1 /* GDB-specific functions for operating on agent expressions. 2 3 Copyright (C) 1998-2016 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "symtab.h" 22 #include "symfile.h" 23 #include "gdbtypes.h" 24 #include "language.h" 25 #include "value.h" 26 #include "expression.h" 27 #include "command.h" 28 #include "gdbcmd.h" 29 #include "frame.h" 30 #include "target.h" 31 #include "ax.h" 32 #include "ax-gdb.h" 33 #include "block.h" 34 #include "regcache.h" 35 #include "user-regs.h" 36 #include "dictionary.h" 37 #include "breakpoint.h" 38 #include "tracepoint.h" 39 #include "cp-support.h" 40 #include "arch-utils.h" 41 #include "cli/cli-utils.h" 42 #include "linespec.h" 43 #include "location.h" 44 #include "objfiles.h" 45 46 #include "valprint.h" 47 #include "c-lang.h" 48 49 #include "format.h" 50 51 /* To make sense of this file, you should read doc/agentexpr.texi. 52 Then look at the types and enums in ax-gdb.h. For the code itself, 53 look at gen_expr, towards the bottom; that's the main function that 54 looks at the GDB expressions and calls everything else to generate 55 code. 56 57 I'm beginning to wonder whether it wouldn't be nicer to internally 58 generate trees, with types, and then spit out the bytecode in 59 linear form afterwards; we could generate fewer `swap', `ext', and 60 `zero_ext' bytecodes that way; it would make good constant folding 61 easier, too. But at the moment, I think we should be willing to 62 pay for the simplicity of this code with less-than-optimal bytecode 63 strings. 64 65 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */ 66 67 68 69 /* Prototypes for local functions. */ 70 71 /* There's a standard order to the arguments of these functions: 72 union exp_element ** --- pointer into expression 73 struct agent_expr * --- agent expression buffer to generate code into 74 struct axs_value * --- describes value left on top of stack */ 75 76 static struct value *const_var_ref (struct symbol *var); 77 static struct value *const_expr (union exp_element **pc); 78 static struct value *maybe_const_expr (union exp_element **pc); 79 80 static void gen_traced_pop (struct gdbarch *, struct agent_expr *, 81 struct axs_value *); 82 83 static void gen_sign_extend (struct agent_expr *, struct type *); 84 static void gen_extend (struct agent_expr *, struct type *); 85 static void gen_fetch (struct agent_expr *, struct type *); 86 static void gen_left_shift (struct agent_expr *, int); 87 88 89 static void gen_frame_args_address (struct gdbarch *, struct agent_expr *); 90 static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *); 91 static void gen_offset (struct agent_expr *ax, int offset); 92 static void gen_sym_offset (struct agent_expr *, struct symbol *); 93 static void gen_var_ref (struct gdbarch *, struct agent_expr *ax, 94 struct axs_value *value, struct symbol *var); 95 96 97 static void gen_int_literal (struct agent_expr *ax, 98 struct axs_value *value, 99 LONGEST k, struct type *type); 100 101 static void gen_usual_unary (struct expression *exp, struct agent_expr *ax, 102 struct axs_value *value); 103 static int type_wider_than (struct type *type1, struct type *type2); 104 static struct type *max_type (struct type *type1, struct type *type2); 105 static void gen_conversion (struct agent_expr *ax, 106 struct type *from, struct type *to); 107 static int is_nontrivial_conversion (struct type *from, struct type *to); 108 static void gen_usual_arithmetic (struct expression *exp, 109 struct agent_expr *ax, 110 struct axs_value *value1, 111 struct axs_value *value2); 112 static void gen_integral_promotions (struct expression *exp, 113 struct agent_expr *ax, 114 struct axs_value *value); 115 static void gen_cast (struct agent_expr *ax, 116 struct axs_value *value, struct type *type); 117 static void gen_scale (struct agent_expr *ax, 118 enum agent_op op, struct type *type); 119 static void gen_ptradd (struct agent_expr *ax, struct axs_value *value, 120 struct axs_value *value1, struct axs_value *value2); 121 static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value, 122 struct axs_value *value1, struct axs_value *value2); 123 static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value, 124 struct axs_value *value1, struct axs_value *value2, 125 struct type *result_type); 126 static void gen_binop (struct agent_expr *ax, 127 struct axs_value *value, 128 struct axs_value *value1, 129 struct axs_value *value2, 130 enum agent_op op, 131 enum agent_op op_unsigned, int may_carry, char *name); 132 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value, 133 struct type *result_type); 134 static void gen_complement (struct agent_expr *ax, struct axs_value *value); 135 static void gen_deref (struct agent_expr *, struct axs_value *); 136 static void gen_address_of (struct agent_expr *, struct axs_value *); 137 static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax, 138 struct axs_value *value, 139 struct type *type, int start, int end); 140 static void gen_primitive_field (struct expression *exp, 141 struct agent_expr *ax, 142 struct axs_value *value, 143 int offset, int fieldno, struct type *type); 144 static int gen_struct_ref_recursive (struct expression *exp, 145 struct agent_expr *ax, 146 struct axs_value *value, 147 char *field, int offset, 148 struct type *type); 149 static void gen_struct_ref (struct expression *exp, struct agent_expr *ax, 150 struct axs_value *value, 151 char *field, 152 char *operator_name, char *operand_name); 153 static void gen_static_field (struct gdbarch *gdbarch, 154 struct agent_expr *ax, struct axs_value *value, 155 struct type *type, int fieldno); 156 static void gen_repeat (struct expression *exp, union exp_element **pc, 157 struct agent_expr *ax, struct axs_value *value); 158 static void gen_sizeof (struct expression *exp, union exp_element **pc, 159 struct agent_expr *ax, struct axs_value *value, 160 struct type *size_type); 161 static void gen_expr_binop_rest (struct expression *exp, 162 enum exp_opcode op, union exp_element **pc, 163 struct agent_expr *ax, 164 struct axs_value *value, 165 struct axs_value *value1, 166 struct axs_value *value2); 167 168 static void agent_command (char *exp, int from_tty); 169 170 171 /* Detecting constant expressions. */ 172 173 /* If the variable reference at *PC is a constant, return its value. 174 Otherwise, return zero. 175 176 Hey, Wally! How can a variable reference be a constant? 177 178 Well, Beav, this function really handles the OP_VAR_VALUE operator, 179 not specifically variable references. GDB uses OP_VAR_VALUE to 180 refer to any kind of symbolic reference: function names, enum 181 elements, and goto labels are all handled through the OP_VAR_VALUE 182 operator, even though they're constants. It makes sense given the 183 situation. 184 185 Gee, Wally, don'cha wonder sometimes if data representations that 186 subvert commonly accepted definitions of terms in favor of heavily 187 context-specific interpretations are really just a tool of the 188 programming hegemony to preserve their power and exclude the 189 proletariat? */ 190 191 static struct value * 192 const_var_ref (struct symbol *var) 193 { 194 struct type *type = SYMBOL_TYPE (var); 195 196 switch (SYMBOL_CLASS (var)) 197 { 198 case LOC_CONST: 199 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var)); 200 201 case LOC_LABEL: 202 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var)); 203 204 default: 205 return 0; 206 } 207 } 208 209 210 /* If the expression starting at *PC has a constant value, return it. 211 Otherwise, return zero. If we return a value, then *PC will be 212 advanced to the end of it. If we return zero, *PC could be 213 anywhere. */ 214 static struct value * 215 const_expr (union exp_element **pc) 216 { 217 enum exp_opcode op = (*pc)->opcode; 218 struct value *v1; 219 220 switch (op) 221 { 222 case OP_LONG: 223 { 224 struct type *type = (*pc)[1].type; 225 LONGEST k = (*pc)[2].longconst; 226 227 (*pc) += 4; 228 return value_from_longest (type, k); 229 } 230 231 case OP_VAR_VALUE: 232 { 233 struct value *v = const_var_ref ((*pc)[2].symbol); 234 235 (*pc) += 4; 236 return v; 237 } 238 239 /* We could add more operators in here. */ 240 241 case UNOP_NEG: 242 (*pc)++; 243 v1 = const_expr (pc); 244 if (v1) 245 return value_neg (v1); 246 else 247 return 0; 248 249 default: 250 return 0; 251 } 252 } 253 254 255 /* Like const_expr, but guarantee also that *PC is undisturbed if the 256 expression is not constant. */ 257 static struct value * 258 maybe_const_expr (union exp_element **pc) 259 { 260 union exp_element *tentative_pc = *pc; 261 struct value *v = const_expr (&tentative_pc); 262 263 /* If we got a value, then update the real PC. */ 264 if (v) 265 *pc = tentative_pc; 266 267 return v; 268 } 269 270 271 /* Generating bytecode from GDB expressions: general assumptions */ 272 273 /* Here are a few general assumptions made throughout the code; if you 274 want to make a change that contradicts one of these, then you'd 275 better scan things pretty thoroughly. 276 277 - We assume that all values occupy one stack element. For example, 278 sometimes we'll swap to get at the left argument to a binary 279 operator. If we decide that void values should occupy no stack 280 elements, or that synthetic arrays (whose size is determined at 281 run time, created by the `@' operator) should occupy two stack 282 elements (address and length), then this will cause trouble. 283 284 - We assume the stack elements are infinitely wide, and that we 285 don't have to worry what happens if the user requests an 286 operation that is wider than the actual interpreter's stack. 287 That is, it's up to the interpreter to handle directly all the 288 integer widths the user has access to. (Woe betide the language 289 with bignums!) 290 291 - We don't support side effects. Thus, we don't have to worry about 292 GCC's generalized lvalues, function calls, etc. 293 294 - We don't support floating point. Many places where we switch on 295 some type don't bother to include cases for floating point; there 296 may be even more subtle ways this assumption exists. For 297 example, the arguments to % must be integers. 298 299 - We assume all subexpressions have a static, unchanging type. If 300 we tried to support convenience variables, this would be a 301 problem. 302 303 - All values on the stack should always be fully zero- or 304 sign-extended. 