1 /* Target-dependent code for Atmel AVR, for GDB. 2 3 Copyright (C) 1996-2015 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 /* Contributed by Theodore A. Roth, troth@openavr.org */ 21 22 /* Portions of this file were taken from the original gdb-4.18 patch developed 23 by Denis Chertykov, denisc@overta.ru */ 24 25 #include "defs.h" 26 #include "frame.h" 27 #include "frame-unwind.h" 28 #include "frame-base.h" 29 #include "trad-frame.h" 30 #include "gdbcmd.h" 31 #include "gdbcore.h" 32 #include "gdbtypes.h" 33 #include "inferior.h" 34 #include "symfile.h" 35 #include "arch-utils.h" 36 #include "regcache.h" 37 #include "dis-asm.h" 38 #include "objfiles.h" 39 40 /* AVR Background: 41 42 (AVR micros are pure Harvard Architecture processors.) 43 44 The AVR family of microcontrollers have three distinctly different memory 45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for 46 the most part to store program instructions. The sram is 8 bits wide and is 47 used for the stack and the heap. Some devices lack sram and some can have 48 an additional external sram added on as a peripheral. 49 50 The eeprom is 8 bits wide and is used to store data when the device is 51 powered down. Eeprom is not directly accessible, it can only be accessed 52 via io-registers using a special algorithm. Accessing eeprom via gdb's 53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is 54 not included at this time. 55 56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or 57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to 58 work, the remote target must be able to handle eeprom accesses and perform 59 the address translation.] 60 61 All three memory spaces have physical addresses beginning at 0x0. In 62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit 63 bytes instead of the 16 bit wide words used by the real device for the 64 Program Counter. 65 66 In order for remote targets to work correctly, extra bits must be added to 67 addresses before they are send to the target or received from the target 68 via the remote serial protocol. The extra bits are the MSBs and are used to 69 decode which memory space the address is referring to. */ 70 71 /* Constants: prefixed with AVR_ to avoid name space clashes */ 72 73 /* Address space flags */ 74 75 /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address 76 space. */ 77 78 #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1 79 #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \ 80 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 81 82 83 enum 84 { 85 AVR_REG_W = 24, 86 AVR_REG_X = 26, 87 AVR_REG_Y = 28, 88 AVR_FP_REGNUM = 28, 89 AVR_REG_Z = 30, 90 91 AVR_SREG_REGNUM = 32, 92 AVR_SP_REGNUM = 33, 93 AVR_PC_REGNUM = 34, 94 95 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/, 96 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/, 97 98 /* Pseudo registers. */ 99 AVR_PSEUDO_PC_REGNUM = 35, 100 AVR_NUM_PSEUDO_REGS = 1, 101 102 AVR_PC_REG_INDEX = 35, /* index into array of registers */ 103 104 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */ 105 106 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */ 107 AVR_MAX_PUSHES = 18, 108 109 /* Number of the last pushed register. r17 for current avr-gcc */ 110 AVR_LAST_PUSHED_REGNUM = 17, 111 112 AVR_ARG1_REGNUM = 24, /* Single byte argument */ 113 AVR_ARGN_REGNUM = 25, /* Multi byte argments */ 114 115 AVR_RET1_REGNUM = 24, /* Single byte return value */ 116 AVR_RETN_REGNUM = 25, /* Multi byte return value */ 117 118 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8 119 bits? Do these have to match the bfd vma values? It sure would make 120 things easier in the future if they didn't need to match. 121 122 Note: I chose these values so as to be consistent with bfd vma 123 addresses. 124 125 TRoth/2002-04-08: There is already a conflict with very large programs 126 in the mega128. The mega128 has 128K instruction bytes (64K words), 127 thus the Most Significant Bit is 0x10000 which gets masked off my 128 AVR_MEM_MASK. 129 130 The problem manifests itself when trying to set a breakpoint in a 131 function which resides in the upper half of the instruction space and 132 thus requires a 17-bit address. 133 134 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK 135 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet, 136 but could be for some remote targets by just adding the correct offset 137 to the address and letting the remote target handle the low-level 138 details of actually accessing the eeprom. */ 139 140 AVR_IMEM_START = 0x00000000, /* INSN memory */ 141 AVR_SMEM_START = 0x00800000, /* SRAM memory */ 142 #if 1 143 /* No eeprom mask defined */ 144 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */ 145 #else 146 AVR_EMEM_START = 0x00810000, /* EEPROM memory */ 147 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */ 148 #endif 149 }; 150 151 /* Prologue types: 152 153 NORMAL and CALL are the typical types (the -mcall-prologues gcc option 154 causes the generation of the CALL type prologues). */ 155 156 enum { 157 AVR_PROLOGUE_NONE, /* No prologue */ 158 AVR_PROLOGUE_NORMAL, 159 AVR_PROLOGUE_CALL, /* -mcall-prologues */ 160 AVR_PROLOGUE_MAIN, 161 AVR_PROLOGUE_INTR, /* interrupt handler */ 162 AVR_PROLOGUE_SIG, /* signal handler */ 163 }; 164 165 /* Any function with a frame looks like this 166 ....... <-SP POINTS HERE 167 LOCALS1 <-FP POINTS HERE 168 LOCALS0 169 SAVED FP 170 SAVED R3 171 SAVED R2 172 RET PC 173 FIRST ARG 174 SECOND ARG */ 175 176 struct avr_unwind_cache 177 { 178 /* The previous frame's inner most stack address. Used as this 179 frame ID's stack_addr. */ 180 CORE_ADDR prev_sp; 181 /* The frame's base, optionally used by the high-level debug info. */ 182 CORE_ADDR base; 183 int size; 184 int prologue_type; 185 /* Table indicating the location of each and every register. */ 186 struct trad_frame_saved_reg *saved_regs; 187 }; 188 189 struct gdbarch_tdep 190 { 191 /* Number of bytes stored to the stack by call instructions. 