void 15061 save_breakpoints_command (const char *args, int from_tty) 15062 { 15063 save_breakpoints (args, from_tty, NULL); 15064 } 15065 15066 /* The `save tracepoints' command. */ 15067 15068 static void 15069 save_tracepoints_command (const char *args, int from_tty) 15070 { 15071 save_breakpoints (args, from_tty, is_tracepoint); 15072 } 15073 15074 /* Create a vector of all tracepoints. */ 15075 15076 std::vector<breakpoint *> 15077 all_tracepoints (void) 15078 { 15079 std::vector<breakpoint *> tp_vec; 15080 struct breakpoint *tp; 15081 15082 ALL_TRACEPOINTS (tp) 15083 { 15084 tp_vec.push_back (tp); 15085 } 15086 15087 return tp_vec; 15088 } 15089 15090 15091 /* This help string is used to consolidate all the help string for specifying 15092 locations used by several commands. */ 15093 15094 #define LOCATION_HELP_STRING \ 15095 "Linespecs are colon-separated lists of location parameters, such as\n\ 15096 source filename, function name, label name, and line number.\n\ 15097 Example: To specify the start of a label named \"the_top\" in the\n\ 15098 function \"fact\" in the file \"factorial.c\", use\n\ 15099 \"factorial.c:fact:the_top\".\n\ 15100 \n\ 15101 Address locations begin with \"*\" and specify an exact address in the\n\ 15102 program. Example: To specify the fourth byte past the start function\n\ 15103 \"main\", use \"*main + 4\".\n\ 15104 \n\ 15105 Explicit locations are similar to linespecs but use an option/argument\n\ 15106 syntax to specify location parameters.\n\ 15107 Example: To specify the start of the label named \"the_top\" in the\n\ 15108 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\ 15109 -function fact -label the_top\".\n\ 15110 \n\ 15111 By default, a specified function is matched against the program's\n\ 15112 functions in all scopes. For C++, this means in all namespaces and\n\ 15113 classes. For Ada, this means in all packages. E.g., in C++,\n\ 15114 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\ 15115 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\ 15116 specified name as a complete fully-qualified name instead." 15117 15118 /* This help string is used for the break, hbreak, tbreak and thbreak 15119 commands. It is defined as a macro to prevent duplication. 15120 COMMAND should be a string constant containing the name of the 15121 command. */ 15122 15123 #define BREAK_ARGS_HELP(command) \ 15124 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\ 15125 PROBE_MODIFIER shall be present if the command is to be placed in a\n\ 15126 probe point. Accepted values are `-probe' (for a generic, automatically\n\ 15127 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\ 15128 `-probe-dtrace' (for a DTrace probe).\n\ 15129 LOCATION may be a linespec, address, or explicit location as described\n\ 15130 below.\n\ 15131 \n\ 15132 With no LOCATION, uses current execution address of the selected\n\ 15133 stack frame. This is useful for breaking on return to a stack frame.\n\ 15134 \n\ 15135 THREADNUM is the number from \"info threads\".\n\ 15136 CONDITION is a boolean expression.\n\ 15137 \n" LOCATION_HELP_STRING "\n\n\ 15138 Multiple breakpoints at one place are permitted, and useful if their\n\ 15139 conditions are different.\n\ 15140 \n\ 15141 Do \"help breakpoints\" for info on other commands dealing with breakpoints." 15142 15143 /* List of subcommands for "catch". */ 15144 static struct cmd_list_element *catch_cmdlist; 15145 15146 /* List of subcommands for "tcatch". */ 15147 static struct cmd_list_element *tcatch_cmdlist; 15148 15149 void 15150 add_catch_command (const char *name, const char *docstring, 15151 cmd_const_sfunc_ftype *sfunc, 15152 completer_ftype *completer, 15153 void *user_data_catch, 15154 void *user_data_tcatch) 15155 { 15156 struct cmd_list_element *command; 15157 15158 command = add_cmd (name, class_breakpoint, docstring, 15159 &catch_cmdlist); 15160 set_cmd_sfunc (command, sfunc); 15161 set_cmd_context (command, user_data_catch); 15162 set_cmd_completer (command, completer); 15163 15164 command = add_cmd (name, class_breakpoint, docstring, 15165 &tcatch_cmdlist); 15166 set_cmd_sfunc (command, sfunc); 15167 set_cmd_context (command, user_data_tcatch); 15168 set_cmd_completer (command, completer); 15169 } 15170 15171 struct breakpoint * 15172 iterate_over_breakpoints (gdb::function_view<bool (breakpoint *)> callback) 15173 { 15174 struct breakpoint *b, *b_tmp; 15175 15176 ALL_BREAKPOINTS_SAFE (b, b_tmp) 15177 { 15178 if (callback (b)) 15179 return b; 15180 } 15181 15182 return NULL; 15183 } 15184 15185 /* Zero if any of the breakpoint's locations could be a location where 15186 functions have been inlined, nonzero otherwise. */ 15187 15188 static int 15189 is_non_inline_function (struct breakpoint *b) 15190 { 15191 /* The shared library event breakpoint is set on the address of a 15192 non-inline function. */ 15193 if (b->type == bp_shlib_event) 15194 return 1; 15195 15196 return 0; 15197 } 15198 15199 /* Nonzero if the specified PC cannot be a location where functions 15200 have been