305 306 (I wasn't sure whether to choose this or its opposite --- that 307 only addresses are assumed extended --- but it turns out that 308 neither convention completely eliminates spurious extend 309 operations (if everything is always extended, then you have to 310 extend after add, because it could overflow; if nothing is 311 extended, then you end up producing extends whenever you change 312 sizes), and this is simpler.) */ 313 314 315 /* Scan for all static fields in the given class, including any base 316 classes, and generate tracing bytecodes for each. */ 317 318 static void 319 gen_trace_static_fields (struct gdbarch *gdbarch, 320 struct agent_expr *ax, 321 struct type *type) 322 { 323 int i, nbases = TYPE_N_BASECLASSES (type); 324 struct axs_value value; 325 326 type = check_typedef (type); 327 328 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) 329 { 330 if (field_is_static (&TYPE_FIELD (type, i))) 331 { 332 gen_static_field (gdbarch, ax, &value, type, i); 333 if (value.optimized_out) 334 continue; 335 switch (value.kind) 336 { 337 case axs_lvalue_memory: 338 { 339 /* Initialize the TYPE_LENGTH if it is a typedef. */ 340 check_typedef (value.type); 341 ax_const_l (ax, TYPE_LENGTH (value.type)); 342 ax_simple (ax, aop_trace); 343 } 344 break; 345 346 case axs_lvalue_register: 347 /* We don't actually need the register's value to be pushed, 348 just note that we need it to be collected. */ 349 ax_reg_mask (ax, value.u.reg); 350 351 default: 352 break; 353 } 354 } 355 } 356 357 /* Now scan through base classes recursively. */ 358 for (i = 0; i < nbases; i++) 359 { 360 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); 361 362 gen_trace_static_fields (gdbarch, ax, basetype); 363 } 364 } 365 366 /* Trace the lvalue on the stack, if it needs it. In either case, pop 367 the value. Useful on the left side of a comma, and at the end of 368 an expression being used for tracing. */ 369 static void 370 gen_traced_pop (struct gdbarch *gdbarch, 371 struct agent_expr *ax, struct axs_value *value) 372 { 373 int string_trace = 0; 374 if (ax->trace_string 375 && TYPE_CODE (value->type) == TYPE_CODE_PTR 376 && c_textual_element_type (check_typedef (TYPE_TARGET_TYPE (value->type)), 377 's')) 378 string_trace = 1; 379 380 if (ax->tracing) 381 switch (value->kind) 382 { 383 case axs_rvalue: 384 if (string_trace) 385 { 386 ax_const_l (ax, ax->trace_string); 387 ax_simple (ax, aop_tracenz); 388 } 389 else 390 /* We don't trace rvalues, just the lvalues necessary to 391 produce them. So just dispose of this value. */ 392 ax_simple (ax, aop_pop); 393 break; 394 395 case axs_lvalue_memory: 396 { 397 /* Initialize the TYPE_LENGTH if it is a typedef. */ 398 check_typedef (value->type); 399 400 if (string_trace) 401 { 402 gen_fetch (ax, value->type); 403 ax_const_l (ax, ax->trace_string); 404 ax_simple (ax, aop_tracenz); 405 } 406 else 407 { 408 /* There's no point in trying to use a trace_quick bytecode 409 here, since "trace_quick SIZE pop" is three bytes, whereas 410 "const8 SIZE trace" is also three bytes, does the same 411 thing, and the simplest code which generates that will also 412 work correctly for objects with large sizes. */ 413 ax_const_l (ax, TYPE_LENGTH (value->type)); 414 ax_simple (ax, aop_trace); 415 } 416 } 417 break; 418 419 case axs_lvalue_register: 420 /* We don't actually need the register's value to be on the 421 stack, and the target will get heartburn if the register is 422 larger than will fit in a stack, so just mark it for 423 collection and be done with it. */ 424 ax_reg_mask (ax, value->u.reg); 425 426 /* But if the register points to a string, assume the value 427 will fit on the stack and push it anyway. */ 428 if (string_trace) 429 { 430 ax_reg (ax, value->u.reg); 431 ax_const_l (ax, ax->trace_string); 432 ax_simple (ax, aop_tracenz); 433 } 434 break; 435 } 436 else 437 /* If we're not tracing, just pop the value. */ 438 ax_simple (ax, aop_pop); 439 440 /* To trace C++ classes with static fields stored elsewhere. */ 441 if (ax->tracing 442 && (TYPE_CODE (value->type) == TYPE_CODE_STRUCT 443 || TYPE_CODE (value->type) == TYPE_CODE_UNION)) 444 gen_trace_static_fields (gdbarch, ax, value->type); 445 } 446 447 448 449 /* Generating bytecode from GDB expressions: helper functions */ 450 451 /* Assume that the lower bits of the top of the stack is a value of 452 type TYPE, and the upper bits are zero. Sign-extend if necessary. */ 453 static void 454 gen_sign_extend (struct agent_expr *ax, struct type *type) 455 { 456 /* Do we need to sign-extend this? */ 457 if (!TYPE_UNSIGNED (type)) 458 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT); 459 } 460 461 462 /* Assume the lower bits of the top of the stack hold a value of type 463 TYPE, and the upper bits are garbage. Sign-extend or truncate as 464 needed. */ 465 static void 466 gen_extend (struct agent_expr *ax, struct type *type) 467 { 468 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT; 469 470 /* I just had to. */ 471 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits)); 472 } 473 474 475 /* Assume that the top of the stack contains a value of type "pointer 476 to TYPE"; generate code to fetch its value. Note that TYPE is the 477 target type, not the pointer type. */ 478 static void 479 gen_fetch (struct agent_expr *ax, struct type *type) 480 { 481 if (ax->tracing) 482 { 483 /* Record the area of memory we're about to fetch. */ 484 ax_trace_quick (ax, TYPE_LENGTH (type)); 485 } 486 487 if (TYPE_CODE (type) == TYPE_CODE_RANGE) 488 type = TYPE_TARGET_TYPE (type); 489 490 switch (TYPE_CODE (type)) 491 { 492 case TYPE_CODE_PTR: 493 case TYPE_CODE_REF: 494 case TYPE_CODE_ENUM: 495 case TYPE_CODE_INT: 496 case TYPE_CODE_CHAR: 497 case TYPE_CODE_BOOL: 498 /* It's a scalar value, so we know how to dereference it. How 499 many bytes long is it? */ 500 switch (TYPE_LENGTH (type)) 501 { 502 case 8 / TARGET_CHAR_BIT: 503 ax_simple (ax, aop_ref8); 504 break; 505 case 16 / TARGET_CHAR_BIT: 506 ax_simple (ax, aop_ref16); 507 break; 508 case 32 / TARGET_CHAR_BIT: 509 ax_simple (ax, aop_ref32); 510 break; 511 case 64 / TARGET_CHAR_BIT: 512 ax_simple (ax, aop_ref64); 513 break; 514 515 /* Either our caller shouldn't have asked us to dereference 516 that pointer (other code's fault), or we're not 517 implementing something we should be (this code's fault). 518 In any case, it's a bug the user shouldn't see. */ 519 default: 520 internal_error (__FILE__, __LINE__, 521 _("gen_fetch: strange size")); 522 } 523 524 gen_sign_extend (ax, type); 525 break; 526 527 default: 528 /* Our caller requested us to dereference a pointer from an unsupported 529 type. Error out and give callers a chance to handle the failure 530 gracefully. */ 531 error (_("gen_fetch: Unsupported type code `%s'."), 532 TYPE_NAME (type)); 533 } 534 } 535 536 537 /* Generate code to left shift the top of the stack by DISTANCE bits, or 538 right shift it by -DISTANCE bits if DISTANCE < 0. This generates 539 unsigned (logical) right shifts. */ 540 static void 541 gen_left_shift (struct agent_expr *ax, int distance) 542 { 543 if (distance > 0) 544 { 545 ax_const_l (ax, distance); 546 ax_simple (ax, aop_lsh); 547 } 548 else if (distance < 0) 549 { 550 ax_const_l (ax, -distance); 551 ax_simple (ax, aop_rsh_unsigned); 552 } 553 } 554 555 556 557 /* Generating bytecode from GDB expressions: symbol references */ 558 559 /* Generate code to push the base address of the argument portion of 560 the top stack frame. */ 561 static void 562 gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax) 563 { 564 int frame_reg; 565 LONGEST frame_offset; 566 567 gdbarch_virtual_frame_pointer (gdbarch, 568 ax->scope, &frame_reg, &frame_offset); 569 ax_reg (ax, frame_reg); 570 gen_offset (ax, frame_offset); 571 } 572 573 574 /* Generate code to push the base address of the locals portion of the 575 top stack frame. */ 576 static void 577 gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax) 578 { 579 int frame_reg; 580 LONGEST frame_offset; 581 582 gdbarch_virtual_frame_pointer (gdbarch, 583 ax->scope, &frame_reg, &frame_offset); 584 ax_reg (ax, frame_reg); 585 gen_offset (ax, frame_offset); 586 } 587 588 589 /* Generate code to add OFFSET to the top of the stack. Try to 590 generate short and readable code. We use this for getting to 591 variables on the stack, and structure members. If we were 592 programming in ML, it would be clearer why these are the same 593 thing. */ 594 static void 595 gen_offset (struct agent_expr *ax, int offset) 596 { 597 /* It would suffice to simply push the offset and add it, but this 598 makes it easier to read positive and negative offsets in the 599 bytecode. */ 600 if (offset > 0) 601 { 602 ax_const_l (ax, offset); 603 ax_simple (ax, aop_add); 604 } 605 else if (offset < 0) 606 { 607 ax_const_l (ax, -offset); 608 ax_simple (ax, aop_sub); 609 } 610 } 611 612 613 /* In many cases, a symbol's value is the offset from some other 614 address (stack frame, base register, etc.) Generate code to add 615 VAR's value to the top of the stack. */ 616 static void 617 gen_sym_offset (struct agent_expr *ax, struct symbol *var) 618 { 619 gen_offset (ax, SYMBOL_VALUE (var)); 620 } 621 622 623 /* Generate code for a variable reference to AX. The variable is the 624 symbol VAR. Set VALUE to describe the result. */ 625 626 static void 627 gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax, 628 struct axs_value *value, struct symbol *var) 629 { 630 /* Dereference any typedefs. */ 631 value->type = check_typedef (SYMBOL_TYPE (var)); 632 value->optimized_out = 0; 633 634 if (SYMBOL_COMPUTED_OPS (var) != NULL) 635 { 636 SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value); 637 return; 638 } 639 640 /* I'm imitating the code in read_var_value. */ 641 switch (SYMBOL_CLASS (var)) 642 { 643 case LOC_CONST: /* A constant, like an enum value. */ 644 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var)); 645 value->kind = axs_rvalue; 646 break; 647 648 case LOC_LABEL: /* A goto label, being used as a value. */ 649 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var)); 650 value->kind = axs_rvalue; 651 break; 652 653 case LOC_CONST_BYTES: 654 internal_error (__FILE__, __LINE__, 655 _("gen_var_ref: LOC_CONST_BYTES " 656 "symbols are not supported")); 657 658 /* Variable at a fixed location in memory. Easy. */ 659 case LOC_STATIC: 660 /* Push the address of the variable. */ 661 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var)); 662 value->kind = axs_lvalue_memory; 663 break; 664 665 case LOC_ARG: /* var lives in argument area of frame */ 666 gen_frame_args_address (gdbarch, ax); 667 gen_sym_offset (ax, var); 668 value->kind = axs_lvalue_memory; 669 break; 670 671 case LOC_REF_ARG: /* As above, but the frame slot really 672 holds the address of the variable. */ 673 gen_frame_args_address (gdbarch, ax); 674 gen_sym_offset (ax, var); 675 /* Don't assume any particular pointer size. */ 676 gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr); 677 value->kind = axs_lvalue_memory; 678 break; 679 680 case LOC_LOCAL: /* var lives in locals area of frame */ 681 gen_frame_locals_address (gdbarch, ax); 682 gen_sym_offset (ax, var); 683 value->kind = axs_lvalue_memory; 684 break; 685 686 case LOC_TYPEDEF: 687 error (_("Cannot compute value of typedef `%s'."), 688 SYMBOL_PRINT_NAME (var)); 689 break; 690 691 case LOC_BLOCK: 692 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var))); 693 value->kind = axs_rvalue; 694 break; 695 696 case LOC_REGISTER: 697 /* Don't generate any code at all; in the process of treating 698 this as an lvalue or rvalue, the caller will generate the 699 right code. */ 700 value->kind = axs_lvalue_register; 701 value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch); 702 break; 703 704 /* A lot like LOC_REF_ARG, but the pointer lives directly in a 705 register, not on the stack. Simpler than LOC_REGISTER 706 because it's just like any other case where the thing 707 has a real address. */ 708 case LOC_REGPARM_ADDR: 709 ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch)); 710 value->kind = axs_lvalue_memory; 711 break; 