1 /* Functions for manipulating expressions designed to be executed on the agent 2 Copyright (C) 1998-2016 Free Software Foundation, Inc. 3 4 This file is part of GDB. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 18 19 /* Despite what the above comment says about this file being part of 20 GDB, we would like to keep these functions free of GDB 21 dependencies, since we want to be able to use them in contexts 22 outside of GDB (test suites, the stub, etc.) */ 23 24 #include "defs.h" 25 #include "ax.h" 26 27 #include "value.h" 28 #include "user-regs.h" 29 30 static void grow_expr (struct agent_expr *x, int n); 31 32 static void append_const (struct agent_expr *x, LONGEST val, int n); 33 34 static LONGEST read_const (struct agent_expr *x, int o, int n); 35 36 static void generic_ext (struct agent_expr *x, enum agent_op op, int n); 37 38 /* Functions for building expressions. */ 39 40 /* Allocate a new, empty agent expression. */ 41 struct agent_expr * 42 new_agent_expr (struct gdbarch *gdbarch, CORE_ADDR scope) 43 { 44 struct agent_expr *x = XNEW (struct agent_expr); 45 46 x->len = 0; 47 x->size = 1; /* Change this to a larger value once 48 reallocation code is tested. */ 49 x->buf = (unsigned char *) xmalloc (x->size); 50 51 x->gdbarch = gdbarch; 52 x->scope = scope; 53 54 /* Bit vector for registers used. */ 55 x->reg_mask_len = 1; 56 x->reg_mask = XCNEWVEC (unsigned char, x->reg_mask_len); 57 58 x->tracing = 0; 59 x->trace_string = 0; 60 61 return x; 62 } 63 64 /* Free a agent expression. */ 65 void 66 free_agent_expr (struct agent_expr *x) 67 { 68 xfree (x->buf); 69 xfree (x->reg_mask); 70 xfree (x); 71 } 72 73 static void 74 do_free_agent_expr_cleanup (void *x) 75 { 76 free_agent_expr ((struct agent_expr *) x); 77 } 78 79 struct cleanup * 80 make_cleanup_free_agent_expr (struct agent_expr *x) 81 { 82 return make_cleanup (do_free_agent_expr_cleanup, x); 83 } 84 85 86 /* Make sure that X has room for at least N more bytes. This doesn't 87 affect the length, just the allocated size. */ 88 static void 89 grow_expr (struct agent_expr *x, int n) 90 { 91 if (x->len + n > x->size) 92 { 93 x->size *= 2; 94 if (x->size < x->len + n) 95 x->size = x->len + n + 10; 96 x->buf = (unsigned char *) xrealloc (x->buf, x->size); 97 } 98 } 99 100 101 /* Append the low N bytes of VAL as an N-byte integer to the 102 expression X, in big-endian order. */ 103 static void 104 append_const (struct agent_expr *x, LONGEST val, int n) 105 { 106 int i; 107 108 grow_expr (x, n); 109 for (i = n - 1; i >= 0; i--) 110 { 111 x->buf[x->len + i] = val & 0xff; 112 val >>= 8; 113 } 114 x->len += n; 115 } 116 117 118 /* Extract an N-byte big-endian unsigned integer from expression X at 119 offset O. */ 120 static LONGEST 121 read_const (struct agent_expr *x, int o, int n) 122 { 123 int i; 124 LONGEST accum = 0; 125 126 /* Make sure we're not reading off the end of the expression. */ 127 if (o + n > x->len) 128 error (_("GDB bug: ax-general.c (read_const): incomplete constant")); 129 130 for (i = 0; i < n; i++) 131 accum = (accum << 8) | x->buf[o + i]; 132 133 return accum; 134 } 135 136 /* See ax.h. */ 137 138 void 139 ax_raw_byte (struct agent_expr *x, gdb_byte byte) 140 { 141 grow_expr (x, 1); 142 x->buf[x->len++] = byte; 143 } 144 145 /* Append a simple operator OP to EXPR. */ 146 void 147 ax_simple (struct agent_expr *x, enum agent_op op) 148 { 149 ax_raw_byte (x, op); 150 } 151 152 /* Append a pick operator to EXPR. DEPTH is the stack item to pick, 153 with 0 being top of stack. */ 154 155 void 156 ax_pick (struct agent_expr *x, int depth) 157 { 158 if (depth < 0 || depth > 255) 159 error (_("GDB bug: ax-general.c (ax_pick): stack depth out of range")); 160 ax_simple (x, aop_pick); 161 append_const (x, 1, depth); 162 } 163 164 165 /* Append a sign-extension or zero-extension instruction to EXPR, to 166 extend an N-bit value. */ 167 static void 168 generic_ext (struct agent_expr *x, enum agent_op op, int n) 169 { 170 /* N must fit in a byte. */ 171 if (n < 0 || n > 255) 172 error (_("GDB bug: ax-general.c (generic_ext): bit count out of range")); 173 /* That had better be enough range. */ 174 if (sizeof (LONGEST) * 8 > 255) 175 error (_("GDB bug: ax-general.c (generic_ext): " 176 "opcode has inadequate range")); 177 178 grow_expr (x, 2); 179 x->buf[x->len++] = op; 180 x->buf[x->len++] = n; 181 } 182 183 184 /* Append a sign-extension instruction to EXPR, to extend an N-bit value. */ 185 void 186 ax_ext (struct agent_expr *x, int n) 187 { 188 generic_ext (x, aop_ext, n); 189 } 190 191 192 /* Append a zero-extension instruction to EXPR, to extend an N-bit value. */ 193 void 194 ax_zero_ext (struct agent_expr *x, int n) 195 { 196 generic_ext (x, aop_zero_ext, n); 197 } 198 199 200 /* Append a trace_quick instruction to EXPR, to record N bytes. */ 201 void 202 ax_trace_quick (struct agent_expr *x, int n) 203 { 204 /* N must fit in a byte. */ 205 if (n < 0 || n > 255) 206 error (_("GDB bug: ax-general.c (ax_trace_quick): " 207 "size out of range for trace_quick")); 208 209 grow_expr (x, 2); 210 x->buf[x->len++] = aop_trace_quick; 211 x->buf[x->len++] = n; 212 } 213 214 215 /* Append a goto op to EXPR. OP is the actual op (must be aop_goto or 216 aop_if_goto). We assume we don't know the target offset yet, 217 because it's probably a forward branch, so we leave space in EXPR 218 for the target, and return the offset in EXPR of that space, so we 219 can backpatch it once we do know the target offset. Use ax_label 220 to do the backpatching. */ 221 int 222 ax_goto (struct agent_expr *x, enum agent_op op) 223 { 224 grow_expr (x, 3); 225 x->buf[x->len + 0] = op; 226 x->buf[x->len + 1] = 0xff; 227 x->buf[x->len + 2] = 0xff; 228 x->len += 3; 229 return x->len - 2; 230 } 231 232 /* Suppose a given call to ax_goto returns some value PATCH. When you 233 know the offset TARGET that goto should jump to, call 234 ax_label (EXPR, PATCH, TARGET) 235 to patch TARGET into the ax_goto instruction. */ 236 void 237 ax_label (struct agent_expr *x, int patch, int target) 238 { 239 /* Make sure the value is in range. Don't accept 0xffff as an 240 offset; that's our magic sentinel value for unpatched branches. */ 241 if (target < 0 || target >= 0xffff) 242 error (_("GDB bug: ax-general.c (ax_label): label target out of range")); 243 244 x->buf[patch] = (target >> 8) & 0xff; 245 x->buf[patch + 1] = target & 0xff; 246 } 247 248 249 /* Assemble code to push a constant on the stack. */ 250 void 251 ax_const_l (struct agent_expr *x, LONGEST l) 252 { 253 static enum agent_op ops[] 254 = 255 {aop_const8, aop_const16, aop_const32, aop_const64}; 256 int size; 257 int op; 258 259 /* How big is the number? 