192 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */ 193 int call_length; 194 195 /* Type for void. */ 196 struct type *void_type; 197 /* Type for a function returning void. */ 198 struct type *func_void_type; 199 /* Type for a pointer to a function. Used for the type of PC. */ 200 struct type *pc_type; 201 }; 202 203 /* Lookup the name of a register given it's number. */ 204 205 static const char * 206 avr_register_name (struct gdbarch *gdbarch, int regnum) 207 { 208 static const char * const register_names[] = { 209 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 210 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 211 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 212 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", 213 "SREG", "SP", "PC2", 214 "pc" 215 }; 216 if (regnum < 0) 217 return NULL; 218 if (regnum >= (sizeof (register_names) / sizeof (*register_names))) 219 return NULL; 220 return register_names[regnum]; 221 } 222 223 /* Return the GDB type object for the "standard" data type 224 of data in register N. */ 225 226 static struct type * 227 avr_register_type (struct gdbarch *gdbarch, int reg_nr) 228 { 229 if (reg_nr == AVR_PC_REGNUM) 230 return builtin_type (gdbarch)->builtin_uint32; 231 if (reg_nr == AVR_PSEUDO_PC_REGNUM) 232 return gdbarch_tdep (gdbarch)->pc_type; 233 if (reg_nr == AVR_SP_REGNUM) 234 return builtin_type (gdbarch)->builtin_data_ptr; 235 return builtin_type (gdbarch)->builtin_uint8; 236 } 237 238 /* Instruction address checks and convertions. */ 239 240 static CORE_ADDR 241 avr_make_iaddr (CORE_ADDR x) 242 { 243 return ((x) | AVR_IMEM_START); 244 } 245 246 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some 247 devices are already up to 128KBytes of flash space. 248 249 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */ 250 251 static CORE_ADDR 252 avr_convert_iaddr_to_raw (CORE_ADDR x) 253 { 254 return ((x) & 0xffffffff); 255 } 256 257 /* SRAM address checks and convertions. */ 258 259 static CORE_ADDR 260 avr_make_saddr (CORE_ADDR x) 261 { 262 /* Return 0 for NULL. */ 263 if (x == 0) 264 return 0; 265 266 return ((x) | AVR_SMEM_START); 267 } 268 269 static CORE_ADDR 270 avr_convert_saddr_to_raw (CORE_ADDR x) 271 { 272 return ((x) & 0xffffffff); 273 } 274 275 /* EEPROM address checks and convertions. I don't know if these will ever 276 actually be used, but I've added them just the same. TRoth */ 277 278 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large 279 programs in the mega128. */ 280 281 /* static CORE_ADDR */ 282 /* avr_make_eaddr (CORE_ADDR x) */ 283 /* { */ 284 /* return ((x) | AVR_EMEM_START); */ 285 /* } */ 286 287 /* static int */ 288 /* avr_eaddr_p (CORE_ADDR x) */ 289 /* { */ 290 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */ 291 /* } */ 292 293 /* static CORE_ADDR */ 294 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */ 295 /* { */ 296 /* return ((x) & 0xffffffff); */ 297 /* } */ 298 299 /* Convert from address to pointer and vice-versa. */ 300 301 static void 302 avr_address_to_pointer (struct gdbarch *gdbarch, 303 struct type *type, gdb_byte *buf, CORE_ADDR addr) 304 { 305 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 306 307 /* Is it a data address in flash? */ 308 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type)) 309 { 310 /* A data pointer in flash is byte addressed. */ 311 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, 312 avr_convert_iaddr_to_raw (addr)); 313 } 314 /* Is it a code address? */ 315 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC 316 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD) 317 { 318 /* A code pointer is word (16 bits) addressed. We shift the address down 319 by 1 bit to convert it to a pointer. */ 320 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, 321 avr_convert_iaddr_to_raw (addr >> 1)); 322 } 323 else 324 { 325 /* Strip off any upper segment bits. */ 326 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, 327 avr_convert_saddr_to_raw (addr)); 328 } 329 } 330 331 static CORE_ADDR 332 avr_pointer_to_address (struct gdbarch *gdbarch, 333 struct type *type, const gdb_byte *buf) 334 { 335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 336 CORE_ADDR addr 337 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order); 338 339 /* Is it a data address in flash? */ 340 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type)) 341 { 342 /* A data pointer in flash is already byte addressed. */ 343 return avr_make_iaddr (addr); 344 } 345 /* Is it a code address? */ 346 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC 347 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD 348 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))) 349 { 350 /* A code pointer is word (16 bits) addressed so we shift it up 351 by 1 bit to convert it to an address. */ 352 return avr_make_iaddr (addr << 1); 353 } 354 else 355 return avr_make_saddr (addr); 356 } 357 358 static CORE_ADDR 359 avr_integer_to_address (struct gdbarch *gdbarch, 360 struct type *type, const gdb_byte *buf) 361 { 362 ULONGEST addr = unpack_long (type, buf); 363 364 return avr_make_saddr (addr); 365 } 366 367 static CORE_ADDR 368 avr_read_pc (struct regcache *regcache) 369 { 370 ULONGEST pc; 371 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc); 372 return avr_make_iaddr (pc); 373 } 374 375 static void 376 avr_write_pc (struct regcache *regcache, CORE_ADDR val) 377 { 378 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM, 379 avr_convert_iaddr_to_raw (val)); 380 } 381 382 static enum register_status 383 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, 384 int regnum, gdb_byte *buf) 385 { 386 ULONGEST val; 387 enum register_status status; 388 389 switch (regnum) 390 { 391 case AVR_PSEUDO_PC_REGNUM: 392 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val); 393 if (status != REG_VALID) 394 return status; 395 val >>= 1; 396 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val); 397 return status; 398 default: 399 internal_error (__FILE__, __LINE__, _("invalid regnum")); 400 } 401 } 402 403 static void 404 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, 405 int regnum, const gdb_byte *buf) 406 { 407 ULONGEST val; 408 409 switch (regnum) 410 { 411 case AVR_PSEUDO_PC_REGNUM: 412 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch)); 413 val <<= 1; 414 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val); 415 break; 416 default: 417 internal_error (__FILE__, __LINE__, _("invalid regnum")); 418 } 419 } 420 421 /* Function: avr_scan_prologue 422 423 This function decodes an AVR function prologue to determine: 424 1) the size of the stack frame 425 2) which registers are saved on it 426 3) the offsets of saved regs 427 This information is stored in the avr_unwind_cache structure. 