712 713 case LOC_UNRESOLVED: 714 { 715 struct bound_minimal_symbol msym 716 = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL); 717 718 if (!msym.minsym) 719 error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var)); 720 721 /* Push the address of the variable. */ 722 ax_const_l (ax, BMSYMBOL_VALUE_ADDRESS (msym)); 723 value->kind = axs_lvalue_memory; 724 } 725 break; 726 727 case LOC_COMPUTED: 728 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method")); 729 730 case LOC_OPTIMIZED_OUT: 731 /* Flag this, but don't say anything; leave it up to callers to 732 warn the user. */ 733 value->optimized_out = 1; 734 break; 735 736 default: 737 error (_("Cannot find value of botched symbol `%s'."), 738 SYMBOL_PRINT_NAME (var)); 739 break; 740 } 741 } 742 743 744 745 /* Generating bytecode from GDB expressions: literals */ 746 747 static void 748 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k, 749 struct type *type) 750 { 751 ax_const_l (ax, k); 752 value->kind = axs_rvalue; 753 value->type = check_typedef (type); 754 } 755 756 757 758 /* Generating bytecode from GDB expressions: unary conversions, casts */ 759 760 /* Take what's on the top of the stack (as described by VALUE), and 761 try to make an rvalue out of it. Signal an error if we can't do 762 that. */ 763 void 764 require_rvalue (struct agent_expr *ax, struct axs_value *value) 765 { 766 /* Only deal with scalars, structs and such may be too large 767 to fit in a stack entry. */ 768 value->type = check_typedef (value->type); 769 if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY 770 || TYPE_CODE (value->type) == TYPE_CODE_STRUCT 771 || TYPE_CODE (value->type) == TYPE_CODE_UNION 772 || TYPE_CODE (value->type) == TYPE_CODE_FUNC) 773 error (_("Value not scalar: cannot be an rvalue.")); 774 775 switch (value->kind) 776 { 777 case axs_rvalue: 778 /* It's already an rvalue. */ 779 break; 780 781 case axs_lvalue_memory: 782 /* The top of stack is the address of the object. Dereference. */ 783 gen_fetch (ax, value->type); 784 break; 785 786 case axs_lvalue_register: 787 /* There's nothing on the stack, but value->u.reg is the 788 register number containing the value. 789 790 When we add floating-point support, this is going to have to 791 change. What about SPARC register pairs, for example? */ 792 ax_reg (ax, value->u.reg); 793 gen_extend (ax, value->type); 794 break; 795 } 796 797 value->kind = axs_rvalue; 798 } 799 800 801 /* Assume the top of the stack is described by VALUE, and perform the 802 usual unary conversions. This is motivated by ANSI 6.2.2, but of 803 course GDB expressions are not ANSI; they're the mishmash union of 804 a bunch of languages. Rah. 805 806 NOTE! This function promises to produce an rvalue only when the 807 incoming value is of an appropriate type. In other words, the 808 consumer of the value this function produces may assume the value 809 is an rvalue only after checking its type. 810 811 The immediate issue is that if the user tries to use a structure or 812 union as an operand of, say, the `+' operator, we don't want to try 813 to convert that structure to an rvalue; require_rvalue will bomb on 814 structs and unions. Rather, we want to simply pass the struct 815 lvalue through unchanged, and let `+' raise an error. */ 816 817 static void 818 gen_usual_unary (struct expression *exp, struct agent_expr *ax, 819 struct axs_value *value) 820 { 821 /* We don't have to generate any code for the usual integral 822 conversions, since values are always represented as full-width on 823 the stack. Should we tweak the type? */ 824 825 /* Some types require special handling. */ 826 switch (TYPE_CODE (value->type)) 827 { 828 /* Functions get converted to a pointer to the function. */ 829 case TYPE_CODE_FUNC: 830 value->type = lookup_pointer_type (value->type); 831 value->kind = axs_rvalue; /* Should always be true, but just in case. */ 832 break; 833 834 /* Arrays get converted to a pointer to their first element, and 835 are no longer an lvalue. */ 836 case TYPE_CODE_ARRAY: 837 { 838 struct type *elements = TYPE_TARGET_TYPE (value->type); 839 840 value->type = lookup_pointer_type (elements); 841 value->kind = axs_rvalue; 842 /* We don't need to generate any code; the address of the array 843 is also the address of its first element. */ 844 } 845 break; 846 847 /* Don't try to convert structures and unions to rvalues. Let the 848 consumer signal an error. */ 849 case TYPE_CODE_STRUCT: 850 case TYPE_CODE_UNION: 851 return; 852 } 853 854 /* If the value is an lvalue, dereference it. */ 855 require_rvalue (ax, value); 856 } 857 858 859 /* Return non-zero iff the type TYPE1 is considered "wider" than the 860 type TYPE2, according to the rules described in gen_usual_arithmetic. */ 861 static int 862 type_wider_than (struct type *type1, struct type *type2) 863 { 864 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2) 865 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2) 866 && TYPE_UNSIGNED (type1) 867 && !TYPE_UNSIGNED (type2))); 868 } 869 870 871 /* Return the "wider" of the two types TYPE1 and TYPE2. */ 872 static struct type * 873 max_type (struct type *type1, struct type *type2) 874 { 875 return type_wider_than (type1, type2) ? type1 : type2; 876 } 877 878 879 /* Generate code to convert a scalar value of type FROM to type TO. */ 880 static void 881 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to) 882 { 883 /* Perhaps there is a more graceful way to state these rules. */ 884 885 /* If we're converting to a narrower type, then we need to clear out 886 the upper bits. */ 887 if (TYPE_LENGTH (to) < TYPE_LENGTH (from)) 888 gen_extend (ax, to); 889 890 /* If the two values have equal width, but different signednesses, 891 then we need to extend. */ 892 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from)) 893 { 894 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to)) 895 gen_extend (ax, to); 896 } 897 898 /* If we're converting to a wider type, and becoming unsigned, then 899 we need to zero out any possible sign bits. */ 900 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from)) 901 { 902 if (TYPE_UNSIGNED (to)) 903 gen_extend (ax, to); 904 } 905 } 906 907 908 /* Return non-zero iff the type FROM will require any bytecodes to be 909 emitted to be converted to the type TO. */ 910 static int 911 is_nontrivial_conversion (struct type *from, struct type *to) 912 { 913 struct agent_expr *ax = new_agent_expr (NULL, 0); 914 int nontrivial; 915 916 /* Actually generate the code, and see if anything came out. At the 917 moment, it would be trivial to replicate the code in 918 gen_conversion here, but in the future, when we're supporting 919 floating point and the like, it may not be. Doing things this 920 way allows this function to be independent of the logic in 921 gen_conversion. */ 922 gen_conversion (ax, from, to); 923 nontrivial = ax->len > 0; 924 free_agent_expr (ax); 925 return nontrivial; 926 } 927 928 929 /* Generate code to perform the "usual arithmetic conversions" (ANSI C 930 6.2.1.5) for the two operands of an arithmetic operator. This 931 effectively finds a "least upper bound" type for the two arguments, 932 and promotes each argument to that type. *VALUE1 and *VALUE2 933 describe the values as they are passed in, and as they are left. */ 934 static void 935 gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax, 936 struct axs_value *value1, struct axs_value *value2) 937 { 938 /* Do the usual binary conversions. */ 939 if (TYPE_CODE (value1->type) == TYPE_CODE_INT 940 && TYPE_CODE (value2->type) == TYPE_CODE_INT) 941 { 942 /* The ANSI integral promotions seem to work this way: Order the 943 integer types by size, and then by signedness: an n-bit 944 unsigned type is considered "wider" than an n-bit signed 945 type. Promote to the "wider" of the two types, and always 946 promote at least to int. */ 947 struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int, 948 max_type (value1->type, value2->type)); 949 950 /* Deal with value2, on the top of the stack. */ 951 gen_conversion (ax, value2->type, target); 952 953 /* Deal with value1, not on the top of the stack. Don't 954 generate the `swap' instructions if we're not actually going 955 to do anything. */ 956 if (is_nontrivial_conversion (value1->type, target)) 957 { 958 ax_simple (ax, aop_swap); 959 gen_conversion (ax, value1->type, target); 960 ax_simple (ax, aop_swap); 961 } 962 963 value1->type = value2->type = check_typedef (target); 964 } 965 } 966 967 968 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on 969 the value on the top of the stack, as described by VALUE. Assume 970 the value has integral type. */ 971 static void 972 gen_integral_promotions (struct expression *exp, struct agent_expr *ax, 973 struct axs_value *value) 974 { 975 const struct builtin_type *builtin = builtin_type (exp->gdbarch); 976 977 if (!type_wider_than (value->type, builtin->builtin_int)) 978 { 979 gen_conversion (ax, value->type, builtin->builtin_int); 980 value->type = builtin->builtin_int; 981 } 982 else if (!type_wider_than (value->type, builtin->builtin_unsigned_int)) 983 { 984 gen_conversion (ax, value->type, builtin->builtin_unsigned_int); 985 value->type = builtin->builtin_unsigned_int; 986 } 987 } 988 989 990 /* Generate code for a cast to TYPE. */ 991 static void 992 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type) 993 { 994 /* GCC does allow casts to yield lvalues, so this should be fixed 995 before merging these changes into the trunk. */ 996 require_rvalue (ax, value); 997 /* Dereference typedefs. */ 998 type = check_typedef (type); 999 1000 switch (TYPE_CODE (type)) 1001 { 1002 case TYPE_CODE_PTR: 1003 case TYPE_CODE_REF: 1004 /* It's implementation-defined, and I'll bet this is what GCC 1005 does. */ 1006 break; 1007 1008 case TYPE_CODE_ARRAY: 1009 case TYPE_CODE_STRUCT: 1010 case TYPE_CODE_UNION: 1011 case TYPE_CODE_FUNC: 1012 error (_("Invalid type cast: intended type must be scalar.")); 1013 1014 case TYPE_CODE_ENUM: 1015 case TYPE_CODE_BOOL: 1016 /* We don't have to worry about the size of the value, because 1017 all our integral values are fully sign-extended, and when 1018 casting pointers we can do anything we like. Is there any 1019 way for us to know what GCC actually does with a cast like 1020 this? */ 1021 break; 1022 1023 case TYPE_CODE_INT: 1024 gen_conversion (ax, value->type, type); 1025 break; 1026 1027 case TYPE_CODE_VOID: 1028 /* We could pop the value, and rely on everyone else to check 1029 the type and notice that this value doesn't occupy a stack 1030 slot. But for now, leave the value on the stack, and 1031 preserve the "value == stack element" assumption. */ 1032 break; 1033 1034 default: 1035 error (_("Casts to requested type are not yet implemented.")); 1036 } 1037 1038 value->type = type; 1039 } 1040 1041 1042 1043 /* Generating bytecode from GDB expressions: arithmetic */ 1044 1045 /* Scale the integer on the top of the stack by the size of the target 1046 of the pointer type TYPE. */ 1047 static void 1048 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type) 1049 { 1050 struct type *element = TYPE_TARGET_TYPE (type); 1051 1052 if (TYPE_LENGTH (element) != 1) 1053 { 1054 ax_const_l (ax, TYPE_LENGTH (element)); 1055 ax_simple (ax, op); 1056 } 1057 } 1058 1059 1060 /* Generate code for pointer arithmetic PTR + INT. */ 1061 static void 1062 gen_ptradd (struct agent_expr *ax, struct axs_value *value, 1063 struct axs_value *value1, struct axs_value *value2) 1064 { 1065 gdb_assert (pointer_type (value1->type)); 1066 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT); 1067 1068 gen_scale (ax, aop_mul, value1->type); 1069 ax_simple (ax, aop_add); 1070 gen_extend (ax, value1->type); /* Catch overflow. */ 1071 value->type = value1->type; 1072 value->kind = axs_rvalue; 1073 } 1074 1075 1076 /* Generate code for pointer arithmetic PTR - INT. */ 1077 static void 1078 gen_ptrsub (struct agent_expr *ax, struct axs_value *value, 1079 struct axs_value *value1, struct axs_value *value2) 1080 { 1081 gdb_assert (pointer_type (value1->type)); 1082 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT); 1083 1084 gen_scale (ax, aop_mul, value1->type); 1085 ax_simple (ax, aop_sub); 1086 gen_extend (ax, value1->type); /* Catch overflow. */ 1087 value->type = value1->type; 1088 value->kind = axs_rvalue; 1089 } 1090 1091 1092 /* Generate code for pointer arithmetic PTR - PTR. */ 1093 static void 1094 gen_ptrdiff (struct agent_expr *ax, struct axs_value *value, 1095 struct axs_value *value1, struct axs_value *value2, 1096 struct type *result_type) 1097 { 1098 gdb_assert (pointer_type (value1->type)); 1099 gdb_assert (pointer_type (value2->type)); 1100 1101 if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type)) 1102 != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))) 1103 error (_("\ 1104 First argument of `-' is a pointer, but second argument is neither\n\ 1105 an integer nor a pointer of the same type.")); 1106 1107 ax_simple (ax, aop_sub); 1108 gen_scale (ax, aop_div_unsigned, value1->type); 1109 value->type = result_type; 1110 value->kind = axs_rvalue; 1111 } 1112 1113 static void 1114 gen_equal (struct agent_expr *ax, struct axs_value *value, 1115 struct axs_value *value1, struct axs_value *value2, 1116 struct type *result_type) 1117 { 1118 if (pointer_type (value1->type) || pointer_type (value2->type)) 1119 ax_simple (ax, aop_equal); 1120 else 1121 gen_binop (ax, value, value1, value2, 1122 aop_equal, aop_equal, 0, "equal"); 1123 value->type = result_type; 1124 value->kind = axs_rvalue; 1125 } 1126 1127 static void 1128 gen_less (struct agent_expr *ax, struct axs_value *value, 1129 struct axs_value *value1, struct axs_value *value2, 1130 struct type *result_type) 1131 { 1132 if (pointer_type (value1->type) || pointer_type (value2->type)) 1133 ax_simple (ax, aop_less_unsigned); 1134 else 1135 gen_binop (ax, value, value1, value2, 1136 aop_less_signed, aop_less_unsigned, 0, "less than"); 1137 value->type = result_type; 1138 value->kind = axs_rvalue; 1139 } 1140 1141 /* Generate code for a binary operator that doesn't do pointer magic. 1142 We set VALUE to describe the result value; we assume VALUE1 and 1143 VALUE2 describe the two operands, and that they've undergone the 1144 usual binary conversions. MAY_CARRY should be non-zero iff the 1145 result needs to be extended. NAME is the English name of the 1146 operator, used in error messages */ 1147 static void 1148 gen_binop (struct agent_expr *ax, struct axs_value *value, 1149 struct axs_value *value1, struct axs_value *value2, 1150 enum agent_op op, enum agent_op op_unsigned, 1151 int may_carry, char *name) 1152 { 1153 /* We only handle INT op INT. */ 1154 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT) 1155 || (TYPE_CODE (value2->type) != TYPE_CODE_INT)) 1156 error (_("Invalid combination of types in %s."), name); 1157 1158 ax_simple (ax, 1159 TYPE_UNSIGNED (value1->type) ? op_unsigned : op); 1160 if (may_carry) 1161 gen_extend (ax, value1->type); /* catch overflow */ 1162 value->type = value1->type; 1163 value->kind = axs_rvalue; 1164 } 1165 1166 1167 static void 1168 gen_logical_not (struct agent_expr *ax, struct axs_value *value, 1169 struct type *result_type) 1170 { 1171 if (TYPE_CODE (value->type) != TYPE_CODE_INT 1172 && TYPE_CODE (value->type) != TYPE_CODE_PTR) 1173 error (_("Invalid type of operand to `!'.")); 1174 1175 ax_simple (ax, aop_log_not); 1176 value->type = result_type; 1177 } 1178 1179 1180 static void 1181 gen_complement (struct agent_expr *ax, struct axs_value *value) 1182 { 1183 if (TYPE_CODE (value->type) != TYPE_CODE_INT) 1184 error (_("Invalid type of operand to `~'.")); 1185 1186 ax_simple (ax, aop_bit_not); 1187 gen_extend (ax, value->type); 1188 } 1189 1190 1191 1192 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */ 1193 1194 /* Dereference the value on the top of the stack. */ 1195 static void 1196 gen_deref (struct agent_expr *ax, struct axs_value *value) 1197 { 1198 /* The caller should check the type, because several operators use 1199 this, and we don't know what error message to generate. */ 1200 if (!pointer_type (value->type)) 1201 internal_error (__FILE__, __LINE__, 1202 _("gen_deref: expected a pointer")); 1203 1204 /* We've got an rvalue now, which is a pointer. We want to yield an 1205 lvalue, whose address is exactly that pointer. So we don't 1206 actually emit any code; we just change the type from "Pointer to 1207 T" to "T", and mark the value as an lvalue in memory. Leave it 1208 to the consumer to actually dereference it. */ 1209 value->type = check_typedef (TYPE_TARGET_TYPE (value->type)); 1210 if (TYPE_CODE (value->type) == TYPE_CODE_VOID) 1211 error (_("Attempt to dereference a generic pointer.")); 1212 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC) 1213 ? axs_rvalue : axs_lvalue_memory); 1214 } 1215 1216 1217 /* Produce the address of the lvalue on the top of the stack. */ 1218 static void 1219 gen_address_of (struct agent_expr *ax, struct axs_value *value) 1220 { 1221 /* Special case for taking the address of a function. The ANSI 1222 standard describes this as a special case, too, so this 1223 arrangement is not without motivation. */ 1224 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC) 1225 /* The value's already an rvalue on the stack, so we just need to 1226 change the type. */ 1227 value->type = lookup_pointer_type (value->type); 1228 else 1229 switch (value->kind) 1230 { 1231 case axs_rvalue: 1232 error (_("Operand of `&' is an rvalue, which has no address.")); 1233 1234 case axs_lvalue_register: 1235 error (_("Operand of `&' is in a register, and has no address.")); 1236 1237 case axs_lvalue_memory: 1238 value->kind = axs_rvalue; 1239 value->type = lookup_pointer_type (value->type); 1240 break; 1241 } 1242 } 1243 1244 /* Generate code to push the value of a bitfield of a structure whose 1245 address is on the top of the stack. START and END give the 1246 starting and one-past-ending *bit* numbers of the field within the 1247 structure. */ 1248 static void 1249 gen_bitfield_ref (struct expression *exp, struct agent_expr *ax, 1250 struct axs_value *value, struct type *type, 1251 int start, int end) 1252 { 1253 /* Note that ops[i] fetches 8 << i bits. */ 1254 static enum agent_op ops[] 1255 = {aop_ref8, aop_ref16, aop_ref32, aop_ref64}; 1256 static int num_ops = (sizeof (ops) / sizeof (ops[0])); 1257 1258 /* We don't want to touch any byte that the bitfield doesn't 1259 actually occupy; we shouldn't make any accesses we're not 1260 explicitly permitted to. We rely here on the fact that the 1261 bytecode `ref' operators work on unaligned addresses. 1262 1263 It takes some fancy footwork to get the stack to work the way 1264 we'd like. Say we're retrieving a bitfield that requires three 1265 fetches. Initially, the stack just contains the address: 1266 addr 1267 For the first fetch, we duplicate the address 1268 addr addr 1269 then add the byte offset, do the fetch, and shift and mask as 1270 needed, yielding a fragment of the value, properly aligned for 1271 the final bitwise or: 1272 addr frag1 1273 then we swap, and repeat the process: 1274 frag1 addr --- address on top 1275 frag1 addr addr --- duplicate it 1276 frag1 addr frag2 --- get second fragment 1277 frag1 frag2 addr --- swap again 1278 frag1 frag2 frag3 --- get third fragment 1279 Notice that, since the third fragment is the last one, we don't 1280 bother duplicating the address this time. Now we have all the 1281 fragments on the stack, and we can simply `or' them together, 1282 yielding the final value of the bitfield. */ 1283 1284 /* The first and one-after-last bits in the field, but rounded down 1285 and up to byte boundaries. */ 1286 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT; 1287 int bound_end = (((end + TARGET_CHAR_BIT - 1) 1288 / TARGET_CHAR_BIT) 1289 * TARGET_CHAR_BIT); 1290 1291 /* current bit offset within the structure */ 1292 int offset; 1293 1294 /* The index in ops of the opcode we're considering. */ 1295 int op; 1296 1297 /* The number of fragments we generated in the process. Probably 1298 equal to the number of `one' bits in bytesize, but who cares? */ 1299 int fragment_count; 1300 1301 /* Dereference any typedefs. */ 1302 type = check_typedef (type); 1303 1304 /* Can we fetch the number of bits requested at all? */ 1305 if ((end - start) > ((1 << num_ops) * 8)) 1306 internal_error (__FILE__, __LINE__, 1307 _("gen_bitfield_ref: bitfield too wide")); 1308 1309 /* Note that we know here that we only need to try each opcode once. 1310 That may not be true on machines with weird byte sizes. */ 1311 offset = bound_start; 1312 fragment_count = 0; 1313 for (op = num_ops - 1; op >= 0; op--) 1314 { 1315 /* number of bits that ops[op] would fetch */ 1316 int op_size = 8 << op; 1317 1318 /* The stack at this point, from bottom to top, contains zero or 1319 more fragments, then the address. */ 1320 1321 /* Does this fetch fit within the bitfield? */ 1322 if (offset + op_size <= bound_end) 1323 { 1324 /* Is this the last fragment? */ 1325 int last_frag = (offset + op_size == bound_end); 1326 1327 if (!last_frag) 1328 ax_simple (ax, aop_dup); /* keep a copy of the address */ 1329 1330 /* Add the offset. */ 1331 gen_offset (ax, offset / TARGET_CHAR_BIT); 1332 1333 if (ax->tracing) 1334 { 1335 /* Record the area of memory we're about to fetch. */ 1336 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT); 1337 } 1338 1339 /* Perform the fetch. */ 1340 ax_simple (ax, ops[op]); 1341 1342 /* Shift the bits we have to their proper position. 1343 gen_left_shift will generate right shifts when the operand 1344 is negative. 1345 1346 A big-endian field diagram to ponder: 1347 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 1348 +------++------++------++------++------++------++------++------+ 1349 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx 1350 ^ ^ ^ ^ 1351 bit number 16 32 48 53 1352 These are bit numbers as supplied by GDB. Note that the 1353 bit numbers run from right to left once you've fetched the 1354 value! 1355 1356 A little-endian field diagram to ponder: 1357 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0 1358 +------++------++------++------++------++------++------++------+ 1359 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx 1360 ^ ^ ^ ^ ^ 1361 bit number 48 32 16 4 0 1362 1363 In both cases, the most significant end is on the left 1364 (i.e. normal numeric writing order), which means that you 1365 don't go crazy thinking about `left' and `right' shifts. 