inlined. */ 15201 15202 int 15203 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc, 15204 const struct target_waitstatus *ws) 15205 { 15206 struct breakpoint *b; 15207 struct bp_location *bl; 15208 15209 ALL_BREAKPOINTS (b) 15210 { 15211 if (!is_non_inline_function (b)) 15212 continue; 15213 15214 for (bl = b->loc; bl != NULL; bl = bl->next) 15215 { 15216 if (!bl->shlib_disabled 15217 && bpstat_check_location (bl, aspace, pc, ws)) 15218 return 1; 15219 } 15220 } 15221 15222 return 0; 15223 } 15224 15225 /* Remove any references to OBJFILE which is going to be freed. */ 15226 15227 void 15228 breakpoint_free_objfile (struct objfile *objfile) 15229 { 15230 struct bp_location **locp, *loc; 15231 15232 ALL_BP_LOCATIONS (loc, locp) 15233 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile) 15234 loc->symtab = NULL; 15235 } 15236 15237 void 15238 initialize_breakpoint_ops (void) 15239 { 15240 static int initialized = 0; 15241 15242 struct breakpoint_ops *ops; 15243 15244 if (initialized) 15245 return; 15246 initialized = 1; 15247 15248 /* The breakpoint_ops structure to be inherit by all kinds of 15249 breakpoints (real breakpoints, i.e., user "break" breakpoints, 15250 internal and momentary breakpoints, etc.). */ 15251 ops = &bkpt_base_breakpoint_ops; 15252 *ops = base_breakpoint_ops; 15253 ops->re_set = bkpt_re_set; 15254 ops->insert_location = bkpt_insert_location; 15255 ops->remove_location = bkpt_remove_location; 15256 ops->breakpoint_hit = bkpt_breakpoint_hit; 15257 ops->create_sals_from_location = bkpt_create_sals_from_location; 15258 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal; 15259 ops->decode_location = bkpt_decode_location; 15260 15261 /* The breakpoint_ops structure to be used in regular breakpoints. */ 15262 ops = &bkpt_breakpoint_ops; 15263 *ops = bkpt_base_breakpoint_ops; 15264 ops->re_set = bkpt_re_set; 15265 ops->resources_needed = bkpt_resources_needed; 15266 ops->print_it = bkpt_print_it; 15267 ops->print_mention = bkpt_print_mention; 15268 ops->print_recreate = bkpt_print_recreate; 15269 15270 /* Ranged breakpoints. */ 15271 ops = &ranged_breakpoint_ops; 15272 *ops = bkpt_breakpoint_ops; 15273 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint; 15274 ops->resources_needed = resources_needed_ranged_breakpoint; 15275 ops->print_it = print_it_ranged_breakpoint; 15276 ops->print_one = print_one_ranged_breakpoint; 15277 ops->print_one_detail = print_one_detail_ranged_breakpoint; 15278 ops->print_mention = print_mention_ranged_breakpoint; 15279 ops->print_recreate = print_recreate_ranged_breakpoint; 15280 15281 /* Internal breakpoints. */ 15282 ops = &internal_breakpoint_ops; 15283 *ops = bkpt_base_breakpoint_ops; 15284 ops->re_set = internal_bkpt_re_set; 15285 ops->check_status = internal_bkpt_check_status; 15286 ops->print_it = internal_bkpt_print_it; 15287 ops->print_mention = internal_bkpt_print_mention; 15288 15289 /* Momentary breakpoints. */ 15290 ops = &momentary_breakpoint_ops; 15291 *ops = bkpt_base_breakpoint_ops; 15292 ops->re_set = momentary_bkpt_re_set; 15293 ops->check_status = momentary_bkpt_check_status; 15294 ops->print_it = momentary_bkpt_print_it; 15295 ops->print_mention = momentary_bkpt_print_mention; 15296 15297 /* Probe breakpoints. */ 15298 ops = &bkpt_probe_breakpoint_ops; 15299 *ops = bkpt_breakpoint_ops; 15300 ops->insert_location = bkpt_probe_insert_location; 15301 ops->remove_location = bkpt_probe_remove_location; 15302 ops->create_sals_from_location = bkpt_probe_create_sals_from_location; 15303 ops->decode_location = bkpt_probe_decode_location; 15304 15305 /* Watchpoints. */ 15306 ops = &watchpoint_breakpoint_ops; 15307 *ops = base_breakpoint_ops; 15308 ops->re_set = re_set_watchpoint; 15309 ops->insert_location = insert_watchpoint; 15310 ops->remove_location = remove_watchpoint; 15311 ops->breakpoint_hit = breakpoint_hit_watchpoint; 15312 ops->check_status = check_status_watchpoint; 15313 ops->resources_needed = resources_needed_watchpoint; 15314 ops->works_in_software_mode = works_in_software_mode_watchpoint; 15315 ops->print_it = print_it_watchpoint; 15316 ops->print_mention = print_mention_watchpoint; 15317 ops->print_recreate = print_recreate_watchpoint; 15318 ops->explains_signal = explains_signal_watchpoint; 15319 15320 /* Masked watchpoints. */ 15321 ops = &masked_watchpoint_breakpoint_ops; 15322 *ops = watchpoint_breakpoint_ops; 15323 ops->insert_location = insert_masked_watchpoint; 15324 ops->remove_location = remove_masked_watchpoint; 15325 ops->resources_needed = resources_needed_masked_watchpoint; 15326 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint; 15327 ops->print_it = print_it_masked_watchpoint; 15328 ops->print_one_detail = print_one_detail_masked_watchpoint; 15329 ops->print_mention = print_mention_masked_watchpoint; 15330 ops->print_recreate = print_recreate_masked_watchpoint; 15331 15332 /* Tracepoints. */ 15333 ops = &tracepoint_breakpoint_ops; 15334 *ops = base_breakpoint_ops; 15335 ops->re_set = tracepoint_re_set; 15336 ops->breakpoint_hit = tracepoint_breakpoint_hit; 15337 ops->print_one_detail = tracepoint_print_one_detail; 15338 ops->print_mention = tracepoint_print_mention; 15339 ops->print_recreate = tracepoint_print_recreate; 15340 ops->create_sals_from_location = tracepoint_create_sals_from_location; 15341 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal; 15342 ops->decode_location = tracepoint_decode_location; 15343 15344 /* Probe tracepoints. */ 15345 ops = &tracepoint_probe_breakpoint_ops; 15346 *ops = tracepoint_breakpoint_ops; 15347 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location; 15348 ops->decode_location = tracepoint_probe_decode_location; 15349 15350 /* Static tracepoints with marker (`-m'). */ 15351 ops = &strace_marker_breakpoint_ops; 15352 *ops = tracepoint_breakpoint_ops; 15353 ops->create_sals_from_location = strace_marker_create_sals_from_location; 15354 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal; 15355 ops->decode_location = strace_marker_decode_location; 15356 15357 /* Fork catchpoints. */ 15358 ops = &catch_fork_breakpoint_ops; 15359 *ops = base_breakpoint_ops; 15360 ops->insert_location = insert_catch_fork; 15361 ops->remove_location = remove_catch_fork; 15362 ops->breakpoint_hit = breakpoint_hit_catch_fork; 15363 ops->print_it = print_it_catch_fork; 15364 ops->print_one = print_one_catch_fork; 15365 ops->print_mention = print_mention_catch_fork; 15366 ops->print_recreate = print_recreate_catch_fork; 15367 15368 /* Vfork catchpoints. */ 15369 ops = &catch_vfork_breakpoint_ops; 15370 *ops = base_breakpoint_ops; 15371 ops->insert_location = insert_catch_vfork; 15372 ops->remove_location = remove_catch_vfork; 15373 ops->breakpoint_hit = breakpoint_hit_catch_vfork; 15374 ops->print_it = print_it_catch_vfork; 15375 ops->print_one = print_one_catch_vfork; 15376 ops->print_mention = print_mention_catch_vfork; 15377 ops->print_recreate = print_recreate_catch_vfork; 15378 15379 /* Exec catchpoints. */ 15380 ops = &catch_exec_breakpoint_ops; 15381 *ops = base_breakpoint_ops; 15382 ops->insert_location = insert_catch_exec; 15383 ops->remove_location = remove_catch_exec; 15384 ops->breakpoint_hit = breakpoint_hit_catch_exec; 15385 ops->print_it = print_it_catch_exec; 15386 ops->print_one = print_one_catch_exec; 15387 ops->print_mention = print_mention_catch_exec; 15388 ops->print_recreate = print_recreate_catch_exec; 15389 15390 /* Solib-related catchpoints. */ 15391 ops = &catch_solib_breakpoint_ops; 15392 *ops = base_breakpoint_ops; 15393 ops->insert_location = insert_catch_solib; 15394 ops->remove_location = remove_catch_solib; 15395 ops->breakpoint_hit = breakpoint_hit_catch_solib; 15396 ops->check_status = check_status_catch_solib; 15397 ops->print_it = print_it_catch_solib; 15398 ops->print_one = print_one_catch_solib; 15399 ops->print_mention = print_mention_catch_solib; 15400 ops->print_recreate = print_recreate_catch_solib; 15401 15402 ops = &dprintf_breakpoint_ops; 15403 *ops = bkpt_base_breakpoint_ops; 15404 ops->re_set = dprintf_re_set; 15405 ops->resources_needed = bkpt_resources_needed; 15406 ops->print_it = bkpt_print_it; 15407 ops->print_mention = bkpt_print_mention; 15408 ops->print_recreate = dprintf_print_recreate; 15409 ops->after_condition_true = dprintf_after_condition_true; 15410 ops->breakpoint_hit = dprintf_breakpoint_hit; 15411 } 15412 15413 /* Chain containing all defined "enable breakpoint" subcommands. */ 15414 15415 static struct cmd_list_element *enablebreaklist = NULL; 15416 15417 /* See breakpoint.h. */ 15418 15419 cmd_list_element *commands_cmd_element = nullptr; 15420 15421 void _initialize_breakpoint (); 15422 void 15423 _initialize_breakpoint () 15424 { 15425 struct cmd_list_element *c; 15426 15427 initialize_breakpoint_ops (); 15428 15429 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib); 15430 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile); 15431 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change); 15432 15433 breakpoint_chain = 0; 15434 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful 15435 before a breakpoint is set. */ 15436 breakpoint_count = 0; 15437 15438 tracepoint_count = 0; 15439 15440 add_com ("ignore", class_breakpoint, ignore_command, _("\ 15441 Set ignore-count of breakpoint number N to COUNT.\n\ 15442 Usage is `ignore N COUNT'.")); 15443 15444 commands_cmd_element = add_com ("commands", class_breakpoint, 15445 commands_command, _("\ 15446 Set commands to be executed when the given breakpoints are hit.\n\ 15447 Give a space-separated breakpoint list as argument after \"commands\".\n\ 15448 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\ 15449 (e.g. `5-7').\n\ 15450 With no argument, the targeted breakpoint is the last one set.\n\ 15451 The commands themselves follow starting on the next line.\n\ 15452 Type a line containing \"end\" to indicate the end of them.\n\ 15453 Give \"silent\" as the first line to make the breakpoint silent;\n\ 15454 then no output is printed when it is hit, except what the commands print.")); 15455 15456 c = add_com ("condition", class_breakpoint, condition_command, _("\ 15457 Specify breakpoint number N to break only if COND is true.