428 429 Some devices lack the sbiw instruction, so on those replace this: 430 sbiw r28, XX 431 with this: 432 subi r28,lo8(XX) 433 sbci r29,hi8(XX) 434 435 A typical AVR function prologue with a frame pointer might look like this: 436 push rXX ; saved regs 437 ... 438 push r28 439 push r29 440 in r28,__SP_L__ 441 in r29,__SP_H__ 442 sbiw r28,<LOCALS_SIZE> 443 in __tmp_reg__,__SREG__ 444 cli 445 out __SP_H__,r29 446 out __SREG__,__tmp_reg__ 447 out __SP_L__,r28 448 449 A typical AVR function prologue without a frame pointer might look like 450 this: 451 push rXX ; saved regs 452 ... 453 454 A main function prologue looks like this: 455 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) 456 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) 457 out __SP_H__,r29 458 out __SP_L__,r28 459 460 A signal handler prologue looks like this: 461 push __zero_reg__ 462 push __tmp_reg__ 463 in __tmp_reg__, __SREG__ 464 push __tmp_reg__ 465 clr __zero_reg__ 466 push rXX ; save registers r18:r27, r30:r31 467 ... 468 push r28 ; save frame pointer 469 push r29 470 in r28, __SP_L__ 471 in r29, __SP_H__ 472 sbiw r28, <LOCALS_SIZE> 473 out __SP_H__, r29 474 out __SP_L__, r28 475 476 A interrupt handler prologue looks like this: 477 sei 478 push __zero_reg__ 479 push __tmp_reg__ 480 in __tmp_reg__, __SREG__ 481 push __tmp_reg__ 482 clr __zero_reg__ 483 push rXX ; save registers r18:r27, r30:r31 484 ... 485 push r28 ; save frame pointer 486 push r29 487 in r28, __SP_L__ 488 in r29, __SP_H__ 489 sbiw r28, <LOCALS_SIZE> 490 cli 491 out __SP_H__, r29 492 sei 493 out __SP_L__, r28 494 495 A `-mcall-prologues' prologue looks like this (Note that the megas use a 496 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a 497 32 bit insn and rjmp is a 16 bit insn): 498 ldi r26,lo8(<LOCALS_SIZE>) 499 ldi r27,hi8(<LOCALS_SIZE>) 500 ldi r30,pm_lo8(.L_foo_body) 501 ldi r31,pm_hi8(.L_foo_body) 502 rjmp __prologue_saves__+RRR 503 .L_foo_body: */ 504 505 /* Not really part of a prologue, but still need to scan for it, is when a 506 function prologue moves values passed via registers as arguments to new 507 registers. In this case, all local variables live in registers, so there 508 may be some register saves. This is what it looks like: 509 movw rMM, rNN 510 ... 511 512 There could be multiple movw's. If the target doesn't have a movw insn, it 513 will use two mov insns. This could be done after any of the above prologue 514 types. */ 515 516 static CORE_ADDR 517 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end, 518 struct avr_unwind_cache *info) 519 { 520 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 521 int i; 522 unsigned short insn; 523 int scan_stage = 0; 524 struct bound_minimal_symbol msymbol; 525 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE]; 526 int vpc = 0; 527 int len; 528 529 len = pc_end - pc_beg; 530 if (len > AVR_MAX_PROLOGUE_SIZE) 531 len = AVR_MAX_PROLOGUE_SIZE; 532 533 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only 534 reading in the bytes of the prologue. The problem is that the figuring 535 out where the end of the prologue is is a bit difficult. The old code 536 tried to do that, but failed quite often. */ 537 read_memory (pc_beg, prologue, len); 538 539 /* Scanning main()'s prologue 540 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) 541 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) 542 out __SP_H__,r29 543 out __SP_L__,r28 */ 544 545 if (len >= 4) 546 { 547 CORE_ADDR locals; 548 static const unsigned char img[] = { 549 0xde, 0xbf, /* out __SP_H__,r29 */ 550 0xcd, 0xbf /* out __SP_L__,r28 */ 551 }; 552 553 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 554 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */ 555 if ((insn & 0xf0f0) == 0xe0c0) 556 { 557 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4); 558 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order); 559 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */ 560 if ((insn & 0xf0f0) == 0xe0d0) 561 { 562 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; 563 if (vpc + 4 + sizeof (img) < len 564 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0) 565 { 566 info->prologue_type = AVR_PROLOGUE_MAIN; 567 info->base = locals; 568 return pc_beg + 4; 569 } 570 } 571 } 572 } 573 574 /* Scanning `-mcall-prologues' prologue 575 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */ 576 577 while (1) /* Using a while to avoid many goto's */ 578 { 579 int loc_size; 580 int body_addr; 581 unsigned num_pushes; 582 int pc_offset = 0; 583 584 /* At least the fifth instruction must have been executed to 585 modify frame shape. */ 586 if (len < 10) 587 break; 588 589 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 590 /* ldi r26,<LOCALS_SIZE> */ 591 if ((insn & 0xf0f0) != 0xe0a0) 592 break; 593 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4); 594 pc_offset += 2; 595 596 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order); 597 /* ldi r27,<LOCALS_SIZE> / 256 */ 598 if ((insn & 0xf0f0) != 0xe0b0) 599 break; 600 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; 601 pc_offset += 2; 602 603 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order); 604 /* ldi r30,pm_lo8(.L_foo_body) */ 605 if ((insn & 0xf0f0) != 0xe0e0) 606 break; 607 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4); 608 pc_offset += 2; 609 610 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order); 611 /* ldi r31,pm_hi8(.L_foo_body) */ 612 if ((insn & 0xf0f0) != 0xe0f0) 613 break; 614 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; 615 pc_offset += 2; 616 617 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL); 618 if (!msymbol.minsym) 619 break; 620 621 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order); 622 /* rjmp __prologue_saves__+RRR */ 623 if ((insn & 0xf000) == 0xc000) 624 { 625 /* Extract PC relative offset from RJMP */ 626 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0); 627 /* Convert offset to byte addressable mode */ 628 i *= 2; 629 /* Destination address */ 630 i += pc_beg + 10; 631 632 if (body_addr != (pc_beg + 10)/2) 633 break; 634 635 pc_offset += 2; 636 } 637 else if ((insn & 0xfe0e) == 0x940c) 638 { 639 /* Extract absolute PC address from JMP */ 640 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16) 641 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order) 642 & 0xffff)); 643 /* Convert address to byte addressable mode */ 644 i *= 2; 645 646 if (body_addr != (pc_beg + 12)/2) 647 break; 648 649 pc_offset += 4; 650 } 651 else 652 break; 653 654 /* Resolve offset (in words) from __prologue_saves__ symbol. 