1366 1367 We don't have to worry about masking yet: 1368 - If they contain garbage off the least significant end, then we 1369 must be looking at the low end of the field, and the right 1370 shift will wipe them out. 1371 - If they contain garbage off the most significant end, then we 1372 must be looking at the most significant end of the word, and 1373 the sign/zero extension will wipe them out. 1374 - If we're in the interior of the word, then there is no garbage 1375 on either end, because the ref operators zero-extend. */ 1376 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG) 1377 gen_left_shift (ax, end - (offset + op_size)); 1378 else 1379 gen_left_shift (ax, offset - start); 1380 1381 if (!last_frag) 1382 /* Bring the copy of the address up to the top. */ 1383 ax_simple (ax, aop_swap); 1384 1385 offset += op_size; 1386 fragment_count++; 1387 } 1388 } 1389 1390 /* Generate enough bitwise `or' operations to combine all the 1391 fragments we left on the stack. */ 1392 while (fragment_count-- > 1) 1393 ax_simple (ax, aop_bit_or); 1394 1395 /* Sign- or zero-extend the value as appropriate. */ 1396 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start)); 1397 1398 /* This is *not* an lvalue. Ugh. */ 1399 value->kind = axs_rvalue; 1400 value->type = type; 1401 } 1402 1403 /* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET 1404 is an accumulated offset (in bytes), will be nonzero for objects 1405 embedded in other objects, like C++ base classes. Behavior should 1406 generally follow value_primitive_field. */ 1407 1408 static void 1409 gen_primitive_field (struct expression *exp, 1410 struct agent_expr *ax, struct axs_value *value, 1411 int offset, int fieldno, struct type *type) 1412 { 1413 /* Is this a bitfield? */ 1414 if (TYPE_FIELD_PACKED (type, fieldno)) 1415 gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, fieldno), 1416 (offset * TARGET_CHAR_BIT 1417 + TYPE_FIELD_BITPOS (type, fieldno)), 1418 (offset * TARGET_CHAR_BIT 1419 + TYPE_FIELD_BITPOS (type, fieldno) 1420 + TYPE_FIELD_BITSIZE (type, fieldno))); 1421 else 1422 { 1423 gen_offset (ax, offset 1424 + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT); 1425 value->kind = axs_lvalue_memory; 1426 value->type = TYPE_FIELD_TYPE (type, fieldno); 1427 } 1428 } 1429 1430 /* Search for the given field in either the given type or one of its 1431 base classes. Return 1 if found, 0 if not. */ 1432 1433 static int 1434 gen_struct_ref_recursive (struct expression *exp, struct agent_expr *ax, 1435 struct axs_value *value, 1436 char *field, int offset, struct type *type) 1437 { 1438 int i, rslt; 1439 int nbases = TYPE_N_BASECLASSES (type); 1440 1441 type = check_typedef (type); 1442 1443 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) 1444 { 1445 const char *this_name = TYPE_FIELD_NAME (type, i); 1446 1447 if (this_name) 1448 { 1449 if (strcmp (field, this_name) == 0) 1450 { 1451 /* Note that bytecodes for the struct's base (aka 1452 "this") will have been generated already, which will 1453 be unnecessary but not harmful if the static field is 1454 being handled as a global. */ 1455 if (field_is_static (&TYPE_FIELD (type, i))) 1456 { 1457 gen_static_field (exp->gdbarch, ax, value, type, i); 1458 if (value->optimized_out) 1459 error (_("static field `%s' has been " 1460 "optimized out, cannot use"), 1461 field); 1462 return 1; 1463 } 1464 1465 gen_primitive_field (exp, ax, value, offset, i, type); 1466 return 1; 1467 } 1468 #if 0 /* is this right? */ 1469 if (this_name[0] == '\0') 1470 internal_error (__FILE__, __LINE__, 1471 _("find_field: anonymous unions not supported")); 1472 #endif 1473 } 1474 } 1475 1476 /* Now scan through base classes recursively. */ 1477 for (i = 0; i < nbases; i++) 1478 { 1479 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); 1480 1481 rslt = gen_struct_ref_recursive (exp, ax, value, field, 1482 offset + TYPE_BASECLASS_BITPOS (type, i) 1483 / TARGET_CHAR_BIT, 1484 basetype); 1485 if (rslt) 1486 return 1; 1487 } 1488 1489 /* Not found anywhere, flag so caller can complain. */ 1490 return 0; 1491 } 1492 1493 /* Generate code to reference the member named FIELD of a structure or 1494 union. The top of the stack, as described by VALUE, should have 1495 type (pointer to a)* struct/union. OPERATOR_NAME is the name of 1496 the operator being compiled, and OPERAND_NAME is the kind of thing 1497 it operates on; we use them in error messages. */ 1498 static void 1499 gen_struct_ref (struct expression *exp, struct agent_expr *ax, 1500 struct axs_value *value, char *field, 1501 char *operator_name, char *operand_name) 1502 { 1503 struct type *type; 1504 int found; 1505 1506 /* Follow pointers until we reach a non-pointer. These aren't the C 1507 semantics, but they're what the normal GDB evaluator does, so we 1508 should at least be consistent. */ 1509 while (pointer_type (value->type)) 1510 { 1511 require_rvalue (ax, value); 1512 gen_deref (ax, value); 1513 } 1514 type = check_typedef (value->type); 1515 1516 /* This must yield a structure or a union. */ 1517 if (TYPE_CODE (type) != TYPE_CODE_STRUCT 1518 && TYPE_CODE (type) != TYPE_CODE_UNION) 1519 error (_("The left operand of `%s' is not a %s."), 1520 operator_name, operand_name); 1521 1522 /* And it must be in memory; we don't deal with structure rvalues, 1523 or structures living in registers. */ 1524 if (value->kind != axs_lvalue_memory) 1525 error (_("Structure does not live in memory.")); 1526 1527 /* Search through fields and base classes recursively. */ 1528 found = gen_struct_ref_recursive (exp, ax, value, field, 0, type); 1529 1530 if (!found) 1531 error (_("Couldn't find member named `%s' in struct/union/class `%s'"), 1532 field, TYPE_TAG_NAME (type)); 1533 } 1534 1535 static int 1536 gen_namespace_elt (struct expression *exp, 1537 struct agent_expr *ax, struct axs_value *value, 1538 const struct type *curtype, char *name); 1539 static int 1540 gen_maybe_namespace_elt (struct expression *exp, 1541 struct agent_expr *ax, struct axs_value *value, 1542 const struct type *curtype, char *name); 1543 1544 static void 1545 gen_static_field (struct gdbarch *gdbarch, 1546 struct agent_expr *ax, struct axs_value *value, 1547 struct type *type, int fieldno) 1548 { 1549 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR) 1550 { 1551 ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); 1552 value->kind = axs_lvalue_memory; 1553 value->type = TYPE_FIELD_TYPE (type, fieldno); 1554 value->optimized_out = 0; 1555 } 1556 else 1557 { 1558 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); 1559 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0).symbol; 1560 1561 if (sym) 1562 { 1563 gen_var_ref (gdbarch, ax, value, sym); 1564 1565 /* Don't error if the value was optimized out, we may be 1566 scanning all static fields and just want to pass over this 1567 and continue with the rest. */ 1568 } 1569 else 1570 { 1571 /* Silently assume this was optimized out; class printing 1572 will let the user know why the data is missing. */ 1573 value->optimized_out = 1; 1574 } 1575 } 1576 } 1577 1578 static int 1579 gen_struct_elt_for_reference (struct expression *exp, 1580 struct agent_expr *ax, struct axs_value *value, 1581 struct type *type, char *fieldname) 1582 { 1583 struct type *t = type; 1584 int i; 1585 1586 if (TYPE_CODE (t) != TYPE_CODE_STRUCT 1587 && TYPE_CODE (t) != TYPE_CODE_UNION) 1588 internal_error (__FILE__, __LINE__, 1589 _("non-aggregate type to gen_struct_elt_for_reference")); 1590 1591 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) 1592 { 1593 const char *t_field_name = TYPE_FIELD_NAME (t, i); 1594 1595 if (t_field_name && strcmp (t_field_name, fieldname) == 0) 1596 { 1597 if (field_is_static (&TYPE_FIELD (t, i))) 1598 { 1599 gen_static_field (exp->gdbarch, ax, value, t, i); 1600 if (value->optimized_out) 1601 error (_("static field `%s' has been " 1602 "optimized out, cannot use"), 1603 fieldname); 1604 return 1; 1605 } 1606 if (TYPE_FIELD_PACKED (t, i)) 1607 error (_("pointers to bitfield members not allowed")); 1608 1609 /* FIXME we need a way to do "want_address" equivalent */ 1610 1611 error (_("Cannot reference non-static field \"%s\""), fieldname); 1612 } 1613 } 1614 1615 /* FIXME add other scoped-reference cases here */ 1616 1617 /* Do a last-ditch lookup. */ 1618 return gen_maybe_namespace_elt (exp, ax, value, type, fieldname); 1619 } 1620 1621 /* C++: Return the member NAME of the namespace given by the type 1622 CURTYPE. */ 1623 1624 static int 1625 gen_namespace_elt (struct expression *exp, 1626 struct agent_expr *ax, struct axs_value *value, 1627 const struct type *curtype, char *name) 1628 { 1629 int found = gen_maybe_namespace_elt (exp, ax, value, curtype, name); 1630 1631 if (!found) 1632 error (_("No symbol \"%s\" in namespace \"%s\"."), 1633 name, TYPE_TAG_NAME (curtype)); 1634 1635 return found; 1636 } 1637 1638 /* A helper function used by value_namespace_elt and 1639 value_struct_elt_for_reference. It looks up NAME inside the 1640 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE 1641 is a class and NAME refers to a type in CURTYPE itself (as opposed 1642 to, say, some base class of CURTYPE). */ 1643 1644 static int 1645 gen_maybe_namespace_elt (struct expression *exp, 1646 struct agent_expr *ax, struct axs_value *value, 1647 const struct type *curtype, char *name) 1648 { 1649 const char *namespace_name = TYPE_TAG_NAME (curtype); 1650 struct block_symbol sym; 1651 1652 sym = cp_lookup_symbol_namespace (namespace_name, name, 1653 block_for_pc (ax->scope), 1654 VAR_DOMAIN); 1655 1656 if (sym.symbol == NULL) 1657 return 0; 1658 1659 gen_var_ref (exp->gdbarch, ax, value, sym.symbol); 1660 1661 if (value->optimized_out) 1662 error (_("`%s' has been optimized out, cannot use"), 1663 SYMBOL_PRINT_NAME (sym.symbol)); 1664 1665 return 1; 1666 } 1667 1668 1669 static int 1670 gen_aggregate_elt_ref (struct expression *exp, 1671 struct agent_expr *ax, struct axs_value *value, 1672 struct type *type, char *field, 1673 char *operator_name, char *operand_name) 1674 { 1675 switch (TYPE_CODE (type)) 1676 { 1677 case TYPE_CODE_STRUCT: 1678 case TYPE_CODE_UNION: 1679 return gen_struct_elt_for_reference (exp, ax, value, type, field); 1680 break; 1681 case TYPE_CODE_NAMESPACE: 1682 return gen_namespace_elt (exp, ax, value, type, field); 1683 break; 1684 default: 1685 internal_error (__FILE__, __LINE__, 1686 _("non-aggregate type in gen_aggregate_elt_ref")); 1687 } 1688 1689 return 0; 1690 } 1691 1692 /* Generate code for GDB's magical `repeat' operator. 1693 LVALUE @ INT creates an array INT elements long, and whose elements 1694 have the same type as LVALUE, located in memory so that LVALUE is 1695 its first element. For example, argv[0]@argc gives you the array 1696 of command-line arguments. 