xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/block.h (revision 4f645668ed707e1f969c546666f8c8e45e6f8888)
1 /* Code dealing with blocks for GDB.
2 
3    Copyright (C) 2003-2019 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef BLOCK_H
21 #define BLOCK_H
22 
23 #include "dictionary.h"
24 
25 /* Opaque declarations.  */
26 
27 struct symbol;
28 struct compunit_symtab;
29 struct block_namespace_info;
30 struct using_direct;
31 struct obstack;
32 struct addrmap;
33 
34 /* Blocks can occupy non-contiguous address ranges.  When this occurs,
35    startaddr and endaddr within struct block (still) specify the lowest
36    and highest addresses of all ranges, but each individual range is
37    specified by the addresses in struct blockrange.  */
38 
39 struct blockrange
40 {
41   blockrange (CORE_ADDR startaddr_, CORE_ADDR endaddr_)
42     : startaddr (startaddr_),
43       endaddr (endaddr_)
44   {
45   }
46 
47   /* Lowest address in this range.  */
48 
49   CORE_ADDR startaddr;
50 
51   /* One past the highest address in the range.  */
52 
53   CORE_ADDR endaddr;
54 };
55 
56 /* Two or more non-contiguous ranges in the same order as that provided
57    via the debug info.  */
58 
59 struct blockranges
60 {
61   int nranges;
62   struct blockrange range[1];
63 };
64 
65 /* All of the name-scope contours of the program
66    are represented by `struct block' objects.
67    All of these objects are pointed to by the blockvector.
68 
69    Each block represents one name scope.
70    Each lexical context has its own block.
71 
72    The blockvector begins with some special blocks.
73    The GLOBAL_BLOCK contains all the symbols defined in this compilation
74    whose scope is the entire program linked together.
75    The STATIC_BLOCK contains all the symbols whose scope is the
76    entire compilation excluding other separate compilations.
77    Blocks starting with the FIRST_LOCAL_BLOCK are not special.
78 
79    Each block records a range of core addresses for the code that
80    is in the scope of the block.  The STATIC_BLOCK and GLOBAL_BLOCK
81    give, for the range of code, the entire range of code produced
82    by the compilation that the symbol segment belongs to.
83 
84    The blocks appear in the blockvector
85    in order of increasing starting-address,
86    and, within that, in order of decreasing ending-address.
87 
88    This implies that within the body of one function
89    the blocks appear in the order of a depth-first tree walk.  */
90 
91 struct block
92 {
93 
94   /* Addresses in the executable code that are in this block.  */
95 
96   CORE_ADDR startaddr;
97   CORE_ADDR endaddr;
98 
99   /* The symbol that names this block, if the block is the body of a
100      function (real or inlined); otherwise, zero.  */
101 
102   struct symbol *function;
103 
104   /* The `struct block' for the containing block, or 0 if none.
105 
106      The superblock of a top-level local block (i.e. a function in the
107      case of C) is the STATIC_BLOCK.  The superblock of the
108      STATIC_BLOCK is the GLOBAL_BLOCK.  */
109 
110   struct block *superblock;
111 
112   /* This is used to store the symbols in the block.  */
113 
114   struct multidictionary *multidict;
115 
116   /* Contains information about namespace-related info relevant to this block:
117      using directives and the current namespace scope.  */
118 
119   struct block_namespace_info *namespace_info;
120 
121   /* Address ranges for blocks with non-contiguous ranges.  If this
122      is NULL, then there is only one range which is specified by
123      startaddr and endaddr above.  */
124 
125   struct blockranges *ranges;
126 };
127 
128 /* The global block is singled out so that we can provide a back-link
129    to the compunit symtab.  */
130 
131 struct global_block
132 {
133   /* The block.  */
134 
135   struct block block;
136 
137   /* This holds a pointer to the compunit symtab holding this block.  */
138 
139   struct compunit_symtab *compunit_symtab;
140 };
141 
142 #define BLOCK_START(bl)		(bl)->startaddr
143 #define BLOCK_END(bl)		(bl)->endaddr
144 #define BLOCK_FUNCTION(bl)	(bl)->function
145 #define BLOCK_SUPERBLOCK(bl)	(bl)->superblock
146 #define BLOCK_MULTIDICT(bl)	(bl)->multidict
147 #define BLOCK_NAMESPACE(bl)	(bl)->namespace_info
148 
149 /* Accessor for ranges field within block BL.  */
150 
151 #define BLOCK_RANGES(bl)	(bl)->ranges
152 
153 /* Number of ranges within a block.  */
154 
155 #define BLOCK_NRANGES(bl)	(bl)->ranges->nranges
156 
157 /* Access range array for block BL.  */
158 
159 #define BLOCK_RANGE(bl)		(bl)->ranges->range
160 
161 /* Are all addresses within a block contiguous?  */
162 
163 #define BLOCK_CONTIGUOUS_P(bl)	(BLOCK_RANGES (bl) == nullptr \
164 				 || BLOCK_NRANGES (bl) <= 1)
165 
166 /* Obtain the start address of the Nth range for block BL.  */
167 
168 #define BLOCK_RANGE_START(bl,n) (BLOCK_RANGE (bl)[n].startaddr)
169 
170 /* Obtain the end address of the Nth range for block BL.  */
171 
172 #define BLOCK_RANGE_END(bl,n)	(BLOCK_RANGE (bl)[n].endaddr)
173 
174 /* Define the "entry pc" for a block BL to be the lowest (start) address
175    for the block when all addresses within the block are contiguous.  If
176    non-contiguous, then use the start address for the first range in the
177    block.