655 Which is a pushes count in `-mcall-prologues' mode */ 656 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2; 657 658 if (num_pushes > AVR_MAX_PUSHES) 659 { 660 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"), 661 num_pushes); 662 num_pushes = 0; 663 } 664 665 if (num_pushes) 666 { 667 int from; 668 669 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes; 670 if (num_pushes >= 2) 671 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1; 672 673 i = 0; 674 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2); 675 from <= AVR_LAST_PUSHED_REGNUM; ++from) 676 info->saved_regs [from].addr = ++i; 677 } 678 info->size = loc_size + num_pushes; 679 info->prologue_type = AVR_PROLOGUE_CALL; 680 681 return pc_beg + pc_offset; 682 } 683 684 /* Scan for the beginning of the prologue for an interrupt or signal 685 function. Note that we have to set the prologue type here since the 686 third stage of the prologue may not be present (e.g. no saved registered 687 or changing of the SP register). */ 688 689 if (1) 690 { 691 static const unsigned char img[] = { 692 0x78, 0x94, /* sei */ 693 0x1f, 0x92, /* push r1 */ 694 0x0f, 0x92, /* push r0 */ 695 0x0f, 0xb6, /* in r0,0x3f SREG */ 696 0x0f, 0x92, /* push r0 */ 697 0x11, 0x24 /* clr r1 */ 698 }; 699 if (len >= sizeof (img) 700 && memcmp (prologue, img, sizeof (img)) == 0) 701 { 702 info->prologue_type = AVR_PROLOGUE_INTR; 703 vpc += sizeof (img); 704 info->saved_regs[AVR_SREG_REGNUM].addr = 3; 705 info->saved_regs[0].addr = 2; 706 info->saved_regs[1].addr = 1; 707 info->size += 3; 708 } 709 else if (len >= sizeof (img) - 2 710 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0) 711 { 712 info->prologue_type = AVR_PROLOGUE_SIG; 713 vpc += sizeof (img) - 2; 714 info->saved_regs[AVR_SREG_REGNUM].addr = 3; 715 info->saved_regs[0].addr = 2; 716 info->saved_regs[1].addr = 1; 717 info->size += 2; 718 } 719 } 720 721 /* First stage of the prologue scanning. 722 Scan pushes (saved registers) */ 723 724 for (; vpc < len; vpc += 2) 725 { 726 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 727 if ((insn & 0xfe0f) == 0x920f) /* push rXX */ 728 { 729 /* Bits 4-9 contain a mask for registers R0-R32. */ 730 int regno = (insn & 0x1f0) >> 4; 731 info->size++; 732 info->saved_regs[regno].addr = info->size; 733 scan_stage = 1; 734 } 735 else 736 break; 737 } 738 739 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE); 740 741 /* Handle static small stack allocation using rcall or push. */ 742 743 while (scan_stage == 1 && vpc < len) 744 { 745 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 746 if (insn == 0xd000) /* rcall .+0 */ 747 { 748 info->size += gdbarch_tdep (gdbarch)->call_length; 749 vpc += 2; 750 } 751 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */ 752 { 753 info->size += 1; 754 vpc += 2; 755 } 756 else 757 break; 758 } 759 760 /* Second stage of the prologue scanning. 761 Scan: 762 in r28,__SP_L__ 763 in r29,__SP_H__ */ 764 765 if (scan_stage == 1 && vpc < len) 766 { 767 static const unsigned char img[] = { 768 0xcd, 0xb7, /* in r28,__SP_L__ */ 769 0xde, 0xb7 /* in r29,__SP_H__ */ 770 }; 771 772 if (vpc + sizeof (img) < len 773 && memcmp (prologue + vpc, img, sizeof (img)) == 0) 774 { 775 vpc += 4; 776 scan_stage = 2; 777 } 778 } 779 780 /* Third stage of the prologue scanning. (Really two stages). 781 Scan for: 782 sbiw r28,XX or subi r28,lo8(XX) 783 sbci r29,hi8(XX) 784 in __tmp_reg__,__SREG__ 785 cli 786 out __SP_H__,r29 787 out __SREG__,__tmp_reg__ 788 out __SP_L__,r28 */ 789 790 if (scan_stage == 2 && vpc < len) 791 { 792 int locals_size = 0; 793 static const unsigned char img[] = { 794 0x0f, 0xb6, /* in r0,0x3f */ 795 0xf8, 0x94, /* cli */ 796 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ 797 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */ 798 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ 799 }; 800 static const unsigned char img_sig[] = { 801 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ 802 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ 803 }; 804 static const unsigned char img_int[] = { 805 0xf8, 0x94, /* cli */ 806 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ 807 0x78, 0x94, /* sei */ 808 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ 809 }; 810 811 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 812 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */ 813 { 814 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2); 815 vpc += 2; 816 } 817 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */ 818 { 819 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4); 820 vpc += 2; 821 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 822 vpc += 2; 823 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8; 824 } 825 else 826 return pc_beg + vpc; 827 828 /* Scan the last part of the prologue. May not be present for interrupt 829 or signal handler functions, which is why we set the prologue type 830 when we saw the beginning of the prologue previously. */ 831 832 if (vpc + sizeof (img_sig) < len 833 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0) 834 { 835 vpc += sizeof (img_sig); 836 } 837 else if (vpc + sizeof (img_int) < len 838 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0) 839 { 840 vpc += sizeof (img_int); 841 } 842 if (vpc + sizeof (img) < len 843 && memcmp (prologue + vpc, img, sizeof (img)) == 0) 844 { 845 info->prologue_type = AVR_PROLOGUE_NORMAL; 846 vpc += sizeof (img); 847 } 848 849 info->size += locals_size; 850 851 /* Fall through. */ 852 } 853 854 /* If we got this far, we could not scan the prologue, so just return the pc 855 of the frame plus an adjustment for argument move insns. */ 856 857 for (; vpc < len; vpc += 2) 858 { 859 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 860 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */ 861 continue; 862 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */ 863 continue; 864 else 865 break; 866 } 867 868 return pc_beg + vpc; 869 } 870 871 static CORE_ADDR 872 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 873 { 874 CORE_ADDR func_addr, func_end; 