\n\ 15458 Usage is `condition N COND', where N is an integer and COND is an\n\ 15459 expression to be evaluated whenever breakpoint N is reached.")); 15460 set_cmd_completer (c, condition_completer); 15461 15462 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\ 15463 Set a temporary breakpoint.\n\ 15464 Like \"break\" except the breakpoint is only temporary,\n\ 15465 so it will be deleted when hit. Equivalent to \"break\" followed\n\ 15466 by using \"enable delete\" on the breakpoint number.\n\ 15467 \n" 15468 BREAK_ARGS_HELP ("tbreak"))); 15469 set_cmd_completer (c, location_completer); 15470 15471 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\ 15472 Set a hardware assisted breakpoint.\n\ 15473 Like \"break\" except the breakpoint requires hardware support,\n\ 15474 some target hardware may not have this support.\n\ 15475 \n" 15476 BREAK_ARGS_HELP ("hbreak"))); 15477 set_cmd_completer (c, location_completer); 15478 15479 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\ 15480 Set a temporary hardware assisted breakpoint.\n\ 15481 Like \"hbreak\" except the breakpoint is only temporary,\n\ 15482 so it will be deleted when hit.\n\ 15483 \n" 15484 BREAK_ARGS_HELP ("thbreak"))); 15485 set_cmd_completer (c, location_completer); 15486 15487 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\ 15488 Enable all or some breakpoints.\n\ 15489 Usage: enable [BREAKPOINTNUM]...\n\ 15490 Give breakpoint numbers (separated by spaces) as arguments.\n\ 15491 With no subcommand, breakpoints are enabled until you command otherwise.\n\ 15492 This is used to cancel the effect of the \"disable\" command.\n\ 15493 With a subcommand you can enable temporarily."), 15494 &enablelist, "enable ", 1, &cmdlist); 15495 15496 add_com_alias ("en", "enable", class_breakpoint, 1); 15497 15498 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\ 15499 Enable all or some breakpoints.\n\ 15500 Usage: enable breakpoints [BREAKPOINTNUM]...\n\ 15501 Give breakpoint numbers (separated by spaces) as arguments.\n\ 15502 This is used to cancel the effect of the \"disable\" command.\n\ 15503 May be abbreviated to simply \"enable\"."), 15504 &enablebreaklist, "enable breakpoints ", 1, &enablelist); 15505 15506 add_cmd ("once", no_class, enable_once_command, _("\ 15507 Enable some breakpoints for one hit.\n\ 15508 Usage: enable breakpoints once BREAKPOINTNUM...\n\ 15509 If a breakpoint is hit while enabled in this fashion, it becomes disabled."), 15510 &enablebreaklist); 15511 15512 add_cmd ("delete", no_class, enable_delete_command, _("\ 15513 Enable some breakpoints and delete when hit.\n\ 15514 Usage: enable breakpoints delete BREAKPOINTNUM...\n\ 15515 If a breakpoint is hit while enabled in this fashion, it is deleted."), 15516 &enablebreaklist); 15517 15518 add_cmd ("count", no_class, enable_count_command, _("\ 15519 Enable some breakpoints for COUNT hits.\n\ 15520 Usage: enable breakpoints count COUNT BREAKPOINTNUM...\n\ 15521 If a breakpoint is hit while enabled in this fashion,\n\ 15522 the count is decremented; when it reaches zero, the breakpoint is disabled."), 15523 &enablebreaklist); 15524 15525 add_cmd ("delete", no_class, enable_delete_command, _("\ 15526 Enable some breakpoints and delete when hit.\n\ 15527 Usage: enable delete BREAKPOINTNUM...\n\ 15528 If a breakpoint is hit while enabled in this fashion, it is deleted."), 15529 &enablelist); 15530 15531 add_cmd ("once", no_class, enable_once_command, _("\ 15532 Enable some breakpoints for one hit.\n\ 15533 Usage: enable once BREAKPOINTNUM...\n\ 15534 If a breakpoint is hit while enabled in this fashion, it becomes disabled."), 15535 &enablelist); 15536 15537 add_cmd ("count", no_class, enable_count_command, _("\ 15538 Enable some breakpoints for COUNT hits.\n\ 15539 Usage: enable count COUNT BREAKPOINTNUM...\n\ 15540 If a breakpoint is hit while enabled in this fashion,\n\ 15541 the count is decremented; when it reaches zero, the breakpoint is disabled."), 15542 &enablelist); 15543 15544 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\ 15545 Disable all or some breakpoints.\n\ 15546 Usage: disable [BREAKPOINTNUM]...\n\ 15547 Arguments are breakpoint numbers with spaces in between.\n\ 15548 To disable all breakpoints, give no argument.\n\ 15549 A disabled breakpoint is not forgotten, but has no effect until re-enabled."), 15550 &disablelist, "disable ", 1, &cmdlist); 15551 add_com_alias ("dis", "disable", class_breakpoint, 1); 15552 add_com_alias ("disa", "disable", class_breakpoint, 1); 15553 15554 add_cmd ("breakpoints", class_breakpoint, disable_command, _("\ 15555 Disable all or some breakpoints.\n\ 15556 Usage: disable breakpoints [BREAKPOINTNUM]...\n\ 15557 Arguments are breakpoint numbers with spaces in between.\n\ 15558 To disable all breakpoints, give no argument.