1697 1698 Unfortunately, because we have to know the types before we actually 1699 have a value for the expression, we can't implement this perfectly 1700 without changing the type system, having values that occupy two 1701 stack slots, doing weird things with sizeof, etc. So we require 1702 the right operand to be a constant expression. */ 1703 static void 1704 gen_repeat (struct expression *exp, union exp_element **pc, 1705 struct agent_expr *ax, struct axs_value *value) 1706 { 1707 struct axs_value value1; 1708 1709 /* We don't want to turn this into an rvalue, so no conversions 1710 here. */ 1711 gen_expr (exp, pc, ax, &value1); 1712 if (value1.kind != axs_lvalue_memory) 1713 error (_("Left operand of `@' must be an object in memory.")); 1714 1715 /* Evaluate the length; it had better be a constant. */ 1716 { 1717 struct value *v = const_expr (pc); 1718 int length; 1719 1720 if (!v) 1721 error (_("Right operand of `@' must be a " 1722 "constant, in agent expressions.")); 1723 if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT) 1724 error (_("Right operand of `@' must be an integer.")); 1725 length = value_as_long (v); 1726 if (length <= 0) 1727 error (_("Right operand of `@' must be positive.")); 1728 1729 /* The top of the stack is already the address of the object, so 1730 all we need to do is frob the type of the lvalue. */ 1731 { 1732 /* FIXME-type-allocation: need a way to free this type when we are 1733 done with it. */ 1734 struct type *array 1735 = lookup_array_range_type (value1.type, 0, length - 1); 1736 1737 value->kind = axs_lvalue_memory; 1738 value->type = array; 1739 } 1740 } 1741 } 1742 1743 1744 /* Emit code for the `sizeof' operator. 1745 *PC should point at the start of the operand expression; we advance it 1746 to the first instruction after the operand. */ 1747 static void 1748 gen_sizeof (struct expression *exp, union exp_element **pc, 1749 struct agent_expr *ax, struct axs_value *value, 1750 struct type *size_type) 1751 { 1752 /* We don't care about the value of the operand expression; we only 1753 care about its type. However, in the current arrangement, the 1754 only way to find an expression's type is to generate code for it. 1755 So we generate code for the operand, and then throw it away, 1756 replacing it with code that simply pushes its size. */ 1757 int start = ax->len; 1758 1759 gen_expr (exp, pc, ax, value); 1760 1761 /* Throw away the code we just generated. */ 1762 ax->len = start; 1763 1764 ax_const_l (ax, TYPE_LENGTH (value->type)); 1765 value->kind = axs_rvalue; 1766 value->type = size_type; 1767 } 1768 1769 1770 /* Generating bytecode from GDB expressions: general recursive thingy */ 1771 1772 /* XXX: i18n */ 1773 /* A gen_expr function written by a Gen-X'er guy. 1774 Append code for the subexpression of EXPR starting at *POS_P to AX. */ 1775 void 1776 gen_expr (struct expression *exp, union exp_element **pc, 1777 struct agent_expr *ax, struct axs_value *value) 1778 { 1779 /* Used to hold the descriptions of operand expressions. */ 1780 struct axs_value value1, value2, value3; 1781 enum exp_opcode op = (*pc)[0].opcode, op2; 1782 int if1, go1, if2, go2, end; 1783 struct type *int_type = builtin_type (exp->gdbarch)->builtin_int; 1784 1785 /* If we're looking at a constant expression, just push its value. */ 1786 { 1787 struct value *v = maybe_const_expr (pc); 1788 1789 if (v) 1790 { 1791 ax_const_l (ax, value_as_long (v)); 1792 value->kind = axs_rvalue; 1793 value->type = check_typedef (value_type (v)); 1794 return; 1795 } 1796 } 1797 1798 /* Otherwise, go ahead and generate code for it. */ 1799 switch (op) 1800 { 1801 /* Binary arithmetic operators. */ 1802 case BINOP_ADD: 1803 case BINOP_SUB: 1804 case BINOP_MUL: 1805 case BINOP_DIV: 1806 case BINOP_REM: 1807 case BINOP_LSH: 1808 case BINOP_RSH: 1809 case BINOP_SUBSCRIPT: 1810 case BINOP_BITWISE_AND: 1811 case BINOP_BITWISE_IOR: 1812 case BINOP_BITWISE_XOR: 1813 case BINOP_EQUAL: 1814 case BINOP_NOTEQUAL: 1815 case BINOP_LESS: 1816 case BINOP_GTR: 1817 case BINOP_LEQ: 1818 case BINOP_GEQ: 1819 (*pc)++; 1820 gen_expr (exp, pc, ax, &value1); 1821 gen_usual_unary (exp, ax, &value1); 1822 gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2); 1823 break; 1824 1825 case BINOP_LOGICAL_AND: 1826 (*pc)++; 1827 /* Generate the obvious sequence of tests and jumps. */ 1828 gen_expr (exp, pc, ax, &value1); 1829 gen_usual_unary (exp, ax, &value1); 1830 if1 = ax_goto (ax, aop_if_goto); 1831 go1 = ax_goto (ax, aop_goto); 1832 ax_label (ax, if1, ax->len); 1833 gen_expr (exp, pc, ax, &value2); 1834 gen_usual_unary (exp, ax, &value2); 1835 if2 = ax_goto (ax, aop_if_goto); 1836 go2 = ax_goto (ax, aop_goto); 1837 ax_label (ax, if2, ax->len); 1838 ax_const_l (ax, 1); 1839 end = ax_goto (ax, aop_goto); 1840 ax_label (ax, go1, ax->len); 1841 ax_label (ax, go2, ax->len); 1842 ax_const_l (ax, 0); 1843 ax_label (ax, end, ax->len); 1844 value->kind = axs_rvalue; 1845 value->type = int_type; 1846 break; 1847 1848 case BINOP_LOGICAL_OR: 1849 (*pc)++; 1850 /* Generate the obvious sequence of tests and jumps. */ 1851 gen_expr (exp, pc, ax, &value1); 1852 gen_usual_unary (exp, ax, &value1); 1853 if1 = ax_goto (ax, aop_if_goto); 1854 gen_expr (exp, pc, ax, &value2); 1855 gen_usual_unary (exp, ax, &value2); 1856 if2 = ax_goto (ax, aop_if_goto); 1857 ax_const_l (ax, 0); 1858 end = ax_goto (ax, aop_goto); 1859 ax_label (ax, if1, ax->len); 1860 ax_label (ax, if2, ax->len); 1861 ax_const_l (ax, 1); 1862 ax_label (ax, end, ax->len); 1863 value->kind = axs_rvalue; 1864 value->type = int_type; 1865 break; 1866 1867 case TERNOP_COND: 1868 (*pc)++; 1869 gen_expr (exp, pc, ax, &value1); 1870 gen_usual_unary (exp, ax, &value1); 1871 /* For (A ? B : C), it's easiest to generate subexpression 1872 bytecodes in order, but if_goto jumps on true, so we invert 1873 the sense of A. Then we can do B by dropping through, and 1874 jump to do C. */ 1875 gen_logical_not (ax, &value1, int_type); 1876 if1 = ax_goto (ax, aop_if_goto); 1877 gen_expr (exp, pc, ax, &value2); 1878 gen_usual_unary (exp, ax, &value2); 1879 end = ax_goto (ax, aop_goto); 1880 ax_label (ax, if1, ax->len); 1881 gen_expr (exp, pc, ax, &value3); 1882 gen_usual_unary (exp, ax, &value3); 1883 ax_label (ax, end, ax->len); 1884 /* This is arbitary - what if B and C are incompatible types? */ 1885 value->type = value2.type; 1886 value->kind = value2.kind; 1887 break; 1888 1889 case BINOP_ASSIGN: 1890 (*pc)++; 1891 if ((*pc)[0].opcode == OP_INTERNALVAR) 1892 { 1893 char *name = internalvar_name ((*pc)[1].internalvar); 1894 struct trace_state_variable *tsv; 1895 1896 (*pc) += 3; 1897 gen_expr (exp, pc, ax, value); 1898 tsv = find_trace_state_variable (name); 1899 if (tsv) 1900 { 1901 ax_tsv (ax, aop_setv, tsv->number); 1902 if (ax->tracing) 1903 ax_tsv (ax, aop_tracev, tsv->number); 1904 } 1905 else 1906 error (_("$%s is not a trace state variable, " 1907 "may not assign to it"), name); 1908 } 1909 else 1910 error (_("May only assign to trace state variables")); 1911 break; 1912 1913 case BINOP_ASSIGN_MODIFY: 1914 (*pc)++; 1915 op2 = (*pc)[0].opcode; 1916 (*pc)++; 1917 (*pc)++; 1918 if ((*pc)[0].opcode == OP_INTERNALVAR) 1919 { 1920 char *name = internalvar_name ((*pc)[1].internalvar); 1921 struct trace_state_variable *tsv; 1922 1923 (*pc) += 3; 1924 tsv = find_trace_state_variable (name); 1925 if (tsv) 1926 { 1927 /* The tsv will be the left half of the binary operation. */ 1928 ax_tsv (ax, aop_getv, tsv->number); 1929 if (ax->tracing) 1930 ax_tsv (ax, aop_tracev, tsv->number); 1931 /* Trace state variables are always 64-bit integers. */ 1932 value1.kind = axs_rvalue; 1933 value1.type = builtin_type (exp->gdbarch)->builtin_long_long; 1934 /* Now do right half of expression. */ 1935 gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2); 1936 /* We have a result of the binary op, set the tsv. */ 1937 ax_tsv (ax, aop_setv, tsv->number); 1938 if (ax->tracing) 1939 ax_tsv (ax, aop_tracev, tsv->number); 1940 } 1941 else 1942 error (_("$%s is not a trace state variable, " 1943 "may not assign to it"), name); 1944 } 1945 else 1946 error (_("May only assign to trace state variables")); 1947 break; 1948 1949 /* Note that we need to be a little subtle about generating code 1950 for comma. In C, we can do some optimizations here because 1951 we know the left operand is only being evaluated for effect. 1952 However, if the tracing kludge is in effect, then we always 1953 need to evaluate the left hand side fully, so that all the 1954 variables it mentions get traced. */ 1955 case BINOP_COMMA: 1956 (*pc)++; 1957 gen_expr (exp, pc, ax, &value1); 1958 /* Don't just dispose of the left operand. We might be tracing, 1959 in which case we want to emit code to trace it if it's an 1960 lvalue. */ 1961 gen_traced_pop (exp->gdbarch, ax, &value1); 1962 gen_expr (exp, pc, ax, value); 1963 /* It's the consumer's responsibility to trace the right operand. */ 1964 break; 1965 1966 case OP_LONG: /* some integer constant */ 1967 { 1968 struct type *type = (*pc)[1].type; 1969 LONGEST k = (*pc)[2].longconst; 1970 1971 (*pc) += 4; 1972 gen_int_literal (ax, value, k, type); 1973 } 1974 break; 1975 1976 case OP_VAR_VALUE: 1977 gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol); 1978 1979 if (value->optimized_out) 1980 error (_("`%s' has been optimized out, cannot use"), 1981 SYMBOL_PRINT_NAME ((*pc)[2].symbol)); 1982 1983 (*pc) += 4; 1984 break; 1985 1986 case OP_REGISTER: 1987 { 1988 const char *name = &(*pc)[2].string; 1989 int reg; 1990 1991 (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1); 1992 reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name)); 1993 if (reg == -1) 1994 internal_error (__FILE__, __LINE__, 1995 _("Register $%s not available"), name); 1996 /* No support for tracing user registers yet. */ 1997 if (reg >= gdbarch_num_regs (exp->gdbarch) 1998 + gdbarch_num_pseudo_regs (exp->gdbarch)) 1999 error (_("'%s' is a user-register; " 2000 "GDB cannot yet trace user-register contents."), 2001 name); 2002 value->kind = axs_lvalue_register; 2003 value->u.reg = reg; 2004 value->type = register_type (exp->gdbarch, reg); 2005 } 2006 break; 2007 2008 case OP_INTERNALVAR: 2009 { 2010 struct internalvar *var = (*pc)[1].internalvar; 2011 const char *name = internalvar_name (var); 2012 struct trace_state_variable *tsv; 2013 2014 (*pc) += 3; 2015 tsv = find_trace_state_variable (name); 2016 if (tsv) 2017 { 2018 ax_tsv (ax, aop_getv, tsv->number); 2019 if (ax->tracing) 2020 ax_tsv (ax, aop_tracev, tsv->number); 2021 /* Trace state variables are always 64-bit integers. */ 2022 value->kind = axs_rvalue; 2023 value->type = builtin_type (exp->gdbarch)->builtin_long_long; 2024 } 2025 else if (! compile_internalvar_to_ax (var, ax, value)) 2026 error (_("$%s is not a trace state variable; GDB agent " 2027 "expressions cannot use convenience variables."), name); 2028 } 2029 break; 2030 2031 /* Weirdo operator: see comments for gen_repeat for details. */ 2032 case BINOP_REPEAT: 2033 /* Note that gen_repeat handles its own argument evaluation. */ 2034 (*pc)++; 2035 gen_repeat (exp, pc, ax, value); 2036 break; 2037 2038 case UNOP_CAST: 2039 { 2040 struct type *type = (*pc)[1].type; 2041 2042 (*pc) += 3; 2043 gen_expr (exp, pc, ax, value); 2044 gen_cast (ax, value, type); 2045 } 2046 break; 2047 2048 case UNOP_CAST_TYPE: 2049 { 2050 int offset; 2051 struct value *val; 2052 struct type *type; 2053 2054 ++*pc; 2055 offset = *pc - exp->elts; 2056 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS); 2057 type = value_type (val); 2058 *pc = &exp->elts[offset]; 2059 2060 gen_expr (exp, pc, ax, value); 2061 gen_cast (ax, value, type); 2062 } 2063 break; 2064 2065 case UNOP_MEMVAL: 2066 { 2067 struct type *type = check_typedef ((*pc)[1].type); 2068 2069 (*pc) += 3; 2070 gen_expr (exp, pc, ax, value); 2071 2072 /* If we have an axs_rvalue or an axs_lvalue_memory, then we 2073 already have the right value on the stack. For 2074 axs_lvalue_register, we must convert. */ 2075 if (value->kind == axs_lvalue_register) 2076 require_rvalue (ax, value); 2077 2078 value->type = type; 2079 value->kind = axs_lvalue_memory; 2080 } 2081 break; 2082 2083 case UNOP_MEMVAL_TYPE: 2084 { 2085 int offset; 2086 struct value *val; 2087 struct type *type; 2088 2089 ++*pc; 2090 offset = *pc - exp->elts; 2091 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS); 2092 type = value_type (val); 2093 *pc = &exp->elts[offset]; 2094 2095 gen_expr (exp, pc, ax, value); 2096 2097 /* If we have an axs_rvalue or an axs_lvalue_memory, then we 2098 already have the right value on the stack. For 2099 axs_lvalue_register, we must convert. */ 2100 if (value->kind == axs_lvalue_register) 2101 require_rvalue (ax, value); 2102 2103 value->type = type; 2104 value->kind = axs_lvalue_memory; 2105 } 2106 break; 2107 2108 case UNOP_PLUS: 2109 (*pc)++; 2110 /* + FOO is equivalent to 0 + FOO, which can be optimized. */ 2111 gen_expr (exp, pc, ax, value); 2112 gen_usual_unary (exp, ax, value); 2113 break; 2114 2115 case UNOP_NEG: 2116 (*pc)++; 2117 /* -FOO is equivalent to 0 - FOO. */ 2118 gen_int_literal (ax, &value1, 0, 2119 builtin_type (exp->gdbarch)->builtin_int); 2120 gen_usual_unary (exp, ax, &value1); /* shouldn't do much */ 2121 gen_expr (exp, pc, ax, &value2); 2122 gen_usual_unary (exp, ax, &value2); 2123 gen_usual_arithmetic (exp, ax, &value1, &value2); 2124 gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation"); 2125 break; 2126 2127 case UNOP_LOGICAL_NOT: 2128 (*pc)++; 2129 gen_expr (exp, pc, ax, value); 2130 gen_usual_unary (exp, ax, value); 2131 gen_logical_not (ax, value, int_type); 2132 break; 2133 2134 case UNOP_COMPLEMENT: 2135 (*pc)++; 2136 gen_expr (exp, pc, ax, value); 2137 gen_usual_unary (exp, ax, value); 2138 gen_integral_promotions (exp, ax, value); 2139 gen_complement (ax, value); 2140 break; 2141 2142 case UNOP_IND: 2143 (*pc)++; 2144 gen_expr (exp, pc, ax, value); 2145 gen_usual_unary (exp, ax, value); 2146 if (!pointer_type (value->type)) 2147 error (_("Argument of unary `*' is not a pointer.")); 2148 gen_deref (ax, value); 2149 break; 2150 2151 case UNOP_ADDR: 2152 (*pc)++; 2153 gen_expr (exp, pc, ax, value); 2154 gen_address_of (ax, value); 2155 break; 2156 2157 case UNOP_SIZEOF: 2158 (*pc)++; 2159 /* Notice that gen_sizeof handles its own operand, unlike most 2160 of the other unary operator functions. This is because we 2161 have to throw away the code we generate. */ 2162 gen_sizeof (exp, pc, ax, value, 2163 builtin_type (exp->gdbarch)->builtin_int); 2164 break; 2165 2166 case STRUCTOP_STRUCT: 2167 case STRUCTOP_PTR: 2168 { 2169 int length = (*pc)[1].longconst; 2170 char *name = &(*pc)[2].string; 2171 2172 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1); 2173 gen_expr (exp, pc, ax, value); 2174 if (op == STRUCTOP_STRUCT) 2175 gen_struct_ref (exp, ax, value, name, ".", "structure or union"); 2176 else if (op == STRUCTOP_PTR) 2177 gen_struct_ref (exp, ax, value, name, "->", 2178 "pointer to a structure or union"); 2179 else 2180 /* If this `if' chain doesn't handle it, then the case list 2181 shouldn't mention it, and we shouldn't be here. */ 2182 internal_error (__FILE__, __LINE__, 2183 _("gen_expr: unhandled struct case")); 2184 } 2185 break; 2186 2187 case OP_THIS: 2188 { 2189 struct symbol *sym, *func; 2190 const struct block *b; 2191 const struct language_defn *lang; 2192 2193 b = block_for_pc (ax->scope); 2194 func = block_linkage_function (b); 2195 lang = language_def (SYMBOL_LANGUAGE (func)); 2196 2197 sym = lookup_language_this (lang, b).symbol; 2198 if (!sym) 2199 error (_("no `%s' found"), lang->la_name_of_this); 2200 2201 gen_var_ref (exp->gdbarch, ax, value, sym); 2202 2203 if (value->optimized_out) 2204 error (_("`%s' has been optimized out, cannot use"), 2205 SYMBOL_PRINT_NAME (sym)); 2206 2207 (*pc) += 2; 2208 } 2209 break; 2210 2211 case OP_SCOPE: 2212 { 2213 struct type *type = (*pc)[1].type; 2214 int length = longest_to_int ((*pc)[2].longconst); 2215 char *name = &(*pc)[3].string; 2216 int found; 2217 2218 found = gen_aggregate_elt_ref (exp, ax, value, type, name, 2219 "?", "??"); 2220 if (!found) 2221 error (_("There is no field named %s"), name); 2222 (*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1); 2223 } 2224 break; 2225 2226 case OP_TYPE: 2227 case OP_TYPEOF: 2228 case OP_DECLTYPE: 2229 error (_("Attempt to use a type name as an expression.")); 2230 2231 default: 2232 error (_("Unsupported operator %s (%d) in expression."), 2233 op_name (exp, op), op); 2234 } 2235 } 2236 2237 /* This handles the middle-to-right-side of code generation for binary 2238 expressions, which is shared between regular binary operations and 2239 assign-modify (+= and friends) expressions. */ 2240 2241 static void 2242 gen_expr_binop_rest (struct expression *exp, 2243 enum exp_opcode op, union exp_element **pc, 2244 struct agent_expr *ax, struct axs_value *value, 2245 struct axs_value *value1, struct axs_value *value2) 2246 { 2247 struct type *int_type = builtin_type (exp->gdbarch)->builtin_int; 2248 2249 gen_expr (exp, pc, ax, value2); 2250 gen_usual_unary (exp, ax, value2); 2251 gen_usual_arithmetic (exp, ax, value1, value2); 2252 switch (op) 2253 { 2254 case BINOP_ADD: 2255 if (TYPE_CODE (value1->type) == TYPE_CODE_INT 2256 && pointer_type (value2->type)) 2257 { 2258 /* Swap the values and proceed normally. */ 2259 ax_simple (ax, aop_swap); 2260 gen_ptradd (ax, value, value2, value1); 2261 } 2262 else if (pointer_type (value1->type) 2263 && TYPE_CODE (value2->type) == TYPE_CODE_INT) 2264 gen_ptradd (ax, value, value1, value2); 2265 else 2266 gen_binop (ax, value, value1, value2, 2267 aop_add, aop_add, 1, "addition"); 2268 break; 2269 case BINOP_SUB: 2270 if (pointer_type (value1->type) 2271 && TYPE_CODE (value2->type) == TYPE_CODE_INT) 2272 gen_ptrsub (ax,value, value1, value2); 2273 else if (pointer_type (value1->type) 2274 && pointer_type (value2->type)) 2275 /* FIXME --- result type should be ptrdiff_t */ 2276 gen_ptrdiff (ax, value, value1, value2, 2277 builtin_type (exp->gdbarch)->builtin_long); 2278 else 2279 gen_binop (ax, value, value1, value2, 2280 aop_sub, aop_sub, 1, "subtraction"); 2281 break; 2282 case BINOP_MUL: 2283 gen_binop (ax, value, value1, value2, 2284 aop_mul, aop_mul, 1, "multiplication"); 2285 break; 2286 case BINOP_DIV: 2287 gen_binop (ax, value, value1, value2, 2288 aop_div_signed, aop_div_unsigned, 1, "division"); 2289 break; 2290 case BINOP_REM: 2291 gen_binop (ax, value, value1, value2, 2292 aop_rem_signed, aop_rem_unsigned, 1, "remainder"); 2293 break; 2294 case BINOP_LSH: 2295 gen_binop (ax, value, value1, value2, 2296 aop_lsh, aop_lsh, 1, "left shift"); 2297 break; 2298 case BINOP_RSH: 2299 gen_binop (ax, value, value1, value2, 2300 aop_rsh_signed, aop_rsh_unsigned, 1, "right shift"); 2301 break; 2302 case BINOP_SUBSCRIPT: 2303 { 2304 struct type *type; 2305 2306 if (binop_types_user_defined_p (op, value1->type, value2->type)) 2307 { 2308 error (_("cannot subscript requested type: " 2309 "cannot call user defined functions")); 2310 } 2311 else 2312 { 2313 /* If the user attempts to subscript something that is not 2314 an array or pointer type (like a plain int variable for 2315 example), then report this as an error. */ 2316 type = check_typedef (value1->type); 2317 if (TYPE_CODE (type) != TYPE_CODE_ARRAY 2318 && TYPE_CODE (type) != TYPE_CODE_PTR) 2319 { 2320 if (TYPE_NAME (type)) 2321 error (_("cannot subscript something of type `%s'"), 2322 TYPE_NAME (type)); 2323 else 2324 error (_("cannot subscript requested type")); 2325 } 2326 } 2327 2328 if (!is_integral_type (value2->type)) 2329 error (_("Argument to arithmetic operation " 2330 "not a number or boolean.")); 2331 2332 gen_ptradd (ax, value, value1, value2); 2333 gen_deref (ax, value); 2334 break; 2335 } 2336 case BINOP_BITWISE_AND: 2337 gen_binop (ax, value, value1, value2, 2338 aop_bit_and, aop_bit_and, 0, "bitwise and"); 2339 break; 2340 2341 case BINOP_BITWISE_IOR: 2342 gen_binop (ax, value, value1, value2, 2343 aop_bit_or, aop_bit_or, 0, "bitwise or"); 2344 break; 2345 2346 case BINOP_BITWISE_XOR: 2347 gen_binop (ax, value, value1, value2, 2348 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or"); 2349 break; 2350 2351 case BINOP_EQUAL: 2352 gen_equal (ax, value, value1, value2, int_type); 2353 break; 2354 2355 case BINOP_NOTEQUAL: 2356 gen_equal (ax, value, value1, value2, int_type); 2357 gen_logical_not (ax, value, int_type); 2358 break; 2359 2360 case BINOP_LESS: 2361 gen_less (ax, value, value1, value2, int_type); 2362 break; 2363 2364 case BINOP_GTR: 2365 ax_simple (ax, aop_swap); 2366 gen_less (ax, value, value1, value2, int_type); 2367 break; 2368 2369 case BINOP_LEQ: 2370 ax_simple (ax, aop_swap); 2371 gen_less (ax, value, value1, value2, int_type); 2372 gen_logical_not (ax, value, int_type); 2373 break; 2374 2375 case BINOP_GEQ: 2376 gen_less (ax, value, value1, value2, int_type); 2377 gen_logical_not (ax, value, int_type); 2378 break; 2379 2380 default: 2381 /* We should only list operators in the outer case statement 2382 that we actually handle in the inner case statement. */ 2383 internal_error (__FILE__, __LINE__, 2384 _("gen_expr: op case sets don't match")); 2385 } 2386 } 2387 2388 2389 /* Given a single variable and a scope, generate bytecodes to trace 2390 its value. This is for use in situations where we have only a 2391 variable's name, and no parsed expression; for instance, when the 2392 name comes from a list of local variables of a function. */ 2393 2394 struct agent_expr * 2395 gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch, 2396 struct symbol *var, int trace_string) 2397 { 2398 struct cleanup *old_chain = 0; 2399 struct agent_expr *ax = new_agent_expr (gdbarch, scope); 2400 struct axs_value value; 2401 2402 old_chain = make_cleanup_free_agent_expr (ax); 2403 2404 ax->tracing = 1; 2405 ax->trace_string = trace_string; 2406 gen_var_ref (gdbarch, ax, &value, var); 2407 2408 /* If there is no actual variable to trace, flag it by returning 2409 an empty agent expression. */ 2410 if (value.optimized_out) 2411 { 2412 do_cleanups (old_chain); 2413 return NULL; 2414 } 2415 2416 /* Make sure we record the final object, and get rid of it. */ 2417 gen_traced_pop (gdbarch, ax, &value); 2418 2419 /* Oh, and terminate. */ 2420 ax_simple (ax, aop_end); 2421 2422 /* We have successfully built the agent expr, so cancel the cleanup 2423 request. If we add more cleanups that we always want done, this 2424 will have to get more complicated. */ 2425 discard_cleanups (old_chain); 2426 return ax; 2427 } 2428 2429 /* Generating bytecode from GDB expressions: driver */ 2430 2431 /* Given a GDB expression EXPR, return bytecode to trace its value. 