875 CORE_ADDR post_prologue_pc; 876 877 /* See what the symbol table says */ 878 879 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 880 return pc; 881 882 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr); 883 if (post_prologue_pc != 0) 884 return max (pc, post_prologue_pc); 885 886 { 887 CORE_ADDR prologue_end = pc; 888 struct avr_unwind_cache info = {0}; 889 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS]; 890 891 info.saved_regs = saved_regs; 892 893 /* Need to run the prologue scanner to figure out if the function has a 894 prologue and possibly skip over moving arguments passed via registers 895 to other registers. */ 896 897 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info); 898 899 if (info.prologue_type != AVR_PROLOGUE_NONE) 900 return prologue_end; 901 } 902 903 /* Either we didn't find the start of this function (nothing we can do), 904 or there's no line info, or the line after the prologue is after 905 the end of the function (there probably isn't a prologue). */ 906 907 return pc; 908 } 909 910 /* Not all avr devices support the BREAK insn. Those that don't should treat 911 it as a NOP. Thus, it should be ok. Since the avr is currently a remote 912 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */ 913 914 static const unsigned char * 915 avr_breakpoint_from_pc (struct gdbarch *gdbarch, 916 CORE_ADDR *pcptr, int *lenptr) 917 { 918 static const unsigned char avr_break_insn [] = { 0x98, 0x95 }; 919 *lenptr = sizeof (avr_break_insn); 920 return avr_break_insn; 921 } 922 923 /* Determine, for architecture GDBARCH, how a return value of TYPE 924 should be returned. If it is supposed to be returned in registers, 925 and READBUF is non-zero, read the appropriate value from REGCACHE, 926 and copy it into READBUF. If WRITEBUF is non-zero, write the value 927 from WRITEBUF into REGCACHE. */ 928 929 static enum return_value_convention 930 avr_return_value (struct gdbarch *gdbarch, struct value *function, 931 struct type *valtype, struct regcache *regcache, 932 gdb_byte *readbuf, const gdb_byte *writebuf) 933 { 934 int i; 935 /* Single byte are returned in r24. 936 Otherwise, the MSB of the return value is always in r25, calculate which 937 register holds the LSB. */ 938 int lsb_reg; 939 940 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT 941 || TYPE_CODE (valtype) == TYPE_CODE_UNION 942 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) 943 && TYPE_LENGTH (valtype) > 8) 944 return RETURN_VALUE_STRUCT_CONVENTION; 945 946 if (TYPE_LENGTH (valtype) <= 2) 947 lsb_reg = 24; 948 else if (TYPE_LENGTH (valtype) <= 4) 949 lsb_reg = 22; 950 else if (TYPE_LENGTH (valtype) <= 8) 951 lsb_reg = 18; 952 else 953 gdb_assert_not_reached ("unexpected type length"); 954 955 if (writebuf != NULL) 956 { 957 for (i = 0; i < TYPE_LENGTH (valtype); i++) 958 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i); 959 } 960 961 if (readbuf != NULL) 962 { 963 for (i = 0; i < TYPE_LENGTH (valtype); i++) 964 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i); 965 } 966 967 return RETURN_VALUE_REGISTER_CONVENTION; 968 } 969 970 971 /* Put here the code to store, into fi->saved_regs, the addresses of 972 the saved registers of frame described by FRAME_INFO. This 973 includes special registers such as pc and fp saved in special ways 974 in the stack frame. sp is even more special: the address we return 975 for it IS the sp for the next frame. */ 976 977 static struct avr_unwind_cache * 978 avr_frame_unwind_cache (struct frame_info *this_frame, 979 void **this_prologue_cache) 980 { 981 CORE_ADDR start_pc, current_pc; 982 ULONGEST prev_sp; 983 ULONGEST this_base; 984 struct avr_unwind_cache *info; 985 struct gdbarch *gdbarch; 986 struct gdbarch_tdep *tdep; 987 int i; 988 989 if (*this_prologue_cache) 990 return *this_prologue_cache; 991 992 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache); 993 *this_prologue_cache = info; 994 info->saved_regs = trad_frame_alloc_saved_regs (this_frame); 995 996 info->size = 0; 997 info->prologue_type = AVR_PROLOGUE_NONE; 998 999 start_pc = get_frame_func (this_frame); 1000 current_pc = get_frame_pc (this_frame); 1001 if ((start_pc > 0) && (start_pc <= current_pc)) 1002 avr_scan_prologue (get_frame_arch (this_frame), 1003 start_pc, current_pc, info); 1004 1005 if ((info->prologue_type != AVR_PROLOGUE_NONE) 1006 && (info->prologue_type != AVR_PROLOGUE_MAIN)) 1007 { 1008 ULONGEST high_base; /* High byte of FP */ 1009 1010 /* The SP was moved to the FP. This indicates that a new frame 1011 was created. Get THIS frame's FP value by unwinding it from 1012 the next frame. */ 1013 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM); 1014 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1); 1015 this_base += (high_base << 8); 1016 1017 /* The FP points at the last saved register. Adjust the FP back 1018 to before the first saved register giving the SP. */ 1019 prev_sp = this_base + info->size; 1020 } 1021 else 1022 { 1023 /* Assume that the FP is this frame's SP but with that pushed 1024 stack space added back. */ 1025 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); 1026 prev_sp = this_base + info->size; 1027 } 1028 1029 /* Add 1 here to adjust for the post-decrement nature of the push 1030 instruction.*/ 1031 info->prev_sp = avr_make_saddr (prev_sp + 1); 1032 info->base = avr_make_saddr (this_base); 1033 1034 gdbarch = get_frame_arch (this_frame); 1035 1036 /* Adjust all the saved registers so that they contain addresses and not 1037 offsets. */ 1038 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++) 1039 if (info->saved_regs[i].addr > 0) 1040 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr; 1041 1042 /* Except for the main and startup code, the return PC is always saved on 1043 the stack and is at the base of the frame. */ 1044 1045 if (info->prologue_type != AVR_PROLOGUE_MAIN) 1046 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp; 1047 1048 /* The previous frame's SP needed to be computed. Save the computed 1049 value. */ 1050 tdep = gdbarch_tdep (gdbarch); 1051 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, 1052 info->prev_sp - 1 + tdep->call_length); 1053 1054 return info; 1055 } 1056 1057 static CORE_ADDR 1058 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 1059 { 1060 ULONGEST pc; 1061 1062 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM); 