178 
179    At the moment, this almost matches what DWARF specifies as the entry
180    pc.  (The missing bit is support for DW_AT_entry_pc which should be
181    preferred over range data and the low_pc.)
182 
183    Once support for DW_AT_entry_pc is added, I expect that an entry_pc
184    field will be added to one of these data structures.  Once that's done,
185    the entry_pc field can be set from the dwarf reader (and other readers
186    too).  BLOCK_ENTRY_PC can then be redefined to be less DWARF-centric.  */
187 
188 #define BLOCK_ENTRY_PC(bl)	(BLOCK_CONTIGUOUS_P (bl) \
189 				 ? BLOCK_START (bl) \
190 				 : BLOCK_RANGE_START (bl,0))
191 
192 struct blockvector
193 {
194   /* Number of blocks in the list.  */
195   int nblocks;
196   /* An address map mapping addresses to blocks in this blockvector.
197      This pointer is zero if the blocks' start and end addresses are
198      enough.  */
199   struct addrmap *map;
200   /* The blocks themselves.  */
201   struct block *block[1];
202 };
203 
204 #define BLOCKVECTOR_NBLOCKS(blocklist) (blocklist)->nblocks
205 #define BLOCKVECTOR_BLOCK(blocklist,n) (blocklist)->block[n]
206 #define BLOCKVECTOR_MAP(blocklist) ((blocklist)->map)
207 
208 /* Return the objfile of BLOCK, which must be non-NULL.  */
209 
210 extern struct objfile *block_objfile (const struct block *block);
211 
212 /* Return the architecture of BLOCK, which must be non-NULL.  */
213 
214 extern struct gdbarch *block_gdbarch (const struct block *block);
215 
216 extern struct symbol *block_linkage_function (const struct block *);
217 
218 extern struct symbol *block_containing_function (const struct block *);
219 
220 extern int block_inlined_p (const struct block *block);
221 
222 extern int contained_in (const struct block *, const struct block *);
223 
224 extern const struct blockvector *blockvector_for_pc (CORE_ADDR,
225 					       const struct block **);
226 
227 extern const struct blockvector *
228   blockvector_for_pc_sect (CORE_ADDR, struct obj_section *,
229 			   const struct block **, struct compunit_symtab *);
230 
231 extern int blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc);
232 
233 extern struct call_site *call_site_for_pc (struct gdbarch *gdbarch,
234 					   CORE_ADDR pc);
235 
236 extern const struct block *block_for_pc (CORE_ADDR);
237 
238 extern const struct block *block_for_pc_sect (CORE_ADDR, struct obj_section *);
239 
240 extern const char *block_scope (const struct block *block);
241 
242 extern void block_set_scope (struct block *block, const char *scope,
243 			     struct obstack *obstack);
244 
245 extern struct using_direct *block_using (const struct block *block);
246 
247 extern void block_set_using (struct block *block,
248 			     struct using_direct *using_decl,
249 			     struct obstack *obstack);
250 
251 extern const struct block *block_static_block (const struct block *block);
252 
253 extern const struct block *block_global_block (const struct block *block);
254 
255 extern struct block *allocate_block (struct obstack *obstack);
256 
257 extern struct block *allocate_global_block (struct obstack *obstack);
258 
259 extern void set_block_compunit_symtab (struct block *,
260 				       struct compunit_symtab *);
261 
262 /* Return a property to evaluate the static link associated to BLOCK.
263 
264    In the context of nested functions (available in Pascal, Ada and GNU C, for
265    instance), a static link (as in DWARF's DW_AT_static_link attribute) for a
266    function is a way to get the frame corresponding to the enclosing function.
267 
268    Note that only objfile-owned and function-level blocks can have a static
269    link.  Return NULL if there is no such property.  */
270 
271 extern struct dynamic_prop *block_static_link (const struct block *block);
272 
273 /* A block iterator.  This structure should be treated as though it
274    were opaque; it is only defined here because we want to support
275    stack allocation of iterators.  */
276 
277 struct block_iterator
278 {
279   /* If we're iterating over a single block, this holds the block.
280      Otherwise, it holds the canonical compunit.  */
281 
282   union
283   {
284     struct compunit_symtab *compunit_symtab;
285     const struct block *block;
286   } d;
287 
288   /* If we're iterating over a single block, this is always -1.
289      Otherwise, it holds the index of the current "included" symtab in
290      the canonical symtab (that is, d.symtab->includes[idx]), with -1
291      meaning the canonical symtab itself.  */
292 
293   int idx;
294 
295   /* Which block, either static or global, to iterate over.  If this
296      is FIRST_LOCAL_BLOCK, then we are iterating over a single block.