2432 The result will use the `trace' and `trace_quick' bytecodes to 2433 record the value of all memory touched by the expression. The 2434 caller can then use the ax_reqs function to discover which 2435 registers it relies upon. */ 2436 struct agent_expr * 2437 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr, 2438 int trace_string) 2439 { 2440 struct cleanup *old_chain = 0; 2441 struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope); 2442 union exp_element *pc; 2443 struct axs_value value; 2444 2445 old_chain = make_cleanup_free_agent_expr (ax); 2446 2447 pc = expr->elts; 2448 ax->tracing = 1; 2449 ax->trace_string = trace_string; 2450 value.optimized_out = 0; 2451 gen_expr (expr, &pc, ax, &value); 2452 2453 /* Make sure we record the final object, and get rid of it. */ 2454 gen_traced_pop (expr->gdbarch, ax, &value); 2455 2456 /* Oh, and terminate. */ 2457 ax_simple (ax, aop_end); 2458 2459 /* We have successfully built the agent expr, so cancel the cleanup 2460 request. If we add more cleanups that we always want done, this 2461 will have to get more complicated. */ 2462 discard_cleanups (old_chain); 2463 return ax; 2464 } 2465 2466 /* Given a GDB expression EXPR, return a bytecode sequence that will 2467 evaluate and return a result. The bytecodes will do a direct 2468 evaluation, using the current data on the target, rather than 2469 recording blocks of memory and registers for later use, as 2470 gen_trace_for_expr does. The generated bytecode sequence leaves 2471 the result of expression evaluation on the top of the stack. */ 2472 2473 struct agent_expr * 2474 gen_eval_for_expr (CORE_ADDR scope, struct expression *expr) 2475 { 2476 struct cleanup *old_chain = 0; 2477 struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope); 2478 union exp_element *pc; 2479 struct axs_value value; 2480 2481 old_chain = make_cleanup_free_agent_expr (ax); 2482 2483 pc = expr->elts; 2484 ax->tracing = 0; 2485 value.optimized_out = 0; 2486 gen_expr (expr, &pc, ax, &value); 2487 2488 require_rvalue (ax, &value); 2489 2490 /* Oh, and terminate. */ 2491 ax_simple (ax, aop_end); 2492 2493 /* We have successfully built the agent expr, so cancel the cleanup 2494 request. If we add more cleanups that we always want done, this 2495 will have to get more complicated. */ 2496 discard_cleanups (old_chain); 2497 return ax; 2498 } 2499 2500 struct agent_expr * 2501 gen_trace_for_return_address (CORE_ADDR scope, struct gdbarch *gdbarch, 2502 int trace_string) 2503 { 2504 struct cleanup *old_chain = 0; 2505 struct agent_expr *ax = new_agent_expr (gdbarch, scope); 2506 struct axs_value value; 2507 2508 old_chain = make_cleanup_free_agent_expr (ax); 2509 2510 ax->tracing = 1; 2511 ax->trace_string = trace_string; 2512 2513 gdbarch_gen_return_address (gdbarch, ax, &value, scope); 2514 2515 /* Make sure we record the final object, and get rid of it. */ 2516 gen_traced_pop (gdbarch, ax, &value); 2517 2518 /* Oh, and terminate. */ 2519 ax_simple (ax, aop_end); 2520 2521 /* We have successfully built the agent expr, so cancel the cleanup 2522 request. If we add more cleanups that we always want done, this 2523 will have to get more complicated. */ 2524 discard_cleanups (old_chain); 2525 return ax; 2526 } 2527 2528 /* Given a collection of printf-style arguments, generate code to 2529 evaluate the arguments and pass everything to a special 2530 bytecode. */ 2531 2532 struct agent_expr * 2533 gen_printf (CORE_ADDR scope, struct gdbarch *gdbarch, 2534 CORE_ADDR function, LONGEST channel, 2535 const char *format, int fmtlen, 2536 struct format_piece *frags, 2537 int nargs, struct expression **exprs) 2538 { 2539 struct cleanup *old_chain = 0; 2540 struct agent_expr *ax = new_agent_expr (gdbarch, scope); 2541 union exp_element *pc; 2542 struct axs_value value; 2543 int tem; 2544 2545 old_chain = make_cleanup_free_agent_expr (ax); 2546 2547 /* We're computing values, not doing side effects. */ 2548 ax->tracing = 0; 2549 2550 /* Evaluate and push the args on the stack in reverse order, 2551 for simplicity of collecting them on the target side. */ 2552 for (tem = nargs - 1; tem >= 0; --tem) 2553 { 2554 pc = exprs[tem]->elts; 2555 value.optimized_out = 0; 2556 gen_expr (exprs[tem], &pc, ax, &value); 2557 require_rvalue (ax, &value); 2558 } 2559 2560 /* Push function and channel. */ 2561 ax_const_l (ax, channel); 2562 ax_const_l (ax, function); 2563 2564 /* Issue the printf bytecode proper. */ 2565 ax_simple (ax, aop_printf); 2566 ax_raw_byte (ax, nargs); 2567 ax_string (ax, format, fmtlen); 2568 2569 /* And terminate. */ 2570 ax_simple (ax, aop_end); 2571 2572 /* We have successfully built the agent expr, so cancel the cleanup 2573 request. If we add more cleanups that we always want done, this 2574 will have to get more complicated. */ 2575 discard_cleanups (old_chain); 2576 2577 return ax; 2578 } 2579 2580 static void 2581 agent_eval_command_one (const char *exp, int eval, CORE_ADDR pc) 2582 { 2583 struct cleanup *old_chain = 0; 2584 struct expression *expr; 2585 struct agent_expr *agent; 2586 const char *arg; 2587 int trace_string = 0; 2588 2589 if (!eval) 2590 { 2591 if (*exp == '/') 2592 exp = decode_agent_options (exp, &trace_string); 2593 } 2594 2595 arg = exp; 2596 if (!eval && strcmp (arg, "$_ret") == 0) 2597 { 2598 agent = gen_trace_for_return_address (pc, get_current_arch (), 2599 trace_string); 2600 old_chain = make_cleanup_free_agent_expr (agent); 2601 } 2602 else 2603 { 2604 expr = parse_exp_1 (&arg, pc, block_for_pc (pc), 0); 2605 old_chain = make_cleanup (free_current_contents, &expr); 2606 if (eval) 2607 { 2608 gdb_assert (trace_string == 0); 2609 agent = gen_eval_for_expr (pc, expr); 2610 } 2611 else 2612 agent = gen_trace_for_expr (pc, expr, trace_string); 2613 make_cleanup_free_agent_expr (agent); 2614 } 2615 2616 ax_reqs (agent); 2617 ax_print (gdb_stdout, agent); 2618 2619 /* It would be nice to call ax_reqs here to gather some general info 2620 about the expression, and then print out the result. */ 2621 2622 do_cleanups (old_chain); 2623 dont_repeat (); 2624 } 2625 2626 static void 2627 agent_command_1 (char *exp, int eval) 2628 { 2629 /* We don't deal with overlay debugging at the moment. We need to 2630 think more carefully about this. If you copy this code into 2631 another command, change the error message; the user shouldn't 2632 have to know anything about agent expressions. */ 2633 if (overlay_debugging) 2634 error (_("GDB can't do agent expression translation with overlays.")); 2635 2636 if (exp == 0) 2637 error_no_arg (_("expression to translate")); 2638 2639 if (check_for_argument (&exp, "-at", sizeof ("-at") - 1)) 2640 { 2641 struct linespec_result canonical; 2642 int ix; 2643 struct linespec_sals *iter; 2644 struct cleanup *old_chain; 2645 struct event_location *location; 2646 2647 exp = skip_spaces (exp); 2648 init_linespec_result (&canonical); 2649 location = new_linespec_location (&exp); 2650 old_chain = make_cleanup_delete_event_location (location); 2651 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL, 2652 (struct symtab *) NULL, 0, &canonical, 2653 NULL, NULL); 2654 make_cleanup_destroy_linespec_result (&canonical); 2655 exp = skip_spaces (exp); 2656 if (exp[0] == ',') 2657 { 2658 exp++; 2659 exp = skip_spaces (exp); 2660 } 2661 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix) 2662 { 2663 int i; 2664 2665 for (i = 0; i < iter->sals.nelts; i++) 2666 agent_eval_command_one (exp, eval, iter->sals.sals[i].pc); 2667 } 2668 do_cleanups (old_chain); 2669 } 2670 else 2671 agent_eval_command_one (exp, eval, get_frame_pc (get_current_frame ())); 2672 2673 dont_repeat (); 2674 } 2675 2676 static void 2677 agent_command (char *exp, int from_tty) 2678 { 2679 agent_command_1 (exp, 0); 2680 } 2681 2682 /* Parse the given expression, compile it into an agent expression 2683 that does direct evaluation, and display the resulting 2684 expression. */ 2685 2686 static void 2687 agent_eval_command (char *exp, int from_tty) 2688 { 2689 agent_command_1 (exp, 1); 2690 } 2691 2692 /* Parse the given expression, compile it into an agent expression 2693 that does a printf, and display the resulting expression. */ 2694 2695 static void 2696 maint_agent_printf_command (char *exp, int from_tty) 2697 { 2698 struct cleanup *old_chain = 0; 2699 struct expression *expr; 2700 struct expression *argvec[100]; 2701 struct agent_expr *agent; 2702 struct frame_info *fi = get_current_frame (); /* need current scope */ 2703 const char *cmdrest; 2704 const char *format_start, *format_end; 2705 struct format_piece *fpieces; 2706 int nargs; 2707 2708 /* We don't deal with overlay debugging at the moment. We need to 2709 think more carefully about this. If you copy this code into 2710 another command, change the error message; the user shouldn't 2711 have to know anything about agent expressions. */ 2712 if (overlay_debugging) 2713 error (_("GDB can't do agent expression translation with overlays.")); 2714 2715 if (exp == 0) 2716 error_no_arg (_("expression to translate")); 2717 2718 cmdrest = exp; 2719 2720 cmdrest = skip_spaces_const (cmdrest); 2721 2722 if (*cmdrest++ != '"') 2723 error (_("Must start with a format string.")); 2724 2725 format_start = cmdrest; 2726 2727 fpieces = parse_format_string (&cmdrest); 2728 2729 old_chain = make_cleanup (free_format_pieces_cleanup, &fpieces); 2730 2731 format_end = cmdrest; 2732 2733 if (*cmdrest++ != '"') 2734 error (_("Bad format string, non-terminated '\"'.")); 2735 2736 cmdrest = skip_spaces_const (cmdrest); 2737 2738 if (*cmdrest != ',' && *cmdrest != 0) 2739 error (_("Invalid argument syntax")); 2740 2741 if (*cmdrest == ',') 2742 cmdrest++; 2743 cmdrest = skip_spaces_const (cmdrest); 2744 2745 nargs = 0; 2746 while (*cmdrest != '\0') 2747 { 2748 const char *cmd1; 2749 2750 cmd1 = cmdrest; 2751 expr = parse_exp_1 (&cmd1, 0, (struct block *) 0, 1); 2752 argvec[nargs] = expr; 2753 ++nargs; 2754 cmdrest = cmd1; 2755 if (*cmdrest == ',') 2756 ++cmdrest; 2757 /* else complain? */ 2758 } 2759 2760 2761 agent = gen_printf (get_frame_pc (fi), get_current_arch (), 0, 0, 2762 format_start, format_end - format_start, 2763 fpieces, nargs, argvec); 2764 make_cleanup_free_agent_expr (agent); 2765 ax_reqs (agent); 2766 ax_print (gdb_stdout, agent); 2767 2768 /* It would be nice to call ax_reqs here to gather some general info 2769 about the expression, and then print out the result. */ 2770 2771 do_cleanups (old_chain); 2772 dont_repeat (); 2773 } 2774 2775 2776 /* Initialization code. */ 2777 2778 void _initialize_ax_gdb (void); 2779 void 2780 _initialize_ax_gdb (void) 2781 { 2782 add_cmd ("agent", class_maintenance, agent_command, 2783 _("\ 2784 Translate an expression into remote agent bytecode for tracing.\n\ 2785 Usage: maint agent [-at location,] EXPRESSION\n\ 2786 If -at is given, generate remote agent bytecode for this location.\n\ 2787 If not, generate remote agent bytecode for current frame pc address."), 2788 &maintenancelist); 2789 2790 add_cmd ("agent-eval", class_maintenance, agent_eval_command, 2791 _("\ 2792 Translate an expression into remote agent bytecode for evaluation.\n\ 2793 Usage: maint agent-eval [-at location,] EXPRESSION\n\ 2794 If -at is given, generate remote agent bytecode for this location.\n\ 2795 If not, generate remote agent bytecode for current frame pc address."), 2796 &maintenancelist); 2797 2798 add_cmd ("agent-printf", class_maintenance, maint_agent_printf_command, 2799 _("Translate an expression into remote " 2800 "agent bytecode for evaluation and display the bytecodes."), 2801 &maintenancelist); 2802 } 2803