1063 1064 return avr_make_iaddr (pc); 1065 } 1066 1067 static CORE_ADDR 1068 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) 1069 { 1070 ULONGEST sp; 1071 1072 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM); 1073 1074 return avr_make_saddr (sp); 1075 } 1076 1077 /* Given a GDB frame, determine the address of the calling function's 1078 frame. This will be used to create a new GDB frame struct. */ 1079 1080 static void 1081 avr_frame_this_id (struct frame_info *this_frame, 1082 void **this_prologue_cache, 1083 struct frame_id *this_id) 1084 { 1085 struct avr_unwind_cache *info 1086 = avr_frame_unwind_cache (this_frame, this_prologue_cache); 1087 CORE_ADDR base; 1088 CORE_ADDR func; 1089 struct frame_id id; 1090 1091 /* The FUNC is easy. */ 1092 func = get_frame_func (this_frame); 1093 1094 /* Hopefully the prologue analysis either correctly determined the 1095 frame's base (which is the SP from the previous frame), or set 1096 that base to "NULL". */ 1097 base = info->prev_sp; 1098 if (base == 0) 1099 return; 1100 1101 id = frame_id_build (base, func); 1102 (*this_id) = id; 1103 } 1104 1105 static struct value * 1106 avr_frame_prev_register (struct frame_info *this_frame, 1107 void **this_prologue_cache, int regnum) 1108 { 1109 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1110 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1111 struct avr_unwind_cache *info 1112 = avr_frame_unwind_cache (this_frame, this_prologue_cache); 1113 1114 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM) 1115 { 1116 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM)) 1117 { 1118 /* Reading the return PC from the PC register is slightly 1119 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes, 1120 but in reality, only two bytes (3 in upcoming mega256) are 1121 stored on the stack. 1122 1123 Also, note that the value on the stack is an addr to a word 1124 not a byte, so we will need to multiply it by two at some 1125 point. 1126 1127 And to confuse matters even more, the return address stored 1128 on the stack is in big endian byte order, even though most 1129 everything else about the avr is little endian. Ick! */ 1130 ULONGEST pc; 1131 int i; 1132 gdb_byte buf[3]; 1133 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 1135 1136 read_memory (info->saved_regs[AVR_PC_REGNUM].addr, 1137 buf, tdep->call_length); 1138 1139 /* Extract the PC read from memory as a big-endian. */ 1140 pc = 0; 1141 for (i = 0; i < tdep->call_length; i++) 1142 pc = (pc << 8) | buf[i]; 1143 1144 if (regnum == AVR_PC_REGNUM) 1145 pc <<= 1; 1146 1147 return frame_unwind_got_constant (this_frame, regnum, pc); 1148 } 1149 1150 return frame_unwind_got_optimized (this_frame, regnum); 1151 } 1152 1153 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); 1154 } 1155 1156 static const struct frame_unwind avr_frame_unwind = { 1157 NORMAL_FRAME, 1158 default_frame_unwind_stop_reason, 1159 avr_frame_this_id, 1160 avr_frame_prev_register, 1161 NULL, 1162 default_frame_sniffer 1163 }; 1164 1165 static CORE_ADDR 1166 avr_frame_base_address (struct frame_info *this_frame, void **this_cache) 1167 { 1168 struct avr_unwind_cache *info 1169 = avr_frame_unwind_cache (this_frame, this_cache); 1170 1171 return info->base; 1172 } 1173 1174 static const struct frame_base avr_frame_base = { 1175 &avr_frame_unwind, 1176 avr_frame_base_address, 1177 avr_frame_base_address, 1178 avr_frame_base_address 1179 }; 1180 1181 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy 1182 frame. The frame ID's base needs to match the TOS value saved by 1183 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ 1184 1185 static struct frame_id 1186 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) 1187 { 1188 ULONGEST base; 1189 1190 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); 1191 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame)); 1192 } 1193 1194 /* When arguments must be pushed onto the stack, they go on in reverse 1195 order. The below implements a FILO (stack) to do this. */ 1196 1197 struct stack_item 1198 { 1199 int len; 1200 struct stack_item *prev; 1201 void *data; 1202 }; 1203 1204 static struct stack_item * 1205 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len) 1206 { 1207 struct stack_item *si; 1208 si = xmalloc (sizeof (struct stack_item)); 1209 si->data = xmalloc (len); 1210 si->len = len; 1211 si->prev = prev; 1212 memcpy (si->data, contents, len); 1213 return si; 1214 } 1215 1216 static struct stack_item *pop_stack_item (struct stack_item *si); 1217 static struct stack_item * 1218 pop_stack_item (struct stack_item *si) 1219 { 1220 struct stack_item *dead = si; 1221 si = si->prev; 1222 xfree (dead->data); 1223 xfree (dead); 1224 return si; 1225 } 1226 1227 /* Setup the function arguments for calling a function in the inferior. 1228 1229 On the AVR architecture, there are 18 registers (R25 to R8) which are 1230 dedicated for passing function arguments. Up to the first 18 arguments 1231 (depending on size) may go into these registers. The rest go on the stack. 1232 1233 All arguments are aligned to start in even-numbered registers (odd-sized 1234 arguments, including char, have one free register above them). For example, 1235 an int in arg1 and a char in arg2 would be passed as such: 1236 1237 arg1 -> r25:r24 1238 arg2 -> r22 1239 1240 Arguments that are larger than 2 bytes will be split between two or more 1241 registers as available, but will NOT be split between a register and the 1242 stack. Arguments that go onto the stack are pushed last arg first (this is 1243 similar to the d10v). */ 1244 1245 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be 1246 inaccurate. 1247 1248 An exceptional case exists for struct arguments (and possibly other 1249 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but 1250 not a multiple of WORDSIZE bytes. In this case the argument is never split 1251 between the registers and the stack, but instead is copied in its entirety 1252 onto the stack, AND also copied into as many registers as there is room 1253 for. In other words, space in registers permitting, two copies of the same 1254 argument are passed in. As far as I can tell, only the one on the stack is 1255 used, although that may be a function of the level of compiler 1256 optimization. I suspect this is a compiler bug. Arguments of these odd 1257 sizes are left-justified within the word (as opposed to arguments smaller 1258 than WORDSIZE bytes, which are right-justified). 