\n\ 15559 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\ 15560 This command may be abbreviated \"disable\"."), 15561 &disablelist); 15562 15563 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\ 15564 Delete all or some breakpoints.\n\ 15565 Usage: delete [BREAKPOINTNUM]...\n\ 15566 Arguments are breakpoint numbers with spaces in between.\n\ 15567 To delete all breakpoints, give no argument.\n\ 15568 \n\ 15569 Also a prefix command for deletion of other GDB objects."), 15570 &deletelist, "delete ", 1, &cmdlist); 15571 add_com_alias ("d", "delete", class_breakpoint, 1); 15572 add_com_alias ("del", "delete", class_breakpoint, 1); 15573 15574 add_cmd ("breakpoints", class_breakpoint, delete_command, _("\ 15575 Delete all or some breakpoints or auto-display expressions.\n\ 15576 Usage: delete breakpoints [BREAKPOINTNUM]...\n\ 15577 Arguments are breakpoint numbers with spaces in between.\n\ 15578 To delete all breakpoints, give no argument.\n\ 15579 This command may be abbreviated \"delete\"."), 15580 &deletelist); 15581 15582 add_com ("clear", class_breakpoint, clear_command, _("\ 15583 Clear breakpoint at specified location.\n\ 15584 Argument may be a linespec, explicit, or address location as described below.\n\ 15585 \n\ 15586 With no argument, clears all breakpoints in the line that the selected frame\n\ 15587 is executing in.\n" 15588 "\n" LOCATION_HELP_STRING "\n\n\ 15589 See also the \"delete\" command which clears breakpoints by number.")); 15590 add_com_alias ("cl", "clear", class_breakpoint, 1); 15591 15592 c = add_com ("break", class_breakpoint, break_command, _("\ 15593 Set breakpoint at specified location.\n" 15594 BREAK_ARGS_HELP ("break"))); 15595 set_cmd_completer (c, location_completer); 15596 15597 add_com_alias ("b", "break", class_run, 1); 15598 add_com_alias ("br", "break", class_run, 1); 15599 add_com_alias ("bre", "break", class_run, 1); 15600 add_com_alias ("brea", "break", class_run, 1); 15601 15602 if (dbx_commands) 15603 { 15604 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\ 15605 Break in function/address or break at a line in the current file."), 15606 &stoplist, "stop ", 1, &cmdlist); 15607 add_cmd ("in", class_breakpoint, stopin_command, 15608 _("Break in function or address."), &stoplist); 15609 add_cmd ("at", class_breakpoint, stopat_command, 15610 _("Break at a line in the current file."), &stoplist); 15611 add_com ("status", class_info, info_breakpoints_command, _("\ 15612 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\ 15613 The \"Type\" column indicates one of:\n\ 15614 \tbreakpoint - normal breakpoint\n\ 15615 \twatchpoint - watchpoint\n\ 15616 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\ 15617 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\ 15618 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\ 15619 address and file/line number respectively.\n\ 15620 \n\ 15621 Convenience variable \"$_\" and default examine address for \"x\"\n\ 15622 are set to the address of the last breakpoint listed unless the command\n\ 15623 is prefixed with \"server \".\n\n\ 15624 Convenience variable \"$bpnum\" contains the number of the last\n\ 15625 breakpoint set.")); 15626 } 15627 15628 add_info ("breakpoints", info_breakpoints_command, _("\ 15629 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\ 15630 The \"Type\" column indicates one of:\n\ 15631 \tbreakpoint - normal breakpoint\n\ 15632 \twatchpoint - watchpoint\n\ 15633 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\ 15634 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\ 15635 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\ 15636 address and file/line number respectively.\n\ 15637 \n\ 15638 Convenience variable \"$_\" and default examine address for \"x\"\n\ 15639 are set to the address of the last breakpoint listed unless the command\n\ 15640 is prefixed with \"server \".\n\n\ 15641 Convenience variable \"$bpnum\" contains the number of the last\n\ 15642 breakpoint set.")); 15643 15644 add_info_alias ("b", "breakpoints", 1); 15645 15646 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\ 15647 Status of all breakpoints, or breakpoint number NUMBER.\n\ 15648 The \"Type\" column indicates one of:\n\ 15649 \tbreakpoint - normal breakpoint\n\ 15650 \twatchpoint - watchpoint\n\ 15651 \tlongjmp - internal breakpoint used to step through longjmp()\n\ 15652 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\ 15653 \tuntil - internal breakpoint used by the \"until\" command\n\ 15654 \tfinish - internal breakpoint used by the \"finish\" command\n\ 15655 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\ 15656 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\ 15657 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\ 15658 address and file/line number respectively.\n\ 15659 \n\ 15660 Convenience variable \"$_\" and default examine address for \"x\"\n\ 15661 are set to the address of the last breakpoint listed unless the command\n\ 15662 is prefixed with \"server \".