297      This is used to select which field of 'd' is in use.  */
298 
299   enum block_enum which;
300 
301   /* The underlying multidictionary iterator.  */
302 
303   struct mdict_iterator mdict_iter;
304 };
305 
306 /* Initialize ITERATOR to point at the first symbol in BLOCK, and
307    return that first symbol, or NULL if BLOCK is empty.  */
308 
309 extern struct symbol *block_iterator_first (const struct block *block,
310 					    struct block_iterator *iterator);
311 
312 /* Advance ITERATOR, and return the next symbol, or NULL if there are
313    no more symbols.  Don't call this if you've previously received
314    NULL from block_iterator_first or block_iterator_next on this
315    iteration.  */
316 
317 extern struct symbol *block_iterator_next (struct block_iterator *iterator);
318 
319 /* Initialize ITERATOR to point at the first symbol in BLOCK whose
320    SYMBOL_SEARCH_NAME matches NAME, and return that first symbol, or
321    NULL if there are no such symbols.  */
322 
323 extern struct symbol *block_iter_match_first (const struct block *block,
324 					      const lookup_name_info &name,
325 					      struct block_iterator *iterator);
326 
327 /* Advance ITERATOR to point at the next symbol in BLOCK whose
328    SYMBOL_SEARCH_NAME matches NAME, or NULL if there are no more such
329    symbols.  Don't call this if you've previously received NULL from
330    block_iterator_match_first or block_iterator_match_next on this
331    iteration.  And don't call it unless ITERATOR was created by a
332    previous call to block_iter_match_first with the same NAME.  */
333 
334 extern struct symbol *block_iter_match_next
335   (const lookup_name_info &name, struct block_iterator *iterator);
336 
337 /* Search BLOCK for symbol NAME in DOMAIN.  */
338 
339 extern struct symbol *block_lookup_symbol (const struct block *block,
340 					   const char *name,
341 					   symbol_name_match_type match_type,
342 					   const domain_enum domain);
343 
344 /* Search BLOCK for symbol NAME in DOMAIN but only in primary symbol table of
345    BLOCK.  BLOCK must be STATIC_BLOCK or GLOBAL_BLOCK.  Function is useful if
346    one iterates all global/static blocks of an objfile.  */
347 
348 extern struct symbol *block_lookup_symbol_primary (const struct block *block,
349 						   const char *name,
350 						   const domain_enum domain);
351 
352 /* The type of the MATCHER argument to block_find_symbol.  */
353 
354 typedef int (block_symbol_matcher_ftype) (struct symbol *, void *);
355 
356 /* Find symbol NAME in BLOCK and in DOMAIN that satisfies MATCHER.
357    DATA is passed unchanged to MATCHER.
358    BLOCK must be STATIC_BLOCK or GLOBAL_BLOCK.  */
359 
360 extern struct symbol *block_find_symbol (const struct block *block,
361 					 const char *name,
362 					 const domain_enum domain,
363 					 block_symbol_matcher_ftype *matcher,
364 					 void *data);
365 
366 /* A matcher function for block_find_symbol to find only symbols with
367    non-opaque types.  */
368 
369 extern int block_find_non_opaque_type (struct symbol *sym, void *data);
370 
371 /* A matcher function for block_find_symbol to prefer symbols with
372    non-opaque types.  The way to use this function is as follows:
373 
374    struct symbol *with_opaque = NULL;
375    struct symbol *sym
376      = block_find_symbol (block, name, domain,
377                           block_find_non_opaque_type_preferred, &with_opaque);
378 
379    At this point if SYM is non-NULL then a non-opaque type has been found.
380    Otherwise, if WITH_OPAQUE is non-NULL then an opaque type has been found.
381    Otherwise, the symbol was not found.  */
382 
383 extern int block_find_non_opaque_type_preferred (struct symbol *sym,
384 						 void *data);
385 
386 /* Macro to loop through all symbols in BLOCK, in no particular
387    order.  ITER helps keep track of the iteration, and must be a
388    struct block_iterator.  SYM points to the current symbol.  */
389 
390 #define ALL_BLOCK_SYMBOLS(block, iter, sym)		\
391   for ((sym) = block_iterator_first ((block), &(iter));	\
392        (sym);						\
393        (sym) = block_iterator_next (&(iter)))
394 
395 /* Macro to loop through all symbols in BLOCK with a name that matches
396    NAME, in no particular order.  ITER helps keep track of the
397    iteration, and must be a struct block_iterator.  SYM points to the
398    current symbol.  */
399 
400 #define ALL_BLOCK_SYMBOLS_WITH_NAME(block, name, iter, sym)		\
401   for ((sym) = block_iter_match_first ((block), (name), &(iter));	\
402        (sym) != NULL;							\
403        (sym) = block_iter_match_next ((name), &(iter)))
404 
405 /* Given a vector of pairs, allocate and build an obstack allocated
406    blockranges struct for a block.  */
407 struct blockranges *make_blockranges (struct objfile *objfile,
408                                       const std::vector<blockrange> &rangevec);
409 
410 #endif /* BLOCK_H */
411