1259 1260 If the function is to return an aggregate type such as a struct, the caller 1261 must allocate space into which the callee will copy the return value. In 1262 this case, a pointer to the return value location is passed into the callee 1263 in register R0, which displaces one of the other arguments passed in via 1264 registers R0 to R2. */ 1265 1266 static CORE_ADDR 1267 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 1268 struct regcache *regcache, CORE_ADDR bp_addr, 1269 int nargs, struct value **args, CORE_ADDR sp, 1270 int struct_return, CORE_ADDR struct_addr) 1271 { 1272 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1273 int i; 1274 gdb_byte buf[3]; 1275 int call_length = gdbarch_tdep (gdbarch)->call_length; 1276 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr); 1277 int regnum = AVR_ARGN_REGNUM; 1278 struct stack_item *si = NULL; 1279 1280 if (struct_return) 1281 { 1282 regcache_cooked_write_unsigned 1283 (regcache, regnum--, (struct_addr >> 8) & 0xff); 1284 regcache_cooked_write_unsigned 1285 (regcache, regnum--, struct_addr & 0xff); 1286 /* SP being post decremented, we need to reserve one byte so that the 1287 return address won't overwrite the result (or vice-versa). */ 1288 if (sp == struct_addr) 1289 sp--; 1290 } 1291 1292 for (i = 0; i < nargs; i++) 1293 { 1294 int last_regnum; 1295 int j; 1296 struct value *arg = args[i]; 1297 struct type *type = check_typedef (value_type (arg)); 1298 const bfd_byte *contents = value_contents (arg); 1299 int len = TYPE_LENGTH (type); 1300 1301 /* Calculate the potential last register needed. */ 1302 last_regnum = regnum - (len + (len & 1)); 1303 1304 /* If there are registers available, use them. Once we start putting 1305 stuff on the stack, all subsequent args go on stack. */ 1306 if ((si == NULL) && (last_regnum >= 8)) 1307 { 1308 ULONGEST val; 1309 1310 /* Skip a register for odd length args. */ 1311 if (len & 1) 1312 regnum--; 1313 1314 val = extract_unsigned_integer (contents, len, byte_order); 1315 for (j = 0; j < len; j++) 1316 regcache_cooked_write_unsigned 1317 (regcache, regnum--, val >> (8 * (len - j - 1))); 1318 } 1319 /* No registers available, push the args onto the stack. */ 1320 else 1321 { 1322 /* From here on, we don't care about regnum. */ 1323 si = push_stack_item (si, contents, len); 1324 } 1325 } 1326 1327 /* Push args onto the stack. */ 1328 while (si) 1329 { 1330 sp -= si->len; 1331 /* Add 1 to sp here to account for post decr nature of pushes. */ 1332 write_memory (sp + 1, si->data, si->len); 1333 si = pop_stack_item (si); 1334 } 1335 1336 /* Set the return address. For the avr, the return address is the BP_ADDR. 1337 Need to push the return address onto the stack noting that it needs to be 1338 in big-endian order on the stack. */ 1339 for (i = 1; i <= call_length; i++) 1340 { 1341 buf[call_length - i] = return_pc & 0xff; 1342 return_pc >>= 8; 1343 } 1344 1345 sp -= call_length; 1346 /* Use 'sp + 1' since pushes are post decr ops. */ 1347 write_memory (sp + 1, buf, call_length); 1348 1349 /* Finally, update the SP register. */ 1350 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM, 1351 avr_convert_saddr_to_raw (sp)); 1352 1353 /* Return SP value for the dummy frame, where the return address hasn't been 1354 pushed. */ 1355 return sp + call_length; 1356 } 1357 1358 /* Unfortunately dwarf2 register for SP is 32. */ 1359 1360 static int 1361 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) 1362 { 1363 if (reg >= 0 && reg < 32) 1364 return reg; 1365 if (reg == 32) 1366 return AVR_SP_REGNUM; 1367 1368 warning (_("Unmapped DWARF Register #%d encountered."), reg); 1369 1370 return -1; 1371 } 1372 1373 /* Implementation of `address_class_type_flags' gdbarch method. 1374 1375 This method maps DW_AT_address_class attributes to a 1376 type_instance_flag_value. */ 1377 1378 static int 1379 avr_address_class_type_flags (int byte_size, int dwarf2_addr_class) 1380 { 1381 /* The value 1 of the DW_AT_address_class attribute corresponds to the 1382 __flash qualifier. Note that this attribute is only valid with 1383 pointer types and therefore the flag is set to the pointer type and 1384 not its target type. */ 1385 if (dwarf2_addr_class == 1 && byte_size == 2) 1386 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH; 1387 return 0; 1388 } 1389 1390 /* Implementation of `address_class_type_flags_to_name' gdbarch method. 1391 1392 Convert a type_instance_flag_value to an address space qualifier. */ 1393 1394 static const char* 1395 avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags) 1396 { 1397 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH) 1398 return "flash"; 1399 else 1400 return NULL; 1401 } 1402 1403 /* Implementation of `address_class_name_to_type_flags' gdbarch method. 1404 1405 Convert an address space qualifier to a type_instance_flag_value. */ 1406 1407 static int 1408 avr_address_class_name_to_type_flags (struct gdbarch *gdbarch, 1409 const char* name, 1410 int *type_flags_ptr) 1411 { 1412 if (strcmp (name, "flash") == 0) 1413 { 1414 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH; 1415 return 1; 1416 } 1417 else 1418 return 0; 1419 } 1420 1421 /* Initialize the gdbarch structure for the AVR's. */ 1422 1423 static struct gdbarch * 1424 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 1425 { 1426 struct gdbarch *gdbarch; 1427 struct gdbarch_tdep *tdep; 1428 struct gdbarch_list *best_arch; 1429 int call_length; 1430 1431 /* Avr-6 call instructions save 3 bytes. */ 1432 switch (info.bfd_arch_info->mach) 1433 { 1434 case bfd_mach_avr1: 1435 case bfd_mach_avrxmega1: 1436 case bfd_mach_avr2: 1437 case bfd_mach_avrxmega2: 1438 case bfd_mach_avr3: 1439 case bfd_mach_avrxmega3: 1440 case bfd_mach_avr4: 1441 case bfd_mach_avrxmega4: 1442 case bfd_mach_avr5: 1443 case bfd_mach_avrxmega5: 1444 default: 1445 call_length = 2; 1446 break; 1447 case bfd_mach_avr6: 1448 case bfd_mach_avrxmega6: 1449 case bfd_mach_avrxmega7: 1450 call_length = 3; 1451 break; 1452 } 1453 1454 /* If there is already a candidate, use it. */ 1455 for (best_arch = gdbarch_list_lookup_by_info (arches, &info); 1456 best_arch != NULL; 1457 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) 1458 { 1459 