'op' keeps track of which opcode to use. 260 Notice that we don't really care whether the original number was 261 signed or unsigned; we always reproduce the value exactly, and 262 use the shortest representation. */ 263 for (op = 0, size = 8; size < 64; size *= 2, op++) 264 { 265 LONGEST lim = ((LONGEST) 1) << (size - 1); 266 267 if (-lim <= l && l <= lim - 1) 268 break; 269 } 270 271 /* Emit the right opcode... */ 272 ax_simple (x, ops[op]); 273 274 /* Emit the low SIZE bytes as an unsigned number. We know that 275 sign-extending this will yield l. */ 276 append_const (x, l, size / 8); 277 278 /* Now, if it was negative, and not full-sized, sign-extend it. */ 279 if (l < 0 && size < 64) 280 ax_ext (x, size); 281 } 282 283 284 void 285 ax_const_d (struct agent_expr *x, LONGEST d) 286 { 287 /* FIXME: floating-point support not present yet. */ 288 error (_("GDB bug: ax-general.c (ax_const_d): " 289 "floating point not supported yet")); 290 } 291 292 293 /* Assemble code to push the value of register number REG on the 294 stack. */ 295 void 296 ax_reg (struct agent_expr *x, int reg) 297 { 298 if (reg >= gdbarch_num_regs (x->gdbarch)) 299 { 300 /* This is a pseudo-register. */ 301 if (!gdbarch_ax_pseudo_register_push_stack_p (x->gdbarch)) 302 error (_("'%s' is a pseudo-register; " 303 "GDB cannot yet trace its contents."), 304 user_reg_map_regnum_to_name (x->gdbarch, reg)); 305 if (gdbarch_ax_pseudo_register_push_stack (x->gdbarch, x, reg)) 306 error (_("Trace '%s' failed."), 307 user_reg_map_regnum_to_name (x->gdbarch, reg)); 308 } 309 else 310 { 311 /* Get the remote register number. */ 312 reg = gdbarch_remote_register_number (x->gdbarch, reg); 313 314 /* Make sure the register number is in range. */ 315 if (reg < 0 || reg > 0xffff) 316 error (_("GDB bug: ax-general.c (ax_reg): " 317 "register number out of range")); 318 grow_expr (x, 3); 319 x->buf[x->len] = aop_reg; 320 x->buf[x->len + 1] = (reg >> 8) & 0xff; 321 x->buf[x->len + 2] = (reg) & 0xff; 322 x->len += 3; 323 } 324 } 325 326 /* Assemble code to operate on a trace state variable. */ 327 328 void 329 ax_tsv (struct agent_expr *x, enum agent_op op, int num) 330 { 331 /* Make sure the tsv number is in range. */ 332 if (num < 0 || num > 0xffff) 333 internal_error (__FILE__, __LINE__, 334 _("ax-general.c (ax_tsv): variable " 335 "number is %d, out of range"), num); 336 337 grow_expr (x, 3); 338 x->buf[x->len] = op; 339 x->buf[x->len + 1] = (num >> 8) & 0xff; 340 x->buf[x->len + 2] = (num) & 0xff; 341 x->len += 3; 342 } 343 344 /* Append a string to the expression. Note that the string is going 345 into the bytecodes directly, not on the stack. As a precaution, 346 include both length as prefix, and terminate with a NUL. (The NUL 347 is counted in the length.) */ 348 349 void 350 ax_string (struct agent_expr *x, const char *str, int slen) 351 { 352 int i; 353 354 /* Make sure the string length is reasonable. */ 355 if (slen < 0 || slen > 0xffff) 356 internal_error (__FILE__, __LINE__, 357 _("ax-general.c (ax_string): string " 358 "length is %d, out of allowed range"), slen); 359 360 grow_expr (x, 2 + slen + 1); 361 x->buf[x->len++] = ((slen + 1) >> 8) & 0xff; 362 x->buf[x->len++] = (slen + 1) & 0xff; 363 for (i = 0; i < slen; ++i) 364 x->buf[x->len++] = str[i]; 365 x->buf[x->len++] = '\0'; 366 } 367 368 369 370 /* Functions for disassembling agent expressions, and otherwise 371 debugging the expression compiler. */ 372 373 struct aop_map aop_map[] = 374 { 375 {0, 0, 0, 0, 0} 376 #define