\n\n\ 15663 Convenience variable \"$bpnum\" contains the number of the last\n\ 15664 breakpoint set."), 15665 &maintenanceinfolist); 15666 15667 add_basic_prefix_cmd ("catch", class_breakpoint, _("\ 15668 Set catchpoints to catch events."), 15669 &catch_cmdlist, "catch ", 15670 0/*allow-unknown*/, &cmdlist); 15671 15672 add_basic_prefix_cmd ("tcatch", class_breakpoint, _("\ 15673 Set temporary catchpoints to catch events."), 15674 &tcatch_cmdlist, "tcatch ", 15675 0/*allow-unknown*/, &cmdlist); 15676 15677 add_catch_command ("fork", _("Catch calls to fork."), 15678 catch_fork_command_1, 15679 NULL, 15680 (void *) (uintptr_t) catch_fork_permanent, 15681 (void *) (uintptr_t) catch_fork_temporary); 15682 add_catch_command ("vfork", _("Catch calls to vfork."), 15683 catch_fork_command_1, 15684 NULL, 15685 (void *) (uintptr_t) catch_vfork_permanent, 15686 (void *) (uintptr_t) catch_vfork_temporary); 15687 add_catch_command ("exec", _("Catch calls to exec."), 15688 catch_exec_command_1, 15689 NULL, 15690 CATCH_PERMANENT, 15691 CATCH_TEMPORARY); 15692 add_catch_command ("load", _("Catch loads of shared libraries.\n\ 15693 Usage: catch load [REGEX]\n\ 15694 If REGEX is given, only stop for libraries matching the regular expression."), 15695 catch_load_command_1, 15696 NULL, 15697 CATCH_PERMANENT, 15698 CATCH_TEMPORARY); 15699 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\ 15700 Usage: catch unload [REGEX]\n\ 15701 If REGEX is given, only stop for libraries matching the regular expression."), 15702 catch_unload_command_1, 15703 NULL, 15704 CATCH_PERMANENT, 15705 CATCH_TEMPORARY); 15706 15707 c = add_com ("watch", class_breakpoint, watch_command, _("\ 15708 Set a watchpoint for an expression.\n\ 15709 Usage: watch [-l|-location] EXPRESSION\n\ 15710 A watchpoint stops execution of your program whenever the value of\n\ 15711 an expression changes.\n\ 15712 If -l or -location is given, this evaluates EXPRESSION and watches\n\ 15713 the memory to which it refers.")); 15714 set_cmd_completer (c, expression_completer); 15715 15716 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\ 15717 Set a read watchpoint for an expression.\n\ 15718 Usage: rwatch [-l|-location] EXPRESSION\n\ 15719 A watchpoint stops execution of your program whenever the value of\n\ 15720 an expression is read.\n\ 15721 If -l or -location is given, this evaluates EXPRESSION and watches\n\ 15722 the memory to which it refers.")); 15723 set_cmd_completer (c, expression_completer); 15724 15725 c = add_com ("awatch", class_breakpoint, awatch_command, _("\ 15726 Set a watchpoint for an expression.\n\ 15727 Usage: awatch [-l|-location] EXPRESSION\n\ 15728 A watchpoint stops execution of your program whenever the value of\n\ 15729 an expression is either read or written.\n\ 15730 If -l or -location is given, this evaluates EXPRESSION and watches\n\ 15731 the memory to which it refers.")); 15732 set_cmd_completer (c, expression_completer); 15733 15734 add_info ("watchpoints", info_watchpoints_command, _("\ 15735 Status of specified watchpoints (all watchpoints if no argument).")); 15736 15737 /* XXX: cagney/2005-02-23: This should be a boolean, and should 15738 respond to changes - contrary to the description. */ 15739 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support, 15740 &can_use_hw_watchpoints, _("\ 15741 Set debugger's willingness to use watchpoint hardware."), _("\ 15742 Show debugger's willingness to use watchpoint hardware."), _("\ 15743 If zero, gdb will not use hardware for new watchpoints, even if\n\ 15744 such is available. (However, any hardware watchpoints that were\n\ 15745 created before setting this to nonzero, will continue to use watchpoint\n\ 15746 hardware.)"), 15747 NULL, 15748 show_can_use_hw_watchpoints, 15749 &setlist, &showlist); 15750 15751 can_use_hw_watchpoints = 1; 15752 15753 /* Tracepoint manipulation commands. */ 15754 15755 c = add_com ("trace", class_breakpoint, trace_command, _("\ 15756 Set a tracepoint at specified location.\n\ 15757 \n" 15758 BREAK_ARGS_HELP ("trace") "\n\ 15759 Do \"help tracepoints\" for info on other tracepoint commands.")); 15760 set_cmd_completer (c, location_completer); 15761 15762 add_com_alias ("tp", "trace", class_breakpoint, 0); 15763 add_com_alias ("tr", "trace", class_breakpoint, 1); 15764 add_com_alias ("tra", "trace", class_breakpoint, 1); 15765 add_com_alias ("trac", "trace", class_breakpoint, 1); 15766 15767 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\ 15768 Set a fast tracepoint at specified location.\n\ 15769 \n" 15770 BREAK_ARGS_HELP ("ftrace") "\n\ 15771 Do \"help tracepoints\" for info on other tracepoint commands.")); 15772 set_cmd_completer (c, location_completer); 15773 15774 c = add_com ("strace", class_breakpoint, strace_command, _("\ 15775 Set a static tracepoint at location or marker.\n\ 15776 \n\ 15777 strace [LOCATION] [if CONDITION]\n\ 15778 LOCATION may be a linespec, explicit, or address location (described below) \n\ 15779 or -m MARKER_ID.\n\n\ 15780 If a marker id is specified, probe the marker with that name. With\n\ 15781 no LOCATION, uses current execution address of the selected stack frame.