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length) 1460 return best_arch->gdbarch; 1461 } 1462 1463 /* None found, create a new architecture from the information provided. */ 1464 tdep = XNEW (struct gdbarch_tdep); 1465 gdbarch = gdbarch_alloc (&info, tdep); 1466 1467 tdep->call_length = call_length; 1468 1469 /* Create a type for PC. We can't use builtin types here, as they may not 1470 be defined. */ 1471 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"); 1472 tdep->func_void_type = make_function_type (tdep->void_type, NULL); 1473 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL); 1474 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type; 1475 TYPE_UNSIGNED (tdep->pc_type) = 1; 1476 1477 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1478 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1479 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1480 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); 1481 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1482 set_gdbarch_addr_bit (gdbarch, 32); 1483 1484 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1485 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1486 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1487 1488 set_gdbarch_float_format (gdbarch, floatformats_ieee_single); 1489 set_gdbarch_double_format (gdbarch, floatformats_ieee_single); 1490 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); 1491 1492 set_gdbarch_read_pc (gdbarch, avr_read_pc); 1493 set_gdbarch_write_pc (gdbarch, avr_write_pc); 1494 1495 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS); 1496 1497 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM); 1498 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM); 1499 1500 set_gdbarch_register_name (gdbarch, avr_register_name); 1501 set_gdbarch_register_type (gdbarch, avr_register_type); 1502 1503 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS); 1504 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read); 1505 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write); 1506 1507 set_gdbarch_return_value (gdbarch, avr_return_value); 1508 set_gdbarch_print_insn (gdbarch, print_insn_avr); 1509 1510 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call); 1511 1512 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum); 1513 1514 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer); 1515 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address); 1516 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address); 1517 1518 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue); 1519 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 1520 1521 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc); 1522 1523 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind); 1524 frame_base_set_default (gdbarch, &avr_frame_base); 1525 1526 set_gdbarch_dummy_id (gdbarch, avr_dummy_id); 1527 1528 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc); 1529 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp); 1530 1531 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags); 1532 set_gdbarch_address_class_name_to_type_flags 1533 (gdbarch, avr_address_class_name_to_type_flags); 1534 set_gdbarch_address_class_type_flags_to_name 1535 (gdbarch, avr_address_class_type_flags_to_name); 1536 1537 return gdbarch; 1538 } 1539 1540 /* Send a query request to the avr remote target asking for values of the io 1541 registers. If args parameter is not NULL, then the user has requested info 1542 on a specific io register [This still needs implemented and is ignored for 1543 now]. The query string should be one of these forms: 1544 1545 "Ravr.io_reg" -> reply is "NN" number of io registers 1546 1547 "Ravr.io_reg:addr,len" where addr is first register and len is number of 1548 registers to be read. The reply should be "<NAME>,VV;" for each io register 1549 where, <NAME> is a string, and VV is the hex value of the register. 1550 1551 All io registers are 8-bit. */ 1552 1553 static void 1554 avr_io_reg_read_command (char *args, int from_tty) 1555 { 1556 LONGEST bufsiz = 0; 1557 gdb_byte *buf; 1558 const char *bufstr; 1559 char query[400]; 1560 const char *p; 1561 unsigned int nreg = 0; 1562 unsigned int val; 1563 int i, j, k, step; 1564 1565 /* Find out how many io registers the target has. */ 1566 bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR, 1567 "avr.io_reg", &buf); 1568 bufstr = (const char *) buf; 1569 1570 if (bufsiz <= 0) 1571 { 1572 fprintf_unfiltered (gdb_stderr, 1573 _("ERR: info io_registers NOT supported " 1574 "by current target\n")); 1575 return; 1576 } 1577 1578 if (sscanf (bufstr, "%x", &nreg) != 1) 1579 { 1580 fprintf_unfiltered (gdb_stderr, 1581 _("Error fetching number of io registers\n")); 1582 xfree (buf); 1583 return; 1584 } 1585 1586 xfree (buf); 1587 1588 reinitialize_more_filter (); 1589 1590 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg); 1591 1592 /* only fetch up to 8 registers at a time to keep the buffer small */ 1593 step = 8; 1594 1595 for (i = 0; i < nreg; i += step) 1596 { 1597 /* how many registers this round? */ 1598 j = step; 1599 if ((i+j) >= nreg) 1600 j = nreg - i; /* last block is less than 8 registers */ 1601 1602 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j); 1603 bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR, 1604 query, &buf); 1605 1606 p = (const char *) buf; 1607 for (k = i; k < (i + j); k++) 1608 { 1609 if (sscanf (p, "%[^,],%x;", query, &val) == 2) 1610 { 1611 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val); 1612 while ((*p != ';') && (*p != '\0')) 1613 p++; 1614 p++; /* skip over ';' */ 1615 if (*p == '\0') 1616 break; 1617 } 1618 } 1619 1620 xfree (buf); 1621 } 1622 } 1623 1624 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */ 1625 1626 void 1627 _initialize_avr_tdep (void) 1628 { 1629 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init); 1630 1631 /* Add a new command to allow the user to query the avr remote target for 1632 the values of the io space registers in a saner way than just using 1633 `x/NNNb ADDR`. */ 1634 1635 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr 1636 io_registers' to signify it is not available on other platforms. */ 1637 1638 add_cmd ("io_registers", class_info, avr_io_reg_read_command, 1639 _("query remote avr target for io space register values"), 1640 &infolist); 1641 } 1642