DEFOP(NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED, VALUE) \ 377 , { # NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED } 378 #include "ax.def" 379 #undef DEFOP 380 }; 381 382 383 /* Disassemble the expression EXPR, writing to F. */ 384 void 385 ax_print (struct ui_file *f, struct agent_expr *x) 386 { 387 int i; 388 389 fprintf_filtered (f, _("Scope: %s\n"), paddress (x->gdbarch, x->scope)); 390 fprintf_filtered (f, _("Reg mask:")); 391 for (i = 0; i < x->reg_mask_len; ++i) 392 fprintf_filtered (f, _(" %02x"), x->reg_mask[i]); 393 fprintf_filtered (f, _("\n")); 394 395 /* Check the size of the name array against the number of entries in 396 the enum, to catch additions that people didn't sync. */ 397 if ((sizeof (aop_map) / sizeof (aop_map[0])) 398 != aop_last) 399 error (_("GDB bug: ax-general.c (ax_print): opcode map out of sync")); 400 401 for (i = 0; i < x->len;) 402 { 403 enum agent_op op = (enum agent_op) x->buf[i]; 404 405 if (op >= (sizeof (aop_map) / sizeof (aop_map[0])) 406 || !aop_map[op].name) 407 { 408 fprintf_filtered (f, _("%3d <bad opcode %02x>\n"), i, op); 409 i++; 410 continue; 411 } 412 if (i + 1 + aop_map[op].op_size > x->len) 413 { 414 fprintf_filtered (f, _("%3d <incomplete opcode %s>\n"), 415 i, aop_map[op].name); 416 break; 417 } 418 419 fprintf_filtered (f, "%3d %s", i, aop_map[op].name); 420 if (aop_map[op].op_size > 0) 421 { 422 fputs_filtered (" ", f); 423 424 print_longest (f, 'd', 0, 425 read_const (x, i + 1, aop_map[op].op_size)); 426 } 427 /* Handle the complicated printf arguments specially. */ 428 else if (op == aop_printf) 429 { 430 int slen, nargs; 431 432 i++; 433 nargs = x->buf[i++]; 434 slen = x->buf[i++]; 435 slen = slen * 256 + x->buf[i++]; 436 fprintf_filtered (f, _(" \"%s\", %d args"), 437 &(x->buf[i]), nargs); 438 i += slen - 1; 439 } 440 fprintf_filtered (f, "\n"); 441 i += 1 + aop_map[op].op_size; 442 } 443 } 444 445 /* Add register REG to the register mask for expression AX. */ 446 void 447 ax_reg_mask (struct agent_expr *ax, int reg) 448 { 449 if (reg >= gdbarch_num_regs (ax->gdbarch)) 450 { 451 /* This is a pseudo-register. */ 452 if (!gdbarch_ax_pseudo_register_collect_p (ax->gdbarch)) 453 error (_("'%s' is a pseudo-register; " 454 "GDB cannot yet trace its contents."), 455 user_reg_map_regnum_to_name (ax->gdbarch, reg)); 456 if (gdbarch_ax_pseudo_register_collect (ax->gdbarch, ax, reg)) 457 error (_("Trace '%s' failed."), 458 user_reg_map_regnum_to_name (ax->gdbarch, reg)); 459 } 460 else 461 { 462 int byte; 463 464 /* Get the remote register number. */ 465 reg = gdbarch_remote_register_number (ax->gdbarch, reg); 466 byte = reg / 8; 467 468 /* Grow the bit mask if necessary. */ 469 if (byte >= ax->reg_mask_len) 470 { 471 /* It's not appropriate to double here. This isn't a 472 string buffer. */ 473 int new_len = byte + 1; 474 unsigned char *new_reg_mask 475 = XRESIZEVEC (unsigned char, ax->reg_mask, new_len); 476 477 memset (new_reg_mask + ax->reg_mask_len, 0, 478 (new_len - ax->reg_mask_len) * sizeof (ax->reg_mask[0])); 479 ax->reg_mask_len = new_len; 480 ax->reg_mask = new_reg_mask; 481 } 482 483 ax->reg_mask[byte] |= 1 << (reg % 8); 484 } 485 } 486 487 /* Given an agent expression AX, fill in requirements and other descriptive 488 bits. */ 489 void 490 ax_reqs (struct agent_expr *ax) 491 { 492 int i; 493 int height; 494 495 /* Jump target table. targets[i] is non-zero iff we have found a 496 jump