\n\ 15782 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\ 15783 This collects arbitrary user data passed in the probe point call to the\n\ 15784 tracing library. You can inspect it when analyzing the trace buffer,\n\ 15785 by printing the $_sdata variable like any other convenience variable.\n\ 15786 \n\ 15787 CONDITION is a boolean expression.\n\ 15788 \n" LOCATION_HELP_STRING "\n\n\ 15789 Multiple tracepoints at one place are permitted, and useful if their\n\ 15790 conditions are different.\n\ 15791 \n\ 15792 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\ 15793 Do \"help tracepoints\" for info on other tracepoint commands.")); 15794 set_cmd_completer (c, location_completer); 15795 15796 add_info ("tracepoints", info_tracepoints_command, _("\ 15797 Status of specified tracepoints (all tracepoints if no argument).\n\ 15798 Convenience variable \"$tpnum\" contains the number of the\n\ 15799 last tracepoint set.")); 15800 15801 add_info_alias ("tp", "tracepoints", 1); 15802 15803 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\ 15804 Delete specified tracepoints.\n\ 15805 Arguments are tracepoint numbers, separated by spaces.\n\ 15806 No argument means delete all tracepoints."), 15807 &deletelist); 15808 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist); 15809 15810 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\ 15811 Disable specified tracepoints.\n\ 15812 Arguments are tracepoint numbers, separated by spaces.\n\ 15813 No argument means disable all tracepoints."), 15814 &disablelist); 15815 deprecate_cmd (c, "disable"); 15816 15817 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\ 15818 Enable specified tracepoints.\n\ 15819 Arguments are tracepoint numbers, separated by spaces.\n\ 15820 No argument means enable all tracepoints."), 15821 &enablelist); 15822 deprecate_cmd (c, "enable"); 15823 15824 add_com ("passcount", class_trace, trace_pass_command, _("\ 15825 Set the passcount for a tracepoint.\n\ 15826 The trace will end when the tracepoint has been passed 'count' times.\n\ 15827 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\ 15828 if TPNUM is omitted, passcount refers to the last tracepoint defined.")); 15829 15830 add_basic_prefix_cmd ("save", class_breakpoint, 15831 _("Save breakpoint definitions as a script."), 15832 &save_cmdlist, "save ", 15833 0/*allow-unknown*/, &cmdlist); 15834 15835 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\ 15836 Save current breakpoint definitions as a script.\n\ 15837 This includes all types of breakpoints (breakpoints, watchpoints,\n\ 15838 catchpoints, tracepoints). Use the 'source' command in another debug\n\ 15839 session to restore them."), 15840 &save_cmdlist); 15841 set_cmd_completer (c, filename_completer); 15842 15843 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\ 15844 Save current tracepoint definitions as a script.\n\ 15845 Use the 'source' command in another debug session to restore them."), 15846 &save_cmdlist); 15847 set_cmd_completer (c, filename_completer); 15848 15849 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0); 15850 deprecate_cmd (c, "save tracepoints"); 15851 15852 add_basic_prefix_cmd ("breakpoint", class_maintenance, _("\ 15853 Breakpoint specific settings.\n\ 15854 Configure various breakpoint-specific variables such as\n\ 15855 pending breakpoint behavior."), 15856 &breakpoint_set_cmdlist, "set breakpoint ", 15857 0/*allow-unknown*/, &setlist); 15858 add_show_prefix_cmd ("breakpoint", class_maintenance, _("\ 15859 Breakpoint specific settings.\n\ 15860 Configure various breakpoint-specific variables such as\n\ 15861 pending breakpoint behavior."), 15862 &breakpoint_show_cmdlist, "show breakpoint ", 15863 0/*allow-unknown*/, &showlist); 15864 15865 add_setshow_auto_boolean_cmd ("pending", no_class, 15866 &pending_break_support, _("\ 15867 Set debugger's behavior regarding pending breakpoints."), _("\ 15868 Show debugger's behavior regarding pending breakpoints."), _("\ 15869 If on, an unrecognized breakpoint location will cause gdb to create a\n\ 15870 pending breakpoint. If off, an unrecognized breakpoint location results in\n\ 15871 an error. If auto, an unrecognized breakpoint location results in a\n\ 15872 user-query to see if a pending breakpoint should be created."), 15873 NULL, 15874 show_pending_break_support, 15875 &breakpoint_set_cmdlist, 15876 &breakpoint_show_cmdlist); 15877 15878 pending_break_support = AUTO_BOOLEAN_AUTO; 15879 15880 add_setshow_boolean_cmd ("auto-hw", no_class, 15881 &automatic_hardware_breakpoints, _("\ 15882 Set automatic usage of hardware breakpoints."), _("\ 15883 Show automatic usage of hardware breakpoints."), _("\ 15884 If set, the debugger will automatically use hardware breakpoints for\n\ 15885 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\ 15886 a warning will be emitted for such breakpoints."), 15887 NULL, 15888 show_automatic_hardware_breakpoints, 15889 &breakpoint_set_cmdlist, 15890 &breakpoint_show_cmdlist); 15891 15892 add_setshow_boolean_cmd ("always-inserted", class_support, 15893 &always_inserted_mode, _("\ 