to offset i. */ 497 char *targets = (char *) alloca (ax->len * sizeof (targets[0])); 498 499 /* Instruction boundary table. boundary[i] is non-zero iff our scan 500 has reached an instruction starting at offset i. */ 501 char *boundary = (char *) alloca (ax->len * sizeof (boundary[0])); 502 503 /* Stack height record. If either targets[i] or boundary[i] is 504 non-zero, heights[i] is the height the stack should have before 505 executing the bytecode at that point. */ 506 int *heights = (int *) alloca (ax->len * sizeof (heights[0])); 507 508 /* Pointer to a description of the present op. */ 509 struct aop_map *op; 510 511 memset (targets, 0, ax->len * sizeof (targets[0])); 512 memset (boundary, 0, ax->len * sizeof (boundary[0])); 513 514 ax->max_height = ax->min_height = height = 0; 515 ax->flaw = agent_flaw_none; 516 ax->max_data_size = 0; 517 518 for (i = 0; i < ax->len; i += 1 + op->op_size) 519 { 520 if (ax->buf[i] > (sizeof (aop_map) / sizeof (aop_map[0]))) 521 { 522 ax->flaw = agent_flaw_bad_instruction; 523 return; 524 } 525 526 op = &aop_map[ax->buf[i]]; 527 528 if (!op->name) 529 { 530 ax->flaw = agent_flaw_bad_instruction; 531 return; 532 } 533 534 if (i + 1 + op->op_size > ax->len) 535 { 536 ax->flaw = agent_flaw_incomplete_instruction; 537 return; 538 } 539 540 /* If this instruction is a forward jump target, does the 541 current stack height match the stack height at the jump 542 source? */ 543 if (targets[i] && (heights[i] != height)) 544 { 545 ax->flaw = agent_flaw_height_mismatch; 546 return; 547 } 548 549 boundary[i] = 1; 550 heights[i] = height; 551 552 height -= op->consumed; 553 if (height < ax->min_height) 554 ax->min_height = height; 555 height += op->produced; 556 if (height > ax->max_height) 557 ax->max_height = height; 558 559 if (op->data_size > ax->max_data_size) 560 ax->max_data_size = op->data_size; 561 562 /* For jump instructions, check that the target is a valid 563 offset. If it is, record the fact that that location is a 564 jump target, and record the height we expect there. */ 565 if (aop_goto == op - aop_map 566 || aop_if_goto == op - aop_map) 567 { 568 int target = read_const (ax, i + 1, 2); 569 if (target < 0 || target >= ax->len) 570 { 571 ax->flaw = agent_flaw_bad_jump; 572 return; 573 } 574 575 /* Do we have any information about what the stack height 576 should be at the target? */ 577 if (targets[target] || boundary[target]) 578 { 579 if (heights[target] != height) 580 { 581 ax->flaw = agent_flaw_height_mismatch; 582 return; 583 } 584 } 585 586 /* Record the target, along with the stack height we expect. */ 587 targets[target] = 1; 588 heights[target] = height; 589 } 590 591 /* For unconditional jumps with a successor, check that the 592 successor is a target, and pick up its stack height. */ 593 if (aop_goto == op - aop_map 594 && i + 3 < ax->len) 595 { 596 if (!targets[i + 3]) 597 { 598 ax->flaw = agent_flaw_hole; 599 return; 600 } 601 602 height = heights[i + 3]; 603 } 604 605 /* For reg instructions, record the register in the bit mask. */ 606 if (aop_reg == op - aop_map) 607 { 608 int reg = read_const (ax, i + 1, 2); 609 610 ax_reg_mask (ax, reg); 611 } 612 } 613 614 /* Check that all the targets are on boundaries. */ 615 for (i = 0; i < ax->len; i++) 616 if (targets[i] && !boundary[i]) 617 { 618 ax->flaw = agent_flaw_bad_jump; 619 return; 620 } 621 622 ax->final_height = height; 623 } 624