15894 Set mode for inserting breakpoints."), _("\ 15895 Show mode for inserting breakpoints."), _("\ 15896 When this mode is on, breakpoints are inserted immediately as soon as\n\ 15897 they're created, kept inserted even when execution stops, and removed\n\ 15898 only when the user deletes them. When this mode is off (the default),\n\ 15899 breakpoints are inserted only when execution continues, and removed\n\ 15900 when execution stops."), 15901 NULL, 15902 &show_always_inserted_mode, 15903 &breakpoint_set_cmdlist, 15904 &breakpoint_show_cmdlist); 15905 15906 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint, 15907 condition_evaluation_enums, 15908 &condition_evaluation_mode_1, _("\ 15909 Set mode of breakpoint condition evaluation."), _("\ 15910 Show mode of breakpoint condition evaluation."), _("\ 15911 When this is set to \"host\", breakpoint conditions will be\n\ 15912 evaluated on the host's side by GDB. When it is set to \"target\",\n\ 15913 breakpoint conditions will be downloaded to the target (if the target\n\ 15914 supports such feature) and conditions will be evaluated on the target's side.\n\ 15915 If this is set to \"auto\" (default), this will be automatically set to\n\ 15916 \"target\" if it supports condition evaluation, otherwise it will\n\ 15917 be set to \"host\"."), 15918 &set_condition_evaluation_mode, 15919 &show_condition_evaluation_mode, 15920 &breakpoint_set_cmdlist, 15921 &breakpoint_show_cmdlist); 15922 15923 add_com ("break-range", class_breakpoint, break_range_command, _("\ 15924 Set a breakpoint for an address range.\n\ 15925 break-range START-LOCATION, END-LOCATION\n\ 15926 where START-LOCATION and END-LOCATION can be one of the following:\n\ 15927 LINENUM, for that line in the current file,\n\ 15928 FILE:LINENUM, for that line in that file,\n\ 15929 +OFFSET, for that number of lines after the current line\n\ 15930 or the start of the range\n\ 15931 FUNCTION, for the first line in that function,\n\ 15932 FILE:FUNCTION, to distinguish among like-named static functions.\n\ 15933 *ADDRESS, for the instruction at that address.\n\ 15934 \n\ 15935 The breakpoint will stop execution of the inferior whenever it executes\n\ 15936 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\ 15937 range (including START-LOCATION and END-LOCATION).")); 15938 15939 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\ 15940 Set a dynamic printf at specified location.\n\ 15941 dprintf location,format string,arg1,arg2,...\n\ 15942 location may be a linespec, explicit, or address location.\n" 15943 "\n" LOCATION_HELP_STRING)); 15944 set_cmd_completer (c, location_completer); 15945 15946 add_setshow_enum_cmd ("dprintf-style", class_support, 15947 dprintf_style_enums, &dprintf_style, _("\ 15948 Set the style of usage for dynamic printf."), _("\ 15949 Show the style of usage for dynamic printf."), _("\ 15950 This setting chooses how GDB will do a dynamic printf.\n\ 15951 If the value is \"gdb\", then the printing is done by GDB to its own\n\ 15952 console, as with the \"printf\" command.\n\ 15953 If the value is \"call\", the print is done by calling a function in your\n\ 15954 program; by default printf(), but you can choose a different function or\n\ 15955 output stream by setting dprintf-function and dprintf-channel."), 15956 update_dprintf_commands, NULL, 15957 &setlist, &showlist); 15958 15959 dprintf_function = xstrdup ("printf"); 15960 add_setshow_string_cmd ("dprintf-function", class_support, 15961 &dprintf_function, _("\ 15962 Set the function to use for dynamic printf."), _("\ 15963 Show the function to use for dynamic printf."), NULL, 15964 update_dprintf_commands, NULL, 15965 &setlist, &showlist); 15966 15967 dprintf_channel = xstrdup (""); 15968 add_setshow_string_cmd ("dprintf-channel", class_support, 15969 &dprintf_channel, _("\ 15970 Set the channel to use for dynamic printf."), _("\ 15971 Show the channel to use for dynamic printf."), NULL, 15972 update_dprintf_commands, NULL, 15973 &setlist, &showlist); 15974 15975 add_setshow_boolean_cmd ("disconnected-dprintf", no_class, 15976 &disconnected_dprintf, _("\ 15977 Set whether dprintf continues after GDB disconnects."), _("\ 15978 Show whether dprintf continues after GDB disconnects."), _("\ 15979 Use this to let dprintf commands continue to hit and produce output\n\ 15980 even if GDB disconnects or detaches from the target."), 15981 NULL, 15982 NULL, 15983 &setlist, &showlist); 15984 15985 add_com ("agent-printf", class_vars, agent_printf_command, _("\ 15986 Target agent only formatted printing, like the C \"printf\" function.\n\ 15987 Usage: agent-printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\ 15988 This supports most C printf format specifications, like %s, %d, etc.\n\ 15989 This is useful for formatted output in user-defined commands.")); 15990 15991 automatic_hardware_breakpoints = true; 15992 15993 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed); 15994 gdb::observers::thread_exit.attach (remove_threaded_breakpoints); 15995 } 15996